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Abstract

A holomorphic Lagrangian fibration on a holomorphically symplec-
tic manifold is a holomorphic map with Lagrangian fibers. It is
known (due to Huybrechts) that a given compact manifold admits
only finitely many holomorphic symplectic structures, up to defor-
mation. We prove that a given compact manifold with b2 > 7 admits
only finitely many deformation types of holomorphic Lagrangian fi-
brations.
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1 Introduction

Irreducible compact hyperkähler manifolds, or irreducible holomorphic symplec-
tic manifolds, are a natural generalization of K3 surfaces in higher dimensions.
The geometry of K3 surfaces is well studied. In particular, it is known that any
two K3 surfaces are deformation equivalent to each other, i.e., there is only one
deformation type of K3 surfaces.

A natural question to ask is whether the same is true in higher dimensions.
The answer is negative due to Beauville’s examples. In every possible complex
dimension 2n there are at least the Hilbert scheme of n points on a K3 surface
S, Hilbn(S), and the generalized Kummer varieties Kn+1(A), where A is an
Abelian surface. These two examples are not deformation equivalent since they
have different Betti numbers. There are two more exceptional examples due to
K. O’Grady in dimensions 6 and 10.

It is conjectured that in every fixed dimension there are finitely many de-
formation types of irreducible compact hyperkähler manifolds. It is also con-
jectured that every hyperkähler manifold can be deformed to one that admits
a holomorphic Lagrangian fibration. It would be interesting to classify the de-
formation types of tha pairs (M,L) of a hyperkähler manifold together with a
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Lagrangian fibration on it. In the present paper, we show that the number of
deformational classes of such pairs is finite, if one fixes the smooth manifold
undelying M .

In [Hu2] Huybrechts proved that for a fixed compact manifold there are at
most finitely many deformation types of hyperkähler structures on it. Therefore,
to prove that the number of deformation classes of pairs (M,L) is finite, it would
suffice to prove it when a deformational class of M is fixed.

Let M
π

−→ X be a Lagrangian fibration. Then X is known to be projective,
with H2(X) = C, hence rkPic(X) = 1. Therefore, the primitive ample bundle
LX on X is unique (up to torsion). Denote by LM the semiample bundle
π∗(LX) on M . Clearly, c1(LM )rkM = 0; a (1,1)-class satisfying this equation is

called parabolic. The Lagrangian fibration M
π

−→ X is uniquely determined
by a class [c1(LM )] ∈ Pic(M) which is parabolic and semiample (this is due
to D. Matsushita, [Ma1]; see [Saw] for a detailed exposition of an early work
on Lagrangian fibrations). Therefore, to classify the Lagrangian fibrations it
would suffice to classify pairs (M,LM ), where LM is a parabolic semiample line
bundle.

We prove that in the Teichmüller space of hyperkähler manifolds with a
fixed parabolic class the pairs admitting a Lagrangian fibration form a dense
and open subset. The other main result is that the action of the monodromy
group has finitely many orbits. As a corollary of these results we obtain that
for a fixed compact manifold, there are only finitely many deformation types
hyperkähler structures admitting a Lagrangian fibration.

1.1 Hyperkähler manifolds

Definition 1.1: A hyperkähler manifold is a compact, Kähler, holomorphi-
cally symplectic manifold.

Definition 1.2: A hyperkähler manifold M is called simple if H1(M) = 0,
H2,0(M) = C.

Theorem 1.3: (Bogomolov’s Decomposition Theorem, [Bo1], [Bes]). Any hy-
perkähler manifold admits a finite covering, which is a product of a torus and
several simple hyperkähler manifolds.

Remark 1.4: Further on, all hyperkähler manifolds are assumed to be simple.

A note on terminology. Speaking of hyperkähler manifolds, people usu-
ally mean one of two different notions. One either speaks of holomorphically
symplectic Kähler manifold, or of a manifold with a hyperkähler structure, that
is, a triple of complex structures satisfying quaternionic relations and parallel
with respect to the Levi-Civita connection. The equivalence (in compact case)
between these two notions is provided by the Yau’s solution of Calabi’s conjec-
ture ([Bes]). Throughout this paper, we use the complex algebraic geometry
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point of view, where “hyperkähler” is synonymous with “Kähler holomorphi-
cally symplectic”, in lieu of the differential-geometric approach. The reader may
check [Bes] for an introduction to hyperkähler geometry from the differential-
geometric point of view.

