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Preface 

Ntron models were invented by A. Ntron in the early 1960's with the intention to 
study the integral structure of abelian varieties over number fields. Since then, 
arithmeticians and algebraic geometers have applied the theory of Ntron models 
with great success, usually without going into the details of Ntron's construction 
process. In fact, even for experts the existence proof given by Ntron was not easy to 
follow. Quite recently, in connection with new developments in arithmetic algebraic 
geometry, the desire to understand more about Ntron models, and even to go back 
to the basics of their construction, was reactivated. We have taken this as an 
incentive to present a treatment of Ntron models in the form of a book. 

The three of us have approached NCron models from different angles. The senior 
author has been involved in the developments from the beginning on. Immediately 
after the discovery of Ntron models, it was one of his first assignments from 
A. Grothendieck to translate Ntron's construction to the language of schemes. The 
other two authors worked in the early 1980's on the uniformization of abelian 
varieties, thereby finding a rigid analytic approach to Ntron models. It was at this 
time that we realized that we had a common interest in the field and decided to write 
a book on Ntron models and related topics. 

At first we had the idea of covering a much wider variety of subjects than we 
actually do here. We wanted to start with a presentation of the construction of 
Ntron models, on an elementary level and understandable by beginners, and then 
to continue with a general structure theory for rigid analytic groups, with the 
intention of applying it to the discussion of uniformizations and polarizations of 
abelian varieties. However, it did not take long to realize that an appropriate 
treatment of Neron models would require a book of its own. So we changed our 
plans; colleagues watching the project encouraged us in doing so. Now, having 
finished the manuscript, we hope that the "elementary" part of the book, which 
consists of Chapters 1 to 7, is, indeed, understandable by beginners. 

We are, of course, indebted to Ntron for the original ideas leading to the 
construction of NCron models, and to the work of Grothendieck which provides 

-. language and methods of expressing these ideas in an adequate context. There are 
other sources from which we have borrowed, most noteworthy the work of A. Weil 
as well as various contributions of M. Artin. 

In preparing this book we received help from many sides. We thank the Deutsche 
Forschungsgemeinschaft for its constant support during the entire project. 
Similarly we wish to thank the Centre National de la Recherche Scientifique, as well 
as the Institute des Hautes Etudes Scientifiques for its hospitality. Finally, we are 
indebted to our home universities and Mathematics departments in Miinster and 



VIII Preface 

Orsay for their interest in the project, for their help whenever possible, and for 
granting sabbaticals during which substantial work on the subject was done. Also 
we thank the Heinrich-Hertz-Stiftung. 

During the project Dr. W. Heinen from Munster was of invaluable help to us; he 
proofread the manuscripts and set up the index. We thank him heartily for his work. 
Last but not least, our thanks go to the publishers for their cooperation. 

Miinster and Orsay 
June 1989 

Siegfried Bosch 
Werner Lutkebohmert 
Michel Raynaud 
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Introduction 

Let K be a number field, S the spectrum of its ring of integers, and A, an abelian 
variety over K. Standard arguments show that A, extends to an abelian scheme A' 
over a non-empty open part S' of S. Thus A, has good reduction at all points s of 
S' in the sense that AK extends to an abelian scheme or, what amounts to the same, 
to a smooth and proper scheme over the local ring at s. In general, one cannot 
expect that A, also has good reduction at the finitely many points in S - S'. How- 
ever, one can ask if, even at these points, there is a notion of "good" models which 
generalizes the notion of good reduction. It came as a surprise for arithmeticians 
and algebraic geometers when A. Nlron, relaxing the condition of properness and 
concentrating on the group structure and the smoothness, discovered in the years 
1961-1963 that such models exist in a canonical way; see NCron [2], see also 
his lecture at the Seminaire Bourbaki [I]. Gluing these models with the abelian 
scheme A', one obtains a smooth S-group scheme A of finite type which may be 
viewed as a best possible integral group structure over S on A,. It is called a NCron 
model of AK and is characterized by the universal property that, for any smooth 
S-scheme Z and any K-morphism uK : Z ,  -+ A,, there is a unique S-morphism 
u : Z -+ A extending u,. In particular, rational points of A, can be interpreted as 
integral points of A. 

Neron himself used his models to study rational points of abelian varieties over 
global fields, especially their heights. In his paper [3], he shows that the local height 
contribution at a non-archimedean place can be calculated on the local Neron 
model in terms of intersection multiplicities between divisors and integral points. 

Before Nkron's discovery, in 1955, Shimura systematically studied the reduction 
of algebraic varieties over a discrete valuation ring R, in the affine, projective, as 
well as in the "abstract" case; see Shimura [I]. In particular, he defined the speciali- 
zation of subvarieties as well as the reduction of algebraic cycles. In the years 1955 
to 1960, several other authors became interested in the reduction of abelian varieties, 
either in the abstract form or in the form of Albanese and Picard varieties. Koizumi 
[l] proved that if an abelian variety A, over K extends to a proper and smooth 

,-- - R-scheme A, then the group structure of A, also extends. Furthermore, it follows 
from Koizumi and Shimura [I] that A is essentially uniquely determined by A,. 
The latter corresponds to the fact that A is a Nkron model of A, and therefore 
satisfies the universal mapping property characterizing Neron models. Igusa [I] 
showed that the Jacobian of a curve with good reduction has good reduction. He 
also considered the case where the reduction of the curve has an ordinary double 
point as singularity. 



2 Introduction 

Concerning the reduction of elliptic curves, a systematic investigation of de- 
generate fibres was carried out by Kodaira [I] for the special case of holomorphic 
fibrations of smooth surfaces by elliptic curves. Among other things, he cl; ssified 
the possible diagrams of the fibres for minimal fibrations by using the inter iection 

-/ -/ 

form. 
On the other hand, starting with an elliptic curve over the field of fractions of 

an arbitrary Dedekind ring R, equations of WeierstraS type can provide natural 
R-models, even at bad places. It seems certain that, at least in characteristic different 
from 2 and 3, the minimal WeierstraB model was known to arithmeticians at the 
time Nkron worked on his article [2]. However, it was Nkron's idea to consider 
minimal models which are regular and proper, but not necessarily planar. In [2], 
after constructing Nkron models for general abelian varieties, he turns to elliptic 
curves, shows the existence of regular and proper minimal models, and works out 
their different types. The classification of special fibres which he obtains is the same 
as Kodaira's. In order to pass to the "NCron model" as considered in the case of 
general abelian varieties, one has to restrict to the smooth locus of the corresponding 
regular and proper minimal model. Furthermore, the identity component coincides 
with the smooth part of the minimal WeierstraB model. 

In his paper [2], NCron uses a terminology which is derived from that in Weil's 
Foundations of Algebraic Geometry [I]. The terminology has earned its merits 
when working with varieties over fields. However, applying it to a relative situation, 
even if the base is as simple as a discrete valuation ring, one cannot avoid a number of 
unpleasant technical problems. For example, since there are two fibres, namely the 
generic and the special fibre, it is necessary to work with two universal domains, one 
for each fibre. Both domains have to behave well with respect to specialization, and 
so on. Clearly, Weil's terminology was not adapted to handle problems of this kind. 

Nkron's paper appeared at a time when Grothendieck had just started a revolu- 
tion in algebraic geometry. With his theory of schemes, he had developed a new 
machinery, specially designed for treating problems in relative algebraic geometry. 
Ntron knew of this fact, but he did not want to abandon the framework in which 
he was used working. In the introduction to his article 121, he says that the notion 
of a scheme over a commutative ring will frequently intervene in his text, in a more 
or less explicit way. However-and now we quote-"faute d'etre suffisamment 
accoutumk a ce langage, nous avons estime plus prudent de renoncer a son emploi 
systematique, et d'utiliser le plus souvent un langage dtrivt de celui des Foundations 
de Weil . . . ou de celui de Shimura . . . , laissant les sptcialistes se charger de la 
traduction." 

Certainly, a few specialists did the translation, but mainly for themselves and 
without publishing proofs. It was only about 20 years later, in 1984, at the occasion 
of a conference on Arithmetic Algebraic Geometry, that M. Artin wrote a Proceed- 
ings article [9] explaining the construction of Neron models from a scheme view- 
point. So, at Neron's time, the situation remained somewhat mysterious. On the 
one hand, it was very hard to follow NCron's arguments concerning the construction 
of his models. On the other, arithmeticians were able to use the notion of Nkron 
models with great success, for example, in the investigation of Galois cohomology 
of abelian varieties. Since Ntron models are characterized by a simple universal 
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property, it is possible to work with them without knowing about the actual 
construction process. 

After Ntron's work, substantial progress on the structure of Neron models was 
achieved with the so-called semi-abelian reduction theorem. It states that, up to 
finite extension of the ground field, NCron models of abelian varieties are semi- 
abelian. A first proof of this result was carried out by Grothendieck during the fall 
of 1964; he explained it in a series of letters to Serre, using regular models for curves 
and 1-adic monodromy. The proof was published later in [SGA 7J. Independently, 
Mumford was able to obtain the semi-abelian reduction theorem via his theory of 
algebraic theta-functions, at least for the case where the residue characteristic is 
different from 2; for this proof see the Appendix I1 to Chai [I]. The behavior of 
a Ntron model with respect to base change can be difficult to follow; however, in 
the semi-abelian case it is particularly simple because the identity component is 
preserved. 

In the late sixties, Raynaud [6] further developed the relative Picard functor 
over discrete valuation rings R in such a way that, in quite general situations, the 
NCron model of the Jacobian of a curve could be described in terms of the relative 
Picard functor of a regular R-model of this curve. Using Abhyankar's desingulariza- 
tion of surfaces, one thereby obtains, at least in the case of Jacobians, a second 
method of constructing NCron models which is largely independent of the original 
construction given by NCron. 

Today, using the relative Picard functor, the semi-abelian reduction theorem is 
viewed as a consequence of the corresponding semi-stable reduction theorem on 
curves; see, for example, Artin and Winters [I], or see Bosch and Liitkebohmert 
[3] for an approach through rigid analytic uniformization theory. To a certain 
extent, the semi-abelian reduction theorem has changed the view on the reduction 
of abelian varieties. Namely, it is sometimes enough to work with semi-abelian 
models and to consider the corresponding monodromy at torsion points. As an 
example, we refer to Faltings' proof [I] of the Mordell conjecture. 

On the other hand, there are questions where, in contrast to the above, Ntron 
models are involved with all their beautiful structure, with their Lie algebra, and 
with their group of connected components. An example is given by the precise form 
of the Taniyama-Weil conjecture on modular elliptic curves over Q; cf. Mazur and 
Swinnerton-Dyer [I]. 

For further applications of NCron models, we refer to the work of Ogg [l] and 
Shafarevich [I] concerning moderately ramified torsors over function fields. This 
was extended by Grothendieck to arbitrary torsors; cf. Raynaud [I]. 

It should also be noted that the NCron model is of interest when studying the 
Shafarevich-Tate group LU. Namely, let A be the NCron model over a Dedekind 
scheme S of an abelian variety A, where K is the field of fractions of S. Then LU 
is the group of "locally trivial" torsors under A,, a group which is closely related 
to the group H1(S, A). In this way the Ntron model is involved in questions 
concerning the group LU. For ,, .ample, concerning its conjectural finiteness in the 
global arithmetic case. 

Finally, to give another application involving torsors under abelian varieties, 
we mention that Tate studied in [I] the group H'(K, A,), where A, is an abelian 
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variety over a local field K of characteristic 0 having a finite residue field. He used 
the compact group A,(K) (where 2, is the dual abelian variety of A,) as well as its 
Pontryagin dual. Later, when the theory of Neron models was available, there 
appeared some variants of this work for algebraically closed residue field; cf. Begueri 
[I] and Milne [2]. Here the NCron model of A,, in particular, its proalgebraic 
structure plays an important role. 

The aim of the present book is to provide an exposition of the theory of Neron 
models and of related methods in algebraic geometry. Using the language and----- 
techniques of Grothendieck, we describe Ntron's construction, discuss the basic 
properties of Neron models, and explain the relationship between these models and 
the relative Picard functor in the case of Jacobians. Finally, using generalized Nkron 
models which are just locally of finite type, we study Nkron models of not necessarily 
proper algebraic groups. 

We now describe the contents in more detail. Chapter 1 is meant as a first 
orientation on Nkron models. The actual construction of Nkron models in the local 
case takes place in Chapters 3 to 6. Instead of just using Grothendieck's [EGA] as 
a general reference, we have chosen to explain in Chapter 2 some of the basic notions 
we need. So, for the convenience of the reader, we give a self-contained exposition 
of the notion of smoothness relating it closely to the Jacobi criterion. A discussion 
of henselian rings, an overview on flatness, as well as a presentation of the basics 
on relative rational maps follows. Also, at the beginning of Chapter 6, we have 
included an introduction to descent theory. 

In Chapter 3, we start the construction of Ntron models with the smoothening 
process. Working over a discrete valuation ring R with field of fractions K ,  this 
process modifies any R-model X (of finite type and with a smooth generic fibre X K )  
by means of a sequence of blowing-ups with centers in special fibres to an R-model 
X' such that each integral point of X lifts to an integral point of the smooth locus 
of X'. This leads to the construction of so-called weak Ntron models. Since there 
is a strong analogy between the smoothening process and the technique of Artin 
approximation, we have included the latter, although it is not actually needed for 
the construction of NCron models. 

Next, in Chapter 4, we look at group schemes. We consider a smooth K-group 
scheme of finite type X K  admitting a weak Neron model X and show that the group 
law on X ,  extends to an R-birational group law on X if we remove all non-minimal 
components from the special fibre of X; the minimality is measured with respect to 
a non-trivial left-invariant differential form of maximal degree on X,. In Chapter 
5,  working over a strictly henselian base and following ideas of M. Artin, we 
associate to the R-birational group law on X an R-group scheme. The latter is, by 
a generalization of a theorem of Weil for rational maps from smooth schemes into 
group schemes, already the NQon model of X,. The generalization to an arbitrary 
discrete valuation ring is done in Chapter 6 by means of descent. After we have 
finished the construction of NCron models in Chapter 6, we discuss their properties 
in Chapter 7. 

The next topic to be dealt with is the relative Picard functor and, in particular, 
its relationship to NCron models in the case of Jacobians of curves. Since there seems 
to be no systematic exposition of the relative Picard functor Pic,, available which 
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takes into account developments after Grothendieck's lectures [FGA], we thought 
it necessary to include a chapter on this topic. In Chapter 8 we explain the various 
representability results for Pic,,, in terms of schemes or algebraic spaces, mainly due 
to Grothendieck [FGA] and Artin [5]. From this point on, due to lack of space, it 
was impossible to give detailed proofs for all the results we mention. It is our strategy 
to list the important results, to prove them whenever possible without too much 
effort, or to sketch proofs otherwise. In any case, we attempt to give precise 
references and to point out improvements which have appeared in the subsequent 
literature. 

The same can be said for the first half of Chapter 9 where we deal with relative 
Jacobians of curves. Among other things, modulo some considerations contained 
in Chapter 7, we show here how to derive the semi-abelian reduction theorem for 
Nkron models from the semi-stable reduction theorem for curves. A proof of the 
latter theorem has not been included in the book since a detailed discussion of 
models for curves and of related methods would be a topic of its own, too large to 
be dealt with in the present book. Instead, for a proof using Abhyankar's desingu- 
larization, we refer to Artin and Winters [I] or, for a proof using rigid geometry, 
to Bosch and Liitkebohmert [I]. Finally, in Sections 5 to 7 of Chapter 9, we compare 
the Neron model with the relative Picard functor in the case of Jacobians. As an 
application, we show how to compute the group of connected components of a 
NCron model. 

The book ends with a chapter on Neron models of commutative, but not 
necessarily proper algebraic groups. In the local case, we prove a criterion for a 
smooth commutative K-group scheme X ,  of finite type to admit a Neron model 
which, over an excellent strictly henselian base, amounts to the condition that X ,  
does not contain subgroups of type 6, or (6,. We also indicate how to globalize 
this result. In doing so, it is natural to admit NCron models which are locally of 
finite type (lft), but not necessarily of finite type. This way we can construct NCron 
models for tori as well as study the same problem for K-wound unipotent groups. 
Since our investigations seem to have few applications at the moment and, since 
some of the statements are still at a conjectural stage, we have chosen only to give 
short indications of proofs. 

Bibliographical references are given by mentioning the author, with a number 
in square brackets to indicate the particular work we are referring to. An exception 
is made for Grothendieck, where we also use the familiar abbreviations [FGA], 
[EGA], and [SGA], as listed at the beginning of the bibliography. Cross references 
to theorems, propositions, etc., like Theorem 1.311, usually contain the number of 
the chapter, the section number, and the number of the particular result. For 
references within the same section, the chapter and the section numbers will not be 
repeated. 



Chapter 1. What Is a Neron Model? 

This chapter is meant to provide a first orientation to the basics of Ntron models. 
Among other things, it contains an explanation of the context in which Neron 
models are considered, as well as a discussion of the main results on the construction 
and existence, including some examples. 

We start by looking at models over Dedekind schemes. In particular, the notion 
of Ctale integral points is introduced, and models of finite type satisfying the 
extension property for Ctale integral points are considered. For a local base, the 
existence of such models is characterized in terms of a boundedness condition. Then, 
in Section 1.2, we define Neron models and prove some elementary properties which 
follow immediately from the definition. We also discuss the relationship between 
global and local NCron models as well as a criterion for a smooth group scheme of 
finite type to be a Neron model. Next, in Section 1.3, we state the main existence 
theorem for Neron models in the local case and explain the skeleton of its proof, 
anticipating some key results which are obtained in later chapters. 

In Section 1.4, we discuss the case of abelian varieties. More precisely, we study 
the notion of good reduction and show how the existence of local NQon models 
leads to the existence of global NCron models. In Section 1.5, in order to provide 
some explicit examples, we consider elliptic curves. In particular, we compare the 
Ntron model with the minimal proper and regular model and with the minimal 
WeierstraB model. The chapter ends with a look at Ntron's article [2] which serves 
as a basis for the construction of Neron models. For this section, a certain fami- 
liarity with the contents of later Chapters 3 to 6 is advisable. 

1.1 Integral Points 

When dealing with NCron models, one usually works over a base scheme S which 
is a Dedekind scheme, i.e., a noetherian normal scheme of dimension 5 1. The local 
rings of S are either fields or discrete valuation rings. For example, S can be the 
spectrum of a Dedekind domain. We will talk about the local case if S consists of 
a local scheme and, thus, is the spectrum of a discrete valuation ring or even of a 
field; the general case will be referred to as the global case. Any Dedekind scheme S 
decomposes into a disjoint sum of finitely many irreducible components Si with a 
generic point y, each. We set K := @k(yi), so K is the ring of rational functions on 
S. Furthermore, the affine scheme Spec K is referred to as the scheme of generic 
points of S. If S is connected-and this is the case to keep in mind-there is a unique 
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generic point y E S. Its residue field is K and we can identify y with the associated 
geometric point Spec K + S. It is only for technical reasons that we do not require 
Dedekind schemes to be connected. 

There are three examples of Dedekind schemes, which are of special interest. To 
describe the first one, let K be a number field, i.e., a finite extension of 0, and let R 
be the ring of integers of K. Then set S = Spec R. Similarly, we can consider an 
algebraic function field K of dimension 1 over a constant field k and define S to be 
the normal proper k-curve associated to K. In both cases, S is a Dedekind scheme. 
On the other hand, we can start with a normal noetherian local scheme of dimension 
2 and remove the closed point from it. Also this way we obtain a Dedekind scheme. 

Now let S be an arbitrary Dedekind scheme with ring of rational functions K 
and consider an S-scheme X. We define its genericfibre (or, more precisely, its scheme 
of generic fibres) by X ,  := X 8, K, viewed as a scheme over K. Conversely, if we 
start with a K-scheme X,, any S-scheme Y extending X,, i.e., with generic fibre 
Y, = X,, will be called an S-model of X,. There is an abundance of such models. 
For example, any change of Y (such as blowing up or removing a closed subscheme) 
which takes place in fibres disjoint from X,, will produce a new S-model of the 
same K-scheme X,. On the other hand, X,  can be viewed as an S-model of itself. 
In the local case, the latter is even of finite type over S if X, is of finite type over K. 

The main problem we will be concerned with when studying the existence of 
NCron models is to construct S-models X of X, which satisfy certain natural 
properties. One of them is the extension property concerning etale integral points, 
or just etale points, as we will say; for the notion of ttale see Section 2.2. 

Definition 1. Let X be a scheme over a Dedekind scheme S. Then we say that X satisfies 
the extension property for itale points at a closed point s E S if, for each &ale local 
Los,,-algebra R' with field of fractions Kt, the canonical map X(R') + X,(Kt) is 
surjective. 

Each ttale local &,,-algebra is a discrete valuation ring again. In fact, it can 
be seen from Chapter 2, in particular, from 2.418 and 2.319, that the etale local 
&,,-algebras R' correspond bijectively to the (faithfully flat) extensions of discrete 
valuation rings Los,, c R' with the properties that a uniformizing element of Lo,,, is 
also uniformizing for R', that the extension of fraction fields of Lo,,, c R' is finite 
and separable, and that the residue extension of CIS,, c R' is finite and separable. 
So we conclude from the valuative criterion of separatedness [EGA 111, 7.2.3, that 
the map X(R') ---+ X,(Kt) is injective if X is separated over S. Furthermore, the 
extension property for etale points as formulated in Definition 1 is similar to the 
one occurring in the valuative criterion of properness [EGA 111, 7.3.8; the only 
difference is that we restrict ourselves to valuation rings R' which are &tale over Lo,,,. 

Instead of considering all etale local CIS,,-algebras R' one can just as well apply 
limit arguments and work with a strict henselization Rsh of OS,, .  The latter is the 
inductive limit over all pairs (R', a) where R' is an Ctale local Los,,-algebra and where 
a is an R-homomorphism from R' into a fixed separable algebraic closure of the 
residue field k(s); see Section 2.3. Then, if Ksh is the field of fractions of R", it follows 
that X satisfies the extension property for Ctale points at s E S if and only if the map 
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x(RSh) + X,(K") is surjective. Furthermore, let us mention that X satisfies the 
extension property for etale points at s E S if and only if X 8, Co,,,, viewed as a 
scheme over O,,,, does. 

A simple method for constructing S-models of finite type is the method of chasing 
denominators. It applies to the case where S is affine, say S = Spec R, and where XK 
is affine of finite type over K (resp. projective over K). The resulting models are 
affine of finite type over R (resp. projective over R). To explain the affine case, let 
XK be the spectrum of a ring 

i.e., of a quotient of a free polynomial ring by an ideal I,. Then I, is generated by 
finitely many polynomials f,, . . . ,f,, which we may assume to have coefficients in R. 
So set 

where I is the ideal generated by f, , . . . , f,. Then X := Spec R is an R-model of finite 
type of X,. Furthermore, since a module over a valuation ring is flat as soon as 
there is no torsion, we see that X will be flat over R if we saturate I ;  i.e., if we set 

I := I, n R[t,,. . ., t,]. 

Then, by its definition, X is just the schematic closure of X, in the affine n-space 
over R; for the notion of schematic closure see Section 2.5. Finally, the projective 
case is completely analogous; here one works with the Proj of homogeneous 
coordinate rings. 

If X ,  is projective, any R-model X obtained by chasing denominators is projec- 
tive and, thus, satisfies the extension property for etale points by the valuative 
criterion of properness. If XKis just of finite type, but not projective, the construction 
of an S-model of finite type satisfying the extension property for ttale points can 
be quite complicated or even impossible as the example of the affine n-space A; 
shows. As a necessary condition in the local case, we will introduce the notion of 
boundedness. 

So assume that S consists of a discrete valuation ring R with field of fractions 
K. Furthermore, consider a faithfully flat extension of discrete valuation rings 
R c R' and let K' be the field of fractions of R'. Then R and R' give rise to absolute 
values on K and on K'; we denote them by ( I assuming that both coincide on K. 
For us the case where R' is a strict henselization Rsh of R will be of interest. Now, 
for any K-scheme XK, for any point x E XK(K1), and for any section g of (!IxK being 
defined at x, we may view g(x) as an element of K' so that its absolute value Ig(x)l 
is well-defined. In particular, it makes sense to say that g is bounded on a subset of 
XK(K1). Applying this procedure to the coordinate functions of the affine n-space 
A;, we arrive at the notion of a bounded subset of A;(K1). 

Definition 2. As before, let R c R' be a faithfully flat extension of discrete valuation 
rings with fields of fractions K and K'. Furthermore, let X, be a K-scheme of finite 
type and consider a subset E c XK(K1). 
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(a) If XK is affine, E is called bounded in XK i f  there exists a closed immersion 
XK c, A; mapping E onto a bounded subset of A;(K'). 

(b) In the general case, E is called bounded in X ,  if there exists a covering of XK 
by finitely many affine open subschemes U,, . . . , Us c XK as well as a decomposition 
E = U E, into subsets E, c U,(K1) such that, for each i, the set Ei is bounded in U, in 
the sense of (a). 

It should be kept in mind that the definition of boundedness takes into account 
the choice of valuation rings R c R' and, thereby, the choice of particular valuations 
on K and K', although the latter is not expressed explicitly when we say that a 
subset E c X,(K') is bounded in X,. 

If XK is affine, say if XK = Spec A,, condition (a) of the definition means that 
there are elements g,, . . . , g, E AK generating AK as a K-algebra which, as maps 
XK(K1) ---+ K', are bounded on E. The latter is equivalent to the fact that each g E A, 
is bounded on E and it is easily seen that, in the affine case, conditions (a) and 
(b) of the definition are equivalent. Moreover, if there is one closed immersion 
X, c, A; mapping E onto a bounded subset of A;(K1), it follows that the latter 
property is enjoyed by all closed immersions of type X, c, A;. 

We want to show that condition (b) of Definition 2 is independent of the 
particular affine open covering (Ui) of X. 

Lemma 3. Let R c R' be a faithfully flat extension of discrete valuation rings with 
fields of fractions K and K'. Furthermore, let XK be a K-scheme of finite type and 
consider a subset E c XK(K'). If there exists a finite affine open covering U = (U,) 
of XK such that condition (b) of Definition 2 is satisfied, then the latter condition is 
satisfied independently of the particular covering U .  More precisely, given any finite 
affine open covering B = (5) of XK, there is a partition E = U 4 into subsets 
4 c y(K') such that F j  is bounded in for each j. 

Proof. Since conditions (a) and (b) of Definition 2 are equivalent in the affine case, we 
may assume that B is a refinement of U. Now pick an element U, E U, say Ui = 

Spec A, and let it be covered by the elements V l ,  . . . , I/, E 23. Then we may assume 
that Vp is of type Spec Afp, p = 1,. . . r, where f,, . . . , f ,  generate the unit ideal in A. 
So there is an equation Cap& = 1 with coefficients a, E A. Let E, be a bounded 
subset of U,(K1). Then it follows from the equation representing the unit 1 that 

is positive. Therefore, setting 

we have E, = F, u . . . u F,, and each F, is bounded in Vp = Spec Afp. Proceeding in 
the same way with all U, E U, we see that 23 satisfies condition (b) of Definition 2 if 
U does. 0 

We want to give two immediate applications of the above lemma, the first 
one saying that the image of a bounded set is bounded again and the second one 
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that the notion of boundedness, in some sense, is compatible with extensions of the 
field K. 

Proposition 4. Let R c R' be a faithfully flat extension of discrete valuation rings 
with fields of fractions K and K' and consider a K-morphism f :  X, --, YK between 
K-schemes of finite type. Then, for any bounded subset E c XK(K1), its image under 
XK(Kf) -+ YK(K') is bounded in YK. 

Proposition 5. Let R c R' be a faithfully flat extension of discrete valuation rings 
with fields of fractions K and K'. Furthermore, let XK be a K-scheme of finite type. 
Then a subset E c XK(K') is bounded in X, if and only f the corresponding subset 
E' c XKr(K1) is bounded in XKr. 

Both assertions are obvious in the afine case; the reduction to this case is done 
using Lemma 3. Next we want to show that properness always implies boundedness. 

Proposition 6. Let R c R' be a faithfully flat extension of discrete valuation rings 
with fields of fractions K and Kt, and consider a proper K-scheme X,. Then any 
subset E c XK(Kf) is bounded in X,. 

Proof. Let us begin with the remark that the notion of boundedness as introduced 
in Definition 2 works just as well without the discreteness assumption if we restrict 
to faithfully flat extensions of valuation rings R c R' corresponding to valuations 
of height 1 on K and K'. The above mentioned properties of boundedness remain 
true. So, for the purposes of the present proposition, we may extend the valuation 
of K' to an algebraic closure of K' and thereby assume that K' is algebraically closed. 

Due to Chow's lemma [EGA 111, 5.6.1, there is a surjective K-morphism Y, -+ 

X,, where YK is projective. Then, using Proposition 4, we see that it is enough to 
look at the case where XK is projective or, more specifically, where XK = & a n d  
where E = P;(Kf). To do this, fix a set of homogeneous coordinates on P; and 
consider the associated standard covering of 5';. For i = 0,. . . n, let Ui 2. A; be the 
affine open part of P; where the i-th coordinate does not vanish. Writing points 
x E P;(K') in homogeneous coordinates in the form x = (x,, . . . , x,) with xo, . . . , x, 
E K', we can set 

E ,  := {x = (x,, . . . , x,) E P",K1) ; Ixil = max(lx,l,. . . , lx,l)) . 

Then P;(K1) = U Ei with Ei c Ui(Kf) being bounded in Ui. So it follows that &(Kt) 
is bounded in P;. 0 

If XK is a closed subscheme of A;, and if X is its schematic closure in A:, the 
image of the canonical map 

consists of those points in XK(Kf) whose coordinates are bounded by 1. In particular, 
multiplying coordinate functions on A; by suitable constants, we can always 
assume that the image of X(R1) - -  XK(K1) contains a given subset E c X,(K') 
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provided E is bounded in X,. So, for affine schemes, we see that the following 
characterization of boundedness is valid: 

Proposition 7. Let R c R' be a faithfully flat extension of discrete valuation rings 
with fields of fractions K and K'. Furthermore, let X ,  be a K-scheme (resp. an affine 
K-scheme) of finite type. Then a subset E c X,(Kt) is bounded in X ,  i f  and only if 
there is an R-model (resp. an affine R-model) X of X ,  of finite type such that the 
image of the canonical map X ( R 1 )  + X,(Kf) contains E. 

In  particular, taking for R' a strict henselization R" of R and for K' the field Ksh 
of fractions of R", there is an R-model (resp. an affine R-model) X of X ,  of finite 
type satisfying the extension property for &tale points i f  and only if x,(K") is bounded 
in X,. 

Proof. If, in the general case, E c X,(K1) is bounded in X,, one considers an affine 
open covering (Ui,,) of X ,  and a decomposition E = U Ei into subsets Ei c 
U,,,(K') which are bounded in U,,,. Then one can find an affine R-model Ui of each 
U,,, such that Ei belongs to the image of Ui(R1) Ui,,(K1). Gluing the Ui along 
the generic fibre, one ends up with an R-model X of X ,  such that the image of 
X ( R 1 )  -+ X K ( K ' )  contains E. 

Remark 8. If X ,  is a separated K-scheme, the R-model X we obtain in Proposition 
7 will not, in general, be separated. It requires substantial extra work to modify X 
in such a way that it becomes separated; see 3.5/6. 

Using the approximation theorem of Greenberg [2], we want to add here a 
non-trivial criterion for boundedness. 

Proposition 9. Let R be an excellent henselian discrete valuation ring with field of 
fractions K and let X ,  be an open subscheme of a K-scheme of finite type. 
Furthermore, consider a subset E c X K ( K )  which is bounded in x,. Then, i f  
(x, - X K ) ( K )  = @, the set E is bounded in X,, too. 

Proof. We may assume that & is affine. Let 2 = Spec A be an affine R-model of 
such that each point of E extends to an R-valued point of X. Furthermore, let 

Z be the schematic closure of X, - X ,  in X so that X ,  = X ,  - 2,. Therefore Z ( K )  
and, thus, also Z ( R )  are empty. Now fix a uniformizing element of R and set 
R, = R/(nn). It follows then from Greenberg [2], Cor. 2, that Z(R,)  is empty if n is 
large enough. Therefore, if Z is defined in x by the elements f, ,  . . . ,f, E A ,  we must 
have 

max{I fdx)I , .  . . , If ,(x)l)  > I."I 

for all x E X,(K). 
Using the latter fact, it is easy to show that E c X K ( K )  is bounded in X,. Namely 

set 



12 1. What Is a Neron Model? 

Then E is the union of the Ei and XK is the union of the affine open subschemes 
sPec&[f,-']. Furthermore, since Ei is bounded in x,, it is obvious that Ei is 
bounded in spec &[fipl]. Thus E is bounded in X,. 0 

Each separated K-scheme of finite type X, admits a compactification; i.e., there 
is a proper K-scheme & containing XK as a dense open subscheme; cf. Nagata [I], 
121. If there exists a compactification with (& - XK)(K) = a, we say that XK 
has no rational point at infinity. Using this terminology, we can conclude from 
Propositions 6 and 9: 

Corollary 10. Let R be an excellent discrete valuation ring with field of fractions K 
and let X, be a separated K-scheme of finite type with no rational point at infinity. 
Then XK(K) is bounded in XK. 

1.2 Nkron Models 

In the following, let S be a Dedekind scheme with ring of rational functions K.  
Considering a smooth and separated K-scheme X, of finite type, we are interested 
in constructing S-models X of XK which are smooth, separated, and of finite type 
over S. Furthermore, we may ask if among all such models X one can select a 
minimal one; i.e., an S-model X such that for any other S-model Y of this type there 
is a unique morphism Y -+ X restricting to the identity on the generic fibre. 
Requiring this mapping property for arbitrary smooth S-schemes Y, we arrive at 
the notion of Ntron models. 

Definition 1. Let XK be a smooth and separated K-scheme of finite type. A Niron 
model of XK is an S-model X which is smooth, separated, and offinite type, and which 
satisfies the following universal property, called Nkron mapping property: 

For each smooth S-scheme Y and each K-morphism u,  : YK -+ XK there is a unique 
S-morphism u : Y -+ X extending u,. 

The restriction to schemes of finite type is not really necessary. In Chapter 10 
we will consider Ntron models, so-called Niron lft-models, which are locally of 
finite type (by the smoothness condition), but not necessarily offinite type. However, 
adding the finiteness condition simplifies things to a certain extent. In many impor- 
tant cases, NCron models are automatically of finite type; see, for example, the case 
of abelian varieties. 

As a first step towards Neron models, we will have to consider a weaker form, 
so-called weak Ndron models of X,. Thereby we understand smooth S-models X of 
finite type which satisfy the extension property for Ctale points 1.111; see also 3.511 
for the definition we will work with in later chapters. 

We want to list some elementary properties of N6ron models which follow 
immediately from the definition. 
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Proposition 2. Let X be a smooth and separated S-scheme which is a Ne'ron model of 
its generic fibre X,. 

(a) X is uniquely determined by X,, up to canonical isomorphism. 
(b) X is a weak Ne'ron model of its generic fibre; in particular, it satisfies the 

extension property for dale points. 
(c) The formation of Ne'ron models commutes with &ale base change; i.e., if 

S' -+ S is an dale morphism and if K' is the ring of rational functions on S', then 
X,, = X x ,  S' is a Ne'ron model over S' of the K-scheme X,, = XK x K  K'. 

Proof. Assertion (a) follows immediately from the Neron mapping property. The 
same is true for assertion (b) (modulo a limit argument as provided by Lemma 5 
below); one has to apply the Ntron mapping property to schemes Y which are ttale 
over S. To verify assertion (c), we only have to show the Neron mapping property 
for X,.. So consider a smooth S'-scheme Y' and a K'-morphism Yi, --, XK,.  Com- 
posing the latter morphism with the projection X,, + X K ,  we obtain a K-mor- 
phism Yk. + X, which uniquely extends to an S-morphism Y' + X since X 
is a Neron model of X,; namely, Y' is smooth over S since the composition of the 
structural morphism Y' ---+ St, which is smooth, with the Ctale morphism St 

+ S 
is smooth again. Now Y' -+ X yields an S'-morphism Y' --+ X,, and the latter is 
a unique extension of the Kt-morphism Yk, + X,,. 0 

Next, we mention that the notion of NCron models is local on the base: 

Proposition 3. Let S be a Dedekind scheme and let (St)  be an open covering of S. 
Furthermore, let X be an S-scheme. Then X is a Ne'ron model of its generic fibre if 
and only if, for each i, the same is true for the &-scheme X x s  Si. 

In the above assertion, one can replace the open subschemes Si c S by the 
localizations of S at closed points. However, then it is necessary to require the 
scheme we start with to be of finite type. 

Proposition 4. Let S be a Dedekind scheme and let X be an S-scheme of finite type. 
Then the following assertions are equiz)alent: 

(a) X is a Ne'ron model of its generic fibre. 
(b) For each closed point s E S, the Q,-scheme X x s  Spec Os,, is a N b o n  model 

of its generic fibre. 

If we want to verify the implication (a) *(b),  we cannot just apply an 
argument of base change as provided by Proposition 2 (c). The reason is that 
Spec Lo,,, is a limit of open subschemes of S but not, in general, an Ctale extension 
of S. So we will have to combine limit arguments with arguments of base change. 
Let us mention the necessary facts on limits. 

Lemma 5 ([EGA IV,], 8.8.2). Let S be a base scheme and let s be a point of S. 



14 1. What Is a Neron Model? 

(a) Let X and Y be S-schemes which are ofjnite presentation. Then the canonical 

map 

is bijective, the direct limit being taken over all open neighborhoods Sf of s in S. 
(b) Let X,, be an &,,-scheme of finite presentation. Then there are an open 

neighborhood S' of s in S and an St-scheme X' of finite presentation such that 
X' 8,. O,,, is isomorphic to Xe,. 

Proof of Proposition 4. To verify the implication (a) +(b), pick a point s E S 
and write X(,, = X 8, O,,,. Let K be the field of fractions of Q,,. It is only to 
show that Xe, satisfies the Neron mapping property. So consider a K-morphism 
u, : I;,),, + X(,,,, where I;,, is a smooth Us,,-scheme; we may assume that E;,, is of 
finite type and, thus, of finite presentation over Lo,,,. Then we can extend I;,, to a 
scheme Y' over a connected open neighborhood S' c S of s and, taking S' small 
enough, we may even suppose that Y' is smooth just as 3,) is; cf. the definition of 
smoothness in 2.213. Using the fact that X' := X x, S' is a Neron model of its generic 
fibre, it follows that u, extends uniquely to an Sf-morphism u' : Y' + X'. Then 
U' gS, US,, : I;,, - X(,, is a unique Us,,-morphism extending u,. So X(,, is a Neron 
model of its generic fibre. 

The opposite implication (b) ==+(a) is obtained similarly. Let K be the ring 
of rational functions on S and consider a K-morphism u, : Y, + X, where Y 
is a smooth S-scheme. Again we may assume that Y is of finite type and, thus, 
of finite presentation over S. Then condition (b) implies that, over a neighbor- 
hood S(s) of each closed point s E S, the morphism u, extends uniquely to an 
S(s)-morphism u(s) : Y x, S(s) + X xs S(s). Gluing all u(s) yields a unique 
S-morphism u : Y + X extending u,. Since the smoothness and the separatedness 
of the Lo,,,-scheme X 8, CO,,, imply the smoothness and separatedness of X over a 
neighborhood of s, we see that X is a Ntron model of X,. 0 

In the situation of condition (a) of Proposition 4 we will say that X is a global 
Neron model of the generic fibre X, whereas in the situation of condition (b) the 
schemes X x, Spec O,,, will be called the local NCron models of XK. Thus we see 
that if X, admits a global Neron model, all its local Neron models exist. The 
converse of this assertion is not true as we will see in 10.1/11. 

A further consequence of the Neron mapping property is the fact that Nkron 
models respect group schemes. 

Proposition 6. Let X be a smooth and separated S-scheme which is a Ndron model of 
its generic fibre XK. Assume that X ,  is a K-group scheme. Then the group scheme 
structure of X, extends uniquely to an S-group scheme structure on X. 

Remark 7. When dealing with group schemes, the separatedness occurring as a 
condition in Definition 1 is superfluous. Indeed, a group scheme is separated over 
its base as soon as the unit section is a closed immersion; cf. 7.112. So group schemes 
over fields are automatically separated. Furthermore, let X be a smooth S-group 
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scheme of finite type which satisfies the NCron mapping property. In order to show 
that X is separated over S, we may apply Proposition 4 and thereby assume that S 
is local. Then, due to the NCron mapping property, the unit section Spec K + X K  
of the generic fibre X ,  extends uniquely to a section S ---+ X, namely to the unit 
section of X. It follows that the latter is a closed immersion, as can be seen from 
7.111 and its proof. Thus X is separated as claimed. 

Although Neron models have been defined within the setting of schemes, their 
importance seems to be restricted to group schemes or, more generally, to torsors 
under group schemes as we will see in Chapter 6. For example, Pk admits P i  as a 
smooth and separated S-model which, due to the properness, satisfies the extension 
property for Ctale points. But P$ is not a NCron model of its generic fibre since not 
all K-automorphisms of Pk extend to S-automorphisms of P;; cf. 3.515. The situa- 
tion is much better in the group scheme case as can be seen from an extension 
theorem of Weil for rational maps into group schemes; cf. 4.411: 

Let u : Y ---+ X be a rational map between S-schemes where Y is smooth and where 
X is a smooth and separated S-group scheme. Then, i f  u is defined in codimension < 1, 
it is defined everywhere. 

Using this result, one can show without difficulties that abelian schemes over S, 
i.e., proper and smooth S-group schemes with connected fibres, provide examples 
of Neron models. 

Proposition 8. Let X be an abelian scheme over S. Then X is a Ndron model of its 
generic fibre X K .  

Proof. Let Y be a smooth S-scheme and let u, : YK ---+ X ,  be a K-morphism. We 
claim that u, extends to a rational map u : Y ---+ X with a domain of definition 
V c Y which is S-dense; i.e., which is dense in each fibre of Y over S. Namely, 
consider a closed point s E S and a generic point [ of the fibre over s in Y. Then the 
local ring O,,i is a discrete valuation ring; cf. 2.319. So the valuative criterion of 
properness implies that u, extends to a morphism Spec 4 X or, using Lemma 
5, to a rational map Y ---+ X which is defined in a neighborhood of [. Therefore u 
is defined in codimension < 1 and, thus, by Weil's extension theorem, it is defined 
everywhere. The uniqueness of the extension follows from the separatedness of 
X. 0 

We have seen that Neron models satisfy the extension property for Ctale points. 
On the other hand, using a similar argument as the one given in the above proof, 
one can show that a smooth and separated group scheme satisfying the extension 
property for Ctale points is already a Nkron model; see also 7.111. 

Criterion 9. Let X be a smooth and separated S-group scheme of finite type. Then X 
is a Neron model of its generic fibre if and only i f  X satisfies the extension property 
for &ale points. 

Describing the necessary steps of the proof, we mention first of all that, due to 
Proposition 4, the criterion has only to be verified in the local case. So assume that 
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S is a local scheme. Then one has to use the fact that X, as a weak Neron model of 
its generic fibre, satisfies the so-called weak Nbron mapping property; cf. 3.513. The 
latter means that each K-morphism uK : Y, + X K  extends to an S-rational map 
u : Y ---+ X ;  i.e., to a rational map which is defined on an S-dense open subscheme 
of Y. So, just as in the case of abelian schemes, the if-part of the assertion is reduced 
to Weil's extension theorem for morphisms into group schemes. 0 

1.3 The Local Case: Main Existence Theorem 

As we have seen in 1.214, the existence of a Ntron model over a global Dedekind 
scheme S implies the existence of the local Neron models at closed points of S. In 
fact, if global Nkron models are to be constructed, the first step is to obtain all local 
ones. Then one can try to glue them in order to build a global model; see Section 
1.4 for the case of abelian varieties. The purpose of the present section is to present 
the existence theorem for Nkron models in the local case. 

Theorem 1. Let R be a discrete valuation ring with field of fractions K ,  with a strict 
henselization Rsh, and with field of fractions Ksh of R ~ ~ .  Let X ,  be a smooth K-group 
scheme of finite type. Then X ,  admits a Ndron model X  over R if and only if xK(K") 
is bounded in X,. 

In particular, since properness implies boundedness, abelian varieties admit 
Neron models in the local case: 

Corollary 2. Let AK be an abelian variety over the field of fractions K of a discrete 
valuation ring R. Then A, admits a Ne'ron model over R. 

The only-if-part of Theorem 1 is a trivial consequence of 1.117 since Neron 
models are of finite type. The proof of the if-part, however, is more complicated and 
will be carried out in Chapters 3 to 6, each one of them dealing with a certain aspect 
of the construction oflocal Neron models. At this place we have to content ourselves 
with a simplified description of the necessary steps. 

We start the construction by choosing a separated R-model X of XK of finite 
type which satisfies the extension property for etale points. If X ,  is projective, we 
can take for X the schematic closure of X ,  in a projective n-space over R. Similarly, 
if X K  is affine, we may use the boundedness condition and take for X  the schematic 
closure of X ,  in a suitable affine n-space over R. In the general case we use 1.117. 
Since the model X  obtained from 1.117 might not be separated and since we want 
to avoid the result 3.517 saying that a separated R-model can be found, we will 
generalize the situation slightly in Chapters 3 and 4 by working with a finite family 
( X i )  of separated R-models of X ,  such that the canonical map 

JJ Xi(RA) + XK(K") 
is surjective. 
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For simplicity, let us consider a separated R-model X(l) of finite type of X, 
satisfying the extension property for etale points. Then we apply the so-called 
smoothening process to X(l), which will be explained in Chapter 3. Thereby we 
obtain a proper R-morphism X(') -+ X(l) consisting of a sequence of blowing-ups 
with centers in special fibres. It has the property that each Rsh-valued point of X'') 
lifts to an Rsh-valued point of X(2) which factors through the smooth locus X ~ ~ ~ o , ,  
of X('); cf. 3.113. Thus := X ~ ~ o o , ,  is a smooth R-model of finite type of X, which 
satisfies the extension property for etale points. In other words, X(3) is a weak Neron 
model of XK. It satisfies the so-called weak Ntron mapping property which means 
that, for each smooth R-scheme Y and each K-morphism u, : Y, - Xk3), there is 
an R-rational extension u : Y ---+ X(3); i.e., a rational extension which is defined on 
an R-dense open part of Y; cf. 3.513. Hence X(3) satisfies certain aspects of a Ntron 
model. However, weak Ntron models are not unique and it might be that the group 
structure of X, does not extend to a group scheme structure on X(3). Thus, one 
cannot expect that X(3) is already a Ntron model of XK. 

In general, it is necessary to modify X(3). This can be done by using the group 
structure on X,; cf. Section 4.3. To simplify the notation, write X instead of X(3). 
Furthermore, let n be a uniformizing element of R, and let k = RInR be the residue 
field of R. Fixing a non-trivial left-invariant differential form o on X, of degree 
d = dim X,, we define its n-order over each component Y, of the special fibre X, 
of X. Namely, let y be the generic point of Y,. Then Lo,,, is a discrete valuation ring 
with uniformizing element n. Since the sheaf of relative differential forms a;,, is a 
line bundle, there is an integer n such that n-"o extends to a generator of a;,, at 
y, and we can set oldyk w := n. Then the o-minimal components of X,, i.e., those 
components for which the n-order of o is minimal, are uniquely determined by X, 
up to R-birational isomorphism. They occur in each weak Ntron model of X, 
and have to be interpreted as the components which have largest volume. More 
precisely, any isomorphism u, : X, + XK, which leaves o invariant, extends to an 
R-rational map X ---+ X which maps the a-minimal components of X, birationally 
onto each other; cf. 4.312. So if X' is the open subscheme obtained from X by 
removing all non-minimal components of the special fibre X,, the isomorphism u, 
gives rise to an R-birational map X' ---+ X' which even is an open immersion on its 
domain of definition; see 4.311 (ii). Applying this argument to general translations 
on X,, one can realize that the group multiplication m, : XK x XK ---t XK extends 
to an R-birational map m : X' x X' ---+ X'. In fact, m defines a so-called R-birational 
group law on X'; cf. 4.315. The R-scheme X' is, as we will see in the end (cf. 4.4/4), 
already an R-dense open subscheme of the Nirron model we are going to construct, 
although X' will not, in general, satisfy the extension property for ttale points 
any more. 

Now a Ntron model of X, can be derived from X' by considering its "saturation" 
under the birational group law. There is a standard procedure, first invented by 
Weil for the case where the base consists of a field and then generalized by A. Nirron 
and M. Artin, which associates group schemes to R-birational group laws. We will 
explain it in Chapter 5 for the case where the base ring R is strictly henselian; the 
generalization to an arbitrary discrete valuation ring is done in Chapter 6 by means 
of descent. Thereby we will see, cf. 5.115, that X' can be enlarged to an R-group 
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scheme X" which is an R-model of XK of finite type and which has the property 
that the group multiplication on X" restricts to the R-birational group law m on 
X'. Then one uses a translation argument to show that X" satisfies the extension 
property for Ctale points so that X" is a Ntron model of XK by Criterion 1.219. 

1.4 The Global Case: Abelian Varieties 

In the preceding section we have discussed the existence of Ntron models in the 
local case. If a global NCron model is to be constructed, one has to find a way to 
glue the local Nkron models. The problem is that the resulting global model might 
not be of finite type again, a property which is necessary for Ntron models. However, 
as we want to show in the present section, when dealing with abelian varieties the 
gluing works well and we do obtain global Neron models this way. To start with, 
let us state Proposition 1.214, which describes the relationship between local and 
global NCron models, in a form which is more useful for applications. 

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let 
X, be a smooth and separated K-scheme of finite type. Then the following assertions 
are equivalent: 

(a) There exists a global NCron model X of X, over S. 
(b) There exists a dense open subscheme S' c S such that X ,  admits a Ndron 

model over S' as well as local NCron models at the finitely many closed points of 
S - S'. 

Proof. The implication (a) ==+(b) is trivial, due to 1.213 and 1.214. To obtain the 
opposite, we may assume that S is connected. Let s,, . . . , s, be the closed points 
which form the complement of S' in S and let X' be a NCron model of XK over St. 
Furthermore, let X,,, be a local Neron model of X, over the ring Co,,,i. Then, using 
1.215, X(,i, extends to a smooth and separated scheme of finite type Xi over a suitable 
open neighborhood Si of si. Since Xi and X' coincide at the generic point of S, both 
must coincide over a non-empty open part of S'. Removing finitely many closed 
points from Si, we may assume that Si n (S - S') = {s i )  and that Xi coincides with 
X' over S' n Si. But then we can glue each Xi with X' over S' n Si to obtain a smooth 
and separated S-model X of finite type satisfying X x, S' = X' and X @, Q,,si = 

X(,i,. Thus X is a global Neron model of X, by 1.214. 0 

Now consider a connected Dedekind scheme S with field of rational functions 
K and an abelian variety A, over K .  One says that A, has good reduction at a closed 
point s E S if AK extends to a smooth and proper scheme A,, over $,,. We want to 
show that A,, is automatically an abelian scheme in this case and, thus, a Nkron 
model of A,. 
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Proposition 2. Let S be a connected Dedekind scheme with field of fractions K and 
let A, be an abelian variety over K. Assume that A, extends to an S-scheme A which 
is smooth and proper. Then A is an abelian scheme under a group structure which 
extends the given group structure on A,. In particular, A is a Ndron model of A,. 

Proof. Using 1.214 we may assume that we are in the local case where S consists of 
a discrete valuation ring. Since A is proper, the valuative criterion of properness 
shows that A is already a weak Neron model of A,. Furthermore, the special fibre 
A, of A is connected by [EGA III,], 5.5.1. Therefore A, has to be viewed as an 
a-minimal component, with w being a generating differential form of degree dim A, 
on A,; use the weak Ntron mapping property 3.513 and the result 4.311. On the 
other hand, we know from 1.312 that A, admits a N6ron model X. Thus, by the 
NCron mapping property, there is a canonical S-morphism A + X which is an 
open immersion by 4.311 (ii) or 4.411. Because A is proper, its image is closed in X. 
However, X is connected due to the fact that X is flat over S ,  with the generic fibre 
X, = A, being connected. So A ---+ X is an isomorphism and A is a Neron model 
of A,. Thus, applying the Nbron mapping property, the group structure of A, 
extends to a group scheme structure on A and A is seen to be an abelian scheme. 

In order to apply Proposition 1 in the case of abelian varieties A,, we have to 
show that A, has good reduction at almost all closed points of S and even more: 
that A, extends to an abelian scheme A' over a dense open subscheme S' of S. 
Looking at a simple example, assume that the characteristic of K is different from 
2 and consider the case where A, is an elliptic curve in P i  given by an equation in 
WeierstraIj form 

with a non-zero discriminant A = 4/J3 + 27yZ. Then the elements p, y, A, and A-I 

belong to almost all local rings O,,, at closed points s E S. So there exists a non- 
empty open subscheme S' c S such that p, y, and A extend to sections in Os(S') and 
such that A and 2 are invertible in O(S'). Consequently, A, extends to a smooth 
projective family A' of elliptic curves in Pi,. Then A' is an abelian scheme extending 
A, as we have shown in Proposition 2. Alternatively, we can apply limit arguments 
of type 1.215 and see directly that, after a possible shrinking of S', the scheme A' 
gives rise to an abelian scheme over S'. In principle, the same reasoning applies to 
any abelian variety A, over K. 

