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Abstract. Motivated by conjectures of Demailly, Green–Griffiths, Lang, and Vojta, we show
that several notions related to hyperbolicity behave similarly in families. We apply our results
to show the persistence of arithmetic hyperbolicity along field extensions for projective normal
surfaces with nonzero irregularity. These results rely on the mild boundedness of semi-abelian
varieties. We also introduce and study the notion of pseudo-algebraic hyperbolicity which
extends Demailly’s notion of algebraic hyperbolicity for projective schemes.
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1. Introduction

The aim of this paper is to provide evidence for the following conjecture due in part to
Demailly, Green–Griffiths, Lang and Vojta. The following conjecture is a consequence of
conjectures appearing in [1, §0.3], [12, Conj. XV.4.3], [15], [25], [32, §6], [44], and [65, Conj. 4.3].

Conjecture 1.1 (Demailly, Green–Griffiths, Lang, Vojta). Let X be a projective variety over
a field k of characteristic zero. Then the following statements are equivalent.

(i) The projective variety X is algebraically hyperbolic over k.
(ii) The projective variety X is bounded over k.

(iii) For all n ≥ 1 and m ≥ 1, the projective variety X is (n,m)-bounded over k.
(iv) Every integral closed subvariety of X is of general type.
(v) The projective variety X is groupless over k.

Here a projective variety X over an algebraically closed field k is algebraically hyperbolic
over k if there is an ample line bundle L on X and a real number αX,L such that, for every
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smooth projective connected curve C over k of genus g and every morphism f : C ! X, the
inequality

degC f
∗L ≤ αX,L · (2g − 2)

holds.
For n ≥ 1 and m ≥ 0 integers, we follow the terminology introduced in [34, §4] and refer

to a projective variety as (n,m)-bounded over the algebraically closed field k if, for every
projective normal integral scheme Y over k of dimension at most n, all pairwise distinct points
y1, . . . , ym ∈ Y (k), and all x1, . . . , xm ∈ X(k), the scheme

Homk([Y, y1, . . . , ym], [X,x1, . . . , xm])

parametrizing morphisms f : Y ! X with f(y1) = x1, . . . , f(ym) = xm is of finite type over
k. We say that X is n-bounded if it is (n, 0)-bounded and we say that X is bounded if it is
n-bounded for every integer n. We refer the reader to [34] for a discussion of the relations
between algebraic hyperbolicity, boundedness, and (n,m)-boundedness.

The above notions are defined for projective varieties over algebraically closed fields. More
generally, if X is a projective variety over a field k, we say that X is algebraically hyperbolic
over k if Xk is algebraically hyperbolic over k, where k ! k is some algebraic closure. We
define the notions of boundedness and (n,m)-boundedness over k in a similar manner.

We follow standard terminology and say that an integral proper scheme X over k is of
general type if it has a desingularisation X ′ ! X such that ωX′/k is a big line bundle. Also,
we will say that a proper scheme X over a field k is of general type if, for every irreducible
component Y of X, the reduced closed subscheme Yred is of general type. Finally, a proper
variety X over k is groupless if, for every abelian variety A over k, every morphism A ! Xk
is constant; see [33, 34, 37, 38] for basic properties of groupless varieties.

Our starting point in this paper is the fact that the notion of being of general type is an
open condition in families of projective varieties. This statement can be deduced from results
of Siu, Kawamata, and Nakayama (see [53]).

Theorem 1.2 (Nakayama). Let X ! S be a proper morphism of schemes. Then the set of s
in S such that Xs is of general type is an open subscheme of S.

Lang notes that “the extent to which hyperbolicity is open for the Zariski topology in families
(of projective varieties)” is unclear [44, p. 176]. Our aim in this paper is to investigate how
every notion of hyperbolicity appearing in Conjecture 1.11 behaves in families and to show that
all these notions are “Zariski-countable open”. It seems worth stressing that it is not known
whether any notion of hyperbolicity appearing in Conjecture 1.11 is a Zariski open condition
in families.

1.1. Stable under generisation. Nakayama’s theorem implies that the locus of s in S such
that every subvariety of Xs is of general type is stable under generisation. Our first result
confirms that every notion appearing in Conjecture 1.1 is in fact stable under generisation.

Theorem 1.3 (Generisation). Let S be an integral noetherian scheme and let X ! S be a
projective morphism. Let s ∈ S be a closed point with residue field k of characteristic 0. Let
XK(S) be the geometric generic fibre of X ! S.

(i) If every integral closed subvariety of Xs is of general type, then every integral closed
subvariety of XK(S) is of general type.

(ii) If Xs is groupless, then XK(S) is groupless.
(iii) If Xs is an algebraically hyperbolic projective variety, then XK(S) is algebraically hy-

perbolic.
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(iv) If Xs is a bounded projective projective variety over k, then XK(S) is bounded over
K(S).

(v) Let n ≥ 1 and m ≥ 0 be integers. If Xs is an (n,m)-bounded projective variety over k,
then XK(S) is (n,m)-bounded over K(S).

Let us also mention the complex-analytic analogue of Theorem 1.3. Namely, let X ! S be
a surjective holomorphic map of complex analytic spaces with compact fibres. If there is a
point s in S such that the fibre Xy is Kobayashi hyperbolic, then there is an analytic open
neighbourhood U ⊂ S of s such that, for every u in U , the fibre Xu is Kobayashi hyperbolic;
see [41, Theorem 3.11.1].

The first statement on varieties of general type in Theorem 1.3 follows from Nakayama’s
result stated above (see Section 4.1). The second statement on grouplessness is proven using
non-archimedean methods in [37]. As we will explain below, the third statement on algebraic
hyperbolicity follows from a mild generalisation of a theorem of Demailly (see Theorem 1.4
below). The last two statements are proven in Section 4. In fact, we deduce these two
statements from the fact that the locus of s in S such that Xs is bounded (respectively (n,m)-
bounded) is a Zariski-countable open in the sense defined below.

1.2. Countable-openness of the hyperbolic locus. Given a projective morphism X ! S
with S a complex algebraic variety, Demailly showed that the locus of s in S(C) such that
Xs is algebraically hyperbolic is an open subset of S(C) in the countable-Zariski topology.
Recall that, if (X, T ) is a noetherian topological space, then there exists another topology
T cnt, or T -countable, on X whose closed sets are the countable unions of T -closed sets (see
Lemma 4.1). If S is a noetherian scheme, a subset Z ⊂ S is a Zariski-countable closed if it
is a countable union of closed subschemes Z1, Z2, . . . ⊂ S. With this terminology at hand,
Demailly essentially proved the following result.

Theorem 1.4 (Demailly). Let S be a noetherian scheme over Q and let X ! S be a projective
morphism. Then, the set of s in S such that Xs is algebraically hyperbolic is Zariski-countable
open in S.

This is not the exact result proven by Demailly. Indeed, Demailly proved that, if k = C and
Snot-ah is the set of s in S such that Xs is not algebraically hyperbolic, then Snot-ah ∩ S(C) is
closed in the countable topology on S(C). This, strictly speaking, does not imply that Snot-ah

is closed in the countable topology on S. For example, if S is an integral curve over C and η is
the generic point of S, then {η} is not a Zariski-countable open of S, whereas {η} ∩ S(C) = ∅
is a Zariski-countable open of S(C).

We give a proof of Theorem 1.4 which is similar to Demailly’s proof, but more adapted
to the scheme-theoretic setting. Moreover, note that Demailly’s theorem as stated above
actually implies that the notion of being algebraically hyperbolic is stable under generisation.
Furthermore, to prove Theorem 1.4 we replace part of Demailly’s line of reasoning by stack-
theoretic arguments. Finally, using similar (but slightly more involved) arguments, we obtain
similar results on boundedness and (n,m)-boundedness.

Theorem 1.5 (Countable-openness of boundedness). Let S be a noetherian scheme over Q
and let X ! S be a projective morphism. Then, the set of s in S such that Xs is bounded is
Zariski-countable open in S.

Theorem 1.6 (Countable-openness of (n,m)-boundedness). Let S be a noetherian scheme
over Q, let n ≥ 1 and m ≥ 0 be integers. If X ! S is projective, then the set of s in S such
that Xs is (n,m)-bounded is Zariski-countable open in S.
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As algebraic hyperbolicity is conjecturally equivalent to every subvariety being of general
type (Conjecture 1.1), one expects a similar Zariski-countable openness property to hold for
the latter notion. We use Nakayama’s theorem and the fact that the stack of proper schemes
of general type is a countable union of finitely presented algebraic stacks to prove the following
result.

Theorem 1.7 (Countable-openness of every subvariety being of general type). Let S be a
noetherian scheme over Q and let X ! S be a projective morphism. Then, the set of s in S
such that every integral closed subvariety of Xs is of general type is Zariski-countable open in
S.

Finally, in [37] it is shown that the set of s in S such that Xs is groupless is open in the
Zariski-countable topology on S. Thus, for every property appearing in Conjecture 1.1, the
locus of s in S such that Xs has this property is Zariski-countable open in S.

1.3. Mildly bounded varieties. The notions of algebraic hyperbolicity, boundedness, and
grouplessness discussed above are expected to coincide. In [33], a “weak” notion of boundedness
that suffices for certain arithmetic applications (see Theorem 7.1 below) is introduced. The
precise definition of this notion reads as follows.

Definition 1.8 (Mildly bounded varieties). Let k be a field with algebraic closure k ! k.
A finite type separated scheme X over k is mildly bounded over k if, for every smooth quasi-
projective connected curve C over k, there is an integer m and points c1, . . . , cm in C(k)
such that, for every x1, . . . , xm in X(k), the set of morphisms f : C ! Xk with f(c1) =
x1, . . . , f(cm) = xm is finite.

It is not hard to show that mildly bounded proper varieties have no rational curves. More
generally, if X is a mildly bounded variety, then every morphism A1

k ! X is constant (see
Proposition 5.1).

Quite surprisingly, we are able to prove that every semi-abelian variety over a field of char-
acteristic zero is mildly bounded, so that the notion of mild boundedness is strictly weaker
than any notion of hyperbolicity or boundedness discussed above (including grouplessness).

Proposition 1.9. If k is a field of characteristic zero and X is a semi-abelian variety over k,
then X is mildly bounded over k.

Proposition 1.9 shows that mildly bounded varieties are not necessarily hyperbolic, nor even
of general type. Related to this proposition we show the following global boundedness result
for families of abelian varieties. Its proof relies on Silverman’s specialisation theorem [61].

Theorem 1.10. Let S be a hyperbolic integral curve over k, and let X ! S be a semi-abelian
scheme over S. Then X is mildly bounded over k.

We conjecture that, for projective varieties, the only obstruction to being mildly bounded
is the presence of a rational curve.

Conjecture 1.11. If k is a field of characteristic zero and X is a projective variety over k
such that Xk has no rational curves, then X is mildly bounded over k.

The following result says that our conjecture holds for surfaces, under a suitable assumption
on the Albanese variety. Its proof crucially uses the mild boundedness of abelian varieties
(Corollary 6.4).

Theorem 1.12. Let X be a projective integral surface over a field k of characteristic zero such
that Xk has no rational curves. If there is an abelian variety A and a morphism X ! A which
is generically finite onto its image, then X is mildly bounded over k.
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We can also prove the conjecture for groupless projective surfaces which admit a non-
constant map to some abelian variety. In particular, the conjecture holds if X is a groupless
projective normal surface with non-zero irregularity q(X) := h1(X,OX).

Theorem 1.13. Let X be a projective groupless surface over k. If X admits a non-constant
map to some abelian variety over k, then X is mildly bounded over k.

Our next result is also in accordance with Conjecture 1.11. To motivate this result, recall
that, if X ! S is a projective morphism of noetherian schemes over Q, the set of s in S
such that X

k(s)
has no rational curve is Zariski-countable open in S (see for instance [13]).

Conjecture 1.11 predicts that these two loci are in fact equal, and our next result verifies that
the locus of s in S with Xs mildly bounded is Zariski-countable open.

Theorem 1.14. Let S be a noetherian scheme over Q and let X ! S be a projective morphism.
Then the set of s in S such that Xs is mildly bounded over k(s) is Zariski-countable open in
S.

It seems worthwhile to stress that the proof of Theorem 1.14 follows a similar line of reasoning
as the proofs of Theorems 1.4, 1.5, and 1.6. However, the proof of Theorem 1.14 is arguably
the most involved, due to the fact that the condition of mild boundedness is much weaker than
the conditions of being algebraically hyperbolic, bounded, or (n,m)-bounded, respectively.

As before, the Zariski-countable openness of the locus of s in S such that Xs is mildly
bounded implies that this locus is stable under generisation.

Corollary 1.15. Let S be an integral noetherian scheme over Q and let X ! S be a projective
morphism. If there is an s in S such that Xs is mildly bounded over k(s), then the generic
fibre XK(S) is mildly bounded.

It is not clear that, given a mildly bounded variety X over k and a field extension k ⊂ L, the
variety XL is mildly bounded over L. Using the fact that being mildly bounded is stable under
generisation in projective families, we are able to deduce the persistence of mild boundedness
over field extensions of finite transcendence degree.

Corollary 1.16. Let k ⊂ L be an extension of fields of characteristic zero, and let X be a
projective mildly bounded variety over k. If k ⊂ L has finite transcendence degree, then XL is
mildly bounded over L.

1.4. Persistence of arithmetic hyperbolicity. The notion of mildly bounded varieties was
introduced in [33] with the aim of giving arithmetic applications; see for instance [33, Theo-
rem 1.4]. In Section 8 we give such applications based on the results in Section 1.3 and [33].
For example, we prove the following new result on rational points on surfaces.

Theorem 1.17. Let X be a projective integral surface over a number field K such that there
is a non-constant morphism XK ! A to an abelian variety A over K. Assume that for every
number field L over K, the set X(L) is finite. Then, for every finitely generated field M
of characteristic zero, the set X(M) is finite.

Note that a special case of Theorem 1.17 was already proven in [33, Corollary 1.6], under
the additional assumption that X admits a finite morphism to an abelian variety. The proof
in loc. cit. relies on Yamanoi’s extension of Bloch-Ochiai-Kawamata’s theorem to finite covers
of abelian varieties [70]. However, as Yamanoi’s theorem does not apply to surfaces with
non-maximal Albanese dimension, we can not use his results to prove Theorem 1.17. Instead,
to prove Theorem 1.17, we will rely on the fact that abelian varieties are mildly bounded
(Proposition 1.9).
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Theorem 1.17 verifies a prediction implied by the Lang–Vojta conjecture. To explain this,
we recall that Lang introduced the notion of arithmetic hyperbolicity (sometimes also referred
to as Mordellicity) over Q to capture the property of having only finitely many rational points
over number fields. This notion is studied for instance in [4, 5, 30, 31, 33, 35], [64, §2], and
[68]. Let us start with extending Lang’s notion to varieties over arbitrary algebraically closed
fields k of characteristic zero.

Definition 1.18 (Arithmetic hyperbolicity). A finite type separated scheme X over k is arith-
metically hyperbolic over k if there is a Z-finitely generated subring A ⊂ k and a finite type
separated A-scheme X with Xk ∼= X over k such that, for all Z-finitely generated subrings
A′ ⊂ k containing A, the set of A′-points X (A′) := HomA(SpecA′,X ) on X is finite.