Notice also that we included compactness in our definition of a hyperkähler
manifold. In the differential-geometric setting, one does not usually assume that
the manifold is compact.

1.2 The Bogomolov-Beauville-Fujiki form

Theorem 1.5: ([F]) Let η ∈ H2(M), and dimM = 2n, whereM is hyperkähler.
Then

∫

M
η2n = cq(η, η)n, for some integer quadratic form q on H2(M) and a

constant c > 0.

Definition 1.6: This form is called Bogomolov-Beauville-Fujiki form. It
is defined by this relation uniquely, up to a sign. The sign is determined from
the following formula (Bogomolov, Beauville; [Bea], [Hu1], 23.5)

λq(η, η) = (n/2)

∫

X

η ∧ η ∧ Ωn−1 ∧ Ω
n−1

+

+ (1− n)

(

∫

X
η ∧ Ωn−1 ∧ Ω

n
)(

∫

X
η ∧ Ωn ∧ Ω

n−1
)

∫

M
Ωn ∧ Ω

n

where Ω is the holomorphic symplectic form, and λ a positive constant.

Remark 1.7: The form q has signature (3, b2 − 3). It is negative definite on
primitive forms, and positive definite on the space 〈Ω,Ω, ω〉 where ω is a Kähler
form, as seen from the following formula

µq(η1, η2) =
∫

X

ω2n−2 ∧ η1 ∧ η2 −
2n− 2

(2n− 1)2

∫

X
ω2n−1 ∧ η1 ·

∫

X
ω2n−1 ∧ η2

∫

M
ω2n

, µ > 0 (1.1)

(see e. g. [V2], Theorem 6.1, or [Hu1], Corollary 23.9).

Definition 1.8: Let [η] ∈ H1,1(M) be a real (1,1)-class on a hyperkähler mani-
fold M . We say that [η] is parabolic if q([η], [η]) = 0. A line bundle L is called
parabolic if c1(L) is parabolic.

1.3 The hyperkähler SYZ conjecture

Theorem 1.9: (D. Matsushita, see [Ma1]). Let π : M −→X be a surjective
holomorphic map from a hyperkähler manifold M to X, with 0 < dimX <
dimM . Then dimX = 1/2 dimM , and the fibers of π are holomorphic La-
grangian tori (this means that the symplectic form vanishes on the fibers).1

1Here, as elsewhere, we assume that the hyperkähler manifold M is simple.
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Definition 1.10: Such a map is called a holomorphic Lagrangian fibration.

Remark 1.11: The base of π is conjectured to be rational. J.-M. Hwang ([Hw])
proved that X ∼= CPn, if it is smooth. D. Matsushita ([Ma2]) proved that it
has the same rational cohomology as CPn.

Remark 1.12: The base of π has a natural flat connection on the smooth
locus of π. The combinatorics of this connection can be used to determine the
topology of M ([KZ], [G]),

Definition 1.13: Let (M,ω) be a Calabi-Yau manifold, Ω the holomorphic
volume form, and Z ⊂ M a real analytic subvariety, Lagrangian with respect to
ω. If Ω

∣

∣

Z
is proportional to the Riemannian volume form, Z is called special

Lagrangian (SpLag).

The special Lagrangian varieties were defined in [HL] by Harvey and Law-
son, who proved that they minimize the Riemannian volume in their cohomology
class. This implies, in particular, that their moduli are finite-dimensional. In
[McL], McLean studied deformations of non-singular special Lagrangian subva-
rieties and showed that they are unobstructed.

In [SYZ], Strominger-Yau-Zaslow tried to explain the mirror symmetry phe-
nomenon using the special Lagrangian fibrations. They conjectured that any
Calabi-Yau manifold admits a Lagrangian fibration with special Lagrangian
fibers. Taking its dual fibration, one obtains “the mirror dual” Calabi-Yau
manifold.

Definition 1.14: A line bundle is called semiample if LN is generated by its
holomorphic sections, which have no common zeros.