Theorem 3. Let S be a connected Dedekind scheme with field of fractions K and let 
A, be an abelian variety over K. Then A, admits a global Ndron model A over S. 
Furthermore, let S' be the subset of S consisting of the generic point and of all closed 
points in S where A, has good reduction. Then S' is a dense open subscheme of S and 
A x, S' is an abelian scheme over S'. 

Proof. We have to show that A, extends to a smooth and proper scheme over a 
neighborbood of the generic point of S as well as over a neighborhood of each closed 
point of S where A, has good reduction. Then all such schemes are abelian schemes 
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by Proposition 2 and, using the Ntron mapping property, they can be glued to give 
an abelian scheme over S'. Furthermore, due to the existence of local Ntron models 
1.312, we conclude from Proposition 1 that A, admits a global Ntron model A. 

In order to show that A, extends to a smooth proper scheme over a non-empty 
open part of S, choose a closed embedding A, --+ Pk into some projective n-space 
and consider the schematic closure A of A, in P:. Then A is smooth over the generic 
point of S and, thus, smooth over an open neighborhood S" of this point. So 
A" = A x s  S" is a smooth projective S"-model of A,. Alternatively, we can use 1.215 
to extend A, to a scheme A" of finite type over an open neighborhood S" of the 
generic point in S. If S" is small enough, A" will be smooth and, by [EGA IV,], 
8.10.5, also proper. The same argument applies if we consider a closed point s E S 
where A, has good reduction. Namely, then A, extends to a smooth and proper 
scheme A(,, over Co,,, and we can extend the latter over an open neighborhood 
of s. 

It follows from the valuative criterion of properness that any K-rational map 
u, : Y, ---+ A, from a smooth K-scheme Y, into an abelian variety A, is defined in 
codimension 1 and, thus, is defined everywhere by Weil's extension theorem 4.411. 
Thereby it is seen that, in the case of abelian varieties, the Ntron mapping property 
can be strengthened. 

Proposition 4. Let S be a connected Dedekind scheme with field of fractions K and 
let A, be an abelian variety over K with Niron model A over S. Then, for each smooth 
S-scheme Y, and for each K-rational map u, : Y, ---+ A,, there is a unique S-morphism 
u : Y .--t A extending u,. 

For further generalizations of this result see 8.416 and 10.311. 

1.5 Elliptic Curves 

In order to illustrate the construction of Ntron models, we want to look at Nkron 
models of elliptic curves. In this particular case, the procedure of construction can 
be made quite explicit. The reader who is interested in a more profound discussion 
of models of elliptic curves is referred to Kodaira [I], NCron [2], and Tate [2]. In 
our terminology, an elliptic curve will always be understood to have a rational point. 

We will work over a base scheme S consisting of a strictly henselian discrete 
valuation ring R with field of fractions K and with an algebraically closed residue 
field k. First we want to clarify the interdependence between Ntron models and 
regular and proper minimal models of elliptic curves over K. So consider an elliptic 
curve EK over K. Then EK admits a Neron model, as we have stated in 1.312. It also 
admits a proper minimal model. By the latter we mean a proper flat R-model E 
which is a regular scheme and which is minimal among all models E' of this type 
in the sense that each R-morphism E --+ E' which is an isomorphism on generic 
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fibres is an isomorphism itself. So there are no irreducible components of the special 
fibre of E which can be contracted without loosing the regularity of E. Regular and 
proper minimal models of curves are unique; see Abhyankar [I] and Lipman [I] 
for the existence of regular and proper models and Lichtenbaum [I], Shafarevich 
[I], or Ntron [2] for the existence of regular and proper minimal models. 

Proposition 1. Assume that R is a strictly henselian discrete valuation ring. Let E be 
a regular and proper minimal model over R of the elliptic curve EK.  Then the smooth 
locus of E is a Niron model of E,. 

Proof. Write E' for the smooth locus of E. It follows from 3.112 that each R-valued 
point of E factors through E'. So, by the valuative criterion of properness, we see 
that E' satisfies the extension property for etale points and, thus, is a weak Neron 
model of EK. Furthermore, it follows from 2.315 that all k-valued points of the special 
fibre E', lift to R-valued points of E'. 

Fix an invariant differential form w of degree 1 on E,. We claim that all 
components of the special fibre E', are o-minimal. To see this, consider two com- 
ponents X I  and X ,  of Ei, and two k-valued points y, E X I  and z, E X,. Lift them 
to R-valued points y, z  of E' and restrict them to K-valued points y,, z ,  E EK.  Then 
the translation by z K y i l  is a K-isomorphism of EK mapping y, to z,. Due to the 
uniqueness of regular and proper minimal models, this isomorphism extends to 
an R-isomorphism of E and, thus, of E', mapping y onto z. So there are 
R-isomorphisms of E' which operate transitively on the components of the special 
fibre Eb and which leave o invariant. Consequently, all components of E', must be 
o-minimal; cf. 4.311. 

Now, as explained in Section 1.2 or, in more detail, in Section 4.3 and Chapter 
5, the group structure on E,  extends to an R-birational group law on E' and, then, 
to a group scheme structure on a bigger R-scheme E" containing E' as an R-dense 
open subscheme; cf. 5.115. However, using the fact that all translations by 
K-valued points on E,  extend to isomorphisms on E', and to the translations by the 
corresponding R-valued points on EM, it follows that E' and E" coincide. So E' is a 
Neron model of EK.  0 

If E is a proper and flat R-model of an elliptic curve E,  over K, then E is smooth 
over R at all points of the generic fibre. Furthermore, E is smooth at a point x of 
the special fibre E, if and only if this fibre is smooth over k at x, or equivalently 
since k is algebraically closed, if and only if E, is regular at x. So, in order to 
pass to the smooth locus of E, one removes all irreducible components with 
multiplicities > 1 from E, as well as from the remaining part of E, all singular points; 
the latter form a finite set. For algebraically closed residue field k, special fibres of 
regular and proper minimal models of elliptic curves have been classified by Neron 
[2], see also Kodaira [I]; there is only a finite list of possible types. An algorithm 
to compute the type of the special fibre from a given equation for E,  has been given 
in Tate [2]. 

If one is interested in a NCron model E of an elliptic curve EK and not so much 
in its regular and proper minimal model, one can construct E directly without too 
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much effort starting out from an equation describing E, in Pi, at least when the 
residue characteristic of K is different from 2 and 3. To do this, one classifies 
WeierstraD equations into a finite list of types, according to certain conditions 
involving the values of their coefficients, discriminants, and j-invariants. Then one 
can construct the Neron model E by direct computation in each of these cases. To 
demonstrate this, assume that R is a strictly henselian discrete valuation ring with 
residue characteristic char k different from 2 and 3 and consider an elliptic curve E ,  
over K, defined in P; by an equation in WeierstraB form 

Then discriminant A and j-invariant j are given by 

Viewing E, as a group scheme, we assume that the point (O,l,O) defines the unit 
section of E,. Let 71 be a uniformizing element of R, and let v : K -+ Z be the 
additive valuation given by R which satisfies v(x) = 1. We need some elementary 
properties of the equation (*). 

Lemma 2. For n E Z, the change of homogeneous coordinates in P i  

induces on the equation of E,  the change 

Lemma 3. (a) If v( j) 2 0, then v(A) = min(v(P3), v(y2)). In  particular, v(A) s 0 (2) or 
v(A) E 0 (3). 

(b) If v(j) < 0, then v(A) > v(p3) = v(y2). In  particular, v(j)  = 0 (2) and 
v(y) EE 0 (3). 

Making a change of coordinates as described in Lemma 2, we can assume that 
the coefficients B and y of (*) belong to R and, furthermore, that min(v(fi3), v(y2)) is 
minimal. Thereby we arrive at a so-called minimal WeierstraB equation of E,; i.e., 
at a Weierstralj equation with coefficients in R such that v(A) is minimal. We list 
the possible cases which remain. 

Lemma 4. Let the equation (*) be a minimal WeierstraB equation for EK.  Then, if 
v(j) 2 0, we have v(A) E (0,2,3,4,6,8,9,10}. Furthermore, if v(j) <0, either v(P) = 

v(y) = 0, or v(P) = 2 and v(y) = 3. 

Using Nirron's symbols as introduced in his table [2], p. 1241125, the possibilities 
for a minimal WeierstraB equation for E ,  as mentioned in the above lemma split 
into the following subcases; see also the table in Tate [2], p. 46. 

(a) v ( j ) > O ,  v(A)=O 

(b,) v(  j) = -m < 0 , v(b) = v(y) = 0 
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(cl) v(j) 2 0 ,  v(A) = 2 

(c2) v ( j ) > O ,  v(A)=3 

(c3) v ( j ) 2 0 ,  v(A)=4 

(c4) v ( j ) > O ,  v(A)=6 

(c5,) v(j) = -m < 0 ,  v(D) = 2 , v(y) = 3 

(c6) v ( j ) 2 0 ,  v(A)=8 

(c7) v ( j ) > O ,  v(A)=9 

(c8) v(j) 2 0 , v(A) = 10 

Now, to construct a Neron model of E K ,  one proceeds as follows. One chooses 
a minimal Weierstralj equation for EK and uses it for the definition of an R-model 
E of E,  in Pi .  Let E0 be the smooth part of E. Then one verifies by direct 
computation, or by using general properties of planar cubicb, that E0 is a smooth 
R-group scheme extending EK. In fact, we will see that it is the so-called identity 
component of the Ntron model of E,. There are three possibilities which we 
characterize by the first letters of Neron's symbols: 

(a) v(A) = 0. Then E is smooth, so E0 = E is an abelian scheme extending EK.  
It follows that E,  is an eiliptic curve with good reduction and that E is its Neron 
model. 

(b) v(A) > 0 and min(v(B), v(y)) = 0. Then E is not smooth; the special fibre of 
E0 is the multiplicative group G,,,. 

(c) v(A) > 0 and min(v(j),v(y)) > 0. Also in this case, E is not smooth; the 
special fibre of E0 is the additive group G,,,. 

ax 
Consider the invariant differential w = - on E,. Then w has n-order 0 over 

Y 
EO. We claim that, for the construction of the NCron model of E,, it is enough to 
extend E0 into a weak Neron model E of E,  with the property that the special fibre 
of E consists of w-minimal components, all of them being isomorphic to E f .  

Lemma 5. Let E l ,  . . . , E' be smooth and separated R-models of E,. Assume that, for 
all p, the special fibre Eg, as a k-scheme, is isomorphic to E!, that w has iz-order 0 
over Eg, and that the canonical map LI&o EP(R) -+ E,(K) is bijective. Then, gluing 
the EP along the generic fibre E,, we obtain a Ndron model E of EK.  Furthevmore, 
E0 is the identity component of E. 

Proof. It is clear that E is a smooth R-model of finite type of EK which satisfies the 
extension property for etale points 1.1/1. So E is a weak Neron model of EK. 
Furthermore, E is separated since, for p # z, the intersection of EP X, ET with 
the diagonal in E x, E is just E K .  By the assumption on the n-order of w, all 
components of the special fibre E, are m-minimal. So, denoting by N the Nkron 
model of EK,  we have an open immersion E c, N by 4.311 or 4.414. Then E0 must 
coincide with the identity component N o  of the Neron model N .  Thereby we see 
that the special fibre N, consists of r + 1 copies of E,O which, in case (c) is the affine 
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1-space A:, and in case (b) is A: minus the origin. Since the same is true for E, we 
conclude from the special type of E; that E c.+ N is bijective. So E is a NCron model 
of E,. 0 

In each of NCron's cases, a NCron model E of E, can be constructed via the 
above lemma. To show how to proceed, we will look at the cases (cl) and (c2) which 
are quite simple, as well as at case (b,) which is more complicated. First note that 
e, := (0,1,0) E E(k)  is a non-singular point of the special fibre of E;  in fact, it is the 
unit section of E;. So the singularities of & belong to the affine part E, of E which 
is described in A; by the equation 

There is precisely one singularity p, in E,,, in the cases (b) or (c); it corresponds to 
a multiple zero of the right-hand side of (**). So, in order to apply Lemma 5, we 
have to concentrate on R-models Et of EK such that the image of E+(R) --+ EK(K) 
consists of K-valued points which, in E, specialize into the singular point p,. 

Case (cl). Then v(B) 2 1 and v(y) = 1 by Lemma 3; hence p, = (0, 0), using affine 
coordinates of E,,,. Since 

{(x, Y) E E,(K); v(x) > 0, v(y) > 0) = 53 , 

it follows from Lemma 5 that EO = E - {p,) is the Ntron model of E,. Also it is 
easily checked that the minimal WeierstraB model is regular and, thus, coincides 
with the regular and proper minimal model. C] 

Case (c2). We have v(B) = 1 and v(y) 2 2 by Lemma 3. Again, p, = (0,O) is the 
singular point of E,,,. Thus all points (x, y) E R ( K )  which do not extend to R-valued 
points of EO must satisfy v(x) 2 1 and v(y) 2 1. Use R := ?I-'x and 9 := n-ly as new 
coordinates and let El  be the R-model of E, obtained by gluing 

Spec R[% j ] / ( j2  - 7cA3 - .n-'BA - ? ~ - ~ y )  

along its generic fibre to EK. Then all points (x, y) E C(K), which satisfy v(x) 2 1 
and v(y) 2 1, extend to R-valued points of E l .  In addition, El is smooth and 
separated and has special fibre EL - A: -. E,O as required. Furthermore, since A and 
9 do not vanish at the generic point of Ei, we see that w = dx/y = d2/j is of .n-order 
0 over E:. Thus Lemma 5 can be applied. The NCron model of EK is obtained by 
gluing EO and El  along the generic fibre EK; its special fibre consists of two 
components. 0 

We mention here that the process of replacing a variable x by R = n-'x is a 
special case of a dilatation, a technique to be applied systematically when we work 
out the smoothening process in Chapter 3. In fact, the method we have used above 
for the construction of E is a very explicit form of the smoothening process. It has 
to be applied in a similar way for treating the remaining cases. 
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Case (b,). This case is of special interest if R is complete; then EK is a so- 
called Tate elliptic curve. We have v ( j )  = -m < 0, v(p)  = v(y) = 0, and, hence, 
v(A) = m > 0. Furthermore, E; - G,,,. Let us write 

for the right-hand side of (**) and F(x)  for the polynomial obtained from P(x) by 
reducing coefficients from R to k. Then F(x) has a single root U E  k and a double 
root b E k. So p, = (b,O) is the singular point of E,,, and all points (x ,  y) c E,(K) 
which do not extend to R-valued points of E0 must reduce to p,. 

The root lifts to a root a E R of P(x) since R is strictly henselian. Set Q(x) := 
P(x)/(x - a). Then Q(x) has coefficients in R and ~ ( x )  = ( x  - b ) ,  is the polynomial 
obtained from it by reducing coefficients from R to k. Extending the valuation v 
from K to the algebraic closure KaIg, the root b lifts to two roots b,, b, E Kalg 
of Q(x), where v(a - b,) = 0 for i = 1, 2. Thus, the discriminant of P(x), which 
is A, coincides with the discriminant of Q(x), up to a unit in R. Since v(A) = m, 
we have 

Furthermore, since R is strictly henselian, the extension of v from K to K(b,, b,) is 
unique, just as for complete fields. So v(bl) = v(b,). Using an inductive argument 
on m, interpreted as the value of the discriminant of Q(x), we want to construct 
R-models El ,  . . . , Em-' which, together with EO, will satisfy the conditions of 
Lemma 5. 

To do this, choose an arbitrary lifting b E R of b and use x - b as a new variable 
instead of x ;  denote it by x again. The effect is that the singular point p, = 6,O) is 
transformed into the origin (0,O) this way. We will denote transformed polynomials 
and roots by P(x), Q(x), a, b,, etc., again, so that 

For m = 1 we obtain v(bl - b,) = 112 and, hence, v(bi) = 112. Then each x E Rn 
satisfies v(P(x)) = 1 and we see that P(x) cannot have a square root in R. So there 
are no points (x ,  y) E E,(K) satisfying v(x) 2 1 and v(y) 2 1, and we can conclude 
from Lemma 5 that, in this case, E0 is already the Neron model of Ex. Furthermore, 
the minimal Weierstralj model is regular in this case. 

If m > 1, we use n-'X and 7 c - l ~  as new variables, writing x and y for them again. 
Then, looking for points (x, y) E E,(K) satisfying v(x) 2 1 and v(y) 2 1, we have to 
look for integral solutions of the equation 

y2 = (a - nx)  . Q(x) , 

where we have written Q(x) instead of ~ - ~ Q ( n x )  again. This way the discriminant 
of Q(x) has been divided by n2 so that its value is now m - 2. Assume m = 2. Then 
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is smooth over R. Gluing it along its generic fibre to E,, we obtain an R-model El 
as required in Lemma 5. Namely, the special fibre of El is 

with ~ ( x )  having two distinct roots in k. So it is P i  minus two closed points and, 
thus, isomorphic to E;. That the differential w has n-order 0 over EL, is easily 
checked. So, for rn = 2, the Ntron model is obtained by gluing EO and El along the 
generic fibre EK;  its special fibre consists of two components. 

If m > 2, the polynomial ~ ( x )  has a root of multiplicity 2 and the scheme 

is not smooth over R; its special fibre consists of two affine lines intersecting each 
other. Removing the intersection point, we can construct two R-models El and E2 

of E ,  with special fibre isomorphic to EE each. If rn = 3, one is reduced to the case 
considered above where the discriminant of Q(x) has value 1. Thereby it is seen that 
EO, E l ,  E2 satisfy the conditions of Lemma 5. If rn > 3, the value of the discriminant 
of Q(x) is > 1 and can be reduced by 2 again as shown above. One continues this 
way until the value of the discriminant of Q(x) is 1 or 0. Thereby one constructs 
R-models E l ,  . . . , Em-' of E ,  which, together with EO satisfy the conditions of 
Lemma 5. So the special fibre of the Ntron model E of EK consists of rn components. 
With a little bit of extra work one can show that the group Ek/E; is cyclic of order 
rn. Also, by means of the arguments we have given, one can determine the regular 
and proper minimal model of E K .  Its special fibre consists of a chain of m projective 
lines forming a loop (if m > 1) or of a rational curve with a double point (if m = 1). 
In particular, we can thereby see that the regular and proper minimal model of EK 
will not be planar if rn > 3, because a planar cubic cannot have more than 3 
components. 0 

It is useful to look at Tate elliptic curves also from the rigid analytic viewpoint. 
So let R be a complete discrete valuation ring. We do not need that R is strictly 
henselian or that the residue field k is perfect. An elliptic curve E, over K is called 
a Tate curve if, in the sense of rigid analytic geometry, it can be represented 
as a quotient G , , , ~ , / ~ "  where G m , r i g  is the analytification of the multiplicative 
group G , , ,  and where q  E K* satisfies m := v(q)  > 0. The quotient G ~ , ~ , , / ~ "  can be 
thought of as being constructed by gluing rn annuli of type (x E G,,,,,; In1 < 1x1 < 1) 
in a cyclical way. Using this covering, we can extend ~ , , , , , / q "  into a formal scheme 
X whose special fibre Xk is a projective line with a double point if m = 1 and a chain 
of m projective lines forming a loop if m > 1. 

Choosing an effective Cartier divisor D on X whose support is contained in the 
smooth locus of X and which is very ample on all components of X k  and on the 
generic fibre XI,,,  one constructs a projective embedding of X and, thus, an R-model 
E' of E ,  whose formal completion is X .  Then it turns out that the smooth locus E 
of E' is a NCron model of E,. The special fibre Ek coincides with the smooth locus 
of X k  and, thus, is an extension of G , , ,  by ZlmZ. See Bosch and Liitkebohmert [3] 
for a generalization of the construction to abelian varieties. 
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1.6 Neron's Or ig ina l  Article 

We want to give here some analysis of Neron's article "Modeles minimaux des 
varietes abeliennes sur les corps locaux et globaux"[2] which appeared in 1964 and 
which serves as a basis for the construction of NCron models as done in this book; 
see also the lecture [I] given by Neron in 1961 at the Seminaire Bourbaki. Consider 
an abelian variety A, over a local field K and think of it as being embedded into a 
projective space Pi .  Let X be the schematic closure of A, in P i  where R is the 
discrete valuation ring of integers of K. Then X is an R-model of A, on which 
integral points might not be read as nicely as possible. Moreover, it will be likely 
that the group structure of A, does not extend to the smooth part of X. To obtain 
R-models of A, which do not have these disadvantages, NCron had to apply a series 
of substantial modifications to X and, in doing so, he had to overcome a lot of 
technical difficulties. 

His article is divided into three chapters. The first one develops a language of 
varieties over discrete valuation rings, taking Weil's "Foundations" [I] as point of 
departure. The main results are "ThCorBme 3" on p. 57, which corresponds to our 
smoothening process (see 3.1/3), and, as a corollary, "Theoreme 6" on p. 61, which 
yields the existence of weak Ntron models (see 3.512). In the second chapter, one 
finds the construction of Ntron models for abelian varieties or, more generally, for 
torsors under abelian varieties; NCron uses the terminology "modde faiblement 
minimal". The existence of Neron models is asserted in "Theoreme 2" on p. 79 for 
the local case and in "Thtorime 4" on p. 87 for the global case. Finally, the third 
chapter, which is fairly independent of the others, contains the construction of 
regular proper minimal models for elliptic curves. 

Neron's article has to be viewed as a contribution to relative algebraic geometry 
over a discrete valuation ring; the applications he gives in the global case are 
easily deduced from the local case. Concerning the construction of Nkron models, 
Chapters 1 and 2 of his article are quite difficult to read. To a substantial ex- 
tent, this is due to the fact that they are very technical and also to the fact that 
the terminology Neron applies is not commonly used; it has been abandoned 
since. 

To give some impression of his terminology, let us explain the basic setting 
considered by Neron. We start with a discrete valuation ring R with maximal ideal 
p. Denote by K the field of fractions as well as by k the residue field of R. The latter 
is assumed to be perfect. Neron, familiar with the notion of generic points in the 
sense of Weil's "Foundations" [I], works with universal domains on two levels. 
First he chooses a universal domain f for the residue field k and then a universal 
domain 9 for the field of fractions K. The latter is done in such a way that 9 is a 
universal domain of the field of fractions of a ring % which serves as an "integral" 
universal domain. To define '93 in the equal characteristic case, he considers a lifting 
of k to the completion of R as well as a uniformizing element T of R and takes for 
% the formal power series ring f [[TI]. In the unequal characteristic case, he sets 
'93 = I? W(f) where R̂  is the completion of R and where W indicates rings of 
Witt vectors. The interference of Witt vectors is the main reason why the residue 
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field k is assumed to be perfect. Then he works with relative schemes over R, 
so-called p-varieties. To be precise, a p-variety corresponds to a flat R-scheme of 
finite type; its points have values in the universal domains R or f or, when consider- 
ing integral points, in the subring % of R. Such a p-variety is called p-simple if it is 
regular; it is called simple modulo p at a point of the special fibre if it is smooth 
over R at this point. For both notions, Neron discusses the Jacobi criterion. 

In the following, we want to examine Nkron's approach to the smoothening 
process as presented in his Chapter 1, without pursuing his terminology any further; 
we will use the language of schemes, as generally applied in this book. Let X be a 
flat R-scheme of finite type with a smooth generic fibre X, and consider R'-valued 
points of X where R' is a discrete valuation ring over R having same uniformizing 
element as R. (So R' is of ramification index 1 over R, since the residue field k of R is 
perfect.) For such points x E X(R1), Ntron defines the integer l ( x , X )  which 
measures the defect of smoothness of X along x; see his section n017 starting on 
p. 35 or our section 3.3. He shows that l(x,  X) is bounded as a function of x. Then 
he works out the smoothening process by relying on two techniques: the first one 
is a generic smoothening and the second is the theory of pro-varieties. 

The generic smoothening can be formulated as follows: 

Let u : Spec R' --+ X be an R'-valued point of X where R' is as above. Reducing 
modulo the maximal ideal p of R, one obtains a morphism ii: Speck' 4 X,. Let Y 
be the closure of its image and let f : 8 + X be the blowing-up of Y on X .  Then, if 
8 : Spec R' - 9 is the l$ing of u to 9, one has 

l(ii, 9) < max(l(u, X), 1) . 

In particular, after a finite repetition, one ends up with a factorization of u through 
the smooth locus of a blowing-up of X. 

The statement may be viewed as an individual smoothening for Rf-valued points 
x of X. In order to obtain some form of smoothening which works simultaneously 
for several x and R', NCron relies on the technique of pro-varieties; this is one of 
the most delicate points in his construction. To give a sketch of his approach, 
consider an affine open part of X and thereby suppose that X is embedded into an 
affine space A:. Using the coefficients of formal series in f [ [ T ] ]  in the equal 
characteristic case and Witt coordinates in the unequal characteristic case, Ntron 
introduces on the set of R/pn-valued points of A: a structure of k-variety "At. Since 
X has a smooth generic fibre, the image of X(R) in "At gives rise to a constructible 
subset "X and one obtains a projective system of morphisms 

. .. + "+Ix - "X + . . . 

defining a k-pro-variety. 
The possibility of parametrizing solutions of X modulo pn by a k-variety or, 

more specifically, of points of X with values in the completion I? of R by a 
k-pro-variety, had been systematicaIIy studied by M. Greenberg [I] within the 
context of schemes and representable functors; see also Serre [3]. The technique is 
referred to as the Greenberg functor. However, since Nkron did not use the language 
of functors, he gave proofs of his own for the facts he needed. 
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Let us return to the situation of a generic smoothening as above where we 
consider a blowing-up f : 2 + X with center Then there is an induced morphism 
"f : " 8  - "X for each n and, taking limits over n, a bijection 8 ( R )  - x(@ To 
obtain a simultaneous smoothening, NCron has to consider partial inverses of the 
maps "f. More precisely, for each n, there is a constructible subset "Y of "X given by 
the points in ~ ( 2 )  which reduce to points of Y and he shows that there is a 
constructible map "+lY -4 " 2  such that the diagram 

commutes. (In the case of Witt coordinates, a map of type "+'Y -+ " 2  involves 
radicial morphisms of extracting p-th roots. Later, to overcome this kind of diffi- 
culties, Serre [2] worked with quasi-algebraic varieties.) 

Now set 1 = max l (x,  X) where the maximum is taken over all R'-valued points 
of X and let Z be an irreducible component of 'X. Combining blowing-ups and 
shiftings as above, Ntron shows the following assertion: there exists a non-empty 
open part U of Z such that there is a simultaneous smoothening of X with respect 
to all points of X ( R ' )  whose image in 'X is already contained in U .  Using this 
assertion, he can finish the smoothening process by a constructibility argument; cf. 
his "Theorhme 3" on p. 57. 

The proof we will give for the existence of the smoothening process is basically 
the same as Ntron's, except for the fact that we can avoid using pro-varieties 
and the Greenberg functor. We do this by establishing a more precise form of the 
generic smoothening; cf. 3.315. Namely, as we will see, considering the blowing-up 
f : 8 - X, there exists a non-empty open subscheme V c described in terms of 
differential calculus, such that, for each R'-valued point v of X whose special fibre 
factors through and for the lifting 6 of v to 8, we have 

Then it is possible to end the smoothening process directly by a constructibility 
argument without looking at solutions of X modulo higher powers of p. 

At the end of NCron's Chapter 1, there is the discussion of what we call weak 
NCron models and the measuring of the size of their components. The latter is done 
with respect to a non-zero differential form w of maximal degree of X,. The 
smoothening process implies that, up to birational equivalence, there are only 
finitely many components of "maximal volume" with respect to w. The arguments 
are the same as we will present them later at the corresponding places in our 
Chapters 3 and 4. 

Let us dicuss now Ntron's Chapter 2. It starts with the definition of torsors, or 
principally homogeneous spaces in his terminology. The definition is given in terms 
of ternary laws of composition in such a way that the underlying group of the torsor 
is hidden. Presumably this is done in order not to separate the construction of NCron 
models into the group case and the case of a torsor under a group scheme. So 
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consider a torsor X, under an abelian variety A, over K and a projective R-model 
X' of X,. Neron applies the smoothening process to X', restricts to the smooth 
locus, and removes from the special fibre all irreducible components which do not 
have maximal volume. The volume is measured with respect to a non-zero invariant 
differential form of maximal degree on XK; write X for the resulting R-model of 
X,. Then he shows that the structure of torsor on X ,  extends to a birational law 
of torsor on X". 

The next step is to show that finitely many "translates" of X" (defined over 
certain unramified extensions of R) cover all points of X' with values in unramified 
extensions R' of R. The same problem occurs in our presentation at the end of the 
construction of NCron models, where we want to prove their universal mapping 
property; cf. 4.414. 

To construct the Neron model X of X,, it is, of course, necessary to really glue 
translates of X ;  the latter is not a standard procedure since the translates are only 
defined over certain unramified extensions of R. Starting with an ample invertible 
sheaf on X ,  Neron shows that it extends to an ample invertible sheaf on the 
translates of X" and, finally, on the Neron model X. So this part contains in one 
step the construction of X in terms of gluing translates under the birational law on 
X" as well as the descent and the quasi-projectivity of the resulting model. It 
presents a tremendous accumulation of difficulties. In addition, explanations which 
are given are not very detailed and in most cases quite complicated to follow. In 
order to simplify things, it is possible to separate the construction into two steps. 
First one constructs the Ntron model over an Ctale extension R' of R, where one 
has enough integral points to perform translations and where it is enough to 
consider the group scheme case. Then, as a second step, one goes back from R' to 
R by means of descent, using ample invertible sheaves and thereby proving the 
quasi-projectivity of the model. This is how M. Artin proceeds in [9]; the same 
strategy will be applied in the present book. 

Finally, the universal mapping property of NCron models is established (in a 
rudimentary form) quite early in NCron's article, see n04, pp. 71-73, even before 
Nkron models are constructed. It is based on Weil's arguments [2], concerning 
rational maps from smooth varieties into algebraic groups. 

It remains to say a few words about Neron's Chapter 3 where he constructs 
proper and regular minimal R-models for elliptic curves with a rational point over 
K. Except for a few examples, already mentioned in Section 1.5, the subject will not 
be touched in this book. Neron studies minimal WeierstraD equations and classifies 
them according to the values of their coefficients, discriminants, and j-invariants. 
Then he obtains the regular and proper minimal model as a successive joint of new 
components. His construction leads to the same diagrams as the ones obtained by 
Kodaira [I]. But Neron's approach of discussing minimal WeierstraD equations 
case by case is quite different, it does not use the existence of regular models nor 
does it use the intersection form. An improved version of his method was later 
published by Tate [2] in algorithmical form; it is known as the Tate algorithm. 



Chapter 2. Some Background Material from 
Algebraic Geometry 

In this chapter we give a review of some basic tools which are needed in later 
chapters for the construction of Nkron models. Assuming that the reader is familiar 
with Grothendieck's definition of schemes and morphisms, we treat the concept of 
smooth and &tale morphisms, of henselian rings, and of S-rational maps; moreover, 
we have included some facts on differential calculus and on flatness. Concerning 
the smoothness, we give a self-contained exposition of this notion, relating it closely 
to the Jacobi criterion. For the other topics we simply state results, sometimes 
without giving proofs. Most of the material presented in this chapter is contained 
in Grothendieck's treatments [EGA IV,] and [SGA 11. 

2.1 Differential Forms 

In this section we define the sheaf of relative differential forms of one scheme over 
another. We introduce it by a purely algebraic method using derivations. So let us 
first review the basic facts on derivations; detailed explanations and proofs can be 
found in [EGA O,,], 20.5. 

In the following let R be a ring, and let A be an R-algebra. An R-derivation of 
A into an A-module M  is an R-linear map d : A + M  such that 

In particular, d(r . 1) = 0 for all r E R. The set DerR(A, M )  of all R-derivations of A 
into an A-module M  is canonically an A-module. One defines the module of relative 
d8erential forms (of degree 1) of A over R as an A-module Qilp, together with an 
R-derivation dAIR : A 4 Q&,, which is universal in the following sense: For each 
A-module M ,  the canonical map 

is bijective. The map dAl, is called the exterior dgerential. Such a couple (QAlR, dAIR) 
is uniquely determined up to canonical isomorphism. The existence can easily be 
verified in the following way. If A is a free R-algebra R[TJis, of polynomials in the 
variables T,  i E I, then let Q1 be the free A-module generated by the symbols dT, 
i E I, and define d : A 4 Q' by the formula 
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where aP/al; is the usual partial derivative of P with respect to TI.. It is easy to see 
that (a1, d) is the A-module of relative differential forms of A over R. In general, an 
R-algebra B is a residue ring B = A/a of a free R-algebra of polynomials A. Then 
the B-module of relative differential forms of B over R is given by the B-module 

and the exterior differential is canonically induced by dAIR. 
We give an alternate method for proving the existence of modules of differentials. 

Let m : A O R  A -+ A be the map induced by the multiplication on A, set I = ker(m) 
and consider the map 

The (A 8, A)-module 1/12 is actually an ((A 8, A)/I)-module. Using the canonical 
isomorphism 

(A @, A)/I 7 A 

one can view 1/12 as an A-module, and one verifies that (I/12,d) is the A-module 
of relative differential forms of A over R. 

The universal property of Q;,, implies certain functorial properties. For exam- 
ple, each morphism cp : A --+ B of R-algebras induces a unique A-linear map 

and hence a B-linear map 
Qi,R @A --* Qb/R 

Moreover, since each A-derivation of B is also an R-derivation, one obtains a map 

Thus we have a canonical sequence 

a i lR  @A --t -f Q;/A 0 

which can be shown to be exact. If B is a residue algebra of A, say B = Ala, the 
R-derivation dAIR induces a canonical B-linear map 

where a denotes the residue class of a E a modulo a2. As a second important fact 
on the behavior of differentials, one shows that the sequence 

a/a2 2 QjlR OA B -+ QkiR --t 0 
is exact. 

Next we want to globalize the notion of modules of differentials in terms of 
sheaves over schemes. One can either show that the formation of modules of 
differentials is compatible with localization or, what is more elegant, use the alter- 
nate description we have given above. Proceeding the latter way, consider a base 
scheme S and an S-scheme X. The diagonal morphism 
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yields an isomorphism of X onto its image A ( X )  which is a locally closed subscheme 
of X x s  X; i.e., A ( X )  is a closed subscheme of an open subscheme W of X x s  X .  
Let 9 be the sheaf of ideals defining A ( X )  as a closed subscheme of W. Then we 
define the sheaf of relative dgerential forms (of degree 1) of X over S as the sheaf 

on X .  Note that Y/Y2 has a natural structure of an Co,(,,-module; hence A * ( 9 / X 2 )  
is canonically an Ox-module. It is clear that Q:,, is a quasi-coherent Ox-module, 
which is of finite type if X is locally of finite type over S. The canonical map 

induced by the map sending a section f of L?, to the section pq f - pT f of 9 (where 
pi: X x s  X - X is the projection onto the i-th factor), is called the exterior 
dgerential. 

Since Qiis is quasi-coherent, (Qi!,, dxis) can be described in local terms: for each 
open affine subset V = Spec R of S and for each open affine subset U = Spec A of 
X lying over K the sheaf S1:/,lU is the quasi-coherent OXIu-module associated to the 
A-module Q;,,, and the map dxisJu is associated to the canonical map dAiR : 
A -, 

The sheaf of relative differential forms has similar functorial properties as the 
module of relative differential forms. Given an S-morphism f : X -- Y, one can pull 
back differential forms on Y to X .  So one obtains a canonical Ox-morphism 

Each section w of Q$/, gives rise to a section or off and hence to a section o" 
of Q:!,, namely to the image of o' under the above map. It is convenient to use the 
notion f *w for both of and o"; however to avoid confusion, we will always specify 
the module, either f or Q i l s ,  when we talk about the section f *o. 

The canonical sequences between modules of differentials, as given above, can 
immediately be globalized to the case of differentials over schemes; cf. [EGA IV,], 
16.4: 

Proposition 1. Let f : X -+ Y be an S-morphism. Then the canonical sequence of 
9,-modules 

f *Q$!S + a:/s + Q:!Y + 0 

is exact. 

Proposition 2. Let j : Y c, X be an immersion of S-schemes. Let 9 be the sheaf of 
ideals defining Y as a subscheme of X .  Then the canonical sequence of 9,-modules 

is exact. 

Furthermore, we cite that the formation of sheaves of relative differentials 
commutes with base change and products: 
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Proposition 3. Let X and St be S-schemes. Let X' = X x s  St be the St-scheme obtained 
by base change, and let p : X' + X be the projection. Then the canonical map 

p*a;,s 4 a;,,s, 
is an isomorphism. 

Proposition 4. Let XI and X ,  be S-schemes. If pi : X ,  x s  X, + Xi are the projections 
for i = 1,2, the canonical map 

pT%,,s @ ~2*Qi,,s -S GI xsx,,s 

is an isomorphism. 

2.2 Smoothness 

In this section we want to explain the basic concept of unramified, etale, and smooth 
morphisms from the viewpoint of differential calculus. Our approach differs from 
the one given in [EGA IV,], 17, in so far as we have chosen the Jacobi criterion as 
point of departure. In the following, let S be a base scheme. 

Definition 1. A morphism of schemes f : X -4 S is called unrarnified at a point x E X 
i f  there exist an open neighborhood U of x and an S-immersion 

of U into some linear space A: over S such that the following conditions are satisfied: 
(a) locally at j(x) (i.e., in an open neighborhood of j(x)), the sheaf of ideals 9 

defining j(U) as a subscheme of A: is generated by finitely many sections, 
(b) the differential forms of type dg with sections g of 9 generate R,&!,, at j(x). 

The morphism f : X --+ S is called unramified if it is unramified at all points of X .  

Condition (a) says that unramified morphisms are locally of finite presentation. 
Obviously, an immersion which is locally of finite presentation is unramified. It can 
easily be shown that the class of unramified morphisms is stable under base change, 
under composition, and under the formation of products. We give some equivalent 
characterizations of unramified morphisms: 

Proposition 2. Let f : X -4 S be locally of finite presentation, let x be a point of X ,  
and set s = f(x).  Then the following conditions are equivalent: 

(a) f is unramified at x. 
(b) n;,s,x = 0 
(c) The diagonal morphism A : X --+ X x ,  X is a local isomorphism at x. 
(d) The k(s)-scheme X, = X x s  Spec k(s) is unramified over k(s) at x. 
(e) The maximal ideal m, of Ox,, is generated by the maximal ideal m, of Co,,,, 

and k (x )  is a (finite) separable extension of k(s). 
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Proof. The equivalence of conditions (a) and (b) follows from the exact sequence 
2.112. The equivalence of (b) and (c) is seen by using the identity 

where $ is the sheaf of ideals defining the diagonal in X x s  X, and by applying 
Nakayama's lemma. Furthermore, since unramified morphisms are preserved by 
any base change, condition (a) implies condition (d). Conversely, if (d) is satisfied, 
we know already 

Let nr, be the maximal ideal of CIS,,. Then, since the formation of sheaves of 
differentials is compatible with base change, we have 

and Nakayama's lemma yields Q,$,,, = 0. So condition (b) is satisfied, and we see 
that conditions (a) to (d) are equivalent. 

In order to show that the equivalence extends to condition (e), we may assume 
that S is the spectrum of a field k. Then the implication (e) +(b) is an elemen- 
tary algebraic fact, because R;,,, = R&, in this case. Conversely, let us show that 
condition (c) implies condition (e). We may assume that X is affine, say X = Spec A, 
and that the diagonal morphism A : X 4 X x ,  X is an open immersion. Let k be 
the algebraic closure of k. It suffices to prove that A @, k is a finite direct sum of 
fields isomorphic to k ;  then A will be a finite direct sum of separable field extensions 
of k. To do this we may assume that k is algebraically closed. For a closed 
point z of X, let h, : X ---t X be the constant morphism mapping X to z, and consider 
the morphism 

(id,, h,) : X 4 X x ,  X 

Since A is an open immersion, 

is open in X. Hence each closed point of X is open, and X consists of a finite number 
of isolated points. In particular, A is a finite-dimensional vector space over k. 
Shrinking X if necessary, we may assume that X consists of only one point. Then 
the same is true for X x ,  X. Since A is an open immersion, the corresponding 
morphism A* : A Bk A -+ A is an isomorphism and, by comparing vector space 
dimensions, we see A = k. 0 

If follows from condition (e) above that the relative dimension of an unramified 
morphism is zero. More generally, one can show that the relative dimension 
dim, f = dim, f -'(f(x)) at a point x of an S-subvariety X c AI;. with structural 
morphism f : X --t S is r if, locally at x, the subvariety is defined by sections g,,,, 
. . . , g, of CIA; and if the differentials dg,+,(x), . . . , dg,(x) are linearly independent in 
R&,, @ k(x). Namely, this follows from the result above and the fact that the relative 
dimension decreases at most by 1 if one goes over from an S-scheme to a subscheme 
defined by a single equation. 
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Definition 3. A morphism f : X --t S is called smooth at a point x of X (of relative 
dimension r) i f  there exist an open neighborhood U of x and an S-immersion 

of U into some linear space A$ over S such that the following conditions are satisfied: 
(a) locally at y := j(x), the sheaf of ideals defining j(U) as a subscheme of A; is 

generated by (n - r) sections g,,,, . . . , g,, and 
(b) the differentials dg,+,(y), . . . , dg,(y) are linearly independent in Ri,, @ k(y).  

A morphism is called smooth f it is smooth at all points. Furthermore, a morphism is 
said to be itale (at a point) if it is smooth (at the point) of relative dimension 0. 

Note that, as we have explained above, the integer r is indeed the relative 
dimension off at x and that, due to its definition, the smooth locus of a morphism 
which is locally of finite presentation is open. It is an elementary task to verify that 
the class of smooth (resp. etale) morphisms is stable under base change, under 
composition, and under the formation of products. It is clear that open immersions 
are Btale. Furthermore, etale morphisms are unramified, but the converse is not true 
as is seen by the following lemma. 

Lemma 4. An immersion f : X + S is itale if and only i f f  is an open immersion. 

Proof. The if-part is obvious. For the only-if-part, it suffices to consider the special 
case where f is a closed immersion. Furthermore we may assume that, as an 
S-scheme, X has been realized as a closed subscheme of an affine open subscheme 
V c A'& in such a way that X is defined by n sections g,, . . ., g, of OAF on I/, 
where the differentials dg,, . . . , dg, generate QisniSl,. Since f : X + S is a closed 
immersion, we may assume that the coordinate functions T I ,  . . . , T, of A: vanish 
on X. Then we have relations 

= C aijgi 
i 

with aij E OA;(V) for i, j = 1,. . . , n. Taking the differentials of these equations shows 
that the matrix (aij) is invertible in a neighborhood of X. Due to Cramer's rule, the 
sheaves of ideals generated by ( T I , .  . . , T,) and (g, ,  . . . , g,) coincide in this neighbor- 
hood. This implies that f is an open immersion. 0 

More generally, one can show that btale morphisms are flat and, hence, open 
(cf. 2.4); in fact, a morphism is ttale if and only if it is flat and unramified, see 2.418. 
In particular, if S is the spectrum of a field k, the notions dale and unramified 
coincide. In this case, each Ctale S-scheme X consists of isolated reduced points 
such that the residue field k ( x )  of each point x E X is a finite separable extension 
of k. 

Proposition 5. Let f : X + Y be a smooth morphism of schemes. Then: 
(a) Q i l ,  is locally free. Its rank at x E X is equal to the relative dimension o f f  

at x. 
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(b) Iff is a smooth morphism of smooth S-schemes, the canonical sequence of 
Ox-modules 

is exact and locally split. (Actually, the assumption on X and Y to be smooth over S 
is unnecessary; cf. [EGA IV,], 17.2.3.) 

Proof. Since !2hF is free of rank n, assertion (a) follows immediately from the 
definition of smoothness if one uses 2.112. In the situation (b) we know from 2.111 
that the canonical sequence 

is exact. Due to (a), the three Ox-modules are locally free of finite rank. Hence, for 
all x E X, the Ox,,-module (f *!2~,,), is isomorphic to the direct sum of ker a, and 
im a, both of which are free. Counting the ranks, one sees ker a = 0. 0 

It is an easy consequence of (a) that, for a smooth morphism f : X + S, the 
map x H dim, f is locally constant. Next we want to characterize smoothness by 
the infinitesimal lifting property for morphisms. 

Proposition 6. Let f :  X ---+ S be locally of finite presentation. The following 
conditions are equivalent: 

(a) f is unramified (resp. smooth, resp. ktale). 
(b) For all S-schemes Y which are affine and for all closed subschemes Yo of Y 

defined by sheaves of ideals f of 9, with f 2  = 0, the canonical map 

is injective (resp. surjective, resp. bijective). 

Proof. First we want to treat the characterization of unramified morphisms. In this 
situation, conditions (a) and (b) are local on X and S, so we may assume that X and 
S are affine, say X = Spec B and S = Spec R. Let C be an R-algebra, let J be an 
ideal of C with J2 = 0, and consider a commutative diagram 

One easily shows that the map 

between the set of liftings of 50 and the B-module of R-derivations is bijective. Notice 
that J is a CIJ-module and, hence, a B-module via cp. 

If X is unramified over S, we know Q&, = 0 from Proposition 2 so that 
DerR(B, J )  = 0 in this case. Thus, the implication (a) +(b) is clear. In order to 
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verify the implication (b) ==+(a), set C := (B @, B)/12, where I is the kernel of 
the map 

Furthermore, set J = I/IZ. The considerations above show Der,(B, J) = 0. Since 
J r Oil,, the implication (b) +(a) follows. 

Next we turn to the characterization of smooth morphisms. Starting with the 
implication (a) +(b), let us first consider a special case which corresponds to 
the local situation of a smooth morphism. So let S be affine, say S = Spec R, and 
let X = Spec B be a closed subscheme of an affine open subscheme V = Spec A of 
A:. Let I be the ideal of A defining X. Assume that there are g,, . . . , g, E A such 
that dg,, . . . , dg, form a basis of Oil, and such that, for some r,  the ideal I c A of 
X is generated by g,,,, . . . , g,. Then, since 1/12 is generated over B = A/I by the 
residue classes of these elements, the canonical sequence 

is easily seen to be split exact. 
Now let Y = Spec C be an affine S-scheme, and fix a closed subscheme Yo c Y 

defined by an ideal J of C with J2 = 0. TO verify condition (b), we have to show 
that each R-morphism cp : B + C/J lifts to an R-morphism cp : B - C. Due to the 
universal property of a polynomial ring, we can lift to an R-morphism $ : A - C 
such that the diagram 

is commutative. Since $(I) c J ,  the map $ gives rise to a B-linear map 

Since the sequence (*) is split exact, the B-linear map $' extends to a B-linear map 
$" as follows: 

Hence, $" induces an R-derivation 6 : A + J satisfying $1, = 61,. Then 
(I) - 6) : A ---, C is an R-morphism inducing a lifting cp : B + C of cp. 

It remains to reduce the general case of an arbitrary smooth morphism 
f :  X - S to the special case treated above. This can be done by showing that 
condition (b) is a local condition on X. So, as before, let Y = Spec C be an affine 
S-scheme, and let Yo be a closed subscheme of Y defined by a sheaf of ideals # of 
0, with y2 = 0. Let @: Yo + X be an S-morphism. Due to the special case 
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discussed above, there exists an open covering {Y,}, of Y such that @ I y a n y o  lifts to 
a morphism cp; : Y, X. The obstruction for (cp;) to define a morphism from Y to 
X is a cocycle with values in ~ ' O W Z ~ , ~  (I~F*Q$~~,#); see also [SGA 11, Exp. 111, 5.1. 
Since this sheaf is a quasi-coherent Oyo-module, its first cohomology group vanishes 
on the affine scheme Yo. So there exist liftings cp, : Y, + X of @ I y a n y o  such that (cp,) 
gives rise to a morphism cp : Y - X lifting @. This establishes the implication 
(a) ==+ (b) for smooth morphisms. 

In order to show the converse, we may assume that X is a closed subscheme of 
a linear space A; which is defined by a finitely generated sheaf of ideals 9 c 0,;. 
Then it suffices to show that the canonical sequence 

is locally split exact. We will prove this in a more general situation where AI;. is 
replaced by a smooth S-scheme Z. In order to do this, we may assume that S and 
Z are affine, say S = Spec R and Z = Spec A, and that X = Spec B is defined by a 
finitely generated ideal I c A; in particular, we have B = A/I. Due to condition 
(b), the map 

@ = id : A/I -+ A/I = (A/12)/(I/12) 

lifts to an R-morphism cp : A/I --+ A/12. Then the exact sequence of R-modules 

splits; namely, cp is a section of v, and idAiI2 - cp o v defines an R-linear map 

7 : A/12 + 1 /12  

which is a section of the inclusion I .  Since z(a).z(b) = 0 for all a, b E A/12, we have 

Hence z is an R-derivation giving rise to an A-homomorphism -+ Ill2.  
Consequently, the sequence 

0 + 1/12 + QiIR B --+ QbIR + 0 
is split exact. 

Finally, the characterization of etale morphisms follows from what has been 
shown for smooth and unramified morphisms, since a morphism is &tale if and only 
if it is smooth and unramified. 0 

In the definition of smoothness it is required that a smooth S-scheme X can 
locally be realized as a subscheme of a suitable linear space AI;. such that the 
associated sheaf of ideals satisfies certain conditions. Now we will see that these 
conditions are fulfilled for each immersion of X into a smooth S-scheme. 

Proposition 7. (Jacobi Criterion). Let X and Z be S-schemes, and let j : X c-, Z be a 
closed immersion which is locally of finite presentation. Let 9 be the sheaf of ideals 
of Lo, which defines X as a subscheme of Z. Let x be a point of X ,  and set z = j(x). 
Assume that, as an S-scheme, Z is smooth at z of relative dimension n. Then the 
following conditions are equivalent: 
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(a) As an S-scheme, X is smooth at x of relative dimension r 
(b) The canonical sequence of Co,-modules 

is split exact at x, and r = rank(Q& 8 k(x)). 
(c) I f  dz,, . . ., dz, is a basis of (Q&JZ, and $ g,, . . . , g, are local sections of Oz 

generating &, there exists a re-indexing of the z,, . . . , z, and of the g,, . . . , g, such 
that g,,,, . . . , g, generate .Y at z and such that dz,, . . . , dz,, dg,,,, . . . , dg, generate 
(Qi,s)z. 

(d) There exist local sections g,,,, . . . , g, of Oz generating YZ such that the 
differentials dg,+,(z), . . . , dg,(z) are linearly independent in Qils 8 k(z). 

Proof. The implication (a)=(b) follows from the preceding proposition. 
Namely, if condition (a) is satisfied, X has the lifting property, and, as shown in the 
last part of the proof of Proposition 6, the canonical exact sequence of (b) is split 
exact. Furthermore, (Cl:,,), is free of rank r by Proposition 5. 

The implication (b)==+(c) follows from Nakayama's lemma, whereas 
(c) ==+ (d) is clear. Finally, the implication (d) ==+(a) is easily checked by 
using a local representation of Z at z as required for Z -+ S to be smooth at z. 

0 

Condition (d) can also be stated in terms of matrices. Namely, considering a 
representation 

of the differential forms dg,,,, . . . , dg, with respect to a basis dz,, . . . , dz, of (Qi,),, 
condition (d) says that .Yz is generated by the (n - r) elements gj and that there exists 
an (n - r)-minor of the matrix (dgj/dzi) which does not vanish at z. So we see that 
Proposition 7 corresponds to the Jacobi Criterion in differential geometry. We want 
to derive a second version of it (see [EGA IV,], 17.1 1.1 for a further generalization). 

Proposition 8. Let f :  X ---t Y be an S-morphism. Let x be a point of X, and set 
y = f (x). Assume that X is smooth over S at x and that Y is smooth over S at y. Then 
the following conditions are equivalent: 

(a) f is smooth at x. 
(b) The canonical homomorphism (f *Q$ls)x + (Q,?& is left-invertible (i.e., is an 

isomorphism onto a direct factor). 
(c) The canonical homomorphism (f *Q$ls) 8 k(x) -+ Qi,, @ k(x) is injective. 

Proof. The implication (a) +(b) is a direct consequence of Proposition 5; the 
implication (b) ==+ (c) is trivial. Concerning the implication (c) ==+(a), we 
will first treat the case where Y = A:. Then the morphism f is given by global 
sections , . . . , f, of Ox, and condition (c) means that df,(x), . . . , df,(x) are linearly 
independent. Furthermore, we may assume that X is a subscheme of A," of relative 
dimension r and that the sheaf of ideals defining X is generated by sections h,,,, 
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. . . , h, such that dh,,, ( x ) ,  . . . , dhm(x) are linearly independent. Let us consider the 
graph embedding 

We can lift the sections f ,  to sections fi defined in a neighborhood of x in A,". Then, 
locally at (x ,  f (x)) ,  we have realized X as the subscheme of A;+" = A; which is given 
by 

hi-+l,...>hm 3 TI - f l > . . . >  T - A  > 

where T I ,  . . . , T, denote the coordinate functions of A; = Y. This yields a local 
representation of X as a subscheme of AT as required. 

