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Algebraically hyperbolic manifolds have

finite automorphism groups

Fedor Bogomolov, Ljudmila Kamenova1, Misha Verbitsky2

Abstract. A projective manifold M is algebraically hyperbolic if there
exists a positive constant A such that the degree of any curve of genus g on
M is bounded from above by A(g−1). A classical result is that Kobayashi
hyperbolicity implies algebraic hyperbolicity. It is known that Kobayashi
hyperbolic manifolds have finite automorphism groups. Here we prove
that, more generally, algebraically hyperbolic projective manifolds have
finite automorphism groups.

1 Introduction

J.-P. Demailly introduced an algebraic analogue for the analytic notions of hy-
perbolicity in [De]. Using the classical Gauss-Bonnet formula he showed that
every compact complex Kobayashi hyperbolic manifold is also algebraically hy-
perbolic. Demailly conjectured that for complex projective manifolds the two
notions, Kobayashi hyperbolicity and algebraic hyperbolicity, coincide.

Kobayashi proved that Kobayashi hyperbolic manifolds have only finite or-
der automorphisms, [Ko]. In [KV] L. Kamenova and M. Verbitsky proved that
algebraically hyperbolic projective hyperkähler manifolds have finite groups of
automorphisms. The general expectation is that all projective hyperkähler man-
ifolds are algebraically non-hyperbolic.

Theorem 1.1: (Kamenova, Verbitsky) Let M be an algebraically hyperbolic
projective hyperkähler manifold. Then M has finite group of automorphisms.

Here we generalize the result above and show that all algebraically hyperbolic
projective manifolds have finite groups of automorphisms.

Theorem 1.2: The group Aut(M) of automorphisms of an algebraically hy-
perbolic manifold M is finite.

The idea behind the proof of our main theorem is the following. We con-
sider the induced action of the automorphism group Aut(M) on the cohomol-
ogy H1,1(M,R). From the Hodge-Riemann relations it follows that the image
of Aut(M) in GL(H1,1(M,R)) has to preserve some rational Kähler class. Fur-
thermore, we consider the case when the image of Aut(M) in Aut(Pic0(M)) is
infinite. Using the Albanese map we produce a subvariety of M that admits
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self-isogenies of arbitrarily high order, thus giving curves of constant genus and
arbitrary high degree in this subvariety, i.e., we obtain an algebraically non-
hyperbolic subvariety. This contradiction implies that the image of Aut(M) in
Aut(Pic0(M)) is finite. If we assume that Aut(M) is infinite, there would be
an infinite subgroup Γ acting trivially on Aut(Pic(M)). It fixes an ample line
bundle L ∈ Pic(M). The action of Γ on PH0(M,L)∗ preserves the image of
the projective embedding M ↪→ PH0(M,L)∗. Let Γ be the Zariski closure of Γ
in PGL(H0(M,L)∗). Then the orbits of Γ are positive dimensional, which is a
contradiction, because Aut(M) is discrete when M is algebraically hyperbolic.

2 Brody curves, Kobayashi and algebraic hyper-
bolicity

In this section let M be a compact complex manifold. We introduce some basic
hyperbolicity notions that can be found in [Ko] and [De]. Brody introduced the
Brody curves in [Br].

2.1 Kobayashi pseudometric and Brody curves

Definition 2.1: A pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

Remark 2.2: Let D be a set of pseudometrics on M . Then dmax(x, y) :=
supd∈D d(x, y) is also a pseudometric.

Definition 2.3: The Kobayashi pseudometric dM on a complex manifold M is
dM := dmax for the set D of all pseudometrics on M such that any holomorphic
map from the Poincaré disk to M is distance-decreasing.

Remark 2.4: The definition above is equivalent to the standard definition that
the Kobayashi distance between points x, y ∈M is the infimum of the Poincaré
distance over all sets of Poincaré disks connecting x to y.

Definition 2.5: A manifold M is called Kobayashi hyperbolic if the Kobayashi
pseudometric dM is non-degenerate.

Definition 2.6: Let M be a complex Hermitian manifold. A Brody curve is
a non-constant holomorphic map f : C−→M such that |df | 6 C for some
constant C. Here |df | is understood as an operator norm of df : TzC−→ TM ,
where C is equipped with the standard Euclidean metric.