Remark 1.15: From semiampleness it obviously follows that L is nef. Indeed,
let π : M −→ PH0(LN )∗ be the standard map. Since the sections of L have
no common zeros, π is holomorphic. Then L ∼= π∗O(1), and the curvature of L
is a pullback of the Kähler form on CPn. However, the converse is false: a nef
bundle is not necessarily semiample (see e.g. [DPS1, Example 1.7]).

Remark 1.16: Let π : M −→X be a holomorphic Lagrangian fibration, and
ωX a Kähler class on X. Then η := π∗ωX is semiample and parabolic. The
converse is also true, by Matsushita’s theorem: if L is semiample and parabolic,
L induces a Lagrangian fibration. This is the only known source of non-trivial
special Lagrangian fibrations.

Conjecture 1.17: (Hyperkähler SYZ conjecture) Let L be a parabolic nef line
bundle on a hyperkähler manifold. Then L is semiample.
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Remark 1.18: This conjecture was stated by many people (Tyurin, Bogomolov,
Hassett-Tschinkel, Huybrechts, Sawon); please see [Saw] for an interesting and
historically important discussion, and [V3] for details and references.

Remark 1.19: The SYZ conjecture can be seen as a hyperkähler version of the
“abundance conjecture” (see e.g. [DPS2], 2.7.2).

2 Hyperkähler geometry: preliminary results

2.1 Teichmüller space and the moduli space

Here we cite the relevant result from the deformation theory of hyperkähler
manifolds. We follow [V1].

LetM be a hyperkähler manifold (compact and simple, as usual), and Comp0
be the Frèchet manifold of all complex structures of hyperkähler type onM . The
quotient Teich := Comp0 /Diff0 of Comp0 by isotopies is a finite-dimensional
complex analytic space ([C]). This quotient is called the Teichmüller space of
M . When M is a complex curve, the quotient Comp0 /Diff0 is the Teichmüller
space of this curve.

The mapping class group Γ = Diff+ /Diff0 acts on Teich in the usual way,
and its quotient Mod is the moduli space of M .

As shown in [Hu2], Teich has a finite number of connected components. Take
a connected component TeichI containing a given complex structure I, and let
ΓI ⊂ Γ be the set of elements of Γ fixing this component. Since Teich has
only a finite number of connected components, ΓI has finite index in Γ. On the
other hand, as shown in [V1], the image of the group Γ is commensurable to
O
(

H2(M,Z), q
)

.
In [V1, Lemma 2.6] it was proved that any hyperkähler structure on a given

simple hyperkähler manifold is also simple. Therefore, H2,0(M, I ′) = C for
all I ′ ∈ Comp. This trivial observation is a key to the following well-known
definition.

Definition 2.1: Let (M, I) be a hyperkähler manifold, and Teich its Teichmüller
space. Consider a map Per : Teich −→ PH2(M,C), sending J to the line
H2,0(M,J) ∈ PH2(M,C). It is easy to see that Per maps Teich into the open
subset of a quadric, defined by

Per :=
{

l ∈ PH2(M,C)
∣

∣ q(l, l) = 0, q(l, l) > 0
}

.

The map Per : Teich −→ Per is called the period map, and the set Per the
period space.

The following fundamental theorem is due to F. Bogomolov [Bo2].
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Theorem 2.2: Let M be a simple hyperkähler manifold, and Teich its Te-
ichmüller space. Then the period map Per : Teich −→ Per is a local diffeomor-
phism (that is, an etale map). Moreover, it is holomorphic.

Remark 2.3: Bogomolov’s theorem implies that Teich is smooth. However,
it is not necessarily Hausdorff (and it is non-Hausdorff even in the simplest
examples).

2.2 The polarized Teichmüller space

In [V4, Corollary 2.6], the following proposition was deduced from [Bou] and [DP].

Theorem 2.4: Let M be a simple hyperkähler manifold, such that all integer

(1, 1)-classes satisfy q(ν, ν) > 0. Then its Kähler cone is one of the two connected

components of the set K :=
{

ν ∈ H1,1(M,R)
∣

∣ q(ν, ν) > 0
}

.

Remark 2.5: ¿From Theorem 2.4 it follows that on a hyperkähler manifold
with Pic(M) = Z, for any rational class η ∈ H1,1(M) with q(η, η) > 0, either η
or −η is nef.