In order to handle the general case, let Y be smooth at y of relative dimension 
s over S. Let g,, . . . , g, be local sections at y of Lo, such that dg,, . . . , dg, induce a 
basis of (a:,,),. After shrinking X and'Y, we may assume that g,, . . . , g, are global 
sections. Due to condition (c), there exist local sections h,+,, . . . , h, at x of Co, such 
that 

f"d917.. . , f*d9, 2 dhS+l>...,dh, 

is a basis of Q$,,,, where r is the relative dimension at x of X over S. Again, we 
may assume that h,,,, . . . , h, are global sections of Ox. Setting 

h = (h,, ,,..., h , ) : X  --, A;-,-", 

we obtain the commutative diagram 
X ( f , h )  ~ Y X ~ A : - ~  " > Y  (g\ lgxid 

A; 

By the special case above, the maps (g  o f ,  h) and g x id are etale at x and y, 
respectively. Hence, due to Lemma 9 below, the morphism ( f ,  h) is etale at x. Then, 
f = p 0 ( f ,  h) is a composition of smooth morphisms and, hence, smooth at x. 

Lemma 9. Let X S be unramified (resp. smooth, resp. &tale), and let Y ---t S be 
unramified. Then each S-morphism X --+ Y is unramified (resp. smooth, resp. itale). 

Proof. The assertion follows from Proposition 6. Namely, one verifies immediately 
that X ---+ Y satisfies the lifting property (b) of this proposition. 

Let us state the assertion of Proposition 8 for the special case of etale morphisms. 

Corollary 10. Let f :  X ---, Y be an S-morphism. Let x be a point of X, and set 
y = f (x) .  Assume that X is smooth over S at x and that Y is smooth over S at y. Then 
the following conditions are equivalent: 

(a) f is &tale at x. 
(b) The canonical homomorphism ( f  *Q:,,), + (Q&,,), is bijective. 
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Thinking of the classical inverse function theorem, the corollary suggests an 
analogy between the notions of ttale morphisms in algebraic geometry and in 
differential geometry. But note that, in algebraic geometry, if one wants to view Ctale 
morphisms as local isomorphisms, the Zariski topology has to be replaced by the 
so-called &tale topology (cf. 2.318). In differential geometry, the implicit function 
theorem shows that, locally, smooth morphisms are fibrations by open subsets of 
linear spaces. Up to localization by etale morphisms, the same is true in algebraic 
geometry: 

Proposition 11. Let f : X --+ S be a morphism, and let x be a point of X. Then the 
following conditions are equivalent: 

(a) f is smooth at x of relative dimension n. 
(b) There exists an open neighborhood U of x and a commutative diagram 

where g is dtale and p is the canonical projection. 

Proof. That condition (b) implies condition (a) is clear, since the composition of 
smooth morphisms is smooth. To show the converse, choose local sections g,, . . . , 
g, of Ox such that dg,, . . . , dg, generate R;,, at x. Due to Corollary 10, the latter is 
equivalent to the fact that g,, . . . , g, define an Ctale map from an open neighborhood 
U of x to A;. 0 

Remark 12. If X is a smooth S-scheme and if g,, . . . , g, are local sections of Ox at 
a point x E X, then, by Nakayama's lemma, the differentials dg,, . . . , dg, generate 
Q;,, at x if and only if the differentials dg,(x), . . . , dg,(x) form a basis of the 
k(x)-vector space R&s,, @ k(x). Furthermore, as we have mentioned in the preced- 
ing proof, this condition is equivalent to the fact that g,, . . . , g, define an Ctale 
morphism from an open neighborhood U of x to A;. If g,, . . . , g, satisfy these 
equivalent conditions, they will be called a system of local coordinates at x (over S). 
This terminology is justified sincc, up to an &ale morphism, g,, . . . , g, indeed behave 
like a set of coordinates of the affine n-space A;. 

As a consequence of Proposition 11, we obtain the following useful fact. 

Corollary 13. If X is a smooth scheme over a field k, the set of closed points x of X 
such that k(x) is a separable extension of k is dense in X. 

Proof. For each point xo of X, there exists an open neighborhood U of xo and a 
factorization 

U A  & - % ~ ~ e c k  

where g is etale. Then, if x is a point of U, the extension k(x) of k(g(x)) is finite and 
separable. Hence it is enough to show g(U) contains a closed point y such that k(y) 
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is a separable extension of k. The set of closed points y such that k (y )  is separable 
over k is dense in A;. Namely, this is clear if k is perfect. If k is not perfect, it contains 
infinitely many elements so that the set of k-valued points is dense in A;. Thus it 
suffices to show that g(U) contains a non-empty open subset. However, the latter 
is clear by reasons of dimension, since g(U) is constructible (cf. [EGA IV,], 1.8.4). 
(Actually, g(U) is open, because an Ctale map is flat and hence open.) 0 

Next we apply Proposition 7 in order to construct Ctale sections of smooth 
morphisms. 

Proposition 14. Let f : X + S be a smooth morphism. Let s be a point of S ,  and let 
x be a closed point of the fibre X ,  = X x s  Spec k(s) such that k(x) is a separable 
extension of k(s). Then there exist an &ale morphism g : S' -- S and a point s' E S' 
above s such that the morphism f '  : X x ,  S' --, S' obtained from f by the base change 
S' + S admits a section h : S' + X x ,  S', where h(sr)  lies above x, and where 
k(s ')  = k(x). 

Proof. Let n be the relative dimension of X over S at x. Let JJ c Oxs be the sheaf 
of ideals associated to the closed point x of X,. Since Spec k(x) -+ Spec k(s) is Ctale, 
the ideal yx is generated by n elements g,, . . . , g, such that their differentials dg,, 
. . . , dg, generate Qi l ,  @ k(x) ,  as seen by the Jacobi criterion (Proposition 7). Now 
we lift g,, . . . , ij,, to sections g,, . . . , g, of Ox defined on an open neighborhood of x 
in X. Then let S' be the subscheme of X defined by g,, . . . , g,. Again by Proposition 
7 ,  the scheme S' is &tale over S at x. After shrinking S' we may assume that S' + S 
is Ctale. Then the tautological section h' : S' -+ X' is a section as required. [7 

Using Proposition 7 ,  the smoothness of a scheme X over a field k can be 
characterized by algebraic properties of the local rings of X. A k-scheme X which 
is locally of finite type is called regular if, for each closed point x of X, the local ring 
Ox,. is regular. (One knows then that Ox,, is regular also for non-closed points x E X; 
cf. [EGA O,,], 17.3.2). 

Proposition 15. Let X be locally of finite type over a field k. Let x be a point of X .  
Then the following conditions are equivalent: 

(a) X is smooth over k at x.  
(b) (Q&,), is generated by dim, X elements (and hence free). 
(c) There exist an open neighborhood U of x and a perfect field extension k' of 

k such that U 8, k' is regular. 
(d) There exists an open neighborhood U of x such that U @, k' is regular for all 

field extensions k' of k. 

Proof. We start with the implication (a) +(d). Due to Proposition 11, there 
exists an Ctale morphism g : U -+ A:, defined on an open neighborhood U c X of 
x.  Then Proposition 2 shows for each y E U that the maximal ideal m, is generated 
by m,(,,. So m, is generated by n = dim U elements because A; is regular; hence U 
is regular. Since the situation remains essentially the same after extending the field 
k to kt .  the assertion follows. 
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The implication (d) ==+(c) is trivial. So let us consider the implication 
(c) ==+(b). We may assume k = k' and X = U. Moreover, it suffices to show for 
each closed point y E X that (Q&,), is generated by dim Co,,, elements. For such a 
point y, the field k(y) is separable over k. Hence Cl&y,l, = 0, and the exact sequence 
of 2.112 yields an exact sequence 

Since m,/m,2 is generated by dim Lo,,, elements (due to assumption (c)), the assertion 
follows with the help of Nakayama's lemma. 

Finally, we turn to the implication (b) ==+(a). We may assume that X is a 
closed subscheme of an open subscheme V of A;, via the immersion j : X c, A:. 
Let 2 be the sheaf of ideals of Lo, defining X, and let r = dim,X. Looking at the 
exact sequence of 2.112 

we see that there exist local sections g,,,, . . . , g, off  at x such that dg,,,, . . . , dg, 
generate a free direct factor of (!2&,), of rank (n - r). We may assume that g,,,, 
. . . , g, are defined on V and give rise to a smooth subscheme X' c V of dimension 
r .  So X is a closed subscheme of X' and has the same dimension at x as X'. Let y 
be a closed point of X, which is a specialization of x. Then, by what we have already 
seen, Ox,,, is an integral domain. Since dim Lo,,, 2 r, the surjective map Cox,,, -+ 

OX,, has to be injective by reasons of dimension. This shows that X and X' coincide 
in a neighborhood of x. 0 

The property (d) of the preceding proposition gives rise to the following defini- 
tion. A scheme X which is locally of finite type over a field k is called geometrically 
reduced (resp. geometrically normal, resp. geometrically regular) if X @, k' is reduced 
(resp. normal, resp. regular) for all field extensions k' of k. 

Proposition 16. Let X be locally of finite type over a field k. If X is geometrically 
reduced, the smooth locus of X is open and dense in X. 

Proof. It is clear that the smooth locus is open. For the proof of the density, consider 
a generic point x of X. For any field extension k' of k, the algebra k(x) @, k' is 
reduced. Then it is an elementary algebraic fact that Q:,,,,, is generated by n elements 
where n is the degree of transcendency of k(x) over k; cf. Bourbaki [I], Chap. V, $16, 
n07, Thm. 5. Since n equals the dimension of X at x, Proposition 15 shows x is 
contained in the smooth locus of X. Thus, the smooth locus contains all generic 
points of X. 17 

2.3 Henselian Rings 

In the following we want to have a closer look at the local structure of Ctale 
morphisms, in particular, we want to construct the (strict) henselization of a local 
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ring; references for this section are [EGA IV,], 18, and Raynaud [5]. Let R be a 
local ring with maximal ideal m and residue field k. Let S be the affine (local) scheme 
of R,  and let s be the closed point of S. From a geometric point of view, henselian 
and strictly henselian rings can be introduced via schemes which satisfy certain 
aspects of the inverse function theorem. 

Definition 1. The local scheme S is called henselian i f  each itale map X + S is a 
local isomorphism at all points x of X over s with trivial residue field extension 
k(x) = k(s). If ,  in addition, the residue field k(s) is separably closed, S is called strictly 
henselian. 

Notice that if S is strictly henselian, any etale morphism X + S is a local 
isomorphism at all points of X overs. Usually one introduces the notion of henselian 
rings in terms of properties of the local ring R; namely, one requires Hensel's lemma 
to be true for R. As we will explain later (cf. Proposition 4), it suffices to require a 
seemingly weaker condition. 

Definition 1'. The local ring R is called henselian if, for each monic polynomial 
P E R[T], all k-rational simple zeros of the residue class P E  k[T] lift to R-rational 
zeros of P. I f ,  in addition, the residue field k is separably closed, R is called strictly 
henselian. 

It is easily seen that the ring R is (strictly) henselian if the scheme S is (strictly) 
henselian. The converse is also true, but the proof is not so easy; it is mainly a 
consequence of Zariski's Main Theorem. For the statement of this theorem let us 
recall the definition of quasi-finite morphisms. Let f :  X ---t Y be a morphism 
which is locally of finite type. Then f is said to be quasi-finite at a point x of X if x 
is isolated in the fibre Xy = X x, Spec k (y )  over the image point y := f (x) ;  the latter 
is equivalent to the fact that the ring Ox,x/m,Ox,x is a finite-dimensional vector 
space over the field k ( y )  = O,,y/m,, cf. [EGA 111, 6.2.1. For example, unramified 
morphisms are quasi-finite at all points. The set of points x E X  such that f is 
quasi-finite at x is open in X, cf. [EGA IV,], 13.1.4. The morphism f is called 
quasi-finite iff is quasi-finite at all points x E X and iff is of finite type. For example, 
a composition of a quasi-compact open immersion X c, Z and a finite morphism 
Z + Y is quasi-finite. Zariski's Main Theorem says that essentially every quasi- 
finite morphism is obtained in this way. 

Theorem 2 (Zariski's Main Theorem). Let f : X -+ Y be quasi-finite and separated. 
Furthermore, assume that Y is quasi-compact and quasi-separated. Then there exists 
a factorization 

o f f ,  where g is an open immersion and where h is finite. 
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For a proof see [EGA IV,], 18.12.13; a more direct argument (for the local case) 
can be found in Peskine [I]. For our applications we will need a weaker version 
which is close to Zariski's original form of the theorem, cf. [EGA IV,], 8.12.10. 

Theorem 2'. Let f : X --+ Y be quasi-finite and separated. Assume that X is reduced, 
that Y is normal, and that there exist dense open subschemes U c X and V c Y such 
that f 1, : U + V is an isomorphism. Then f is an open immersion. 

Theorem 2 can be used to investigate the local structure of Ctale morphisrns. In 
terms of the corresponding extension of algebras, an Ctale extension is sort of a 
lifting of a finite separable field extension which, due to the theorem of the primitive 
element, is always generated by a single element. 

Proposition 3. Let f : X + Y be a morphism of schemes, let x be a point of X, and 
set y = f (x) .  Assume that f is itale at x. Then there exist an affine open neighborhood 
U = Spec B of x, an affine open neighborhood V = Spec A of y with f(U) c V and a 
Y-immersion U c-, A$ such that U becomes an open subscheme of a closed subscheme 
Z c Ah, where Z is defined by a monic polynomial P E ACT] and where the derivative 
P' of P has no zeros on the image of U. Moreover, B is isomorphic to (A[T]/(P))Q 
for some Q E ACT]. 

A detailed proof is given in Raynaud [5], Chap. V. The idea of the proof is easy 
to explain. Namely, we may assume that X and Y are affine, and, due to Theorem 
2, that X is an open subscheme of a scheme X' = Spec B' which is finite over Y. 
Since k(x) is finite and separable over k(y), there exists a non-zero element b E k(x) 
such that b generates k(x) over k(y). Let b E B' be a lifting of b which vanishes at all 
points of the fibre of X' -+ Y over y, except at x. Now b gives rise to a morphism 
X' --+ A:. Since X' is finite over Y, one can verify that this morphism induces an 
open immersion of a neighborhood of x into a subscheme Z of A: of the required 
type. 0 

It follows immediately from Proposition 3 that the notions of henselian local 
rings and henselian local schemes are equivalent. This equivalence can be extended 
by further conditions, cf. [EGA IV,], 18.5, or Raynaud [5], Chap. I. 

Proposition 4. Let R be a local ring, and set S = Spec R. Then the following conditions 
are equivalent: 

(a) R is henselian. 
(b) S is henselian. 
(c) For each finite R-algebra A, the canonical map 

Idempotent (A) --+ Idempotent ( A  OR k) 

between the sets of idempotent elements is bijective. 
(d) Each finite R-algebra A decomposes into a product of local rings. 
(e) For each quasi-finite morphism X + S ,  and for each point x above the closed 

point of S,  there exists an open neighborhood U of x such that U --+ S is finite. 
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We will only sketch the proof, following the ideas of Grothendieck. The impli- 
cations (a) +(b) and (d) +(e) (which are the hard ones) are clear by 
Proposition 3 and Theorem 2. In order to show that (b) implies (c), one has to 
observe that it suffices to establish (c) in the case where A is a free R-module. Then 
one can write down formally what the idempotent elements of A must look like, 
and one notices that they are represented by an etale R-scheme. So it remains to 
show that such an Ctale R-scheme admits an R-section. The proof of the remaining 
implications is more or less trivial. 0 

The main reason for us to introduce strictly henselian rings is the fact that 
smooth schemes over strictly henselian rings admit many sections. Due to the 
geometric characterization of henselian rings, this property follows directly from 
2.2113 and 2.2114. 

Proposition 5. Let R be a local henselian ring with residue field k. Let X be a smooth 
R-scheme. Then the canonical map X(R) ---+ X(k) from the set of R-valued points of 
X to the set of k-valued points of X is surjective. In particular, if R is strictly henselian, 
the set of k-valued points of X, = X @, k which l$t to R-valued points of X is dense 
in X,. 

Examples of henselian rings are local rings occurring in analytic geometry such 
as rings of germs of holomorphic functions. Furthermore, local rings which are 
separated and complete with respect to the maximal-adic topology are henselian. 
In the latter case the condition mentioned in Definition 1' is established by Hensel's 
lemma; cf. Bourbaki [2], Chap. 111, $4, n03, Thm. 1. Alternatively, using the 
infinitesimal lifting property 2.216 for Ctale morphisms one can verify directly that 
such rings fulfill Definition 1. Since a noetherian local ring R is always a subring of 
its maximal-adic completion l?, these local rings R are a priori subrings of henselian 
rings. The "smallest" henselian ring containing R is called the henselization of R. 

Definition 6. A henselization of a local ring R is a henselian local ring R~ together 
with a local morphism i :  R -+ R h such that the following universal property is 
satisfied: For any local morphism u : R ---+ A from R to a henselian local ring A, there 
exists a unique local morphism u h : Rh 

--) A such that u h 
0 i = u. 

If the henselization exists, it is unique up to canonical isomorphism. Moreover, 
the residue field of Rh must be k. In view of Definition 1, the henselization of R must 
be the "union" of all local rings Ox,, of ttale R-schemes at points x above the closed 
point s of S = Spec R ,  whose residue fields coincide with k. That such a "union" 
exists in terms of inductive limits, becomes clear by the following result: 

Lemma 7. Let S' be an &ale R-scheme and let s' be a point of S' above the closed 
point s of S = Spec R.  Let R' be the local ring O,,,,, of S' at st and let k' be the residue 
field of R'. Furthermore, let A be a local R-algebra with residue field k,. Then all 
R-algebra morphisms from R' to A are local. So there is a canonical map 
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This map is always injective; it is bijective if A is henselian. 

Proof. Since the maximal ideal of R' is generated by the maximal ideal of R, all 
R-morphisms R' + A are local. The injectivity of the map follows from the fact 
that the diagonal morphism S' ---t S' x, S' is an open immersion. The surjectivity 
is due to the characterization of henselian local rings given in Definition 1. 

For the construction of the henselization of R, one considers the family (Ri)ieIh 
of all isomorphism classes of R-algebras which occur as local rings of Ctale 
R-schemes at points over the closed point of Spec R and which have the same residue 
field as R. Due to Proposition 3, the family Ih is a set and, due to Lemma 7, there 
is a natural partial order on Ih. Namely, one defines i 5 j for i, j E Ih if there exists 
an R-morphism uij: Ri ---t Rj. So (Ri)ieIh is an inductive system, which is seen to 
be directed and one easily proves that 

is a henselization of R (for details see Raynaud [ 5 ] ,  Chap. VIII). 
If one wants to introduce the smallest strictly henselian ring containing R, one 

has to be a little bit more careful. Namely, in view of Lemma 7, there may be different 
R-morphisms between two (local) Ctale R-algebras unless we require that the residue 
extension is trivial. One has to eliminate this ambiguity, and then one can proceed 
as in the case of the henselization. 

Definition 6'. A strict henselization of a local ring R is a strictly henselian local ring 
RSh, whose residue field coincides with the separable algebraic closure k, of k, together 
with a local morphism i : R -+ R" such that the following universal property is 
satisfied: For any local morphism u : R ---+ A from R to a strictly henselian ring A, 
and for any k-morphism a : k, + kA from k, to the residue field kA of A, there exists 
a unique local morphism ush : Rsh ---+ A such that u" o i = u and such that u" induces 
a on the residue fields. 

If R" exists, it is unique up to canonical isomorphism. For the construction of 
Rsh, let (R,),,, be the family of all isomorphism classes of R-algebras which occur 
as local rings of Ctale R-schemes at points over the closed point of Spec R. Let ISh 

be the set of all couples (R,, aij) where R, is a member of I and where aij : R, + k, 
varies over all R-morphisms into a fixed separable closure k ,  of k. Due to Lemma 
7, there exists a natural order on I". SO ((R,, a,)),,, jl is a directed inductive system, 
and one easily verifies that 

RSh 
= 1% (R,, aij) 

(i, j) E ISh 

is the strict henselization of R; cf. Raynaud [ 5 ] ,  Chap. VIII. 
As an application of this construction, we want to mention some results on Ctale 

localizations of quasi-finite morphisms. Let us call Y' -+ Y an ktale neighborhood 
of a point y in Y if Y' -+ Y is Ctale and if y is contained in the image of Y'. 
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Proposition 8. Let f : X -+ Y be locally of finite type. Let x be a point of X, and set 
Y = f ( 4 .  

(a) Iff is quasi-finite at x, then there exists an &tale neighborhood Y' --+ Y of y 
such that the morphism f '  : X' -+ Y', obtained from f by the base change Y' + Y, 
induces a finite morphism f 'I,, : U' + Y', where U' is an open neighborhood of the 
fibre of X' --, X above x. If, in addition, f is separated, U' is a connected component 
of X'. 

(b) Iff is unramified at x (resp. itale at x), there exists an itale neighborhood 
Y' -+ Y of y such that, locally at each point of X' above x, the morphism f '  (as in 
(a)) is an immersion (resp. an open immersion). 

Proof. Let R be a strict henselization of the local ring O,,, of Y at y, and set 
S = Spec R. Then R is the limit of all local rings O,,,,, which occur as local rings of 
etale neighborhoods Y' of y G Y at points y' above y. Using limit arguments (cf. 
[EGA IV,], 8.10.5), it suffices to prove the assertions in the case where Y = S. Then 
(a) follows from Proposition 4, and (b) is a consequence of the fact that each finite, 
local, and unramified R-algebra A is a quotient of R. Namely, the assumptions yield 
R/m = A/mA, where m is the maximal ideal of R, and so Nakayama's lemma 
applies. Finally, the case of &tale morphisms is deduced from the case of unramified 
ones by means of 2.214. 

The preceding proposition justifies the interpretation of unramified, resp. &tale, 
resp. smooth morphisms given in 2.2. Namely, Proposition 8 tells us that, up to 
base change by etale morphisms, unramified morphisms are immersions and Ctale 
morphisms are open immersions. So, if we look at S-schemes X only up to Ctale 
base change, as it is done within the context of the Ctale topology or, more generally, 
in the theory of algebraic spaces, we may view unramified morphisms as immersions 
and etale morphisms as open immersions. Furthermore, Proposition 2.211 1 says 
that smooth morphisms may be viewed as fibrations by open subsets of linear spaces 
A;. 

The local structure of Ctale morphisms X --t Y (cf. Proposition 3) can be used 
to study how algebraic properties are transmitted from Y to X. By a minor 
calculation (cf. Raynaud [ 5 ] ,  Chap. VII), one shows that all Ctale schemes over a 
reduced (resp. normal) base are reduced (resp. normal) again. Using the elementary 
fact that polynomial rings inherit such properties from the base, it follows from 
2.211 1 that smooth schemes over a reduced (resp. normal) base are reduced (resp. 
normal) again. Finally, since polynomial rings over regular rings are regular, 
smooth schemes over regular schemes are regular again; use 2.2111 and 2.2/2(e). 
Summarizing, we can say: 

Proposition 9. Let X -+ Y be a smooth morphism. If Y is reduced (resp. normal, resp. 
regular), then X is reduced (resp. normal, resp. regular). 

Obviously, a directed inductive limit R of reduced (resp. normal) rings Ri is 
reduced (resp. normal). So we have the permanence of reducedness and normality 
for the (strict) henselization. Moreover, since the maximal ideal m of R generates 
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the maximal ideal mi of each Ri which occurs in the construction of the (strict) 
henselization of R, it is clear that m also generates the maximal ideal of the (strict) 
henselization. In particular, we see that the (strict) henselization of a discrete 
valuation ring is a discrete valuation ring, and that a uniformizing parameter of R 
yields a uniformizing parameter of the (strict) henselization. Furthermore, one can 
show that properties of local rings such as being noetherian or regular are preserved 
by the process of (strict) henselization. We state this for later reference: 

Proposition 10. If R is a reduced (resp. normal, resp. regular, resp. noetherian) local 
ring, the (strict) henselization is reduced (resp. normal, resp. regular, resp. noetherian) 
again. In particular, if R is a discrete valuation ring with unformizing parameter n, 
then the (strict) henselization is a discrete valuation ring, and n gives rise to a 
ungormizing element there. 

Finally, we want to have a closer look at the ring extensions 

Due to the local structure of ttale morphisms (Proposition 3), these canonical 
homomorphisms are injective. Since R" can also be interpreted as the strict hensel- 
ization of Rh, it follows from the construction of R" that the extension Rh c+ Rsh 

is integral, as can be seen by using the characterization of henselian rings mentioned 
in Proposition 4(e). If R is normal, the rings Rh and Rsh are normal and, hence, 
integral domains. Thus we can consider their fields of fractions 

which are separable algebraic over K. Moreover, K" is a Galois extension of Kh, 
the Galois group of K" over Kh acts on RSh, and the fixed subring of Rsh is Rh. Due 
to Lemma 7, the Galois group is canonically isomorphic to the Galois group of k, 
over k. 

Proposition 11. Let R be normal with field of fractions K .  Let Ks be a separable 
closure of K,  and let G be the Galois group of K, over K.  Let R, be the integral closure 
of R in K,, and let m, be a maximal ideal of R, lying over the maximal ideal m 
of R. Let 

D = (o E G;  o(ms) = m,) 

be the decomposition group of m,, and let 

I = (o  E D; o(Z) = F for X E R,/m,) 

be the inertia group of m,. Then the following assertions hold: 
(a) The localization R' of the fixed ring RQ of R, under D at the maximal ideal 

m, n RP is the henselization of R. 
(b) The localization R" of the fixed ring R f  of R, under I at the maximal ideal 

m, n Rf is the strict henselization of R. 
(c) The extension Rh c RSh is Galois. Its Galois group D/I is canonically iso- 

morphic to the Galois group of the residue field extension k, over k. 
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Proof. ((a Let P(T) E Rf[T] be a monic polynomial whose reduction P(T) has a 
simple zero lying in the residue field of R'. Now P ( T )  has a zero a lying in (RJmS 
which induces a if we regard a as an element of R,/m,. Since a is simple, there is 
only one zero a of this kind. Then it is easily seen that a is invariant under D. Hence 
a lies in R'. Thus we see R' is henselian. Moreover it is known that R' is a limit of 
etale extensions Ri of R which have the same residue fields as R; cf. Raynaud [5], 
Chap. X. So R' is a henselization of R. 

(b) follows similarly as (a), one has only to replace the decomposition group by 
the inertia group. Assertion (c) follows from (a) and (b) by formal arguments. 

2.4 Flatness 

Let R be a ring, and let M be an R-module. Then M is called flat over R (or a flat 
R-module) if 

ModR + ModR , N t-, N OR M , 

constitutes an exact functor on the category of R-modules Mod,. If R is a field, 
flatness poses no condition, and if R is a Dedekind domain, the flatness of M means 
that M has no torsion. Flatness is a local property; i.e., an R-module M is flat over 
R if and only if, for each prime ideal p of R, the localization Mp is flat over Rp. For 
a local ring R, a finitely generated R-module is flat if and only if it is free; cf. Bourbaki 
[2], Chap. I, 92, ex. 23. But, in general, flat modules do not need to be free or 
projective (in the sense of being a direct factor of a free module); for example, the 
field of fractions of a discrete valuation ring R is a flat R-module which cannot be 
free. Nevertheless, it can be shown that an R-module M is flat if and only if M is a 
direct limit of free R-modules of finite type; cf. Lazard [I], Thm. 1.2, or Bourbaki 
[I], Chap. X, 5 1, n06, Thm. 1. A flat R-module M is called faithfully flat if the tensor 
product by M is a faithful functor; i.e., if N OR M # 0 for all R-modules N # 0. 
Viewing R-algebras as R-modules, one has also the notion of flatness (resp. faithful 
flatness) for R-algebras. For example, localizations S-'R are flat R-algebras and 
polynomial rings R[T,, . . . , T,,] are faithfully flat R-algebras. Furthermore, we want 
to mention that a local flat morphism R -+ A of local rings is automatically 
faithfully flat. 

Now, turning to schemes, a morphism f : X ---+ S of schemes is called flat at a 
point x of X if Os,f(x, + Q X x  is flat, and f is called flat if it is flat at all points of 
X. Furthermore, a morphism f : X -+ S is said to be faithfully flat iff is flat and 
surjective. If X and S are affine, say X = Spec A and S = Spec R, then f is flat (resp. 
faithfully flat) if and only iff * : R -+ A is flat (resp. faithfully flat). Obviously, open 
immersions are flat, and it is easy to see that the class of flat (resp. faithfully flat) 
morphisms is stable under composition, base change, and formation of products; 
cf. [EGA IV,], 2.1 and 2.2. In the case where S is the spectrum of a discrete valuation 
ring, f : X + S is flat if and only if 0, has no R-torsion. So there are no irreducible 
and no embedded components of X which are contained in the special fibre. Since 
the notion of flatness is quite transparent over valuation rings, it is useful to know 
that there is a valuative criterion for flatness which applies to the geometric case. 
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Proposition 1 ( [ E G A  IV,], 11.8.1). Let f : X -+ S be locally of finite presentation. 
Let x be a point of X ,  and set s = f (x) .  Assume that is reduced and noetherian. 
Then f is flat at x f and only if, for each scheme S' which is the spectrum of a discrete 
valuation ring, and each morphism S' --+ S sending the special point s' of S f  to s, the 
morphism f '  : X' + S' obtainedfrom f by the base change S' + S is flat at all points 
X' E X' lying over x. 

It is much more difficult to understand the notion of flatness in the case where 
the base has nilpotent elements, for example, where the base is a non-trivial artinian 
ring. In this case there exists no criterion to test flatness by geometric properties. 

Furthermore, we want to mention a criterion which allows to test the flatness 
of an S-morphism between flat S-schemes on fibres. 

Proposition 2 ( [ E G A  IV,], 11.3.1 1). Let g : X + S and h : Y -+ S be locally of 
finite presentation. Let f : X + Y be an S-morphism. The following conditions are 
equivalent: 

(a) f is flat, and h is flat at the points of f ( X ) .  
(b) f, = f x s  k(s) is flat for all s E S, and g is flat. 

Now let us illustrate the meaning of flatness by some geometric properties of 
flat morphisms of finite presentation. In the following, let f :  X ---t Y always be 
a morphism of finite presentation. There are two general facts concerning the 
geometry of such morphisms. First, the image f (C)  of a constructible subset C of X 
is constructible in Y if Y is quasi-compact; a subset of a topological space is called 
constructible if it is a union of a finite collection of locally closed subsets; cf. 
[ E G A  IV,], 1.8.4. Second, the function of relative dimension of ,f 

is upper semi-continuous; i.e., for each n E N the subset where the relative dimension 
is L n  is closed; cf. [ E G A  IV,], 13.1.3. If we assume that, in addition, f is flat, the 
situation becomes much better. 

Proposition 3 ( [ E G A  IV,], 2.4.6). Let f : X ---+ Y be locally of finite presentation. If 
f is flat, then f is open. 

Proposition 4 ( [ E G A  IV,], 14.2.2). Let f : X + Y be locally of finite type and flat. 
Assume that X is irreducible and that Y is locally noetherian. Then the relative 
dimension o f f  is constant on X .  

Dropping the finiteness condition in Proposition 3, its assertion has to be 
weakened. 

Proposition 5 ( [ E G A  IV,], 2.3.12). Let f :  X -+ Y be faithfully flat and quasi- 
compact. Then the topology of Y is the quotient topology of X with respect to f ;  i.e., 
a subset V c Y is open f and only f f ( V )  is open in X .  



2.4 Flatness 53 

It is impossible to characterize the flatness of an S-scheme X of finite type by 
geometric properties when the base S is not reduced. But under reducedness 
conditions on the base and on the fibres, flatness is equivalent to universal openness; 
cf. [EGA IV,], 15.2.3. Moreover, if the base S is reduced and noetherian, each 
S-scheme X of finite type is generically flat. 

Proposition 6 ([EGA IV,], 6.9.1). Let S be reduced and noetherian, and let X be an 
S-scheme of finite type. Then there exists a dense open subscheme S' of S such that 
X x, S' is flat over S'. 

Anyway, the flat locus of an S-scheme which is locally of finite presentation 
is open. 

Proposition 7 ([EGA IVJ, 11.3.1). Let X be an S-scheme which is locally of finite 
presentation. Then the set of points x E X such that X is flat over S at x is open. 

Non-trivial examples of flat morphisms of finite presentation are the smooth 
ones; see below. Furthermore, there is a useful criterion which relates smoothness 
over a general base to flatness and smoothness of the fibres. The latter are schemes 
over fields; in this case one can apply the nice criterion 2.2115 to test smoothness. 

Proposition 8. Let f : X ---t S be locally of finite presentation. Let x be a point of X ,  
and set s = f(x). The following conditions are equivalent: 

(a) f is smooth at x. 
(b) f is flat at x and the fibre X ,  = X x, k(s) is smooth over k(s) at x. 

In Section 2.2, we gave detailed proofs for all statements concerning smoothness. 
Proceeding similarly with Proposition 8, let us give its proof. For the implication 
(a) +(b), it is only necessary to explain that smooth morphisms are flat. Due 
to 2.211 1, it suffices to treat the Ctale case. But in this case the assertion follows easily 
by looking at the local structure of Ctale morphisms; cf. 2.313. 

If one wants to verify this implication without using the local structure of etale 
morphisms (which involves Zariski's Main Theorem), one can proceed as follows. 
If Z is a smooth S-scheme which is flat over S, and if X is a subscheme of Z given 
by one equation, say g = 0, such that dx,,(g) does not vanish at a certain point 
x E X, then X is flat over S at x. It suffices to prove this statement, since, in the 
general case, we can use an induction argument on the number of equations 
describing X locally at x as a subscheme of A;. In order to prove the assertion 
above, we may assume that S is noetherian. Then consider the exact sequence 

If S is the spectrum of a field, then OZ,, is an integral domain and g must be a regular 
element, so the map on the left-hand side is injective in this case. Since smoothness 
is stable under any base change, we see that the map g @ k(s) is injective, where k(s) 
is the residue field at the image s of x. Because Z is flat over S, we get 
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Hence X is flat over S at x, cf. Bourbaki [2], Chap. 111, $5, n02, Thm. 1. 
For the implication (b) ==+(a), we may assume that X is a closed subscheme 

of a linear space A; over an affine scheme S = Spec R which is defined by a finitely 
generated ideal I c R[T,, . . . , T,,]. Let r be the relative dimension of X, at x. Since 
Xs is smooth over k(s) at x, there exist sections g,,,, . . . , g, of I such that, locally 
at x, the induced functions ij,.,,, . . . , g, define X, as a subscheme of A," and such 
that d&+,(x), . . . , dg,(x) are linearly independent in 8 k(x); cf. 2.217. Now let 
Z be the S-scheme defined by gr+, , . . . , g,. Notice that Z is smooth at x and that Z 
contains X as a closed subscheme. The fibres of X, and Z, coincide locally at x. Now 
let B be the algebra associated to 2, and let A be the algebra associated to X. Then 
A is a quotient BjJ of B by a finitely generated ideal J of B. Since A is flat over R 
at x, the exact sequence 

remains exact at x after tensoring with k(s) over R. Since Xs coincides with Z, locally 
at x, we see that J 8, k(s) vanishes at x. Nakayama's lemma yields J, = 0. So X 
and Z coincide in a neighborhood of x and, hence, X is smooth over S at x. 

Since etale morphisms are flat, henselization and strict henselization are 
direct limits of flat ring extensions and, hence, they are flat extensions of the given 
ring. 

Corollary 9. Let R be a local ring. The ring extensions R ---t Rh + RSh, where Rh is 
a henselization and R" a strict henselization of R, are faithfully flat. 

Apart from the nice geometric results for flat morphisms of finite presentation, 
the importance of flatness is expressed in the descent techniques for faithfully 
flat and quasi-compact morphisms. We want to mention here only the de- 
scent for properties of morphisms, the more involved program of the descent for 
modules or schemes will be explained in Section 6.1. Consider the following 
situation. Let 

be a commutative diagram of morphisms, and assume that the triangle on the 
right-hand side is obtained from the one on the left by means of the base change 
S' + S. Frequently one wants to show that f enjoys a certain property provided 
it is known that f '  has this property. So it is useful to know that quite a lot of 
properties descend under a faithfully flat and quasi-compact base change Sf ---+ S; 
for example, topological and set-theoretical properties (cf. [EGA IV,], 2.6), finite- 
ness properties (cf. [EGA IVJ, 2.7.1), and smoothness properties (cf. [EGA IV,], 
17.7.3). For precise statements, the reader is referred to the literature. 
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2.5 S-Rational Maps 

A rational map X ---+ Y between schemes X and Y is generally defined as an 
equivalence class of morphisms from dense open subschemes of X to Y; cf. [EGA 
I], 7. Two such morphisms U -+ Y and U' -+ Y are called equivalent if they 
coincide on a dense open part of U n U'. However, when working over a base 
scheme S, this notion does not behave well with respect to a base change St + S. 
So we want to introduce a relative version of rational maps over a base scheme S 
which is compatible with base change. For our purposes, it is enough to consider 
S-rational maps between smooth S-schemes. So we will restrict ourselves to this case; 
for more general versions see [EGA IV,], 20. 

An open subscheme U of a smooth S-scheme X is called S-dense if, for each 
s E S, the fibre Us = U xs Speck(s) is Zariski-dense in the fibre Xs = X x, k(s). 
Clearly, finite intersections of S-dense open subschemes of X are S-dense in X again. 
Furthermore, if U is S-dense and open in X and if V is an open subscheme of X, 
then U n V is S-dense in V. Considering a second smooth S-scheme Y, an S-rational 
map cp : X ---+ Y is defined as an equivalence class of S-morphisms U -+ Y, where 
U is some S-dense open subscheme of X. Two such S-morphisms U -+ Y and 
U' -+ Y are called equivalent if they coincide on an S-dense open part of U n U'. 
We will say that cp : X ---+ Y is defined at apoint x E X if there is a morphism U ---+ Y 
representing cp with x E U .  The set of all points x E X where (o is defined constitutes 
an S-dense open subscheme of X. It is called the domain of definition of X; we denote 
it by dom(cp); but note that, without any further assumptions, there is no global 
morphism dom(q) -+ Y defining cp. Furthermore, if (o : X ---+ Y can be defined by 
an S-morphism U -+ Y which induces an isomorphism from U onto an S-dense 
open subscheme of Y, then cp : X ---+ Y is called S-birational. In this case we have 
an S-birational map (o-I : Y ---+ X which serves as an inverse of cp. It is clear that 
the notions S-dense, S-rational, and S-birational are preserved by any base change 
S' ---t S. In general, the same is not true for the domain of definition of S-rational 
maps. For example, set S = Spec Z, and consider the Z-rational map cp : A: ---+ A' z 
given by the rational function (T f 1)/(T - 1). Then the base change Spec Z/2Z --+ 

Spec Z transforms cp into a morphism A:,zz + 

Let f :  X + Y be a quasi-compact and quasi-separated morphism between 
arbitrary schemes X and Y. Then the direct image f,Ox of the structure sheaf of 
X i s  a quasi-coherent 0,-module, cf. [EGA I], 9.2.1, and the kernel 9 of the canon- 
ical morphism 0, -+ f,Ox is a quasi-coherent sheaf of ideals in 0,. The schematic 
image of f  is defined to be the subscheme of Y associated to 9; it is the small- 
est closed subscheme of Y that f factors through. If V is a subscheme of Y 
such that the inclusion j: V c, Y is quasi-compact, the schematic image of j 
is also referred to as the schematic closure of V in Y. Furthermore, if the sche- 
matic closure of V in Y coincides with Y, we will say V is schematically dense 
in Y. 

Lemma 1. Let Y be a smooth S-scheme, and let V be an open quasi-compact subscheme 
of Y. 
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(a) If Y is of finite presentation, the set of points s E S such that V ,  is not dense 
in Y, is locally constructible in S (i.e. constructible if S is quasi-compact; cf. [EGA 
OII1l7 9.1.12). 

(b) If V is S-dense in Y ,  it is schematically dense in Y. 

Proof. (a) We may assume that the base S is noetherian. Let A be the closed reduced 
subscheme Y - V,  and denote by p : A  --+ S the structural morphism. Then con- 
sider the set 

It is clear that is not dense in Y, if and only if s E p(P). Due to [EGA IV,], 13.1.3, 
the set F is closed in Y and, due to [EGA IV,], 1.8.5, the image p(F) is locally 
constructible in S. 

(b) follows from [EGA IV,], 11.10.10. But, for the convenience of the reader, 
we will treat the case where the base is locally noetherian. It is enough to show that 
the restriction map OY(Y1) + O,(V n Y') is injective for each open subscheme Y' 
in a basis of the topology of Y; note that V n Y' is S-dense in Y' for each open 
subscheme Y' of Y. So we may assume that S is an affine scheme Spec R, and that 
Y is an affine scheme Spec A. It suffices to show that A ---+ 0,(V) is injective. 

Since A is flat over R, cf. 2.418, the associated prime ideals of A are just the 
associated prime ideals pij of piA where p,, . . . , p, are the associated prime ideals 
of R ;  cf. [EGA IV,], 3.3.1. Since A is smooth over R, the prime ideals pij are the 
minimal prime ideals over pi A. So V meets each component V(pij) and, hence, the 
restriction map A -4 0,(V) is injective. 0 

For later reference we state that the schematic image is compatible with flat base 
change. 

Proposition 2. Let f : X ---+ Y be an S-morphism which is quasi-compact and quasi- 
separated. Let g : S' --+ S be a flat morphism, and denote by f' : X' -+ Y' the 
S'-morphism obtained from f by base change. Let Z (resp. 2') be the schematic image 
o f f  (resp. o f f  '). Then, Z x, St is canonically isomorphic to 2'. 

The assertion follows immediately from the fact that the pull-back of 0,-modules 
with respect to the projection Y' + Y gives rise to an exact functor from the 
category of 0,-modules to the category of Coy,-modules; cf. [EGA IV,], 2.3.2. 

Next we want to define the graph of an S-rational map cp : X ---+ Y, where X and 
Y are smooth S-schemes of finite type. Let U be an S-dense open subscheme of X 
such that q is given by an S-morphism U + Y. We need to know that we may 
assume U to be quasi-compact. 

Lemma 3. Let U be an S-dense open subscheme of a smooth and quasi-compact 
S-scheme X .  Then U contains an S-dense open subscheme which is quasi-compact. 

Proof. Let {U,),,, be an affine open covering of U and, for each i E I, consider the 
second projection zi : X x s  Ui - Ui. It admits a section 4 : Ui + X x s  Ui, namely 
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the tautological one. Denote by K the union of all connected components of fibres 
of zi which meet the image of 6,. Then, zi being smooth, l/i is open in X x, Ui by 
[EGA IV,], 15.6.5. Let Sat(Ui) be the image of & under the first projection 
X x, Ui + X. Since Ui is smooth and, hence, flat over S, the image Sat(Ui) is open 
in X and contains Ui; it may be viewed as a saturation of Ui with respect to the 
structural morphism X + S. Now {Sat(Ui))i,I is an open covering of X because 
U is S-dense in X, and this covering contains a finite subcover {Sat(Ui,), . . . , Sat(Ui,)> 
because X is quasi-compact. Thus U' := Ui, u... u Uin is S-dense and quasi- 
compact in U. 0 

So we have seen that cp : X ---+ Y can be represented by an S-morphism U -+ Y 
where U is S-dense open and quasi-compact in X. Let T, be the graph of this 
morphism; it is a locally closed subscheme of U x, Y (closed if Y is separated over 
S). Since U is quasi-compact over S, one can define the graph l- of cp as the schematic 
closure of U s T, in X x, Y. In order to see that the definition is independent of 
the choice of U, it suffices to mention the fact that any quasi-compact S-dense open 
subscheme V c U is schematically dense in U due to Lemma 1; hence V and U have 
the same schematic closure I' in X x, Y. 

Now let 0 be the largest open subscheme of X such that the projection 
p : X x, Y -+ X onto the first factor induces an isomorphism 

r n p - l ( a ) = + n .  

Then c dom(cp). Furthermore, if Y is separated over S, each graph T, as above is 
closed in U x, Y so that T n (U x, Y) = ru. Therefore we have an isomorphism 

which shows U c a .  This shows dom(cp) c 0 and thus dom(cp) = a .  In particular, 
there is a unique S-morphism dom(q) -+ Y corresponding to the S-rational 
map cp : X ---+ Y; but note that, in general, dom(cp) is not necessarily quasi- 
compact. 

Example 4. Let ( = and y = (yj),,, be systems of variables, and let k be a field 
with char(k) # 2. Let R denote the k-algebra k[(,y]/((y) where ((y) is the ideal 
generated by all products tillj, i E I and j  E J. Set S = Spec R. Then we can view 
X = Speck[(] and Y = Spec k[y] as closed subschemes of S, intersecting each 
other at a single point, namely, at the origin of X and Y. Furthermore, the union of 
X and Y is S. Now fix indices i, E I and j ,  E J, and consider the S-rational map 
cp : A: ---+ A; given by the rational function 

T2 - 1 

(T tio + l)(T- Vj,, - 1) ' 
where T is a coordinate of A;. Let D be the complement in A; of the domain of 
definition dom(cp). Then D n A& is the union of two closed subsets of A;; namely, 
of the zero set of (T - ti, + 1) and of the closed point ((, T- 1) which lies over the 
origin of X. A similar assertion is true for D n A:. Since char(k) # 2, both parts 
are disjoint. Thus, if the system t contains infinitely many variables, the domain of 
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definition dom(cp) cannot be quasi-compact, since a subset of A; consisting of a 
single closed point cannot be described by finitely many equations. 

Proposition 5. Let X, X', Y be smooth S-schemes of finite type, and assume that Y is 
separated over S. Let cp : X---+ Y be an S-rational map, and consider a flat 
S-morphism f : X' --, X .  Then f -'(dom(cp)) is an S-dense open subscheme of X' ,  and 
cp 0 f is an S-rational map from X' to Y which satisfies 

In  particular, i f f  is faithfully flat and if cp 0 f is defined everywhere on X', the map 
cp is defined everywhere on X .  

Proof. Since f is flat and locally of finite presentation, cf. [EGA IV,], 1.4.3, the map 
f is open. Using this fact, one shows f - ' ( d ~ m ( ~ ) )  is S-dense in X'. So cp 0 f is an 
S-rational map and dom(q 0 f )  contains f -'(dom(cp)). Denote by r c X x s  Y the 
graph of cp and by T' c X' x, Y the graph of q o f .  Then we see from Proposition 
2 that 

X' x , r = r l .  

Let p : T + X and p' : I-' ---, X' be the projections onto the first factors. Set 
U' := dom(cp 0 f), and consider its image U := ,f(U') which is an open subscheme 
of X .  Since U' -+ U is faithfully flat, the projection p is an isomorphism over U if 
and only if p' is an isomorphism over U'. Therefore U c dom(q), and the assertion 
is clear. 0 

Finally we want to show that the domain of definition of S-rational maps is 
compatible with flat base change. 

Proposition 6. Let cp : X ---+ Y be an S-rational map between smooth S-schemes of 
finite type where Y is separated over S. Let S' + S be a flat morphism, and denote 
by cp' : X' ---+ Y' the S'-rational map obtained from f by base change. Then 

Proof. It is clear that dom(cp) xs  S' c dom(cpl). To show the opposite inclusion, 
denote the graph of cp by r c X x, Y and the graph of cp' by P c X' xsr  Y'. Since 
the schematic closure commutes with flat base change, we have 

Let p : I- + X and p' : T' --, X' be the projections onto the first factors. Further- 
more, consider a point x' E dom(cpl), and let x be its image in X. Then we get a 
commutative diagram 

Spec Ox,,,, - Spec Co,,, 
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where the map in the first row is faithfully flat. Therefore, the fact that p' is an 
isomorphism over Spec Ox,,,, implies that pis an isomorphism over Spec Ox,,. Since 
Y is of finite type over S, we see that is of finite type over X. Hence, there exists 
an affine open neighborhood W of x such that p induces a closed immersion 
p-l(W) -+ W. Let Z be the schematic image in W of this map and let U be a 
quasi-compact S-dense open subscheme of X where cp is defined. Then the open 
subscheme U n W of W is contained in Z. Since U n W is S-dense in W, the scheme 
Z coincides with W. Thus p-l(W) + W is an isomorphism, and x is contained 
in dom(q). 0 



Chapter 3. The Smoothening Process 

The smoothening process, in the form needed in the construction of Ntron models, 
is presented in Sections 3.1 to 3.4. After we have explained the main assertion, we 
discuss the technique of blowing-up which is basic for obtaining smoothenings. The 
actual proof of the existence of smoothenings is carried out in Sections 3.3 and 3.4. 
As an application, we construct weak Neron models under appropriate conditions. 

Our version of the smoothening process differs from the one of Neron insofar 
as we have added a constructibility assertion, thereby avoiding the use of pro- 
varieties; for more details see Section 1.6. A generic form of Ntron's smoothening 
process has also been explained by M. Artin in [4]. 

The chapter ends with a generalization of the smoothening along a section where 
the base is a polynomial ring over an excellent discrete valuation ring. This kind of 
smoothening technique is very close to that developed by M. Artin [4] for the proof 
of his approximation theorem; see also Artin and Rotthaus [I]. 

3.1 Statement of the Theorem 

In the following let R be a discrete valuation ring with field of fractions K, with 
residue field k, and with uniformizing element n. We denote by Rh a henselization 
of R and by R" a strict henselization of R. Then Rh and Rsh are discrete valuation 
rings with uniformizing element TC and the residue field of R" equals the separable 
closure k, of k. For any R-scheme X, let X, = X OR K be its generic fibre and 
X, = X OR k its special fibre. 

Definition 1. Let X be an R-scheme of finite type whose generic fibre X ,  is smooth 
over K .  A smoothening of X is an R-morphism f :  X' -- X which satisfies the 
following conditions: 

(i) f is proper and is an isomorphism on genericfibres. 
(ii) For each itale R-algebra R', each Rf-valued point of X lifts uniquely to an 

R'-valued point of X' which factors through the smooth locus Xi,,,,, of X'. More 
precisely, the canonical map X~,,,,,(R') + X ( R ' )  is bijective. 

Each ttale R-algebra R' is semi-local. So in order to test condition (ii), one may 
restrict oneself to local extensions R' of R which are ttale. In particular, such rings 
are discrete valuation rings; they are flat over R. Due to the valuative criterion of 
properness [EGA 111, 7.3.8, condition (i) implies that the map X'(R') ---t X(R1) 
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deduced from f is bijective for any flat R-algebra R' which is a discrete valuation 
ring. Hence, if condition (i) is satisfied, condition (ii) says that, for each local etale 
extension R' of R, the R1-valued points of X' factor through the smooth locus of X'. 
As seen in Section 2.3, the strict henselization Rsh of R is the direct limit of all local 
ttale extensions of R. So condition (ii) is fulfilled if and only if the canonical map 
Ximooth(RSh) -+ X(RSh) is bijective. 

In general, a smoothening X' + X is not a desingularization of X (i.e., a proper 
morphism X" -+ X from a regular scheme X u  to X which is an isomorphism over 
the regular locus of X), because the points in the complement of the smooth locus 
of X' do not need to be regular. However, a desingularization of X is always 
a smoothening, as we will see by using the following fact from commutative 
algebra. 

Proposition 2. Let z : R + A and E : A 4 R be morphisms of regular local rings such 
that E o z = id, (i.e., E defines a section of the morphism Spec A + Spec R associated 
to z). Then the image of each regular system of parameters of R under z is part of a 
regular system of parameters of A. If 3 is the kernel of E ,  then 3 is generated by a part 
of a regular system of parameters. If t,, . . . , t, is a minimal system of generators of 
3 ,  the completion of A with respect to 3 is canonically isomorphic to R[[tl, . . . , t,]]. 
Proof. Let m be the maximal ideal of R, and let s,, . . . , s, be a minimal system of 
generators of m. Let m' be the maximal ideal of A. As E o z = id,, the residue fields 
R/m and Alm' are canonically isomorphic, and m/m2 may be viewed as a sub- 
space of m'/m'2. Hence z(sl), . . . , z(s,) is a part of a regular system of parame- 
ters of A. So there exist elements t,, . . ., t, in m' such that z(sl), . . . , ~(s,), t i ,  . . . , t, 
is a regular system of parameters in A. After replacing ti by ti - z(&(ti)), we 
may assume that t,, . . . , t, are in the kernel 3 of 8. An easy calculation shows 
3 = (t,, . . . , t,) as required. The assertion concerning the 3-adic completion of A 
follows immediately from the definition of a regular system of parameters. 17 

In order to show that a desingularization X" -+ X is a smoothening of X one 
has only to verify that, for any ttale R-algebra R', each a E X"(R1) factors through 
the smooth locus of X". One knows that X OR R' is a desingularization of X OR R' 
(see 2.319) and, furthermore, that the image of a : Spec R' --t X" factors through the 
smooth locus of X" if the corresponding fact is true for (a, id) : Spec R' + X" 8, R' 
([EGA IV,], 17.7.4). So we may assume R = R'. Then it follows from Proposition 
2 that X" is smooth over R along a; cf. [EGA IV,], 17.5.3. 

