MAT 536 SPRING 2020 HOMEWORK 1

Problem 1. (a) Let $\{z_n\}$ be a sequence of complex numbers such that

$$|z_m - z_n| \le \frac{1}{1 + |m - n|}$$

for all m and n. What can you say about this sequence in terms of convergence?

- (b) Let $\{z_n\}$ be a sequence of complex numbers such that $\lim_{n\to\infty} z_n = 0$ and let $\{w_n\}$ be a bounded sequence. Show that $\lim_{n\to\infty} w_n z_n = 0$.
- (c) Let $\{z_n\}$ be a sequence of complex numbers such that $\lim_{n\to\infty} z_n = A$. Prove that

$$\lim_{n \to \infty} \frac{z_1 + \dots + z_n}{n} = A.$$

- **Problem 2.** Verify the Cauchy-Riemann equations for the function $f(z) = z^3$ by splitting f into real and imaginary parts.
- **Problem 3.** Let $x = r \cos \theta$ and $y = r \sin \theta$. Show that the Cauchy-Riemann equations for f = u + iv in polar coordinates take form

$$r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$$
 and $r\frac{\partial v}{\partial r} = -\frac{\partial u}{\partial \theta}$

Problem 4. Determine the radius of convergence of the following infinite series:

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad \sum_{n=0}^{\infty} n! z^n.$$

Problem 5. Does there exist a holomorphic function f on \mathbb{C} , whose real part is (a) $u(x, y) = e^x$

(b) $u(x, y) = e^x (x \cos y - y \sin y).$

If the answer is 'yes', exhibit the function, if the answer is 'no', prove it.