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ABSTRACT. In this paper we prove that there at most finitely many deformation types of hy-
perKahler manifolds of complex dimension 4 for a given topological structure.

1. PRELIMINARIES

Compact hyperkdhler manifolds are higher-dimensional analogues of K3 surfaces. One of the
most importaint problems in the theory is: What are the possible deformation (or diffeomorphism)
types of irreducible symplectic manifolds? Once the topological type of X is fixed, we want to know
how many deformation types of hyperKahler metrics g, or equivalently, of irreducible holomorphic
complex structures, do exist on X. One can try to prove that there are finitely many deformation
types of hyperKahler manifolds. We do this for complex dimension 4.

Our proof relies on the finiteness results from Hyubrechts [7]. We follow some of the arguments
in [2] and [4].

First we will give some definition and state the results which we will use. For more information
about properties of hyperKahler manifolds, we refer the reader to [6].

Definition 1.1. A complexr manifold X is called irreducible symplectic (or hyperKdihler) if i) X is
compact and Kdihler, ii) X is simply connected, and iii) H°(X,0%) is spanned by an everywhere
non-degenerate two-form o.

From here on we consider a hyperKahler manifold X of complex dimension 2n.

In [1] Beauville endows H?(X,Z) with a natural non-degenerate quadratic form gx, which is
primitive integral form of index (3,b2(X) — 3).

The first Pontrjagin class p; (X) € H*(X,Z) defines a homogeneous polynomial of degree 2n — 2
on H*(X,Z) by a = [y a® ?pi(X). In [7] Huybrechts applies a finiteness result of Kolldr and
Matsusaka to hyperK&hler manifolds and obtains the following:

Theorem 1.1 (Huybrechts, [7]). If the second integral cohomology H? and the homogeneous polyno-
mial of degree 2n — 2 defined by the first Pontrjagin class are given, then there exist at most finitely
many deformation types of compact hyperKdahler manifolds of dimension 4n realizing this structure.

Let C be a polynomial in the Chern classes of degree 4r. Fujiki [3] defines the following invariant:

N(C) :/ Cu2n72r/(/ u2n) ";T’
b's b's
which is independent of v € H? with [, u®" # 0.
Theorem 1.2 (Hitchin & Sawon, [5]). We have the following formula for N(c2):

((2n)))" 1N (ca)" 2
(24n(2n—2))m VAX]

By \/Z[X ] we mean the multiplicative sequence of Pontrjagin classes defined by the power series

sinh /z/2 '
As an observation we would like to mension the following:
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Remark 1.1. There are no hyperKdhlers with by = 3 for any dimension.

Proof. Let X be a hyperKahler manifold. Assume that dimcX = 2n and by = 3. Take A C H*(X, Z)
to be the algebra generated by H2(X,Z). Then, according to [9], A = Sym*H?%(X,Z)/I, where I is
the ideal generated by {v"*!/gx(v) = 0,v € H?(X,Z)}.

But gx is of type (3,b2 — 3) = (3,0), so it is possitive definite, hence I = 0, so A is infinite
dimensional. We obtain a contradiction, because the cohomology ring is finite dimensional. O

2. MAIN THEOREM

Here we prove the following:

Theorem 2.1. Let X be a fized compact topological manifold of complex dimension 4. Then there
are at most finitely many deformation types of hyperKahler structures on X.

Proof. We have to prove that there are finitely many choices for ¢z, or equivalently, for the polynomial
defined by the first Ponrjagin number p;, and that there are finitely many possibilities for the lattice
(H?(X,Z),qx). Then by Theorem 1.1 the statement will follow.

Step I: c3 is bounded.

Guan in [4] has obtained bounds for bs, b3 :

3 < by <23,0 < b3 <68.

From [5] we obtain:

. 720442 +ca

2
Cy 3

— 736 + 4by — b,
so it is bounded.

Step II: det gx is bounded.

We will follow some arguments from [2] and [4]. Let Q = g% € Sym?H?(X,Q) =: H® be the
dual of the Beauville’s form. We use the same notation for the corresponding element in H*(X,Q).

Take an orthonormal basis {e;} of H?(M, C) for the quadratic form gx over the complex numbers.
Then Q = Ziz e?. By [3] we have that [, u* = cgx(u)?, where ¢ is a constant depending only on
the topological type of X. Since gx(e;) = 1, we have that for i # j, [, (e; +¢€;)* = 4c = [ (e; —€;)*
and since [y €] = c, it follows that [, efe? = ¢/3. Thus

ba(bs + 2
/XQ2:/X(Zef)zzbg(bg—l)g—i—bzc:%c.

So, since the cup-product and the constant ¢ depend only on the topological type of X and b, is
bounded, then [, @Q? is bounded, hence [, ¢% and det gx are bounded.

Step III: There are finitely many possibilities for the lattice (H?(X,Z), gx )-

First notice that rankH? = by < 23 and det gx is bounded.

One can easily see that given integers r and d, there are only finitely many distinct indefinite
bilinear form spaces over Z with rank r» and determinant d. It follows from Minkovski’s theorem
(18])-

Step IV: Since c3 is bounded and there are finitely many possibilities for the lattice H?(X,Z),
there are finitely many choices for ¢; (and p;) also.

Indeed, since ¢, is a Pontrjagin class, then its projection in H® is a multiple of Q and the
orthogonal complement to H®) in H*(X) consists of primitive forms ([2]).

We have c2 = AQ + B1e1 + ... [Bses, where the cup-product is possitive on {es,...,es}, where
{e1,...,es} is a basis for H®L N HZ2), Also we have Q2 > 0, so we have finitely many choices for
Ca.

With this the proof of the theorem is completed.
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It remains an open question whether there are finitely many deformation types of hyperK&hler
manifolds for a fixed dimension. A next step for understanding 4—dimensional hyperKéahlers is to
classify their possible deformation types.
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