Theorem 3 (Smoothening Process). Let X be an R-scheme of finite type whose generic 
fibre X, is smooth over K. Then X admits a smoothening f : X' -+ X. 

Moreover, one can construct f as a finite sequence of blowing-ups with centers in 
the special fibres. In particular, if X is quasi-projective over R, the same is true for X'. 

Removing from X' the non-smooth locus, we see: 

Corollary 4. Let X be as before. Then there is an R-morphism f : Xu --+ X from a 
smooth R-scheme X" of finite type to X such that 
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(i) f is an isomorphism on generic fibres, and 
(ii) the canonical map X"(Rsh) + X(Rsh) is bijective. 

Such schemes X" are not unique, and they do not need to be proper over R,  
even if X is proper over R. 

The smoothening process provides a first step towards the construction of Nkron 
models. For example, if X, is an abelian variety with a projective embedding 
X, c P;, one can apply the smoothening process to the schematic closure X of X, 
in P;. Restricting the resulting R-scheme to its smooth locus, we obtain a smooth 
R-model of X, which, although it might not be proper over R, nevertheless satisfies 
the valuative criterion of properness for the special class of valuation rings which 
are &tale over R. 

3.2 Dilatation 

We have claimed that a smoothening of X can be constructed by blowing up 
subschemes of the special fibre. First, let us explain what happens to the sections 
X(R) when such a blowing-up is applied to X. Consider the following example. Set 
X := Spec R[T], where T = (TI,. . . , T,) is a set of variables, and let Y ,  be the 
reduced subscheme of X which consists of the origin of the special fibre X, of X. 
Then Y ,  is defined by the ideal 3 c R[T] which is generated by n, TI, . . . , T,. Using 
an absolute value on K belonging to the valuation ring R, the R-valued points of 
X correspond bijectively to the rational points x, E Ak with I x(x,)l 5 1, i = 1, . . . , 
n. Furthermore, the R-valued points of X which specialize into Y, correspond to 
the rational points x, E A;( with I T(x,)l 5 1x1. Now let X' -+ X be the blowing-up 
of Y ,  in X. Let 9' be the sheaf of ideals of Ox, generated by 3, and denote by 
Xh the set of points of X' at which 9' is generated by n. Then Xh = Spec RIT1], 
where T' = (Ti,. . . , T,') is a second set of variables, and the morphism Xh + X 
corresponds to the morphism induced by sending to nTf for i = 1, . . . , n. It is seen 
that Xh(R) is mapped bijectively onto the set of those R-valued points of X which 
specialize into Y,; hence Xh(R) corresponds to the rational points x, E A: which 
satisfy I T(x,)l 5 I nl. Furthermore, two points x, y E X;(R) have the same specializa- 
tion over k if and only if IT(x,) - T,(y,)l 5 1x21 for all i. We will call X; the 
dilatation of Y,  in X. 

In order to construct dilatations of more general type, consider an arbitrary 
R-scheme X of finite type and a closed subscheme Y ,  of the special fibre X,. Let Y 
be the associated sheaf of ideals in Ox; in particular, n E 4. The blowing-up X' of 9 
on X is defined as the homogeneous spectrum Proj(Y) of the graded Ox-algebra 
9 = @",,P (cf. [EGA 111, 3.1 and 8.1.3). Locally, it is defined as follows. 
If X = Spec A, the sheaf of ideals 4 is associated to an ideal 3 of A. Since 
A is noetherian, 3 is generated by finitely many elements go = n, g,, . . . , g, of 
A. Then X' is the closed subscheme of P:, which is given by the homogeneous 
ideal 

3' = ker (ACT,, . . . , T,] + @ 3") , 
n 20 
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where we consider the graded homomorphism sending the variable to gi E 3'. 
Let Ui be the affine open subscheme of Pi where 7; does not vanish. Then X' n Ui 
is affine, and the A-algebra of its global sections is given by 

where, suggestively, we have written 

That we have to divide by the gi-torsion corresponds to the fact that the sheaf of 
ideals 9' = 9. Lo,, is invertible on X'. Furthermore, one shows that X' is R-flat (i.e., 
has no ?I-torsion) if the same is true for X .  

Returning to the case of a global R-scheme X ,  we set 

Xk := { x  E XI; 9; is generated by ?I} , 

which is an open subscheme of X'. Over an affine open part Spec A of X ,  it consists 
of the affine A-scheme Spec A;,,, where 

So Xk is always flat over R, even if X is not. Let u :  Xk -+ X be the canonical 
morphism, and denote by an index k restrictions to special fibres. The pair (Xk,  u) 
has the following universal property: 

If Z is a flat R-scheme, and if u : Z + X is an R-morphism such that its restriction 
u, to special fibres factors through Y,, then v factors uniquely through u. 

Indeed, since the problem is local on X and Z ,  we may assume that both schemes 
are affine, say X = Spec A and Z = Spec B. Using notations as before, the fact 
that vk factors through Y, implies that the ideal 3. B is contained in zB. Hence 
there exist elements hi E B with v*gi = nhi; the elements hi are unique, because B 
has no ?I-torsion. Thus, the A-morphism ACT,, . . . , T,] + X sending to hi 
yields a morphism w* : A;,, -+ B and hence a morphism w : Z -+ Xk .such that 
v = u o w .  

We summarize what we have shown. 

Proposition 1. Let X be an R-scheme of finite type, let Y ,  be a closed subscheme of 
its special fibre X,, and let 9 be the sheaf of ideals of 0, defining Y,. Let X' -+ X 
be the blowing-up of Y, on X ,  and let u : Xk + X denote its restriction to the open 
subscheme of X' where 9. Lo,, is generated by ?I. Then 

(a) Xk is a flat R-scheme, and u, : (Xk), -+ X,  factors through Y,. 
(b) For any flat R-scheme Z and for any R-morphism v : Z -+ X such that 

vk : Zk -+ X,  factors through Y,, there exists a unique R-morphism v' : Z ---+ Xk such 
that v = u o v'. 
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Due to property (b), the couple (XA, u) is unique (up to canonical isomorphism) 
in the class of all couples (2, v) satisfying property (a). We call X; the dilatation of 
Y ,  on X .  It is clear that one can construct dilatations also for locally closed 
subschemes of X,. We want to mention some elementary properties of dilatations. 

Proposition 2. (a) All dilatations factor through the largest flat R-subscheme of X ,  
which is given by the ideal of n-torsion in Ox. 

(b) Dilatations commute with flat base change R ---, R' where R' is a discrete 
valuation ring such that n. is also a uniformizing element of R'. 

(c) Let X be a closed subscheme of an R-scheme 2 ,  and let Y ,  be a closed subscheme 
of X,. Then the dilatation Xk of Y ,  on X can be realized as a closed subscheme of the 
dilatation Z;  of Y ,  on 2. 

(d) Dilatations commute with products: Let X i  be R-schemes, and let Y,' be 
subschemes of Xk for i = 1, 2. Then the dilatation of Y,' x ,  on X1 X R  X 2  is the 
product (X1), x ,  (X2):, of the dilatations of Y,' on Xi.  In particular, if X is an R-group 
scheme, and if Y ,  is a subgroup scheme of X,, the dilatation Xk of Y ,  on X is an R-group 
scheme and the canonical map Xk + X is a group homomorphism. 

Finally we investigate how dilatations behave with respect to smoothness. 

Proposition 3. Let X be a smooth R-scheme, and let Y ,  be a smooth k-subscheme of 
X,. Then the dilatation Xk of Y ,  on X is smooth over R. 

Proof. Let u : Xk + X be the dilatation of Y, on X ,  let x' be a point of the special 
fibre of XA, and set x = u(xl) .  Let n be the dimension of X,  at x, and let r be the 
dimension of Y ,  at x. Let -9 be the sheaf of ideals of 6, defining Y,, and let 4 = 4 / n Q  
denote the sheaf of ideals of Oxk defining Y ,  in X,. Due to the Jacobi Criterion 2.217 

- 
there exist f,, . ..., f ,  E c " , ~ , ~  and &+,, .. ., g, E such that f,, . . ., f,, g,+,, ..., g, 
form a system of local coordinates of X,  at x (cf. 2.2/12), and such that a+,, . . . , g, 
generate &. On an affine neighborhood U of x in X there exist liftings f i  E O,(U) 
of 1 and gj E Y ( U )  of gj. Then f,, . . ., f , ,  gr+,, . . ., g, form a system of local 
coordinates of X over R at x, and n, gr+,, . . . , g, generate 4 at x. From the local 
construction of XA we see that dfl ,  . . . , df,, dg:+,, . . . , dg; generate ClihiR at x', where 
g,I E satisfies gj = ngj. Hence Cl& is generated by n elements at x'. Since the 
relative dimension of X; over R is at least n at x' (cf. [EGA IV,], 13.1.3), it follows 
from 2.418 and 2.2115 that Xk is smooth over R at x'. 0 

3.3 Neron's Measure for the Defect of Smoothness 

Throughout this section, let X be an R-scheme of finite type whose generic fibre 
X ,  is smooth over K. Let a be an Rsh-valued point of X ,  and let a, (resp. a,) denote 
its generic (resp. special) fibre. Consider the pull-back a W i , ,  of the Ox-module of 
relative differential forms from X to Spec R". By abuse of notation, we will identify 
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it with its module of global sections. Thereby a*Q:,, becomes an Rsh-module of 
finite type. Since R" is a discrete valuation ring, this module splits into a direct sum 
of a free part and of a torsion part. The rank of the free part is just the rank of Q:,, 
at a, which is the dimension of X K  at a, (since X K  is smooth at a,). Looking at the 
torsion part, we define 

6(a) := length of the torsion part of a*Q$, 

as Nkron's measure for the defect of smoothness at a. First we want to show that, 
indeed, 6(a) provides a measure of how far X is from being smooth at a. 

Lemma 1. Let a be an R"-valued point of X .  Then a factors through the smooth locus 
of X i f  and only i f  6(a) = 0. 

Proof. If a is contained in the smooth locus of X, then Q:,, is locally free at a, and, 
hence, a*Q:,, is free. Thus we have 6(a) = 0. Conversely, if 6(a) = 0, then a*QilR 
can be generated by d elements, where d is the dimension of X K  at a,. In particular, 
LR&, and, hence, can be generated by d elements at a,. Since the relative 
dimension at a, is at least d (cf. [EGA IV,], 13.1.3), it follows from 2.2115 that X ,  
is smooth over k at a, of relative dimension d. Then X is smooth over R at a,. This 
follows from 2.418, if it is known that X is R-flat at a,. Avoiding the interference of 
flatness, one can proceed as follows. Choose a representation of a neighborhood 
U c X of a, as a closed subscheme of some A", Due to the Jacobi Criterion 
2.2/7(c), there exist local sections g,,, , . . . , g, on a neighborhood of a, G A: which 
vanish on U ,  and which have the property that U, is defined by (n, g,,, , . . . , g,) at 
a, and that dg,,,, . . . , dg, generate a direct factor of ah,,, at a,. Then, in a 
neighborhood of a, the subscheme Z of Ah iven  by g,,, , . . . , g, is smooth of relative 
dimension d; furthermore locally at a, the scheme Z contains U as a closed sub- 
scheme. Thus, by reasons of dimension and of smoothness, the generic fibres UK 
and 2, coincide at a, and, hence, U and Z coincide at a,. 0 

The Jacobi Criterion provides a useful method to calculate 6(a). Namely, let U c X 
be a neighborhood of a which can be realized as a closed subscheme of an R-scheme 
Z where Z is smooth over R and has constant relative dimension n. Assume that 
there exist z , ,  . . . , z, on Z such that dz,, . . . , dz, constitute a basis of a;,,, and let 
g,, . . . , gm be functions on Z which generate the sheaf of ideals of Oz defining U in 
Z. Representing the relative differentials dg, with respect to the basis dz,, . . . , dz,, 
say 

" 867 dg, = L d z ,  , 
v=l  dz, 

we define the Jacobi matrix of g,, . . . , g, by 
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If d is the relative dimension of X at a,, we call A the set of all (n - d)-minors A of J. 
In this situation, Neron's measure for the defect of smoothness at a can be calculated 
from the minors A E A. To give a precise statement, let v(r) denote the z-order of 
elements r E R. 

Lemma 2.6(a) = min{v(a*A); A E A). 

Proof. Due to the Jacobi Criterion 2.217, there exists a minor A E A with a*A # 0; 
any minor A' of J with more than n - d rows will satisfy a*A1 = 0. Furthermore, it 
follows from 2.112 that a*RilR is representable as a quotient FIM, where F := 
a*Q.&, is a free R"-module of rank n, and where M is the submodule which is 
generated by a*dg,, . . . , a*dg,. Since the rank of M is (n - d), one can find a basis e l ,  
. . . , en of F such that M is generated by elements rd+,ed+,, . . . , rnen where ri E Rsh 

and ri # 0; this follows from the theory of elementary divisors. Thus the length of 
the torsion part of F/M, which is 6(a) by definition, is given by the formula 

Now consider the ideal in R" which is generated by all elements a*A, A E A; it equals 
the ideal generated by all values which are assumed on M by alternating (n - d)- 
forms on F. Obviously, this ideal is generated by the product r,+, . . . r,, and there 
exists a minor A E A with (a*A) = (rd+,. . . r,). Thus the assertion is clear. 

The method we have just used can easily show that 6(a) is bounded when a 
varies over the set of R"-valued points of X. 

Proposition 3. There exists an integer c such that 6(a) 5 c for all a E X(R"). 

Proof. Since an R-scheme of finite type is quasi-compact by definition, we may 
assume that X is an affine R-scheme Spec A. Choose a representation 

of A as a quotient of a free polynomial ring R[z,, . . . , z,] For integers d, let (X,), 
be the union of all irreducible components of dimension d of X,. Then (X,), 
is non-empty for at most finitely many d and, since X ,  is smooth, X, is the dis- 
joint sum of the (X,),. Let Xd be the schematic closure of (X,), in X; i.e., 
let X, be the subscheme of X which is defined by the kernel of the homo- 
morphism A -+ Co,((X,),). Let A, be its ring of global sections. Considering the 
Jacobi matrix 

let A be the set of all (n - d)-minors A of J. Then, due to the Jacobi Criterion 2.217, 
we see for each x E (XK)d that there exists a minor A E A satisfying A(x) # 0. Hence 
the family (A),.. generates the unit ideal in A, OR K. After chasing denominators, 
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one can find elements f,, . . . , f, E A,, minors A, ,  . . . , A, E A, as well as an integer 
c 2 0 such that 

f 

Hence, by Lemma 2, we have 6(a) 5 c for all a E X(R") whose generic fibre a, 
belongs to (X,),. Since only finitely many of the schemes (X,), are non-empty, we 
see that 6 is bounded on X(R"). 0 

It follows that the function 6 assumes its maximum on X(Rsh). The maximum 
of 6 can be viewed as a global measure of how far X is from being smooth at the 
points of X(R"). Since we want to construct a smoothening of X by blowing up 
subschemes of X,, we have to define suitable centers Y,  in the special fibre such that 
the defect of smoothness, i.e., the maximum of 6, decreases. Smooth R"-schemes 
have many sections (cf. 2.315). So it is natural to look at subschemes Y ,  c Xk such 
that there exist enough Rsh-valued points of X whose special fibres factor through 
Y,. More precisely, if k, denotes the residue field of R", we will consider the following 
property (N) for couples (X, Y,) consisting of an R-scheme X of finite type and of a 
closed subscheme Yk c X,: 

(N) The family of those k,-valued points of Y,, which lqt to Rsh-valued points of 
X, is schematically dense in Y,. 

For the notion of schematic density (more precisely, of schematic dominance) 
see [EGA IV,], 11.10.2. In our situation the condition just means that the sheaf 
of Ox-ideals defining Y,  equals the intersection of all kernels of morphisms 
a* : Ox + a,Os,,, ks, where a varies over the set of R"-valued points of X whose 
special fibres factor through Y,. 

Since the strict henselization Rsh is the limit over all local etale extensions R' of 
R, condition (N) is equivalent to the following condition: the set of closed points of 
Y ,  which lift to R'-valued points of X for some local ttale extension R' of R 
is schematically dense in Y,. For example, if X is smooth over R, and if Y,  
is a geometrically reduced closed subscheme of X,, then it follows from 2.2116, 
2.2113, and 2.2114 that (X, Y,) has the property (N). 

Lemma 4. If the couple (X, Y,) satisfies property (N), then Y ,  is geometrically reduced, 
and the smooth locus of the k-scheme Y,  is open and dense in Y,. 

Proof. Property (N) yields that the k,-valued points of Y ,  are schematically dense in 
Y,. Since k, is a geometrically reduced k-algebra, Y,  is also geometrically reduced 
(cf. [EGA IV,], 11.10.7). So the assertion follows from 2.2116. 

Next we want to establish the key tool which is needed for the proof of Theorem 
3.113. It provides us with a means of lowering the defect of smoothness of X so that 
eventually X becomes smooth at the points we are interested in. 
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Proposition 5. Let Y, be a closed subscheme of X, such that the couple (X, Y,) satisfies 
property (N). Let Uk be an open subscheme of Y, such that U, is smooth over k and 
such that the pull-back QiIRluk of Ri lR to U, is locally free. Let X; + X be the 
dilatation of Y, in X and, for each a E X(R") with a, E Y,, denote by a' E Xk(R") the 
unique lifting of a. Then if a E X(Rsh) specializes into a point of Uk, we have 

In particular, 6(a1) < 6(a) for all Rsh-valued points a of X which specialize into points 
of U, and which are not contained in the smooth locus of X. 

First we want to look at an example which explains how the proposition works 
in a special situation. Let X be the closed subscheme of A; = Spec R [TI, T2] which 
is defined by the equation TI T2 = n2. Then X is afine, and its R-algebra of global 
sections is 

Let Y, be the closed subscheme of X, which is defined by (71, TI, T,); it consists of a 
single k-valued point. Using the R-morphism 

this point lifts to an R-valued point of X. Hence (X, Y,) satisfies property (N). 
Furthermore, an easy calculation shows 6(a) = 1. The dilatation Xk of Y, in X is an 
affine A-scheme with coordinate ring 

A' = ACT;, Ti]/(T, - nT;, T2 - nTi) = R[T;, Ti]/(T;Ti - 1) . 

In particular, Xk is smooth over R, and the lifting a' E Xk(R") of a, which corres- 
ponds to the R-morphism 

A 1 + R ,  T,'-1, Ti-1, 

fulfills 6(af) = 0. 

Proof of Proposition 5. Since the problem is local on X, it is enough to work in a 
neighborhood of a point u 6 U,. So we may assume that X is affine, say X = Spec A, 
that U, coincides with Y,, and that the latter is irreducible. Let r be the dimension 
of Y,. Then the sheaves and QiIRlyk are locally free and the first is obtained 
from the second one by dividing through the submodule which is generated by all 
differentials dg of functions g E A vanishing on Y, (cf. 2.112). Shrinking X if necessary, 
we can assume that both sheaves are free and that there exist elements y,, . . . , jj,., 
F,, . . . , z, E A having the following properties: 

- The differentials dy,, . . . , d& give rise to a basis of a:klk, the functions T,, . . . , z ,  
vanish on Y,, and dy,, . . . , dyr, dF,, . . . , &,, give rise to a basis of QilRIYk. 

It follows then from Nakayama's lemma that Q i l R  is generated by dy,, . . . , dj~,., 
dZ,, . . . , dZ, at all points of Y,. However, in general we will not have a basis, because 
Ri lR does not need to be locally free. Therefore we want to construct a closed 
embedding X c, Z into a smooth R-scheme Z such that the above generators of 
nil, lift to a basis of Qi1,. This is possible after shrinking X. 



3.3 NBron's Measure for the Defect of Smoothness 69 

Namely, represent A as a quotient of a free polynomial ring RCT,,. . . , T,+,+,] 
with respect to an ideal H and require that is a lifting of yi for i = 1, . . . , r and 
that T,+j is a lifting of yj for j = 1, . . . , n. Since fiil,Irk is free of rank r + n, we know 
that Ri, @ k(u) is of dimension r + n over k(u) where u is the point in Y,  around 
which we want to work. Hence there exist h,, . . . , h, E H such that the Jacobi matrix 

at u is of rank m. Writing Z for the closed subscheme of A',+"+" which is defined by 
h,, . . . , h,, we have closed immersions 

where Z is smooth at u of relative dimension r + n. Let C be the R-algebra of global 
sections of Oz, and represent the algebras of global sections on Y, and X as quotients 
of C; say A = C / I  with I  = Id(X) and B = C / J  with J = Id(&). So we know 
I  c J .  Furthermore, let yi E C be the image of for i = 1, . . . , r, and zj E C the 
image of T,+j for j = 1, . . . , n. Then yi is a lifting of yi E A, and the same is true for 
zj and %. Replacing Z by an affine open neighborhood of u, we may assume that Z 
is smooth over R of relative dimension r + n and that dy,, . . . , dyr, dz,, . . . , dz, form 
a basis of fiil,. Also we may assume that Y,, as a subscheme of Z, is defined by n, 
zl, . . . , z,; i.e., that J = (z,zl,. . . ,z,). Namely, these functions define a smooth 
k-subscheme Y,' of Z of dimension r .  Since Y, is contained in Y,' and since Y, is 
smooth of dimension r, we have Y, = Y,' locally at u. 

Now we come to the key point of the proof. We claim I  c J 2.  This relation will 
enable us to give the desired estimate for the function 6, when X is replaced by the 
dilatation Xk. So consider an element f E I .  Since I c J ,  we can write 

where g, gi E C .  The differential df vanishes on X and hence on Y,. Therefore we have 

Then gilr, = 0, i.e., g,, ..., g, E J ,  since z,,  . .., z, have been chosen in such a 
way that their differentials form part of a basis of !2;,,Iyk. In particular, we can write 
f as 

with 

since z,, . . . , z, E J. For any a E x(RSh) with a, E Y,, we know hl(a) E 0 (mod n) 
for all h' E J .  Therefore h(a) = 0 (mod n2). On the other hand, we have f(a) = 0 
for all a E X(RSh). Thus the equation (*) implies g(a) - 0 (mod 71) for all a E X(R")  
such that a, E Y,. Since the couple (X, Y,) satisfies property (N), this yields glYk = 0 
and, hence, g E J .  SO I c J 2  as claimed. 
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Next consider the dilatation X; of Y,  in X. It can be realized as a closed 
subscheme of the dilatation Z; of Y ,  in Z. Giving a more precise description of these 
dilatations, we have Z; = Spec C' where 

z .  
and Zk is smooth over R, since Z is smooth over R (cf. 3.213). Writing zi := 2, the 

71: 

differentials dy,, . . . , dy,, d z i ,  . . . , dzi form a basis of Q$,,,. Then X; = Spec A' with 
A' = C'II', and the ideal I' c C' is the smallest one such that I' contains the image 
of I and such that C'lI' has no .n-torsion; i.e., I' consists of those elements c' E C' 
such that 71:"~' E IC' for some v E N. Since I c J2,  any element f E I can be written 
as 

(t) f = 71:"' 

with f '  E C'; hence f '  E I'. The differential off has a representation 

in R$,,, where bi, cj E C .  It implies the representation 

in Q;,,,. Furthermore, we have a representation 

df' = bidyi + cj'd4 
i=l j=1 

in a$,/,, where bi, cj' E C'. Then the relation ( J f )  implies 

since the dy,, dzj' form a basis of Q$.iR. Now choose a point a E X(R Sh)  with 
a, E U, = & and let a' E Xk(RSh) be the iifting of a. Let d be the dimension of X ,  at 
a,. In order to relate 6(a1) to 6(a), we want to apply Lemma 2. So let f,, . . . , f, be 
generators of I .  There exists an (r + n - d)-minor A of the Jacobi matrix 

such that 6(a) = v(A(a,)). Then, using the equation (t), we can define elements 
f,' E I' by f,' := 71:-'fA. Let A' be the minor of the Jacobi matrix 

which corresponds to A. Then the relations (t.1.) show that A' is obtained from A by 
multiplying each column of A with a factor TC-I or 6'. Thus 
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and, hence, 

6 ( a f )  5 6(a) -  (n  + r - d ) .  

If n + r - d > 0, the assertion of the proposition is clear. If n + r = d, the smooth 
R-scheme Z has relative dimension d, and this is just the dimension of X ,  at a,. So 
2, and X K  coincide on an open neighborhood of a,. Since X is a closed subscheme 
of Z, and since Z K  is schematically dense in Z, we see that X coincides with Z locally 
at a. So a factors through the smooth locus of X ,  and 6(a) = 0 in this case. 

We mention here that, as we have seen, the proof actually yields a better estimate 
for the defect of smoothness than the one stated in Proposition 5. For example, if 
X K  is equidimensional of dimension d, if YK is equidimensional of dimension r, and 
if S2:,,IYk is locally free of rank r + n, then 

3.4 Proof of the Theorem 

In order to prove Theorem 3.113, let us fix the notation we will use. As in the 
preceding section, X is an R-scheme of finite type whose generic fibre X K  is smooth 
over K .  Let E be a subset of X(R"). A closed subscheme Y ,  of X ,  is called 
E-permissible if the following conditions are satisfied: 

(i) The set of ks-valued points of Y ,  which lift to Rsh-valued points in E is schemati- 
cally dense in Y,; in particular, the couple ( X ,  Y,) has the property (N) .  

(ii) Let U, be the largest open subscheme of Y ,  which is smooth over k and where 
SZ2,,lyk is locally free. Then there is no k,-valued point in Y ,  - U, which lifts to a point 
in E. 
Note that the subscheme U, c Y ,  of (ii) is always Zariski-dense in Y ,  due to Lemma 
3.314. Using the notion of E-permissible subschemes, we can formulate Proposition 
3.3/5 in a more precise form. 

Lemma 1. Let Y, be an E-permissible subscheme of X,, and let X' + X be the 
blowing-up of Y ,  on X .  For a point a E E, denote by a' E X1(R") its (unique) lifting. 

(a) If a does not specialize into a point of Y,, then 6(a) = 6(a1).  
(b) If a specializes into a point of Y,, then 6(a')  5 max(0,6(a) - 1 ) .  

Proof. If a, $ &, there exists an open neighborhood of a over which the blowing-up 
is an isomorphism; hence 6(a) = 6(a'). If a, E Y,, Proposition 3.211 shows that the 
point a' is necessarily contained in the dilatation X; of Y ,  in X .  Since X; is an open 
subscheme of X' and since Y,  is E-permissible in X ,  Proposition 3.315 yields the 
desired estimate for 6(a1). 0 

If Y ,  is E-permissible in X, the blowing-up X' --, X of Y ,  on X is said to be 
E-permissible. For any blowing-up X' -+ X of a subscheme of the special fibre X,, 
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one has a canonical bijection X'(Rsh) l X(Rsh). So we may identify E c X(Rsh) 
with the corresponding subset of X'(Rsh). Hence we get the notion of E-permissible 
blowing-ups for X' again. This allows us to formulate a more precise version of 
Theorem 3.113. 

Theorem 2. Let X be an R-scheme of finite type with a smooth generic fibre X,, and 
let E be a subset of X(Rsh). Then there exists a proper morphism X' + X which 
consists of a finite sequence of E-permissible blowing-ups with centers contained in 
the non-smooth parts of the corresponding schemes, such that each R"-valued point 
a E E factors through the smooth locus of X'. I n  particular, if X is quasi-projective 
over R, so is X'. 

Proof. For a subset E c X(R"), we introduce the defect of smoothness of X along 

E by 

6(X, E) := max{d(a); a E E} . 

Due to Proposition 3.313, we know 6(X, E) is finite. So we can proceed by induction 
on 6(X, E). If 6(X, E) = 0, then each a E E factors through the smooth locus of X 
(cf. Lemma 3.3/1), and the assertion is trivial. So let 6(X, E) > 0. Since we consider 
only blowing-ups with centers in the non-smooth locus, we can remove from E all 
points which factor through the smooth locus of X, and thereby we may assume 
6(a) > 0 for all a E E. 

For the induction step, we have to arrange things in such a way that Lemma 
1 can be applied. We do this by introducing a canonical partition of the set 
E c X(Rsh). First let us fix some notations. For a subset F c X(R"), we denote by 
F, the subset of X(ks) which is induced from F by specialization. Identifying points 
in F, with their associated closed points in X,, let 6 be the Zariski closure of Fk in 
X,, provided with the canonical reduced structure. Then (X, 6)  satisfies property 
(N). 

In order to obtain the desired partition of E, set F1 := E and Y,l := q. Let U,1 
be the largest open subscheme of which is smooth over k and where C2$,,lYL is 
locally free, and define 

E' := {a E F1;ak E Ukl} . 

Proceeding in the same way with F2 := F1 - El ,  and so on, we obtain 
(i) a decreasing sequence F1 2 F2 

2 . . . in X(Rsh), 
(ii) subsets El,  EZ, . . . c X(R") such that E decomposes into a disjoint union 

E = ~ ' i , . . . i , ~ ' i , ~ " l  

(iii) dense open subschemes U,' c Y,' := such that EL c Ul and, moreover, 
Y,'+' c Y,' - U,'; in particular, dim Y,'+l < dim Y,' if Y,' # @. 

So we see that necessarily Y,'+l = @ for some t E N big enough and, consequent- 
ly, that Ff+' = @. Hence we have the partition 

E =  E 1 6 . . . 6 E t .  

Since each Ul is smooth over k, and since C2:,,lyL is locally free on Ul, it follows 
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that each Y,' is Ei-permissible, and that Y,' is, in fact, E-permissible. Furthermore, 
note that, in terms of subsets of X, each Y,' is disjoint from the smooth locus of X, 
since E, and, hence, all Fi are disjoint from it, and since the non-smooth locus of X 
is a closed subset of X,. 

Now we can carry out the induction step. Let X' + X be the blowing-up of Y,' 
on X. Then 

S(X', E') < S(X, Et) 

by Lemma 1, because Y,' is El-permissible. Furthermore, due to the induction 
hypothesis, there exists a morphism X + X' which consists of a sequence of 
Et-permissible blowing-ups with centers contained in the non-smooth loci of the 
corresponding schemes, such that each a E E', when viewed as an Rsh-valued point 
of X", factors through the smooth locus of X". Considering the composition 
X" -+ X' --, X, this modification does not affect the set E - E'. So it is a sequence 
of E-permissible blowing-ups. 

Writing (E")' for the lifting of Ei to X"(RSh), let us consider the partition 

E" = ( E ) '  6.. . i, ( E ) ' - l  , 

where E" is obtained from the lifting of E by removing (E")'; i.e., by removing the 
set of points which factor through the smooth locus of Xu. Then, obviously, this 
partition equals the canonical partition of E .  Since 6(X1', E") 5 S(X, E), a second 
induction on the length of such a partition yields a sequence of En-permissible 
blowing-ups X -+ X" with centers in non-smooth loci such that all points of E", 
when viewed as Rsh-valued points of X", factor through the smooth locus of Xu'. 
Then 

x'"+X"---+X'-+X 

is a sequence of E-permissible blowing-ups as desired. 0 

Remark 3. If in the situation of Theorem 2 it is not known that the generic fibre 
X ,  is smooth, the assertion nevertheless remains true if the generic fibres of the 
points in E factor through the smooth locus of X, and have a bounded defect of 
smoothness. Namely, these are the properties of E and X, which are used in the 
proof. 

3.5 Weak Neron Models 

In the following let XK be a smooth and separated K-scheme of finite type, and let 
Ksh be the field of fractions of a strict henselization R" of R. AS a first step towards 
the construction of a Ntron model of X,, we want to look for a smooth and 
separated R-model of finite type, say X, such that each K"-valued point of XK 
extends to an Rsh-valued point of X. We will see that such R-models X of X ,  even 
satisfy certain aspects of the universal mapping property characterizing Ntron 
models. 
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If XK admits a separated R-model X of finite type such that the canonical map 
X(Rsh) --, XK(Ksh) is bijective, we can apply Corollary 3.114 to get a smooth 
R-model of the type we are looking for. For example, in the case of an abelian variety 
XK we can proceed in this way, since there is a closed immersion XK c, Pk into a 
projective space; we can take X to be the schematic closure of XK in Pi .  

If it is only known that XK(Kd) is bounded in XK, and if no separated R-model 
X of finite type such that X(Rsh) ---+ XK(Ksh) is bijective is given in an obvious way, 
we will consider a finite collection of separated R-models instead of a single one as 
before. Using the flattening techniques of Raynaud and Gruson [I], one can actually 
show that there exists a single separated R-model X of finite type such that each 
Ksh-valued point of XK extends to an Rsh-valued point of X; we will give a sketch 
of proof in Proposition 6 below. But, for our purpose, it is not necessary to make 
use of this result, since we are mainly interested in group schemes XK. Namely, 
in this case, it makes no difference if we start with a finite collection of R-models, 
since group arguments will help us later to reduce to a single R-model. As the 
second method is much more elementary, we will use it for our construction. We 
begin with a definition characterizing the collections of R-models of XK we want 
to work with. 

Definition 1. A weak Nkron model of XK is a finite collection (Xi)iEI of smooth and 
separated R-models of finite type such that each K"-valued point of XK extends to 
an Rsh-valued point in at least one of these R-models. 

Theorem 2. Let XK be a smooth and separated K-scheme of finite type. If XK(Ksh) is 
bounded in X,, there exists a weak Nkron model of X,. 

Proof. Since XK(Kd) is bounded in X,, it follows from 1.117 that there exists a finite 
family (Xi)iE, of separated R-models of finite type such that each Ksh-valued point 
of XK extends to an Rsh-valued point in at least one of these R-models. Applying 
Corollary 3.114 to each Xi, we obtain smooth and separated R-models Xi of finite 
type such that the R"-valued points of X,! and Xi correspond bijectively to each 
other. Hence is a weak Ntron model of XK. 0 

Weak Nkron models satisfy a certain mapping property which later leads to the 
universal mapping property characterizing NCron models. 

Proposition 3 (Weak NCron Property). Let (Xi)i,, be a weak Ndron model of XK, 
and let Z be a smooth R-scheme with irreducible special fibre Zk. Furthermore, let 
uK : ZK ---+ XK be a K-rational map. Then there exists an i E I such that u, extends 
to an R-rational map u : Z ---+ Xi. 

Proof. There is an open dense subscheme VK c ZK such that uK is defined on VK. 
Let F be the schematic closure of FK := ZK - VK in Z. Since we are working over a 
discrete valuation ring, Fk is nowhere dense in Zk, and we may replace Z by 
V := Z - F which is R-dense in Z. Thereby we may assume that u, is defined on 
all of ZK and thus is a K-morphism ZK --, XK. Moreover, we may assume that Z 
is of finite type. 
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Consider the graph of u, and denote its schematic closure in Z x R  Xi by Ti. Let 
pi : Ti-+ Z and qi : ri + Xi be the projections. It is only necessary to show that, 
for some i E I, the projection pi is invertible on an R-dense open part of 2 .  Then 
u := qi o p;' : Z ---+Xi is a solution of our problem. One knows from Chevalley's 
theorem ([EGA IV,], 1.8.4) that T,', the image of ri under pi, is a constructible 
subset of Z,, and we claim that, for some i E I, the set T,' must contain a non-empty 
open part of 2,. To verify this, we may assume R = Rsh, and hence, that k coincides 
with its separable algebraic closure. Then, by 2.2113, the set of k-rational points is 
Zariski-dense in Z,, and each z, E Z,(k) lifts to a point z E Z(R). Let z, E Z(K) 
be the associated generic fibre, and set x, := u,(z,). By the definition of weak 
Ntron models, there is an index i E I such that x, extends to a point x E Xi(R). 
Consequently, we must have (z, x) E Ti(R) and thus z, E Ti(k). This consideration 
shows that Ui,, Ti(k) is Zariski-dense in Z,, and, since all T,' are constructible and 
I is finite, that there is some T,' containing a non-empty open part of Z,. 

Fixing such an index i E I, let us consider the projection pi : Ti -+ Z. The local 
ring Co,,, at the generic point y of Z, is a discrete valuation ring. Furthermore, as 
we have seen, there is a point 5 E ri above y. Thus Or,,< dominates Oz,,. Since pi is 
an isomorphism on generic fibres and since Ti is flat over R, both local rings 
give rise to the same field as total ring of fractions so that O,,, ---+ is an 
isomorphism. Since Z and Ti are of finite type over R, there exist open neighbor- 
hoods U of y in Z and V of < in Ti such that pi induces an isomorphism between 
U and K Hence pi is invertible over an R-dense open part of Z. 0 

Corollary 4. Let Z be a smooth R-scheme, and let [ be a generic point of the special 
fibre of Z. Denote by R' the local ring Oz,i of Z at ( and by K' the field of fractions 
of R'. If (Xi)i,, is a weak Ntron model of X,, then (Xi OR R'), , , is a weak Ntron model 
of XKOK K'. 

Proof. Since the strict henselization of R' is a direct limit of Ctale extensions of R', 
it suffices to show that, for any Ctale Z-scheme Z', for any point [' of Z' above [, 
and for any K'-rational map uk, from Zk, to X,, there exists an index i E I such that 
uk. extends to a rational map u' : Z' ---+ Xi which is defined at c. Since c is a generic 
point of the special fibre of Z', the assertion follows from Proposition 3. 0 

In the situation of Proposition 3, one cannot expect, in general, that the 
R-rational map Z ---+ X is a morphism if 2, ---+ XK is a morphism, even if the weak 
NCron model (Xi)i,, of X, consists of a single proper R-model of XK. In particular, 
weak Neron models fail to be unique, even if one restricts to the class of weak Ntron 
models consisting of a single R-model of X,. 

Example 5. Set Z = X = PX, the r-dimensional projective space over R, and consider a K-isomorphism 
uK : Z K  7 X K ;  i.e., a K-automorphism u, : P', 7P;. Using a set of homogeneous coordinates x,, . . . , 
x, of P,, we can describe u, by 

xi w aijxj , i = 0, . . . , r , 
j = O  

where A := (aLj) is a matrix in Gl,+,(K). We may assume that all coefficients a. belong to R. Then, by 
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the theory of elementary divisors, there are matrices S, T E Gl,+,(R) and integers 0 5 no 5 . . . 5 n, such 
that 

Hence there exist sets of homogeneous coordinates x,, . . . , x,  and xb, . . . ,x i  of PX such that uK is described 

by 
x ,  t-+ K ~ ~ x :  , i = 0, . . . , r , 

where we may assume no = 0. 
If no = . . . = n, = 0, it is clear that uK : P; Z P Z  extends to an automorphism u : P', 1 P',. How- 

ever, if no = . . . = n, = 0 and n,,,, . . . , n, > 0 for some s < r, then u,  extends only to an R-rational map 
u : P', --+ P',. Namely, u is defined on the R-dense open subscheme V c P', which consists of the generic 
fibre PK and of the open part c PP; complementary to the linear subspace Q, where x,, . . . , x ,  vanish. 
In fact, if Q; is the linear subspace in Pi where xi,,, . . . , xi vanish, we can view u, as a projection of Pi 
onto Q; with center Q,. 

Finally, as indicated at the beginning of this section, we want to show how, for a separated 
K-scheme XK of finite type, one can always find a single separated R-model X of finite type such that 
X(R sh)  + X K ( K S h )  is bijective. The key fact which has to be established is the following result: 

Proposition 6. Let XK be a separated (not necessarily smooth) K-scheme of finite type. Let X , ,  . . . , X, be 
separated R-models of X ,  which are of finite type. Then there exist a separated R-model X of finite type 
of X ,  and proper morphisms X i  -+ Xi, i = 1, . . . , n, consisting of finite sequences of blowing-ups with 
centers in the special fibres such that the given isomorphisms 

extend to open immersions Xi 4 X .  

Thus, using the valuative criterion of properness, we obtain the desired characterization of bounded- 
ness. 

Corollary 7. X,(KSh) is bounded in X K  i f  and only i f  X K  admits a separated R-model X of finite type such 
that each Ksh-valued point of X ,  extends to an Rsh-valued point of X .  

Before starting the proof, let us list some elementary facts we will need. Let U, U', I/, V' be separated 
and flat R-schemes of finite type and, for shortness, let us refer here to an R-morphism W + U as a 
blowing-up if it is a finite sequence of blowing-ups with centers in the special fibres; note that W is 
separated, flat, and of finite type if U is. 

(a)  Let U ' d  U be a blowing-up, and let U 4 V be an open immersion. Then there exists a 
blowing-up V' --+ V such that U' 4 U is obtained from Y' --+ V by the base change U 4 V. 

Just extend the center of the blowing-up U' + U to a subscheme of V and define V' by blowing up 
this subscheme in V. 

(b) If Ui --+ U, i = 1,2, are blowing-ups, then there exists a commutative diagram of blowing-ups 

Namely, if U,' ---t U is the blowing-up of the ideal $ of O,, i = 1,2, then define U' as the blowing-up 
of TI . Y2 on U. Note that U' is isomorphic to the blowing-up on Ui of the pull-back of under Ui --t U 
and to the blowing-up on U; of the pull-back of Y2 under U; + U. 
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(c) Let f: U + V be a flat R-morphism such that f, is an open immersion. Then f is an open 
immersion. 

Let us justify the latter statement. Since f is open, we may assume f faithfully flat. Furthermore, it 
is enough to show that f is an open immersion after faithfully flat base change. So we may perform the 
base change U - V and thereby assume that f has a section E. Then it is to verify that E is an 
isomorphism. We know already that E is a closed immersion, since f is separated. Thus we have the 
canonical surjective map 

cc:O,-+~*Lo~. 

Since fK is an isomorphism, the kernel of cc Q, K vanishes. But Lo, is flat over R, so the kernel of cc must 
vanish identically. Then cc is an isomorphism and, hence, 6 is an isomorphism. 

Finally we mention the technique of flattening by blowing up which will serve as a key point in the 
proof of Proposition 6; cf. Raynaud and Gruson 111, Thm. 5.2.2. 

Let f :  U + V be an R-morphism such that fK is flat. Then there exists a blowing-up V' -- V such 
that the strict transform f '  : U' --t V' off is flat. 

Here U' is the schematic closure of UK in U x v  V' (the strict transform of U), and f '  is the restriction 
off x v i d v t o  U'. 

Now let us give the proof of Proposition 6. By an induction argument, one reduces to the case wherc 
only two R-models XI and X, are given. Denote by T the schematic closure of the graph of the 
isomorphism X, Q K 1 X2 Q K in XI x, X2. Applying the flattening by blowing up, there exist 
blowing-ups X,! -+ Xi, i = 1, 2, such that the strict transform pi : il X,! of the i-th projection 
pi : T --+ Xi is flat. Notice that the canonical map T; + T is a blowing-up, too. Then, by (c), the map 
pi is an open immersion and, by (b), there is a commutative diagram of blowing-ups 

Furthermore, since pi! : -+ X,! is an open immersion, there exists a blowing-up X,!' --+ X,I such that 
l-" ---t T[ is obtained from Xi' t X,! by restriction to l-[; see (a). Then l-" + X: is an open immersion, 
and we can glue X ;  and X'; along l-". Thereby we obtain an R-model X of X, which is of finite type, 
and which contains X; and X," as open subschemes. Moreover, X is separated. Namely, let T* be the 
schematic closure of the graph of the isomorphism X; Q K S X;' Q K in X ;  x, Xi. Since T" is flat 
over R, the canonical isomorphism l-" @ K + T* @ K extends by continuity to a morphism T" + T*. 
Similar arguments show that the canonical morphism l-* Q K -+T Q K extends to a morphism 
T* -+ T. Then, due to its construction, the morphism T" -+ r is proper, and it follows from [EGA 
111, 5.4.3, that l-" + r* is proper. Thus l-" is closed in l-* and hence closed in X;' x, Xg. Thereby it is 
seen that Xis separated over R. 0 

3.6 Algebraic Approximation of Formal Points 

Apart from its importance for the construction of Neron models, the smoothening 
process is also a necessary tool for the proof of M. Artin's approximation theorem, 
which will be the subject of this section. As a first step, we have to show that a 
smoothening X' ---, X of an R-scheme X satisfies the lifting property not only for 
R'-valued points, where R' is etale over R, but even for a larger class of extensions 
Rf/R. For example, we are concerned with the case where R' is the n-adic 
completion I? of R. 
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Definition 1. A flat local extension R -+ R' of discrete valuation rings is said to have 
rarnijkation index 1 i f  a uniformizing element n of R induces a uniformizing element 
of R', and if the extension of the residue fields k' = R1/nR' over k = R/nR is separable. 

Recall that an extension of fields k'lk is separable if and only if k' O k l  is reduced 
for all fields 1 over k; cf. Bourbaki [I], Chap. VIII, 5 7, n03. 

To illustrate the definition, we mention that the z-adic completion I? of R has 
ramification index 1 over R. Furthermore, if R' is essentially of finite type over R, 
it has ramification index 1 over R if and only if R' is a local ring of a smooth 
R-scheme at a generic point of the special fibre. In this case, R ---, R' or, better, the 
morphism Spec R' + Spec R is regular in the sense of [EGA IV,], 6.8.1. The class 
of ring extensions of ramification index 1 is stable under the formation of direct 
limits and completions. 

If R -+ R' has ramification index 1 and if, in addition, the extension of fields of 
fractions K'IK is separable, the extension R1/R is regular. For example, the extension 
RIR is regular or, equivalently, the extension of fields of fractions Q(~ ) /Q(R)  is 
separable, if and only if R is excellent (cf. [EGA IV,], 7.8.2). 

Lemma 2. Let R be an excellent discrete valuation ring. If R + R' has ramification 
index 1, then R + R' is regular. In particular, since the completion of R' is of 
ramification index 1 over R, it follows that R' is excellent. 

Proof. Let K (resp. Kt)  be the field of fractions of R (resp. R'). We have only to prove 
that K' is separable over K. So we may assume p = char K > 0. It suffices to show 
that L OK K' is reduced for each finite radicial extension L of K;  cf. [EGA IV,], 
6.7.7. Let us first consider the case where the extension LIK is radicial of degree p. 
Since R is excellent, the integral closure I? of R in L is an R-module of finite type (cf. 
[EGA IV,], 7.8.3) and, hence, a free R-module of rank p. Moreover, I? is a discrete 
valuation ring. So let k" be the residue field of I?. If the degree of I;: over k is p, then 
n is a uniformizing element of I?, and E? 8, Rf/(n) is isomorphic to k" Ok kt. The latter 
is a field, since k' is separable over k and since k" is radicial over k; hence a 8, R' 
is a discrete valuation ring with uniformizing element n. If = k, the p-th power of 
a uniformizing element E of I? gives rise to a uniformizing element of R, and I? 8, R' 
is a discrete valuation ring with uniformizing element fi 8 1. In both cases, I? OR R' 
is a discrete valuation ring. Considering its field of fractions, it follows that L OK K' 
is reduced. Since a finite radicial extension can be broken up into radicial subexten- 
sions of degree p, the same assertion remains true for arbitrary radicial extensions 
L of K. 0 

We mention that the ring of integers Z as well as all fields are excellent and that 
any R-algebra which is essentially of finite type over an excellent ring R is excellent; 
see [EGA IV,], 7.8.3 and 7.8.6. 

We want to show that smoothenings are compatible with ring extensions R'IR 
of ramification index 1. In order to do this, certain parts of the smoothening process 
have to be generalized. So let X be an R-scheme of finite type, and let R1/R be a ring 
extension of ramification index 1. Let a be an R'-valued point of X such that its 
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generic fibre a, factors through the smooth locus of the generic fibre X,. Then, as 
in 3.3, we set 

6(a) := length of the torsion part of a*Q&, . 
Without changes, the proof of 3.311 shows that 6(a) = 0 if and only if a factors 
through the smooth locus of X .  Furthermore, the key proposition of the smoothen- 
ing process remains valid: 

Proposition 3. Let Y ,  be the schematic closure of a, in X,. Let Xk -+ X be the 
dilatation of Y ,  in X ,  and denote by a' the (unique) lifting of a to an R'-valued point 
of Xh. Then 6(a1) I max{0,6(a) - 1)  . 

Literally the same proof as the one of 3.315 works in this case; namely, one has 
only to observe the fact that a, factors through the smooth locus of the k-scheme 
Y,. Since Y ,  is geometrically reduced, the generic point of Y,, which is a,, is contained 
in the smooth locus of the k-scheme Y,; cf. 2.2116. Applying Proposition 3 finitely 
many times, one obtains an analogue of 3.113. 

Proposition 4. Let X be an R-scheme of finite type, and consider an extension R'IR 
of ramification index 1. Let a be an R'-valued point of X such that aK factors through 
the smooth locus of X,. Then there exists an R-morphism X' ---, X ,  which consists 
of a finite sequence of dilatations with centers in special fibres, such that a lifts to an 
Rf-valued point of X' which factors through the smooth locus of XI. 

Proposition 4 enables us to show that smoothenings are compatible with ring 
extensions R'IR of ramification index 1. One has only to justify the following fact. 

Lemma 5. Let X be an R-scheme of finite type with smooth generic fibre, let X' -+ X 
be a smoothening of X, and consider an extension R'IR of ramijication index 1. Then 
each R'-valued point a of X lifts to an R'-valued point a' of X' which factors through 
the smooth locus of X'. 

Proof. Due to the properness of X' --+ X, the point a E X ( R 1 )  lifts to a point 
a' E Xf(R'). Due to Proposition 4, there exists a finite sequence of dilatations 
a :  X -+ X' such that o is an isomorphism on generic fibres and such that the 
(unique) lifting a" of a' factors through the smooth locus of X". Since the schematic 
closure A% of af in Xf is geometrically reduced and, hence, generically smooth over 
k by 2.2116, the set of those closed points x E A! n X&,,,, which have a separable 
residue field k(x) over k is dense in A:; cf. 2.2113. Since all these points lift to 
Rsh-valued points of X ,  the image of a: in X', which equals a;, is contained in the 
smooth locus of X' (because X' is a smoothening of X). 0 

Corollary 6. Let X be an R-scheme of finite type with a smooth generic fibre, let 
X' --+ X be a smoothening of the R-scheme X ,  and consider an extension R1/R of 
ramification index 1. Then X' 8, R' -+ X OR R' is a smoothening of the R'-scheme 
X OR R'. 
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Proof. Since R -+ (R'Yh has ramification index 1, the assertion follows from 
Lemma 5. 0 

Using the preceding result and the existence of Nagata compactifications (Nagata 
[I] and [2]) for separated schemes of finite type over R, we can generalize 3.514 and 
show that weak Neron models are stable under extensions R'IR of ramification 
index 1. As usual, fields of fractions are denoted by K, residue fields by k, and strict 
henselizations by an index "sh". 

Proposition 7. Let X, be a smooth K-scheme of finite type admitting a weak Ndron 
model (Xi)i,, over R. Let R'IR be of ramification index 1. Then (Xi @, R')i,, is a 
weak Ndron model of XKr over R'. 

Proof. Using 3.516, one easily reduces to the case where the index set I consists of 
a single element. So let X be a smooth and separated R-model of finite type of X, 
such that the canonical map X(Rsh) + X(Ksh) is bijective, and consider a Kf-valued 
point of XK; i.e., a K-morphism a, : Spec K' + XK. We have to show that a, 
extends to an R-morphism a : Spec R' + X. In order to do this, let 2 be a Nagata 
compactification of X. The latter is a proper R-scheme containing X as a dense 
open subscheme. Since X is flat over R, we see that XK is dense in X and, hence, 
that X, is dense in &. 

By the properness of X, the morphism a, extends to an R-morphism 
a : Spec R' + 2 such that the image of the generic point of Spec R' is contained in 
X, and, thus, in the smooth locus of &. So we can apply Proposition 4 and thereby 
find a finite sequence of dilatations X' -+ 2 with centers in special fibres such that 
a lifts to an R'-valued point a' of the smooth locus of X .  Similarly as in the proof 
of Lemma 5, let A, be the schematic image of the special fibre of 2' in the special 
fibre of X'. Since A, is generically smooth over k, the set E,  of its closed points x, 
which have separable residue field k(x,) and which belong to the smooth part of X' 
is dense in A,. 

All points x, E E, lift to Rsh-valued points of X' by 2.2114, and we claim that the 
liftings can be chosen in such a way that their generic fibres factor through X,. 
Namely, as in the proof of 2.2114, one uses the Jacobi Criterion 2.217 in order to 
construct local coordinates g,, . . . , g, in a neighborhood U c X' of x, which, on 
the special fibre, generate the ideal of x,. The gi give rise to an ttale morphism 
g : U -+ A;. Since the image of & - X, under g is thin in A;, it follows that x, 
can be lifted to a point x E X'(R") whose generic fibre belongs to XK(KSh) as claimed. 

Now, composing each such x E X'(R"~) with the morphism X' -+ 2, we obtain 
a set of points F c X(R"~)  whose generic fibres belong to XK and whose special 
fibres are dense in A,. But then, since X is a weak Ntron model of X,, we 
must have F c X(Rsh), and it follows that the generic point of A, belongs to X. 
Consequently, the R-morphism a :  Spec R' -+ X factors through X giving rise to 
the desired extension of a, : Spec K' -+ X,. 0 

For the remainder of this section, we will be concerned with approximation 
theory. Let A be a local noetherian ring with maximal ideal m, and denote by Kits 
m-adic completion. We say A satisfies the approximation property if, for each 
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A-scheme X of finite type and for each L-valued point d of X ,  there exists an 
A-valued point a of X such that the diagram 

Spec L .-I Spec LlmA 

x +2 ---- Spec A 

is commutative. Since A is henselian, it is clear by Definition 2.311' that A is 
henselian if it satisfies the approximation property. Morever, if A is henselian, we 
see from 2.315 that, for each L-valued point d of X which factors through the 
smooth locus of X ,  there exists an A-valued point of X which coincides with d on 
Spec 4 m A :  

Using the smoothening process, it is easy to verify the approximation property 
for discrete valuation rings which are henselian and excellent, as can be seen from 
the following proposition. 