Remark 2.6: Consider an integer vector η ∈ H2(M) which is positive, that is,
satisfies q(η, η) > 0. Denote by Teichη the set of all I ∈ Teich such that η is
of type (1, 1) on (M, I). The space Teichη is a closed divisor in Teich. Indeed,
by Bogomolov’s theorem, the period map Per : Teich −→ Per is etale, but the
image of Teichη is the set of all l ∈ Per which are orthogonal to η; this condition
defines a closed divisor Cη in Per, hence Teichη = Per

−1(Cη) is also a closed
divisor.

Remark 2.7: When I ∈ Teichη is generic, Bogomolov’s theorem implies that
the space of rational (1, 1)-classes H1,1(M,Q) is one-dimensional and generated
by η. This is seen from the following argument. Locally around a given point
I the period map Teichη −→ Per is surjective on the set Perη of all I ∈ Per for
which η ∈ H1,1(M, I). However, the Hodge-Riemann relations give

Per
η =

{

l ∈ Per
∣

∣ q(η, l) = 0
}

. (2.1)

Denote the set of such points of Teichη by Teichηgen. It follows from Theorem
2.4 that, for any I ∈ Teichηgen, either η or −η is a Kähler class on (M, I).

Consider a connected component Teichη,I of Teichη. Changing the sign
of η if necessary, we may assume that η is Kähler on (M, I). By Kodaira’s
theorem about stability of Kähler classes, η is Kähler in some neighbourhood
U ⊂ Teichη,I of I. Therefore, the sets

V+ :=
{

I ∈ Teichηgen
∣

∣ η is Kähler on (M, I)
}

and
V− :=

{

I ∈ Teichηgen
∣

∣ − η is Kähler on (M, I)
}

– 6 – version 0.9, August 21, 2012



L. Kamenova, M. Verbitsky Families of Lagrangian fibrations

are open in Teichηgen. It is easy to see that Teichηgen is a complement to a union
of countably many divisors in Teichη corresponding to the points I ′ ∈ Teichη

with rkPic(M, I ′) > 1. Therefore, for any connected open subset U ⊂ Teichη,
the intersection U ∩ Teichηgen is connected. Since Teichηgen is represented as a
disjoint union of open sets V+⊔V−, every connected component of Teichηgen and
of Teichη is contained in V+ or in V−. We obtained the following corollary.

Corollary 2.8: Let η ∈ H2(M) be a positive integer vector, Teichη the corre-

sponding divisor in the Teichmüller space, and Teichη,I a connected component

of Teichη containing a complex structure I. Assume that η is Kähler on (M, I).
Then η is Kähler for all I ′ ∈ Teichη,I which satisfy rkH1,1(M,Q) = 1.

We call the set Teichηpol of all I ∈ Teichη for which η is Kähler the polarized
Teichmüller space, and η its polarization. From the above arguments it is
clear that the polarized Teichmüller space Teichηpol is open and dense in Teichη.

The quotient Mη of Teichηpol by the subgroup of the mapping class group
fixing η is called the moduli of polarized hyperkähler manifolds. It is
known (due to the general theory which goes back to Viehweg and Grothen-
dieck) that Mη is Hausdorff and quasiprojective (see e.g. [Vi] and [GHS]).

Remark 2.9: We conclude that there are countably many quasiprojective di-
visors Mη immersed in the moduli space Mod of hyperkähler manifolds. More-
over, every algebraic complex structure belongs to one of these divisors. How-
ever, these divisors need not to be closed. Indeed, as proven in [AV], each of
Mη is dense in Mod.

In [AV, Theorem 1.7], the following theorem was proven.

Theorem 2.10: Let M be a compact, simple hyperkähler manifold, TeichI a

connected component of its Teichmüller space, and TeichI
Ψ
−→ TeichI /ΓI =

Mod its projection to the moduli space of complex structures. Consider a posi-

tive or negative vector η ∈ H2(M,Z), and let TeichI,η be the corresponding con-

nected component of the polarized Teichmüller space. Assume that b2(M) > 3.
Then the image Ψ(TeichI,η) is dense in Mod.

The proof relies on a more general proposition about lattices.

