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1. Definitions of inversion

Inversion is a sort of symmetry in a circle. It is defined as follows. The
inversion of degree R? centered at a point O maps a point A # O to the point
B on the ray OA such that R is the geometric mean of OA and OB, that is
OA[OB| = R?, or |0B| = &5

°
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A geometric construction relating points O, A and B looks as follows.
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On O the inversion is not defined, and O is not the image of any point under
the inversion. Thus, the inversion is a mapping of the plane punctured at O
to itself.

Observe that points of the circle centered at O of radius R are fixed under
the inversion, points of the disk bounded by this circle are mapped to points
outside the disk and vice versa. This circle is called the circle of the inversion
and the inversion is referred to as the inversion in this circle.

The square of an inversion, that is an inversion composed with itself, is the
identity map. In other words, an inversion is invertible map and the map
inverse to an inversion is the same inversion.

The definitions of reflection in a line and inversion does not look similar.

However these two transformations admit similar definitions.

Theorem A. Any circle passing through points symmetric with respect to a line
is orthogonal to the line. For any two points non-symmetric with respect to a



line | there exists a circle passing through the points which is not orthogonal to
.

Exercise. Prove Theorem A. a

This theorem allows to define reflection in a line [ as a map which maps
a point A to a point B such that any circle passing through A and B is
orthogonal to /.

Theorem B. Any circle passing through a point A and its image B under the
inversion in a circle c is orthogonal to c. If B is not the image of A under the
inversion in a circle ¢, then there exists a circle passing through the points which
is not orthogonal to c.
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Proof. For any circle u passing through points A and B the degree of the
center of inversion O with respect to u is |OA||OB|. Therefore |OT|* =
|OA||OB|, where OT is the segment of the line tangent to u between the
center of inversion and the point of tangency.

On the other hand, [OA||OB| is equal to the degree R? of the inversion, that
is to the square of the radius of circle ¢. Therefore T € ¢. Hence, OT is a
radius of ¢. As a radius of ¢, it is perpendicular to the tangent of ¢. Thus at
T the lines to v and c¢ are perpendicular to each other.

A proof of the second statement is an exercise. ]



2. Images of lines and circles

Obviously, a line passing through the center of an inversion is mapped by
the inversion to itself.

Theorem C. The image under an inversion of a line | not passing through the
center O of the inversion is a circle ¢ passing through O and having at O a
tangent line parallel to .

B

Proof. Drop the perpendicular OA to [ from O. Let A be its intersection
with [. Let A’ be the image of A under the inversion. Take arbitrary point
B €. Denote by B’ its image under the inversion. By the definition of inver-
sion |OA||OA’| = |OB||OB'|. Therefore % = 8—5:. By SAS-test for similar
triangles, AOAB is similar to AOB’A’. Therefore « A’'B'O = 2zOAB. The
latter angle is right, because OA L [. Hence B’ belongs to the circle with

diameter OA’.

Vice versa, let us take any point B’ of the circle with diameter OA’. Draw
a ray OB’ and denote the intersection of this ray with [ by B. Trian-
gles AOB’A" and AOAB similar by the AA-test. Hence % = 82: and
|OB||OB’| = |OA||OA’|. Therefore, B’ is the image of B under the inver-

sion. (m}

Corollary D. The image under an inversion of a circle ¢ passing through the
center O of the inversion is a line which is parallel to the line tangent to c at O.

Proof. It follows from Theorem C, because an inversion is inverse to itself.
O

Theorem E. The image under an inversion of a circle ¢ that does not pass
through the center O of the inversion is a circle ¢’ that is the image of ¢ under
a homothety centered at O.



Proof. Let A be a point of circle ¢, and A" be the image of A under the

inversion. Denote by B the second intersection point of the ray OA with c.
2

By definition of inversion, |OA’| = &, where R? is the degree of inversion.

On the other hand, |OA| = ‘g—QB‘, where d? is the degree of O with respect to
the circle ¢. Recall that d does not depend on the points A and B, this is
the length of segment of a tangent line from O to ¢ between O and the point
of tangency.

Substituting this formula to the formula for |OA’|, we get
R2

This means that A" is the image of B under the homothety with center O
2
and ratio g—g. Hence, the image of ¢ under the inversion is the image of ¢

under this homothety. ]

Theorem F. A composition of two inversions with the same center is a homo-
thety centered at the same center. The ratio of this homothety is the ratio of
the degrees of the inversions.

Proof. Let O be the center of inversions I, Iy and R, R3 be their degrees.

Take an arbitrary point A. Then Ay = I;(A) is a point on the ray OA, and
2
|OA;| = &. Further, As = Iy 0 I1(A) is also a point on the ray OA and

R R R
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Theorem G. An inversion preserves angles between lines and circles.



Proof. Let us begin with special cases. Consider, first, the angle between
two lines, one of which passes through the center of inversion.

Let the lines be [ and m, the center of inversion be O € m. Then the image of
m under the inversion is m, while the image of [ is a circle ¢ passing through
O. The center @ of ¢ lies on the perpendicular OP dropped from O to
[. The angles « AOP and 2OAP are complementary. The angles «QA’O
and <« AOQ are equal as angles in an isosceles triangle AOQA’. The angle
2TA'Q is right as an angle between a radius QA’ and tangent line A'T.
Therefore angles «TA'O and 2QA’O are complementary. Consequently,
20AP=+TAO. o

Consider now the angle between a line m passing through the center O of
inversion and a circle ¢, which does not pass through O. See the picture:

The prove in this case is similar to the preceding one, and it is left as an
exercise. O

An angle between arbitrary two lines or circles can be presented as the sum
or difference of angles between the same lines or circles and a line passing
through the center of inversion. Thus, the general case reduces to the special
ones above. ]

3. The Apollonius problem

A general formulation: find a circle tangent to three given circles.