Proposition 8. Let R be an excellent discrete valuation ring, and let I? be its completion. 
Furthermore, let X be an R-scheme of finite type, and let o be an I?-valued point of 
X .  Then there exists a commutative diagram of R-morphism 

where X' is smooth over R. 

Proof. We may assume that o is schematically dense in X. Since R is excellent, the 
generic fibre X ,  is geometrically reduced and, hence, smooth at the generic point; 
cf. 2.2116. So oK factors through the smooth locus of X K  and the assertion follows 
from Proposition 4. 0 

Corollary 9. Let R be a discrete valuation ring which is henselian and excellent. Then 
R satisfies the approximation property. 

In the following we denote by I? the field of fractions of I?. If X K  is a K-scheme 
which is locally of finite type, we can provide xK(i?) with the canonical topology, 
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which is induced by the valuation on K. We claim that this topology coincides with 
the one generated by all images of maps x(@ - X,(I?), where X varies over all 
R-models of XK which are locally of finite type over R. Namely, each R-model U 
of an open subset UK c XK induces an R-model X of X ,  by gluing U and XK over 
U,. Since x(I?) = ~(l?), it is enough to check the equality of the topologies for an 
affine K-scheme XK, say X, = Spec A,. In this case, a basis of the topology of x,(@ 
induced by the valuation of K is given by the family of subsets of type 

U(gl,. . . , gr) = {x 6 x,(@ ; x*(gi) E 2 for i = 1,. . . , r )  

where g,, . . . , g, E A,. Without loss of generality, we may assume that g,, . . . , gr 
generate A, as a K-algebra. Then consider the R-model X = Spec A of XK, where 
A is the image of the R-morphism 

It follows that U(g,, . . . , g,) is the image of x(R) + x,(&). Conversely, let X be 
an R-model of locally finite type of X,. It remains to show that the image of 
x(R) --+ x,(I?) is open in xK(R). We may assume that X is affine, say X = Spec A. 
Let h,, . . . , h, generate A as an R-algebra and denote by gi the pull-back of hi to 
X,. Then the image of x(R) --+ xK(I?) coincides with the set U(g,,. . . , g,) (as 
defined above) and, hence, is open in xK(I?). 

Corollary 10. Let R be a henselian discrete valuation ring and let XK be a K-scheme 
which is locally of finite type. Assume either that R is excellent or that XK is smooth. 
Then X,(K) is dense in xK(IZ) with respect to the topology induced by the valuation 
of K .  

Proof. It suffices to show that each R-model X of XK which admits an I?-valued 
point admits an R-valued point. But this follows from Corollary 9 if R is excellent, 
and from Proposition 4 if X, is smooth. 

There are examples of discrete valuation rings which are henselian, but which 
do not satisfy the approximation property; see the example below. Such rings cannot 
be excellent. In fact, it is easy to show that a discrete valuation ring R is excellent 
if it satisfies the approximation property. Thus, the approximation property for R 
is equivalent to the fact that R is henselian and excellent. 

Example 11. Let k  = IF, be the prime field of characteristic p z 0, and let A be the localization of the 
polynomial ring k [ T ]  at the maximal ideal generated by T. The completion of A with respect to T  is 
the ring k [ [ T ] ]  of formal power series. Looking at the cardinality of k [ [ T ] ]  (resp. of k [ T ] ) ,  it is clear 
that the extension k ( ( T ) ) / k ( T )  of the fields of fractions is not algebraic. So pick an element 5 E A which 
is not algebraic over k(T) .  Set U = cP, and let L be the field generated by T  and U over k. Now define 
R as the intersection of L with A. Then R is a discrete valuation ring whose completion R  ̂coincides with 
k [ [ T ] ] .  Furthermore, f? = Q(@ is not separable over K = Q(R)  since 5 E I? - K. So R is not excellent. 
The henselization Rh of R can be viewed as the set of all elements of k [ [ T ] ]  which are separably algebraic 
over K. In particular, 5 is not contained in Rh, and it is easily verified that Rh does not satisfy the 
approximation property. 
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Next we want to generalize Proposition 8 to the case where the base consists of 
a polynomial ring over an excellent discrete valuation ring. The resulting assertion 
will be crucial in the proof of M. Artin's approximation theorem. 

Theorem 12. Let R be an excellent discrete valuation ring, and denote by its n-adic 
completion. Let T I ,  . . . , T, be variables, and set 

Let X be an S-scheme of finite type, and let o be an ,%valued point of X .  Then there 
exists a commutative diagram of S-morphisms 

4'.,, I \ 

I '\\ 
I 

\'\ 

i \'\ 

g \'\ r 

X- S  

s J  
where X' is smooth over S. 

The proof is done by induction on the number n of variables T I ,  . . . , T,. The case 
n = 0 is settled by Proposition 8. So let n > 0. We may assume that X is a closed 
subscheme of A: and that X is defined by global sections of OA;, say 

the coordinate functions of A: will be denoted by Y, ,  . . . , Y,. Let y (resp. 4) be the 
generic point of the special fibre of S (resp. $, let s  ̂ be the closed point of 3, and let 
s be its image in S. 

In order to carry out the induction step, we will establish three lemmata, the 
first and the third one under the assumption of the induction hypothesis; i.e., under 
the assumption that Theorem 12 is true for less than n variables. 

Lemma 13. Let fo be a global section of OA2 such that o*fo does not vanish at 4. 
Then there exists a commutative diagram of S-morphisms 
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such that V' is smooth over S and such that z*fo divides each z*J, i = 1, . . . , r, in 
r(v, oV+ 

In the proof of the lemma, we will use Weierstralj division for the formal power 
series ring R[[T , ,  . . . , T , ] ] ;  cf. Bourbaki [2] ,  Chap. VII, § 3, n08. Let us first recall 
some basic facts of this theory. An element f E R[[T,, . . . , T , ] ]  is called a WeierstraJ 
divisor in T, of degree d 2 0 if the coefficients a, E R [ [ T ~ ,  . . . , T, - l ] ]  of the power 
series expansion 

m 

f = C a v Y  
v=O 

satisfy the conditions 

(1) a, is a unit in R ^ [ [ T , ,  . . . , T,-,I] , 

An element of R^[[T , ,  . . . , T , ] ]  is called a Weierstraj polynomial in T, of degree d if 
it is a monic polynomial in T, of degree d with coefficients in R[[T,, . . . , T,-,]I and 
ifit is a WeierstraB divisor in T, of degree d. Note that an element f E R^[[T1, . . . , T , ] ]  
is a WeierstraB divisor in T, of degree d if and only if the reduction off modulo n,  
as an element of k[[T , , .  . . , T , ] ] ,  is a WeierstraB divisor in T, of degree d. Since l? 
is complete, the WeierstraIj division theorem for k [ [ T l ,  . . . , T , ] ]  lifts to a division 
theorem for R[[T,,  . . . , T , ] ] :  

I f f  E R[[T,, . . . , T,]]  is a WeierstraJ divisor in T, of degree d, then R^[[T, ,  . . . , T,]]  
decomposes into a direct sum 

of R[[T , ,  . . . , T,-l]]-modules. Furthermore, f can be written as a product of a unit in 
R[[T,,  . . . , T , ] ]  and a WeierstraJ polynomial of degree d. 

The last assertion follows easily if one applies the decomposition (*) to the 
element Kd, say 

Then u is a unit, and 

is the WeierstraB polynomial we are looking for. Further, we want to mention that, 
for each element f E R [ [ T ~ ,  . . . , T , ] ]  which does not vanish identically modulo n, 
there exists an 2-automorphism cp of R ^ [ [ T , ,  . . . , T , ] ]  of type 

such that cp( f )  is a Weierstralj divisor in T, of some degree d 2 0. 
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Proof of Lemma 13. If o*fo is a unit, then fo is invertible in a neighborhood of o(9) 
and, hence, the assertion is obvious. So we may assume that o*fo is not a unit. Since 
o*fo does not vanish at 4, there exists an I?-automorphism of R[[T,, . . . , T,]] of type 

such that o*fo will be transformed by this automorphism into a WeierstraB divisor 
of degree d 2 1. So we may assume that a*fo is a WeierstraB divisor of degree d  2 1. 
Then a*fo can uniquely be written as 

o*fo = d .  3 
with a WeierstraB polynomial 

of degree d and a unit zi in R[[T,, . . . , T,]]. The WeierstraB division theorem yields 
a decomposition of R[[T,, . . . , T,]] into a direct sum 

of R [ [ T , ,  . . . , T,-,]]-modules. We will use the decomposition (*) in order to make 
the application of the induction hypothesis possible. First we want to construct an 
auxiliary S-scheme V as a subscheme of A:', where 

N 1 = N . d + d + N .  

Let 
; v = 1 ,  ..., N ,  6 = O  ,..., d - 1 ,  

A,; 6=O,  ..., d -  1 ,  

2 , ;  v =  1, ..., N ,  

be the coordinate functions of A:' so that A:' = SpecR[T,, Y,,, A,,Z,]. Consider 
the polynomial 

p = Kd + Ad-, Kd-' + . . . + A. 

and define an S-morphism T : A:' + A: by setting 

for v = 1, . . . , N.  Then Euclid's division yields unique decompositions 

in OAF where fi, is independent of T, for all i and 6. Furthermore, each f,, is 
independent of Z,, . . . , ZN by the definition of z. Thus we have 

f i d  E RCTp, Y,a,,&lp=~ ,..., n - l ; v = l ,  ..., N;*'=o ,..., d-1 . 
Denote by S' (resp. 9) the spectrum of R[T,,. . . , T,-,I (resp. R[[T,, . . . , T,-,]I), set 
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and regard the above ring RCT,, Y,,, A,,] as the ring of global sections of OAF,. 
Then the inclusion 

where on the left-hand side y runs from 1  to n - 1  and on the right-hand side from 
1  to n, defines a projection 

p : At'  + A$" . 

Consider now the closed subschemes 

= v(fi6). L=O, ..., r c At,'' , and 
6=0 ,  ..., d-1 

Then V is the pull-back of W by the map p. So V is isomorphic to ~ N , c l ,  and T,, 
Z,, . . . , Z, can be viewed as coordinate functions of A F ' .  Due to the decomposition 
(*), for each v we obtain a representation 

p := o* y v = y:+z*;p, 

where 

with y{6 E R [ [ T ~ , .  . . , T,-l]] and 9, E R ^ [ [ T ~ ,  . . . , T , ] ]  Then define an S'-morphism 

91: 9 ---+ A;;' 

by setting 

(ql)*Y,,,=y:, for v = 1 ,  ..., N ,  6 = 0  ,..., d - 1 ,  

(@)*A, = a ;  for 6 = 0, ..., d - 1  . 

Furthermore, consider the S-morphism 

cp:$+Ag 

defined by 

q*Y,,=y;,; v = 1 ,  ..., N ,  6=O ,..., d - 1 ,  

q*A,=a;; 6 = O  ,..., d - 1 ,  

cp*Zv=l,; v = l ,  ..., N .  

Then we have o = z 0 cp,  cp*p = 3, and cp*J;., = (cpl)*fi, for all i and 6. In order to 
see that q' factors through W, one considers Taylor expansions of 
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thereby obtaining 

o*fi = f , (y1)  mod$.I?[[T,, . . . , T,]] , i = 0, . . . , r . 

Since a*f; = 0 for i = 1, . . . , r, it follows 

f , ( y l ) -0  mod$.RI[[~,, . . . , T I ]  

for i > 0. Moreover, since @ and o*fo differ by a unit in R[[T,, . . . , T,]], we have 

for i = 0, too. On the other hand, using (**) we get relations 

for i = 0, . . . , r, where di E R[[T~, . . . , T,]]. Then, since o*fi - 0 mod$, the direct 
sum decomposition (*) implies (cp')*f,, = 0 for all i and all 6. So cp' factors through 
W, and the induction hypothesis can be applied. Thus there exists a factorization 
of cp' into S'-morphisms 

where W' is a smooth S'-scheme. By base change we obtain from W' the smooth 
S-scheme W" = W' x,, S and, hence, the smooth S-scheme 

where Z,, . . . , 2, give rise to a set of coordinates of AN,,,. Furthermore, we can 
define an S-morphism 

(over $' -+ W ' )  by setting 

$*Zv = 2, for v = 1,. . . , N . 

Then there is a commutative diagram of S-morphisms 

The map V --. A; is induced by z; let us call it z, too. It remains to show that z*fo 
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divides z*A, i = 1 , .  . . , r, at least locally at cp(ŝ ). Due to the definition of I/, it suffices 
to know that the factor qo defined by the relation (**) is invertible at ~ ( 9 ) .  But this 
is clear. Namely, the equation 

shows that cp*(qo) = zi is a unit in I?[[T,,  . . . , XI]. 

We will apply the preceding lemma in the situation where fo is the square of a 
maximal minor of the Jacobi matrix 

Before this can be done, however, we have to justify the following reduction step. 

Lemma 14. I t  suffices to prove Theorem 12 in the case where X ,  at the point a(+)), is 
smooth over S of relative dimension N - m and where X ,  as a closed subscheme of 
A:, is defined by m global sections f,, . . . , f, of OAF. 

Proof. Replacing X by the schematic image of a, one may assume o to be schemati- 
cally dense in X .  Since the fields of fractions of I?[[T,, . . . , TJ] and of R[T,, . . . , T,] 
are separable over each other (cf. [EGA IV,], 7.8.3), the generic fibre of X  is 
geometrically reduced and, hence, generically smooth over S. Denote by A the local 
ring of S at u] and by A' the local ring of $ at 4. The extension A - A' is regular, 
and is a uniformizing element of A and of A'. Set T = Spec A and T' = Spec A'. 
Then o induces a Tf-valued point a,, of X ,  = X  x, T. Since the generic point t' of 
T' is mapped to the generic point of X ,  and since the generic fibre of X ,  is generically 
smooth over T, Proposition 4 shows the existence of a commutative diagram 

where Xk is smooth over T and where X ;  -+ X ,  is constructed as a finite sequence 
of dilatations with centers in the special fibres. Using a limit argument, we may 
assume that X';. -+ X ,  is induced by the base change T -+ S from an S-morphism 
X' -+ X  which is constructed in the same way; namely, we can extend the centers 
of the blowing-ups to closed subschemes which do not meet generic fibres. Due to 
the construction of X', Proposition 3.211 implies that o  lifts (uniquely) to an 
R-morphism o' : $ -+ X' which induces o& : T' -+ Xk.  Obviously, o' is an 
S-morphism. Thus we may assume that X is smooth over S at o(+)), say of relative 
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dimension N - m. Due to 2.217, we may assume that f,, . . . , fm define X as a 
subscheme of A: at o(4). Now consider the closed subscheme V c A: given by f,, 
. . . , fm. Then X c T/, and both coincide in a neighborhood of o(y*). In particular, the 
morphism 9 -+ X factors through I/. Since smooth S-schemes are locally integral, 
we may replace X by V. Namely, if V' + V is an S-morphism from a smooth 
S-scheme V' to V such that 9- V factors through V' - we can assume that 
V' is integral. Then there is an open dense subscheme V c I/' which is mapped 
into X, and it follows that the map V' -4 V must factor through X because V' is 
integral and because X is closed in V. 0 

Thus we may assume that X, as a closed subscheme of A:, is defined by m global 
sections, say 

X = Vifi,...,fm) c A; , 

and that the determinant 

A = det (s) a? {=I, ...,m 
j=l, ..., m 

does not vanish at o(rj); cf. 2.217. We will now finish the proof of Theorem 12 by 
establishing a third lemma; see Bourbaki [2],  Chap. 111, $4, n05, for a similar 
statement. 

Lemma 15. Consider a situation as in Lemma 13. Assume that X is as above and that 
f, = A'. Then there exists a diagram 

where X' - V' is ktale; in particular, X' is smooth over S. Except for the square in 
the upper left corner, the diagram is commutative. 

Proof. In the following, we write f for the column vector ( f,, . . . , f,)'; the index t 
indicates the transpose. On V' we have a relation 

with a column vector a' = (a;,  . . . ,a;)' of global sections of Lo,,. Denote by A, = A, 
A,, . . . , A, the (m x m)-minors of 
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Due to Cramer's rule, there exist (N x m)-matrices MA, 1 = 1, . . . , 1, with global 
sections of OASN as entries such that 

(**I J .M,  = A1.Im. 

I,,, is the (m x m)-unit matrix. We will construct X' as a subscheme of A;!?'. So denote 
by Z,,, 1 = 1, . . . , 1, v = 1, . . . , N, the coordinate functions of A; N. Let Z(,, be the 
column vector (Z,,, . . . , Z,,)', 1 = 1, . . . , 1. Now consider the S-morphism 

given by 

where Y is the column vector (Y,, . . . , YN)'. By Taylor expansion we get an equation 

with certain column vectors q( ,,,, = (q, ,,,. . .,q,,,)'. Each qdwi is a polynomial in 
the variables Z,, with global sections of O,, as coefficients, and each monomial of 
q,,, has degree 2 2. Using (*) and (**), we can write 

z*f = z*A. (z*A. I,). a' = z*A . z*J . a;,, 

with 

a;,, = z*Ml. a' . 

Furthermore, we have 

with 

Setting a;,, = 0 for 1 = 2, . . . , 1, we see 

Then let X' be the closed subscheme of A;?'which is defined by the global sections 

a;,) f Z(a) + q(np 1 = 1, . . . , 1 . 

Due to 2.2110, the projection X' + V' is &tale along the zero section of A;?'-+ V'. 
Obviously, the morphism X' -+ A; induced by p factors through X. Since o*A is 
not a zero divisor, the relation 

implies $*a' = 0 and, hence, = 0 for 1 = 1, . . . , I. Thus, the zero section of 
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ALN induces a lifting cp of t+b. Replacing X' by the etale locus of X' --+ V', the 
assertion of the lemma is clear. 17 

Thereby we have finished the proof of Theorem 12. The statement of Theorem 
12 was announced by M. Artin in [S]. Its proof, given in terms of commutative 
algebra, has been published recently by M. Artin and C. Rotthaus; cf. Artin and 
Rotthaus [I]. The method of proof is similar to the one used in Artin [4], where 
it is shown that the henselization of R[T,,. . ., T,] at (71, TI,. . . , T,) satisfies the 
approximation property. In fact, the latter result can be obtained as a consequence 
of Theorem 12. 

Theorem 16. (M. Artin). Let R be a field or an excellent discrete valuation ring, and 
let A be a henselization of a local R-algebra A, which is essentially of finite type over 
R. Let m be a proper ideal of A, and let 2 be the m-adic completion of A. Then, given 
a system of polynomial equations 

f (Y)  = 0 

where Y = (Y,, . . . , YN) are variables and f = ( f l ,  . . . ,f,) are polynomials in Y with 
coefficients in A, given a solution j = ( j , ,  . . . , 9,) E AN and an integer c, there exists 
a solution y = (y,, . . . , y,) E AN such that 

for v = 1, . . . , N .  

Proof. Following M .  Artin, we will reduce the assertion to the special case where 
A, is the localization of RCT,,. . . , T,] at the point (71, TI,. . . , T,) of Spec R[T,, .  . . , T,], 
where the integer c is 1, and where the ideal m is the maximal ideal of A. In this 
case, the assertion is an easy consequence of Theorem 12. So let us start with the 
reductions. 

One may assume that m is the maximal ideal of A and that the integer c is 1. 
Namely, there exist elements a,€ A such that 

j?, - av mod mc . A 
for v = 1, . . . , N. Let m,, . . ., mt be a system of generators of mc. Then there exist 
elements jvj of A such that 

Let 
t 

and consider the system of polynomial equations given by f l ,  . . . , f,, g,, . . . :g, in 
the variables (Y,,) and (Trj.). This system has the solution ((jV),(jvj)) over A, and 
any solution of this system lying in A gives rise to a solution of the required type 
of the system we started with. 
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We may assume that R is a discrete valuation ring and that the maximal ideal 
m of A lies over the closed point of Spec R. Namely, if R is a discrete valuation ring 
and if m lies over the generic point of R, we can replace R by its field of fractions. 
If R is a field, we can replace it by the power series ring R[[T]], and view A as an 
R[[T]]-algebra by sending T to zero. Since R[[T]] is excellent, this reduction is 
permissible. 

We may assume that the residue field k' = Alm is finite over k = RInR. Since 
A, is essentially of finite type over R, the field k' is finitely generated over k. Let d 
be its degree of transcendence. Then there exist elements z,, . . . , z, E A, such that 
k' is finite over k(Y,, . . . , G), where denotes the residue class of z, mod m. Let R' 
be the localization of R[Z,, . . . , Z,] at the prime ideal (n). The R-morphism 

sending Z, to z, for 6 = 1,. . . , d factors through R', since TI,. . . , & are transcendental 
over k. Furthermore, R' is an excellent discrete valuation ring, see [EGA IV,], 7.8.3, 
and A, is essentially of finite type over R'. 

We may assume that A is a finite S-algebra where S is a henselization of the 
localization So of a polynomial ring R[T,, . . . , T,] at (n, TI,. . . , T,). Namely, let t,, 
. . . , t ,  be a system of generators of the maximal ideal of A,. The R-morphism 

sending ?;- to ti for i = 1,. . . , n induces a morphism So + A,. Since A, is essentially 
of finite type and since the residue field Alm is finite over k, it is easily seen that 
Spec A, --+ Spec So is quasi-finite at the maximal ideal of A,. Then the extension 
S + A, OSo S is finite (cf. 2.314); so A, Os0 S is a direct sum of local henselian rings. 
Since A is among them, the extension S -+ A is finite. 

It suffices to prove the theorem for a henselization S of the localization So of a 
polynomial ring RITl,.  . . , T,] at (71, TI,. . . , T,). Since we may assume that A is finite 
over S, the m-adic completion A of A is isomorphic to A Os 9. Write A as a quotient 
of a polynomial ring over S, say 

Then let a,, . .. , a, be a finite system of generators of a. Lifting the system f(Y) 
over A to a system g(Y)  over S[X] and lifting the given solution j7 of f (Y) to 
9' = ( j ; ,  . . . ,$;) with $;, . . . , j7; E SEX] Os 9, we get a relation 

where z*(,, = (z*,,, . . . , id,)' is a column vector of elements of S[X] Os 9. Then con- 
sider the system of equations 

over S[X], where Y = (Y, ,..., Y,) and Z = (Zai), for 1 = 1, ..., 1, i = 1, ..., r, are 
variables. Due to (*), the system (**) has a solution in $[XI. Looking at the 
coefficients of the polynomials in X,, . . . , X, appearing in (*), we can rewrite (**) 
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as a finite system of polynomial equations over S which has a solution over s. 
Clearly, a solution over S of this system induces a solution over A of the system we 
started with. 

Now let us show how, in this situation, the proof of the theorem follows from 
Theorem 12. The polynomials f,, . . . , f, E SLY,, . . . , YN] define a closed subscheme 
X of At. Since only finitely many coefficients occur in f,, . . . , f,, the scheme X is 
actually defined over an RITl,. . . , T,]-algebra of finite type. So we may view X as 
an R[T,, . . . , T,]-scheme of finite type. The solution 9 = (PI,. . . ,$,) E SIN gives rise 
to an R[[T,, . . . , T,]]-valued point a of X. Then Theorem 12 yields a commutative 
diagram 

where X' is smooth over R[T]. The closed point ŝ  of S ~ ~ C R [ [ T ] ]  induces a 
k-rational point x' = ~ ' ( 9 )  of X'. Due to 2.3/5, the k-valued point x' lifts to an 
S-valued point of X' and, hence, to an S-valued point x of X. Then, x gives rise to 
a solution y over S off (Y) = 0, the one we are looking for. 0 

Let us conclude with some remarks on the history of the approximation pro- 
perty. Corollary 9 was first established in Greenberg [2], where the author actually 
proves a much stronger result, the so-called strong approximation property for 
discrete valuation rings. Theorem 16 is due to M. Artin, cf. Artin [4]; he even shows 
the strong approximation property for polynomial rings k[Tl,. . . , T,], where k is a 
field. By methods of model theory, it can also be seen from Artin's result (Theorem 
16) that all rings R[T,,. . ., T,] satisfy that property whenever R is an excellent 
discrete valuation ring; cf. Becker, Denef, Lipshitz, van den Dries [I]. Artin's 
conjecture that the approximation property holds for every excellent ring A was 
recently verified by C. Rotthaus for the case where A contains the rational numbers; 
see Rotthaus 111. 

The importance of the approximation theorem is based on the applications to 
moduli problems; there it is a powerful tool to show that certain functors are 
representable by algebraic spaces; cf. Artin [5] and [6]. We will come back to this 
point in Section 8.3. 



Chapter 4. Construction of Birational Group Laws 

In the previous chapter, we discussed the smoothening process and, as an applica- 
tion, proved the existence of weak Neron models. The next step towards the 
construction of NCron models requires the use of group arguments. 

For the convenience of the reader, we start with a general section on group 
schemes where we explain the functorial point of view. Then we discuss the existence 
of invariant differential forms and their properties. They are used in order to define 
the so-called minimal components of weak Nbron models, which are unique up to 
R-birational isomorphism. The actual construction of Neron models is continued 
in Section 4.3. Starting with a smooth K-group scheme X K  of finite type and a weak 
Neron model (Xi)i.,, we select the minimal components from the Xi.  After a possible 
shrinking, we glue them along the generic fibre to produce a smooth and separated 
R-model X of X ,  and we show that the group structure on X K  extends to an 
R-birational group law on X. Admitting the fact (to be obtained in Chapters 5 and 
6) that X with its R-birational group law can uniquely be enlarged to an R-group 
scheme X, we show in Section 4.4 that x will be a Neron model of X,. This is done 
by employing an argument of A. Weil, saying that a rational map from a smooth 
scheme to a separated group scheme is defined everywhere if it is defined in 
codimension 1. 

4.1 Group Schemes 

Let C be a category; for example, let C be the category (Sch/S) of schemes over a 
fixed scheme S. Each object X E C gives rise to its functor of points 

h, : C + (Sets) 

which associates to any TE C the set 

of T-valued points of X. Each morphism X  - X' in C induces a morphism 
h, + h,, of functors by the composition of morphisms in C. In this way one gets 
a covariant functor 

h : C -+ Hom(CO, (Sets)) 

of C to the category of covariant functors from C0 (the dual of C) to the category 
of sets; the category Hom(CO, (Sets)) is denoted by e; it is called the category of 
contravariant functors from C to (Sets). 
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Proposition 1. The functor h : C - C is fully faithful; i.e., for any two objects X, 
X' E C, the canonical map 

Hom,(X, X') -t Home(h,, h,,) 

is bijective. More generally, for all objects X E C and 9 E C, there is a canonical 
bijection 

mapping u E 9 ( X )  to the morphism h, --+ F which to a T-valued point g E hx(T), 
where T is an object of C, associates the element F(g)(u) E 9 ( T ) .  The bijection 
coincides with the above one if 9 = hx, and is functorial in X and 9 in the sense that 
F w Homdh(.),  F )  defines an isomorphism C ---+ C. 

Proof. Consider an element u E B(X).  We have only to show that there is a unique 
functorial morphism h, + 9 mapping the so-called universal point id, E hx(X) 
onto u E 9 ( X )  and that it is as stated. Then all assertions of the proposition are 
immediately clear. So let us show how to justify this claim. For any object T E C, 
each T-valued point g : T -+ X factors through the universal point of X. Thus, if 
h, -t F exists as claimed, the image of g under hx(T) + 9 ( T )  must coincide with 
the image of u under F ( g ) :  F ( X )  --+ F ( T ) .  Conversely, taking the latter as a 
definition, we see that h, + 9 can be constructed as required. 0 

In particular, if a functor 9 E Hom(CO,(Sets)) is isomorphic to a functor hx, 
then X is uniquely determined by F up to an isomorphism in the category C. In 
this case, the functor 9 is said to be representable. Thus Proposition 1 says that the 
functor h defines an equivalence between the category C and the full subcategory 
of Hom(CO, (Sets)) consisting of all representable functors. 

In order to define group objects in the category C, it is necessary to introduce 
the notion of a law of composition on an object X of C. By the latter we mean a 
functorial morphism 

Thus, a law of composition on X consists of a collection of maps 

(laws of composition on the sets of T-valued points of X) where T varies over the 
objects in C. The functoriality of y means that all maps y, are compatible with 
canonical maps between points of X, i.e., for any morphism u : T' -+ Tin C, the 
diagram 

is commutative. If the law of composition has the property that h,(T) is a group 
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under y, for all T, then y defines on h, the structure of a group functor, i.e., of a 
contravariant functor from C to the category of groups. In this case, y is called a 
group law on X .  

Definition 2. A group object in C is an object X  together with a law of composition 
y : h, x  h, -+ h, which is a group law. 

It follows that a group object in C is equivalent to a group functor which, as a 
functor to the category of sets, is representable. 

When dealing with group objects, it is convenient to know that the category 
in question contains direct products and a final object, say S. The latter means 
that, for each object T of C, there is a uniqe morphism T + S. So, in the 
following, assume that C is of this type, and consider a group object X  of C with 
group law y. Then, since the product X  x  X  exists in C and since the functor 
h : C ---+ Hom(CO, (Sets)) commutes with direct products, the law of composition 
y : h, x  h, -+ h, corresponds to a morphism m : X  x  X  - X ,  as is seen by using 
Proposition 1. Furthermore, the injection of the unit element into each group h,(T) 
yields a natural transformation from h, to h,, hence it corresponds to a morphism 

called the unit section of X ,  which is a section of the unique morphism X + S. 
Finally, the formation of the inverse in each h,(T) defines a natural transformation 
h, + h, and hence a morphism 

called the inverse map on X .  The group axioms which are satisfied by the groups 
h,(T), and hence by the functor h,, correspond to certain properties of the maps 
m, r and 1. Namely, the following diagrams are commutative: 

(a) associativity 

m x id, 
x x x x x  - x x x  

I id, x m 

m 
x x x  - X  

(b) existence of a left-identity 

where p : X + S is the morphism from X  to the final object S. 
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(c) existence of a left-inverse 

(1 1'3 X - 2 x x x  

(d) commutativity (only if all groups hx(T) are commutative) 

where z commutes the factors. 

Note that a left-identity is also a right-identity and that a left-inverse is also a 
right-inverse. It is clear that once we have an object X and morphisms m, E, and z 
with the above properties, we can construct a group object in the given category 
from these data, and furthermore, that group objects in C and data (X,m,~,z) 
correspond bijectively to each other. 

Proposition 3. The group objects in a category C correspond one-to-one to data 
(X, m, F, z) where X is an object of C and where 

are morphisms in C such that the diagrams (a), (b), (c) above are commutatiue. 
Furthermore, a group object in C is commutative i f  and only i f ,  in addition, the 
corresponding diagram (d) is commutatiue. 

In the following we restrict ourselves to the category (Sch/S) of S-schemes where 
S is a fixed base scheme. Then the direct product in (Sch/S) is given by the fibred 
product of schemes over S, and the S-scheme S is a final object in (Sch/S). 

Definition 4. An S-group scheme is a group object in the category of S-schemes (Sch/S). 

Due to Proposition 3, an S-group scheme G can be viewed as an S-scheme X  
together with appropriate morphisms m, F, and z. When no confusion about the 
group structure is possible, we will not mention these morphisms explicitly. In 
particular, in our notation we will make no difference between the group object G 
and the associated representing scheme X. Also we want to point out that there 
exist group functors on (Sch/S) which are not representable and thus do not 
correspond to S-group schemes. For example, let X  be a smooth S-scheme and, for 
any S-scheme T, let BX,,y(T) be the set of all T-birational automorphisms of X, = 

X x, T. Then, in general, the group functor W,,, is not representable by a scheme, 
even if X is the projective line over a field. 
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It follows immediately from Definition 4 that the technique of base change can 
be applied to group schemes. Thus, for any base change S' + S, one obtains from 
an S-group scheme G an S'-group scheme Gs, := G x ,  St. If S = Spec R for some 
ring R, we talk also about R-group schemes instead of S-group schemes. Further- 
more, if K = R is a field, an algebraic K-group is meant to be a K-group scheme of 
finite type (not necessarily smooth). 

There are many notions for ordinary groups which have a natural analogue for 
group functors and thus for group schemes. For example, a homomorphism of 
group functors 9' -+ 9 is a natural transformation between Y and 9 (viewed as 
functors from (Sch/S) to (Groups)). If 9' and 9 are represented by S-schemes G' and 
G, respectively, such a homomorphism corresponds to a morphism G' + G which 
is compatible with the group law on G' and on G. We also have the notions of 
subgroup, kernel of a homorphism, monomorphism, etc., for group functors. How- 
ever, when dealing with S-group schemes G, we reserve the notion of subgroup 
schemes to such representable subgroup functors which are represented by sub- 
schemes of G (the latter is not automatic). A subscheme Y of G defines a subgroup 
scheme of G if and only if the following conditions are satisfied: 

(i) the unit-section E : S -+ G factors through Y, 
(ii) the group law m : G x ,  G + G restricts to a morphism Y x ,  Y, and 
(iii) the inverse map 2 : G -+ G restricts to a morphism Y --+ Y. 

Let us look at some examples of S-group schemes. We start with the classical 
groups G, (the additive group), G, (the multiplicative group), GL, (the general 
linear group), and PGL, (the projective general linear group). In terms of group 
functors, these groups are defined as follows. For any S-scheme T set 

G,(T) := the additive group Lo,(T) 

G,(T) := the group of units in 6,(T) 

GL,(T) := the group of O,(T)-linear automorphisms of (O,(T))" 

PGL,(T) := Aut, ($(Lo;)) . 
All these group functors are representable by affine schemes over Z. Working over 
S := Spec Z, the additive group is represented by the scheme 

X := Spec Z [[I 
([ is an indeterminate), where the group law m : X x X + X corresponds to the 
algebra homomorphism 

Similarly, for G,, the representing object is Spec Z[[, [-I] with the group law given 
by [ I---, [ @ [. In the case of GL, we consider a set iij of n2 indeterminates. Then 

X := Spec Z[[,,, det(iij)-'] 

is a representing object; the group law is defined by the multiplication of matrices. 
Finally, PGL, is represented by the open subscheme 

X c Proj Z [rij] 
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where det iij does not vanish. For a general base S, the representing objects are 
obtained from the ones over SpecZ by base extension. It is clear that the above 
procedure works as well for further classical groups (SL,, Sp,, On,. . .). Also it 
should be mentioned that one can define GLv,PGLv, . . . for any vector bundle 
V over S. Just replace 0; in the above definitions by the pull-back of V with respect 
to T -+ S. 

All the above group schemes are affine, i.e., the representing schemes are affine 
over the base S. Another important class of group schemes consists of the so-called 
abelian schemes over S. Thereby we mean smooth proper S-group schemes with 
connected fibres (the latter are abelian varieties in the usual sense). They are always 
commutative. As examples one may consider elliptic curves over fields which have 
a rational point or, more generally, Jacobians of smooth complete curves. 

4.2 Invariant Differential Forms 

Throughout this section, let G be a group scheme over a fixed scheme S. First we 
want to introduce the notion of translations on G. In order to do this, consider a 
T-valued point 

of G; i.e., an S-morphism from an S-scheme T to G. Then g gives rise to the T-valued 
point 

of the T-scheme G, := G x s  T. If p ,  : G, + G denotes the first projection, we have 
g = p ,  o g,. In the special case where T:= G and g := id, is the universal point of 
G, the morphism g, equals the diagonal morphism A of G. For any other T-valued 
point g of G, the morphism g, is obtained from A by performing the base change 
g : T--+ G. 

As usual, let m :  G x, G -+ G be the group law of G and write m,  for its 
extension when a base change T--* S is applied to G. Then, for any T-valued point 
g of G, we define the left translation by 

g, x id m~ 
7,: G T S  T x T  GT-GT x T  GT-+GT 

and the right translation by 
id x y, M T  

z $ : G T I G T  x T  T-G, x T G T + G , .  

Both morphisms are isomorphisms. Quite often we will drop the index T and 
characterize the map z, by writing 

the same procedure will be applied for z$ and for similar morphisms. In the special 
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case where T := G and g := id, is the universal point, z, is the so-called universal 
left translation, namely the morphism 

Similarly, z$ gives rise to the universal right translation 

Each left translation by a T-valued point g : T -+ G is obtained from the universal 
left translation @ by performing the base change g : T -+ G; in a similar way one 
can proceed with right translations. 

Now let us consider the sheaf QLIs of relative differential forms of some degree 
i 2 0 on G; it is defined as the i-th exterior power of SZ,&. For any S-scheme T and 
any T-valued point g G G(T), the left translation z, : G, -+ G, gives rise to an 
isomorphism 

A global section o in QL, is called left-invariant if z $ o ,  = o, in fibTl, for all 
g E G ( T )  and all T, where co, is the pull-back of o with respect to the projection 
p, : G, + G (see 2.113 for the canonical isomorphism pTQ& Z QbTIT; see also 
Section 2.1 for our notational convention on the pull-back of differential forms). 
Using right translations z$, one defines right-invariant differential forms in the same 
way. Since each translation on the group scheme G, is obtained by base change 
from the universal translation, it is clear that one has to check the invariance under 
translations only for the universal translation. Generally, in connection with 
translations, we will drop the index T and write w instead of o, if no confusion is 
possible. 

In the following we will frequently use the fact that two global sections o and 
o' of a sheaf 9 on G are equal provided they coincide on every T-valued point g 
of G; i.e., provided g $ o ,  = g$o', in gFPT, where PT is the pull-back of P to G,. 
This is easily verified by using the universal point g := id, of G; namely, for T = G, 
we have the commutative diagram 

where GT -+ G is the projection. Similarly, one shows that two sheaves F and 9 
are isomorphic if their restrictions to each T-valued point of G are isomorphic. 

Proposition 1. Let G be an S-group scheme with unit section E : S -+ G. Then, for each 
mo E r(S, E*Q&), there exists a unique left-invariant differential form o E T(G,  Q&s) 
such that E*O = coo in E*Q';;~~. The same assertion is true for right-invariant differential 
forms. 
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Proof. It is only necessary to consider left-invariant differential forms since the 
inverse map G ---t G, x H X-I ,  transforms left-invariant forms into right-invariant 
ones. 

The uniqueness assertion is easy to obtain. Consider two global left-invariant 
sections w, o' of Q&, such that ~ * w  = &*a' = wO in E*Q&,. Then we have g*w = 

g*o' in g*R& for each point g E G(S), since g = z, o E. Hence w and w' coincide at 
all points of G(S). This fact remains true after base change. So w and o'  coincide at 
the universal point of G and we have w = w'. 

In order to settle the existence part, it is only necessary to consider the case where 
i = 1. Furthermore, the problem is local on S; so we may assume that o0 lifts to a 
section o' of Q&, which is defined over a neighborhood U of the unit section 
E : S + G. Then the decomposition 

of 2.114 gives a decomposition 
m*w' = o, @ w2 

over m-'(U), where m : G x, G - G is the group law. If 

denotes the twisted diagonal morphism, m*w1 is defined in a neighborhood of the 
image of 6 so that 6*w2 gives rise to a global section o of Qh,,. We claim that o is 
left-invariant and satisfies E*U = wO in E*R&,. 

For an arbitrary T-valued point g E G(T), the commutative diagram 

gives z,*6*02 = 6*(~$-1 x z,)*02 in Q&. So w will be left-invariant if we can show 
(z$- x z,)*o, = o,. Since the product map z$- x z, respects the decomposition (*) 
over m - ' ( ~ ) ,  we see 

However m 0 ( T $ - ~  x 7,) = m so that 

The two decompositions must coincide. Hence 6, = w,, and w is left-invariant. 
It remains to show E*O = u0 in e*Rhl,. Consider the morphism 

obtained from the unit section E : S + G by the base change T + S. Since E$~TQ;,, 
vanishes in a&,, and since m 0 cT = idG, we have 
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Since p, o E ,  = id, = pz 0 6, there is a canonical identification 
* * a 1  & W ; / s  = Qk,s = 6 Pz  c i s .  

Then 6 o E = E ,  o E implies 

&*6*o, = &*&+02 in &*R&, 

Furthermore, we know 6*a2  = o. So we get 

E*W = E * ~ * w ~  = E * E ; C O ~  = &*of  = oO in &*RkiS . 

Thus o is as desired. 0 

Using the structural morphism p : G -+ S, we can state the result of Proposition 1 
more elegantly in the following form: 

Proposition 2. There are canonical isomorphisms 

which are obtained by extending sections in E*Q& to left-invariant sections in Q&. 
Similar isomorphisms are obtained by using right-invariant differential forms. 

Actually, Proposition 1 provides only an 0,-module homomorphism 
P * ~ * R & s  -+ RkIs which, under the pull-back by E,  becomes an isomorphism. How- 
ever, applying translations, the same assertion is true for any S-valued point of G. 
In particular, after base change T := G + S, the above homomorphism is an 
isomorphism at the point g, E G,(T) which is induced by the universal point g of 
G. Hence, the above homomorphism is an isomorphism already over G. 0 

We are specially interested in the case where G is a smooth group scheme over 
a local scheme S. Then each 0,-module R&, is locally free, and E*Q& is a free 
0,-module. Thus we see: 

Corollary 3. Let G be a smooth group scheme of relative dimension d over a local 

scheme S. Then each R&,, 0 5 i 

invariant duerential forms of degree i. The same is true for right-invariant dgeiential 
forms. 

For the rest of this section, let us assume that G is a smooth S-group scheme of 
relative dimension d, and that there is a left-invariant differential form co E Q'&(G) 
generating R&, as an 0,-module. For an arbitrary T-valued point g of G we can 
consider the interior automorphism 

intg = zg o z$-, : G -+ G , x H gxg-l  , 
given by g. 
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Proposition 4. There exists a unique group homomorphism x : G + G, (a character 
on G) such that 

int$w = z$*,w = x(g)w 

for each T-valued point g of G. 

Proof. Since left translations commute with right translations, we see immediately 
that 

is left-invariant (on G,) for any T-valued point g of G. Hence, since o and int; o 
generate O&,, there exists a well-defined unit ~ ( g )  E O,(T)* such that 

recalling the functorial definition of the multiplicative group G, and of group 
homomorphisms, one easily shows that g H ~ ( g )  defines a group homomorphism 
x : G + G m .  0 

Now let us consider the case where S = SpecK and where K is the field of 
fractions of a discrete valuation ring R. As usual, let Rsh denote a strict henselization 
of R and K" the field of fractions of Rsh. Let I I be an absolute value on K and K", 
which corresponds to R and R". We want to look a little bit closer at the character 
x occurring in the above lemma. 

Proposition 5. Let G be a smooth K-group scheme of relative dimension d, and assume 
that G(K)  (resp. G(Ksh)) is bounded in G. Then the character x of Proposition 4 
satisfies l~ (g) I  = 1 for each g E G(K)  (resp. each g E G(Kd)) .  

Proof. The character x is bounded on G(K); hence we may view x(G(K))  as a 
bounded subgroup of K*. Such a subgroup consists of units in R. 0 

Remark 6. If, in the situation of Proposition 5, the group G is connected, one can actually show that 
the character ): is trivial. To see this, one uses the fact that G contains a maximal torus T defined over 
K, [SGA 3,,], Exp. XIV, 1.1. If x is non-trivial, it induces a surjective map T -+ G,, and T must contain 
a subtorus isogenous to 6,. But then G ( K )  cannot be bounded. 

4.3 R-Extensions of K-Group Laws 

Let R be a discrete valuation ring with uniformizing element n, with field of fractions 
K,  and with residue field k. As usual, R" denotes a strict henselization of R, and Ksh 

denotes the field of fractions of R". Let X ,  be a smooth K-group scheme of dimension 
d, assume that XK is of finite type, and that X K ( K d )  is bounded in X,. As a group 
scheme over a field, X ,  is automatically separated. The purpose of this section 
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is to construct a smooth and separated R-scheme X of finite type with generic fibre 
XK such that the group law of XK extends to an R-birational group law on X and 
such that each translation on XK by a Ph-valued point extends to an ~ ~ ~ - b i r a t i o n a l  
morphism of X. Later, it will turn out that X is already an R-dense open subscheme 
of the Neron model of XK. 

We start our construction by choosing a weak Ntron model of XK; for 
the existence see Theorem 3.512. There is no restriction in assuming that the special 
fibres Xi OR k are (non-empty and) irreducible for all i E I.  We will pick certain 
"minimal components" of this collection and glue them along the generic fibre to 
obtain the R-model X of XK we are looking for. 

In order to define minimal components, consider a left-invariant differential 
form o of degree d on XK which generates Qd,KIK; for the existence see 4.211 and 
4.213. It follows that o is unique up to a constant in K*. We want to define the 
order of o on smooth R-models X of XK which have an irreducible special fibre 
X,, always assuming that X is separated and of finite type over R. 

To do this, consider a general situation where 2 is a line bundle on a smooth 
R-scheme Z and where [ is a generic point of the special fibre 2,. Then the local 
ring LO,,c is a discrete valuation ring with uniformizing element 71 and, for any section 
f of 9 over the generic fibre ZK which does not vanish at the generic point of ZK 
lying over [, there is a unique integer n such that .n-"f extends to a generator of 9 
at 5. The integer n is called the order off at (, denoted by o rdJ .  

Going back to the situation where we considered the section o over the generic 
fibre of X, there is a unique generic point < of the special fibre X,, since the latter 
has been assumed to be irreducible. We call ordew the order of w at X and we 
denote it by ordxw. If n = ordxw, then O w  generates fitiR over X. Namely, Rno 
is defined on X up to points of codimension 1 2, and X bemg normal, 71-"0 extends 
to a global section of X. Furthermore, since the zero set of a non-zero section in a 
line bundle is of pure codimension 1 on an irreducible normal scheme, it is seen that 
ZPW extends to a generator of RdXIR over X. Similarly, for sections a E T(XK, OxK) 
(provided a is non-zero at the generic point of X, lying over X,), the order ordxa 
can be defined. If m = ordxa, it follows that Z-"a extends to a global section of Ox. 
The latter is invertible if a is invertible over XK. In this case, we have Ia(x)l = Izml 
for each K"-valued point x of X which extends to an R"-valued point of X. 

Lemma 1. Let X' and X be smooth and separated R-models of XK which as above 
have irreducible special fibre each. Consider an R-rational map u : X' ---+ X" which 
is an isomorphism on generic fibres; in particular, there is a unit a E r(XK, (!I$,) 
satisfying ugw = am. Assume that la(x)l = 1 for some x E XK(Ksh) such that x 
extends to a point in X'(Rsh). Then: 

(i) n' := ordxfo 2 n" := ordx.,o. 
(ii) If U is the domain of definition of u, the morphism u : U + X u  is an open 

immersion if and only if n' = nu. 

Proof. Since 7P'o (resp. 71-""a) generates Qd,./, (resp. Q$rrlR), there is a section 
b E I'(X', Ox,) such that 
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over X'. Actually, b is only defined over U; however X' - U is of codimension 2 2  
in X' so that b extends to a section over X'. The preceding equation gives a = ?I""-"'b 
over X,. Since ordxra = 0 by our assumption on a, we see 

This verifies the first assertion. 
To obtain the second one, we see from 2.2110 that u is etale on U if and only if 

u*C2&,, + Q;,, is bijective; i.e., if and only if b is invertible over U and hence over 
X'. The latter is equivalent to n' - n" = 0. Furthermore, since u, is an isomorphism, 
Zariski's Main Theorem 2.312' implies that u is ttale on U if and only if it is an open 
immersion. 0 

Let X' and X" be smooth, separated R-models of X ,  which are of finite type over 
R and which have irreducible special fibres. Then X' and X" are called equivalent 
if the identity on XK extends to an R-birational map X' ---+ Xu. 

Proposition 2. Let X, be a smooth K-group scheme of finite type such that XK(Kd)  
is bounded in X,. 

(i) There exists a largest integer no such that ord,w 2 no for all R-models X of 
X, which are smooth, separated, and of finite type over R, and which have an 
irreducible special fibre X,. All such R-models X with ord,w = no are called 
o-minimal. 

(ii) Up to equivalence there exist only finitely many R-models X I ,  . . . , X,, of X, 
which are w-minimal. 

Proof. (i) Let (Xi)i,, be a weak Neron model of XK; for the existence see 3.512. We 
may assume that the special fibre of each Xi is irreducible. So the order of o is 
defined with respect to each Xi. Let no be the minimum of the finite set (ord , ,~ ;  
i E I). We claim that no satisfies assertion (i). Namely, consider a smooth R-model 
X of X, which is separated and of finite type over R and which has an irreducible 
special fibre. Due to the weak Neron property 3.513, the identity on X, extends to 
an R-rational map u : X ---+ Xi for some i E I. Then ord,o 2 no by Lemma 1. In 
a similar way, assertion (ii) is deduced from Lemma 1 (ii). 0 

Since w, as a left-invariant differential form of degree d, is unique up to a constant 
in K*, it is clear that the notion of o-minimality does not depend on the choice of 
o. One has to interpret the o-minimal R-models as those smooth R-models with 
irreducible special fibre, which are of "biggest" size, just as can be seen from the two 
R-models 

spec R C5, P I  and Spec R C L  i-l, (i - l)lnl 

of the multiplicative group G, over K, and from the left-invariant differential form 
o := c-ldc. Furthermore, we leave it to the reader to verify that, for the additive 
group G, over K and for the left-invariant differential form w := d l ,  there does not 
exist any o-minimal R-model. 
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Lemma 3. Let Z be a smooth R-scheme, and let y be a generic point of the special 
fibre of Z. Denote by R' the local ring Oz,, of Z at y, and by K' the field of fractions 
of R'. If X,, . . . , X, is a set of representatives of the w-minimal R-models of X,, then, 
up to a splitting ofspecial fibres into connected components, XI @, R', . . . , X, @, R' 
represent the o'-minimal R'-models of X, @, K', where w' is the pull-back of w to 
X, Q K'. 

Proof. Due to 3.514, weak NCron models are compatible with the base change 
R ---t R'. Furthermore, each generic point r' of the special fibre of Xi Q, R' lies over 
a generic point ( of the special fibre of Xi. Thus, we have ordro = ordS1o1. Hence 
the R'-extension of an w-minimal R-model of X, decomposes into a union of 
w'-minimal R'-models of X,, . 0 

Now we are able to construct the R-model X of X, we are looking for. 

Proposition 4. Let X, be a smooth K-group scheme of finite type such that the set of 
K"-valued points of X, is bounded in X,. Then there exists an R-model X of X, 
which is smooth, separated, faithfully pat, and of finite type over R and which satisfies 
the following conditions: 

(i) Each open subscheme of X which is an R-model of X, with irreducible special 
fibre is w-minimal. 

(ii) For each o-minimal R-model X' of X,, the identity on X, extends to an 
R-rational map X' ---+ X which is an open immersion on its domain of definition. 

(iii) Let R' be the local ring OZ,[ of a smooth R-scheme Z at a generic point i of 
the special fibre, and let K' be the field of fractions of R'. Then each translation on 
X,, by a Kt-valued point of X,, extends to an R'-birational morphism of X @, R', 
which is an open immersion on its domain of definition. 

Proof. Let XI, . . . , X, be a set of representatives of the o-minimal R-models of X,. 
By shrinking the special fibre of each Xi, we may assume that the following condition 
is satisfied: 

(*) For each pair of indices i, j E (1,. . . , n)  with i # j, the diagonal of X, X, X, 
constitutes a Zariski-closed subset in Xi x, Xj. 

Namely, let A, be the diagonal in X, x, X,, and consider its schematic closure A 
in Xi x, Xj. Let ph : A + Xh for h = i or j be the projection onto the first or second 
factor. It is enough to know that the image of A, under pi is nowhere dense in (Xi)k. 
Assume the contrary. Then the image of A, contains a non-empty open part of (Xi)k 
and, hence, there is a point y E A above the generic point < of the special fibre of Xi. 
Thus the local ring Lo,,, dominates Loxi,<. Since pi is an isomorphism on generic 
fibres and since A is flat over R,  both local rings give rise to the same field of fractions. 
But then, being a discrete valuation ring, the map -+ Oa,q is an iso- 
morphism. Since A is of finite type over Xi, there exist open neighborhoods U 
of < in Xi and V of y in A such that pi induces an isomorphism between V 
and U ;  cf. [EGA I], 6.5.4. Hence pi is invertible over an R-dense open part of 
Xi, and 
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constitutes an R-birational map, as is seen by Lemma 1. However, this contradicts 
the choice of XI,  . . . , X,. 

Now we can construct the desired R-model X of X, by gluing all models 
XI, . . . , X, along generic fibres. Then X is separated due to condition (*), and it 
satisfies conditions (i) and (ii) by construction. 

