
L. Kamenova, M. Verbitsky Algebraic non-hyperbolicity

Algebraic non-hyperbolicity of
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Abstract. A projective manifold is algebraically hyperbolic if the degree
of any curve is bounded from above by its genus times a constant, which
is independent from the curve. This is a property which follows from
Kobayashi hyperbolicity. We prove that hyperkähler manifolds are non
algebraically hyperbolic when the Picard rank is at least 3, or if the Picard
rank is 2 and the SYZ conjecture on existence of Lagrangian fibrations
is true. We also prove that if the automorphism group of a hyperkähler
manifold is infinite then it is algebraically non-hyperbolic.

1 Introduction

In [V] M. Verbitsky proved that all hyperkähler manifolds are Kobayashi non-
hyperbolic. It is interesting to inquire if projective hyperkähler manifolds are
also algebraically non-hyperbolic (Definition 2.7). For a given projective mani-
fold algebraic non-hyperbolicity implies Kobayashi non-hyperbolicity. We prove
algebraic non-hyperbolicity for projective hyperkähler manifolds with infinite
group of automorphisms.

Theorem 1.1: Let M be a projective hyperkähler manifold with infinite auto-
morphism group. Then M is algebraically non-hyperbolic.

If a projective hyperkähler manifold has Picard rank at least three, we show
that it is algebraically non-hyperbolic. For the case when the Picard rank
equals to two we need an extra assumption in order to prove algebraic non-
hyperbolicity. The SYZ conjecture states that a nef parabolic line bundle on a
hyperkähler manifold gives rise to a Lagrangian fibration (Conjecture 2.4).

Theorem 1.2: Let M be a projective hyperkähler manifold with Picard rank
ρ. Assume that either ρ > 2, or ρ = 2 and the SYZ conjecture holds. Then M
is algebraically non-hyperbolic.

2 Basic notions

Definition 2.1: A hyperkähler manifold of maximal holonomy (or irreducible
holomorphic symplectic) manifold M is a compact complex Kähler manifold
with π1(M) = 0 and H2,0(M) = Cσ, where σ is everywhere non-degenerate.
From now on we would tacitly assume that our hyperkähler manifolds are of
maximal holonomy.
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Due to results of Matsushita, holomorphic maps from hyperkähler manifolds
are quite restricted.

Theorem 2.2: (Matsushita, [Mat]) Let M be a hyperkähler manifold and
f : M → B a proper surjective morphism with a smooth base B. Assume that
f has connected fibers and 0 < dimB < dimM . Then f is Lagrangian and
dimC B = n, where dimC M = 2n.

Following Theorem 2.2, we call the surjective morphism f : M → B a La-
grangian fibration on the hyperkähler manifold M . A dominant map f : M 99K
B is a rational Lagrangian fibration if there exists a birational map ϕ : M 99KM ′

between hyperkähler manifolds such that the composition f ◦ ϕ−1 : M ′ → B is
a Lagrangian fibration. J.-M. Hwang proved that if the base B of a hyperkähler
Lagrangian fibration is smooth, then B ∼= Pn (see [Hw]).

Definition 2.3: Given a hyperkähler manifold M , there is a non-degenerate
primitive form q on H2(M,Z), called the Beauville-Bogomolov-Fujiki form (or
the “BBF form” for short), of signature (3, b2 − 3), and satisfying the Fujiki
relation ∫

M

α2n = c · q(α)n for α ∈ H2(M,Z),

with c > 0 a constant depending on the topological type of M . This form
generalizes the intersection pairing on K3 surfaces. A detailed description of
the form can be found in [Be], [Bog] and [F].

Notice that given a Lagrangian fibration f : M → Pn, if h is the hyperplane
class on Pn, and α = f∗h, then α belongs to the birational Kähler cone of M
and q(α) = 0. The SYZ conjecture states that the converse is also true.

Conjecture 2.4: [SYZ] If L is a line bundle on a hyperkähler manifold M with
q(L) = 0, and such that c1(L) belongs to the birational Kähler cone of M , then
L defines a rational Lagrangian fibration.

