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The proofs of Theorem 1.14 in [1] and of its “pseudofied” extension, Theorem 1.26 in [2], contain a
gap in the argument. This mistake does not affect any of the other results nor proofs in the rest of
the papers.
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Let X be a bounded projective variety over an algebraically closed field k of characteristic zero.
By definition, for every ample line bundle L and smooth projective curve C and every nonconstant
morphism f : C → X, the boundedness of X implies the existence of a bound on deg f∗L depending
only on X, L, and C.

Theorem 1.14 of [1] asserts that one can bound deg f∗L uniformly in the genus of C. More
precisely, given a projective bounded variety X, for every integer g and every ample line bundle L
on X, there exists a real number α(X,L, g) such that, for every smooth projective curve C of genus g
and every non-constant morphism f : C → X, one has

deg f∗L ≤ α(X,L, g).
Let us explain the mistake in the proof of Theorem 1.14 of [1] (the same issue occurs in the

proof of Theorem 1.26 of [2]). In the notation of that proof, one first shows that the Hom-scheme
Homk(Y,X × Z) is of finite type over k. Our proof then asserts, without justification, that the
Hom-scheme HomZ(Y,X × Z) is also of finite type. This statement is likely true but requires a
proof.

Consider the natural morphism of Hom-schemes

comp: Homk(Y,X × Z)→ Homk(Y,Z), f 7→ πZ ◦ f,
where πZ : X × Z → Z is the projection. In the original argument we incorrectly identified
HomZ(Y,X × Z) with the scheme-theoretic fibre of comp over the structure morphism Y → Z
(viewed as a k-point of Homk(Y,Z)). Although this fibre is closed in Homk(Y,X×Z), and therefore
of finite type, it cannot be identified with HomZ(Y,X ×Z) in any natural sense. (Rather, it should
be viewed as the Weil restriction of HomZ(Y,X × Z) from Z to Spec k.) We do not know how to
repair this proof.

Theorem 1.14 in [1] (resp. Theorem 1.26 in [2]) is thus a uniform boundedness statement which,
in light of this gap, remains unproven. We note, however, that such a statement would follow from
Lang’s conjecture that every bounded projective variety is in fact algebraically hyperbolic.
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