Isometries of the plane. Draft

Oleg Viro

Below formulations of the main statements (theorems and problems) that
are to be proved are separated from the rest of the text. The proofs are
postponed to the end of the text. The reader is encouraged to invent proofs
on her/his own. Nonetheless, the reader has to read the proofs, no matter,
if you found a proof or not. The reader is encouraged also to draw missing
pictures. Each theorem should be illustrated with a picture!

1. Relocations as isometries

The notion of isometry is a general notion commonly used in mathematics. It
means a mapping which preserves distances. The word metric is a synonym
to the word distance.

In the context of this course, an isometry is a mapping of the plane that maps
each segment s to a segment s’ congruent to s. Therefore each relocation is
an isometry. In fact, each isometry of the plane is a relocation.

2. Recovery of an isometry from its restriction to
three points

Theorem A. An isometry of the plane can be recovered from its restriction to
any triple of non-collinear points.

Recall that a restriction of a mapping f to a subset is the mapping from
this subset which maps each point exactly as f. Theorem A claims that an
isometry can be restored if one forgets how it moves all the points besides
some three points that are not contained in a line.

In fact, an isometry can be almost recovered from its restriction to a pair of
points: there are exactly two isometries with the same restriction to a pair
of distinct points. They can be obtained from each other by composing with
the reflection in the line connecting these points.

3. Isometries as compositions of reflections

Theorem B. Any isometry of the plane is a composition of at most three
reflections.



4. Translations and central symmetries

A map of the plane to itself is called a translation if, for some fixed points
A and B, it maps a point X to a point Y = T(X) such that XY BA is a
parallelogram.

Here we have to be careful with the notion of parallelogram, because a paral-
lelogram may degenerate to a figure in a line. Not any quadrilateral squeezed
to a figure in a line deserves to be called a parallelogram, although any two
sides of such a degenerate quadrilateral are parallel. By a parallelogram we
mean a sequence of four segments KL, LM, MN and MK such that KL
is congruent and parallel to M N and LM is congruent and parallel to M K.
This definition describes both usual parallelograms, for which congruence
of opposite sides can be deduced from parallelness and vice versa, and the
degenerate parallelograims.

Theorem C. For any points A and B there exists a translation which maps A
to B. Any translation is an isometry.

Denote by Top the translation which maps A to B.
Theorem D. The composition of any two translations is a translation.

Theorem D implies that TEC" o TZ_é = Tm.
Fix a point O. A map of the plane to itself which maps a point A to a point
B such that O is the midpoint of the segment AB is called the symmetry

about a point O.
Theorem E. A symmetry about a point is an isometry.

Theorem F. The composition of any two symmetries in a point is a translation.
In details, Sp o Sy = ovE where Sx denotes the symmetry about point X .
Corollary G. A composition of a translation and a symmetry about a point is a
symmatry in a point.

Corollary H. The composition of an even number of symmetries in points is

a translation; the composition of an odd number of symmetries in points is a
symmetry in a point.

Problem 1. Given centers of sides of a pentagon, find the vertices of the pentagon.

Problem 2. Which sets of 2n points are centers of sides of 2n-gon? Hown many
2n-gons have the same centers of sides?

Problem 3. Given a circle ¢, a line l and a point A, find points B €l and C' € ¢ such
that A is the midpoint of segment BC'.

Problem 4. Given circles ¢c1 and c2 meeting at point A, find points X € ¢1 and
Xo € co such that A is the midpoint of segment C1C>.

Problem 5. Given circles c1 and c2 and a segment s, find points X1 € c1 and Xs € c2
such that the segment is congruent and parallel to s.



5. Compositions of two reflections

Theorem |. The composition of two reflections in non-parallel lines is a rotation
about the intersection point of the lines by the angle equal to doubled angle
between the lines. In formula:

RycoRap=Rotas.BAC,

where Rxy denotes the reflection in line XY, and Rotx , denotes the rotation
about point X by angle .

Theorem J. The composition of two reflections in parallel lines is a translation in
a direction perpendicular to the lines by a distance twice larger than the distance
between the lines.