This conjecture is known for deformations of Hilbert schemes of points on
K3 surfaces (Bayer–Macr̀ı [BM]; Markman [Mar]), and for deformations of the
generalized Kummer varieties Kn(A) (Yoshioka [Y]).

Definition 2.5: A negative class α ∈ H1,1(M,Z) (i.e., q(α) < 0) is called an
MBM class if for some isometry γ ∈ SO(H2(M,Z)) in the monodromy group,
γ(α)⊥ ⊂ H1,1(M,Z) contains a face of the Kähler cone of a birational model
M ′ of M .

Geometrically, the MBM classes are negative integral (1, 1)-classes that are
represented by minimal rational curves on deformations of M after identifying
H2(M,Q) with H2(M,Q) via the BBF form (Amerik-Verbitsky, [AV1]).
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Definition 2.6: The Kobayashi pseudometric on M is the maximal pseudo-
metric dM such that all holomorphic maps f : (D, ρ) → (M,dM ) are distance
decreasing, where (D, ρ) is the unit disk with the Poincaré metric.

A manifold M is Kobayashi hyperbolic if dM is a metric, otherwise it is called
Kobayashi non-hyperbolic. In [V] M. Verbitsky proved that all hyperkähler
manifolds are Kobayashi non-hyperbolic. In [KLV] together with S. Lu we
proved that the Kobayashi pseudometric vanishes identically for K3 surfaces
and for hyperkähler manifolds deformation equivalent to Lagrangian fibrations
under some mild assumptions. In [De] Demailly introduced the following notion.

Definition 2.7: A projective manifold M is algebraically hyperbolic if for any
Hermitian metric h on M there exists a constant A such that for any holomor-
phic map ϕ : C → M from a curve of genus g to M we have that 2g − 2 >
A
∫
C
ϕ∗ωh, where ωh is the Kähler form of h.

In this paper all varieties we consider are smooth and projective. For pro-
jective varieties, Kobayashi hyperbolicity implies algebraic hyperbolicity ([De]).
Here we explore non-hyperbolic properties of projective hyperkähler manifolds.
Algebraic non-hyperbolicity implies Kobayashi non-hyperbolicity.

3 Main Results

Proposition 3.1: Let M be a hyperkähler manifold admitting a (rational)
Lagrangian fibration. Then M is algebraically non-hyperbolic.

Proof: We use the fact that the fibers of a Lagrangian fibrations are abelian
varieties ([Mat]). The isogeny self-maps on an abelian variety provide curves
of fixed genus and arbirary large degrees, and therefore they are algebraically
non-hyperbolic.

An alternative way of proving this proposition is by using the following result
whose proof was suggested by Prof. K. Oguiso.

Lemma 3.2: If a hyperkähler manifold M admits a Lagrangian fibration, then
there exists a rational curve on M .

Indeed, in [HO] J.-M. Hwang and K. Oguiso give a Kodaira-type classifica-
tion of the general singular fibers of a holomorphic Lagrangian fibration. All of
the general singular fibers are covered by rational curves. The locus of singu-
lar fibers is non-empty (e.g., Proposition 4.1 in [Hw]), and therefore there is a
rational curve on M .
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According to Lemma 3.2, M contains a rational curve, and therefore, M is
algebraically non-hyperbolic. This finishes the proof of Proposition 3.1.

Lemma 3.3: Let M be a projective hyperkähler manifold with infinite auto-
morphism group Γ. Consider the natural map f : Γ−→ Aut(H1,1(M)). Then
the elements of the Kähler cone have infinite orbits with respect to f(Γ).

Proof: See the discussion in section 2 of [O2].

Lemma 3.4: Let M be a projective hyperkähler manifold, and Γ its automor-
phism group. Consider the natural map g : Γ−→ Aut(H2

tr(M))×Aut(H1,1(M)).
Then g(Γ) is finite in the first component Aut(H2

tr(M)).

Proof: This has been proven by Oguiso, see [O1]. The idea is that the
BBF form restricted to the transcendental part H2

tr(M) is of K3-type. Then
we can apply Zarhin’s theorem (Theorem 1.1.1 in [Z]) to deduce that g(Γ) ⊂
Aut(H2

tr(M)) is finite.