To verify condition (iii), assume first R = R', and consider a translation z,: 
X, + X, on X, by a K-valued point. Fix an open subscheme U of X consisting 
of the generic fibre XK and of an irreducible component of the special fibre X,. 
Furthermore, let (Xi),., be a weak Nkron model of X,, where the special fibre of 
Xi is irreducible for each i E I. Then, due to the weak Ntron property 3.513, there 
exists an index i E 1 such that zK extends to an R-rational map z : U ---+ Xi. Since 
U is o-minimal, the map z is R-birational; it is an open immersion on its domain 
of definition by Lemma 1 (note that, for right translations, the assumption of Lemma 
1 is satisfied by 4.215). Moreover, Xi is o-minimal. Then it is clear that z, extends 
to an R-rational map 

z : X ---+ X. 

Likewise, one can construct an R-rational extension 

z' : x ---+ x 
of the inverse translation (zJ1 on X,. Since z and z' are composable with each 
other in terms of R-rational maps, it is easily seen that they are, in fact, R-birational. 
Finally, Lemma 1 shows that z is an open immersion on its domain of definition. 
So, if R = R', condition (iii) is satisfied. In the general case, we can perform the base 
change R -+ R', and thereby reduce to the above special case by using 3.514 and 
Lemma 3. 0 

Applying assertion (iii) of the preceding proposition, we want to show next that 
we can extend the K-group law on X, to an R-birational group law on the R-scheme 
X we have just constructed. 

Proposition 5. Let X K  be a smooth K-group scheme of Jinite type such that the set of 
K"-valued points of XK is bounded in XK. Let X be the R-model obtained in Proposi- 
tion 4 by gluing a set of representatives of o-minimal R-models. Then the group law 
m, on X, extends to an R-birational group law on X. 

More precisely, m, extends to an R-rational map 

such that the universal translations 

@ : X x , X - - - + X x , X ,  ( X , ~ ) H ( X , ~ ( X , ~ ) )  

Y : X x R X - - - + X x , X ,  (x,y)c--*(m(x,y),y) 

are R-birational. Furthermore, m is associative; i.e., the usual diagram for testing 
associutivity is commutative as far as the occurring rational maps are defined. 
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Proof. Let t be a generic point of the special fibre Xk of X, and denote by R' the 
local ring (?u,< of X at 5 .  Let S' be the spectrum of R'; it can be viewed as an X-scheme 
and as an R-scheme. Due to Proposition 4, the translation zK obtained from a, by 
the base change S', --+ XK extends to an S'-birational map 

Now consider the commutative diagram of rational maps 

It follows from 2.515 or by a simple direct argument that @ is defined at all generic 
points of the special fibre of X x,  X which project to under the first projection. 
As we can apply this reasoning to any generic point of the special fibre Xk, we see 
that @ is R-rational. Since each zg is S'-birational, it follows that @ is R-birational. 

Dealing with YK in the same way as with 0, yields an R-birational extension 
Y of YK. Choose an R-dense open part W c X x ,  X containing the generic fibre 
such that @ and Y are defined on W. Then, composing @ with the projection onto the 
second factor of X x ,  X, and Y with the projection onto the first factor, we obtain 
two extensions W + X of the group law m, of X,, which must coincide. Thus, m, 
extends to an R-rational map 

m :  X x ,  X---+ X , 

and we see that @ and Y can be described by m as stated. In particular, the associati- 
vity is a consequence of the uniqueness of R-rational extensions of K-morphisms. 

0 

It is a general fact that an R-birational group law on X, as obtained in the 
preceding proposition, always determines an R-group scheme X; cf. 5.115. 

Theorem 6. Let XK be a smooth K-group scheme of finite type. Let X be a smooth 
and separated R-model of XK which is of finite type, and assume that the group law 
mK of X, extends to an R-birational group law m : X x R  X ---+ X. Then there is a 
smooth and separated R-group scheme 2 of finite type, containing X as an R-dense 
open subscheme, and having X, as generic fibre such that the group law on x extends 
the R-birational group law m on X .  Up to canonical isomorphism, x is unique. 

This result which, for the case of birational group laws over a field, goes back 
to A. Weil[2], 4 V, n033, Thm. 15, will be proved in Chapter 5 for a strictly henselian 
base ring R. The generalization for an arbitrary discrete valuation ring will follow 
in Chapter 6 by means of descent theory. That x satisfies the Nkon mapping 
property will be shown in the next section by using an extension theorem for 
morphisms into group schemes; cf. 4.414. 
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4.4 Rational Maps into Group Schemes 

In order to establish the Neron mapping property for the R-group scheme 2 which 
has been introduced in the last section, we want to make use of an extension 
argument of Weil for rational maps into group schemes; cf. Weil [2], 4 11, n015, 
Prop. 1. 

Theorem 1. Let S be a normal noetherian base scheme, and let u : Z ---+ G be an 
S-rational map from a smooth S-scheme Z to a smooth and separated S-group scheme 
G. Then, i f  u is defined in codimension 5 1, it is defined everywhere. 

As in Weil's proof, which deals with the case where the base consists of a field, 
we will proceed by reducing to the diagonal; the following basic fact is needed: 

Lemma 2. Let u : Z ---+ Spec A be a rational map from a normal noetherian scheme 
Z into an affine scheme Spec A. Then the set of points in Z ,  where u is not defined, is 
of pure codimension 1. In particular, i f  u is defined in codimension 5 1,  it is defined 
every where. 

The assertion (cf. [EGA IV,], 20.4.12) is due to the fact that a rational function 
on Z, which is defined in codimension 5 I, is defined everywhere or, equivalently, 
that any noetherian normal integral domain equals the intersection over all its 
localizations at prime ideals of height 1. 

Now let us start the proof of Theorem 1. Consider the rational map 

u : Z x s  Z ---+ G , (z , ,  z,) w u(~,)u(z,)-~, 

and let U (resp. V) denote the domain of definition of u (resp. v). Then U X ,  U is 
contained in J! First we want to show that Vcontains the diagonal A of Z x s  Z. 
Since 

(where we have identified Z with A), we see that vlvn, factors through the unit 
section E : S + G. Set F := (Z x s  Z) - K We have to show F n A = (25. Consider a 
point x of F n A, and let s E S be the image of x in S. Let H be an affine open 
neighborhood of ~ ( s )  in G. Then there exists an open neighborhood W of x in Z x, Z 
such that v induces a rational map 

Let V' be the domain of definition of v'; we have V' c K Since vlvn, factors through 
H ,  we see V' n A = V n A. Furthermore, set F' := W - V'. Since H is affine and 
Z x, Z is normal (cf. 2.3/9), it follows from Lemma 2 that F' is of pure codimension 
1 in W. Since 
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(where we have identified Z with A again), we know that F' n A is of codimension 
2 2 in A if u is defined in codimension 5 1. Let d be the relative dimension of Z over 
S at x. Since F' is of pure codimension 1 in W c Z x ,  Z, and, since A c Z x ,  Z is 
defined locally by d equations, due to the smoothness of Z, we get 

However, this contradicts the fact that F' n A is of codirnension 2 2 in A. Thus V 
must contain the diagonal A as claimed. 

It remains to show that this fact implies U = Z. Due to 2.515 it is enough to 
show that there exists a faithfully flat S-morphism f : 2' + Z from a smooth 
S-scheme Z' of finite type to Z such that u o f  is defined everywhere. So, let Z' be 
the intersection of V with Z x ,  U in Z x, Z. Then the first projection from Z x ,  Z 
to Z gives rise to a faithfully flat morphism f : Z' + Z. Namely, since smooth 
morphisms are flat, it only remains to show that f is surjective. So, let z : T -+ Z 
be a geometric point of Z; i.e., T is the spectrum of a field. Viewing V as a Z-scheme 
with respect to the first projection, the scheme T x ,  Vis non-empty since V contains 
the diagonal A of Z x ,  2. Furthermore, the domain of definition U of u is S-dense 
open in Z. Hence the intersection of T x ,  Vwith T x s  U in T x ,  Z is not empty. 
Thus we see that the morphism f is surjective and, hence, faithfully flat. Now look 
at the morphism 

It is clear that this map coincides with u o f ,  in terms of S-rational maps. Thus, 
the S-rational map u is defined everywhere, and we have finished the proof of 
Theorem 1. 0 

Remark 3. The method of reduction to the diagonal which was used in the proof of 
Theorem 1 works also within the context of formal schemes or rigid analytic spaces. 
So, if R is a complete discrete valuation ring, the assertion of Theorem 1 remains 
true if Z is of type Spec R [ [ t ] ]  or Spec R{t )  (formal or strictly convergent power 
series in a finite number of variables t,, . . . , t,). 

Now it is easy to show that the R-group scheme x we have introduced in Section 
4.3 satisfies the NCron mapping property and thereby to end the proof of the 
existence theorem 1.311 for NCron models over a discrete valuation ring R (modulo 
the proof of Theorem 4.316). Recall the situation of 4.3. Starting with a smooth 
K-group scheme of finite type X, such that the set of its Ksh-valued points is 
bounded in X,, we have constructed in 4.314 a smooth and separated R-model of 
finite type X such that the group law on X, extends to an R-birational group law 
on X; cf. 4.315. In 4.316 we have claimed that there is a unique extension of X to a 
smooth and separated R-group scheme of finite type x containing X as an R-dense 
open subscheme. 

Corollary 4. Let X be the R-model of X ,  as considered in 4.314 and 4.315, and let 2 
be the associated R-group scheme in the sense of 4.316. Then 2 is a N b o n  model of 
X ,  over the ring R. 
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Furthermore, for each u-minimal R-model X' of X,, the identity on X, extends 
to an open immersion X' c+ 2 over R. 

Proof. In order to show that x satisfies the Ntron mapping property let Z be a 
smooth R-scheme and let u, : 2, + XK-be a K-morphism. We have to show that 
u, extends to an R-morphism u : Z + X. 

It is enough to consider the case where Z has an irreducible special fibre. Let [ 
be the generic point of the special fibre of Z, and let R' = 6$5 be the local ring of 
Z at [. 

Look first at the rational map 

z x R x ---+ z x R x , (z, x) + (z, u,(z)x) , 

which is defined on the generic fibre. Applying the base change Spec R' + Z, this 
map is turned into an R'-rational map; cf. 4.314. Then it follows from 2.515 that 
the map 

is defined at all generic points of the special fibre of Z x R  2 which project to ( under 
the first projection. So z is an R-rational map. Since it is defined at the generic fibre, 
it is defined everywhere by Theorem 1. Therefore, if we denote by p the structural 
morphism of Z, and by E the unit section of 2, the composition of the morphism 

with z yields an R-morphism u : Z + x extending u,. The uniqueness of u follows 
from the separatedness of X. 

If X' is an co-minimal R-model of X,, the identity on X, extends to an R-rational 
map from X' to X by 4.314. Hence it extends to an R-morphism from X' to 2 by 
Theorem 1. Then it is an open immersion, due to 4.311. 0 



Chapter 5. From Birational Group Laws to 
Group Schemes 

For the construction of NCron models, we need the fact that an S-birational group 
law on a smooth S-scheme with non-empty fibres can be birationally enlarged to a 
smooth S-group scheme; see 4.316. The purpose of the present section is to prove 
this result in the case where S is strictly henselian. In Chapter 6, the result will be 
extended to a more general base. 

The technique of constructing group schemes from birational group laws is 
originally due to A. Weil [2], §V, n033, Thm. 15; he considered birational group 
laws over fields. More general situations were dealt with by M. Artin in [SGA 3,,], 
Exp. XVIII, among them birational group laws over strictly henselian rings. The 
proof we give in this chapter, essentially follows the exposition of M. Artin [9]. 
Finally, in Chapter 6, descent techniques can be used to handle the case where the 
base is of a more general type. 

5.1 Statement of the Theorem 

In the following, let S be a scheme, and let X be a smooth separated S-scheme of 
finite type. Furthermore, we will assume that X has non-empty fibres over S or, 
which amounts to the same, that X is faithfully flat over S. 

Definition 1. An S-birational group law on X is an S-rational map 

such that 
(a) the S-rational maps 

@ : X X s X - - - + X  X s X ,  ( x , y ) H ( x , x y ) ,  

Y : X xs X ---+ X x, X , (x, y) + (xy, y) , 
are S-birational, and 

(b) m is associative; i.e., (xy)z = x(yz) whenever both sides are defined. 
Just as in the case of group schemes, the maps cD and Y will be referred to as 

universal left or right translations. 

Note that, in place of (a), it is enough to require cD and Y to be open immersions 
on an S-dense open subscheme U of X xs X. To see this, one has only to verify that 



5.1 Statement of the Theorem 113 

the images V = (D(U) and W = Y ( U )  are S-dense in X x s  X. Since each fibre of U 
over S has the same number of components as the corresponding fibre of X x s  X  
over S, the same is true for the fibres of V and W over S. Hence V and Ware S-dense 
in X x s  X if (D and Y are open immersions on U. 

The notion of S-birational group law is compatible with base change. Further- 
more, an S-birational group law on X  induces an S-birational group law on each 
S-dense open subscheme of X. In particular, if x is an S-group scheme and if X is 
an S-dense open subscheme of 2, the group law of X induces an S-birational group 
law on X .  But there are S-birational group laws which do not occur in this way. 
Namely, even if the base consists of a field, one can blow up a subscheme of a group 
scheme x and consider the induced birational group law on the blowing-up. So it 
is natural to shrink X  in order to expect that an S-birational group law on X extends 
to a group law on an S-scheme x containing X. 

Definition 2. Let m be an S-birational group law on a separated and smooth S-scheme 
X which is faithfully flat and of finite type over S. A solution of m is a separated and 
smooth S-group scheme X of finite type over S with group law iii, together with an 
S-dense open subscheme X' c X  and an open immersion X' c, X such that 

(a) the image of X' is S-dense in X, and 
(b) m restricts to m on X'. 

First we want to show that solutions of S-birational group laws are unique. 

Proposition 3. Let m be an S-birational group law on a separated and smooth S-scheme 
X which is faithfully flat and of finite type over S. If there exists a solution of m, it 
is uniquely determined up to canonical isomorphism. 

For the proof we need the following well-known lemma. 

Lemma 4. Let G be a smooth S-group scheme, and let U be an S-dense open subscheme 
of G. Then the morphism 

U x s U + G ,  ( X , Y ) H X Y  

is smooth and surjective. 

Proof of Proposition 3. Let 
- - 

a, : X i  c, X ,  and o, : X i  c, X ,  

be solutions of the S-birational group law m on X ,  and set Y := Xi n X i .  Then Y 
is an S-dense open subscheme of X ,  and each ai (Y)  is S-dense open in Xi,  i = 1,2. 
The group laws mi of Xi give rise to morphisms 

m i ~ ( ~ i ~ o i ) : Y ~ s Y + x i ,  i = 1 , 2 ,  

which are faithfully flat by Lemma 4. Furthermore, the morphisms o ,  and a, yield 
an S-birational map 

- - 

a = o, 0 o;' : XI ---+ X ,  

which is compatible with the group laws; i.e., 

m, o (0, x a,) = a 0 m,  0 (o ,  x o,). 
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So, due to 2.515, the map a is defined everywhere. Since a is compatible with the 
group laws, it is clear that a is a group homomorphism. Similarly, P = o, o 0;' is 
a group homomorphism which is defined everywhere. Since a and /l are inverse to 
each other, they yield S-isomorphisms between and &. 0 

Next we want to look at the existence of solutions of S-birational group laws. 
In the present chapter we will consider the case where the base consists of a discrete 
valuation ring; see 6.611 for the case where the base is more general. 

Theorem 5. Let S be the spectrum of a field or of a discrete valuation ring, and let m 
be an S-birational group law on a smooth separated S-scheme X which is faithfully 
Jlat and of finite type over S. Then there exists a solution of m, i.e., a smooth separated 
S-group scheme X of finite type with a group law m, together with an S-dense open 
subscheme X' c X and an S-dense open immersion X' c.+ % such that m restricts to 
m on X'. 

The group scheme x is unique, up to canonical isomorphism. If (in the case where 
the base S consists of a valuation ring) the generic fibre XK of X is a group scheme 
under the law m,, the above assertion is true for X' = X .  So, in this case, it is not 
necessary to shrink X. 

The proof of the existence will follow in the subsequent sections (cf. 5.2/2,5.2/3, 
and 6.5/2), whereas the uniqueness has already been proved. So, accepting the 
existence of X, let us concentrate on the additional assertion on the domain X' 
where the group laws on X and 2 coincide. Assume that the base S consists of a 
discrete valuation ring and that the generic fibre XK is a group scheme. By the 
uniqueness assertion, the S-rational map 

z : X ---+ X 
induced by X' c X restricts to a K-isomorphism 

- 

zK:xK-xK. 

Hence z is defined in codimension I 1 so that, by 4.411, the rational map z is defined 
everywhere. Now let o be a differential form generating a$,,, where d is the relative 
dimension of x over S; cf. 4.213. Pulling back o ,  we get a differential form z*o on 
X which generates Rd,/, over X' u X K ;  hence z*w generates in codimension I 1. 
Since on a normal scheme, the zero set of a non-vanishing section of a line bundle 
is empty or of pure codimension 51, we see that z*w has no zeros. Thus i is etale 
by 2.2110. Since z is birational, Zariski's Main Theorem 2.312' implies that z is an 
open immersion. 0 

5.2 Strict Birational Group Laws 

In the following, let S be a scheme, and let X be a smooth separated S-scheme of 
finite type. Furthermore, we assume that X is faithfully flat over S .  
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If X is an S-dense open subscheme of an S-group scheme 2, then, for each 
T-valued point x : T + X, the set of points y E T x s  X which is characterized 
symbolically by the conditions 

x y ~  T x s X ,  x - l y ~  T x s X ,  and xy-' E T x s X  

is T-dense and open in T x ,  X. Thus, we see that the group law of X induces an 
S-birational group law on X which is of a special type. Namely, there is an open 
subscheme U of X x s  X which is X-dense in X x s  X (with respect to both projec- 
tions pi : X x ,  X + X, i = 1, 2; i.e., X-dense when X x ,  X is viewed as an 
X-scheme via each pi), such that the universal translations 

are defined and open immersions on U ,  and their images V := @(U)  and W:= Y ( U )  
are X-dense in X x, X. Just take for U the intersection of X x ,  X with the inverse 
images of X x ,  X under the group law and both universal translations on X. So it 
is natural to introduce the following terminology: 

Definition 1. An S-birational group law on X is called a strict (S-birational) group 
law if it satisfies the following condition: There is an X-dense open subscheme U of 
X x ,  X, on which m is defined, such that the universal translations 

are isomorphisms from U onto X-dense open subschemes V := @(U) and W := 
Y ( U )  in X x s  X. (As  before, X-density is meant with respect to both projections 
from X x ,  X onto its factors.) 

Note that X-density implies S-density. So the subschemes U ,  and Wabove 
are S-dense in X x ,  X. The first step in the existence proof of 5.115 consists in 
showing that each S-birational group law on X induces a strict group law on an 
S-dense open subscheme of X if S consists of a field or of a discrete valuation ring. 

Proposition 2. Let S consist of a field or of a discrete valuation ring. Let X be a 
smooth separated S-scheme of finite type, and consider an S-birational group law m 
on X. Then there exists an S-dense open subscheme X' of X such that m restricts to 
a strict group law on X'. 

Proof. Let U be the S-dense open subscheme of X x ,  X such that m is defined at 
U and such that the universal translations Q and Y are open immersions on U.  Set 
V = @(U)  and W = Y ( U ) .  Since U ,  V; and Ware S-dense in X x ,  X, the set 

is again S-dense open in X x ,  X. We want to show that there exists an S-dense 
open subscheme R, of X such that Z n (R, x s  X) is R,-dense in a, x ,  X with 
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respect to the first projection p,. Due to 2.511, the set 

TI = {x E X ;  Z n ( x  x,X)is not denseinx x,X) 

is constructible in X. Since Z is S-dense in X x, X, the generic points of the fibres 
of X over S do not belong to TI. Hence the closure T1 of TI in X cannot be dense 
in any fibre of X if S consists of a discrete valuation ring. So the open subscheme 
R, = X - T, is S-dense in X and has the required property. Similarly, one defines 
a subscheme R2 of X by considering the second projection. Then the subscheme 

is S-dense open in X, and Z n (X' x, X') is X'-dense in X' x, X' (with respect to 
both projections). 

Setting 

U' := U n (X' x, X') n (ml,)-l(X') , 

V' := @(U1) , 

it remains to show that these open subschemes are X'-dense in X' x, X'. As a 
general argument, we will use the fact that U, I/, and W give rise to X'-dense open 
subschemes in X' x, X', because Z = U n V n W. Now consider a point a E X'. We 
may assume that the base S is a field and that a is an S-valued point of X'. First we 
will show that U' is X'-dense in X' x, X' with respect to the first projection p,. If 
we view X x, X as an X-scheme via p , ,  the base change a - X transforms @ into 

which is an open immersion with dense image. Then the open subscheme 

@(a, .)-'(V n (a x, X')) = (ml,)p'(X') n (a x, X) 

is also dense in a x, X. This shows that U' is pl-dense, i.e., X'-dense with respect 
to p,. In a similar way, using Y, one shows U' is p,-dense. Next, it is clear that 
V' is p,-dense, since V' n (a x, X') is the image of the dense open subscheme 
U' n (a x, X') of a x, X under the open immersion @(a, .); the latter has a dense 
image in a x, X. By the same argument, using Y(. , a), we see that W' is p2-dense. 
In order to show that W' is pl-dense, set Ua := m-'(a), and consider the diagram of 
isomorphisms 
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Since a belongs to X', the set I/, is dense in X x s  a, and Wa is dense in a x s  X. The 
same is true if we replace I/, by its restriction to X' x s  a and W, by its restriction to 
a x s  X'. Taking inverse images with respect to and Y ,  the set 

Ua n U' = @-'(I/ ,  n (X'  x s  a))  n Y-'(wa n (a x s  X ' ) )  

is open and dense in Ua. Hence its image under Y ,  which is W '  n (a x s  X ) ,  is open 
and dense in a x s  X. Thereby we see that W' is p,-dense. Similarly, one shows that 
V' is p,-dense. 

The proposition reduces the proof of Theorem 5.115 to the problem of enlarging 
a strict group law on X to a group law on a group scheme 2. If the base scheme S 
is normal and strictly henselian (of any dimension), we will construct the group 
scheme x in a direct way. The case where S consists of a field or of a discrete 
valuation ring, without assuming that the latter is strictly henselian, will be reduced 
to the preceding one by means of descent theory, cf. 6.512. For further generaliza- 
tions see Section 6.6. 

Theorem 3. Let S be the spectrum of a strictly henselian local ring which is noetherian 
and normal, and let m be a strict group law on a separated smooth S-scheme X which 
is faithfully jlat and of finite type over S. Then there exists an open immersion X r 2 
with S-dense image into a smooth separated S-group scheme x of finite type such that 
the group law m of X restricts to m on X. 

The S-group scheme 2 is unique, up to canonical isomorphism. 

The uniqueness assertion of Theorem 5.115, which has already been proved in 
Section 5.1, yields the uniqueness assertion of the present theorem. A proof of the 
existence part will be given in Section 5.3, assuming that the base S is strictly 
henselian. The idea is easy to describe, although a rigorous proof requires the 
consideration of quite a lot of unpleasant technical details. Namely, a smooth 
scheme X over a strictly henselian base S admits many sections in the sense that 
the points of the special fibre Xk which lift to S-valued points of X are schematically 
dense in Xk; cf. 2.315. So the idea is to construct X by gluing "translates" of X. More 
precisely, consider an S-valued point a of X and a copy X(a)  of X ,  thought of as a 
left translate of X by a. Then one can glue X and X ( a )  along the correspondence 
given by the left translation by a 

The result is a new S-scheme X' = X u X(a),  and it has to be verified that the strict 
group law m on X extends to a strict group law m' on X'. The left translation by a 

is now defined on the open subscheme X of X'. Repeating such a step finitely many 
times with suitable S-valued points a,, . . . , a, E X(S) ,  and applying a noetherian 
argument, one ends up with an S-scheme 2 = X(") such that the strict group law m 
on X extends to a strict group law m on X, such that the S-rational map 

m:Z x S X - - - + X  



118 5. From Birational Group Laws to Group Schemes 

is defined on the open subscheme X x, X c x x, X. Then it is not difficult to show 
that m defines a group law on X, and that x is the S-group scheme we are looking 
for. 

The technical problems in the proof of Theorem 3 are due to the fact that, for 
a point a E X, the product ax is only defined for "generic" x E X. This drawback 
disappears, when we look at the situation from the point of view of group functors. 
Let m be a strict group law on X, as in Theorem 3, and consider the group functor 

B,, : (Sch/S) -+ (Sets) 

which associates to each S-scheme T the set of T-birational maps from X, = X x, T 
onto itself. Identifying X with its functor of points h, = Hom(.,X), cf. 4.1, we claim 
that there is a monomorphism X c, Bxl, respecting the laws of composition on 
X and Bx1,. Namely, due to the definition of strict group laws, one knows that the 
universal left translation 

cD : X xs X ---+ X x, X , (x, y) H (x, m(x, y)) 

is X-birational if X x, X is viewed as an X-scheme via the first projection. So, for 
any S-scheme T and any T-valued point a E X(T), the map 

z,: T xs X---+ T xs X ,  

the "left translation" by a obtained from cD by means of the base change a : T + X, 
is T-birational and thus belongs to BxIs(T). It is clear that the maps 

constitute a morphism of functors X -+ Bxl,. 

Lemma 4. The morphism X -+ Wxl, is a monomorphism which respects the laws of 
composition on X and on Wxl,; i.e., for any S-scheme T and all T-valued points a, 
b, c E X(T) satisfying m(a, b) = c, one has z, 0 z, = 7,. 

Proof. We have to show that all maps X(T) + BxIs(T) are injective. So consider 
a, b E X(T) with z, = 7,. Applying the base change T + S to our situation, we may 
consider T as the new base, writing S instead of T. Let U be the X-dense open 
subscheme of X xs X required by Definition 1 (on which the universal translations 
are open immersions). Using the X-density of U with respect to the first projection, 
we see that the compositions 

a x id, Y 
Y, : S x, X - X x, X ---------+ X x, X , 

b x id, Y 
Y, : S x, X - X x S X ---------+ X x, X 

are defined as S-rational maps. Since Y, = (z,, id,) and Y, = (z,, id,) when S x, X 
is identified with X, we see that z, = z, yields Y, = Y,. Now Y is an open immersion 
on U ,  so a x id, and b x id, must coincide on the S-dense open subscheme 

of S x, X, hence on all of S x, X. In particular, their first components agree, i.e., 
a = b. Thus we see that X -+ B,,, is a monomorphism. That this transformation 
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respects the laws of composition follows immediately from the associativity of m. 
0 

If X has been expanded into an S-group scheme x such that X is S-dense and 
open in X and such that the group law on x restricts to the strict group law m on 
X, then there is a canonical commutative diagram of natural transformations 

where the vertical arrow on the right-hand side is an isomorphism, since X is S-dense 
in X. Although it is not in general true that the group functor x is generated by X, 
i.e., that X(T) generates the group X(T) for all S-schemes T, the latter is nevertheless 
correct if T is a strictly henselian local S-scheme. Namely the group law on  induces 
a surjective and smooth S-morphism 

c.f. 5.114, so that, by 2.315, each T-valued point of lifts to a T-valued point of 
X x, X. 

5.3 Proof of the Theorem for a Strictly Henselian Base 

We have already seen in 5.212 that Theorem 5.213 implies Theorem 5.115 if the base 
is strictly henselian. So we may restrict ourselves to strict group laws and give only 
a proof of 5.213. In this section we assume that the base S consists of a strictly 
henselian local ring which is noetherian and normal. Furthermore, let X be a smooth 
and separated S-scheme which is faithfully flat and of finite type over S, and let m 
be a strict group law on X; the symbols @, Y,  and U ,  V; W will be used in the sense 
of 5.211. 

Introducing further notational conventions, let Xn be the n-fold fibred product 
of X over S,  and, for integers 1 5 i, < . . . < i, 5 n, let 

be the projection of Xn onto the product of the factors with indices i,, . . . , i,. In such 
a situation, we can view Xn as an X'-scheme with respect to the morphism pi, ...i,. 
So we have the notion of Xr-density in Xn; to be more precise, we will speak 
of pil,,,i;density. Sometimes, we will write x = (x,,. . . ,xn) for points in X n and 
(xil, . . . , xir) instead of pil ...;Jx) for their projections onto Xr. As usual, the S-rational 
map m : X 2 

---+ X will be characterized by (x,,x2) H x,x2. 
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Lemma 1. Let R be the set of points (x, y, z, w) E X4 such that 

( z , w ) ~ U ,  ( y , w ) ~ U ,  and ( x , y w ) ~ U .  

Proof. Recall that the intersection of finitely many pi,,-dense open subschemes of 
X4 is pi,,-dense and open again. Since U is pl-dense in X2, the first two conditions 
pose no problem. So it remains to show that the set U of all points (x, y, w) E X3, 
satisfying (y, w) E U and (x, yw) E U, is pi,-dense and open in x 3 .  We can describe 
R' as the inverse image of U with respect to the following morphism: 

id, x @ 
X x , U  - X3 A x 2 ,  

Since U is pl-dense in X2, and since cD leaves the first component fixed and is an 
open immersion on U with a pl-dense image in X2, we see that n' is p,,-dense and 
open in X3. 0 

The assertion of Lemma 1 is only an example for similar assertions of this type. 
Roughly speaking, it says that, fixing x, y, and z, the stated conditions form open 
conditions on w; these are satisfied if w is generic. 

Lemma 2. Let r be the schematic closure in X3 of the graph of m : U + X. Let T 
be an S-scheme. If (a, 6, c) is a T-valued point in T(T) c X3(T), then, using the functor 
9,,, of 5.2, the T-birational maps z,, z,, and zc of X, satisfy z, 0 z, = z, in 9i?x,s(T). 

Proof. Let R be the p12,-dense open subscheme of X4 which was considered in 
Lemma 1. Then the S-rational maps 

2 : X4 ---+ X4 , (x, y, Z, W) H (x, y, X(YW), w), 

p : X 4 - - - + X 4 ,  (~,y,z,w)l+(x,y,zw,w), 

are defined on R. Next, let R' := R n p1,-'(U). We claim that n' n (r xs X) is 
schematically dense in R n ((r x, X). Namely, pl2-'(U) n (T x, X) is schematically 
dense in T xs X by the definition of T (since X is flat over S), and this density is 
not destroyed when we intersect both sets with an open subscheme of X4 such as 
R. Since the law m is associative, the morphism xsx)nn factors through A, 
the schematic image of A1,. By continuity, also x , x )  nn factors through A, and 
thus yields a morphism 

Now set 

and R,, ,,, := cp-' (R). Then R,, ,,, is T-dense and open in X,. Let cpT : X, + X ;  be 
the T-morphism derived from cp, and let pT be the T-morphism obtained from p by 
means of the base change T+ S. Then p, 0 p, 0 cp, coincides with z, on R,,,,,, but 
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also with z, o z, since p o cp factors through A. Hence, we have z, 0 z, = z, in 9xls(T). 
0 

We state an important consequence of Lemma 2. 

Lemma 3. Let r be the schematic closure in X 3  of the graph of m : U ---, X, and 
let qij : T -t X 2 be the morphisms induced from the projections pij : X3 + X2. 
Then each qij is an open immersion and has an image which is p,-dense and p2-dense 
in X 2 

Proof. First we want to show that each qij is injective as a map of sets. If (a, b, c) is 
a T-valued point in r ( T )  for some S-scheme T, then z, o z, = z, by Lemma 2. Since 
this is an identity in the group gxjs(T), any two of the maps z,, z,, z, determine the 
third one. As stated in 5.214, the natural transformation X is a mono- 
morphism. Hence a point of is known if two of its components are given. This 
implies that qij is injective as a map of sets and, hence, that qij is quasi-finite. We 
claim that the maps qij are, in fact, S-birational. Namely, using the notation of 5.211, 
the projection q12 gives rise to an isomorphism q;:(U) -2; U because m is defined 
on U. Furthermore, q13 defines an isomorphism q;,'(V) 1 V because q13 is injec- 
tive and because cDI, is an isomorphism U 3 K Likewise, q2, defines an iso- 
morphism q;: (W) 2 W because qZ3 is injective and because YI, is an isomorphism 
U 7 W. Thus, by Zariski's Main Theorem 2.312' (recall that S is normal), each qij 
is an open immersion and, due to the X-density of U, and W in X2, the image 
of each qij is X-dense in X 2 (with respect to p ,  and p,). 17 

Fixing points a, b, c E X(T) for some S-scheme T, we see from the preceding 
lemma that there exists at most one point x E X(T) such that ax = c and at most 
one point y E X(T) such that yb = c. Suggestively, we will write a-lc for x and cb-' 
for y. With this notation the assertion of Lemma 3 can be interpreted as follows: 
The maps 

are S-birational. They are open immersions on their domains of definition; the latter 
as well as the corresponding images are X-dense in X2 (with respect to both 
projections). In addition, the lemma shows that the law m : X2 ---+ X is defined at 
a point (x, y) E X2 as soon as the fibre q;k((x, y)) is non-empty. This fact will be 
needed in the next lemma. 
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Lemma 4. Let a be an S-valued point of X ,  and consider another point b E X .  Then 
a x ,  b can be viewed as a point in X 2 ,  and the law m : X 2  ---+ X  is defined at a x ,  b 
if and only if the birational map za : X  ---+ X  is defined at b. 

Proof. It is only necessary to verify the if-part of the assertion. Considering the 
S-dense open subscheme Ua := U n (a x, X )  of a x ,  X  E X ,  we know that za is at 
least defined on Ua. Let ra be the schematic closure in X 2  of the graph of zalua Then 
we have 

and, by continuity, also a  x ,  ra c r. Since the image of the morphism 

contains the point a x ,  b, the fibre over it with respect to q12 is non-empty. Thus, 
the assertion follows from Lemma 3. 0 

The preceding lemma is very useful if one wants to expand the domain of 
definition of m : x2 ---+ X  by means of enlarging X. Namely, one has only to enlarge 
the domain of definition of z, : X  ---+ X  for suitable sections a E X(S). This can be 
done by introducing sort of a translate of X  by a and by gluing it to X .  

Therefore, fix a section a E X ( S )  and, as in the proof of Lemma 4, consider the 
schematic closure Ta in X 2  of the graph of the S-birational map 7,. Then a  x, Ta c r 
and, by Lemma 3, both projections pi : T,  + X  are injective as maps of sets. 
Since za is S-birational, Zariski's Main Theorem implies that p, and p2 are open 
immersions; furthermore, p, and p2 have S-dense images in X. So these projections 
define gluing data, and we obtain an S-scheme 

which is smooth and of finite type over S, and which is covered by two S-dense open 
subschemes isomorphic to X .  Due to its definition, Ta is closed in X 2,  hence X' is 
separated over S. 

We need to distinguish between the two copies of X which cover X'. So let us 
write more precisely 

for the gluing data, where X(a)  is another copy of X. This way we have fixed one of 
the two canonical embeddings of our original S-scheme X  into X'. We want to show 
that X ( a )  can be interpreted as a "left translate" (in X') of X  by a. Namely, consider 
the S-birational map z, : X  ---+ X .  It is defined at least on Ua so that we have the 
following factorization: 

l- 
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Working in X', we can write this diagram also in the form 

Since the horizontal map is the restriction to U, of the canonical isomorphism 
X S X(a), we see that z, : X ---+ X extends to an isomorphism z, : X 7 X(a), 
namely the canonical one. In particular, z, extends to an S-birational map X' ---+ X' 
which is defined on X. 

Lemma 5. As before, let X' be the S-scheme obtained by gluing a left translate 
X(a) = z,(X) for some point a E X(S) to X. Then X' contains X as an S-dense open 
subscheme, and the strict group law m on X extends to a strict group law m' on X'. 

Proof. We have already seen that X is S-dense in X'. So it is clear that m extends 
to an S-birational group law m' on X', and we have only to show that m' is strict, 
i.e., that there exists an XI-dense (with respect to both projections) open subscheme 
U' c X' x, X' satisfying the following conditions: 

(a) m' is defined on U', 
(b) the universal translations 

are open immersions on U', and the images V' := (D(U1) and W' := Y(U1) are 
XI-dense in X' xs X' (with respect to both projections). 

The product X' x, X' is the union of the open subschemes 

X x , X ,  X ( a ) x , X ,  X x s X ( a ) ,  and X(a)x ,X(a) .  

In order to define U', let U, as before, be the open subscheme of X x, X whose 
existence is required in Definition 5.211 for the strict group law m on X. Further- 
more, let U, be the image of U under the isomorphism 

Then m' is defined on U since m is defined on U, and the isomorphism z, : X 2 X(a) 
can be used in order to obtain the morphism 

from m : U -+ X. Both morphisms coincide on an S-dense open part of U, due to 
the associativity of m. Thus m' is defined on the open subscheme U u U, of X' x, X'; 
the latter is X'-dense with respect to the first projection. 

Next consider the open subscheme 

of X3. Similarly as in the proof of Lemma 1, one shows that it is p,,-dense in X3. 
Hence, intersecting it with X x, a x, X and applying the isomorphism 
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PI 3 id, x 7, X x , a x , X  X2 X x , X ( a ) ,  

we obtain an open subscheme U, of X x, X(a) which is X(a)-dense with respect to 
the second projection. Then the morphism 

is defined and, using the associativity of m, it coincides with the multiplication 
m : U --+ X on an S-dense open part of U. Thus, writing U' for the X'-dense (with 
respect to both projections) open subscheme U u U, u U2 of X' x, X', we see that 
m' is defined on U' and, hence, that U' satisfies condition (a). 

In order to verify condition (b), notice that the universal translations 0' and Y' 
corresponding to m' extend the universal translations 0 and 'Y corresponding to m. 
Thus, since @ and Y are open immersions on U, we see that @' and Y' are open 
immersions on each one of the schemes U, U,, and U,. In particular, 0' and Y' are 
quasi-finite on U'. Since these are S-birational maps on X' x, X', Zariski's Main 
Theorem 2.3/2' implies that they are open immersions on U'. 

As in 5.211, set V := @(U). Furthermore, let Vl be the image of V  under the 
isomorphism 

z, x 7, :  X x, X 1 X ( a )  x, X(a) . 

Then V' := W(U') contains V u  Vl, and the latter is X'-dense in X' x, X' (with 
respect to both projections); in particular, V' is X'-dense in X' x, X'. 

Similarly, one shows that W' := Yf(U') is XI-dense in X' x, X' with respect to 
the first projection. In order to see that the same is true for the second projection, 
notice that W, := Y ' (U ' )  is X-dense in X' x, X with respect to the second projec- 
tion. Furthermore, consider the open subscheme 

and look at the description (a) of m' on U2 which was discussed above. Then W, is 
seen to be X(a)-dense in X' x, X(a) with respect to the second projection since, for 
any T-valued point z of X, the right translation 

is T-birational. Hence W' = Y'(U') is X'-dense in X' x, X' with respect to both 
projections. The latter finishes the verification of condition (b). 0 

Now consider a sequence a,, a,, . . . of S-valued points of X. Iterating the 
construction of X' by using these points, we obtain a sequence of S-schemes 

where X(')  = X('-l) u X('-l)(ai). Each X(') contains X as an S-dense open subscheme, 
and X(') is separated, smooth, and of finite type over S. Furthermore, Lemma 5 
shows that the strict group law m on X extends to a strict group law m(') on each 
x('). Using a noetherian argument, we want to show that the sequence X(O) c 
X") c X") c . . . becomes stationary at a certain X'"). Then, for a suitable choice of 
the a,, we will see that X'") is the S-group scheme we are looking for. 
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Lemma 6. There exist finitely many S-valued points a,, . . . ,a, E X(S) such that, for 
X(") as above, the S-rational map m : X xS X---+ X extends to an S-morphism 
X x, X + X'"'. 

Proof. First we show that we can find a,, . . .,a, E X(S) in such a way that, for each 
a E X(S), the S-birational map za : X ---+ X extends to an S-morphism X + X'"). 
Proceeding indirectly, consider a sequence a,, a,, . . . in X(S) such that 

is not defined everywhere on X. Let T") be the schematic closure in (X(i))3 of the 
graph of m : U --, X. It coincides with the schematic closure of the graph of the 
induced strict group law m(i) on x"); so we know from Lemma 3 that 

is an open immersion. Setting 

the Q(') form an increasing sequence of open subschemes of X x, X, since the Pi) 
form an increasing sequence. However, the base S consists of a noetherian ring, 
which implies that the topological space X x, X is noetherian. Thus the Q(') must 
become stationary at a certain index n E N, and we claim that, for a = a,+,, the map 
za : X ---+ X'") is defined everywhere. Namely, consider a point b E X. By the defini- 
tion of X'""), the birational map za : X ---+ X("+" is defined everywhere. So we see 
from Lemma 4 that the law m'"") on X("+') is defined at a x, b. Hence the fibre 
over a x, b of 

is non-empty, and a x, b E Q("+l1. But, since Q("+') = Q'"), the fibre over a x, b of 

. p) , X(n) ~ ( n )  
P l 2 .  

cannot be empty, and we see from Lemma 3 that the law m'") on X'") is defined at 
a x, b. In particular, T,,+~ = z ~ :  X ---+ x'") is defined at b. This contradicts our 
assumption on the sequence a,, a,, . . .; so there must exist a,, . . . , a, E X(S) such 
that za : X ---+ X'") is defined everywhere for each a E X(S). 

It remains to show that, in this situation, the S-rational map m : X xs X ---+ X(") 
is defined everywhere. We know already from Lemma 4 that m is defined on a xs X 
for each S-valued point a of X. However, this is not enough, and we now have to 
use the fact that our assumption on X to be a faithfully flat and smooth scheme 
over a strictly henselian base S yields the following property: 

Let t be a point of S, and let C, be the reduced subscheme of X x, t whose 
underlying topological space is the closure in X x, t of the set of points 
{a(t);a E X(S)}. Then there exists a component Xp of X,  contained in C,; cf. 
Lemma 7 below. 

Moreover, let k' be an extension field of k(t), and let t' be the scheme of k'. Then 
C, x, t' coincides with the reduced subscheme of X xs t' whose underlying topo- 
logical space is the closure of the points (a(t');a E X(S)); cf. CECA IV,], 11.10.7. 
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In particular, if Z,, is a dense open subscheme of X x ,  t', there exists a point a E X ( S )  
such that a x s  t' gives rise to a point of Z,,. 

Now let us continue the proof of Lemma 6. Using the notation of Lemma 3, we 
know that 

q 2 3 0 q ; ; : X x s X - - - + X x s X ,  ( w , x ) l - + ( ~ - ~ x , x ) ,  

is an S-birational map. It is an open immersion on its domain of definition D, and 
this domain as well as its image are X-dense in X 2  with respect to both projections. 
Now consider a point t E X2.  It follows that the set 

Z := ( (w,  x ,  y) E x3 ; (w, X )  E D and (w-'x, Y )  E U )  , 

where U is as in 5.211, is open and p,,-dense in X 3  and, hence, open and dense in 
X x s  t. So, applying the base change t --+ X 2  to X x s  X 2 ,  the assumption on X as 
explained above implies the existence of a point a E X ( S )  such that a x s  t E Z. Then 
the S-rational map 

is defined at t. Furthermore, since the left translation 

is defined everywhere, we see that 

X x , X - - - + X ( " ) ,  (x,y)++a((a-'x)y), 

is defined at t. However, this map coincides on X x ,  X with the strict group 
law m, since m is associative. So we see that m extends to an S-rational map 

x x s  x ---+ x'"' 

which is defined at all points of X 2.  

Lemma 7. L,et T be a noetherian scheme, let Y + T be a morphism of finite type, 
and let {a,, i E I )  be a family of sections of Y. Let t ,  and to be points of T such that 
to is a specialization of t , .  Let Cj be the closure of the set of points {ai(tj), i E I )  in 
the fibre Y,,, j = 0, 1. Then dim Cl 2 dim Co. 

In particular, if T is strictly henselian and noetherian, and if Y + T is smooth 
and surjective, then, for each point t E T, there exists a connected component T o  of 
the fibre Y, such that the set of the points (a(t) ,  a E Y ( T ) )  is dense in To .  

Proof. It suffices to show the first assertion after a base change cp : T' + T such 
that the points to ,  t ,  belong to the image of cp. So, due to [EGA 111, 7.1.4, we may 
assume that T consists of a discrete valuation ring with generic point t ,  and closed 
point to. Denote by V the schematic closure of C ,  in Y ;  so V is flat over T, since T 
consists of a discrete valuation ring. Then it is clear that 

cf. [EGA IV,], 14.3.10. Since C, c K the first assertion is clear. 
For the second, we may assume that the relative dimension of Y over T is 

constant on Y. Due to 2.315 the closure of the set of points (a(to),  a E Y ( T ) )  is 



5.3 Proof of the Theorem for a Strictly Henselian Base 127 

for the closed point to of T. Hence the second assertion follows from the first one. 
0 

Now the proof of Theorem 5.213 is quite easy. Namely, let x be the S-scheme 
X'") constructed in Lemma 6. Then X is separated, smooth, of finite type, and 
contains X as an S-dense open subscheme. Furthermore, by Lemmata 5 and 6, the 
strict group law m on X extends to a strict group law m on X, and the S-rational 
map m : X2 ---+ 2 is defined on X2. It is a general fact that 2 is an S-group scheme 
in this situation; so we can end the proof of 5.213 by establishing the following result: 

Lemma 8. Let x be a smooth and separated S-scheme of finite type which is equipped 
with a strict group law m. Assume that X(S) is non-empty and that there exists an 
S-dense open subscheme X of X such that m is defined on the open subscheme X 2 of 
X2. Then 2 is an S-group scheme with respect to the law m. 

Proof. First we want to show that 

is defined everywhere. Since the domain of definition is compatible with faithfully 
flat base change (2.5/6), it suffices to show that, for each point (b, c) E X2, the map 

is defined at some point (a, b, c) E X xs X2 above (b, c). For example, let (a, b, c) be 
a generic point of the fibre over (b, c). Then (a, b) E X x, x is a generic point in the 
fibre over b and the map 

is defined at (a, b), since m is a strict group law on X. Likewise, using Lemma 3, the 
map 

is defined at (a, c) which is a generic point in the fibre over c. Since m is defined on 
X2, the map 

is defined at (a, b, c), and the associativity of m shows that m' coincides with 6,. 
Thus m is defined on all of X2. 

Similar arguments show that the map 
- 

X X ~ X + X ,  ( X , ~ ) H X - ' Y ,  

is defined everywhere. But then m defines on x the structure of an S-group scheme. 
Namely, returning to the functorial point of view, consider the monomorphism 

x G 9y , s  

of 5.214. The group law on 2,s  restricts to the law m on 2 ,  and X(T) # @ for 
T = S and, hence, for all S-schemes T. Thus, since the map (x, y) H (x-l y )  is defined 
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on 2 x, 2, we see that each X ( T )  is a subgroup of B,-,,JT). So 2 is a subgroup 
functor of B , ,  and in fact, the representability being granted, an S-group scheme 
with group law 6. 0 

So we have finished the proof of Lemma 8 and thereby also the proofs of 5.213 
and of 5.115 for the case where the base S consists of a strictly henselian valuation 
ring or of a separably closed field. 



Chapter 6. Descent 

During the years 1959 to 1962, Grothendieck gave a series of six lectures at the 
Seminaire Bourbaki, entitled "Technique de descente et theorkmes d'existence en 
geometric algkbrique". In the first lecture [FGA], n0190, the general technique of 
faithfully flat descent is introduced. It is an invaluable tool in algebraic geometry. 
Quite often it happens that a certain construction can be carried out only after 
faithfully flat base change. Then one can try to use descent theory in order to go 
back to the original situation one started with. Before Grothendieck, descent was 
certainly known in the form of Galois descent. 

We begin by describing the basic facts of Grothendieck's formalism and by 
discussing some general criteria for effective descent, including several examples. 
Then, working over a Dedekind scheme, our main objective is to study the descent 
of torsors under smooth group schemes; see Raynaud [4]. As a preparation, we 
discuss the theorem of the square and use it to show the quasi-projectivity of torsors. 
Relying on the latter fact, effective descent of torsors can be described in a very 
convenient form; we do this in Section 6.5. As an application, we look at existence 
and descent of Nkron models for torsors. Also, working over a more general base, 
we are able to extend the technique of associating group schemes to birational group 
laws as discussed in Chapter 5. The chapter ends with an example of noneffective 
descent. 

6.1 The General Problem 

Let p : S' --+ S be a morphism of schemes and consider the functor 9 + p*F,  
which associates to each quasi-coherent S-module F its pull-back under p. 
Then, in its simplest form, the problem of descent relative to p : S' ---+ S is to 
characterize the image of this functor. The procedure of solution is as follows. Set 
S := S' x, S', and let pi : Sf' --+ S' be the projection onto the i-th factor (i = 1,2). 
For any quasi-coherent S'-module F ' ,  call an S"-isomorphism cp : pTF' ---+ p t 9 '  
a covering datum of 9'. Then the pairs (F ' ,  p) of quasi-coherent Sf-modules with 
covering data form a category in a natural way. A morphism between two 
such objects (F ' ,  cp) and (9',$) consists of an Sf-morphism f :  F' + 9' which 
is compatible with the covering data cp and $; thereby we mean that the 
diagram 
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is commutative. 
Starting with a quasi-coherent S-module F, we have a natural covering datum 

on p*F, which consists of the canonical isomorphism 

So we can interpret the functor B H p * B  as a functor into the category of 
quasi-coherent Sf-modules with covering data. It is this functor which will be of 
interest in the following. We will show that it is fully faithful if p : S' -+ S is 
faithfully flat and quasi-compact, and that, furthermore, it is an equivalence of 
categories if, instead of covering data, we consider descent data; i.e., special covering 
data which satisfy a certain cocycle condition. The problem of descent can be viewed 
as a natural generalization of a patching problem; cf. Example 6.2/A. 

As usual we will call a diagram 
B 

A ~ B ~ C  
Y 

of maps between sets exact if a is injective and if im a = ker(P, y), where ker(P, y) 
consists of all elements b E B such that P(b) = y(b). Working in the category of 
abelian groups, the exactness of such a diagram is equivalent to the exactness of the 
sequence 

O-AZBB'C. 

Proposition 1. Assume that p : Sf + S is faithfiillyflat and quasi-compact. Let F and 
9 be quasi-coherent S-modules, and set q := p 0 p, = p 0 p2. Then, identgying q * 9  
canonically with p*(p*B) for i = 1,2, likewise for q*9, the diagram 

is exact. In other words, the functor 9 H p * 9  from quasi-coherent S-modules to 
quasi-coherent S'-modules with covering data is fully faithful. 

Proof. The assertion is local on S, so we can assume that S is affine. Then S' is 
quasi-compact, and it is covered by finitely many affine open subschemes S: c S', 
i E I. Consider the disjoint union 3' := LIif Sj of these schemes. 

Let u : Sf + S' be the canonical morphism, p : S' ---+ S its composition with 
p : S' - S, and let p,, fi denote the projections of 3" := S' x, Sf onto its factors. 
Then we obtain a diagram 

P* Hom,(F, 8) - Hom,, (p* 9 ,  p* 9 )  

II 
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where ij := p o p, = p o p,. The diagram is commutative if, in the right-hand square, 
we consider single horizontal arrows, either pT and pPor p: and p:. Furthermore, 
u being faithfully flat, the vertical maps are injective. Using this fact, it is easily 
checked that the upper row is exact if the lower row has this property. In other 
words, we may replace p : S' - S by p : Sf + S and thereby assume that S and S' 
are affine, say S = Spec R and S' = Spec R'. Then the problem becomes a problem 
on R-modules. 

Let 

be the diagram which corresponds to the projections S" i S' + S. We claim that 
the assertion of the proposition follows if we can show that the tensor product of 
(*) with any R-module M yields an exact diagram. Namely, consider R-modules M 
and N such that 9 (resp. 9) is associated to M (resp. N), and assume that we have 
exact diagrams 

M + M @ R R ' i M @ R R ' @ R R ' ,  

Then the injectivity of N + N OR R' implies the injectivity of the map p* in the 
assertion. Similarly, it is seen that any R'-homomorphism M OR R' -+ N OR R', 
which corresponds to an element in ker(p7, p$), restricts to an R-homomorphism 
M --+ N. This yields imp* 2 ker(p:, pt). Since the opposite inclusion is trivial, our 
claim is justified. So, in order to finish the proof of the proposition, it remains to 
establish the following result: 

Lemma 2. Let R --+ R' be a faithfully flat morphism of rings. Then, for any R-module 
M, the canonical diagram 

is exact. 

Proof. We may apply a faithfully flat base change over R, say with R'. Thereby we 
can assume that R ---t R' admits a section R' --+ R. So all the maps in the above 
diagram have sections, and the exactness is obvious. 0 

Next we want to introduce descent data and the cocycle condition characterizing 
them. Set S := S' x, S' x, Sf, and let pij : S"' --+ S" be the projections onto the 
factors with indices i and j for i < j; i, j = 1, 2, 3. In order that a quasi-coherent 
S'-module 9' with covering datum cp : pTF'  + ~$9'  belongs to the essential 
image of the functor F w p * F ,  it is necessary that the diagram 
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is commutative; the unspecified identities are the canonical ones. Namely, if F' is 
the pull-back under p of a quasi-coherent S-module and if cp is the natural covering 
datum on F', then the diagram is commutative, because all occurring isomorphisms 
are the canonical ones. The commutativity of the above diagram is referred to as 
the cocycle condition for cp; in short, we can write it as 

~ 7 3 c p  = ~Lcp o ~ 7 2 ' ~  . 
It corresponds to the usual cocycle condition on triple overlaps when a global object 
is to be constructed by gluing local parts. A covering datum cp on F' which satisfies 
the cocycle condition is called a descent datum on F ' .  The descent datum is called 
effective if the pair (F', cp) is isomorphic to the pull-back p * F  of a quasi-coherent 
S-module F where, on p*F ,  we consider the canonical descent datum. Also we 
want to mention that the notions of covering and descent data are compatible with 
base change over S. 

