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Abstract
We prove finiteness of the deformation classes of hyperkähler La-
grangian fibrations in any fixed dimension with fixed Fujiki constant
and discriminant of the Beauville-Bogomolov-Fujiki lattice. We also
prove there are only finitely many deformation classes of hyperkähler
Lagrangian fibrations with an ample line bundle of a given degree on
the general fiber of the fibration.
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1 Introduction

For a hyperkähler manifold M , the Fujiki constant and the discriminant of the
Beauville-Bogomolov-Fujiki lattice are topological invariants. It is very natural
to fix them and ask for finiteness of hyperkähler manifolds with these invariants.
In this paper we establish finiteness of Lagrangian fibrations of hyperkähler
manifolds with fixed topological invariants as above.

Theorem 1.1: There are at most finitely many deformation classes of La-
grangian fibrations π : M → CPn with a fixed Fujiki constant c and a given
discriminant of the Beauville-Bogomolov-Fujiki lattice (Λ, q).

Francois Charles has the following boundedness result for families of hy-
perkähler varieties up to deformation. He drops the assumption that L is ample
in Kollár-Matsusaka’s theorem applied for hyperkähler manifolds and replaces
it with the assumption that q(L) > 0.

Theorem 1.2: (Charles, [Ch]) Let n and r be two positive integers. Then there
exists a scheme S of finite type over C, and a projective morphism M−→ S
such that if M is a complex hyperkähler variety of dimension 2n and L is a
line bundle on M with c1(L)2n = r and q(L) > 0, where q is the Beauville-
Bogomolov form, then there exists a complex point s of S such that Ms is
birational to M .
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In our case, there is a natural line bundle L associated to the Lagrangian
fibration. Using Fujiki’s formula, it is a straightforward observation that q(L) =
0, while F. Charles deals with the case when q(L) > 0 (in which case M is
projective by a result of D. Huybrechts: Theorem 3.11 in [Hu1]).

In the proof of our main theorems we use F. Charles’ finiteness result ap-
plied to an ample line bundle with minimal positive square of the Beauville-
Bogomolov-Fujiki form. Since we are interested in a finiteness result up to
deformation equivalence, one can obtain an ample line bundle after deforming
a given Lagrangian fibration to a projective one. We also use lattice theory
estimates applied to the Beauville-Bogomolov-Fujiki form.

In [Saw], Sawon proved a finiteness theorem for Lagrangian fibrations with
a lot of natural assumptions on the fibration, such as existence of a section,
fixed polarization type of a very ample line bundle, semi-simple degenerations
as the general singular fibers, and a maximal variation of the fibers. We give
the precise statement of Sawon’s theorem in 2.4. Due to a very recent progress
of B. van Geemen and C. Voisin ([vGV]) towards Matsushita’s conjecture, the
last condition of Sawon’s theorem can be modified to only exclude isotrivial
fibrations. Using the techniques in our proofs, one can also drop most of the
other conditions in Sawon’s theorem. We prove the following generalization.

Theorem 1.3: Consider a Lagrangian fibration π : M −→ CPn such that there
is a line bundle P on M with q(P ) > 0 and with a given P -degree d on the
general fiber F of π, i.e., Pn · F = d. Then there are at most finitely many
deformation classes of hyperkähler manifolds M as above, i.e., they form a
bounded family.

For completeness of the exposition, we also mention Huybrechts’ classical
finiteness results.

Theorem 1.4: (Huybrechts, [Hu3]) If the second integral cohomology H2(Z)
and the homogeneous polynomial of degree 2n−2 on H2(Z) defined by the first
Pontrjagin class are given, then there exist at most finitely many diffeomor-
phism types of compact hyperkähler manifolds of real dimension 4n realizing
this structure.

Theorem 1.5: (Huybrechts, [Hu3]) Let M be a fixed compact manifold. Then
there exist at most finitely many different deformation types of irreducible holo-
morphic symplectic complex structures on M .

Using Theorem 1.5, the author and Misha Verbitsky established the following
finiteness results in [KV].
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Theorem 1.6: (Kamenova-Verbitsky, [KV]) Let M be a fixed compact mani-
fold. Then there are only finitely many deformation types of hyperkähler La-
grangian fibrations (M, I)−→ CPn, for all complex structures I on M .

In the main theorem of this paper we prove finiteness of deformation classes
of the total space M of the Lagrangian fibration M −→ CPn with fixed dimen-
sion, Fujiki constant and discriminant of the Beauville-Bogomolov-Fujiki lattice.
As a corollary of Theorem 1.6 one also obtains finiteness of the deformation
classes of the Lagrangian fibration M −→ CPn.