With this definition at hand, let us recall that Lang–Vojta’s arithmetic conjecture says
that grouplessness (and thus also algebraic hyperbolicity) is equivalent to being arithmetically
hyperbolic.

Conjecture 1.19 (Arithmetic Lang–Vojta). A projective variety X over k is groupless over
k if and only if X is arithmetically hyperbolic over k.

Faltings’s theorems show that the Arithmetic Lang–Vojta conjecture holds if X is one-
dimensional, or when X is a closed subvariety of an abelian variety; see [19, 20, 21, 22].

The Arithmetic Lang–Vojta conjecture has many interesting consequences. For example,
in light of the aforementioned properties of grouplessness, it predicts that “being arithmeti-
cally hyperbolic” is stable under generisation and even a Zariski-countable open condition in
projective families of varieties. Verifying these predictions of Lang–Vojta’s conjecture seems
currently out of reach. Slightly more reasonable seems to be the Arithmetic Persistence Con-
jecture stated below. Under the additional assumption that X is projective, the Arithmetic
Persistence Conjecture is indeed a consequence of the Arithmetic Lang–Vojta conjecture. How-
ever, as the conjecture also seems to be reasonable in the quasi-projective setting, we state it
in this generality.

Conjecture 1.20 (Arithmetic Persistence Conjecture). Let k ⊂ L be an extension of alge-
braically closed fields of characteristic zero. If X is an arithmetically hyperbolic finite type
separated scheme over k, then XL is arithmetically hyperbolic over L.

To give a better idea of what this conjecture entails, let us consider an affine finite type
scheme X over Z with only finitely many integral points, i.e., for every number field K and
every finite set of finite places S of K, the set ofOK,S-points of X is finite. Then, the Arithmetic
Persistence Conjecture says that for every finitely generated integral domain A of characteristic
zero A, the set X (A) is finite. This is not an unreasonable expectation, as it can be verified in
many cases (see for instance [18] or [31]).

Theorem 1.17 can be reformulated as saying that the Arithmetic Persistence Conjecture
holds for projective surfaces X over Q which admit a non-constant map to some abelian variety
over Q. Indeed, if X is a projective arithmetically hyperbolic surface over Q which admits a
non-constant morphism to an abelian variety and Q ⊂ L is an extension of algebraically closed
fields, then Theorem 1.17 says that XL is arithmetically hyperbolic over L, and this can be
shown to imply the finiteness of rational points X(M) (see Section 8.1). The restriction to
Q in Theorem 1.17 is unnecessary, and was made above only for the sake of simplifying the
statement; see Theorem 8.12 for a more general statement.

Our next result solves the Arithmetic Persistence Conjecture for varieties which admit a
quasi-finite morphism to some semi-abelian variety.
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Theorem 1.21. Let A be a Z-finitely generated integral domain of characteristic zero with
fraction field K and let X be a finite type separated scheme over A such that XK admits

a quasi-finite morphism to a semi-abelian variety over K. Assume that, for every finite
extension L/K and every Z-finitely generated subring A′ ⊂ L containing A, the set X (A′) is
finite. Then, for every finitely generated field extension M/K and every Z-finitely generated
subring B ⊂M containing A, the set X (B) is finite.

Theorem 1.21 is concerned with the finiteness of integral points on (not necessarily proper)
varieties which map quasi-finitely (possibly surjectively) to some semi-abelian variety. As
before, we note that Theorem 1.21 was proved using Yamanoi’s results on abelian varieties in
the case that X is proper and smooth in [33, Corollary 1.6]. Removing the properness condition
in Yamanoi’s work would require a substantial amount of new ideas. In this paper, we prove
Theorem 1.21 by appealing to the simple fact that semi-abelian varieties are mildly bounded
(Proposition 1.9).

The reader interested in a concrete application of Theorem 1.21 might find Remark 7.5, and
especially Theorem 7.6, helpful.

1.5. Predictions made by Vojta’s geometric conjecture. Part of the conjecture of De-
mailly, Green-Griffiths, and Lang as stated above (Conjecture 1.1) is implied by Vojta’s con-
jecture that a projective variety is of general type if and only if it is pseudo-algebraically
hyperbolic; see [66] or [67]. Here, a projective variety X over an algebraically closed field k
is pseudo-algebraically hyperbolic over k if there is a proper closed subset ∆ of X, an ample
line bundle L on X and a real number αX,∆,L depending only on X, ∆, and L such that, for
every smooth projective curve C over k and every non-constant morphism f : C ! X with
f(C) 6⊂ ∆, the inequality

degC f
∗L ≤ αX,∆,L · genus(C)

holds. More generally, a projective variety X over a field k is pseudo-algebraically hyperbolic
over k if Xk is pseudo-algebraically hyperbolic over k. The word “pseudo” was first coined by
Kiernan-Kobayashi [39] and also employed by Lang [44].

Conjecture 1.22 (Vojta’s conjecture). A projective variety X over k is of general type over
k if and only if it is pseudo-algebraically hyperbolic over k.

To motivate our next result, let S be an integral variety over a field k and let X ! S be
a projective morphism whose generic fibre XK(S) is of general type. Then, for a general s
in S(k), the projective scheme Xs is of general type by Nakayama’s theorem (Theorem 1.2).
Vojta’s conjecture (Conjecture 1.22) predicts that pseudo-algebraic hyperbolicity specialises in
a similar way that varieties of general type do. Our next result verifies part of this prediction.
This result is proven in Section 4.

Theorem 1.23 (Specialising pseudo-algebraic hyperbolicity). Let S be an integral variety over
k and let X ! S be a projective morphism whose generic fibre XK(S) is pseudo-algebraically
hyperbolic. Then, for a very general s in S(k), the projective scheme Xs is pseudo-algebraically
hyperbolic.

Moreover, since being of general type persists over field extensions, our next result is also
in accordance with Vojta’s conjecture (Conjecture 1.22).

Theorem 1.24 (Persistence of pseudo-algebraic hyperbolicity). Let k ⊂ L be an extension
of algebraically closed fields of characteristic zero. If X is a pseudo-algebraically hyperbolic
projective variety over k, then XL is pseudo-algebraically hyperbolic over L.
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Similar results are proven in Section 9 for pseudo-bounded varieties, where a projective
scheme X over an algebraically closed field k is said to be pseudo-bounded if there is a proper
closed subscheme ∆ ( X such that, for every smooth projective connected variety Y over k,
the scheme

Homk(Y,X) \Homk(Y,∆)

parametrizing morphisms f : Y ! X with f(Y ) 6⊂ ∆ is of finite type over k. In this case,
we also say that X is bounded modulo ∆. The relation to pseudo-algebraic hyperbolicity is as
follows.

Theorem 1.25 (From curves to varieties). Let k be an algebraically closed field of characteristic
zero. If X is algebraically hyperbolic modulo ∆ over k, then X is bounded modulo ∆ over k.

The following result shows that mere boundedness implies the existence of a uniform bound
for maps from a fixed curve in the genus of that curve. Therefore, the a priori difference
between boundedness and algebraic hyperbolicity is the linearity of the dependence on the
genus in the definition.

Theorem 1.26 (From boundedness to uniformity). Let k be an algebraically closed field of
characteristic zero. If X is bounded modulo ∆ over k, then, for every ample line bundle L on
X and every integer g ≥ 0, there is a real number α(X,∆,L, g) such that, for every smooth
projective connected curve C of genus g over k and every morphism f : C ! X with f(C) 6⊂ ∆,
the inequality

degC f
∗L ≤ α(X,∆,L, g)

holds.
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type is a Zariski-open condition (Theorem 1.2). We are grateful to Jason Starr for many helpful
discussions, and especially his help in proving Corollary 3.2. We also thank Damian Brotbek
and Carlo Gasbarri for helpful discussions on hyperbolicity in families. We thank Ekaterina
Amerik for motivating discussions on mildly bounded varieties. The first and second named
authors gratefully acknowledge support from SFB Transregio/45. The third named author is
partially supported by a grant from the Simons Foundation/SFARI (522730, LK).

Conventions. Throughout this paper, we let k be an algebraically closed field of characteristic
zero. A variety over k is a finite type separated reduced k-scheme.

Let X be a finite type separated scheme over k and let A ⊂ k be a subring. A model for X
over A is a pair (X , φ) with X ! SpecA a finite type separated scheme and φ : X ×A k ! X
an isomorphism of schemes over k. We will often omit φ from our notation.

2. Characterising boundedness and algebraic hyperbolicity

Recall that a projective variety X over k is algebraically hyperbolic (over k) if there is an
ample line bundle L on X and a real number αX,L such that, for every smooth projective
connected curve C over k of genus g and every morphism f : C ! X, the inequality

degC f
∗L ≤ αX,L(2g − 2)

holds. We mention that one could also ask for a weaker bound on degC f
∗L which only depends

on X, L and the genus g of C, but which is not necessarily linear in g. This leads to an a priori
weaker notion of boundedness which is referred to as weakly boundedness by Kovács-Lieblich
[43]. Their notion is the same as the notion of boundedness introduced in [34].

In this section we first record the fact that maps from a possibly singular curve into an
algebraically hyperbolic projective variety also satisfy similar boundedness properties. We
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then prove similar statements for the notions of boundedness, (n,m)-boundedness and mildly
boundedness.

2.1. Testing algebraic hyperbolicity. Our starting point is the following characterisation
of algebraic hyperbolicity. The geometric genus pg(D) of C is the sum of the genera of the

components Di (i = 1, . . . , n) of the normalisation D̃ of D.

Lemma 2.1. Let X be an algebraically hyperbolic projective scheme over k with an ample line
bundle L. Let αX,L be a real number such that, for every smooth projective connected curve C
and every morphism f : C ! X, the inequality deg f∗L ≤ αX,L · g(C) holds. Then, for every
reduced projective scheme D pure of dimension 1 over k and every morphism f : D ! X, the
inequality deg f∗L ≤ αX,L · pg(D) holds.

Proof. Let π : D̃ ! D be the normalisation. Then deg π∗f∗L = deg f∗L by [49, Proposi-
tion 7.3.8]. Moreover, by assumption, the inequality

deg π∗f∗L ≤
n∑
i=1

αX,L · g(Di)

holds. Also, by definition, we have that
n∑
i=1

αX,L · g(Di) = pg(D).

This implies the statement. �

In some sense, most projective varieties should be algebraically hyperbolic, and this philos-
ophy is confirmed by the work of many authors [6, 7, 10, 14, 15, 16, 17, 52, 57, 58].

2.2. Testing boundedness. The following lemma will allow us to test boundedness on re-
duced curves (Theorem 2.3).

Lemma 2.2. Let X be a projective scheme over k. Let g : C ′ ! C be a finite surjective
birational morphism of projective reduced schemes pure of dimension one over k. Then, the
natural morphism of schemes

Homk(C,X)! Homk(C
′, X)

is a closed immersion.

Proof. Let H = Homk(C,X), and let H ′ = Homk(C
′, X). Let F ′ : H ′ × C ′ ! X be the

evaluation morphism. Note that the morphism

E′ = (pr1,pr2, F
′) : H ′ × C ′ −! H ′ × C ′ ×X

is a closed immersion. Let

E′
#

: OH′×C′×X −! E′∗OH′×C′
be the induced morphism. Let G := (pr1, g ◦ pr2, pr3) : H ′ ×C ′ ×X ! H ′ ×C ×X. Let A be
the image of the morphism OH′×C×X −! G∗E

′
∗OH′×C′ defined as the composition

OH′×C×X
G#

// G∗OH′×C′×X
G∗E′# // G∗E

′
∗OH′×C′ .

Let (pr1,pr2) : H ′×C×X ! H ′×C be the projection, and note that (pr1, g ◦pr2) : H ′×C ′ !
H ′ × C is the composition (pr1, pr2) ◦G ◦ E′. Then we consider (pr1, pr2)∗A as subsheaf of

(pr1, pr2)∗G∗E
′
∗OH′×C′ = (pr1, g ◦ pr2)∗OH′×C′ .
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Note that the sheaf Coker(pr1, g ◦ pr2)# is supported on H ′ × Csing. Moreover, the sheaf
Coker(pr1, g ◦ pr2)# is free of finite rank as OH′-module (through the projection on the first
coordinate). By [27, Corollaire 7.7.78], the morphism of sheaves

(pr1, pr2)∗A ↪−! (pr1, g ◦ pr2)∗OH′×C′ � Coker(pr1, g ◦ pr2)#,

is equivalent to a certain morphism N ! OH′ whose image is an ideal sheaf whose correspond-
ing 0-scheme is H, i.e., H ! H ′ is a closed immersion. �

We now use Lemma 2.2 to show that a projective scheme X is bounded (as defined in [34,
§4]) if and only if, for every reduced curve C, the moduli space of maps from C to X is of
finite type.

Theorem 2.3 (Testing boundedness on reduced objects). Let X be a projective scheme over
k. Then the following are equivalent.

(1) The projective scheme X is bounded over k.
(2) For every smooth projective connected curve C over k, the scheme Homk(C,X) is of

finite type over k.
(3) For every reduced projective (not necessarily irreducible nor smooth) scheme C pure of

dimension one over k, the scheme Homk(C,X) is of finite type over k.

Proof. By definition, a bounded variety is 1-bounded, so that (1) =⇒ (2). Moreover, by [34,
Theorem 9.2], we have that (2) =⇒ (1). It is clear that (3) =⇒ (2). Therefore, to prove the
theorem, it suffices to show that (2) =⇒ (3).

Assume that X satisfies (2). Let C be a projective reduced scheme pure of dimension one
over k. Let C1, . . . , Cn be the irreducible components of C. Let C ′ be the normalisation of C in
the product of function fields K(C1)× . . .×K(Cn), and note that C ′ ! C is a finite birational
surjective morphism. Moreover, C ′ is a smooth projective curve over k. For i = 1, . . . , n, let
C ′i be the connected component of C ′ lying over Ci. By Lemma 2.2, the natural morphism of
schemes

Homk(C,X)! Homk(C
′, X) =

n∏
i=1

Homk(C
′
i, X)

is a closed immersion. SinceX satisfies property (2), for all i = 1, . . . , n, the scheme Homk(C
′
i, X)

is of finite type over k. Since closed immersions of schemes are of finite type, we conclude that
Homk(C,X) is of finite type over k. �

We now prove a similar result for “pointed boundedness”.

Proposition 2.4 (Testing pointed boundedness on reduced objects). Let X be a projective
variety over k, let n ≥ 1 and let m ≥ 1 be an integer. Then the following are equivalent.

(1) The projective variety X is (n,m)-bounded over k.
(2) For every projective connected variety C pure of dimension one over k, every c in C(k),

and every x in X(k), the set Homk([C, c], [X,x]) is finite.

Proof. Note that (2) implies that X is (1, 1)-bounded. Therefore, by [34, Proposition 8.2], it
follows that X is (n,m)-bounded. This shows that (2) =⇒ (1).

To prove that (1) =⇒ (2), we argue as follows. First, as X is (n,m)-bounded, it follows
from [34, Lemma 4.6] that, for every smooth projective connected curve C ′ over k, every c′ in
C ′(k), and every x in X(k), the set Homk([C

′, c′], [X,x]) is finite. Now, let C be a projective
connected variety pure of dimension one over k, let c be in C(k), and let x be in X(k). We prove
that Hom([C, c], [X,x]) is a finite set by induction on the number N of irreducible components
of C not containing c. Let C1, . . . , Cn be the irreducible components of C. Let C ′ ! C be the
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normalisation of C in the product of the function fields K(C1) × . . . ×K(Cn). Let C ′i be the
connected component of C ′ lying over Ci.

