ERRATUM TO "DEMAILLY'S NOTION OF ALGEBRAIC HYPERBOLICITY" AND "BOUNDEDNESS IN FAMILIES WITH APPLICATIONS TO ARITHMETIC HYPERBOLICITY"

RAYMOND VAN BOMMEL, ARIYAN JAVANPEYKAR, LJUDMILA KAMENOVA

The proofs of Theorem 1.14 in [1] and of its "pseudofied" extension, Theorem 1.26 in [2], contain a gap in the argument. This mistake does not affect any of the other results nor proofs in the rest of the papers.

Acknowledgements. We are deeply grateful to Jacob Tsimerman for bringing this issue to our attention.

Let X be a bounded projective variety over an algebraically closed field k of characteristic zero. By definition, for every ample line bundle L and smooth projective curve C and every nonconstant morphism $f: C \to X$, the boundedness of X implies the existence of a bound on deg f^*L depending only on X, L, and C.

Theorem 1.14 of [1] asserts that one can bound deg f^*L uniformly in the genus of C. More precisely, given a projective bounded variety X, for every integer g and every ample line bundle L on X, there exists a real number $\alpha(X, L, g)$ such that, for every smooth projective curve C of genus g and every non-constant morphism $f: C \to X$, one has

$$\deg f^*L \leq \alpha(X, L, g).$$

Let us explain the mistake in the proof of Theorem 1.14 of [1] (the same issue occurs in the proof of Theorem 1.26 of [2]). In the notation of that proof, one first shows that the Hom-scheme $\operatorname{Hom}_k(Y, X \times Z)$ is of finite type over k. Our proof then asserts, without justification, that the Hom-scheme $\operatorname{Hom}_Z(Y, X \times Z)$ is also of finite type. This statement is likely true but requires a proof.

Consider the natural morphism of Hom-schemes

comp:
$$\operatorname{Hom}_k(Y, X \times Z) \to \operatorname{Hom}_k(Y, Z), \quad f \mapsto \pi_Z \circ f,$$

where $\pi_Z\colon X\times Z\to Z$ is the projection. In the original argument we incorrectly identified $\operatorname{Hom}_Z(Y,X\times Z)$ with the scheme-theoretic fibre of comp over the structure morphism $Y\to Z$ (viewed as a k-point of $\operatorname{Hom}_k(Y,Z)$). Although this fibre is closed in $\operatorname{Hom}_k(Y,X\times Z)$, and therefore of finite type, it cannot be identified with $\operatorname{Hom}_Z(Y,X\times Z)$ in any natural sense. (Rather, it should be viewed as the Weil restriction of $\operatorname{Hom}_Z(Y,X\times Z)$ from Z to $\operatorname{Spec} k$.) We do not know how to repair this proof.

Theorem 1.14 in [1] (resp. Theorem 1.26 in [2]) is thus a uniform boundedness statement which, in light of this gap, remains unproven. We note, however, that such a statement would follow from Lang's conjecture that every bounded projective variety is in fact algebraically hyperbolic.

References

- A. Javanpeykar and L. Kamenova. Demailly's notion of algebraic hyperbolicity: geometricity, boundedness, moduli of maps. Math. Z., 296(3-4):1645-1672, 2020.
- [2] R. van Bommel, A. Javanpeykar, and L. Kamenova. Boundedness in families with applications to arithmetic hyperbolicity. J. Lond. Math. Soc. (2), 109(1):Paper No. e12847, 51, 2024.

1