Proposition 2.11: [AV, Proposition 3.2] Let V be an R-vector space equipped

with a non-degenerate symmetric form of signature (s+, s−) with s+ ≥ 3 and

s− ≥ 1. Consider a lattice L ⊂ V . Let Γ be a subgroup of finite index in O(L),
and l ∈ L. Then Γ ·Gr++(l

⊥) is dense in Gr++(V ).

Remark 2.12: Since the proof of this statement is symmetric in s+ and s−,
the same proposition is valid if we assume that s+ ≥ 1 and s− ≥ 3.
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3 Main results

Here we assume that b2(M) > 7 as we need it for our proof of Theorem 3.4. The
authors conjecture that the result is valid for smaller Betti numbers as well.

Definition 3.1: Let L be a holomorphic line bundle on a hyperkähler manifold.
We call L Lagrangian if it is parabolic and semiample.

Definition 3.2: Let M be a hyperkähler manifold. Fix a parabolic class L ∈
H2(M,Z). We denote by TeichL the Teichmüller space of all complex structures
I of hyperkähler type on M such that L is of type (1, 1) on (M, I). Clearly,
TeichL is a divisor in the whole Teichmüller space of M . The space TeichL is
called the Teichmüller space of hyperkähler manifolds with parabolic

class.

Matsushita proves the following openness result in [Ma3, Theorem 1.1]:

Theorem 3.3: Let Teich◦L ⊂ TeichL be the set of all I ∈ TeichL for which L is
Lagrangian. Then Teich◦L is open in TeichL.

The main results of the present paper are the following two theorems.

Theorem 3.4: The subspace Teich◦L ⊂ TeichL is dense and open in TeichL.

Proof: Fix a positive class η ∈ H2(M,Z) and define Teich◦L,η to be the open
subset of Teich◦L for which η is a polarization. Consider the projection Ψ to the
moduli space Mod as defined in Theorem 2.10. Since Mη is quasiprojective (see
[Vi]), then Ψ(Teich◦L,η) is Zariski open, and therefore dense in Ψ(TeichL,η).

Fix a negative vector L′ ∈ H2(M,Z) such that the sublattice < L,L′ >
is of rank 2. Notice that Ψ(TeichL) = {l ∈ PH2(M,Z)|q(l, l) = 0, q(l, l) >
0, q(L, l) = 0}/ΓL and Ψ(TeichL,η) = {l ∈ PH2(M,Z)|q(l, l) = 0, q(l, l) >
0, q(L, l) = 0, q(η, l) = 0}/ΓL,η. Applying Proposition 2.11 to the quotient
H2(M,Z)/ < L,L′ >, we see that Ψ(TeichL,L′,η) is dense in Ψ(TeichL,L′) for
any L′. Here we needed to assume b2 > 7, because H2(M,Z) is of signature
(3, b2−3) and the quotient H2(M,Z)/ < L,L′ > is of signature (2, b2−4). This
satisfies the conditions of Proposition 2.11 since b2 − 4 > 3.

However,
⋃

L′ Ψ(TeichL,L′) is dense in Ψ(TeichL), and
⋃

L′ Ψ(TeichL,L′,η) is
dense in Ψ(TeichL,η). Therefore, Ψ(TeichL,η) is dense in Ψ(TeichL) and Teich◦L
is dense in TeichL.

Theorem 3.5: Consider the action of the monodromy group ΓI on H2(M,Z),
and let S ⊂ H2(M,Z) be the set of all classes which are parabolic and primitive.
Then there are only finitely many orbits of ΓI on S.

Proof: In the proof we use Nikulin’s technique of discriminant-forms described
in [Ni].
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Denote by Λ the lattice (H2(M,Z), q). It is a free Z-module of finite rank
together with a non-degenerate symmetric bilinear form q with values in Z. If
{ei}i∈I is a basis of the lattice Λ, its discriminant is defined to be discr(Λ) =
det(ei · ej). There is a canonical embedding Λ →֒ Λ∗ = Hom(Λ,Z) using the
bilinear form of Λ. The discriminant group AΛ = Λ∗/Λ is a finite Abelian group
of order |discr(Λ)|. One can extend the bilinear form to Λ∗ with values in Q

and define the discriminant-bilinear form of the lattice bΛ : AΛ × AΛ → Q/Z.
It is a finite non-degenerate form. A subgroup H ⊂ AΛ is isotropic if qΛ|H = 0,
where qΛ is the quadratic form corresponding to bΛ. Given any subset K ⊂ Λ,
its orthogonal complement is K⊥ = {v ∈ Λ|(v,K) = 0}.