Assume that N = 0, i.e., c lies on every irreducible component of C. For every i = 1, . . . , n,
let c′i in C ′i be a point mapping to c in C. As C ′ ! C is surjective, the natural map of sets

Homk([C, c], [X,x])!
∏
i

Homk([C
′
i, c
′
i], [X,x])

is injective. Since C ′i is a smooth projective connected curve over k, for every i, the set
Homk([C

′
i, c
′
i], [X,x]) is finite, so that Homk([C, c], [X,x]) is finite, as required.

If N > 0, after renumbering if necessary, we may and do assume that c does not lie on Cn
and that the projective reduced scheme D := C1 ∪ . . . ∪ Cn−1 is connected. By the induction
hypothesis, the set

Homk([D, c], [X,x])

is finite. Let d be a point in D ∩ Cn ⊂ C. Then, the set

A := {f(d) | f ∈ Homk([D, d], [X,x])}

is a finite subset of X. Therefore, as the map of sets

Homk([C, c], [X,x]) ⊂ Homk([D, c], [X,x])×
⋃
y∈A

Homk([Cn, d], [X, y])

is injective and Homk([Cn, d], [X, y]) is finite, we conclude that Homk([C, c], [X,x]) is finite. �

2.3. Testing mild boundedness. We show that the notion of mild boundedness (Definition
1.8) can be tested on reduced curves. The curves do not even need to be irreducible in this
case.

Lemma 2.5. Let X be a mildly bounded variety over k and let C over k be a finite type
separated reduced scheme over k whose irreducible components are one-dimensional. Then there
exist an integer n and distinct points c1, . . . , cn ∈ C(k) such that for every x1, . . . , xn ∈ X(k)
the scheme

Hom([C, (c1, . . . , cn)], [X, (x1, . . . , xn)])

is finite over k.

Proof. Let C1, . . . , C` be the irreducible components of C. For i = 1, . . . , `, letDi be the locus of
points in Ci that are smooth as a point of C. As X is mildly bounded over k, there exist points
d1,1, . . . , d1,n1 ∈ D1(k), points d2,1, . . . , d2,n2 ∈ D2(k), ..., and points d`,1, . . . , d`,n` ∈ D`(k) such
that

Hi = Hom([Di, (di,1, . . . , di,ni)], [X, (x1, . . . , xni)])

is finite for every i = 1, . . . , ` and x1, . . . , xni ∈ X(k).
Let c1, . . . , cn be the points d1,1, . . . , d`,n` considered as points in C(k). Then we claim that

H = Hom([C, (c1, . . . , cn)], [X, (x1, . . . , xn)])

is finite for all x1, . . . , xn ∈ X(k). For any morphism f : C ! X such that f(ci) = xi for all
i = 1, . . . , n, the composition fi : Di ! C ! X lies in the finite scheme Hi. As a morphism is

fixed by its restriction to the dense open
⋃`
i=1Di, this gives an embedding H ↪! H1× . . .×H`,

which proves that H is finite over k. �
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3. Extending maps over Dedekind schemes

A morphism of schemes C ! S is a semi-stable curve over S if it is a proper flat morphism
whose geometric fibres are connected semi-stable curves; see [49, Definition 10.3.1].

The following lemma is a mild generalisation of a well-known extension property for rational
maps from big opens of smooth varieties to projective varieties with no rational curves.

Lemma 3.1. Let S be a Dedekind scheme with function field K, and let X ! S be a projective
morphism of schemes. Let C be a semi-stable curve over S such that CK is smooth projective
connected. If every geometric closed fibre of X ! S contains no rational curves, then every
morphism CK ! XK extends to a morphism C ! X.

Proof. Since C ! S is semi-stable, the exceptional locus of the minimal resolution of singu-
larities C′ ! C is a forest of P1’s; see [49, Corollary 10.3.25]. Also, as the geometric closed
fibres of X ! S do not contain any rational curves, every geometric fibre of X ! S contains
no rational curves [37]. In particular, the geometric fibres of X ×S C′ ! C′ do not contain ra-
tional curves. Therefore, since C′ is an integral regular noetherian scheme, the rational section
C′ 99K X ×S C′ extends to a morphism [23, Proposition 6.2]. We now show that the induced
morphism C′ ! X factors over C.

Indeed, note that the rational curves in the exceptional locus of C′ ! C are contracted to a
point in X. This implies that the morphism C′ ! X factors over a morphism C ! X; see [26,
Proposition 8.11.1]. �

Corollary 3.2. Let X ! S be a projective morphism of noetherian schemes such that all
geometric fibres do not contain a rational curve. Fix a relatively ample line bundle L on X.
Let g, n ≥ 0 be integers such that (g, n) /∈ {(0, 0), (0, 1), (0, 2), (1, 0)} , and let Ug,n !Mg,n be

the universal curve over the stack Mg,n of n-pointed stable curves of arithmetic genus g over

S. Let d ≥ 0 be an integer and let Hg,nd = Homd
Mg,n

(Ug,n, X ×Mg,n) be the algebraic stack

of morphisms of degree d with respect to L. Then the natural morphism ρ : Hg,nd ! Mg,n is
proper.

Proof. It suffices to prove the existence part of the valuative criterion for properness. We prove
this by induction on g and n. Let R be a discrete valuation ring with field of fractions K. Let
Vg,nd = ρ−1(Mg,n). Suppose we have a point ϕ ∈ Hg,nd (K) and a curve C ∈ Mg,n(R) such that
CK ∼= ρ(ϕ).

In the case ϕ ∈ Vg,nd (K), the morphism ϕ : CK ! XK extends to a morphism C ! XR

by Lemma 3.1. In the case ϕ /∈ Vg,nd (K), the point lies in the image of one of the clutching
morphisms as described in [40, Definition 3.8]. As these clutching morphisms are finite and
hence proper, the statement now follows from the induction hypothesis. �

4. Zariski-countable openness of the hyperbolic locus

Let S be a noetherian scheme over Q and let X ! S be a projective morphism. We start
with presenting Demailly’s proof of Theorem 1.4 by using the language of algebraic stacks.
Following Demailly, we will make use of the following simple lemma.

Lemma 4.1. Let (X, T ) be a noetherian topological space. Then there exists another topology
T cnt, or T -countable, on X whose closed sets are the countable union of T -closed sets.

Proof. The only non-trivial thing to check is that an arbitrary intersection

V =
⋂
i∈I

∞⋃
j=1

Cij ,
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where Cij ⊂ X are T -closed sets, is T cnt-closed. The proof goes by noetherian induction on
(X, T ). If for every i ∈ I there is a j ∈ Z>0 such that Cij = X, then we are done. If this is
not the case, we take an i ∈ I, such that Cij ( X for all j ∈ Z>0. Then for every j ∈ Z>0 the
set V ∩ Cij is T cnt-closed in Cij and hence in X. Then the union V =

⋃∞
j=1 V ∩ Cij is also

T cnt-closed. �

Remark 4.2 (Varieties with no rational curves). We follow [34, §3] and say that a proper
variety X over an algebraically closed field F is pure if and only if, for every smooth variety
T over F and every dense open subscheme U ⊂ T with codim(T \ U) ≥ 2, we have that every
morphism U ! X extends to a morphism T ! X. Note that a proper variety X over F is
pure if and only if it has no rational curves. This terminology will allow us to simplify some
of the proofs below.

Stack-theoretic version of Demailly’s proof of Theorem 1.4. Let L be a relatively ample line
bundle on X over S. Let Mg be the stack of smooth projective curves of genus g over S, and
let Ug !Mg be the universal curve. The Hom-stack HomMg

(Ug, X ×Mg) is the countable

union over d ≥ 0 of the finitely presented stacks Hg,d := Homd
Mg

(Ug, X ×Mg) of morphisms

f which have (fibrewise) degree d with respect to L. Let Sg,d be the image of Hg,d in S under
the structure map Hg,d ! S. As the structure map Hg,d ! S is quasi-compact, locally of
finite presentation and S is quasi-compact and quasi-separated, the set Sg,d is a constructible
subset of S; see [62, Tag 054J] or [46, Théorème 5.4.9].

For any β, consider

Sβ =
⋃

(g,d)∈Z≥0×Z
d>β·g

Sg,d;

this is the locus of s in S for which Xs is not algebraically hyperbolic with constant β. Note
this is a countable union, over j = 1, 2, 3, . . ., of locally closed subsets Ui ∩ Vi with Ui ⊂ S
open and Vi ⊂ S closed. Without loss of generality, we will assume that Vi is irreducible and
Ui ∩ Vi = Vi. In particular, for each i, the generic point ηi of Vi lies in Sβ. Now, we claim
that Sβ is stable under specialisation, which implies that Sβ =

⋃∞
i=1 Vi is a Zariski-countable

closed.
To prove the claim consider two points s, t ∈ S such that s specialises to t and s ∈ Sβ. If Xt

is not pure (Remark 4.2), then t is clearly contained in Sβ, so assume Xt is pure. As s ∈ Sβ,
there is a morphism from a smooth curve C/k(s) of certain genus g to Xs of degree greater
than β · g. Then by repeated application of Lemma 3.1, we also get a morphism of the same
degree from a curve D/k(t) of the same genus to Xd. Hence, t ∈ Sβ.

It now follows that the non-algebraically hyperbolic locus

Snh =
∞⋂
β=1

Sβ

is also Zariski-countable closed, as the Zariski-countable topology is a topology on S by Lemma
4.1. �

Remark 4.3. Let us briefly assume that S is a positive-dimensional integral variety over an
algebraically closed field k of characteristic zero. Let K be the function field of S, and suppose
that XK is algebraically hyperbolic over K. If k is uncountable, then it follows from Theorem
1.4 that there is an s in S(k) such that Xs is algebraically hyperbolic. If we assume Lang’s
conjecture, then the hypothesis on the cardinality of k is unnecessary. Indeed, to explain this,
we assume for simplicity that k ⊂ C. Since C is uncountable, it follows from Theorem 1.4
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that there is an s in S(C) such that Xs is algebraically hyperbolic over C. In particular, by
Lang’s conjecture (which we are assuming to hold for now), the complex analytic space Xan

s is
Kobayashi hyperbolic. Now, as the fibres of Xan

C ! San
C are compact, it follows from a theorem

of Brody that there is an analytic open neighbourhood U ⊂ San such that, for every u in U ,
the fibre Xu is Kobayashi hyperbolic (see [41, Theorem 3.11.1]). Now, since S(k) ⊂ S(C)
is a dense subset of San

C with respect to the complex analytic topology, there is a point s in
U ∩ S(k). We see that Xs is algebraically hyperbolic over k.

Remark 4.4. In the analytic setting, we cannot hope for the locus of points in the base with
hyperbolic fibre to be Zariski open. For example, if we have a relative smooth proper curve
C ! C∗ with precisely one non-hyperbolic fibre, then we can pull-back this family along the
exponential map C ! C∗ to obtain a family X ! C such that the set of s in C with Xs
non-hyperbolic is a countably infinite subset of C.

The notion of pseudo-algebraic hyperbolicity should be Zariski open in families in light of
Vojta’s conjecture (Conjecture 1.22). However, as we currently do not know whether pseudo-
algebraic hyperbolicity is stable under generisation, we also do not know whether the locus
of points in the base for which the fibre is pseudo-algebraically hyperbolic is in fact Zariski-
countable open. Nonetheless, our next result shows that the locus of pseudo-algebraically
hyperbolic fibres contains a Zariski-countable open. As the reader will notice, the proof of this
result is similar to the proof of Theorem 1.4.

Proposition 4.5. Assume S is integral with function field K = K(S), and let K ! K be an
algebraic closure. Let ∆ ⊂ X be a closed subscheme such that XK is algebraically hyperbolic

modulo ∆K over K. Then, for every algebraically closed field k of characteristic zero and a
very general s in S(k), the projective scheme Xs is algebraically hyperbolic modulo ∆s over k.

Proof. We may and do assume that k is uncountable. Let L be a relatively ample line bundle
on X over S. Let

β = αXK ,∆K ,LK
be the constant as in the definition of algebraic hyperbolicity for XK modulo ∆K .

Let Mg be the stack of smooth proper curves of genus g over S, and let Ug !Mg be the
universal curve. The Hom-stack HomMg

(Ug, X ×Mg) \HomMg
(Ug,∆×Mg) is the countable

union over d ≥ 0 of the finitely presented stacksHg,d := Homd
Mg

(Ug, X×Mg)\HomMg
(Ug,∆×

Mg) of morphisms f which have (fibrewise) degree d with respect to L. Let Sg,d be the image
of Hg,d in S under the structure map Hg,d ! S. Then Sg,d is a constructible subset of S.

Hence, for any d > β · g, the closure Sg,d of Sg,d inside S does not equal S, as XK is
algebraically hyperbolic modulo ∆K . As k is uncountable, we have⋃

(g,d)∈Z≥0×Z
d>β·g

Sg,d 6= S.

Let s be a point in S(k) such that, for every g ≥ 0 and d > β · g, the point s is not in Sg,d.
Then, the projective scheme Xs is algebraically hyperbolic modulo ∆s over k. This concludes
the proof. �

Proof of 1.23. This follows from Proposition 4.5. �

Next, we will prove that the 1-bounded locus is Zariski-countable open. For this, we first
need two intermediate results.
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Lemma 4.6. The set S0 consisting of these s in S such that Xs contains a rational curve is
Zariski-countable closed in S.

Proof. This is well-known; see for instance [13, Lemma 3.7]. �

Proposition 4.7. The subset of s in S such that Xs is 1-bounded, is Zariski-countable open.

Proof. Let L be a relatively ample line bundle on X. For g > 1, let Mg be the stack of stable

curve of genus g over S. Note thatMg is noetherian (as S is noetherian), and that the natural

morphism κ : Mg ! S is proper.

Let Ug ! Mg be the universal curve over Mg, and let Hgd = HomMg
(Ug, X ×Mg) and

ρ : Hgd ! Mg be the structure morphism. Let S0 be as in Lemma 4.6. Let T gd = ρ(Hgd) ∪
κ−1(S0). A priori, this is a countable union of constructible subsets in Mg. Because of
Corollary 3.2, ρ satisfies the existence part of the valuative criterion of properness outside of
S0, hence T gd is closed under specialisation and hence Zariski-countable closed.

For each n ∈ Z>0 consider V g
n =

⋃∞
d=n T

g
d ; this is the locus of stable curves admitting

a morphism of degree at least n to X, together with κ−1(S0). Now we are interested in
V g =

⋂∞
n=1 V

g
n , which is the locus of curves admitting a morphism of arbitrary high degree,

together with κ−1(S0). Since S is an integral noetherian scheme, the subset V g =
⋂∞
n=1 V

g
n is

Zariski-countable closed (Lemma 4.1). Hence, the image Sg = κ(V g) in S is Zariski-countable
closed. For S1, the locus where there are morphisms of arbitrary high degree from a genus 1
curve to X, we can use M1,1 instead to prove that this is Zariski-countable closed.

In particular
⋃
g≥0 S

g is Zariski-countable closed. This concludes the proof, as the locus

where Xs is not 1-bounded equals
⋃
g≥0 S

g by Proposition 2.3. �

Corollary 4.8. The subset of s in S such that Xs is bounded is Zariski-countable open.