More precisely, if lines AB and C D are parallel, and the line AC' is perpendicular
to the lines AB and CD, then

Rep o Rap =T,z

6. Application: finding triangles with minimal perime-
ters

Problem 6. Given a line |l and points A, B on the same side of I, find a point C €]
such that the broken line AC'B would be the shortest.

Recall that a solution of this problem relies on reflection. Namely, let B’ = R;(B).
Then the desired C is the intersection point of [ and AB’.

Notice that this problem can be reformulated as finding C € [ such that the perime-
ter of the triangle ABC is minimal.

Problem 7. Given lines I, m and a point A, find points B €l and C € m such that
the perimeter of the triangle ABC' is minimal.

Problem 8. Given lines I, m and n, no two of which are parallel to each other. Find
points Ael, Bem and C €n such that triangle ABC has minimal perimeter.

7. Composition of rotations

Theorem K. The composition of rotations (about points which may be differ-
ent) is either a rotation or translation.

9 (Napolean Theorem). For any triangle AABC' and equilateral triangles ABCU,
ACAV and AABW having no common interior points with AABC, points X, Y
and Z that are centers of ABCU, ACAV and A ABW, respectively, are vertices of
an equilateral triangle.



8. Glide reflections

A reflection about a line [ followed by a translation along [ is called a glide
reflection. In this definition, the order of reflection and translation does not
matter, because they commute: RjoTyp=Tapo Ry ifl | AB.

Theorem L. The composition of a central symmetry and a reflection is a glide
reflection.

9. Classification of plane isometries

Theorem M. Any isometry of the plane is either a reflection about a line, or
rotation, or translation, or gliding reflection.

Lemma N. A composition of three reflections is either a reflection, or a gliding
reflection.

Exercise. Generalize everything that follows into the setup of the 3-space.

Proofs and Comments

A  Given images A’, B’ and C’ of non-collinear points A, B, C under
and isometry, let us find the image of an arbitrary point X. Using a
compass, draw circles ¢4 and cp centered at A" and B’ of radii congru-
ent to AX and BX, respectively. They intersect in at least one point,
because segments AB and A’B’ are congruent and the circles centered at
A and B with the same radii intersect at X. There may be two intersec-
tion point. The image of X must be one of them. In order to choose the
right one, measure the distance between C and S and choose the intersec-
tion point X’ of the circles c4 and cp such that C' X’ is congruent to CX.
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B Choose three non-collinear points A, B, C'. By theorem A, it would
suffice to find a composition of at most three reflections which maps A, B
and C to their images under a given isometry S.

First, find a reflection R; which maps A to S(A).

C
A

R1(B)

R1(C) ekg\

o kO\
5>

The axis of such a reflection is a perpendicular bisector of the segment

AS(A). Tt is uniquely defined, unless S(A) = A. If S(A) = A, one can
take either a reflection about any line passing through A, or take, instead of
reflection, an identity map for R;.

Second, find a reflection Ry which maps segment S(A)R;(B) to S(A)S(B).

A
e B

The axis of such a reflection is the bisector of angle « R;(B)S(A)S(B).

The reflection Ry maps Ry(B) to S(B). Indeed, the segment

S(A)Ri(B) = R1(AB) is congruent to AB (because R; is an isometry),
AB is congruent to S(A)S(B) = S(AB) (because S is an isometry), there-
fore S(A)R1(B) is congruent to S(A)S(B). Reflection Ry maps the ray
S(A)R;1(B) to the ray S(A)S(B), preserving the point S(A) and distances.



Therefore it maps Ry (B) to S(B).
L]

A
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Triangles Ro o Ri(AABC) and S(AABC) are congruent via an isometry
So(RyoR;)™ = SoRyoRy, and the isometry is identity on the side S(AB) =
Ry 0 R1(AB). Now either Ry(R1(C)) = C and then S = Ry o Ry, or the
triangles Ryoo Ry (AABC') and S(A ABC') are symmetric about their common
side S(AB). In the former case S = Ry o Ry, in the latter case denote by R3
the reflection about S(AB) and observe that S = R3o0 Ry o Ry.