2 Hyperkähler geometry: preliminary results

2.1 Basic definitions

Definition 2.1: A hyperkähler manifold is a compact Kähler holomorphic
symplectic manifold.

Definition 2.2: A hyperkähler manifold M is called simple if H1(M,C) = 0
and H2,0(M) = C.

Theorem 2.3: (Bogomolov’s Decomposition Theorem, [Bo], [Bes]). Any hy-
perkähler manifold admits a finite covering, which is a product of a torus and
a finite collection of simple hyperkähler manifolds.

Remark 2.4: From now on, we assume that all hyperkähler manifolds are
simple.

Remark 2.5: The following two notions are equivalent: a holomorphic sym-
plectic Kähler manifold and a manifold with a hyperkähler structure, that is,
a triple of complex structures satisfying the quaternionic relations and parallel
with respect to the Levi-Civita connection. In the compact case the equivalence
between these two notions is provided by Yau’s solution of Calabi’s conjecture
([Bes]). In this paper we assume compactness and we use the complex algebraic
point of view.

Definition 2.6: Let M be a compact complex manifold and Diff0(M) the
connected component of the identity of its diffeomorphism group. Denote
by Comp the space of complex structures on M , equipped with a structure
of Fréchet manifold. The Teichmüller space of M is the quotient Teich :=
Comp /Diff0(M). For a hyperkähler manifold M , the Teichmüller space is
finite-dimensional ([Cat]). Let Diff+(M) be the group of orientable diffeomor-
phisms of a complex manifold M . The mapping class group

Γ := Diff+(M)/Diff0(M)
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acts naturally on Teich. For I ∈ Teich, let ΓI be the subgroup of Γ which fixes
the connected component of complex structure I. The monodromy group is the
image of ΓI in AutH2(M,Z).

2.2 The Beauville-Bogomolov-Fujiki form

Theorem 2.7: (Fujiki, [F]) Let η ∈ H2(M), and dimM = 2n, where M is
hyperkähler. Then

∫
M
η2n = c · q(η, η)n, for some integral quadratic form q on

H2(M), where c > 0 is a constant depending on the topological type of M . The
constant c in Fujiki’s formula is called the Fujiki constant.

Definition 2.8: This form is called the Beauville-Bogomolov-Fujiki form.

Remark 2.9: The form q has signature (3, b2 − 3). It is negative definite on
primitive forms, and positive definite on the space 〈Ω,Ω, ω〉 where Ω is the
holomorphic symplectic form and ω is a Kähler form (see e. g. [V], Theorem
6.1, or [Hu2], Corollary 23.9).

Definition 2.10: Let [η] ∈ H1,1(M) be a real (1,1)-class on a hyperkähler
manifold M . We say that [η] is parabolic if q([η], [η]) = 0. A line bundle L is
called parabolic if the class c1(L) is parabolic.

Remark 2.11: If L is a parabolic class and P ∈ H2(M) is any class, then after
we substitute η = P + tL into Fujiki’s formula in Theorem 2.7, and compare
the coefficients of tn on both sides, we obtain

(
2n
n

)
PnLn = c2nq(P,L)n.

2.3 The SYZ conjecture and Matsushita’s conjecture

Theorem 2.12: (Matsushita, [Ma1]). Let π : M → B be a surjective holomor-
phic map from a hyperkähler manifold M to a base B, with 0 < dimB < dimM .
Then dimB = 1/2 dimM , and the fibers of π are holomorphic Lagrangian (this
means that the symplectic form vanishes on the fibers).

Definition 2.13: Such a map is called a holomorphic Lagrangian fibration.

Remark 2.14: The base of π is conjectured to be rational. J.-M. Hwang ([Hw])
proved that B ∼= CPn, if it is smooth. D. Matsushita ([Ma2]) proved that it has
the same rational cohomology as CPn, if it is smooth.

Definition 2.15: A line bundle L is called semiample if LN is generated by
its holomorphic sections which have no common zeros.

Remark 2.16: From semiampleness it trivially follows that L is nef. Indeed,
let π : M → PH0(LN )∗ be the standard map. Since the sections of L have no
common zeros, π is holomorphic. Then L ∼= π∗O(1), and the curvature of L is
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the pullback of a Kähler form on CPn. However, a nef bundle is not necessarily
semiample (see e.g. [DPS1, Example 1.7]).

Remark 2.17: Let π : M → B be a holomorphic Lagrangian fibration, and
ωB a Kähler class on B. Then η := π∗ωB is semiample and parabolic. The
converse is also true, by Matsushita’s theorem: if L is semiample and parabolic,
L induces a Lagrangian fibration.

Conjecture 2.18: (Hyperkähler SYZ conjecture) Let L be a parabolic nef
line bundle on a hyperkähler manifold. Then L is semiample.