Proof. Since a projective scheme over k is bounded if and only if it is 1-bounded over k (see
[34, Theorem 9.2]), the corollary follows from Proposition 4.7. �

Proposition 4.9. The subset of s in S such that Xs is (1, 1)-bounded, is Zariski-countable
open.

Proof. Let g, S0, Mg, Ug and Hgd be as in the proof of Proposition 4.7. Now we consider the
morphism

τ : Ug ×Mg
Hgd ! Ug ×S X

((C, c), ϕ) 7! ((C, c), ϕ(c)).

The fibre τ−1{((C, c), x)} is exactly Homd([C, c], [X,x]), the morphisms of degree d mapping
c to x. Again we let κ : Ug ×S X ! S be the structure map, which is still proper. We proceed
in the same way as in the proof of Proposition 4.7, taking T gd = im(τ) ∪ κ−1(S0), which is
then proved to be a Zariski-countable closed set. The properness over S of all schemes involved
causes the morphism τ to also satisfy the existence part of the valuative criterion for properness
as in Corollary 3.2.

Then V g =
⋂∞
n=1

⋃∞
d=n T

g
d is again Zariski-countable closed, as Ug ×S X is still noetherian.

Hence, Sg = κ(V g) is Zariski-countable closed in S. As also done in Proposition 4.7, S1

can be defined and shown to be Zariski-countable closed in S using M1,1. Hence,
⋃∞
g=0 S

g is
Zariski-countable closed in S. The latter is exactly the locus of s in S such that Xs is not
(1, 1)-bounded by Proposition 2.4. �

Corollary 4.10. For m,n > 0, the subset of s in S such that Xs is (n,m)-bounded, is Zariski-
countable open.
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Proof. Since m ≥ 1, a projective scheme over k is (n,m)-bounded if and only if it is (1, 1)-
bounded over k (see [34, §8]). Therefore, the corollary follows from Proposition 4.9. �

4.1. Varieties of general type. Let k be an algebraically closed field of characteristic zero.
Let Mpol be the stack over k whose objects over a k-scheme S are pairs (f : X ! S,L) with
f : X ! S a flat proper finitely presented morphism and L an f -relative ample line bundle on
X; see [55]. Note that Mpol is a locally finitely presented algebraic stack over k with affine
diagonal [36, Section 2.1]. This follows from [62, Tag 0D4X] and [63]. The additional datum
of a polarisation (i.e., the f -relative ample line bundle) is necessary to ensure the algebraicity
of the stack Mpol.

Recall that a proper scheme X over an algebraically closed field K is of general type (over

K) if, for every irreducible component X ′ of X, there is a resolution of singularities X̃ ! X ′red
such that ωX̃ is a big line bundle. In other words, a proper scheme over K is of general type if
every irreducible component of X is of general type. We refer the reader to [47, 48] for basic
properties of varieties of general type.

LetMgt be the substack ofMpol whose objects over a k-scheme S are pairs (f : X ! S,L)
in Mpol such that the geometric fibres of f : X ! S are proper schemes of general type.

Theorem 4.11 (Nakayama). The substack Mgt of Mpol is an open substack.

Proof. This is a consequence of Nakayama’s theorem (Theorem 1.2). �

For every polynomial h in Q[t], we letMpol
h ⊂Mpol be the substack of pairs (f : X ! S,L)

such that, for every geometric point s of S, the Hilbert polynomial of the pair (Xs,Ls) over

the algebraically closed field k(s) equals h. Analogously, we define Mgt
h =Mpol

h ×kM
gt. The

following proposition is a well-known consequence of the theory of Hilbert schemes.

Proposition 4.12. The stackMpol is a countable disjoint union of the finitely presented open

and closed substacks Mpol
h , and its open substack Mgt is a countable disjoint union of the

finitely presented open and closed substacks Mgt
h .

Proof. The first statement follows from [62, Tag 0D4X], and the second statement follows from
the first by Theorem 4.11. �

Proof of Theorem 1.7. Let S be a noetherian scheme over Q, and let f : X ! S be a projective
morphism. To show that the set of s in S such that every subvariety of Xs is of general type
is Zariski-countable open, we fix an f -relative ample line bundle L on X. Let HilbX/S ! S
be the Hilbert scheme of the projective morphism X ! S. Consider the forgetful morphism

HilbhX/S !M
pol
h which associates to a closed S-flat subscheme Z ⊂ X with Hilbert polynomial

h (with respect to L) the corresponding object (Z ! S,L|Z) of Mpol
h . Let Hilbgt,h

X/S be the

inverse image of the open substack Mgt
h in Mpol

h (Theorem 4.11) .

For h in Q[t], we let Hilbn-gt,h
X/S = HilbhX/S \Hilbgt,h

X/S . Note that Hilbn-gt,h
X/S is a closed subscheme

of the quasi-projective S-scheme HilbhX/S . For h in Q[t], let Sh ⊂ S be the image of Hilbn-gt,h
X/S !

S. Since HilbhX/S ! S is a proper morphism [54, Theorem 5.1] and Hilbn-gt,h
X/S is closed in

HilbX/S , we see that Sh is a closed subscheme of S. Note that the locus of s in S such that
Xs has an integral subvariety which is not of general type is⋃

h∈Q[t]

Sh.

We conclude that it is a countable union of closed subschemes of S, as required. �
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The fact that the locus of algebraic hyperbolicity is Zariski-countable open implies that this
locus is stable under generisation. This allows us to easily prove Theorem 1.3.

Proof of Theorem 1.3. Note that (ii) is proven in [37]. To prove (iii), note that the set Sah

of s in S with Xs algebraically hyperbolic is Zariski-countable open in S by Theorem 1.4. By
assumption, Sah is non-empty, so that the generic point of S lies in Sah. This proves (iii).
To prove (iv) and (v), we argue in a similar manner employing Theorems 1.5 and 1.6 instead
of Theorem 1.4, respectively. Similarly, to prove (i), we argue in a similar manner employing
instead Nakayama’s theorem (or rather its consequence Theorem 1.7). �

4.2. Mildly bounded varieties in families. In this section we prove that the set of s in S
such that Xs is mildly bounded (Definition 1.8) is Zariski-countable open (Theorem 1.14). To
do this, we use the following lemma.

Lemma 4.13. Let f : T ! S be a finite type flat morphism of noetherian schemes. If Y ⊂ T
is a Zariski closed (resp. Zariski-countable closed) subset of T , then the locus of s in S such
that Ys = Ts is a Zariski closed (resp. Zariski-countable closed) subset of T .

Proof. First consider the case Y ⊂ T is Zariski closed. Since f is a finite type flat morphism
of noetherian schemes, it follows that f is an open map [62, Tag 01UA]. In particular, if
U := T \Y , then f(U) is open in S. This is exactly the complement of points s in S such that
Ys = Ts.

Now suppose Y =
⋃∞
i=1 Yi is a Zariski-countable closed and Yi ⊂ T is closed. Without loss

of generality we may and do assume that Y1 ⊂ Y2 ⊂ · · · . Then, as T is noetherian, we have
that Ys = Ts if and only if there exists an i such that Yi,s = Ts. Let Si ⊂ S be the (closed)
locus of s in S satisfying Yi,s = Ts. Then, the locus of s in S for which Ys = Ts, equals

⋃∞
i=1 Si.

Since
⋃∞
i=1 Si is Zariski-countable closed (by definition), this concludes the proof. �

To prove Theorem 1.14 we will use the characterisation of mildly bounded varieties stated in
Lemma 2.5. This equivalent definition of mildly boundedness allows us to use moduli-theoretic
arguments similar to those employed in the proof of Theorem 1.4, 1.5, and 1.6, respectively.

Proof of Theorem 1.14. Let g,Mg,n, and Hdg,n be as in Corollary 3.2. Without loss of general-
ity we will assume that every geometric fibre of X ! S is pure (Remark 4.2). The proof below
can be adjusted for the non-pure case by adjoining the inverse image of the non-pure locus of
S to each of the Zariski(-countable) closed sets appearing in this proof, in the same way as we
did in the proof of Proposition 4.7.

In the notion of mildly boundedness, there are possibly non-projective (smooth connected)
curves C appearing. We will consider each such smooth connected curve C as an open subset
of its smooth projective closure C. Then C \C consists of finitely many points, say m points,
and in this way we can consider C as a (possibly non-unique) point of Mg,m.

Consider the evaluation morphism

τ : Hdg,n+m ! Xn ×Mg,n+m

([C, (c1, . . . , cn, d1, . . . , dm)] , ϕ : C ! X) 7! ((ϕ(c1), . . . , ϕ(cn), [C, (c1, . . . , cn, d1, . . . , dm)])

As X is proper over S, the properness of τ follows immediately from Corollary 3.2. Hence,
the image Adg,n,m of τ in Xn×Mg,n+m is closed. This is the locus of n-tuples of possibly non-
distinct points in X and n-pointed (non-projective) curves C admitting an n-pointed morphism
of degree d to X. Let Bg,n,m =

⋂∞
d′=1

⋃∞
d=d′ A

d
g,n,m be the locus of n-tuples of points in X and

n-pointed curves C admitting n-pointed morphisms of unbounded degree to X. This locus is
Zariski-countable closed by Lemma 4.1.
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Now let Cg,n,m be the projection of Bg,n,m under the projection Xn ×Mg,n+m !Mg,n+m,

which is Zariski-countable closed in Mg,n+m as X is proper over S.

Let f : Mg,n+m !Mg,m be the forgetful map and Dg,m ⊂Mg,m the locus of s ∈Mg,m such
that f−1(s) = (Cg,n,m)s. Then, it follows from Lemma 4.13 that Dg,m,n is Zariski-countable

closed in Mg,m. Similarly, we have that Eg,m :=
⋂∞
n=1Dg,m,n is Zariski-countable closed

by Lemma 4.1. The latter is the locus of (non-projective, non-irreducible) curves obtained
by removing m points from a projective curve of genus g for which the mildly boundedness
condition fails.

Let ρg,m : Mg,m ! S be the proper structure morphism. As mildly boundedness can be
tested on curves which are not irreducible (Lemma 2.5), the locus where X ! S is not mildly
bounded is

⋃∞
g=1

⋃∞
m=0 ρg,m(Eg,m). This is now Zariski-countable closed. �

Proof of Corollary 1.15. This follows from Theorem 1.14 and the fact that a Zariski-countable
closed set of (the scheme) S contains the generic point of S if and only if this set equals S
itself. �

Proof of Corollary 1.16. Let K be a finitely generated subfield of L containing k with K = L
and let S be an integral variety over k with function field equal to K and let s ∈ S(k) be a
k-point of S. Consider X = X×S ! S, and note that Xs = X is mildly bounded over k. Since
the locus of mildly bounded varieties is stable under generisation (Corollary 1.15), it follows
that XK (hence XL) is mildly bounded. �

Corollary 4.14. Let k be an uncountable algebraically closed field of characteristic zero,
and let k ⊂ L be an algebraically closed field of finite transcendence degree over k. If X is a
projective variety over k, then X is mildly bounded over k if and only if XL is mildly bounded
over L.

Proof. If X is mildly bounded over k, then XL is mildly bounded over L by Corollary 1.16.
Now, assume XL is mildly bounded over L. Let S be an integral variety over k whose dimension
equals the transcendence degree of L over k and whose function field K(S) is contained in L.
Consider X := X × S as a projective scheme over S. Then, as the set of s in S such that Xs

is mildly bounded is Zariski-countable open (Theorem 1.14) and k is uncountable, it follows
that there is an s in S(k) such that the variety X = Xs is mildly bounded. �

5. Mildly boundedness

Let k be an algebraically closed field of characteristic zero. In this section we study mildly
bounded varieties (Definition 1.8). We start by showing that A1

k (hence P1
k) is not mildly

bounded over k.

Proposition 5.1. The curve A1
k over k is not mildly bounded over k.

Proof. Indeed, if c1, . . . , cn ∈ A1
k(k) are distinct points and x1, . . . , xn ∈ A1

k(k) are arbitrary,
then there exist morphisms ϕ : A1

k ! A1
k of arbitrary high degree such that ϕ(ci) = xi by using

Lagrange interpolation. �

Proposition 5.2. Assume k is uncountable. Let X be a projective scheme over k, and let
L be an ample line bundle on X. If X is not mildly bounded over k, then there is a smooth

projective connected curve C over k such that, for every d ≥ 1, the moduli scheme Hom≥dk (C,X)
of morphisms f : C ! X with degC f

∗L ≥ d is positive-dimensional.

Proof. IfX has a rational curve, then we can take C = P1
k. (We do not use that k is uncountable

here.) Thus, we may and do assume that X has no rational curves. Let C be a smooth
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projective connected curve over k which does not satisfy the mildly boundedness condition.

Note that, as X has no rational curves, for every integer d ≥ 1, the scheme Hom≤dk (C,X) is

a proper scheme over k and that, for every c in C and x in X, the set Hom≤dk ([C, c], [X,x])

is finite; see [34, §3]. Therefore, for every d ≥ 1, the set Hom≥dk (C,X) must have infinitely
many k-points (otherwise C would satisfy the mildly boundedness condition). Suppose that
this scheme is zero-dimensional. Then its k-points form a countable infinite set. Let f1, . . . be

the elements of Hom≥dk (C,X). For every i 6= j, the locus Cij ⊂ C(k) where fi and fj agree
consists of finitely many points, as X is separated over k. Since C(k) is uncountable, there
exists a point c ∈ C(k) such that c /∈ Cij for all i 6= j. As X over k does not satisfy the mildly
boundedness condition with respect to C, there must be an x ∈ X(k) such that

H = Hom≥dk ([C, c], [X,x])

is infinite. However, by the choice of c, the set H can only contain at most one element

of {f1, f2, . . .}. Hence, we obtain a contradiction and we conclude that Hom≥dk (C,X) must

be uncountable, so that the scheme Hom≥dk (C,X) has (a component of) dimension at least
one. �

Remark 5.3. Let k be an uncountable algebraically closed field and suppose thatX is a variety
over k which is not mildly bounded. Then, the argument used in the proof of Proposition 5.2
shows that there is a smooth quasi-projective connected curve C over k such that the set of
non-constant morphisms is uncountable.

Lemma 5.4. Let X be a projective variety over k. Consider the following statements.

(1) The variety X is mildly bounded over k.
(2) The variety X has no rational curves.
(3) For every curve C, there is an integer d ≥ 1 such that Hom≥d(C,X) is zero-dimensional,

i.e., Hom(C,X) has only finitely many positive-dimensional components.
(4) X is groupless.

Then we have (1) =⇒ (2), (4) =⇒ (2), and (3) =⇒ (4). If k is uncountable, then we also
have (3) =⇒ (1).

Proof. The implication (1) =⇒ (2) follows from Proposition 5.1. The implication (4) =⇒ (2)
is an immediate consequence of the definitions. For the implication (3) =⇒ (4), assume that
X is not groupless. Then, by [34, Lemma 2.7], there is a non-zero abelian variety A and a
non-constant morphism φ : A ! X. Let ι : C ↪! A be a curve which is not contracted by φ.
Then ι can be composed with any endomorphism of A. In particular, it can be composed with
multiplication by n ∈ Z>0 and any translation with a point of A(k). This gives infinitely many
components of (strictly) positive dimension in Hom(C,X). This shows that (3) =⇒ (4).
Finally, to conclude the proof, we may assume that k is uncountable. Now, the implication
(3) =⇒ (1) follows from Proposition 5.2. �

Note that Conjecture 1.11 predicts the equivalence of (1) and (2). In fact, we conjecture
something stronger.