An embedding of lattices Λ1 →֒ Λ2 is primitive if Λ2/Λ1 is a free Z-module.
Take a primitive vector v ∈ Λ with q(v) = 0. We can choose a vector f ∈ Λ with
minimal positive quadratic intersection α = q(v, f). Then 0 < α 6 |discr(Λ)|.
It is implied by the following lemma:

Lemma 3.6: The minimal positive intersection α divides discr(Λ).
Proof: Since v is primitive, we can choose a free Z-basis {v1 = v, v2, . . . , vn}
of Λ, where n = rk(Λ). If α = min{q(v, f)|f ∈ Z

n}, then αZ is an ideal
generated by {q(v, vi), i = 1, . . . , n}. For every i = 1, . . . , n, q(v, vi) = α · ai for
some ai ∈ Z. Thus the matrix [q(vj , vi)] has first column divisible by α. Then
det[q(vj , vi)] = discr(Λ) is divisible by α.

Let K be the primitive sublattice of Λ spanned by v and f . The intersection
matrix of Span(v, f) has determinant q(v, v)q(f, f) − q(v, f)2 = −α2 which is
bounded: −|discr(Λ)|2 6 −α2 < 0. Since rk(K) = 2, K has at most four
primitive isotropic vectors (2 rk(K) = 4).

An overlattice of Λ is a lattice embedding i : Λ → Λ′ with Λ and Λ′ of the
same rank, or equivalently, such that HΛ′ = Λ′/Λ is a finite Abelian group.
Note that we have the inclusions: Λ →֒ Λ′ →֒ Λ′∗ →֒ Λ∗. Therefore, HΛ′ ⊂
Λ′∗/Λ ⊂ Λ∗/Λ = AΛ.

Proposition 3.7: [Ni, Proposition 1.4.1] The correspondence Λ′ → HΛ′ de-
termines a bijection between overlattices of Λ and isotropic subgroups of AΛ.
Furthermore, H⊥

Λ′ = Λ′∗/Λ and H⊥
Λ′/HΛ′ = AΛ′ .

Let L = K⊥ be the orthogonal complement of K in Λ. Then K ⊕ L ⊂ Λ ⊂
K∗ ⊕L∗. Since det(L) is bounded, in view of Proposition 3.7, there are finitely
many ways of expressing Λ as an overlattice of ΛK

.
= K ⊕ K⊥ because AΛ is

finite of order |discr(Λ)| and there are finitely many isotropic subgroups.

Define the lattices Λ and Λ′ to be stably equivalent if there exists a lattice
M such that Λ⊕M ≃ Λ′ ⊕M . The following proposition is a reformulation of
Theorem 1.1 in Chapter 9 of Cassels’ book [Cas].

Proposition 3.8: There exist only a finite number of lattices stably equivalent
to Λ.
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If we assume that there are infinitely many orbits of ΓI , this would imply
that there exist infinitely many non-isomorphic pairs of lattices (K,K⊥). Then
for infinitely many of themK⊥ would be stably equivalent toK⊥

1 for anotherK1

since there are only finitely many choices for K. This contradicts Proposition
3.8 and the result follows.

Corollary 3.9: For any hyperkähler manifold, there are only finitely many
orbits of ΓI on the set of all divisors TeichL with a parabolic class.

Combining Corollary 3.9 and Theorem 3.4, we obtain the following result.

Corollary 3.10: Let M be a hyperkähler manifold. Then there are only finitely
many deformation types of Lagrangian fibrations (M, I)−→ S, for all complex
structures on M .

Proof: By Remark 2.7 we can assume that H1,1(M,Q) is one-dimensional and
generated by a parabolic class L. Since either L or −L is nef, we can assume L
to be nef. From Theorem 3.4 it follows that for each pair (M,L) there exists a
unique deformation type of a fibration structure. We conclude finiteness of the
deformation types of Lagrangian fibrations since there are finitely many orbits
of ΓI on the set TeichL.
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