In the case where S and S' are affine, covering and descent data can be described 
in terms of modules over rings. Namely, let S = Spec R, S' = Spec R', and consider 
a quasi-coherent S'-module 9' with a covering datum cp : pTF'  + p;F1, where 
9' is associated to the R'-module M'. Then pTB' and p:9' are associated to 
M' OR R' and R' OR M', both of which are viewed as R' OR R'-modules. Thus the 
covering datum cp on 9' corresponds to an R' 8, R1-isomorphism 

M' 8, R' zi R' OR M' 

which, again, will be denoted by cp. Using the canonical map M' + M' OR R' 
as well as the composition of the canonical map M' - R' 69, M' with cp-I, we 
arrive at a co-cartesian diagram M' M' OR R' over the canonical diagram 
R ' z  R'O, R'. This means that, considering associated arrows in both 
diagrams, M' OR R is obtained from M' by tensoring with R' OR R' over R'. 
Conversely, any such co-cartesian diagram determines a covering datum on M' 
and, hence, on F'. 

If cp is a descent datum on F', we can pull it back with respect to the projections 
pij : S -+ S". Due to the cocycle condition, the various pull-backs of F' to S"' can 
be identified via the pull-backs of cp. Thereby we obtain in a canonical way homo- 
morphisms (depending on cp) 

M'OR R 'ZM'O~R'GJ~ R' 
suzh that the diagram 

+ 
(*) M ' i M ' @ R R ' ~ M ' @ R R ' ~ R R '  
is co-cartesian over the canonical diagram 

(**\ R ' ~ R ' Q R R ' ~ R ' Q R R ' ~ , R ' .  

Furthermore, (*) satisfies certain natural commutativity conditions just as we ha1 s 
them for (**) or for the associated diagram - ,, + S"' S , S' , 
where p, o p,, = p, o p,,, etc. Conversely, one can show that each co-cartesian 
diagram (*) over (**), which satisfies the commutativity conditions, determines a 
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descent datum on M', and hence on 9 ' .  It is clear that a descent datum q on F' is 
effective if and only if the associated co-cartesian diagram M' i M' OR R' can be 
enlarged into a commutative co-cartesian diagram 

over the canonical diagram 

R + R' i R' OR R' . 

Returning to the case where S and St are arbitrary schemes, it is sometimes con- 
venient to formulate the cocycle condition within the context of T-valued points of 
S', where T is an arbitrary S-scheme. So consider a quasi-coherent S'-module 9' 
with a covering datum cp : pTF1 d p;.F1. For t l ,  t z  E S'(T),  denote by 

the pull-back of q under the morphism (t , ,  t,) : T --+ S". Adding a third point 
t ,  E S'(T) ,  we can consider the morphism 

+ 
and compose it with each one of the projections S St'. Then, pulling back q to 
T, we see that q satisfies the cocycle condition if and only if 

Vtl,f3 = 9t2,t3 O (Ptl,t2 

for all t , ,  t,, t ,  E S ' (T)  and all T. In particular, for t = t ,  = t ,  = t,, the cocycle 
condition implies q,,, = q$ and, hence, q,,, = id. For example, if t : S' -+ St is the 
universal point of St, we see that the pull-back of a descent datum cp : pTF' + p$F'  
with respect to the diagonal morphism A: S' --+ St' yields the identity on F'. 

Lemma 3. Assume that the morphism p : St -+ S admits a section. Then any descent 
datum q on a quasi-coherent S'-module F' is effective. More precisely, the choice of 
a section s : S -+ S' of p determines an S-module F, namely F := s*F1,  such that 
p*.F is isomorphic to the pair (F, q). 

Proof. Writing T := S', let us consider the points t := ids, and F := s 0 p of St(T) .  
Then t*F '  = F '  and F*F' = p*F, and we can consider the isomorphism 

It is enough to show that f is compatible with the descent datum on p * F ;  i.e., we 
have to show that the diagram 

is commutative. In order to do this, consider the following S-valued points of S': 

pl,  p,, and t , : = s o p o p ,  = s o p o p 2 .  
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Then cp = cp,l,,2 since (p,,p,) : S" -+ S" is the identity, and we have 

is commutative. Now the cocycle condition for cp yields 

and thus 

pTf = p y o c p .  

Now we are ready to prove the desired result on the descent of quasi-coherent 
s'-modules. 

Theorem 4 (Grothendieck). Let p : S' -4 S be faithfully flat and quasi-compact. Then 
the functor .F t-, p * F ,  which goes from quasi-coherent S-modules to quasi-coherent 
St-modules with descent data, is an equivalence of categories. 

Proof. We know already from Proposition 1 that the functor in question is fully 
faithful. So it is enough to show that each descent datum on a quasi-coherent 
S'-module is effective. The latter is clear by Lemma 3 if p : S' -+ S admits a section. 
We will reduce to this case. 

First observe that we may replace the morphism p : S' -+ S by a composition 
P p : S' 5 S - S, where u : S'  -+ S' is faithfully flat and quasi-compact. This is 

true since the functor 9' t-, u * 9 '  is fully faithful (see Proposition 1) and since 
descent data on F' (with respect to p) can easily be pulled back to descent data on 
u * F r  (with respect to p). So, proceeding as in the proof of Proposition 1, we may 
assume that S and S' are affine, say S = Spec R and St = Spec R'. 

Let M' be an R'-module with descent datum cp : M' OR R' + R' 8, M'. Then 
cp determines a co-cartesian diagram M' = M' 8, R' over R' = R' @, R'. If M' 
descends to an R-module, we know from Lemma 2 that it must descend to the 
R-module 

K := ker(M' li M' OR R') . 

So let us work with this module. We claim that the diagram 

is commutative and co-cartesian over 

R + R 1 j R ' O R  R' 

and, hence, that cp is effective. In order to verify this, we may apply a faithfully 
flat base change and thereby assume that R + R' admits a section. Then it 
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follows from Lemma 3 that (M', cp) descends to an R-module M. More precisely, 
M' i M' @, R' extends to a commutative co-cartesian diagram 

over 

R --+ R' i R' OR R' . 

Since M is mapped bijectively onto K by Lemma 2, our claim is justified. 0 

Keeping the morphism p : S' + S, we want to study the problem of when an 
S'-scheme X' descends to an S-scheme X. The general setting will be the same as in 
the case of quasi-coherent modules, and the definitions we have given can easily be 
adapted to the new situation. For example, a descent datum on an St-scheme X' is 
an S'-isomorphism 

which satisfies the cocycle condition; p,*X' is the scheme obtained from X' by 
applying the base change pi : S" + S'. Again there is a canonical functor X I--, p*X 
from S-schemes to S'-schemes with descent data. If p : S' --+ S is faithfully flat and 
quasi-compact, we see from Theorem 4 that this functor gives an equivalence 
between affine S-schemes and affine Sf-schemes with descent data. More generally, 
the same assertion is true with affine replaced by quasi-affine (use Theorem 6(b) 
below). Thus, in this case, descent data on affine or quasi-affine Sf-schemes are 
always effective. Recall that an Sf-scheme X' is called affine (resp. quasi-affine) over 
S' if, for each affine open subscheme Sb c S', the open subscheme S; x,. X' of X' is 
affine (resp. quasi-affine). To be precise, one has, of course, to mention the fact that 
one can easily generalize Theorem 4 from quasi-coherent modules to quasi-coherent 
algebras, so that it can be applied to structure sheaves of schemes over S or S'. 
Working with an additional structure such as a multiplication on a quasi-coherent 
S'-module, this structure descends if it is compatible with the descent datum. 

It is not true that descent data on schemes are always effective, even if p : S' -+ S 
is faithfully flat and quasi-compact; see Section 6.7. So one needs criteria for 
effectiveness. First we mention that Lemma 3 carries over to the scheme situation. 
Since the proof was given by formal arguments, no changes are necessary. 

Lemma 5. Assume that p : S' + S has a section. Then all descent data on S'-schemes 
are effective. 

In order to formulate another criterion, consider an S'-scheme X' with a descent 
datum cp : pyx'  -+ pgX', and let U' be an open subscheme of X'. Then U' is called 
stable under cp if cp induces a descent datum on U'; i.e., if cp restricts to an iso- 
morphism pT U' S pz U'. 

Theorem 6. Let p : S' -+ S be faithfully flat and quasi-compact. 
(a) The functor X H p*X from S-schemes to St-schemes with descent data is 

fully faithful. 
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(b) To simplify, assume S and S' affine. Then a descent datum cp on an Sf-scheme 
X' is effective if and only if X' can be covered by quasi-affine (or, alternatively, by 
affine) open subschemes which are stable under cp. 

Proof. Assertion (a) is an immediate consequence of Proposition 1. Namely, consider 
S-schemes X and Y, and write X', Y' for the schemes obtained by the base change 
p : S' --+ S. Then it is to show that the sequence 

P* P i  Hom,(X, Y) -+ Hom,,(X', Y') HomsT.(X, Y") 
P: 

is exact. The problem is local on S and Y. So we may assume that S and Yare affine. 
Furthermore, replacing S' by a finite disjoint sum of affine open parts of Sf, we may 
assume that S' is affine. Then, up to a local consideration on X, we can pose the 
problem in terms of quasi-coherent algebras so that Proposition 1 can be applied. 

In order to verify the if-part of assertion (b), we may use (a) and assume that X' 
is quasi-affine. This means that X' is quasi-compact and can be realized as an open 
subscheme of an affine scheme or, equivalently, that the canonical map 

X' -+ Spec T(Xf, Ox.) =: Z' 

is a quasi-compact open immersion; cf. [EGA 111, 5.1.2. Let S = Spec R and S' = 

Spec R'. Then, using the fact that, for quasi-compact R'-schemes, the functor of 
global sections commutes with flat extensions of R', the descent datum on X' gives 
a descent datum on the R'-module T(X', Co,,) and hence on the affine S'-scheme Z'. 
Thus it follows from Theorem 4 that Z' descends to an affine S-scheme 2. Consider- 
ing the canonical projections 

41 
Zt' --t Z' 5 z , 

q z  

where Z" is obtained from Z by the base change S" -+ S, we see q;'(X1) = qz1(X') 
since the descent datum of Z' is stable on X'. However, this implies q-l (q(X')) = XI; 
in particular, the inverse image of q(X') with respect to q is open. Using the fact 
that q : 2' -+ Z is faithfully flat and quasi-compact and that therefore the Zariski 
topology on Z is the quotient of the Zariski topology on Z' (cf. [EGA IV,], 2.3.12), 
we see that q(X') is open. So X' descends to the quasi-affine piece q(X') of Z. The 
only-if-part of assertion (b) is trivial. 0 

We want to add a criterion for the effectiveness of descent data on schemes which 
uses ample line bundles. Let us recall the definition of ampleness, cf.[EGA 111, 4.5 
and 4.6. An invertible sheaf 6 p  on a scheme X is called ample on X if X is 
quasi-compact and quasi-separated, and if for some n > 0 there are global sections 
l,, . . . ,1, generating 2@" such that Xli, the domain where the section li generates 
2 @ " ,  is quasi-affine for each i. In fact, if 2 is ample on X, then, for any n > 0 and 
any global section 1 of 9@", the open subscheme X ,  c X is quasi-affine as will follow 
from arguments given below. An invertible sheaf 2 on an S-scheme X is called 
S-ample on X (or relatively ample over S) if there exists an affine open covering {Sj} 
of S such that the restriction of 2? onto X x, Sj is ample for all j. The definition of 
S-ampleness is independent of the choice of the particular covering isj), see [EGA 
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11],4.6.4 and 4.6.6. If X admits an S-ample sheaf, then, by definition, it is automat- 
ically quasi-separated over S. 

Consider now a quasi-compact and quasi-separated morphism f : X ---+ S and 
an invertible sheaf 5? on X. For each n E N, the direct image & 2 @ "  is a quasi- 
coherent sheaf on S, see [EGA I], 9.2.1. Let Un be the open set of all points x E X 
such that the canonical morphism 

is surjective. Then Un consists of all points x E X such that there is a section of PQn 
which is defined over the f-inverse of a neighborhood of f(x) in S and which 
generates 2 @ "  at x. Denote by U the union of all Un for n 2 1. Let 

A = 0 f * ( P n )  
n 2 O  

be the quasi-coherent graded S-algebra associated to 9, and set P = Proj A; see 
[EGA 111,s 2. There is always a canonical S-morphism r : U --* P. Namely, assum- 
ing S affine, one shows for each global section 1 of LFQn with n > 0 that there is a 
canonical isomorphism 

w,, 0,) = l-(X,, Lo,) , 
use [EGA I], 9.3.1, and hence a morphism 

The morphism is an open immersion if and only if X ,  is quasi-affine over S. Thereby 
it is seen that the sheaf 9 is S-ample on X i f  and only i f  U = X and the canonical 
morphism r : U + P is an open immersion. 

Returning to the problem of descent relative to a morphism p:  S1- S, the 
notion of descent data generalizes naturally to pairs (XI, 9') where X' is an 
S'-scheme and 9' is an invertible sheaf on X'. Namely, a descent datum on such a 
pair consists of a descent datum 

on X' and of an isomorphism 

where 9; is the pull-back of Y' with respect to the projection pTX' -+ X'. Of 
course, 2 must satisfy the cocycle condition, which is a cocycle condition over the 
cocycle condition for 9. More precisely, introducing the total space L' associated 
to 9', we can say that a descent datum on (X', 9') is a commutative diagram 

where the vertical maps are the projections of the linear fibre spaces pTL1 onto their 
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bases p*X', where cp and 1 are descent data for schemes, and where 1 is an 
isomorphism of linear fibre spaces over cp. Another possibility is to view the descent 
datum cp as a cartesian diagram 

with natural commutativity conditions (similar to what we have explained for 
Sf-modules), and to view 1 as an isomorphism 

1 : qT9 '  + q;9' . 

The cocycle condition for 1 can then be formulated as usual by using pull-backs + 
with respect to the projections X' xs S' xs S' ==: X' xs St. 

Theorem 7 (Grothendieck). Let p : S' + S be faithfully flat and quasi-compact. Let 
X' be a quasi-compact S'-scheme, and consider an invertible sheaf 2' which is S'-ample 
on X'. Then, f there is a descent datum on (XI, 9 ' ) ,  the descent is effective on X', and 
the pair (X', 9 ' )  descends to a pair (X, 9 )  with an S-ample invertible sheaf 2 on X. 

We give only a sketch of proof for the case where S and S' are affine. First, using 
Theorem 4, the graded Sf-algebra A' = On,, f i (Yon) ,  where f '  : X' ---+ S' is the 
structural morphism, descends to a graded S-algebra A = @,,, A,,. Next, let I' be 
a global section in some Yon. Then we can write 

with global sections ai of Os, and global sections li of A,,. If I' generates Y O n  at a 
certain point x E Xr, at least one of the global sections 1 @ 1; must generate Yon 
at this point. Thereby it is seen that X' can be covered by quasi-affine open pieces 
Xi where 1 is a global section in some 9 ' @ "  which descends to a global section in 
A .  Then the descent datum is stable on the Xi, and X' descends to X by Theorem 
6. Finally, 9' descends to 2 with respect to the canonical projection X' + X since 
one can use Theorem 4 again. 

6.2 Some Standard Examples of Descent 

We start with an example which shows that the problem of descent occurs as a 
natural generalization of a patching problem. 

Example A (Zariski coverings). Consider a quasi-separated scheme S and a finite 
affine open covering (S,),,, of S. Let S' := Ui,,Si be the disjoint union of the Si, 
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and let p : Sf + S be the canonical projection. Note that p is faithfully flat and 
quasi-compact. A quasi-coherent Sf-module 9 '  may be thought of as a family of 
Si-modules E. Under what conditions does 9' descend to a quasi-coherent 
S-module F; i.e., under what conditions can one glue the % in order to obtain 
a quasi-coherent S-module B from them? By Theorem 6.114 we need a descent 
datum for 9 '  with respect to p : S' + S. Such a datum consists of an isomorphism 
cp : pTB' 2 p;B' satisfying the cocycle condition, where p, and p,  are the projec- 
tions from S" onto S'. In our case, we have 

and on Si x, Sj = S i n  Sj, the first projection p ,  is the inclusion of S i n  Sj into Si 
whereas p ,  is the inclusion of Si n Sj into Sj. Thus the isomorphism cp consists of a 
family of isomorphisms 

satisfying the cocycle condition, namely, the condition that 

for all i, j, k E I. SO the descent datum cp is equivalent to patching data for the 
Si-modules %, and the cocycle condition assures that the patching data are com- 
patible on triple overlaps. 

Example B (Galois descent). Let p : S' -+ S be a finite and faithfully flat morphism 
of schemes, and assume that p is a Galois covering; i.e., there is a finite group r of 
S-automorphisms of S' such that the morphism 

is an isomorphism; r x S' is the disjoint union of copies of S', parametrized by T. 
For example, if K'IK is a finite Galois extension of fields, the morphism p : 
Spec K' + SpecK is such a Galois covering. Similarly, for a pair of discrete 
valuation rings R c R', the morphism p : Spec R' + Spec R is a Galois covering if 
R is henselian, R' is (finite) Ctale over R, and the residue extension of R'IR is Galois; 
use 2.317 and the fact that R' is henselian. We want to describe the descent of schemes 
with respect to p : S' ---+ S. 

Consider an S'-scheme X' with an action r x X' + X' which is compatible 
with the action of T on S'; i.e., we require that, for each o E r, the diagram 

is commutative (for simplicity, automorphisms given by o are again denoted by 
o). Notice that the diagram is cartesian. We claim that an action on X' of the type 
just described is equivalent to a descent datum on X'. 
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Namely, from the isomorphism 

r X st 1 s , (o, X) +-+ (CX, X) , 
we obtain an isomorphism 

l- x r x S' N- St" , (a, 7, X) +-+ ((a o Z)X) ZX) X) . 

Taking these isomorphisms as identifications, the projections pij : S + S" and 
pi : S" + Sf  define projections 

+ r ~ r ~ s ' = : r ~ s t = s t  

Now assume that we have an action of I- on X' which is compatible with the 
action of r on S'. Then we can use the same definitions (0) in order to define 
"projections" from r x  r x  X' to r x  X' and from the latter to X'. Thereby we 
obtain a diagram 

where the vertical maps are the canonical ones. Since the diagram (*) is cartesian, 
all squares above are cartesian if in the first and second rows maps are considered 
which correspond to each other. Furthermore, in the last row we have the usual 
commutativity relations 

The same relations hold for the first row. Indeed, (ii) and (iii) are trivial whereas (i) 
is equivalent to the associativity condition 

So it is clear that (*s) yields a descent datum on X', the associativity of the action 
accounting for the cocycle condition. 

Conversely, start with a descent datum q on X'. Then, applying the base change 
X' -+ S' to the morphism 

Pz r x r x s % r  x s
t

- s
t

,  
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we obtain the following canonical diagram 

~ x ~ x x ' -  r x x -  X' 

which has cartesian squares. In particular, we have canonical isomorphisms 

~ X X '  - = . + s ' x , x ' ,  

and 

 XI-XX'SS'X~S'X~X'. 
Therefore we can write the descent datum cp in the form of a diagram (**). Further- 
more, we may assume that (***) forms a part of (**), the one, where in both rows 
of (**) only the lower morphisms are considered. We claim that the morphism 
r x X' + X' over p, : T x Sf--+ S' defines the desired action on X'. To justify 
this, note first that each a E l- acts as an automorphism on X'. Next, the commuta- 
tivity conditions (ii) and (iii) imply that the morphisms 

r x r x x l i r x x '  

are defined as in (0) and, finally, as before, condition (i) accounts for the associativity 
of the action of r on X'. 

As for the effectiveness of the descent, one may look at the condition given in 
Theorem 6.116. Assuming S and, hence, S' affine, as well as X' quasi-separated, a 
necessary and sufficient condition is that the r-orbit of each point x E X' is con- 
tained in a quasi-affine open subscheme of X'. Namely, considering translates of 
such subschemes under elements a E I- and taking their intersections, we can cover 
X' by quasi-affine open pieces which are l--invariant and hence stable under the 
descent datum. For example, if X' -+ S' is quasi-projective, the condition is fulfilled, 
and the descent is always effective. 

Example C (Descent from R' to R ,  where R c R' is an itale extension of discrete 
valuation rings with same residue field). Let K (resp. K') be the field of fractions of 
R (resp. R'). We want to show the following result on the descent from R' to R ,  
which will be further generalized in Example D. 

Proposition C.1. The functor which associates to an R-scheme X the triple (X,, X', z), 
consisting of the K-scheme X, := X OR K ,  the Rf-scheme X' := X OR R', and the 
canonical isomorphism z : XK 8, K' 3 X' OR, K', is fully faithful. Its essential 
image consists of all triples (X,, X', z) which admit a quasi-affine open covering. 

The notion of an open covering of a triple (X,, X', z) is meant in the obvious 
way. Such a covering consists of a family of triples (UK,i, Ui, zi), where the UK,i (resp. 
the Ui) form an open covering of X, (resp. X'), and where z restricts to an 
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isomorphism zi : UK,i OK K' --+ Ui OR, K'. The covering is called quasi-affine if all 
UKXi and all Ui are quasi-affine. 

Starting with a triple (X,,X1,z), we have the canonical descent datum on 
XK OK Kt.  Transporting it with T, we obtain a descent datum on the generic fibre 
X' OR, K' of X',  and by the lemma below, this descent datum extends canonically 
to a descent datum on X'. Then the assertion of Proposition C.1 is a consequence of 
6.116. So it is enough to show: 

Lemma C.2. For each R'-scheme X', any descent datum with respect to K ---t K' on 
the generic fibre of X' extends canonically to a descent datum with respect to R --+ R' 
on X'. 

Proof. Let us use the notations R" and R"' for R'O, R' and R' OR R'O, R'. 
Since R' is &tale over R, the diagonal embedding Spec R' -+ Spec R" is open (cf. 
2.212). Thus its image, the diagonal A" of SpecR", is a connected component 
of Spec R". Furthermore, since the residue extension of R f / R  is trivial, the special 
fibre of A" coincides with the special fibre of Spec R"; i.e., Spec R" = A" i, T" 
where the special fibre of T" is empty. A similar assertion is true for the diagonal 
A'" in Spec R"'. 

Write K" and K"' for the two- and threefold tensor products of K' over K .  
Furthermore, consider an Rf-scheme X' and a descent datum with respect to 
K -+ K' on its generic fibre. Indicating generic fibres by an index K, the descent 
datum on X i  corresponds to a diagram 

Spec K 2 Spec K" a Spec K' 

with cartesian squares such that the rows satisfy the usual commutativity condi- 
tions. In order to extend the descent datum to a descent datum on X', it is enough 
to extend the diagram (*) to a diagram 

Spec R'" 3 Spec R" Spec R' 

of the same type. In order to do this, we have to realize that, by restriction, the lower 
row in (*) gives rise to unique isomorphisms 

(***I AI;; 7 A; S SpecK' , 
and that the upper row in (*) gives rise to unique isomorphisms 

(p'")-l(A'~) S (pl')-I (A'') Z X i  
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That the maps X; 3 X; coincide on the p"-inverse of A: follows from the fact that 
the pull-back of descent data with respect to diagonal maps always yields the 
identity map (cf. 6.1). A similar reasoning applies to the maps X g  3 X;. 

Now it is easy to extend (*) into (a*). Since the special fibre of SpecR" is 
concentrated at the open and closed subscheme A", similarly for Spec R'" and its 
diagonal A ,  we have just to extend the part of (*) which lies over (***). However 
this is trivial by the above isomorphisms. 

Example D (Descent from R' to R where R c R' is a pair of discrete valuation 
rings with same uniformizing element n: and with same residue field). The situation is 
more general than the one considered in Example C. For example, R' can be the 
maximal-adic completion of the discrete valuation ring R. But we will see that, 
nevertheless, the results C.l and C.2 remain valid in this case. 

Consider a pair of discrete valuation rings R c R' as required, and denote their 
fields of fractions by K and K'. By an index K we will indicate tensor products with 
K over R. Let 6 : Spec R' Spec R" be the diagonal embedding where, as usual, 
R" = R' @, R'. 

Lemma D.1. Let M be an R"-module and denote by M' its pull-back with respect to 
6. Assume that the quotient MU/T"  is flat over R" where T" is the kernel of the 
canonical map M u  + M;. Then the canonical diagram 

is cartesian; i.e., M u  is a fibred product of Mg and M' over M& (in the category of 
sets, resp. R-modules, resp. R"-modules). 

For example, the flatness condition on MV/T" is satisfied if we start with an 
R'-module M' and take for M the pull-back of M' with respect to a projection 
pi : Spec R" -+ Spec R'. 

Proof. Since the horizontal maps are surjective, we may extend the diagram to a 
commutative diagram of exact sequences 

The second row can be thought of as being obtained from the first one by taking 
tensor products over R with K. We claim that the map L -+ L, is an isomorphism; 
i.e., that L is already a K-vector space. Then it is immediately clear that M" is the 
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fibred product of Mg and M' over Mk; the universal property is checked by means 
of diagram chasing in (a). 

So it remains to show that L is already a K-vector space. Let us consider the 
first row of (a) for the special case where M = R". Thereby we obtain the exact 
sequence 

(**I 0-+3"+R"-+R'-+O 

of R-modules (or, alternatively, R"-modules). In terms of R-modules, the sequence 
is split exact, since R" + R' admits a section. In particular, taking the tensor 
product of (**) over R with R/nnR for any n > 0 gives a split exact sequence 

By the assumptions on R and R', we see that the map 

is bijective. Thus, for n = 1, we have 3"/713" = 0 and, therefore, 3" = 713". So 3" 
is a K-vector space since R" and, hence, 3" have no n-torsion. Now, tensoring 
(**) over R" with M" and using the fact that M' is the pull-back of M with 
respect to the diagonal morphism Spec R' + Spec R", we get the exact sequence 
3" OR,, M" -+ M ---+ M' -+ 0. Comparing it with the first row in (a), we have a 
surjective R-homomorphism 3" @,,, M" -+ L. Therefore, since 3 "  is a K-vector 
space, the same must be true for L, provided L has no n-torsion. 

Thus it remains to show that the x-torsion of L is trivial. To do this we consider 
first the case where M = T". Using a limit argument, we may assume nnMn = 0 
for some integer n. But then the isomorphism R " / n n R " ~  R'/nnR' yields an 
isomorphism 

M" = ~ l ~ n ~  1 M'/nnM' = M' 

so that L is trivial in this case. In the general case we tensor the exact sequence 

O-+ T"+M"+M"/T"-+O 

over R" with R', thereby obtaining the sequence 

The latter is exact because M / T "  is flat over R". By the same reason, (MUIT") OR.. R' 
is flat over R' and, thus, T' := T" OR.. R' is the torsion-submodule of M'. Since the 
canonical homomorphism M" + M' maps T" surjectively onto T', the first row 
of the diagram (a) yields an exact sequence 

and it follows from the special case considered above that L n T" must be trivial. 
So the n-torsion of L is trivial and we see that L is a K-vector space. 0 

Reversing arrows in the definition of cartesian diagrams and fibred products, 
one arrives at the notions of co-cartesian diagrams and amalgamated sums. We want 
to translate the assertion of the above lemma into a statement on amalgamated 
sums of schemes. First note that Lemma D.l remains true if we work in the category 
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of R-algebras or R"-algebras. So it yields a statement on amalgamated sums in the 
category of affine R-schemes or R"-schemes. We want to generalize it to the case of 
not necessarily affine schemes. Set S = Spec R, S' = Spec R', S" = Spec R", and let 
6 : S' + S" be the diagonal embedding. For any R-scheme X, let X, = X 8, K be 
its generic fibre. 

Proposition D.2. Let X' be an St-scheme and let X" be its pull-back with respect to 
one of the projections pi : S" + S'. Then the canonical diagram 

is co-cartesian in the category of R-schemes (resp. R"-schemes); i.e., in this category, 
Xu is the amalgamated sum of X' and Xf; under Xk. 

Proof. In order to reduce the assertion of the proposition to Lemma D.l, we need 
to know that a subset F c X" is closed if and only if F n X' is closed in X' and 
F n X;; is closed in Xf;; note that, in terms of sets, the above diagram consists of 
injections and that X" = X' u Xf;, due to the assumption on R and R'. The necessity 
of the condition is clear. In order to show that it is sufficient, we may assume that 
X' is affine, say X' = Spec A'. Then the above diagram of schemes corresponds to 
a diagram of R"-algebras 

which is cartesian in the category of sets. Now assume that F n X' is closed in X' 
and that F n Xf; is closed in Xf;. Let 3' c A' and 3; c A; be the corresponding 
reduced ideals. Since F n X' coincides with F n X i  on X;, we have 

The fibred product of 3' and 3; over A', exists in the category of sets. Denoting it 
by 3", we see that we have a canonical inclusion 3 "  c, A"; furthermore, it is easily 
verified that 3" is an ideal in A". We claim 

rad(3"A1) = 3' and rad(3"Ag) = 3; . 

The inclusion " c " is trivial in both cases. To justify the opposite inclusions, consider 
an element f E 3'. Using the equation between radicals above, it is seen that a power 
off has an inverse image in 3"; so f E rad(3"A1). Similarly, iff E 3;, a power of 71 
times a power off has an inverse image in 3" and, hence, f E rad 3"Ai. This justifies 
the above description of 3' and 3';, and it follows that the closed subset of X" given 
by 3" coincides with F n X' on X' and with F n X; on X;;. Hence F is closed in 
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Xu,  since X u  = X' u X i .  Thereby we have proved the desired topological charac- 
terization of closed sets in X". Looking at complements of closed sets, we see that 
a subset of X" is open if and only if its intersection with X' is open in X' and its 
intersection with X i  is open in X i .  

Now it is easy to verify the assertion of the proposition. Consider a scheme Z 
and a commutative diagram 

where the solid arrows are given and where the square is the canonical diagram. It 
has to be shown that the diagram can be supplemented by a unique morphism 
X ---4 Z. Let W be an open affine subscheme of Z, let U' be its inverse image in X' 
and UL its inverse image in Xk .  Then by the above topological characterization, 
U" := U' u U; is an open subscheme of X" which extends U i  and whose pull-back 
with respect to the diagonal embedding 6 : X' -+ X yields U'. So we can look at 
the problem 

Working locally on U" and applying Lemma D.l, we want to show that it has a 
unique solution. To do this, it is enough to verify the flatness condition of Lemma 
D.l or, equivalently, the fact that the schematic closure x of Xg in X" is flat over 
R". Since the projection pi we are considering is flat, we see that x can be interpreted 
as the pull-back under pi of the schematic closure X' of X;, in X'; cf. 2.512. However, 
x is flat over R' by its definition. So x is flat over R" and Lemma D.l is applicable. 
It follows that the above local problem has a unique solution U" + W and, by 
working with respect to an affine open covering of Z, that the above global problem 
has a unique solution X --+ Z. 0 

Now we want to explain how the results D.l and D.2 imply that descent data 
with respect to Spec K' ---, Spec K extend to descent data with respect to S' -+ S. 

Lemma D.3. Consider an R'-module M' (resp. an R'-scheme X ' )  and a descent datum 
q, with respect to K -+ K' on M i  (resp. on Xk).  Then cp, extends uniquely to a 
descent datum with respect to R + R' on M' (resp. on X

f

) .  
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Proof. A descent datum with respect to R ---+ R' on M' may be viewed as a 
commutative diagram 

where cp is an isomorphism satisfying the cocycle condition and where the vertical 
maps are the canonical ones obtained from the diagonal map 6 : S' + S". Similarly, 
for the descent datum cp, on the generic fibre of M', we get the upper square of the 
following commutative diagram 

Then, taking the fibred product of the first and third rows over the second row, 
Lemma D.l shows that cp, extends uniquely to an R"-isomorphism 

9: MI@, Rf--+ R' 8, M' , 

whose pull-back with respect to the diagonal map 6 : S ---+ S' yields the identity 
on M'. That cp satisfies the cocycle condition follows in a similar way from Lemma 
D.1. Thus cp is a descent datum on M' which extends q,; it is unique. For the case 
of schemes, the assertion is deduced in formally the same way from Proposition D.2. 

0 

Now, applying Theorems 6.114 and 6.116, we can derive from the above lemma 
the desired generalization of Proposition C.1. 

Proposition D.4. (a) The functor which associates to each R-module M the triple 
(M,,M1,z),whereMK:= M @ R K , M ' : = M Q R R ' , ~ n d ~ : M K @ K K ' 7 M ' @ R K '  
is the canonical isomorphism, is an equivalence of categories. 

(b) The functor which associates to each R-scheme X the triple (X,, X', z) consist- 
ing of the K-scheme XK := X @, K ,  the R'-scheme X' = X @, R', and the canonical 
isomorphism z : XK OK K t  -7 X' OR, K', is fully faithful. Its essential image consists 
of all triples ( X K ,  X', .r) which admit a quasi-affine open covering. 

Finally, we want to mention that it is an easy exercise to verify assertion (a) of 
the proposition by a direct argument. Applying a limit argument, one reduces to 
the case of finitely generated R- or Rf-modules, where it is possible to treat the case 
of torsion and of free modules separately. However, for the purpose of assertion (b), 
it was necessary to prove more precise results also in the module case. 
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6.3 The Theorem of the Square 

Let S be a scheme, let X be an S-scheme, and consider an S-group scheme G which 
acts on X. Using the notion of T-valued points for arbitrary S-schemes T, such an 
action corresponds to an S-morphism 

where 

g(g1x)=(gg')x and l , x = x  

for arbitrary points g, g' E G(T), x E X(T), and for the unit element 1, E G(T). 
Alternatively, interpreting G (resp. X) as a functor from the category of S-schemes 
to the category of groups (resp. sets), we can say that the group functor G acts on 
X; i.e., that, for each S-scheme T, we have an action of G(T) on X(T) which is 
compatible with S-morphisms T' ---t Tin  the usual way. Similarly as in the case of 
group schemes, one defines for any g G G(T) the translation 

where, more precisely, z, has to be interpreted as a T-morphism from X, to X,. 
Now let us fix an invertible sheaf 9 on X. Its pull-back to X, will again be 

denoted by 9. So we can talk about the pull-back of 9 with respect to a translation 
z,, g E G(T), thus obtaining the invertible sheaf 

d%$ := z,*9 

on X,. Let P,,, be the functor which associates to any S-scheme T the group 

i.e., the group of invertible sheaves on X x, T modulo the pull-back under the 
projection p : T x, X ---+ Tof invertible sheaves on T. Then P,,, is a commutative 
group functor, and we can consider the morphism 

cp, : G -+ Pxls , g H class of 9, @ 9 - I  , 

which is a functorial morphism between functors from the category of S-schemes 
to the category of sets. We will say that 9 satisfies the theorem of the square if cp, 
respects group structures and, thus, is a functorial morphism between group 
functors. We do this in analogy to the classical case, where X is an abelian variety 
over a field K, and where the action of G on X is given by translation. In this case, 
the functor P , ,  coincides with the relative Picard functor Pic,,, (see 8.1/4), and the 
classical theorem of the square asserts that, for each invertible sheaf 9 on X, the 
morphism cp, is a morphism of group functors. For proofs see Weil[2], $ VIII, n057, 
Thm. 30, Cor. 2, as well as Lang [I], Chap. 111, $3, Cor. 4, and Mumford [3], 
Chap. 11, $ 6, Cor. 4. 

The purpose of the present section is to extend the classical theorem of the square 
to a more general situation. For the applications we have in mind, it is enough to 
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know that, for each invertible sheaf 2 on X, a power 9@" satisfies the theorem of 
the square. 

Theorem 1. Let S be a Dedekind scheme and let G be a smooth S-group scheme with 
connected fibres which acts on an S-scheme X ,  where X + S is smooth, of finite type, 
and has geometrically connected generic fibres. Then, for any invertible sheaf 9 on 
X ,  there is an integer n > 0 such that 9@" satisfies the theorem of the square. 

I f  the generic fibres of X are proper or the local rings Os,, at generic points 
5 E S are pevfect fields, the assertion holds for n = 1. 

We will reduce the theorem to the classical situation where S consists of a field. 
In fact, we will show that 9 satisfies the theorem of the square if and only if this is 
the case over each generic point of S;  see Lemma 2. In order to carry out this 
reduction step, it is necessary to write down somewhat more explicitly the condition 
of cp2 : G + P,,, being a morphism of group functors. Let m be the group law on 
G. Set T := G x, G, and consider the projections p , ,  p, : G xs  G i G as T-valued 
points of G. Furthermore, let 

be the projection onto the first two factors. Then we claim that cp9 is a morphism 
of group functors if and only if 

as an invertible sheaf on G x, G x, X ,  is isomorphic to the pull-back f *N of an 
invertible sheaf N on G x, G. 

In fact, the class of A? in PxIs(G x s  G) is given by 

Thus it is trivial if (p9 is a morphism of group functors. In order to show the converse, 
we mention the following fact: 

For an arbitrary S-scheme T and two points g,g' E G(T),  the invertible sheaf 

9m(g,gf) 0 Yg-' @ y$;' @ 2 is the pull-back of A2 with respect to the morphism 

So if A! f *Jf for some invertible sheaf Jf on G x, G, the commutative 
diagram 

where p is the projection onto the first factor, yields 
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and, hence, 

Pu(m(979')) = Pu(9) + v u ( g 0  . 
This justifies our claim. We will now reduce the theorem of the square to generic 
fibres. 

Lemma 2. Let S, G, X and 9 be as in Theorem 1, and let A be the invertible sheaf 
on G x ,  G x ,  X which has been defined above. Then the following conditions are 
equivalent: 

(a) There exists an invertible sheaf Jlr on G x ,  G such that A is isomorphic to 
the pull-back f *Jlr of JV with respect to the projection f : G x ,  G x ,  X --+ G x ,  G; 
i.e., 9 satisfies the theorem of the square. 

(b) For each generic point 5 of S, the invertible sheaf 9 satisfies the theorem of 
the square after performing the base change Spec k ( 5 )  --+ S. 

Proof. The fact that an invertible sheaf on X satisfies the theorem of the square is 
preserved by any base change. Thus the implication (a) ==+ (b) is obvious. 

In order to show the converse, we may assume that S is irreducible with generic 
point 5. If condition (b) is given, there is an invertible sheaf M, on (G x ,  G), 
satisfying 

A t  = f?(Mt) 2 

where the index 4 indicates restrictions to generic fibres. We can extend Jlr, to an 
invertible sheaf Jlr on G x s  G because G x s  G is regular. For example, this can be 
done by considering a divisor on (G x ,  G)< which corresponds to M,. Taking its 
schematic closure in G x ,  G, the associated invertible sheaf on G x ,  G may be 
viewed as an extension of Jlr,. 

Now consider the invertible sheaf A '  := A @ ( f  *(Jlr))-I on G x ,  G x ,  X .  
Using the projection p : G x ,  G x ,  X -+ S, we claim there is a divisor A on S such 
that 

Namely, A&'; is trivial. So we can choose a global generator and view it as a mero- 
morphic section of A'. Then it generates A&'' over an open subset of G x ,  G x s  X 
whose complement consists of at most finitely many fibres over closed points in 
S. Thus there is a divisor D on G x ,  G x s  X whose support meets only finitely many 
fibres of p over closed points of S such that 

Now look at the projection 

Since the structural morphism G x s  G --+ S is smooth and has geometrically 
irreducible fibres, the same is true for p, and it is easily seen that the pull-back of 
a prime divisor on X yields a prime divisor on G x s  G x ,  X .  Hence, the Weil divisor 
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D, whose support is not dominant over X, is of the tye pz(A') with a Weil divisor 
A' of X. So we have 

and it remains to show that Ox(&) is the pull-back of an invertible sheaf on S. If X 
has irreducible fibres over S,  a similar argument as above shows that A' is pull-back 
of a divisor on S. In the general case, consider the morphism 

where E is the composition of the structural morphism X ---+ S with the unit section 
S + G. Pulling back (*) with respect to q, we get on the right-hand side O,(A1). On 
the left-hand side, the pull-back of A is trivial; it is the evaluation of A at the unit 
section of G x, G. Furthermore, since f o q : X -+ G x, G factors through S ,  we see 
that q*( f * (N))  is the pull-back of an invertible sheaf on S. So (!&(A') is the pull-back 
of an invertible sheaf on S as claimed; we can write it in the form Os(A) with a divisor 
A on S. 

Now, looking at the isomorphism 

obtained from (*), we can replace Jlr by its tensor product with the pull-back of 
O,(A) to G x, G. Then the resulting invertible sheaf, again denoted by Jlr, satisfies 
A f *(A'"). Thus &if is as required in condition (a). 0 

The essence of the lemma consists in the fact that an invertible sheaf 9 on X 
satisfies the theorem of the square as soon as the pull-back of 9 to each generic 
fibre of X satisfies this theorem. So, in order to establish Theorem 1, it can be 
assumed that S is the spectrum of a field. 

In the main case where G = X is an abelian variety we are done by the classical 
theorem of the square. For the general case, we refer to Raynaud [4], Thm. IV. 3.3, 
in order to see that a power of 9 satisfies the theorem of the square. In fact, one 
shows that 9 itself satisfies the theorem of the square if the field K is replaced by 
a finite radicial extension; cf. Raynaud [4], Thm. IV. 2.6. 

We want to add two possibilities of obtaining the theorem of the square in special situations, always 
assuming that the base is a field. First, let us consider the case where X is proper. In order to show that 

is a morphism of group functors, look at the relative Picard functor PicxlK (cf. Section 8.1). Since X is 
proper, smooth, and geometrically connected over K, the canonical morphism 

is injective (cf. 8.114). So it is enough to show that c p ,  defines a morphism of group functors 

Now we use the fact that PicxlK is representable by a group scheme over K (cf. 8.2/3) and that ( P ~ c & ~ ) ~ ~ ~  
is an abelian variety A over K; cf. [FGA], n0236, Cor. 3.2. Since cp$ maps unit sections onto each other, 
it must factor through A. Then the rigitiy lemma (cf. Lang [I], Chap. 11, 5 1, Thm. 4) shows that the 



resulting morphism 

6. Descent 

is a morphism of group functors. Hence, it follows that 2' satisfies the theorem of the square. 
The second method we want to mention applies to the case where X is a torsor under G. The 

applications of Theorem 1 we have in mind refer to this situation. Still considering the case where S 
consists of a field K and replacing K by its algebraic closure, we may assume that X coincides with G 
and, thus, is an algebraic group over an algebraically closed field. Then, by the theorem of Chevalley 
9.211, there is an exact sequence of algebraic groups over K 

where G,,, is smooth, connected, and afine, and where A is an abelian variety. Since the Picard group 
of the affine group G,,, consists only of torsion, one can show that a power of 2 is the pull-back of an 
invertible sheaf on A. So one is essentially reduced to the case where G is an abelian variety. 

6.4 The Quasi-Projectivity of Torsors 

We want to introduce the notion of torsors, a notion which is closely related to the 
concept of group schemes. Consider a base scheme S, an S-scheme X, and an 
S-group scheme G which acts on X by means of a morphism 

Assume that G is (faithfully) flat and locally of finite presentation over S. Then X 
is called a torsor (with respect to the fppf-topology), more precisely, an S-torsor 
under G if 

(i) the structural morphism X + S is faithfully flat and locally of finite 
presentation, and 

(ii) the morphism G x, X + X x, X, (g, x) I---* (gx, x), is an isomorphism. 
Viewing G x, X and X x, X as X-schemes with respect to the second projec- 
tions, we see that the isomorphism in (ii) is, in fact, an X-isomorphism. In other 
words, applying the base change X + S to X and G, both schemes become 
isomorphic. The same is, of course, true for any base change Y + S which factors 
through X. In particular, if X(S) # a, the choice of an S-valued point of X gives 
rise to an S-isomorphism from G to X, and there is no essential difference between 
G and the torsor X. We say that the torsor X is trivial in this case. Furthermore, 
X -+ S satisfies any of the conditions listed in [EGA IV,], 2.7.1 and [EGA IV,], 
17.7.4, for example, being smooth, separated, or of finite type, provided these 
conditions are satisfied by G --+ S. Namely, in order to apply the cited results, it is 
enough to consider the case where S is affine. Then, since X -+ S is open, there exists 
a quasi-compact open subscheme Y of X such that Y + S is surjective and, hence, 
faithfully flat as well as locally of finite presentation. So, what we have claimed 
follows from the isomorphism G x, Y S X x, Y by faithfully flat and quasi- 
compact descent. In particular, if G is smooth, X is smooth and it can be trivialized 
after a surjective &tale base change St --+ S because, after performing a suitable base 
change of this type, X will have sections by 2.2114. 
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Examples of torsors are easy to describe. Consider a finite Galois extension L/K 
of fields. Then Spec L is a (Spec K)-torsor under the constant group Gal(L/K). Or, 
consider an invertible sheaf 9 on a scheme X and remove the zero section from its 
associated total space. The resulting scheme is an X-torsor under the multiplicative 
group (G,),. It is trivial if and only if 2 is trivial. We want to formulate now the 
main result to be proved in this section. 

Theorem 1. Let S be a Dedekind scheme, and let X be a torsor under an S-group scheme 
G. Assume that G is smooth, separated, and of finite type over S. Then X is quasi- 
projective over S. In particular, G itself is quasi-projective over S. 

For the proof we have to construct an S-ample invertible sheaf 9 on X. In order 
to do so, we use the theorem of the square. 

First we show that, for any effective divisor D on X ,  the associated invertible 
sheaf 9 := O,(D) is S-ample if X - supp(D) satisfies certain properties. 

Proposition 2. Let S be a Dedekind scheme and let G be a smooth S-group scheme with 
connected fibres which acts on an S-scheme X, where X is smooth and of finite type 
over S. Assume there exists an open subscheme U c X such that U is affine over S 
and such that U meets all G-orbits of points in X ;  i.e., such that the action of G induces 
a surjective morphism G x, U --, X. Then, for any effective divisor D on X with 
support X - U ,  the invertible sheaf 9 = O,(D) is S-ample. 

For example, X - U provided with its reduced structure gives rise to such a divisor 
D;  cJ: [EGA IV,], 21.12.7. 

Proof. In a first step we want to reduce to the case where S is local. So assume 2 
is an invertible sheaf on X such that, for each s E S, the pull-back 9 ( s )  of 9 to 
X(s )  := X x s  Spec Lo,,, is ample. Then there exist global sections l,, . . . , l, generating 
a certain power 9 ( s ) @ "  such that the open subscheme X ( S ) , ~  c X ( s )  where l i  gen- 
erates 9 ( s ) @ "  is affine; use [EGA 111, 4.5.2, or the characterization of ample 
invertible sheaves given in Section 6.1. By a limit argument, the l i  extend to sections 
1: of T@" over some neighborhood Sf of s E S and, by [EGA IV,], 8.10.5, we may 
assume that the l j  generate 9 @ "  over S', that the projection X x ,  S' -+ S' is 
separated, and that the open subscheme X;: c X x s  S' where 1; generates 9 @ "  is 
affine. Thereby we see that 9 is ample over a neighborhood of each point s E S and, 
thus, that 9 is S-ample on X. 

Let us assume now that S is the spectrum of a local ring R. Since ampleness can 
be checked after faithfully flat and quasi-compact base change, as follows from 
[EGA IV,], 2.7.2, it is enough to treat the case where R is strictly henselian. Using 
the fact that G has geometrically connected fibres, we see that G operates on the 
connected components of X. So we can assume that X is connected. We claim that 
it is enough to consider the case where the structural morphism X -+ S is surjective. 
In fact, X ---+ S is open and, if X --, S is not surjective, we replace S by the image 
of X. However, doing so, we may loose the property of S being local and strictly 
henselian. In this case we have to go back to the beginning and to start the proof 
anew. Therefore, by induction on the dimension of S, we are reduced to the case 
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where S is local and strictly henselian, where X + S is surjective, and where X is 
connected. Then X has sections by 2.315 and, thus, its generic fibre is geometrically 
connected by [EGA IV,], 4.5.13.1. 

In this situation, we want to establish the assertion of the proposition. Replacing 
the divisor D by a multiple of itself, we can assume that the invertible sheaf 
.9 = Q ( D )  satisfies the theorem of the square; see 6.311. Then the divisor Dg + D , I  
is linearly equivalent to 20 ,  where we have written Dg for the translate of D under 
g. Hence there is a section 1 E r ( X ,  Y O 2 )  such that 

As the intersection of two affine open subschemes of a noetherian scheme, X ,  is 
quasi-affine. Furthermore, it follows that 2' is ample, provided we can show that 
the open subschemes g U  n g-' U cover X if g varies over G(S). 

So it remains to verify the latter fact. Fix a point x E X. Write s for its image in 
S and set k = k(s). We claim that there is a dense open subscheme Z, c G, such that 

for each g E Z,(k). To see this, we may assume that x is a closed point of X,. Then 
we apply the base change k ---+ k' to fibres over s, where k' = k(x) is finite over k. 
Let W be the inverse of Us Ok k' under the morphism 

and write W-l for its inverse under the group law on G, Ok k'. Then, since U 
meets all G-orbits of points in X and since G has geometrically connected fibres, 
W n W-' is a dense open subscheme of G, 8, k'. Furthermore, the relation 
x E g(U, Ok k') n g-l(U, Ok k') is equivalent to g-'x E Us 8, k' and gx E Us Ok k'. 
Thus x E g(U, Ok k') n g-'(U, k') for all g E ( W n  W-')(kt). Then, using methods 
of descent, we find a dense open subscheme of W n  W-I descending to a dense open 
subscheme Z, of G, such that x E gU, n g-l Us for all g E Z,(k). 

Now it is easy to see that the open subschemes gU n g-' U cover X if g varies 
over G(S). Namely, we have only to realize that, for each dense open subscheme 
2, c G, of a fibre over a points E S, there exists a section in G(S) which, by restriction 
to G,, yields a section of Z,. If s is the closed point of S, this follows from 2.315. If s 
belongs to the generic fibre of S, we can consider the schematic closure of G, - Z, 
in G. Its special fibre is nowhere dense in the special fibre of G so that an argument 
as the one given before will finish the proof of Proposition 2. 

Later, in 6.611, we will use the same idea of proof again without the restriction 
that the base S is of dimension 5 1 .  In this case, one can apply the assertion of 5.317 
in order to end the proof. 0 

In order to derive the assertion of Theorem 1 from Proposition 2, we need some 
further preparations. Let Go be the identity component of G; i.e., Go is the open 
subscheme of G which is the union of all identity components of the fibres G, over 
points s E S (cf. [EGA IV,], 15.6.5). Then Go has geometrically connected fibres, 
and it acts on X.  Therefore we can apply Proposition 2 if we can find an open 
subscheme U c X such that U is affine over S and such that U meets all Go-orbits 
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of points in X. As is easily checked on geometric fibres, the latter condition is 
equivalent to the fact that U is S-dense in X: 

Lemma 3. Let X be a torsor under a smooth S-group scheme G which is offinite type 
over S, and consider an open subscheme U  c X. Then U  meets all Go-orbits of points 
in X i f  and only if U is S-dense in X. 

In order to really construct an open subscheme U c X as required in Proposi- 
tion 2, we have to derive some information on the existence of affine open sub- 
schemes of X. 

Lemma 4. Let S = Spec R be an affine scheme which is noetherian, and consider an 
S-scheme X of finite type which is normal and separated. Let (x,),,, be a finite family 
of points of codimension 5 1 in X. Then there exists an affine open subscheme U  c X 
containing all points xi. 