Conjecture 5.5. In the situation of Lemma 5.4, (1) ⇐⇒ (2) and (3) ⇐⇒ (4).

Example 5.6. Let X be a smooth projective curve of genus at least two over k. Then we
claim that X is mildly bounded. Indeed, if C ! X is a morphism from a smooth irreducible
quasi-projective curve to X, then it extends to a morphism from its smooth projectivisation
C to X, and the set of non-constant morphisms C ! X is finite by De Franchis’s theorem.
In particular, we see that X is mildly bounded over k. Below, we will give a simpler (more
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direct) proof of the mild boundedness of any smooth quasi-projective connected curve X which
is neither isomorphic to A1

k nor P1
k.

To prove that abelian varieties are mildly bounded we will use that most smooth curves
inject into their generalised Jacobian (also referred to as the semi-Albanese variety). This will
be explained in more detail in the rest of this section. Definitions and constructions of this
(semi-)Albanese variety can be found in [51, 60]. If X is a geometrically integral variety over
k, we let Alb(X) be its semi-Albanese variety over k; this exists by [51, Corollary A.11.(i)].

Given a point x in X(k), we will refer to the universal morphism X ! Alb(X) associated
to (X,x) as an Abel-Jacobi morphism. We will usually suppress the choice of a base point in
X.

Lemma 5.7. Let C be a smooth projective connected curve of genus g and let C ⊂ C be a dense
open such that #(C \ C) = r > 0. Fix an Abel-Jacobi map ι : C ! Alb(C) to the Albanese
variety of C (associated to the choice of a base point in C(k)). For any integer N ≥ 0, let
ρN : CN ! Alb(C) be given by (c1, . . . , cN ) 7! ι(c1) + . . .+ ι(cN ). Then ρ2g+2r−2 is surjective.

Proof. In [51, Proposition A.3], it is already claimed that there is an N such that ρN is
surjective. As we are considering curves, we know more about the structure of Alb(C). Let
D be the divisor of C obtained by taking each of the points of C \ C once. Then there is a
generalised Jacobian in the sense of [60, Chap. V] associated to D. Using [59, Lemme 6], we
see that this generalised Jacobian is isomorphic to Alb(C).

Hence, Alb(C) is an extension of Jac(C) by Gr−1
m and ρg+r−1 is birational. In particular,

the image Im(ρg+r−1) contains a dense open subset of Alb(C). Therefore, for any point P ∈
Alb(C), the intersection of Im(ρg+r−1) with P − Im(ρg+r−1) must be non-empty. Hence, the
morphism ρ2g+2r−2 is surjective. �

Proposition 5.8. Let r > 0 be an integer. Let C be a smooth projective connected curve of
genus g and let C ⊂ C be a dense open subscheme such that #(C \ C) = r. Then, there are
points c0, . . . , c2(g+r−1)2 ∈ C(k) such that, for every semi-abelian variety X over k and every
x0, . . . , x2(g+r−1)2 ∈ X(k), the set

Homk

(
[C, (c0, . . . , c2(g+r−1)2)], [X, (x0, . . . , x2(g+r−1)2)]

)
has at most one element.

Proof. Let X be any semi-abelian variety over k. Let c0 ∈ C(k) be a point and let A be the
Albanese variety of C over k together with the associated Abel-Jacobi map ι : C ! A mapping
c0 to the identity in A.

Note that a morphism C ! X mapping c0 to the identity in X, gives rise to a morphism
A! X of group schemes (see [51, Proposition A.3]). We will prove that such morphisms are
determined by the image of at most g + r − 1 carefully chosen points on A. In order to find
these points, note that there is an exact sequence 1 ! Gr−1

m ! A ! J ! 0, where J is the
Jacobian of C, cf. the description of the generalised Jacobian given in the proof of Lemma 5.7.

We will first look at morphisms J ! X. Suppose we have an isogeny J1 × . . . × Jn ! J,
such that J1, . . . , Jn are simple abelian varieties over k. Then n ≤ g and by composition we
get an injection

HomGrp/k(J,X) ↪! HomGrp/k(J1 × . . .× Jn, X).

For 1 ≤ i ≤ n, let gi ∈ Ji(k) be a point of infinite order and note that gi generates a
(Zariski) dense subgroup of Ji. Therefore, any morphism of group schemes ψ : Ji ! X
is determined by the image ψ(gi) of gi. Now, for 1 ≤ i ≤ n, we let ji be the image of
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(0, . . . , 0, gi, 0, . . . , 0) ∈ J1×. . .×Jn in J . Then, a morphism of semi-abelian varieties ψ : J ! X
is determined by the images ψ(j1), . . . , ψ(jn) of j1, . . . , jn.

On the other hand, group morphisms Gr−1
m ! X are determined by the images of the points

`1 = (2, 1, . . . , 1), `2 = (1, 2, 1, . . . , 1), . . . , and `r−1 = (1, . . . , 1, 2) in Gr−1
m (k).

In particular, if `r, . . . , `r+n−1 ∈ J(k) are points mapping to j1, . . . , jn, then we claim that
a morphism of group schemes ϕ : A! X is determined by ϕ(`1), . . . , ϕ(`r+n−1). Indeed, if ϕ′

is another morphism with the same images, then ϕ−ϕ′ is trivial on Gr−1
m and factors through

J , where it is also trivial.
By Lemma 5.7, for each 1 ≤ i ≤ n+ r− 1, there exist points ci,1, . . . , ci,2g+2r−2 ∈ C(k) such

that ι(ci,1)+. . .+ι(ci,2g+2r−2) = `i. Now, we claim that, for any 1+(n+r−1)(2g+2r−2)-tuple
of points x0, x1,1, x1,2, . . . , xn+r−1,2g+2r−2 ∈ X(k), the set

H = Hom([C, (c0, c1,1, . . . , cn+r−1,2g+2r−2)], [X, (x0, x1,1, . . . xn+r−1,2g+2r−2)])

is finite. Indeed, if we change the group structure on X such that x0 becomes the identity, then
any morphism f : C ! X in H gives rise to a homomorphism of group schemes h : A ! X.
Now, by definition, for each i = 1, . . . , n+ r − 1, we have that

h(`i) = h(ι(ci,1)) + . . .+ h(ι(ci,2g+2r−2)) = f(ci,1) + . . .+ f(ci,2g+2r−2) = xi,1 + . . .+ xi,2g+2r−2

is fixed. This implies that H can have at most one element. The proposition is now proven by
relabelling the points in C and appending some extra points in case n < g. �

We obtain the following uniform finiteness statement for (not necessarily hyperbolic) curves.

Lemma 5.9. Let C be a smooth affine curve over k. Then, there is an integer m ≥ 1 and
points c1, . . . , cm ∈ C(k) such that, for every projective variety X over k of dimension at most
one without rational curves over k and every x1, . . . , xm ∈ X(k), the set

Homk([C, (c1, . . . , cm)], [X, (x1, . . . , xm)])

is finite.

Proof. It suffices to prove the required finiteness statement for smooth projective connected
varieties X of dimension at most one without rational curves. However, since a smooth pro-
jective connected curve X over k with no rational curves embeds into an abelian variety (e.g.,
the Jacobian of X), the result follows from Proposition 5.8. �

Proof of Proposition 1.9. The mildly boundedness of semi-abelian varieties follows immedi-
ately from Proposition 5.8. �

In fact, we can prove another (slightly less effective) finiteness result for semi-abelian vari-
eties. We briefly explain this in the following remark.

Remark 5.10. If Y is a variety over k, then there are y1, . . . , ym in Y (k) such that, for every
semi-abelian variety X and every x1, . . . , xm in X(k), the set

Hom([Y, (y1, . . . , ym)], [X, (x1, . . . , xm)])

is finite. To prove this, replacing Y by a suitable dense open subscheme if necessary, we
may and do assume that Y is a smooth affine integral variety which maps injectively into its
Albanese variety Alb(Y ). Then, we pick a high power Y n which generates Alb(Y ) and we
use the above line of reasoning to construct an integer m ≥ 1 and points y1, . . . , ym with the
desired property. The integer m and the points y1, . . . , ym only depend on Y (i.e., they do not
depend on X).
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Remark 5.11. If F is an algebraically closed field of positive characteristic with positive
transcendence degree over its prime field and A is an abelian variety over F, then the proof
above shows that A is mildly bounded over F. However, if E is an elliptic curve over Fp, then

E is not mildly bounded over Fp, so that the assumption that F has transcendence degree at
least one over its prime field is necessary in the previous statement.

Corollary 5.12. Let X be a variety over k which admits a quasi-finite morphism to a semi-
abelian variety over k. Then, for any field extension k ⊂ L, the variety XL is mildly bounded
over L.

Proof. Let G be a semi-abelian variety over k and let X ! G be a quasi-finite morphism of
varieties over k. Note that the induced morphism XL ! GL is quasi-finite. Since GL is mildly
bounded over L (Proposition 5.8), the quasi-finiteness of XL ! GL implies that XL is mildly
bounded over L. �

Corollary 5.13. Let X be an integral one-dimensional variety over k whose normalisation is
not isomorphic to A1

k nor P1
k. Then X is mildly bounded over k.

Proof. Let X̃ be the normalisation of X. As X̃ is neither A1
k nor P1

k, the Abel-Jacobi map

X̃ ! Alb(X̃) is injective. Hence, by Corollary 5.12, the curve X̃ is mildly bounded over k.

As any non-constant map from a smooth curve C over k to X factors uniquely through X̃, it
follows that X is also mildly bounded over k. �

The results in this section are motivated by Conjecture 1.11 which predicts that a projective
variety with no rational curves is mildly bounded. Note that Corollary 5.13 proves Conjecture
1.11 for one-dimensional projective varieties. We now prove Theorem 1.12 which says that our
conjecture holds for projective surfaces, under suitable assumptions on the Albanese map.

Proof of Theorem 1.12. Let X be a projective surface with no rational curves (as in the state-
ment), let A be an abelian variety, and let f : X ! A be a morphism which is generically finite
onto its image. Let X ! B ! A be the Stein factorisation of f , where X ! B is a morphism
with connected fibres and B ! A is finite. Since A is mildly bounded over k (Proposition
1.9) and B ! A has finite fibres, it follows that B is mildly bounded over k. Let B′ ⊂ B be
the image of the morphism X ! B. Since the morphism X ! B is generically finite onto its
image B′ with geometrically connected fibres, we have that the induced morphism p : X ! B′

is birational. Let Z ⊂ B′ be a proper closed subset such that p induces an isomorphism
X \ ∆ ! B′ \ Z, where ∆ = p−1(Z). Now, to show that X is mildly bounded, let C be a
smooth connected curve over k. Choose an integer n ≥ 1 and points c1, . . . , cn in C(k) such
that, for every b1, . . . , bn in B′(k), the set

Homk([C, (c1, . . . , cn)], [B′, (b1, . . . , bn)])

is finite. Let x1, . . . , xn be points in X(k). To show that the set

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)])

is finite, we note that it is the union of its subsets

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)]) \Homk(C,∆)

and

Homk([C, (c1, . . . , cn)], [∆, (x1, . . . , xn)]).
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The former set maps injectively to Hom([C, (c1, . . . , cn)], [B′, (p(x1), . . . , p(xn))]), and is there-
fore finite. Moreover, since ∆ ⊂ X is at most one-dimensional and does not admit a non-
constant morphism from P1

k (by our assumption that X has no rational curves), it follows from
Corollary 5.13 that

Homk([C, (c1, . . . , cn)], [∆, (x1, . . . , xn)])

is finite. (This set is by definition empty if there is an i with xi 6∈ ∆.) We conclude that X is
mildly bounded, as required. �

6. Applying Silverman’s specialisation theorem

For a regular extension of fields K ⊂ L and an abelian variety A over L, the trace of A with
respect to K ⊂ L is a universal map TL ! A from an abelian variety T over K in the sense
that all such other maps factor through it, see for example [45, chap. VII] or [11]. The trace
can be viewed as a measure of how close A is to being a constant abelian variety.

In this section, as usual, we let k be an algebraically closed field of characteristic zero.

Lemma 6.1. Let C be an integral curve over k and let X ! C be an abelian scheme such that
the K(C)/k-trace of the abelian variety XK(C) is trivial. Then there is a point c ∈ C(k) such
that for every x ∈ X(k) there are only finitely many sections σ : C ! X with σ(c) = x.

Proof. Since XK(C) has trivial K(C)/k-trace, by the theorem of Lang-Néron [11], the group
X(C) of sections of X ! C is finitely generated. We now descend all the necessary data
(including the elements of the finitely generated group X(C)) to a finitely generated subfield
of k.

Let L be a finitely generated field over Q contained inside k, let C be an integral curve over
L, let Ck ∼= C be an isomorphism over k, and let X ! C be an abelian scheme such that
Xk ! Ck is isomorphic to X ! C over k and such that the group of sections X (C) of X ! C
equals X(C).

Note that the K(C)/L-trace of XK(C) is zero. Let {σ1, . . . , σr} be a basis for the free part of
X (C) = XK(C)(K(C)). Since L is a finitely generated field over Q, by Silverman’s specialisation
theorem [69, Theorem 1], there is a finite field extension L′/L contained in k and a point
c ∈ C(L′) ⊂ C(k) such that σ1(c), . . . , σr(c) ∈ Xc(k) are still independent.

Let c ∈ C(k) be such a point. Then, for a fixed x ∈ X(k), there are only finitely many
σ ∈ X(C) with σ(c) = x. Indeed, for each of the finitely many torsion sections τ ∈ X(C)tors,
there is at most one tuple (n1, . . . , nr) of integers, such that (τ + n1σ1 + . . . + nrσr)(c) = x,
due to the independence of σ1(c), . . . , σr(c). �

We now combine Lemma 6.1 with the “uniform” mildly boundedness of abelian varieties
(Proposition 5.8) to prove the following result.

Lemma 6.2. Let k be an algebraically closed field of characteristic zero. Let C be an integral
curve over k and let X ! C be an abelian scheme. Then there is an n ≥ 1 and c1, . . . , cn ∈ C(k)
such that, for every x1, . . . , xn ∈ X (k), there are only finitely many sections σ : C ! X of
X ! C with σ(ci) = xi.

Proof. The proof goes by induction on the relative dimension of X ! C. The case of relative
dimension 0 is trivial. Now assume the statement is true for all abelian schemes of smaller
relative dimension.

Let T ! XK(C) be the K(C)/k-trace of XK(C). In case, T = 0, the result follows from
Lemma 6.1, so assume T 6= 0. Let W be the cokernel. Shrinking C if necessary, we can spread
this out to an exact sequence

T ! X !W
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of abelian varieties over C, such that T is the base change of an abelian variety over k and the
relative dimension of W ! C is smaller than that of X ! C. It now suffices to prove that T
and W have the property as stated in the statement of the lemma.