Definition 2.7: Let (∆r, gr) be a disk of radius r in C with the Poincaré metric
gr, rescaled in such a way that the unit tangent vector to 0 has length 1. A
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Brody map to a Hermitian complex manifold M is a map f : ∆r −→M such
that |df | 6 1 (here the operator norm is taken with respect to the Poincaré
metric on ∆r) and |df |(z) = 1 at z = 0.

Lemma 2.8: Let fr : ∆r −→M be a sequence of Brody maps with r −→∞.
Then {fr} has a subsequence which converges uniformly to a Brody curve f
satisfying |df |(z) = 1 at z = 0.

Proof. Let r1 < r2. The identity map τ : (∆r1 , g1)−→ (∆r2 , g2) is 1-
Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincaré metric:
τ∗(r−2

2 g2) 6 r−2
1 g1. Since r1 < r2, this gives τ∗g2 6 g1. Restricted on any

disk ∆R, the family {fr, r > R} is a normal family (since it is Lipschitz), hence
it has a subsequence which converges uniformly to a Lipschitz map. Since a

uniform limit of holomorphic maps is holomorphic, the family
{
fr

∣∣∣
∆R

, r > R
}

converges to a holomorhic map on ϕR : ∆R −→M . The map ϕR is Lipschitz
with respect to all metrics gr, r > R. Since lim

r −→∞
gr is the standard Euclidean

metric g∞, the map ϕR is Lipschitz with respect to g∞. The sequence lim
R−→∞

ϕR

converges to a holomorphic Lipschitz map C−→M . Since all fr and ϕR satisfy
|dϕR|(z) = 1 at z = 0, the same is true for the limit.

A classical result of Brody states that a compact complex manifold M is
Kobayashi hyperbolic if and only if there are no non-constant holomorphic maps
from C to M .

Theorem 2.9: (Brody’s lemma) Let M be a compact complex manifold which
is not Kobayashi hyperbolic. Then M contains a Brody curve.

Proof: Let us equip M with a Hermitian metric h. If |df |(0) 6 C for any
holomorphic map (∆1, g1)−→M , then the Kobayashi pseudometric satisfies
dK > C−1h, andM is Kobayashi hyperbolic. If this quantity is non-bounded, we
can always rescale the disc to obtain a map fr : (∆r, gr)−→M with r = |df |(0),
and then |dfr|(0) = 1. Then Brody’s lemma follows from Lemma 2.8 and the
following lemma.

Lemma 2.10: LetM be a compact Hermitian manifold, and ψr : (∆r, gr)−→M
a sequence of holomorphic maps satisfying |dψr|(0) > 1, r −→∞. Then there
exists a sequence of Brody maps fs : (∆s, gs)−→M , with s−→∞.

Proof. We need to construct a sequence of Brody maps, which are 1-
Lipschitz maps fs : (∆s, gs)−→M , with |dfs|(0) = 1. The identity map

Ψr−ε,r : (∆r−ε, gr−ε)−→ (∆r, gr)

is 1-Lipschitz, and satisfies

lim
z −→ ∂∆r−ε

|dΨr−ε,r|(z) = 0.
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Let u := r−ε and f̃u := Ψr−ε,r◦ψr be a restriction of fr to the disk (∆r−ε, gr−ε).

Then fu is also Lipschitz and |df̃u| reaches maximum at a point zu somewhere
inside the disk ∆u. Applying an appropriate holomorphic isometry of ∆u, we
may assume that |df̃u|(z) takes maximum Cu > 1 for z = 0. Rescaling f̃u, and
setting s := Cuu, we obtain a map fs : ∆s −→M which is 1-Lipschitz and
satisfies |dfs| 6 1, |dfs|(0) = 1.

Definition 2.11: Let M be a projective manifold. We say that M is alge-
braically hyperbolic if there exists a constant A > 0 such that for any curve
C ⊂M of geometric genus g one has degC < A(g − 1).

Remark 2.12: Algebraically hyperbolic manifolds contain no elliptic nor ratio-
nal curves.

Using Gauss-Bonnet in [De] Demailly proved that Kobayashi hyperbolic-
ity implies algebraic hyperbolicity. Here we’ll give a slightly different proof of
this well known result. The converse implication, “algebraically hyperbolicity
implies Kobayashi hyperbolicity”, was conjectured by J.-P. Demailly who intro-
duced the notion of algebraic hyperbolicity in [De].

Theorem 2.13: (Demailly, [De]) Kobayashi hyperbolicity implies algebraic hy-
perbolicity.