C Any points A, B and X can be completed in a unique way to a parallel-
ogram ABY X (maybe degenerated, that is all four points are collinear and
AB = XY, BY = AX). Define T(X) =Y. For any points X, Y the quadri-
lateral XYT(Y)T(X) is a parallelogram (maybe, degenerated). Therefore,
T is an isometry.

E SAS-test for congruent triangles (extended appropriately to degenerate

triangles.)
S(B)

1 . S5(4)

B

F Let X be an arbitrary point. Its image Y = S4(X) can be obtain from
it by the translation T— = TZ? o Tﬁ = TLW/' The image Z of Y under Sp

can be obtained from Y by the translation TY—Z> = TB_Z) o T;_/]_g’ = T2)71_3" Hence

Z =T (T, (X)) = T, (X).

2V B (X) = T,

(AY +Y B) AB
Draw the picture!
G The equality

SpoSa=Typ
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implies a couple of other useful equalities. Namely, compose both sides of
this equality with Sp from the left:

SpoSpoSs=5p T, 3

Since Sp o Sp is the identity, it can be rewritten as
Similarly, but multiplying by S4 from right, we get
Sp=T.—-—054.

6 Construction that solves Problem 2. Reflect point A in [ and m, that
is find B = Rj(A) and C" = R,,(A). Then B =1nB'C’" and C =mn B'C".
Exercise: provide a proof and research.

8 If we knew a point A € [, the problem would be solved as Problem
2: we would connect points R,,(A) and R, (A) and take for B and C' the
intersection points of this line with m and n. So, we have to find a point
A €l such that the segment R,,(A)R,(A) would be minimal.

The end points R,,(A), R,(A) of this segment belong to the lines R, (1)
and R, (1) and are obtained from the same point A € [. Therefore

Rn(A) = Rn(Rm(Rm(A))) =Ry o Rm(B)y
where B € R, (1). So, one end point is obtained from another by R, o R,,.

By Theorem J, R, o R,, is a rotation about the point m nn. We look for a
point B on Ry, (1) such that the segment BR,, o R,,(B) is minimal.

The closer a point to the center of rotation, the closer this point to its image
under the rotation. Therefore the desired B is the base of the perpendic-
ular dropped from m nn to R,,(l). Hence, the desired A is the base of
perpendicular dropped from mnn to [.

Since all three lines are involved in the conditions of the problem in the same
way, the desired points B and C are also the end points of altitudes of the
triangle formed by lines [, m, n.

K  Prove this theorem by representing each rotation as a composition of
two reflections about a line. Choose the lines in such a way that the second
line in the representation of the first rotation would coincide with the first
line in the representation of the second rotation. Then in the representation
of the composition of two rotations as a composition of four reflections the
two middle reflections would cancel and the whole composition would be
represented as a composition of two reflections. The angle between the axes
of these reflections would be the sum of of the angles in the decompositions



of the original rotations. If this angle is zero, and the lines are parallel, then
the composition of rotations is a translation by Theorem J. If the angle is not
zero, the axes intersect, then the composition of the rotations is a rotations
around the intersection point by the angle which is the sum of angles of the
original rotations.

Similar tricks with reflections allows to simplify other compositions.
L Use the same tricks as for Theorem K

M This theorem can be deduced from Theorem B by taking into account
relations between reflections in lines. By Theorem B, any isometry of the
plane is a composition of at most 3 reflections about lines. By Theorems I
and J, a composition of two reflections is either rotation about a point or
translation.

N If all three axes of the reflections are parallel, then the firs two can
be translated without changing of their composition (the composition of
reflections about two parallel lines depends only on the direction of lines and
the distance between them). By translating the first two lines, make the
second of them coinciding with the third line. Then in the total composition
they cancel, and the composition is just the reflection in the first line.

If not all three lines are parallel, then the second is not parallel to one of the
rest. The composition of reflections about these two non-parallel lines is a
rotation, and the lines can be rotated simultaneously about their intersection
point by the same angle without changing of the composition.

By an appropriate rotation, make the middle line perpendicular to the line
which was not rotated. Then by rotating of these two perpendicular lines
about their intersection point, make the middle one parallel to the other
line. Now the configuration of lines consists of two parallel lines and a line
perpendicular to them. The composition of reflections about them (the order
does not matter any more, because they commute) is a gliding symmetry.