Indeed, suppose c1, . . . , cnt , d1, . . . , dnw ∈ C(k) are points such that

HomC([C, (c1, . . . , cnt)], [T , (t1, . . . , tnt)])

and HomC([C, (d1, . . . , dnw)], [W, (w1, . . . , wnw)])

are finite for any t1, . . . , tnt ∈ T (k) and w1, . . . , wnw ∈ W(k). Now consider morphisms

ϕ,ϕ′ ∈ HomC([C, (c1, . . . , cnt , d1, . . . , dnw)], [X , (x1, . . . , xnt+nw)]),

where x1, . . . , xnt+nw ∈ X (k) are arbitrary points. For these morphisms, there are only finitely
many possibilities for the composed map C ! X ! W. If we suppose that ϕ and ϕ′ give
rise to the same composed map C ! W, then their difference ν = ϕ − ϕ′ factors through a
morphism ρ : C ! T . Moreover, ρ(ci) maps to ν(ci) = 0 ∈ X for each i ∈ {1, . . . , nt}. As
the kernel of T ! X is finite, this means that there are only finitely many candidates for the
points ρ(ci). For each of the finitely many choices for ρ(ci) ∈ T (k), there are only finitely
many possibilities for ρ. Hence, there are indeed finitely many possibilities for ϕ as well.

To conclude the proof, let us show that T and W have the property as in the statement of
the lemma. In the case of T , we write T as A×k K(C) for a certain abelian variety A over k.
Then there is a bijection

HomC(C,A×k C) = Homk(C,A),

and the result follows from Proposition 1.9. In the case of W, as the relative dimension of W
over C is smaller than the relative dimension of X over C, the result follows from the induction
hypothesis. �

The following lemma generalises the above lemma (Lemma 6.2) for abelian schemes to semi-
abelian schemes.

Lemma 6.3. Let k be an algebraically closed field of characteristic zero. Let C be an integral
curve over k and let X ! C be a semi-abelian scheme. Then there is an n ≥ 1 and c1, . . . , cn ∈
C(k) such that, for every x1, . . . , xn ∈ X (k), there are only finitely many sections σ : C ! X
with σ(ci) = xi.

Proof. Note that the generic fibre XK(C) of X ! C is an extension by a torus over K(C) and
an abelian variety over K(C). Therefore, we may choose a smooth integral curve D over k
and a quasi-finite (flat dominant) morphism D ! C such that XD = X ×C D is an extension
of G`

m,D and an abelian scheme A over D, i.e., there is an exact sequence

1! G`
m,D ! XD

ν
! A! 0.

By Lemma 6.2, we find d1, . . . , dm ∈ D(k) such that for every a1, . . . , am ∈ A(k) the set

HomD([D, (d1, . . . , dm)], [A, (a1, . . . , am)])

of m-pointed sections is finite. Using Proposition 5.8, we find points dm+1, . . . , dn ∈ D(k) such
that, for every gm+1, . . . , gn ∈ G`

m,D(k), the set

HomD([D, (dm+1, . . . , dn), [G`
m,D, (gm+1, . . . , gn)])

of (n−m)-pointed sections is finite. Let c1, . . . , cn ∈ C(k) be the images of the points d1, . . . , dn.
These points have the desired property using arguments similar to those used in the proof of
Lemma 6.2.
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Indeed, let x1, . . . , xn ∈ X (k) be arbitrary. Then any

ϕ ∈ HomC([C, (c1, . . . , cn)], [X , (x1, . . . , xn)])

lifts to a morphism

ϕD ∈ Hy1,...,yn := HomD([D, (d1, . . . , dn)], [XD, (y1, . . . , yn)]),

where y1, . . . , yn ∈ XD(k) are lifts of x1, . . . , xn. Since there are only finitely many such lifts,
it suffices to prove that Hy1,...,yn is finite. Let ϕD, ϕ

′
D ∈ Hy1,...,yn be two elements, and let

σ, σ′ : D ! A be the composition of ϕD and ϕD′ with ν. Then σ and σ′ lie in the finite set

HomD([D, (d1, . . . , dm)], [A, (ν(y1), . . . , ν(yn))])

Assuming σ and σ′ are equal, we will now prove that there are only finitely many possibilities
for ϕD − ϕ′D. Indeed, this difference ϕD − ϕ′D factors through G`

m,D and lies in the finite set

HomD([D, (dm+1, . . . , dn)], [G`
m,D, (1, . . . , 1)]).

This proves that there are only finitely many elements in Hy1,...,yn , which concludes the proof
of the lemma. �

We now combine the above results with the fact that semi-abelian varieties are mildly
bounded in a “uniform” sense (Proposition 5.8).

Corollary 6.4. Let k be an algebraically closed field of characteristic zero. Let S be an integral
variety over k and let f : X ! S be a semi-abelian scheme. Assume that for every smooth
curve C over k, the set of non-constant morphisms C ! S is finite. Then the variety X is
mildly bounded over k.

Proof. Let C be a smooth connected curve over k. Choose a point c0 in C(k). Since there are
only finitely many non-constant morphisms C ! S (by assumption), for any x0 in X(k) and
every ρ : C ! X with ρ(c0) = x0, there are only finitely many possibilities for the composed
morphism ν : C ! X ! S. We now choose x0 inX(k) and consider such morphisms ρ : C ! X
such that ρ(c0) = x0.

If ν maps C onto a point (which has to be f(x0)), then we already saw in Proposition 5.8
that there exists an integer m ≥ 1 and points c1, . . . , cm ∈ C(k), only depending on C (not
depending on x0), such that

Homk([C, (c0, c1, . . . , cm)], [Xf(x0), (x0, x1, . . . , xm)])

is finite for any x1, . . . , xm ∈ Xf(x0)(k).
In the case that ν is non-constant, we consider the base change Xν = X ×f,S,ν C which is a

semi-abelian scheme over C. Then by Lemma 6.3, there are points cν,1, . . . , cν,nν ∈ C(k), such
that

HomC([C, (cν,1, . . . , cν,nν )], [Xν , (x1, . . . , xnν )])

is finite for any x1, . . . , xnν ∈ Xν(k). Note that

{c0, c1, . . . , cm} ∪
⋃
ν

{cν,1, . . . , cν,nν}

is a finite subset of C(k) by our assumption that the set of non-constant morphisms C ! S is
finite. In particular, if c0, . . . , cn are its elements, then

Hom([C, (c0, . . . , cn)], [X , (x0, . . . , xn)])

is finite for any x0, . . . , xn ∈ X (k). This proves that X is mildly bounded over k. �
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Proof of Theorem 1.10. By De Franchis-Severi’s theorem, the hyperbolic curve S satisfies the
finiteness statement required to apply Corollary 6.4. �

We now show that an analogue of Theorem 1.10 also holds for the universal Jacobian. To
prove this statement, one replaces the use of De Franchis-Severi in the proof of Theorem 1.10
by the finiteness theorem of Arakelov-Parshin.

Corollary 6.5. Let k be an algebraically closed field of characteristic zero, let N ≥ 3 be an
integer, let g ≥ 2, and let M be the fine moduli space of smooth proper geometrically connected
genus g curves with level N structure over k. Let X ! M be the universal curve (with level
N structure) and let Jac(X) ! M be its Jacobian. Then the quasi-projective variety Jac(X)
is mildly bounded over k.

Proof. By Arakelov-Parshin’s theorem [2, 56] (formerly the Shafarevich conjecture for curves),
for every curve C over k, the set of C-isomorphism classes of non-isotrivial smooth proper
curves X ! C of genus g (with g ≥ 2) is finite. In particular (by the definition of the moduli
space M), for every curve C over k, the set of non-constant morphisms C ! M is finite.
Therefore, the variety M satisfies the finiteness property required to apply Corollary 6.4 (with
S := M and X := Jac(X)). �

To prove the final result of this section, we will need the following well-known (and very
simple) lemma which says that every variety is “locally” hyperbolic (in any sense of the word).

Lemma 6.6. Let S be an integral variety over k. Then, there is a dense open subscheme
U ⊂ S such that U is arithmetically hyperbolic over k and, for every smooth curve C over k,
the set of non-constant morphisms C ! U is finite.

Proof. Note that X := A1
k \ {0, 1} is arithmetically hyperbolic over k (by Siegel-Mahler-Lang’s

theorem). Moreover, for an integral curve C over k, the De Franchis-Severi theorem implies
that the set of non-constant morphisms C ! X is finite. Now, to prove the lemma, we may
and do assume that S is affine, say S ⊂ ANk . Choose a, b in A1(k) such that S ∩ (A1

k \ {a, b})N
is non-empty (hence dense and open in S). Define U := S ∩ (A1

k \ {a, b})N and note that U

maps with finite fibres to XN . In particular, U is arithmetically hyperbolic over k and, for
every integral curve C over k, the set of non-constant morphisms C ! U is finite. This proves
the lemma. �

We now record the following application of the above results. Our motivation for proving
the following result is that it is a first step towards reducing part of Lang–Vojta’s conjecture
concerning rational points on hyperbolic projective varieties to Q.

Theorem 6.7. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero,
and let X be a semi-abelian variety over L. Then there exists an integral variety S over k whose
function field K(S) is a subfield of L, a semi-abelian scheme X over S such that X ×k L ∼= X
over L and X is mildly bounded over k.

Proof. By spreading out arguments, there exists a finitely generated k-algebra A ⊂ L with
S := SpecA an integral variety over k, and a semi-abelian scheme X ! S such that XL ∼= X.
Replacing S by a dense open subscheme if necessary, by Lemma 6.6, the variety S is arith-
metically hyperbolic over k, and for every curve C over k, the set of non-constant morphisms
C ! S is finite. The result now follows from Corollary 6.4. �
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7. A criterion for persistence of arithmetic hyperbolicity

Recall that a variety over k is arithmetically hyperbolic over k if every model for X over a
Z-finitely generated subalgebra of k has only finitely many sections (Definition 1.18); see also
[30, 33, 35, 38]. The Lang–Vojta conjecture predicts that arithmetic hyperbolicity persists over
field extensions, i.e., if X is arithmetically hyperbolic over k and L is an algebraically closed
field containing k, then XL should be arithmetically hyperbolic over L; this is the Arithmetic
Persistence Conjecture (Conjecture 1.20). Although the Arithmetic Persistence Conjecture is
not known to hold in general, the following result is useful for verifying it in many cases.

Theorem 7.1 (Criterion for Persistence). Let X be an arithmetically hyperbolic variety over
k such that XK is mildly bounded for all subfields k ⊂ K ⊂ L. Then XL is arithmetically
hyperbolic over L.

Proof. See [33, Theorem 4.4]. �

As is shown in [33], Theorem 7.1 follows from the following result.

Theorem 7.2. Let X be an arithmetically hyperbolic mildly bounded variety over k. If L/k is
an extension of algebraically closed fields of transcendence degree one, then XL is arithmetically
hyperbolic over L.

Proof. See [33, Lemma 4.2]. �

Applications of the above two results are given in [3], [31], [33, §4.2], and further results are
also obtained in [38]. As a first application of the results of this paper and the above criterion
for persistence of arithmetic hyperbolicity, we obtain the following corollary for projective
varieties.

Corollary 7.3. Let X be a projective arithmetically hyperbolic mildly bounded variety over k.
Then, for every field extension k ⊂ L, the projective variety XL is arithmetically hyperbolic
over L.

Proof. It follows from the definition of arithmetic hyperbolicity that we may assume L has finite
transcendence degree over k. Then, by Corollary 1.16, as X is mildly bounded and projective
over k, for every subfield k ⊂ K ⊂ L, the variety XK is mildly bounded over K. Thus, by the
above criterion for persistence (Theorem 7.1), we conclude that XL is arithmetically hyperbolic
over L. �

As another application of the results of this paper, we can show that the Arithmetic Persis-
tence Conjecture holds for varieties which admit a quasi-finite morphism to some semi-abelian
variety.

Theorem 7.4. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero.
Let X be a variety over k which admits a quasi-finite morphism to some semi-abelian variety
over k. Then X is arithmetically hyperbolic over k if and only if XL is arithmetically hyperbolic
over L.

Proof. Note that, by Corollary 5.12, for every subfield k ⊂ K ⊂ L, the variety XK is mildly
bounded over K. Therefore, the result follows from the criterion for persistence (Theorem
7.1). �

Proof of Theorem 1.21. This follows from Theorem 7.4. �

In the following remark we explain why our results (and definitions) simplify proofs of Falt-
ings’s finiteness theorem for finitely generated Z-algebras on affine opens of abelian varieties.
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Remark 7.5 (Faltings’s theorem over finitely generated fields via specialisation). In [22] Falt-
ings proved that, if A is an abelian variety over Q and D ⊂ A is an ample divisor, the affine
variety A − D is arithmetically hyperbolic over Q. That is, for every number field K, every
finite set of finite places S of K, every model A for A over OK,S and every model D ⊂ A for
D ⊂ A over OK,S , the set (A \ D)(OK,S) is finite. One sometimes also says that the set of
(D,S)-integral points on A is finite. We will now use our results to prove the following exten-
sion of Faltings’s theorem which does not seem to appear explicitly in the literature, although
related results are mentioned in [21, §5].

Theorem 7.6 (Faltings + ε). Let L be an algebraically closed field of characteristic zero, let A
be an abelian variety over L, and let D ⊂ A be an ample divisor. Then A−D is arithmetically
hyperbolic over L.

Proof. (We use Faltings’s finiteness theorem over Q, the fact that abelian varieties are mildly
bounded, and a specialisation argument.)

First, we may and do assume that L has finite transcendence degree over Q and contains
Q. If the transcendence degree n = trdegQ(L) of L over Q is zero, then L = Q so that the
statement follows from Faltings’s theorem [22, Corollary 6.2].

Now, assume that n > 0 and choose an algebraically closed subfield k ⊂ L such that
trdegk(L) = 1, so that trdegQ(k) = n−1. We now apply Theorem 6.7 to the abelian variety A
over L and the extension k ⊂ L. Thus, we choose an arithmetically hyperbolic integral variety
S over k whose function field K(S) is a subfield of L with K(S) = L, an abelian scheme A over
S such that A is mildly bounded over k and A×k L is isomorphic to A over L. Now, shrinking
S if necessary, we may and do assume that the ample divisor D on A extends to a relatively
ample divisor D ⊂ A on A. Define X := A \ D. Note that, by the induction hypothesis, for
every s in S(k), the fibre Xs of X ! S over s is arithmetically hyperbolic over k (as it is the
complement of an ample divisor in an abelian variety over k). Therefore, as S is arithmetically
hyperbolic over k and every fibre of X ! S is arithmetically hyperbolic, it is straightforward
to see that the variety X is arithmetically hyperbolic over k (see [35, Lemma 4.11] for details).
Since X is mildly bounded over k and arithmetically hyperbolic over k, it follows from Theorem
7.2 that X = X

K(S)
is arithmetically hyperbolic over L. This concludes the proof. �

7.1. Two remarks on integral points on abelian varieties. It is well-known that the set
of rational points on an abelian variety over a number field is potentially dense, and there
are “many” different proofs of this fact. In the following remark, we explain how the mild
boundedness of abelian varieties implies the potential density of rational points.