Theorem 3.5: Let M be a projective hyperkähler manifold with infinite auto-
morphism group. Then M is algebraically non-hyperbolic.

Proof: For any Kähler class w on M , its orbit is infinite by Lemma 3.3. Fix a
polarization w on M with normalization q(w) = 1. For a given constant C > 0
consider the set

DC = {x ∈ H1,1(M,Z) | q(x) > 0, q(x,w) 6 C}.

Notice that DC is compact. Indeed, y = x − q(x,w)w is orthogonal to w
with respect to the BBF form q. The quadratic form q is of type (1, b2 − 1)
on H1,1(M,Z) and since q(w) > 0, the restriction q|w⊥ is negative-definite.
A direct computation shows that q(y) = q(x) − 2q(x,w)2 + q(x,w)2q(w) =
q(x) − q(x,w)2 > −C2. The set DC is equivalent to the set of elements {y ∈
w⊥|q(y) > −C2}, which is compact because q|w⊥ is negative-definite. Since the
set DC is compact, supx∈Γ·η deg x =∞, which means there is a class of a curve
η with q(η) > 0. However, all curves in the orbit Γ ·η have constant genus. Since
their degrees could be arbitrarily high, then M is algebraically non-hyperbolic.

Lemma 3.6: Let M be a hyperkähler manifold such that the positive cone does
not coincide with the Kähler cone. Then M contains a rational curve.

Proof: There exists an MBM class as in Definition 2.5. This implies that M
admits a rational curve (see Corollary 2.11 in [AV2]).
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Theorem 3.7: Let M be a hyperkähler manifold with Picard rank ρ. Assume
that either ρ > 2 or ρ = 2 and the SYZ conjecture holds. ThenM is algebraically
non-hyperbolic.

Proof: Notice that the Hodge lattice H1,1(M,Z) of a hyperkähler manifold has
signature (1, k). Therefore, for ρ > 2, the Hodge lattice contains a vector with
positive square, and M is projective ([Hu]) First, consider the case when ρ > 2.
If the Kähler cone coincides with the positive cone, then the automorphism
group Aut(M) is commensurable with the group of isometries SO(H2(M,Z))
(Theorem 2.17 in [AV3]) preserving the Hodge type. By Lemma 3.4, this group
is commensurable with the group of isometries of the Hodge lattice H1,1(M,Z).
By Borel and Harish-Chandra’s theorem ([BHC]), if ρ > 2, any arithmetic
subgroup of SO(1, ρ − 1) is a lattice. However, Borel density theorem implies
that any lattice in a non-compact simple Lie group is Zariski dense ([Bor]).
Therefore, for ρ > 2, SO(H1,1(M,Z)) is infinite. In this case Aut(M) is also
infinite and we can apply Theorem 3.5. On the other hand, if the Kähler cone
does not coincide with the positive cone, then by Lemma 3.6 there is a rational
curve on M . Therefore, M is algebraically non-hyperbolic.

Now let ρ = 2. Assume the positive cone and the Kähler cone coincide.
If there is no η ∈ H1,1(M,Z) with q(η) = 0, then by Theorem 87 in [Di],
SO(H1,1(M,Z)) is isomorphic to Z × Z/2Z. Therefore, both SO(H1,1(M,Z))
and Aut(M) are infinite and we can apply Theorem 3.5. If there is η ∈
H1,1(M,Z) with q(η) = 0, then the SYZ conjecture implies that η defines a
rational fibration on M and we could apply Proposition 3.1. If ρ = 2 and the
positive and the Kähler cones are different (i.e., the positive cone is divided into
Kähler chambers), then there is a nef class η ∈ H1,1(M,Z) with q(η) = 0. Since
we assumed that the SYZ conjecture holds, the class η defines a Lagrangian
fibration on M . Applying Proposition 3.1 we conclude that M is algebraically
non-hyperbolic.

Remark 3.8: We conjecture that all projective hyperkähler manifolds are al-
gebraically non-hyperbolic. However, our proof fails for manifolds with Picard
rank 1.
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