The problem is invariant under inversions, and therefore circles should be
understood in wide sense, invariant under inversions: both lines and circles.



Furthermore, one may consider degenerations of the Apollonius problem, a
circle may shrink to a point. A line tangent to a shrinking circle turns in the
limit to a line passing through the point to which the circle has shrunk.

We start from degenerate cases since they are easier.

Problem 1. Find a circle passing through two given points and tangent to a
given line.

Denote the points by A and B and the line by [. Draw a line through A
and B and denote its intersection point with [ by I. Let ¢; and co be the
circles we want to find. Denote by T; the point of tangency of ¢; and [. The
segments [T, IT, are geometric mean of A and IB:

[T = [TA|B| = T

This suggests a construction of I7Ty and I'75.

Problem 2. Find a circle passing through two given points and tangent to a
given circle.

This problem can be obtained from Problem 1 by an inversion at a point. A
special choice of the center of inversion converts this problem to a simpler
one. For instance, if we choose the center of inversion at one of the given
points, the desired circle would turn into a line passing through the image
of another given point and tangent to the image of the given circle. So, we
reduce the problem to the following easy one:

Problem 3. Find a line tangent to a given circle and passing through a given
point.

Problem 4. Find a circle passing through a given point and tangent to two
lines.

This problem was solved using homothety. It can be also reduced to Problem
1 by reflecting the given point in the bisector of the angle formed by the given
lines.

If, instead, we would apply an inversion centered at the given point, then
Problem 4 would turn into the following problem

Problem 5. Find a common tangent line of two given circles.

A general Apollonius problem can be reduced to Problem 4 by simultaneous
replacing of the circles by circles with radii differing from the original ones
by the same number such that one of the circles shrinks to a point.



4. Pairs of circles

Any two circles can be transformed to each other by homothety or by trans-
lation. Therefore any two circles can be transformed to each other by an
inversion. What about pairs of circles? Certainly, there are two pairs of cir-
cles which cannot be transformed by an inversion to each other. For example,
an inversion preserves the angle between circles, therefore circles intersect-
ing at one angle cannot be transformed to circles intersecting at a different
angle. Disjoint circles cannot be made intersecting by an inversion.

However a pair of circles can be made quite special by an inversion.

Theorem H. Any two circles meeting at non-zero angle can be transformed by
an inversion into a pair of lines intersecting at the same angle.

Proof. Any inversion centered at any of the two intersection point of the
circles does the job. ]

Theorem |. Any two circles tangent to each other can be transformed by an
inversion into a pair of parallel lines. (]

Proof. An inversion centered at the point of tangency of the circles maps
the circles to lines, and the lines do not intersect, because otherwise the
preimage of the intersection point of the lines was an intersection point of
the circles different from the center of inversion. a

Theorem J. For any disjoint line | and circle ¢, there exists an inversion that
map them to a pair of concentric circles.

Lemma K. For any disjoint line | and circle ¢, there exist a line d and a circle
s perpendicular to each other and to | and c.

Proof. Drop from the center O of circle ¢ a perpendicular d to the line [.
Let P be the intersection point of d and .

Draw a circle s centered at P perpendicular to the circle c. For this draw a
circle ¢ with diameter PO, find an intersection point M of ¢ and ¢ and draw
the circle with center P through M. This is s.



After removing auxiliary figures, the result looks as follows:

a

Proof of Theorem J. An inversion centered at an intersection point of d
and s maps d to d and the circle s to a line e. Since s is perpendicular to
d, its image e is perpendicular to d. The inversion maps [ and ¢ to circles
perpendicular to the lines d and e. A line perpendicular to a circle passes
through the center of the circle. Therefore the circles perpendicular to lines
d and e have the center in the intersection point of d and e. o

Theorem L. Any pair of disjoint circles can be transformed by an inversion into
a pair of concentric circles.

Proof. By an inversion centered at some point of one of the given disjoint
circles a and b, the circles turn into disjoint line [ and circle ¢. By Lemma
K, there exist line d and circle s perpendicular to each other and to [ and c.
The same inversion returns [ and ¢ back to a and b and transform line d and
circle s into a pair of circles, say, p and ¢, perpendicular to each other and to
a and b. An inversion centered at an intersection point of p and ¢ transforms
p and ¢ into a pair of lines perpendicular to each other and transforms a and



b into a pair of circles a’ and b’ perpendicular to these lines. These a’ and
b’ are concentric, since they are perpendicular to a pair of intersecting lines.
Cf. the proof of Theorem J. o

5. Necklaces of circles. Steiner porism

By a necklace of circles we will call a finite sequence of circles ¢y, co, ...,
¢, each of which is tangent to two fixed disjoint circles s and so (called the
base circles of the necklace) and two other circles from the sequence.

Theorem M. [f circles s1 and so form a base of a necklace, then any circle
¢ which is tangent to s1 and sy can be included into a necklace of the same
number of circles. In particular, sy and sy form a base for infinitely many
necklaces consisting of the same number of circles.

Proof. By Theorem L, circles s1 and ss can be mapped by an inversion to
concentric circles s} and s). This inversion maps the circles of a necklace
with base s, so into circles of the same radius forming a necklace with base
sy, 8h.
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Such a necklace can be freely rotated between the base concentric circles, and
any circle from the necklace can be identified by a rotation with any circle
tangent to s] and sj. The inversion can be used to transform the necklaces
between s| and s, into necklaces between the original circles s; and sp. O