Remark 7.7 (Potential density of rational points on abelian varieties). Let A be an abelian
variety over k. It is well-known that there is a finitely generated subfield K ⊂ k and a model A
for A over K such that the subset A(K) of A(k) is dense in A. Indeed, this is due to Hassett–
Tschinkel [28] (see also [33, Corollary 3.10]). In this remark, we explain how to reprove this
result. Firstly, using standard arguments (see for instance [33, §3.1]), we may and do assume
that A is simple. Let L be an uncountable algebraically closed field containing k. Then, as
the torsion in A(L) is countable and L is an uncountable algebraically closed field, we see that
A(L) contains a point P of infinite order. Choose a finitely generated subfield K1 ⊂ L and a
model A for AL over K1 such that P lies in the subset A(K1) of A(L). Then A(K1) is infinite,
so that in particular AL is not arithmetically hyperbolic over L. Since AK is mildly bounded
over K for any subfield k ⊂ K ⊂ L by Corollary 5.12 and AL is not arithmetically hyperbolic
over L, it follows that A is not arithmetically hyperbolic over k. In particular, there is a finitely
generated field K ⊂ k and a model A for A over K such that A(K) is infinite. In particular,
A(K) is dense, as A is simple.
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Another application of the mildly boundedness of abelian varieties is given in the follow-
ing remark in which we briefly discuss Hassett-Tschinkel’s arithmetic puncture problem [29,
Problem 5.3]. This conjecture is also a consequence of conjectures of Campana [8, 9].

Remark 7.8 (Hassett-Tschinkel puncture problem). Let A be a simple abelian variety over
Q and let D ⊂ A be a closed subset with codim(A \D) ≥ 2. In [29, Problem 5.3] Hassett and
Tschinkel conjecture that there exists a number field K, a finite set of finite places S of K, a
model A for A over OK,S and a model ∆ ⊂ A for D ⊂ A over OK,S such that (A \∆)(OK,S)
is dense in A. In particular, Hassett and Tschinkel conjecture that A \ D is not arithmeti-
cally hyperbolic over Q. We note that Hassett-Tschinkel’s conjecture is in fact a special case
of Campana’s more general conjectures on potential density of integral points on log-special
varieties [8, 9]. Now, since abelian varieties are mildly bounded over any algebraically closed
field of characteristic zero (Corollary 5.12), we can make the following observation.

Suppose there is an algebraically closed field k containing Q such that (A \D)k is not
arithmetically hyperbolic over k. Then, A \D is not arithmetically hyperbolic over Q.

Thus, in other words, to solve Hassett-Tschinkel’s arithmetic puncture problem for the variety
A \D it suffices to show the infinitude of integral points on A \D over some finitely generated
subring of C. This is arguably (most likely) easier to achieve, as can be seen in the case that
D = ∅. The existence of a point of infinite order in A(C) follows from the countability of the
group of torsion points on A and the uncountability of C.

8. Application to irregular surfaces

The aim of this section is to prove the mild boundedness of certain surfaces. We then use this
to prove the Arithmetic Persistence Conjecture 1.20 for surfaces which admit a non-constant
map to some abelian variety. The most general result we obtain on the Persistence Conjecture
in this section is Theorem 8.4.

Lemma 8.1 (Grauert-Manin + ε). Let C be a smooth integral curve over k, and let X ! C
be a quasi-projective flat morphism of integral schemes whose fibres are groupless of dimension
at most one. Let c ∈ C(k) and let x ∈ X(k). Then the set of sections σ : C ! X of X ! C
with σ(c) = x is finite.

Proof. Replacing C by a dense open if necessary, we may (and do) assume that X ! C is
smooth of relative dimension one and that X is connected, so that X is a smooth integral
surface over k. Since the fibres of X ! C are groupless smooth quasi-projective connected
curves, there is a finite étale morphism Y ! X such that the geometric generic fibre of Y ! C
is of genus at least two. Replacing X by Y , we may assume that the geometric fibres of
X ! C are smooth projective curves with genus at least two. Moreover, to prove the lemma,
we may assume that the set of sections X(C) is infinite. In this case, by Grauert-Manin’s
theorem [24, 50], there is a smooth projective connected curve X0 over k and an isomorphism
X ∼= X0 ×k C over C. Furthermore, the set X(C) \ X0(k) is finite. (This latter finiteness
statement follows from the theorem of De Franchis-Severi.) As there is precisely one element
σ in the subset X0(k) of X(C) with σ : C ! X with σ(c) = x, this concludes the proof. �

Lemma 8.2. For every smooth connected curve C over k, there is an integer n ≥ 1 and points
c1, . . . , cn having the following property: for any quasi-projective variety X over k which admits
a morphism ϕ : X ! G to a semi-abelian variety G over k with groupless fibres of dimension
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at most one and every x1, . . . , xn in X(k), the set

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)])

is finite. In particular, the variety X is mildly bounded over k.

Proof. (We will apply Grauert-Manin’s theorem in the form of Lemma 8.1. We could avoid
appealing to Grauert-Manin’s theorem and instead use our results on the mild boundedness of
total spaces of abelian schemes. However, appealing to the Grauert-Manin theorem allows us
to give a shorter proof.)

Let C be a smooth affine connected curve over k. Choose n ≥ 1 and c1, . . . , cn in C(k) as in
Proposition 5.8, so that for every semi-abelian variety A over k and every a1, . . . , an in A(k)
the set

Homk([C, (c1, . . . , cn)], [A, (a1, . . . , an)])

is finite.
Let H be the subset of Homk(C,X) of morphisms f : C ! X such that the composed

morphism C ! X ! G is constant. If the set Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)]) ∩H is
non-empty, then x1, . . . , xn lie in Xϕ(x1) and

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)]) ∩H
= Homk([C, (c1, . . . , cn)], [Xϕ(x1), (x1, . . . , xn)])

which is finite by the defining property of c1, . . . , cn, and the fact that Xϕ(x1) is at most
one-dimensional and groupless. Thus, to prove the lemma, it suffices to show that

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)]) \ H
is finite.

Now, let gi := ϕ(xi) and note that

Homnc
k ([C, (c1, . . . , cn)], [G, (g1, . . . , gn)])

is finite. Let ν1, . . . , νr be its elements. Then, for every 1 ≤ i ≤ r, we consider the morphism
ϕi : Xi ! C, where Xi := X ×ϕ,G,νi C is the pull-back of X ! G along νi : C ! G. As the
morphism ϕi has groupless fibres of dimension at most one, it follows from Grauert-Manin’s
theorem (Lemma 8.1) that there are only finitely many sections which map c1 to x1.

In particular,

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)]) \ H

=

r⋃
i=1

HomC([C, (c1, . . . , cn)], [Xi, (x1, . . . , xn)])

is finite. This finishes the proof of the statement. �

Proof of Theorem 1.13. This follows from Lemma 8.2. �

Lemma 8.3. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero
and let X be a quasi-projective variety over k which admits a morphism to some semi-abelian
variety over k with fibres of dimension at most one. If L/k has transcendence degree one and
X is arithmetically hyperbolic over k, then XL is arithmetically hyperbolic over L.

Proof. (We adapt the proof of [33, Lemma 4.2], and use both Grauert-Manin’s function field
Mordell conjecture and the fact that abelian varieties are mildly bounded.)

Let G be an abelian variety over k and let f : X ! G be a non-constant morphism. Let
A ⊂ k be a Z-finitely generated subring, let X be a projective model for X over A, let G be
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an abelian scheme over A, and let F : X ! G be a morphism of A-schemes such that Fk = f .
Let B ⊂ L be a Z-finitely generated subring containing A. To prove that XL is arithmetically
hyperbolic over L, we show that the set X (B) of morphisms SpecB ! X over A is finite.
Replacing B by a larger Z-finitely generated subring of L if necessary, we may and do assume
that the affine scheme C := SpecB is smooth over A.

If dimB = dimA, then B is contained in k, so that the finiteness of X (B) follows from the
assumption that X is arithmetically hyperbolic over k. Therefore, we may and do assume that
dim C = dimA + 1, i.e., the “arithmetic scheme” C is a “curve” over A. Define C := C ×A k,
and note that C is a smooth affine one-dimensional scheme over k.

Note that, as X is arithmetically hyperbolic over k, it follows that X is groupless over k
(see [33, §3]). In particular, as X is groupless over k, the fibres of f : X ! G are groupless.
Therefore, as the fibres of f : X ! G are groupless of dimension at most one, we can apply
Lemma 8.2. Thus, we choose an integer n ≥ 1 and points c1, . . . , cn in C(k) such that, for
every x1, . . . , xn in X(k), the set

Homk([C, (c1, . . . , cn)], [X, (x1, . . . , xn)])

is finite. Next, we choose a Z-finitely generated subring A′ ⊂ k containing A such that
the points c1, . . . , cn in C(k) descend to sections σ1, . . . , σn of C′ = C ×A A′ over A′. Since
X (C) ⊂ X (C′) = HomA(C′,X ), it suffices to show that X (C′) is finite.

By assumption, the variety X is arithmetically hyperbolic over k, so that X (A′) is finite.
Also, we have the following inclusion of sets

X (C′) ⊂
⋃

(x1,...,xn)∈X (A′)n

HomA′([C′, (σ1, . . . , σn)], [XA′ , (x1, . . . , xn)]),

where HomA′([C′, (σ1, . . . , σn)], [XA′ , (x1, . . . , xn)]) is the set of morphisms P : C′ ! X such
that P (σ1) = x1, . . . , P (σn) = xn. Therefore, it suffices to show that, for any choice of (not
necessarily pairwise distinct) elements x1, . . . , xn in the finite set X (A′), the set

HomA′([C′, (σ1, . . . , σn)], [XA′ , (x1, . . . , xn)])

is finite. Thus, let us fix sections x1, . . . , xn of X (A′). As there are more morphisms over k
than over A′, we have the following inclusion of sets

HomA([C′, (σ1, . . . , σn)], [XA′ , (x1, . . . , xn)]) ⊂ Homk([C, (c1, . . . , cn)], [X, (x1,k, . . . , xn,k)]).

By our choice of c1, . . . , cn in C(k), the latter is set is finite. We conclude that XL is arith-
metically hyperbolic over L, as required. �

Theorem 8.4. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero
and let X be a quasi-projective variety over k which admits a morphism to some semi-abelian
variety over k whose fibres are of dimension at most one. If X is arithmetically hyperbolic
over k, then XL is arithmetically hyperbolic over L.

Proof. We may and do assume that L has finite transcendence degree over k, say n ≥ 0. We
now argue by induction on n. By our assumption that X is arithmetically hyperbolic over
k, we may assume that n > 0. Let k ⊂ K ⊂ L be an algebraically closed subfield such that
K has transcendence degree n − 1 over k. Then, the induction hypothesis implies that XK

is arithmetically hyperbolic over K. Now, the theorem follows from Lemma 8.3, as L has
transcendence degree one over K. �

Corollary 8.5. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero
and let X be an integral projective surface over k which admits a non-constant morphism
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to some abelian variety. If X is arithmetically hyperbolic over k, then XL is arithmetically
hyperbolic over L.

Proof. If A is an abelian variety over k and X ! A is a non-constant morphism, then the
fibres of X ! A are at most one-dimensional, so that the result follows from Theorem 8.4. �

8.1. Proof of Theorem 1.17. We will prove Theorem 1.17 using Corollary 8.5. However,
deducing Theorem 1.17 from Corollary 8.5 involves understand a subtle difference between
the a priori finiteness of rational points on projective varieties and the finiteness of integral
points; we refer the reader to [30, §7] for a discussion of this phenomenon which does not occur
when one studies rational points on projective varieties over number rings, but occurs (in
some situations) when studying rational points valued in finitely generated fields with positive
transcendence degree over Q. To deal with this subtlety in a systematic manner, we introduce
the notion of a “pure model”.

Definition 8.6 (Pure model). Let X be a variety over k. Let A ⊂ k be a subring. A model X
for X over A is pure over A (or: satisfies the extension property over A) if, for every smooth
finite type integral scheme T over A, every dense open subscheme U ⊂ T with T \ U of
codimension at least two in T , and every morphism f : U ! X , there is a (unique) morphism
f : T ! X extending the morphism f . (The uniqueness of the extension f follows from our
convention that a model for X over A is separated.)

Note that X is pure over k (in the sense of Remark 4.2) if it has a pure model over k (in
the sense of Definition 8.6).

Definition 8.7. A variety X over k has an arithmeticallly-pure model if there is a Z-finitely
generated subring A ⊂ k and a pure model X for X over A.

Remark 8.8. Let X be a proper variety over k which has an arithmetically-pure model. Then
X has no rational curves.

Remark 8.9. Let X be a proper variety over k. A model X for X over A with no rational
curves in any geometric fibre is pure over A by [23, Proposition 6.2]. On the other hand, a pure
model for X over A might have rational curves in every special fibre (of positive characteristic),
as can be seen by considering the moduli space of principally polarised abelian surfaces over
Z.

Theorem 8.10. Let X be an arithmetically hyperbolic proper variety over k which has an
arithmetically-pure model. Then, for every finitely generated subfield K ⊂ k and every model
X for X over K, the set X (K) is finite.

Proof. Let A ⊂ k be a smooth Z-finitely generated subring and let X be a pure proper model
for X over A. It suffices to show that for any finitely generated subfield K ⊂ k containing A,
the set X (K) is finite. To do so, let B ⊂ k be a Z-finitely generated subring containing A with
fraction field K such that SpecB ! SpecA is smooth. Let T := SpecB and note that, for
every x in X (K), by the valuative criterion for properness, there is a dense open subscheme
U ⊂ T with codim(T \ U) ≥ 2 such that x : SpecK ! X extends to a morphism U ! X .
Since X is a pure model over A, this morphism extends uniquely to a morphism T ! U . This
shows that X (B) = X (K). Since X is arithmetically hyperbolic over k, we have that X (B) is
finite, so that X (K) is finite, as required. �

Lemma 8.11. Let X be a projective integral groupless surface over k. If there is an abelian
variety G and a non-constant morphism f : X ! G, then X has an arithmetically-pure model.
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Proof. Let Y be the image of f . Since G is an abelian variety, it follows Y has a projective
model whose geometric fibres do not have any rational curves, so that Y has an arithmetically-
pure model. Let X ! Y ′ ! Y be the Stein factorisation. Since Y ′ ! Y is finite, it follows
that Y ′ has an arithmetically-pure model.

The fibres of f : X ! G are of dimension at most one and groupless. In particular, since
being groupless is a Zariski open property for curves, we may choose a Z-finitely generated
subring A ⊂ k, a projective flat model X for X over A, a pure projective model Y for Y over
A, a model X ! Y whose geometric fibres are groupless. In particular, the fibres of X ! Y
do not contain rational curves. Therefore, the geometric fibres of X ! SpecA do not contain
rational curves. This implies that the model X is pure (Remark 8.9). �

Theorem 8.12. Let K be a finitely generated field over Q and let X be a projective integral
surface over K. Assume that there is an abelian variety A over K and a non-constant morphism
from XK A. If, for every finite extension L over K, the set X(L) is finite, then, for every
finitely generated extension M of K, the set X(M) is finite.

Proof. Let k := K and note that the assumption implies that Xk is arithmetically hyperbolic
over k. Now, since Xk admits a non-constant morphism to some abelian variety A over k,
for every algebraically closed field k; containing k, the projective variety Xk′ is arithmetically
hyperbolic over k′ by Corollary 8.5. Moreover, the variety Xk′ also has an arithmetically-pure
model over k′ by Lemma 8.11, so that the result follows from Theorem 8.10. �

Proof of Theorem 1.17. This follows from Theorem 8.12 with k = Q. �

Remark 8.13. The a priori difference between the finiteness of rational points and the finite-
ness of integral points on a projective variety over a finitely generated field K naturally leads
to Vojta’s notion of “near-integral points”; see [68] and also [30].

