MAT 536 SPRING 2020 HOMEWORK 1

Problem 1. (a) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that

$$
\left|z_{m}-z_{n}\right| \leq \frac{1}{1+|m-n|}
$$

for all m and n. What can you say about this sequence in terms of convergence?
(b) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=0$ and let $\left\{w_{n}\right\}$ be a bounded sequence. Show that $\lim _{n \rightarrow \infty} w_{n} z_{n}=0$.
(c) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=A$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{z_{1}+\cdots+z_{n}}{n}=A .
$$

Problem 2. Verify the Cauchy-Riemann equations for the function $f(z)=z^{3}$ by splitting f into real and imaginary parts.

Problem 3. Let $x=r \cos \theta$ and $y=r \sin \theta$. Show that the Cauchy-Riemann equations for $f=u+i v$ in polar coordinates take form

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \text { and } \quad r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta} .
$$

Problem 4. Determine the radius of convergence of the following infinite series:

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad \sum_{n=0}^{\infty} n!z^{n} .
$$

Problem 5. Does there exist a holomorphic function f on \mathbb{C}, whose real part is
(a) $u(x, y)=e^{x}$
(b) $u(x, y)=e^{x}(x \cos y-y \sin y)$.

If the answer is 'yes', exhibit the function, if the answer is 'no', prove it.