Proof. Let C ⊂ M be a curve in a Kobayashi hyperbolic manifold. The
genus 0 and 1 cases are ruled out by Brody’s Lemma, Theorem 2.9. Then genus
g = g(C) is greater than 1, and its universal cover is the disk ∆. Denote by
ϕC : ∆−→M the universal covering map. The volume of C with respect
to the Fubini-Study metric on M is degC, and its volume with respect to
the Poincaré metric is

∫
C
c1(T ∗C) = 2π(2g − 2). Therefore, |ϕC | > degC

2π(2g−2)

somewhere on ∆. Notice that M is not algebraically hyperbolic if and only if
there is a sequence {Ci} of curves in M with lim

i−→∞
degCi

2π(2g(Ci)−2) −→∞. Suppose

that M is not algebraically hyperbolic. This gives a sequence ϕCi
: ∆1 −→M

with |ϕCi
| > degCi

2π(2g(Ci)−2) somewhere on ∆. Replacing ∆1 by ∆1−ε as above if

necessary, we may assume that |ϕCi | reaches its maximum somewhere on ∆1.
Applying an isometry of ∆1, we may assume that |ϕCi | reaches its maximum
Ri in 0 ∈ ∆1. Rescaling ϕCi

by Ri, we obtain a sequence of disks ϕ̃Ci
(z) =

ϕCi
(z/Ri) : ∆Ri

−→M , giving a Brody curve by Lemma 2.8.

2.2 Algebraic Kobayashi metric

Definition 2.14: The Kobayashi pseudometric dK is defined as the infimum
of the path metric on connected chains of holomorphic disks equipped with the
Poincaré metrics. Define the algebraic Kobayashi pseudometric dA using the
Poincaré metric on connected chains of algebraic curves instead of the disks.
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Remark 2.15: This metric clearly satisfies dA > dK . In [DLS] Demailly, Lem-
pert and Shiffman prove that dA = dK for any quasi-projective manifold, i.e.,
one can compute the Kobayashi pseudodistance by means of chains of alge-
braic curves. Also, algebraic hyperbolicity follows if dA is non-degenerate; this
is proven by reverse-engineering the argument we used to prove that algebraic
hyperbolicity is implied by Kobayashi hyperbolicity. It is not clear, however, if
algebraic hyperbolicity implies the non-degeneracy of dA = dK .

Question 2.16: Is dA always non-degenerate for algebraically hyperbolic man-
ifolds?

Remark 2.17: Note that the group Aut(M) of holomorphic automorphisms of
a complex manifold M with dA non-degenerate is necessarily compact. Indeed,
any holomorphic automorphism of M is an isometry of (M,dA), and the group of
isometries of a compact metric space is compact. On the other hand, a uniform
limit of holomorphic maps is holomorphic, hence compactness of the isometry
group implies compactness of Aut(M). Since an algebraically hyperbolic mani-
fold has discrete group of holomorphic automorphisms by Proposition 2.19, the
group Aut(M) is finite. Then an affirmative answer to Question 2.16 would
imply the main statement of this paper: finiteness of Aut(M) for algebraically
hyperbolic M .

Remark 2.18: For any g there are complex elliptic fibrations over P1 without
multiple fibers where all horizontal curves (i.e., curves surjecting onto P1 under
the projection) have genus greater than g (Remark 6.11 in [BT]). The Kobayashi
pseudometric on such surfaces is trivial but there are no elliptic or rational curves
connecting points in different fibers. This example illustrates the difference in
obtaining the Kobayashi pseudometric on the surface from mapping complex
surfaces and algebraic curves. We can connect any two points in the surface by
the image of a complex line, as shown in [BL]. However, we need to take a limit
over all chains of algebraic curves connecting points in different fibers in order
to obtain the Kobayashi pseudometric using only algebraic curves.

2.3 Automorphisms of hyperbolic manifolds

In the rest of the section we summarize some facts about the automorphism
group of hyperbolic manifolds.

Proposition 2.19: The group of automorphisms of an algebraically hyperbolic
manifold M is discrete.