9. Pseudo-algebraic hyperbolicity

We have followed Demailly in our definition of algebraic hyperbolicity. We now extend
Demailly’s notion of algebraic hyperbolicity by allowing for an “exceptional locus” on which
the desired property fails. Lang and Kobayashi use the term “pseudo” for such more general
notions (see [41, 44]).

Definition 9.1. Let X be a projective scheme over k and let ∆ be a closed subscheme of X.
We say that X is algebraically hyperbolic modulo ∆ if, there is an ample line bundle L on X
and a real number αX,L depending only on X and L such that, for every smooth projective
curve C over k and every morphism f : C ! X with f(C) 6⊂ ∆, the inequality

degC f
∗L ≤ αX,L · genus(C)

holds.

With the definitions given in the introduction, a projective scheme over k is pseudo-algebraically
hyperbolic over k if and only if there is a proper closed subscheme ∆ of X such that X is al-
gebraically hyperbolic modulo ∆. Also, needless to stress, a projective scheme is algebraically
hyperbolic over k if it is algebraically modulo the empty subset.

We start by showing that the pseudo-algebraic hyperbolicity of X persists over field exten-
sions.

Lemma 9.2. Let k ⊂ L be an extension of algebraically closed fields of characteristic zero. Let
X be a projective scheme over k and let ∆ ⊂ X be a closed subscheme. If X is algebraically
hyperbolic modulo ∆, then XL is algebraically hyperbolic modulo ∆L.
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Proof. Let L be an ample line bundle on X. We follow the proof of [34, Theorem 7.1]. Assume
that XL is not algebraically hyperbolic modulo ∆L over L. Then, we may choose, for every n ≥
1, a smooth projective connected hyperbolic curve Cn over L and a morphism fn : Cn ! XL

with fn(Cn) 6⊂ ∆L such that the slope s(fn) := deg(f∗nL)
genus(Cn) > n; note that XL does not contain

any rational curves, except those in ∆L, as X has this property, so that genus(Cn) 6= 0.
For every n ≥ 1, we choose a finitely generated k-algebra An ⊂ L with Un := SpecAn, a

smooth projective morphism Cn ! Un with geometrically connected fibres, an isomorphism
Cn,L ∼= CL over L, a model Fn : Cn ! X × Un for fn : Cn ! XL over Un, and a point un in
Un(k) such that the image of Fn,un is not contained in ∆. Note that, for every n ≥ 1, the slope
s(Fn,un) of the morphism Fn,un : Cn,un ! X × {un} ∼= X equals the slope s(fn).

For every n ≥ 1, we write Dn := Cn,un and note that Dn is a smooth projective connected
curve over k. Note that the slope of the morphisms Fn,un : Dn ! X tends to infinity as n grows,
and that the image of Fn,un is not contained in ∆. This implies that X is not algebraically
hyperbolic modulo ∆, as required. �

Proof of Theorem 1.24. Let ∆ ⊂ X be a proper closed subset such that X is algebraically hy-
perbolic modulo ∆ over k. Then it follows from Lemma 9.2 that XL is algebraically hyperbolic
modulo ∆L over L. As ∆L ⊂ XL is a proper closed subscheme, we conclude that the projective
variety XL is pseudo-algebraically hyperbolic over L, as required. �

Remark 9.3. The proof of Lemma 9.2 also shows the following presumably useful fact. Let
ψ : Z≥0 ! Z>0 be a map. Let X be a projective variety over k and let ∆ ⊂ X be a proper closed
subscheme such that, there is an ample line bundle L on X and a real number αX,∆,L such that,
for every smooth projective connected curve C over k and every f ∈ Hom(C,X) \Hom(C,∆),
the inequality

degC f
∗L ≤ αX,∆,L · ψ(genus(C))

holds. Then the following holds. If k ⊂ L is an extension of algebraically closed fields, C
is a smooth projective connected curve over L and f ∈ HomL(C,XL) \ HomL(C,∆L), the
inequality

degC f
∗LL ≤ αX,∆,L · ψ(genus(C)).

holds.

9.1. Pseudo-boundedness. We extend the notion of boundedness introduced in [34] to the
pseudo-setting.

Definition 9.4. Let X be a projective scheme over k and let ∆ be a closed subscheme of X.
We say that X is N -bounded modulo ∆ if for every normal projective variety V of dimension
at most N over k the scheme Hom(V,X) \ Hom(V,∆) is of finite type over k, i.e. if there are
only finitely many polynomials occurring as the Hilbert polynomial of a morphism V ! X not
mapping into ∆.

It is obvious that algebraically hyperbolic varieties are 1-bounded. We record this in the
following lemma.

Lemma 9.5. Let X be a projective scheme over k and let ∆ be a closed subscheme. If X is
algebraically hyperbolic modulo ∆, then X is 1-bounded modulo ∆.

Proof. For every smooth projective connected curve C over k, the scheme Homk(C,X) \
Homk(C,∆) is an open subscheme of scheme Homk(C,X). Therefore the statement follows
from the definitions. �
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Lemma 9.6. Let S be an integral normal variety over k, let N be a positive integer, and let
X ! S be a projective morphism. Let ∆ ⊂ X be a closed subscheme. Let A ⊂ S(k) be a subset
not contained in any countable union of proper closed subsets of S. If Xs is N -bounded modulo
∆s for all s ∈ A, then X

K(S)
is N -bounded modulo ∆

K(S)
.

Proof. Write M = K(S). Suppose XM is not N -bounded modulo ∆M . Then there exists
a normal projective integral variety Y over M of dimension at most N and a sequence of
morphisms fn : Y ! XM with pairwise distinct Hilbert polynomials such that f(Y ) 6⊂ ∆M .
Taking a finite extension of K(S) if necessary, there is a dense open subscheme U ⊂ S and a
projective flat geometrically integral model Y ! U for Y over U whose geometric fibres are
normal (and of dimension at most N).

For every n ≥ 1, by standard spreading out arguments, there is a dominant étale morphism
Vn ! U with image Un ⊂ U and a morphism Fn : YVn ! XVn extending the morphism
fn : Y ! XM such that, for every v in Vn(k), the Hilbert polynomial of the morphism
Fn,v : YVn,v ! XVn,v equals the Hilbert polynomial of fn and the image of Fn,v is not contained
in ∆vn .

By our assumption on the set A, the intersection
⋂∞
n=1 Un ∩ A is non-empty. Let s in

S(k) be an element of this intersection. For every n ≥ 1, let vn ∈ Vn be a point lying
over s (via Vn ! Un). Note that Ys ∼= YVn,vn for all n ≥ 1. Moreover, the morphisms
Fn,vn : Ys ∼= YVn,vn ! XVn,vn

∼= Xs have pairwise distinct Hilbert polynomials and their image
is not contained in ∆s. This implies that Xs is not N -bounded modulo ∆s, as required. �

Corollary 9.7. Let k ⊂ L be an extension of uncountable algebraically closed fields of char-
acteristic zero. Let X be a projective scheme over k and let ∆ ⊂ X be a closed subscheme. If
X is N -bounded modulo ∆ over k, then XL is N -bounded modulo ∆L over L.

Proof. This follows from Lemma 9.6. �

Remark 9.8. A pseudo-bounded variety is not necessarily birational to a bounded variety.

Lemma 9.9. Assume k is uncountable. Let X be a projective scheme over k and let ∆ be a
closed subscheme. If X is 1-bounded modulo ∆ over k, then X is bounded modulo ∆ over k.

Proof. (We adapt the proof of [34, Theorem 9.2].) We show by induction on n ≥ 1 that X
is n-bounded modulo ∆ over k. Thus, let n ≥ 2 and assume that X is (n − 1)-bounded.
Note that, for V a projective normal variety over k, the Hilbert polynomial of a morphism
f : V ! X is uniquely determined by the numerical equivalence class of f∗O(1) in NS(V ); see
the proof of [34, Theorem 9.2] for an argument.

Assume that X is not n-bounded, so that there is a projective normal variety Y of dimension
n over k and morphisms f1, f2, f3, . . . from Y to X with pairwise distinct Hilbert polynomials.
Note that the numerical equivalence classes of f∗1O(1), f∗2O(1), . . . are pairwise distinct. Define

∆i := f−1
i (∆) ⊂ Y , and note that ∆i is a proper closed subscheme of Y . Since k is uncountable,

there is a smooth ample divisor D in Y such that, for all i, we have that D is not contained in
∆i. By [34, Lemma 9.1], it follows that

f∗i (O(1)) ·DdimY−1 !∞, i!∞.

In particular, we have that f∗i (O(1))|D ·D|dimY−2
D !∞. Therefore, the morphisms fi|D : D !

X have pairwise distinct Hilbert polynomials and satisfy fi|D(D) 6⊂ ∆. Since D is a smooth
projective variety with dimD = n− 1 < n, this contradicts the fact that X is (n− 1)-bounded
modulo ∆. We conclude that X is n-bounded modulo ∆. �
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Lemma 9.10. Let k ⊂ L be an extension of algebraically closed fields. Let X be a projective
scheme over k and let ∆ be a closed subscheme. If X is algebraically hyperbolic modulo ∆ over
k, then XL is bounded modulo ∆L over L.

Proof. We may and do assume that L is uncountable. By Theorem 1.24, we have that XL is
algebraically hyperbolic modulo ∆. In particular, it follows that XL is 1-bounded modulo ∆
(Lemma 9.5). Therefore, as L is uncountable, it follows from Lemma 9.9 that XL is bounded
modulo ∆L. �

Proof of Theorem 1.25. This follows from Lemma 9.10 (with k = L). �

Proof of Theorem 1.26. We follow the arguments used to prove [34, Theorem 1.14].
Let M := Mg,k be the stack of smooth proper genus g ≥ 2 curves over k and let U !M

be the universal curve of genus g. We claim that the morphism

HomM(U , X ×M) \HomM(U ,∆×M)!M

is of finite type.
To do so, let U !M be the universal stable curve of genus g over the stack M of stable

curves of genus g. Let P be a smooth projective scheme and let P !M be a smooth surjective
morphism. Now, let Z be a normal projective bounded scheme over k and let Z ! P be a finite
flat surjective morphism of schemes. Let Y := U ×M Z and consider the morphism Y ! Z.

Note that X × Z is bounded modulo ∆ × Z. Therefore, the scheme Homk(Y,X × Z) \
Homk(Y,∆ × Z) is of finite type over k. In particular, the morphism HomZ(Y,X × Z) \
Homk(Y,∆ × Z) ! Z is of finite type. By descent, the morphism HomM(U , X × M) \
HomM(U ,∆ ×M) ! M is of finite type. By base-change, this proves our claim that the
morphism HomM(U , X × M) \ HomM(U ,∆ × M) ! M is of finite type. As the latter
morphism is of finite type (for every g ≥ 2) we see that, for every ample line bundle L on X
and every integer g ≥ 2, there is an integer α(X,L, g) such that, for every smooth projective
connected curve C of genus g over k and every morphism f : C ! X with f(C) 6⊂ ∆, the
inequality

degC f
∗L ≤ α(X,L, g)

holds. This implies the desired statement and concludes the proof. �

Corollary 9.11. Let X be a projective scheme over k and let ∆ be a closed subscheme of X
such that X is 1-bounded modulo ∆ over k. If k is uncountable, for every ample line bundle
L on X and every integer g ≥ 0, there is a real number α(X,L,∆, g) such that, for every
smooth projective connected curve C of genus g over k and every morphism f : C ! X with
f(C) 6⊂ ∆, the inequality

degC f
∗L ≤ α(X,L,∆, g)

holds.

Proof. Since the ground field k is assumed to be uncountable, this follows from Lemma 9.9
and Theorem 1.26. �

Corollary 9.12. Let k ⊂ L be an extension of algebraically closed fields. Let X be a projective
scheme over k and let ∆ be a closed subscheme. If X is bounded modulo ∆ over k, then XL is
bounded modulo ∆L over L.

Proof. By Remark 9.3, this follows from Theorem 1.26. �
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Remark 9.13. The notion of pseudo-algebraic hyperbolicity is further studied in [38]. For
example, motivated by Vojta’s conjecture and the finiteness theorem of Kobayashi–Ochiai [42]
for varieties of general type, it is shown in [38] that if X is a projective pseudo-algebraically
hyperbolic scheme over k and Y is a projective integral variety over k, then the set of surjective
morphisms Y ! X is finite.

9.2. Pointed boundedness. We extend the notion of pointed boundedness introduced in [34,
§4] to the pseudo-setting. Note that this notion is referred to as “geometric hyperbolicity” in
[30].

Definition 9.14. Let X be a projective scheme over k and let ∆ ⊂ X be a closed subscheme.
We say that X is (n, 1)-bounded modulo ∆ if, for every smooth projective connected variety
Y of dimension at most n over k, every y in Y (k), and every x in X(k) \ ∆, the scheme
Homk([Y, y], [X,x]) is of finite type over k.

Remark 9.15. Let k ⊂ L be an extension of uncountable algebraically closed fields of
characteristic zero, let X be a projective scheme over k and let ∆ ⊂ X be a closed subscheme.
If X is (n, 1)-bounded modulo ∆ over k, then XL is (n, 1)-bounded modulo ∆L over L. This
is proven in a similar manner as Corollary 9.7.

Lemma 9.16. Let X be a projective variety over k, and let ∆ ⊂ X be a closed subscheme,
and let n ≥ 1 be an integer. If X is (1, 1)-bounded modulo ∆, then X is (n, 1)-bounded modulo
∆.

Proof. As the argument is similar to the proof of Lemma 9.9, we will be brief on the details.
(Note that we do not require k to be uncountable.)

We argue by induction on n. Assume that X is not (n, 1)-bounded, so that there is a
projective smooth variety Y of dimension n over k, a point y in Y (k), a point x ∈ X(k) \∆,
and morphisms f1, f2, f3, . . . from Y to X with pairwise distinct Hilbert polynomials and
fi(y) = x. Note that the numerical equivalence classes of f∗1O(1), f∗2O(1), . . . are pairwise

distinct. Define ∆i := f−1
i (∆) ⊂ Y , and note that ∆i is a proper closed subscheme of Y .

Let D be a smooth ample divisor in Y which contains y. Then, the morphisms fi|D send y
to x. In particular, the image of fi|D is not contained in ∆ and, by [34, Lemma 9.1], the
morphisms fi|D : D ! X have pairwise distinct Hilbert polynomials. Since D is a smooth
projective variety with dimD = n− 1 < n, we obtain a contradiction. We conclude that X is
(n, 1)-bounded modulo ∆. �

Proposition 9.17. Let X be a projective scheme over k and let ∆ be a closed subscheme of
X. Then the following are equivalent.

(1) The projective variety X is (1, 1)-bounded modulo ∆.
(2) For every smooth projective connected curve C over k, every c in C(k), and every x in

X(k) \∆, the set Hom([C, c], [X,x]) is finite.

Proof. Clearly, it suffices to show that (1) =⇒ (2). Thus, let us assume that there is a
sequence f1, f2, . . . of pairwise distinct elements of Homk([C, c], [X,x]), where C is a smooth
projective connected curve, c ∈ C(k) and x ∈ X(k) \∆. Since Homk([C, c], [X,x]) is of finite
type (by assumption), the degree of all the fi is bounded by some real number (depending
only on C, c,X, x, and ∆). Then, it follows that Homk([C, c], [X,x]) is positive-dimensional,
so that by bend-and-break [13, Proposition 3.5] there is a rational curve in X containing x.
This contradicts the fact that every rational curve in X is contained in ∆. �
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