Remark 2.19: The SYZ conjecture can be seen as a hyperkähler version of the
“abundance conjecture” (see e.g. [DPS2], 2.7.2).

Conjecture 2.20: (Matsushita’s conjecture) Every holomorphic Lagrangian
fibration π : M → CPn is either locally isotrivial or the fibers vary maximally
in the moduli space of Abelian varieties An.

Remark 2.21: This conjecture was introduced to the author in private com-
munictions with J. Sawon, D. Matsushita and J.-M. Hwang.

B. van Geemen and C. Voisin recently proved a weeker version of Mat-
sushita’s conjecture.

Theorem 2.22: (B. van Geemen, C. Voisin, [vGV]) Let X be a projective
hyperkähler manifold of dimension 2n admitting a Lagrangian fibration f :
X → B, where B is smooth. Assume b2,tr(X) = b2(X) − ρ(X) > 5. Then a
very general deformation (X ′, f ′, B′) of the triple (X, f,B) satisfies Matsushita’s
conjecture.

2.4 Charles’ and Sawon’s finiteness theorems

Our main results in this paper rely on the following theorem.

Theorem 2.23: (Charles, [Ch]) Let n and r be two positive integers. Then there
exists a scheme S of finite type over C, and a projective morphism M−→ S
such that if M is a complex hyperkähler variety of dimension 2n and L is a
line bundle on M with c1(L)2n = r and q(L) > 0, where q is the Beauville-
Bogomolov form, then there exists a complex point s of S such that Ms is
birational to M .

We would also like to mention the following theorem in the recent literature.

Theorem 2.24: (Sawon, [Saw]) Fix positive integers n and d1, · · · , dn, with
d1|d2| · · · |dn. Consider Lagrangian fibrations π : M → CPn that satisfy:

(1) π : M → CPn admits a global section,
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(2) there is a very ample line bundle on M which gives a polarization of type
(d1, · · · , dn) when restricted to a generic smooth fibre Mt,

(3) over a generic point t of the discriminant locus the fibre Mt is a rank-one
semi-stable degeneration of abelian varieties,

(4) a neighbourhood U of a generic point t ∈ CPn describes a maximal
variation of abelian varieties.

Then there are finitely many such Lagrangian fibrations up to deformation.

Remark 2.25: Notice that as a corollary of Matsushita’s conjecture, part (4)
of Sawon’s Theorem simply excludes locally isotrivial fibrations. We need to
apply only the deformational version (van Geemen-Voisin’s Theorem 2.22) of
Matsushita’s conjecture to Sawon’s theorem in order to remove the seemingly
restrictive assumption (4).

Remark 2.26: We would like to point out that if there is a section σ :
CPn −→M , this means that σ(CPn) would be a Lagrangian subvariety in M .
Finding Lagrangian CPn’s in a hyperkähler manifold is itself a very interesting
task (for example, see [HT]). Moreover, the Lagrangian σ(CPn) would have to
intersect the general fiber of π in one point.

3 Main results

Consider a lattice Λ, i.e., a free Z−module of finite rank equipped with a non-
degenerate symmetric bilinear from q with values in Z. If {ei} is a basis of Λ,
the discriminant of Λ is defined as discr(Λ) = det(ei · ej).

Lemma 3.1: Let (Λ, q) be an indefinite lattice and v ∈ Λ be an isotropic non-
zero vector. Then there exists a positive vector w ∈ Λ such that 0 < q(w, v) 6
|discr(Λ)| and 0 < q(w,w) 6 2|discr(Λ)|.

Proof: Let w0 be a vector with minimal positive intersection q(w0, v). Then by
Lemma 3.7. in [KV], q(w0, v) divides N = |discr(Λ)|. Therefore, 0 < q(w0, v) 6
N . If q(w0, w0) > 0, let α be the smallest integer such that q(w0 + αv,w0 +
αv) > 0. Then we can take w = w0 + αv. Otherwise, if q(w0, w0) 6 0,
consider the vectors {w0 +αv}. Since q(v, v) = 0, the square of such a vector is:
q(w0 + αv,w0 + αv) = q(w0, w0) + 2αq(w0, v). Take α to be a positive integer
such that q(w0 + αv,w0 + αv) > 0. Set w = w0 + αv. Then in both cases w is
a positive vector with 0 < q(w, v) = q(w0, v) 6 N . Notice that automatically
0 < q(w,w) = q(w0 +αv,w0 +αv) = q(w0, w0)+2αq(w0, v) 6 2N = 2|discr(Λ)|.

We recall the following result from a paper of the author’s together with
Misha Verbitsky, Theorem 3.6 in [KV].
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Theorem 3.2: Consider the action of the monodromy group ΓI on H2(M,Z),
and let S ⊂ H2(M,Z) be the set of all classes which are parabolic and primitive.
Then there are only finitely many orbits of ΓI on S.