Proof. The group of automorphisms G of a projective manifold M is a
complex Lie group. If its connected component G0 is non-trivial, this gives a
holomorphic map ϕ : G0 −→M , depending on the choice of a point. Any
connected complex algebraic Lie group is an extension of an affine group and an
abelian variety. Affine algebraic groups are rational varieties, hence the orbit
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of an affine algebraic group is unirational and covered by rational curves. An
abelian variety is not algebraically hyperbolic, because an abelian variety of
dimension n admits a self-isogeny of order mn mapping a curve C of genus g
to a curve of genus g and degree mn degC. The same argument shows that
any positive-dimensional orbit of a compact complex commutative Lie group
is not algebraically hyperbolic. Notice that the image of an algebraically non-
hyperbolic manifold is also not algebraically hyperbolic. Therefore, M cannot
be algebraically hyperbolic.

An even stronger statement is true for Kobayashi hyperbolic manifolds.

Proposition 2.20: (Kobayashi, [Ko]) The group of automorphisms of a com-
pact Kobayashi hyperbolic manifold M is finite.

Proof. The group G of automorphisms of M is closed in its group of isome-
tries under the Kobayashi pseudometric. The group of isometries of a compact
metric space is compact, hence G has only finitely many connected components.
Finally, dimG0 = 0 as shown in Proposition 2.19, i.e., G is discrete and compact,
therefore finite.

3 Main Results

In this section M is a compact complex projective manifold. For the classical
notions of the Picard scheme and the Albanese variety we refer the readers to
the survey manuscript [Kl].

Proposition 3.1: Let M be a complex projective manifold, dimC M = n.
Suppose that the image of Aut(M) in GL(H1,1(M,R)) does not preserve any
rational Kähler class. Then M is not algebraically hyperbolic.

Proof. Assume M is algebraically hyperbolic. Let ω be a rational Kähler
class which has an infinite Aut(M)-orbit. Replacing ω by Nω, from the (1, 1)-
theorem we may assume that ω is a class of a hyperplane section. Then ωn−1 =
[C] is the fundamental class of a smooth complex curve C ⊂ M from Bertini’s
theorem. Let fi(ω) be in the orbit of ω, which is infinite by assumption. Then

degω fi(C) =

∫
M

ω ∧ (fi(ω))n−1 =

∫
M

f−1
i (ω) ∧ ωn−1.

Since the genus of fi(C) is constant, from algebraic hyperbolicity we obtain∫
M
fi(ω) ∧ ωn−1 < A for some constant A > 0.
Let | · | denote the positive-definite Hodge-Riemann metric on Hp,q(M,R),

that is, the metric defined as η, η′ −→−(−1)l(
√
−1)p−q

∫
M
η∧η′∧ωn−p−q, where

η, η′ are (p, q)-forms which belong to a weight l representation of sl(2) associated

with the Lefschetz sl(2)-action. Replace the sequence fi(ω)
|fi(ω)| of points in the
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sphere S ⊂ H1,1(M,R) by a converging subsequence, and let R be its limit.
Since the sequence fi(ω) is infinite, distinct and integral, one has lim

i−→∞
|fi(ω)| =

∞. Then
∫
M
fi(ω) ∧ ωn−1 < A implies that

∫
M
R ∧ ωn−1 = 0. By the Hodge-

Riemann relations [GH], this gives
∫
M
R ∧R ∧ ωn−2 = −|R|2 = −1, hence

lim
i

∫
M
fi(ω) ∧ fi(ω) ∧ ωn−2

|fi(ω)|2
= −1.

This is a contradiction, because fi(ω) is Kähler, hence
∫
M
fi(ω)∧fi(ω)∧ωn−2 >

0.

Proposition 3.2: Let M be a complex projective manifold. Suppose that
Aut(M) is infinite, but the image of Aut(M) in Aut(Pic(M)) is finite. Then M
is not algebraically hyperbolic.

Proof. From the assumption in the proposition we obtain that an infinite
subgroup Γ ⊂ Aut(M) acts trivially on Pic(M). Then it fixes a very ample line
bundle L ∈ Pic(M). Therefore, Γ acts on PH0(M,L)∗ preserving the image of
the projective embedding M −→ PH0(M,L)∗. Let G = Γ be the Zariski closure
of Γ in PGL(H0(M,L)∗). Since M is Zariski closed and Γ-invariant, it is G-
invariant. Since Γ acts on M with infinite orbits, the orbits of the G-action on
M are positive-dimensional. This is impossible, because Aut(M) is discrete as
shown in Proposition 2.19.

Remark 3.3: Notice that if the image G of Aut(M) in GL(H1,1(M,R)) does
not preserve any rational Kähler classes, then G is infinite. Otherwise, take a
finite orbit of a Kähler class and notice that its geometric center is an Aut(M)-
invariant Kähler class, because the convex hull of a set of Kähler classes lies
inside the Kähler cone.