Our main result is the following finiteness theorem.

Theorem 3.3: There are at most finitely many deformation classes of La-
grangian fibrations π : M → CPn with a fixed Fujiki constant c and a given
discriminant of the Beauville-Bogomolov-Fujiki lattice (Λ, q).

Proof: As in Remark 2.17, Lagrangian fibrations correspond to parabolic
semiample classes. Now consider S ⊂ H2(M,Z) defined above, the set of all
classes which are parabolic and primitive, which is possibly larger than the set
of parabolic semiample classes. By Theorem 3.2, there are only finitely many
orbits of the monodromy group ΓI on S.

Let L be a nef parabolic class (q(L) = 0) coming from the Lagrangian
fibration. Deform the Lagrangian fibration preserving the fibration structure,
i.e., preserving the class of L to a projective hyperkähler Lagrangian fibration.
Since we are interested in finiteness results up to deformation, we are going to
work in the projective setting. By Huybrechts result (Theorem 3.11 in [Hu1]),
there exists a line bundle with positive square. Apply Lemma 3.1 for (Λ, q) =
(H2(X,Z), q) and v = L. There exists a positive vector w with 0 < q(w, v) 6
|discr(Λ)| = N . We could choose w to be a vector with the smallest positive
square q(w,w) > 0. From the lemma we see that 0 < q(w,w) 6 2|discr(Λ)|,
which is bounded since we consider a fixed discriminant.

Now we can apply F. Charles’ Theorem 2.23 to the case when the first Chern
class is w, in which case, by Fujiki’s formula, 0 < r = w2n = c · q(w,w)n 6
c · (2|discr(Λ)|)n is bounded. For each r in this interval we obtain only finitely
many deformation classes of the total space M .

Since the families of hyperkähler manifolds as above form a bounded family,
there are only finitely many choices of the second Betti number which plays an
important role in studying the geometry of hyperkähler manifolds. We obtain
the following.

Corollary 3.4: In the assumptions of Theorem 3.3, the second Betti number
b2(M) is bounded.

Using similar methods as above together with F. Charles’ Theorem 2.23, we
generalize Sawon’s Theorem 2.24 by dropping most of the assumptions.

Theorem 3.5: Consider a Lagrangian fibration π : M −→ CPn such that there
is a line bundle P on M with q(P ) > 0 and with a given P -degree d on the
general fiber F of π, i.e., Pn · F = d. Then there are at most finitely many
deformation classes of hyperkähler manifolds M as above, i.e., they form a
bounded family.
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Proof: Let L be a nef parabolic class (q(L) = 0) coming from the Lagrangian
fibration (e.g., as the pullback of a hyperplane class on CPn). The fundamental
class [F ] of the general fiber of π is proportional to Ln. We can fix the constant
multiple in such a way that [F ] = Ln. By assumption, Pn · Ln = d is fixed.
Consider the classes {P − kL} for k ∈ Z. We would like to bound the top de-
gree of one of these classes, and apply F. Charles’ theorem. Choose an integer

k > q(P,P )−2q(P,L)
2q(P,L) . For such k we have the following estimate, where c is the

Fujiki constant: (P−kL)2n = c·q(P−kL, P−kL)n = c(q(P, P )−2kq(P,L))n 6
c(2q(P,L))n = 2nc · q(P,L)n =

(
2n
n

)
Pn · Ln =

(
2n
n

)
d. Here we applied Fujiki’s

formula twice (as in Theorem 2.7 and Remark 2.11). In order to apply Theo-
rem 2.23, we also need q(P − kL, P − kL) > 0, i.e., q(P, P ) − 2kq(P,L) > 0.
Combining with the previous restriction on k, we have to choose

k ∈
[q(P, P )− 2q(P,L)

2q(P,L)
,
q(P, P )

2q(P,L)

)
.

Since P is in the interior of the of the positive cone C and L is on the boundary
of C, it follows that q(P,L) > 0 (Corollary 7.2 in [BHPV]). The interval above
is well-defined, because q(P,L) > 0. For such a choice of the integer k, the top
intersection of P − kL is bounded and q(P − kL) > 0. We apply F. Charles’
Theorem 2.23 to obtain a bounded family of such M , which implies finiteness
of deformations of M .

Remark 3.6: In Theorem 3.3 and Theorem 3.5 we prove finiteness of defor-
mation classes of the total space M of the Lagrangian fibration. However, in
Theorem 1.6 the author together with Misha Verbitsky prove that for a fixed
compact manifold M there are only finitely many deformation types of hy-
perkähler Lagrangian fibrations with total space M .
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