Remark 3.4: WhenM is projective and the image G of Aut(M) inGL(H1,1(M,R))
is finite, we could take a G-orbit of a rational Kähler class, and its geometric
center is also rational. Therefore, any projective manifold M with G finite
admits an Aut(M)-invariant integer Kähler class.

Proposition 3.5: Let M be a complex projective manifold. Suppose that the
image of Aut(M) in GL(H1,1(M,R)) is finite, but its image in Aut(Pic0(M)) is
infinite. Then M is not algebraically hyperbolic.

Proof. Consider the orbit Aut(M) · α of a Kähler class α. Its geometric
center gives an Aut(M)-invariant Kähler class ω, because the convex envelope
of a set of Kähler classes lies in the Kähler cone, as in Remark 3.3.

The Albanese manifold Alb(M) = H0(M,Ω1
M )∗/H1(M,Z) admits a natural

Aut(M)-invariant flat Kähler metric induced by the Hodge-Riemann form on
H1(M,C). Since Aut(M) acts on Alb(M) by isometries, the image T of Aut(M)
in Aut(Alb(M)) is compact. The connected component of Aut(Alb(M)) is a
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subgroup Par(Alb(M)) = Alb(M) ⊂ Aut(Alb(M)) acting on the torus Alb(M)
by parallel transport. Since T is compact, its image in the discrete group
Aut(Alb(M))
Par(Alb(M)) is finite. Let Γ ⊂ T be the kernel of the map T−→ Aut(Alb(M))

Par(Alb(M)) .

This is a finite index subgroup in T. Therefore, Γ is infinite.
Since Γ is infinite, its closure T ⊂ Par(AlbM) is positive-dimensional. Take

a smooth fiber Alb−1(x) over x ∈ Alb(M). The general fiber of the real analytic

map Alb−1(T · x)
π−→ T · x is smooth. Since all fibers of π exist in dense

families, all fibers of π are smooth. Therefore, π is a locally trivial fibration
with isomorphic fibers. Consider the Zariski closure T1 of T , which is a compact
commutative Lie group, that is, the compact complex torus. This gives an
isotrivial fibration Alb−1(X)

π1−→ X, where X is an orbit of T1.
Isotrivial fibrations over T1 with fiber F are classified by H1(T1,Aut(F )).

The variety F ⊂M may be assumed to be an algebraically hyperbolic manifold
with dimF < dimM . Using induction on dimension, we may assume that
Aut(F ) is finite.

The first cohomology of a torus with coefficients in a finite group A is the
same as an A-valued local system. Therefore, it becomes trivial after an appro-
priate finite covering. Then π1 becomes a trivial fibration after passing to a finite

covering Y −→X, giving a decomposition ˜Alb−1(X) = F × Y . This manifold
admits self-isogenies of arbitrary high order, giving curves of constant genus and

arbitrary high degree in ˜Alb−1(X) and its finite quotient Alb−1(X). Therefore,
Alb−1(X) ⊂ M is not algebraically hyperbolic, and M is algebraically non-
hyperbolic.

Using the above results we can prove the main result of this paper.

Theorem 3.6: The group Aut(M) of automorphisms of an algebraically hy-
perbolic manifold M is finite.

Proof. Assume Aut(M) is infinite. If the image G of the group Aut(M)
in GL(H1,1(M,R)) does not preserve any rational Kähler class, G is infinite by
Remark 3.4. Then we would get a contradiction by Proposition 3.1. If the image
of Aut(M) in Aut(Pic(M)) is finite, we get a contradiction by Proposition 3.2,
and if its image in Aut(Pic(M)) is infinite, we get a contradiction by Proposition
3.5.

To sum up the argument: we consider the image G of the group Aut(M)
in GL(H1,1(M,R)). If it is finite, we have an integer Kähler class which is
G-invariant. If Aut(M) acts with finite image on the Albanese variety of M ,
this class gives an Aut(M)-invariant polarization, hence Aut(M) is a linear
algebraic group; its connected part is trivial because the orbits of a connected
linear algebraic group are rational.

If G is finite, but Aut(M) acts with infinite image on the Albanese variety
of M , the closure of an orbit of Aut(M) contains a torus, also contradicting
hyperbolicity.
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Finally, if G is infinite, we obtain curves of bounded genus and arbitrary
degree using the action of G on cohomology.
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