Proof. We may assume that X is connected with field of rational functions L and, 
furthermore, that all xi are of codimension 1. Then the local rings Ox,,i are discrete 
valuation rings contained in L, and they are pairwise different since X is separated. 
So we can use the approximation theorem for inequivalent valuations (cf. Bourbaki 
[2], Chap. VI, § 7, nOl, Prop. 1) and see that 

is a semi-local ring with local components Ox,,,. We can write A as a direct limit of 
R-algebras A, of finite type. Interpreting the elements of each Aj as rational functions 
on X, we obtain for each j a rational map 

uj : X ---+ Spec Aj 

which is an S-morphism in a neighborhood of each xi. Since X and Aj are of finite 
type over R, our construction shows that uj is an open immersion at each xi if j is 
big enough; cf. [EGA IV,], 8.10.5. Thus we have reduced the assertion of the lemma 
to the case where X is quasi-affine and where it is easily verified. 0 

Now we are able to prove the assertion of Theorem 1. As explained before, we 
have only to construct an S-dense open subscheme U c X which is afine over S. 
In order to do this, fix a closed point s E S. Working over an affine neighborhood 
S' of s in S and applying Lemma 4, there is an affine open subscheme U' c X x, S' 
which contains all generic points of X x, S' and all generic points of the fibre X,. 
The complement of U' in X x, St equals the support of finitely many prime divisors 
Dl , .  . . , D, of X x, St. Removing from S' all closed points s' such that the support 
of some Dj is contained in X,,, we may assume that U' is Sf-dense in X x, S'. 
Proceeding this way with all closed points in S, and using a quasi-compactness 
argument, we obtain affine open subschemes U' ,  . . . , U n  of X such that U i  is Si-dense 
over an affine open part S' of S and such that the Si cover S. For simplicity, assume 
that S is irreducible with generic point {. Let Dt be an effective divisor on XS 
with support 
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let D be its schematic closure in X, and set U := X - supp D. Then U is S-dense 
in X since all Ui are dense in Xt and since supp D cannot contain components of 
closed fibres of X. Furthermore, U is affine over S. Namely, U x, Si is contained 
in Ui; it differs from the affine scheme U i  by the support of a divisor. Therefore the 
inclusion U x, Si c+ Ui is affine, as can be checked locally, and it follows that 
U x, Si must be affine itself; cf. [EGA 111, 1.3.4. So we have constructed U as 
required in Proposition 2, thereby finishing the proof of Theorem 1. 0 

6.5 The Descent of Torsors 

In this section we want to apply the descent techniques of 6.1 to torsors under group 
schemes. So far we have dealt only with the descent of schemes without considering 
a group structure or a structure of torsor on them; however, we will see that the 
methods of 6.1 apply immediately to the new situation. Namely, consider a faithfully 
flat and quasi-compact morphism of schemes p :  S' -+ S as well as an S'-group 
scheme G'. As in 6.1, set S" := S' x, S', and let p,, p, : St' ---, St be the projections. 
Recall that, in terms of schemes, a descent datum on G' with respect to p consists 
of an S-isomorphism 

cp:pTG'+pZG' 

satisfying the cocycle condition. Using the canonical isomorphisms 

pT(G1 x,, G') r pTG' x,,, p:G' , i = 1,2, 

one obtains from 9 a descent datum 

on G' x,. G'. Talking about descent data on group schemes, it is required that the 
descent datum cp on G' is compatible with the group multiplication m : G' x,, G' -+ 

G'; i.e., that the diagram 
qn x qn pT(G' x,. G') - p,*(G' x,, G') 

is commutative. Viewing p*G' as the S"-group scheme obtained from G' by means 
of the base change pi : S + S', the condition simply says that the descent datum 

is an isomorphism of S"-group schemes. Then, if the descent is effective, i.e., if G' 
descends to an S-scheme G, Theorem 6.116 implies readily that the group structure 
descends from G' to G and, hence, that G is an S-group scheme. 
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The procedure is similar for torsors. Consider an S'-scheme X' which is a torsor 
under an S'-group scheme G'. Let cp be a descent datum on G' which is compatible 
with the group multiplication on G'. Then a descent datum $ on X' is said to be 
compatible with the structure of X' as a torsor under G' if the action 

G' xs .  X'+X' 

is compatible with the descent data 50 and $. If cp and $ are effective, G' descends 
to an S-group scheme G and X '  to an S-scheme X which is a torsor under G. 

In the following, we want to exploit the existence of ample invertible sheaves in 
order to treat the descent of torsors over discrete valuation rings. Since it is necessary 
to study the problems on generic fibres first, our considerations will include the 
more or less trivial case where the base consists of a field. 

Theorem 1. Let R ---+ R' be a faithfully flat extension of discrete valuation rings (resp. 
of fields). Let G' be an R'-group scheme which is smooth, separated, and of finite type 
over R', and let X' be an R'-torsor under G'. Furthermore, assume that there are descent 
data with respect to R --+ R' on G' and X' such that these data are compatible 
with the group structure on G' and with the action of G' on X'. Then G' descends 
to an R-group scheme G, and X' descends to an R-torsor X under G. Furthermore, 
by the properties of descent, G and X are smooth, separated, and of finite type 
over R. 

Before we give the proof, let us discuss some applications of the theorem. First 
we go back to Section 5, where we have studied the problem of associating group 
schemes to birational group laws; cf. 5.115. In 5.213, which applies to strict birational 
group laws, we had worked out a solution for the case where the base consists of a 
strictly henselian local ring R which is noetherian and normal. Now, using descent, 
we can show that 5.213 remains true if we work over a discrete valuation ring or 
over a field, without assuming that the latter is strictly henselian. Thereby we will 
fill the gap which was left in the proof of 5.115; we refer to Section 6.6 for a more 
rigorous approach to the problem. 

Corollary 2. Let R be a discrete valuation ring or a field, and let m be a strict birational 
group law on an R-scheme U which is separated, smooth, faithfully flat, and of finite 
type over R. Then there exists an open immersion U c, G with R-dense image into 
a smooth and separated S-group scheme G such that the group law on G restricts to 
m on U .  The group scheme G is unique up to canonical isomorphism. 

Proof. Write R' for a strict henselization of R. Then, applying the base change 
R -+ R' to our situation, we obtain a strict birational group law m' on the 
R'-scheme U' = U 8, R'. It has a unique solution by 5.213; i.e., there is an open 
immersion U' c+ G' into an R'-group scheme G', just as we have claimed for U 
and m. 

In order to prove the corollary, it is enough to extend the canonical descent 
datum on U' to a descent datum on G' which is compatible with the group structure 
on G'. Then Theorem 1 can be applied. As usual, set R" = R' 8, R' and write p,, 
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p, for the projections from Spec R" to Spec R'. The canonical descent datum on U' 
consists of the canonical isomorphism 

Working over the base R", we see immediately from the uniqueness assertion in 
5.113 that this isomorphism extends to an isomorphism of R"-group schemes 

A similar argument shows that the isomorphism satisfies the cocycle condition; so 
we have a descent datum on G' as required. 0 

As a second application, we want to discuss the existence of NCron models for 
torsors in the local case. Since, over strictly henselian valuation rings, torsors under 
smooth group schemes are trivial, the problem is a question of descent. 

Corollary 3. Let R c R' c Eh be discrete valuation rings, where Rsh is a strict 
henselization of R, and let K ,  K' and KSh denote the fields of fractions of R,  R' and 
Rsh. Furthermore, let X K  be a K-torsor under a smooth K-group scheme GK of finite 
type, and assume that, after the base change K -+ K', there are Ndron models G' of 
G,, and X' of X,, over R'. Then G' (resp. X ' )  descends to a Nkron model G of GK 
(resp. X of X,) over R. Furthermore, i f  the torsor X K  is unramified, i.e., if XK(Ksh) # a, 
the structure of X K  as a torsor under GK extends uniquely to a structure of X as a 
torsor under G. 

Postponing the proof for a moment, let us first explain why X might not be a 
torsor under G. The universal mapping property of Neron models implies that the 
action of GK on X K  extends uniquely to an action of G on X giving rise to an 
isomorphism 

G x R X - - - + X x R X ,  (g,x)++(gx,x). 

However, in general, X will not be a torsor under G, since the structural morphism 
X -+ Spec R might not be surjective; i.e., it can happen that the special fibre of X 
is empty. Due to 2.315, the latter is the case if and only if X(R")  is empty or, by the 
Neron mapping property, if and only if X K ( K A )  is empty. The torsor X K  is called 
ramified if X K(Ksh)  = @, and unramified if X K(K sh)  # @. Combining the assertion 
of 1.311 with the preceding corollary, we can say: 

Corollary 4. Let R, K ,  K" be as before, and let X K  be a K-torsor under a smooth 
K-group scheme GK of finite type. Then the following conditions are equivalent: 

(a) X K  admits a Ndron model over R. 
(b) X,(K") is bounded in X K .  
(c) X K  is ramified or GK(K") is bounded in G,. 

Proof of Corollary 3. As far as the NCron model of X ,  is concerned, the assertion 
is trivial if X' has empty special fibre and thus coincides with XK,.  So assume that 
the latter is not the case and, hence, that X' is a torsor under G'. We claim it is 
enough to verify that the canonical descent data on G,, and X,, extend to descent 
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data on G' and X'. Namely, the extensions are unique since both G' and X' are flat 
and separated over R'. By the same reason, we obtain the compatibility of the 
descent data with the group structure of G' and the structure of X' as a torsor under 
G'. Then Theorem 1 is applicable, and it follows that the pair (G', X') descends to a 
pair (G, X) over R. That G and X satisfy the universal mapping property of Ntron 
models is a consequence of 6.116 (a) and, again, of the fact that G' and X' are flat 
and separated over R'. So, as claimed, it is enough to construct extensions of the 
canonical descent data on GK, and X,,. Next, observe that G' and X' are of finite 
type over R'. Since R' c R", we see by a limit argument that G' and X' (as well as 
the group structure of G' and the structure of X' as a torsor under G') are already 
defined over an ttale extension of R. So it is enough to consider the case where R' 
is etale over R. 

Now write R" := R' 8, R' and let pi : Spec R" + Spec R', i = 1, 2, be the 
projections. Then, since the formation of Neron models is compatible with etale 
base change (cf. 1.2/2), we see that pT(X1) is a Neron model of pT(X&) over Spec R". 
Thus, by the Neron mapping property, the canonical descent datum 

( P K ,  : PT(Xk) + P$(Xk) 

extends to an isomorphism 

(P : PTW) + P W ~  

which, in fact, constitutes a descent datum on X'. In the same way, the canonical 
descent datum on G& is extended to a descent datum on G. 0 

Remark 5. The assertion of Corollary 3 remains valid if, instead of a pair R c R' 
where R' is contained in a strict henselization of R, one considers a pair of discrete 
valuation rings R c R' such that a uniformizing element of R gives rise to a 
uniformizing element of R' and such that the residue extension of R'IR is trivial. 
For example, R' can be the maximal-adic completion of R (actually, it is only neces- 
sary to require that R' is of ramification index 1 over R; see 7.211). Namely, reviewing 
the proof of Corollary 3, the first part, which reduces the assertion to the problem 
of extending descent data from G,, to G' (resp. X& to X'), remains valid. That the 
required extensions of descent data exist is a consequence of Lemma 6.21D.3. 

It remains to give the proof of Theorem 1. For the applications in Corollaries 2 
to 4 which have just been discussed, the theorem is not needed in its full generality. 
Namely, in the first case (Corollary 2), we know that 

(a) there exists an R'-dense open subscheme U' c X', stable under the descent 
datum of X', such that the descent is effective on U', 

whereas in the second case (Corollaries 3 and 4) we know that 

(b) K', the field of fractions of R', is algebraic over K ,  the field of fractions of R. 

Both properties can simplify the proof substantially. In order to demonstrate 
this, we will first establish the theorem under the additional assumption (a): and 
then under (b). Finally, we will indicate how to reduce the general case to the 
situation (a). Also we want to mention that we have only to work out the descent 
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for the torsor X', because G' can be handled in the same way by viewing it as a 
trivial torsor under itself. 

As a first step we show that, independently of conditions (a) or (b), the descent 
we have to perform is always effective on generic fibres. So consider the extension 
K + K' of the fields of fractions of R --+ R'. Since X i r  is of finite type over K', 
we may use a limit argument and thereby replace K' by a K-subalgebra C of finite 
type. Then the quotient C/m by some maximal ideal m c C is a finite extension of 
K. If [CIm : K ]  = 1, the morphism Spec C -+ Spec K has a section, and the 
descent with respect to it is effective by 6.115. If [C/m : K ]  > 1, the same argument 
applies to Spec(C OK Clm) + SpecC/m so that we may replace K' by Clm. 
Thereby we are reduced to the case where [K' : KJ < a, and we may assume that 
K' is quasi-Galois, or since the descent is trivial for radicial extensions, that K' is 
Galois over K. Then the descent on X& is a Galois descent (see Example 6.2/B) and, 
in order to show it is effective, it is enough to know that finitely many given points 
of X i ,  are always contained in an affine open subscheme of Xi , .  That the latter 
condition is fulfilled can be seen either from the quasi-projectivity of X& (use 6.411) 
or, in a more elementary way, by using standard translation arguments. So the 
descent is effective, and X i ,  descends to a K-scheme XK. This settles the assertion of 
Theorem 1 for the case where R and R' are fields. 

Next, let us assume that condition (a) is satisfied. Then U' descends to an 
R-scheme U, where UK is open in XK. Applying Lemma 6.414 to U, we can find an 
R-dense affine open subscheme of U, and hence, by pulling it back to U', an 
R'-dense affine open subscheme of U' which is stable under the descent datum on 
X'. In other words, we can assume that U' is affine. We claim one can find an effective 
divisor D' on X' with support X' - U' such that D' is stable under the descent datum 
on X'. Denoting the descent datum on X' by rp : pTX' -+ p,*X', the latter means 
that p:Df corresponds to p,*D' under the isomorphism cp. In order to obtain such 
a divisor D', choose an effective divisor DK on X, with support X, - UK (cf. [EGA 
IV,], 21.12.7), and define D' as the schematic closure of the pull-back of DK to X&. 
By the properties of the schematic closure, the descent datum on X' extends to a 
descent datum on the pair (X', 9 ' )  where 9' := OX(D1). Considering the action of 
the identity component of G' on X', we conclude from 6.412 and 6.413 that 9' is 
ample. Hence, 6.117 shows that the descent is effective on X'. This settles the 
assertion of Theorem 1 if condition (a) is given. 

Now let us assume that condition (b) is satisfied. We want to reduce to condition 
(a). Applying Lemma 6.414, there is an R'-dense affine open subscheme R' c X'. 
In particular, F;, := Xi.  - Rk, is nowhere dense in Xi ,  and, since K' is algebraic 
over K, its image FK in X, is nowhere dense. Set U, := X, - FK. Then Ui;, := 
UK OK K' is a dense open subscheme of UK,. Subtracting from X' the schematic 
closure of X i ,  - Ui;, we arrive at an R'-dense open subscheme U' of X' whose generic 
fibre is Ui;,. Furthermore, by construction, U' is stable under the descent datum on 
X', and it is quasi-affine since U' c R'. The latter inclusion is verified by using the 
fact that X' - R' is the support of a divisor and that, since Q' is R'-dense in X', the 
schematic closure of X i ,  - Qk, in X' coincides with X' - a'. In particular, the 
descent is effective on U' by 6.116, and we have thus reduced assumption (b) to 
assumption (a). 
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In order to prove Theorem 1 in its general version, some preparations are necessary. Consider a 
smooth and separated scheme X of finite type over a discrete valuation ring R. Let K be the field 
of fractions of R, and let k be the residue field of R. Writing A := T(X,Ox) ,  we have a canonical 
morphism 

whose formation is compatible with flat base change. For each f E A, we denote by A,. the localization 
of A by f and by 

u,. : X f  + Spec Af  

the morphism obtained from u by the base change Spec A,. --t Spec A. 
In this situation, u is of finite type since X is of finite type over R. Furthermore, SpecA is flat over 

R and normal since the same is true for X .  Since the formation of global sections on X commutes with 
flat base change, there are canonical isomorphisms 

AK := A OR K h . r ( x K ,  Ox) 

and, for f E A, 

A,. - r(x,., ox) . 
Moreover, we have a canonical injection 

:= A mR k 4 r(xk, QJ . 

So a global section h E A vanishes on the special fibre Xk if and only if h E Z A ,  where n is a uniformizing 
element of R. 

Lemma 6. Let u : X --+ Spec A be as above and assume that the generic fibre X ,  is affine. Then u,  : 
X ,  + Spec A, is an isomorphism and, if Xk # @, there exists an element f E A such that X,. n X ,  # $3 
and such that uf : X,. + Spec Af  is an isomorphism. 

Proof: The first assertion is clear. Next, assume X ,  # @. Using the separatedness of X ,  we can apply 
Lemma 6.414 and find an R-dense affine open subscheme U c X .  Since u : X + Spec A is an iso- 
morphism on generic fibres, there is an f E A,, we may assume f E A, swh that (X,.), c U,. Furthermore, 
X ,  is not empty, so we may assume f E A - nA.  Then consider the schematic closure of X ,  - ( X f ) ,  in 
X ;  it is contained in X - X f .  Similarly, since U is R-dense and affine in X ,  its complement X - U 1s of 
pure codimension 1 by [EGA IV,], 21.12.7, and we see that it equals the schematic closure of X ,  - UK 
in X .  So we obtain from (X,.), c U, the inclusions 

and, hence, 

X - X f 3 X - - U  

Therefore Xf c U and, thus, X f  = U,. is afine. Interpreting A,. as the ring of global sections on X f ,  the 
morphism uf : X f  + Spec A,. is an isomorphism. Consequently, since f does not vanish identically on 
Xk,  the assertion of the lemma follows. 0 

It should be realized that, in the situation of Lemma 6, we cannot expect to find a global section f E A 
such that u,.: X f  --+ Spec A,. is an isomorphism and XJ is R-dense in X .  For example, consider an 
irreducible conic C c P$ whose special fibre consists of two projective lines PI and P,. Assume that C 
admits an R-valued point meeting P,, but not PI. Removing this point from C, we obtain an R-scheme 
X whose generic fibre is affine and whose special fibre consists of two components, one of them PI. 
Since each global section of Ox must be constant on PI, we see that any subscheme X,. c X ,  as in Lemma 
6, must be disjoint from PI. So X f  cannot be R-dense in this case. 

Returning to the proof of Theorem 1, it is enough to construct an open subscheme U' c X' as required 
in condition (a). In order to do this, we will forget about the special situation given in Theorem 1 and 
assume only that X' is a smooth and separated R'-scheme of finite type with a descent datum on it, which 
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is effective on the generic fibre X;.. In particular, we may apply the above considerations to X' as a 
scheme over R' (and to suitable open subschemes of it). First we reduce to the case where the generic 
fibre of X' is affine; then Lemma 6 is applicable. Let K + K' be the extension of fields of fractions 
corresponding to R - R'. We know already that the generic fibre X i .  descends to a K-scheme X,. 
Choose an affine dense open subscheme U, c X ,  and consider its pull-back UA. to X i , .  Then X i ,  - Uk. 
is thin in X i . ,  and its schematic closure is R'-thin in X'. If we remove it from X', we obtain an R'-dense 
open subscheme whose generic fibre is affine and which is stable under the descent datum on X'. We can 
replace X' by this subscheme and thereby assume that the generic fibre of X' is afine. 

Now set A' = T ( X ' ,  Ox.) and consider the canonical morphism u' : X' -+ Spec A'. Then the descent 
datum on X' yields a descent datum on Spec A' such that the morphism u' is compatible with these 
descent data. Let U' be the open subscheme of X' consisting of all points of X' where u is quasi-finite. 
We claim that 

(i) the generic fibre of U' coincides with Xh, and the special fibre of U' is non-empty, 
(ii) U' is stable under the descent datum of X', and 

(iii) U' is quasi-affine; in particular, the descent datum is effective on U'. 
Namely, property (i) is a consequence of Lemma 6, whereas property (ii) follows from the fact that, for 
a morphism of finite type, quasi-finiteness at a certain point can be tested after surjective base change 
such as provided by the projections Spec R' x, Spec R' =Spec R'. In order to justify the latter claim, 
observe that quasi-finiteness can be tested on fibres. So it is enough to consider a field as base and a 
field extension as base change. In this situation, a dimension argument gives the desired assertion. Finally, 
property (iii) follows from Zariski's Main Theorem (in the version 2.312'); it implies that u' : X' -+ Spec A' 
restricts to an open immersion on U'. So U' is quasi-affine, and the descent is effective on U' by 6.114. 

If U' is R'-dense in X' ,  we have obtained an open subscheme of X' as required in condition (a). If U' 
is not R'-dense in X' ,  remove from X' all components of the special fibre which meet U'. The resulting 
open subscheme of X', call it X i ,  is again stable under the descent datum. So, concluding as before, X i  
contains an open subscheme U; satisfying conditions (i) to (iii). Continuing this way, we can work up the 
finitely many components of X,  and thereby obtain finitely many open subschemes U', U; ,  . . . , Ui c X' 
satisfying conditions (i) to (iii). Then the union of these subschemes is R'-dense in X' and, hence, gives 
rise to an open subscheme of X' as required in condition (a), thereby finishing the proof of Theorem 1. 

0 

6.6 Applications to Birational Group Laws 

In this section, we want to sharpen M. Artin's result on the construction of group 
laws from birational group laws, which is explained in [SGA 3,,], Exp. XVIII. Let 
S be a scheme, and consider an S-birational group law m on a smooth S-scheme X. 
It is shown in [SGA 3,,], Exp. XVIII, that, if m is strict in the sense of 5.211, there 
exists a solution 2 in the category of algebraic spaces such that 2 contains X as 
an S-dense open subspace; for the notion of algebraic spaces see Section 8.3. We 
will admit this result. However, if the base S is normal, it could also have been 
obtained by the construction technique of Section 5.3. The latter method yields even 
more, namely that 2 is a scheme for the etale topology of S. Using the descent 
techniques of Section 6.5, we want to show that 2 is already a scheme. So, we will 
mainly be concerned with the representability of a smooth group object in the 
category of algebraic spaces. 

Theorem 1. Let S be a scheme, and let m be an S-birational group law on a smooth 
and separated S-scheme X which is faithfully flat and of finite presentation over S. 
Then there exists a smooth and separated S-group scheme x of finite presentation 
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with a group law m, together with an S-dense open subscheme X' c X and an open 
immersion X' c, x having S-dense image such that f i  restricts to m on X'. 

The group scheme x is unique up to canonical isomorphism. I f  the S-birational 
group law m is strict, the assertion is true with X' replaced by X .  

Proof. Due to the uniqueness assertion 5.1/3, we may assume that S is affine and, 
using limit arguments, that S is noetherian. If the S-birational law is strict, it follows 
from the result of M. Artin that there exists a solution X of the strict law in the 
category of algebraic spaces containing X as an S-dense open subspace of X. As 
we will see by the theorem below, the solution is represented by a scheme. Thereby, 
Theorem 1 will be proved for the case where the S-birational group law is strict. 
Now we want to treat the general case accepting the assertion of Theorem 1 for 
strict S-birational laws. 

Let U be the largest open subscheme of S such that the S-birational group law 
has a solution over U; here and in the following, solutions are meant in the category 
of schemes. If U # S choose the generic point s of an irreducible component of 
S - U. Since we consider only S-schemes of finite presentation, it suffices to verify 
that there exists a solution after the base change Spec(O,,,) -+ S. So we may assume 
that S is a local scheme, and that s is the closed point of S; then U = S - {s) .  

Assume first that, for each component Xi  of X,, there exists a section oi of X 
over S crossing the given component. Let X(o,) be the union of all components of 
the fibres of X meeting the section oi; due to [EGA IV,], 15.6.5, X(oi) is an open 
subscheme of X .  Denote by X ,  the union of the X(oi); note that X ,  might not be 
S-dense in X. Then m induces an S-birational group law m, on X,. Moreover, due 
to the construction, the components of the fibres of X are geometrically irreducible. 
Now one can proceed as in the proof of 5.2/2. The set Z (in the proof of 5.212) will 
provide an S-dense open subscheme Xb of X, such that m, induces a strict law mb 
on Xb. Namely, set 

where p ,  : X x, X -+ X is the first projection. Then Q, is S-dense open in X,, and 
Z n (Q, x, X,) is a,-dense in Q, x s  X,. Defining Q, in a similar way by using the 
second projection, the intersection R, n R, defines an S-dense open subscheme Xb 
of X,. As in 5.2/2, one shows that the restriction mh of m to Xb is strict. As we have 
said above, there is a solution of the strict law mb which contains Xb as an 
S-dense open subscheme. Since X, U is an open subscheme of the solution 2, 
of the restriction of m to U ,  one can glue and 2, along x, U in order to get 
a solution of m. 

In the general case, one performs first an &tale surjective extension S* -+ S of 
the base in order to get enough sections of X .  So one obtains a solution X* of the 
S*-birational group law m x, S*. Now consider the S*-birational map 

1 : x x, s *  ---+ x *  . 

The canonical descent datum extends to a descent datum on X* by the uniqueness 
of solutions; cf. 5.113. Furthermore, there exists a largest open subscheme X* of 
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X x, S*, where the map z is defined and where z is an open immersion; use the 
separatedness of X x, S* and of X* as well as the birationality of z. Since the domain 
of definition is compatible with flat base change (cf. 2.5/6), the formation of the 
largest open subscheme where z is defined and where z is an open immersion is 
compatible with flat base change. So X* is stable under the descent datum and, 
hence, there exists an open subscheme X' of X which is S-dense in X such that 
X' x, S* = X*. Then it is easy to see that the S-birational law m on X restricts to 
a strict law on X'. 0 

In order to complete the proof of the preceding theorem, it remains to show the 
following result on the representability of algebraic spaces with group action. 

Theorem 2. Let S be a locally noetherian scheme and let G  be a group object in the 
category of algebraic spaces over S. Assume that G  is smooth over S and that G  has 
connected fibres over S. Let X be a smooth algebraic space over S and let 

be a group action on X .  Let Y  be an open subspace of X. Then the image G Y  of G x S  Y  
in X is an open subspace of X. If G Y  equals X, the following assertions hold: 

(a) If Y  is separated (resp. of finite type) over S ,  the same is true for X. 
(b) If Y is a scheme, then X is a scheme. 
(c) If S is affine and if Y  is quasi-affine, any finite set of points of X is contained 

in an affine open subset of X .  
(d) If S is normal and $ Y is affine over S, any effective Weil divisor of X with 

support X - Y is a Cartier divisor, and is S-ample. In particular, X is quasi-projective 
over S. 

Corollary 3. Let S be a Dedekind scheme, and let G be a group object in the category 
of algebraic spaces over S. Assume that G  is separated, smooth, and of finite type over 
S.  Then G is a scheme. 

Proof of Corollary 3. Let Y be the open subspace of G  consisting of all points which 
admit a scheme-like neighborhood. Due to Raynaud [6], Lemme 3.3.2, Y  contains 
all the generic points of the fibres of G  over S. Hence, Y is S-dense in G. So Theorem 
2 yields that G  is a scheme. 0 

Proof of Theorem 2. The group action a is the composition of the maps 
(PI > 4 

G  x, X -----+ G  x, x 2 x 
where pi is the projection onto the i-th factor, i = 1, 2. The first map is an iso- 
morphism, and the second one is smooth, since G is smooth over S. Hence, the map 
o is open, and the image GY is an open subspace of X. 

(a) In order to prove the separatedness of X, we can use the valuative criterion. 
So, we may assume that S consists of a discrete valuation ring R with field of 
fractions K and residue field k. Then we have to show that any two R-valued points 
x, , x, E X(R) which coincide on the generic fibre are equal. Let Z,, be the induced 
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closed points. Since the sets 

are open and non-empty, they are dense in G x, k. Due to the smoothness of G 
over S, there exist an &tale surjective base extension R + R' and a section g E G(R1) 
inducing a point of U,  n u,. Thus xi E gY and, hence, xi E gY for i = 1,2. Since Y 
is separated over S, we see that x, = x,. 

In order to show that X is of finite type over S if Y is, it sufices to verify that X 
is quasi-compact if S is affine. Since the map 

is surjective, the assertion follows from the fact that G is quasi-compact, as can easily 
be deduced from Lemma 5.114. 

(d) We may assume that S is affine. Due to assertion (a), X is of finite presenta- 
tion and separated over S. Let D be an effective Weil divisor with support X - Y. 
Due to the theorem of Ramanujam-Samuel [EGA IV,], 21.14.3, D is a relative 
Cartier divisor. Namely, as can be seen by an &tale localization on X, this theorem 
carries over to the case of algebraic spaces. Next we want to show that 2 = Q(D) 
is S-ample. To do this, we need the fact that $pO" satisfies the theorem of the square 
for large integers n if the generic fibres of X over S are geometrically irreducible, cf. 
Section 6.3. Namely, after &tale localization of the base, X can be covered by open 
subspaces of type X, where 1 varies over the global sections of dpO". The X,  are 
affine as intersections of translates of Y; cf. the proof of 6.412 or Raynaud [4], 
Thm. V.3.10, p. 88. In order to verify that gO" satisfies the theorem of the square 
for large integers n, one proceeds as follows: 

Similarly as in the proof of 6.312, one reduces to the case where S consists of a 
field. Then G is a scheme; cf. Section 8.3. We claim that X is a scheme, too. Let U 
be the set consisting of all points of X admitting a scheme-like neighborhood. Using 
finite Galois descent, one easily shows that U is invariant under G, since any finite 
set of points of U is contained in an affine open subscheme of U.  In our case, due 
to the assumption X = GY, one has U = X. So, X is a scheme, and the assertion 
follows from Raynaud [4], Thm. IV 3.3 (d), p. 72. 

Finally, since Y + S is affine, the reduced subscheme with support X - Y is 
a Weil divisor by [EGA IV,], 21.12.7, and thus an S-ample Cartier divisor. There- 
fore X + S is quasi-projective. 

(c) First, let us show assertion (c) under the additional assumption that S is 
normal. Let x,, . . . , x, be finitely many points of X, and let s,, . . . , s, be their images 
in S. Since Y is quasi-affine, there exists an affine open subscheme Y* of Y which 
gives rise to a dense open subscheme of the fibres TI,. . . , Y,, Then the points 
x,, . . . , x, are contained in the image X* of G x, Y* under a. We may replace X by 
X*, and so we may assume that Y is affine. In this case, the assertion follows from 
assertion (d). Namely, X admits a relatively ample line bundle, since X - Y with 
its reduced structure gives rise to a Weil divisor; cf. [EGA IV,], 21.12.7. So, X is 
quasi-projective over S, and hence X satisfies assertion (c). 

Now let us consider the general case. Using limit arguments, we may assume 
that S is of finite type over the ring of integers Z. Let S" be the normalization of S, 
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and set 8 = X x s  S and G = G x s  S. Then 2 is a scheme by what we have just 
proved, and any finite set of points of is contained in an affine open subscheme 
of 8. Furthermore, X' = X x s  S' is a scheme after &tale surjective base extension 
S' + S, since there are finitely many sections of 6 such that X can be covered 
by the translates of Y under these sections, as follows from 5.317; see also 6.412. In 
order to show the effectivity of the canonical descent datum on X' we make use of 
the following result which is contained in Raynaud [3], Cor. 3.8 and Thm. 4.2: 

Let S be a locally noetherian scheme, let S' + S be a faithfully flat quasi-compact 
morphism of schemes, and let S" - S be a finite surjective morphisrn of schemes. Let 
X be a sheaf for the fppf-topology of S ( c j  Section 8.1). Assume that X' = X X ,  S' 
is represented by an S'-scheme which is locally of finite presentation, and that 8 = 

X x s  S" is represented by an S"-scheme. Then 
(i) X is represented by an S-scheme of finite presentation ifand only i f ,  for each 

point f of 8, there exists an affine open subscheme of 2 which contains all points of 
8 giving rise to the same point of X as 2. 

(ii) If 2 satisfies the property that any finite set of points of 8 is contained in an 
open affine subscheme, so does X .  

Thus we see that X is a scheme, and any finite set of points of X is contained in 
an affine open subscheme of X, since 2 has this property. 

Assertion (b) follows from (c). 0 

6.7 An Example of Non-Effective Descent 

Let R be a discrete valuation ring with field of fractions K and residue field k. In 
the present section we will consider relative curves over R; i.e., flat R-schemes X 
whose fibres are of pure dimension 1. We assume that, in addition, X is normal and 
proper over R and that the generic fibre X, is connected. Then X, is regular (in fact, 
smooth over K if char K = O), and the set of singular points x of X (i.e., of those 
points where the local ring Ox,, is not regular) is a finite subset of the special fibre 
X,; see [EGA IV,], 5.8.6, and [EGA IV,], 6.12.6. The example we want to present 
is based on the fact that, after replacing the base R by a henselization Rh, irreducible 
components of X ,  can be contracted in X whereas, over a non-henselian ring R, 
such a procedure is not always possible. 

To construct an R-curve with a non-effective descent datum on it, set A = 

@[z,z-'1, where z is an indeterminate, and start out from a smooth and proper 
elliptic curve E over S = Spec A which has non-constant j-invariant. Alternatively, 
we can consider the ring A = Q[z,z-'] and the elliptic curve with constant 
j-invariant E c P i  which is given by the equation 

Replacing A by the local ring R = Os,, at a closed point t E S if A = @ [z, z-'1 (resp. 
at a suitable closed point t E S corresponding to a maximal ideal (2 - t )  c A with 
t E Q* if A = Q[z, z-'I), we will show in Proposition 5 that there exists a rational 
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point a, E E, such that none of the multiples ra, with r > 0 admits a lifting to an 
R-valued point of E. Blowing up a, in E yields a proper curve X over R which is 
regular. Its special fibre X,  consists of two components, the strict transform E, of 
E, and the inverse image of a, which is a projective line P,; both intersect transversal- 
ly at a single point. 

In this situation we will see in Lemma 6 that one cannot contract the component 
.!?, in X ;  i.e., there does not exist an R-morphism u : X ---, Y ofproper normal curves 
over R which is an isomorphism over Y -  { y }  and which satisfies E", = u-'(y). 
However, if we pass from R to a henselization Rh and consider the curve X' = 

X OR Rh over Rh, the special fibre of X remains unchanged, and we will be able to 
conclude from Proposition 4 below that E", can be contracted in X'. 

Let u' : X' + Y' be such a contraction. There are canonical descent data on X' 
and on Y' with respect to R --+ Rh; namely on X', since it is obtained from X by 
means of the base change R ---t Rh, and on Y' since u' is an isomorphism on generic 
fibres and since each descent datum on the generic fibre of Y' extends uniquely to 
a descent datum on Y' by 6.21D3. Furthermore, u' is compatible with these data. 
So if the descent datum on Y' were effective, u' : X' + Y' would descend to an 
R-morphism u : X --+ Y, where Y is a proper normal curve by [EGA IV,], 2.7.1 
and 6.5.4. Since u' coincides with u on special fibres, the latter morphism would be 
a contraction of E", in X .  However such a contraction cannot exist by Lemma 6 
and, consequently, the descent datum on Y' cannot be effective. 

Now, after we have given the description of the curve Y' and the non-effective 
descent datum on it, let us fill in the results mentioned above which are needed to 
make the example work. We begin with the explanation of contractions; see also 
M. Artin [I], [2]. So consider an arbitrary discrete valuation ring R and an R-curve 
X where, as we have said at the beginning of this section, X is assumed to be proper 
and normal and to have a connected generic fibre. Let (Xi)i,, be the family of 
irreducible components of the special fibre X,, providing them with the canonical 
reduced structure. For a strict subset J c I, a contraction of the components Xj,  
j E J ,  in X consists of an R-morphism u : X ---t Y of proper normal curves over R 
such that 

(a) for each j E J, the image u(Xj )  consists of a single point yj E Y, and 
(b) u defines an isomorphism X - U j ,  J X j  7 Y - U j s  J { y j ) .  

Then u is automatically proper since X is proper over R and since Y is separated 
over R. Furthermore, using the Stein factorization [EGA III,], 4.3.1, it is easily seen 
that u depends uniquely on the subset J c I and that the fibres of u are connected. 
In order to give a criterion for the existence of contractions, we use the notion of 
effective relative Cartier divisors; cf. Section 8.2, in particular 8.216. 

Theorem 1. Let X be a proper normal R-curve with connected generic fibre X,, let 
(Xi),,, be the family of irreducible components of the special fibre X,, and consider 
a non-trivial effective relative Cartier divisor D on X .  Let J be the set of all indices 
j E I such that supp(D) n Xj = @. Then the canonical morphism 

u : X -+ Y:= Proj 
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is a contraction of the components Xj, j E J, and Y is a proper normal R-curve which 
is projective. 

Before we give a proof, let us look at properties of Y which follow from its 
definition as a projective spectrum of a graded ring. 

Lemma 2. Let X be a proper scheme over a noetherian ring R and let 9 be an invertible 
sheaf on X such that, for some n > 0, the sheaf 9 @ "  is generated by its global sections. 
Then, for 

m 

A = @ 1-(X, 9 0 " )  , 
m = O  

the scheme Y = Proj(A) is projective over R and the canonical morphism u : X -+ Y 
has connected fibres. I f ,  in addition, X is normal, Y is normal also. 

Proof. Applying [EGA III,], 3.3.1, we see that the ring A is of finite type over R. 
Thus Y = Proj(A) is projective over R; cf. [EGA II],4.4.1. 

For any section 1 E r (X,  2?On), the morphism u gives rise to an isomorphism 

So u,(Co,) = 0, and, since u is proper, it follows from [EGA III,], 4.3.2, that the 
fibres of u are connected. Finally, if X is normal, the ring T(X,, Ox) is seen to be 
integrally closed in its total ring of fractions. This implies that Y is normal. 

Now we come to the proof of Theorem 1. Set 9 := Co,(D). We claim that 9 @ "  
is generated by its global sections if n is large enough. Then Y will be projective and 
normal by the preceding lemma. In order to justify the claim, it is enough to find 
global sections generating 9 @ "  at the points of supp(D); the constant 1, as a global 
section of Ox, will generate 9 @ "  elsewhere. So consider the exact sequence of 
Co,-modules 

Taking the tensor product with YO" yields the exact sequence 

and we can use the following part of the associated cohomology sequence: 

(r) HO(x,  PO") -+ HO(x,  OD @ 9'") + H1(x, dp@"-l) ---+ H'(x, 9 @ " )  ---+ 0 . 

Note that H1(X, OD @ dpQ") = 0 since D defines a closed subscheme of X which 
is affine; the latter is due to the fact that D is quasi-finite, proper and, hence, finite 
over R. 

Next, consider the restriction DK of D to the generic fibre XK. Then DK has a 
positive degree on XK since D is effective and non-trivial, and we see that DK is ample 
since XK is irreducible. Therefore H1(XK, 9 @ " )  = 0 for n big enough, and it follows 
that H1(X, dpQ") is an R-torsion module of finite length since it is of finite type. The 
exact sequence (*) implies that the length is decreasing for ascending n. Hence the 



6.7 An Example of Non-Effective Descent 

length will become stationary and, for n big enough, the map 

H1(X, 2 P - l  ) -- H1(X, 5 9 )  

is an isomorphism. But then 

is surjective. Thereby we see that 9@" is generated by its global sections at the 
points of supp(D) and, hence, at all points of X, as claimed. 

It remains to show that u : X + Y is a contraction of the components Xj, j E J .  
Fix such a component Xj. Then, since Xj is proper, each global section of 6Jx(nD) 
induces a constant function on Xj; i.e., an element of the finite extension r(Xj, OxJ) 
of k. Therefore the image u(Xj) consists of a single point yj E Y Next look at a 
component Xi with i E I - J .  Fix a point x E Xi n supp(D) and, for some n E N big 
enough, choose a global section 1 of Ox(nD) such that 1 generates Ox(nD) over a 
neighborhood U of x. Then 111 may be viewed as a section in 0, over I; or (by 
means of the pull-back under u) as a section in Ox over X,. By its construction, 111 
vanishes on U n supp(D) and is non-zero on U - supp(D). Therefore the image 
u(Xi) cannot consist of a single point so that u must be quasi-finite on Xi. Finally, 
using the facts that the fibres of u : X -+ Y are connected and that Y is normal (see 
Lemma 2), one concludes with the help of Zariski's Main Theorem 2.312' that u is 
a contraction of the components Xj, j E J .  

Corollary 3. Let X be a proper normal R-curve with connected irreducible generic 
fibre X ,  and let Xi, i E I,  be the irreducible components of the special fibre Xk. Let J 
be a strict subset of I. Then the following conditions are equivalent: 

(a) There exists a contraction X + Y of the components X j ,  j E J, where Y is 
projective over R. 

(b) There exists a contraction X -+ Y of the components Xj, j E J, and there is 
a non-empty R-dense affine open subset V c Y such that the images of the X j  as well 
as all singular points of Y are contained in V: 

(c) There exists an effective relative Cartier divisor D on X with the property that 
supp(D) n Xj = $3 for all j E J and supp(D) n Xi # $3 for all i E I - J .  

Proof. The implication (a) +(b) is clear since the set of singular points of Y is 
a finite subset of the special fibre Y, and since Y is projective over R. To show the 
implication (b) ==+(c), choose an R-dense affine open subscheme V c Y which 
contains the images of the components Xj, j E J ,  as well as all singular points of Y 
Then Y - V gives rise to a relative Cartier divisor on Y whose inverse under 
X + Y is a divisor on X as required in condition (c). Finally, the implication 
(c) ==+(a) follows from Theorem 1. 0 

Proposition 4. In the situation of Corollary 3, assume that the valuation ring R is 
henselian. Then there exists an effective relative Cartier divisor D on X as required in 
condition (c) of Corollary 3. I n  particular, any strict subset of the set of irreducible 
components of Xk can be contracted in X. 
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Proof It is enough to construct an effective relative Cartier divisor D on X whose 
support meets only a single given component Xj  of X,. In order to do this, choose 
a closed point 

which is regular on X; such a point exists since there are at most finitely many 
points where X is not regular. Using the fact that prof U,,, = 2, one can find an 
affine open neighborhood U = Spec A of x such that there is a non-zero-divisor 
f E A OR k which vanishes at x. Lifting 7 to f E A, this element defines a closed 
subscheme A c U which we may interpret as an effective relative Cartier divisor on 
U. However, A might not be a closed subscheme of X; it can happen that its 
schematic closure cannot be interpreted as a relative Cartier divisor on X or that 
b meets components Ci with i # j. So we cannot, in general expect, that A extends 
to a relative Cartier divisor on X satisfying the required properties. 

But we know that A -+ Spec R is quasi-finite. So, R being henselian, we can use 
2.314 in order to obtain an open neighborhood V c  U of x such that A n  V --+ 

Spec R is finite. Then the immersion A n V c, X is finite, and its image is closed in 
X so that we may regard A n V as a relative Cartier divisor on X. The latter is of the 
required type. 0 

For the remainder of this section, we want to look at smooth and proper elliptic 
curves E c P: (having a section) over a base scheme S = Spec A where A = 

@[z, tpl] or A = Q [z, z-l] and where z is an indeterminate. So S is a Dedekind 
scheme; let K be its field of fractions. For t E @* (resp. t E Q*), we will write t also 
for the closed point in S which corresponds to the ideal (t - t )  c A. As usual, for 
closed points t E S, the fibre of E over t is denoted by E,. 

Proposition 5. Consider the following property of E at closed points t E S :  
( P )  There exists a rational point a, E E, such that none of its multiples na,, n > 0, 

(in the sense of the group law on E) lijks to an Us,,-valued point of E or, equivalently, 
of EO.4 Lo,,,. 

Then, i f  A = @[z,z-'1, and if E is a smooth and proper elliptic curve over 
S = Spec A with non-constant j-invariant, the property (P) is true for all t E @*. 
Furthermore, if A = Q [t, z-'1 and if E c P: is given by the equation 

(P) is true for some t E Q*; for example, it holds for all primes p = 5(mod 8), where 
p < 1000. 

Proof. Let us start with the case A = @[7,t-']. Fix a closed point t E S and set 
R = Os,,. Then, using the relative version of the Mordell-Weil theorem for function 
fields as contained in Lang and Neron [I], we see that the group E(K)  is finitely 
generated. By the valuative criteria of separatedness and of properness, the latter 
group is isomorphic to E(R). Now let r be the image of E(R) in E,(@) and let r be 
the subgroup of E,(@) consisting of all points b, such that a multiple nb, is contained 
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in r. Then, since E(R) is countable, the group r is countable. But E,(C) is not 
countable. So E,(C) - r contains a point a, as required. 

Next let us consider the case where A = Q[r, z-'1. We claim that E(K) is finite. 
In order to justify this, we look for t E Q* at the specialization map 

and use the following facts which we cite without proof 
(a) E,(Q) is finite for infinitely many t E Q*; for example for all primes p with 

p = 7 or p = l l(mod 16); cf. Silverman [I], Chap. X, 6.2 and 6.2.1. 
(b) The specialization map E(K) -+ E,(Q) is injective for allmost all t E Q*; cf. 

Silverman [I], Appendix C, 20.3. 
(c) There exist elements t E Q* such that E,(Q) is of rank 2 1, for example for 

all primes p - 5(mod 8) less than 1000; cf. Silverman [I], Chap. X, 6.3. 
It follows from (a) and from (b) that E(K) -. E(Os,,) is finite for all t E Q*. 

Choosing t as in (c), one can find a rational point a, E E,(Q) which has infinite order. 
But then none of its multiples can admit a lifting to a point of E(O,,,). 0 

Now let E be a smooth and proper elliptic curve over a discrete valuation ring 
R such that the special fibre E, contains a rational point a, whose multiples nu,, 
n > 0, (in the sense of the group law on E) do not admit liftings to R-valued points 
of E. As we have just seen, examples of such curves do exist. By blowing up a, in E, 
one obtains a proper curve X over R which is regular. Its special fibre X ,  consists 
of the strict transform E", of E, and of the inverse image of a, which is a projective 
line P,; both intersect transversally at a single point. 

Lemma 6. The strict transform E", of E, under the blowing-up X -+ E cannot be 
contracted in X. More precisely, there is no R-morphism u : X ---, Y onto a proper 
normal R-curve Y which maps g, onto a point y c Y and which is an isomorphism over 
y- (Y> 

Proof. Assume that such a contraction u : X -+ Y exists. Then Y is regular at all 
its points except possibly for y, and the complement of any affine open neighbor- 
hood of y yields an effective relative Cartier divisor D on X, whose support meets 
P, and is disjoint from E",; cf. Corollary 3. Let D, be the generic fibre of D and D' 
its schematic closure in E. Then D' is an effective relative Cartier divisor on E; let 
d > 0 be its degree. The support of D' is the projection of D on E; so the closed fibre 
DA is da,. If e is the unit section of E, the invertible sheaf 52' = Co,(D1 - de) has degree 
0 and, thus, corresponds to an element of Pic;,,(R); cf. Section 9.2. Now, using the 
canonical isomorphism 

it follows that 2 corresponds to a point b E E(R). Restricting ourselves to special 
fibres, we see that b, = da,. However, this contradicts the choice of a, E E,. 
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Although the notion of a NCron model is functorial, it cannot be said that NCron 
models satisfy the properties, one would expect from a good functor. For example, 
Nkron models do not, in general, commute with (ramified) based change; also, in 
the group scheme case, the behavior with respect to exact sequences can be very 
capricious. The situation stabilizes somewhat if one considers NCron models with 
semi-abelian reduction. 

The purpose of the present chapter is to collect several properties of NCron 
models, and to give a number of examples which show that certain other, perhaps 
desirable, properties are in general not true. We prove a criterion for a smooth 
group scheme to be a Neron model and discuss the behavior of NCron models with 
respect to the formation of subgroups as well as with respect to base change and 
descent. Then we look at isogenies and Ntron models with semi-abelian reduction. 
For example, we prove the criterion of Ntron-Ogg-Shafarevich for good reduction. 
There is also a section dealing with various aspects of exactness properties. The 
chapter ends with a supplementary section where we explain the Weil restriction 
functor. If one works with respect to a finite and faithfully flat extension of Dedekind 
schemes S' -+ S, this functor respects NCron models. Furthermore, if K and K' are 
the rings of rational functions on S and S', the Weil restriction is used to describe 
the behavior of associated Neron models if one descends from a K'-group scheme 
X,, to a K-group scheme X,. 

7.1 A Criterion 

Throughout this section we will denote by R a discrete valuation ring, by Rsh 

its strict henselization, and by K and K" the corresponding fields of fractions. 
Furthermore, k is the residue field of R, and k, its separable algebraic closure. In 
the following we will consider R-group schemes G of finite type with a smooth 
generic fibre and with the property that each Ksh-valued point of G extends to an 
R"-valued point of G. We are interested in conditions under which G is a Neron 
model of its generic fibre GK or, more generally, in the way of deriving a Ntron 
model of GK from G. 

Theorem 1. Let G be a smooth R-group scheme of finite type or a torsor under a 
smooth R-group scheme of finite type. Then the following conditions are equivalent: 

(i) G is a Ndron model of its generic fibre G,. 
(ii) G is separated and the canonical map G(R") + G ( P h )  is surjective. 
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(iii) The canonical map G(Rsh) -+ G(Ksh) is bijective. 

Proof. It is enough to consider the case where G is a group scheme. Indeed, if G is 
a torsor we may assume by 6.513 that R is strictly henselian and, furthermore, that 
G is unramified. Then G admits a section over R and we can view G as a group 
scheme. 

In the following, let us assume that G is a group scheme. The implications 
(i) +(ii) *(iii) are trivial, the second one by the valuative criterion of 
separatedness. Moreover, it is easy to see that condition (ii) implies condition (i). 
Namely, if G satisfies (ii), it is a weak NCron model of its generic fibre GK. Hence 
the weak Ntron property 3.513 and the extension theorem 4.411 show that G satisfies 
the definition of Nhon  models. 

Turning to the remaining implication (iii) ==+(ii), we have to verify that (iii) 
implies the separatedness of G. Using Lemma 2 below, it is only to show that 
the unit section E : Spec R -+ G is a closed immersion or, what amounts to the 
same, that ims is closed in G. Restricting E to generic fibres, we know that E,: 
Spec K -+ G, is a closed immersion. Let F be the schematic image of E, in G. 
Then, pointwise, im E and F coincide on G,, and we have to show the same for the 
special fibre G, of G. So consider a point e, E F n G,. Working in an affine open 
neighborhood U c G of e,, let A be the ring of global sections on F n U .  Then 
R c A c K and, thus, R = A since R is a discrete valuation ring. Hence the inclusion 
of F n U into G gives rise to a point e E G(R) extending E, E G(K). However, 
condition (iii) implies e = E.  So F consists of only two points, namely, the points of 
im E,  and it follows that im E is closed in G. 

Lemma 2. A group scheme G is separated over a base scheme S i f  and only if the unit 
section E is a closed immersion. 

Proof. If G is separated, the diagonal morphism 6 : G -+ G x, G is a closed immer- 
sion. Then the same is true for the unit section E :  S -+ G = S x, G, since E is 
obtained from 6 by means of the base change E : S -+ G. 

Conversely, viewing the diagonal in G x, G as the inverse image of i m ~  with 
respect to the morphism 

it follows that G is separated if E is a closed immersion. 

In order to demonstrate how Theorem 1 can be applied, let us give an example 
of an algebraic K-group which, although it is affine, admits a Ntron model. 

Example 3. Let R be a discrete valuation ring of equal characteristic p > 0, and let 
n be a uniformizing element of R. Consider the subgroup G of Go,, x, G,,, which 
is given by the equation 

Then G is a smooth R-group scheme of finite type. Furthermore, looking at values 
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of solutions of the above equation, one shows easily that the map G(Rsh) --t G(Ksh) 
is surjective. Thus G is a Ntron model of its generic fibre GK. The group GK is an 
example of a so-called K-wound unipotent group; i.e., of a connected unipotent 
algebraic K-group which does not contain G,,, as a subgroup. Smooth commu- 
tative groups of this kind admit Neron models offinite type, at least in the case where 
R is excellent; cf. 10.211. 

Next consider an R-group scheme G of finite type such that the generic fibre GK 
is smooth. If the residue characteristic of R is zero, the special fibre Gk is smooth by 
Cartier's theorem, [SGA 3,], Exp. VI,, 1.6.1, so that, if G is flat, it will be smooth 
over R. However, since the latter result does not extend to the general case, we want 
to describe a procedure which, by means of the smoothening process, associates a 
smooth R-group scheme G' to G such that the canonical map G'(R") -+ G(R") is 
bijective. Let us call a morphism of R-group schemes G' -+ G, where G' is smooth 
and of finite type over R, a group smoothening of G if each R-morphism Z -+ G 
from a smooth R-scheme Z admits a unique factorization through G'. Then, by the 
defining universal property, G' --+ G is an isomorphism on generic fibres since GK 
is smooth. In particular, if G(R") --+ G(Ksh) is bijective, G' will be a Neron model 
of G, by Theorem 1. Group smoothenings can be defined in the same way using a 
global Dedekind scheme as base. However, their existence can only be guaranteed 
in the local case; cf. Theorem 5 below. 

Lemma 4. Let G be an R-group scheme of finite type which has a smooth generic 
fibre. Denote by Fk the Zariski closure in G, of the set of ks-valued points in Gk which 
l i f t  to Rsh-valued points of G. Then Fk, provided with its canonical reduced structure, 
is a closed subgroup scheme of G,. Furthermore, let u : Y -+ G be the dilatation of 
Fk in G. Using the notation 6 for the defect of smoothness as in 3.3, we have 

6(a1) I max(0, 6(a) - 1) 

for each Rsh-valued point a of G and its lifting a' to Y. 

Proof. Since the set of Rsh-valued points of G forms a group, it is clear that Fk is a 
subgroup scheme of Gk. In order to justify the second assertion, we use Lemma 
3.411; it is only to show that Fk c G, is E-permissible, where E = G(Rd). However 
this is clear. By construction, F, is geometrically reduced and, hence, smooth over 
k, being a group scheme of finite type over a field. Furthermore, using 4.212, we 
see that the restriction of the sheaf of differentials Q,$, to Gk is free and, hence, 
that the restriction of a&, to Fk is free. Thus the two conditions characterizing 
E-permissibility are satisfied. 0 

It follows from 3.2/2(d) that the scheme Y of Lemma 4 is an R-group scheme 
again and that u : Y --+ G is a group homomorphism. So a finite repetition of the 
construction leads to an R-group scheme G' which has generic fibre GK and defect 
of smoothness 0, and thus is smooth at all its Rsh-valued points. In particular, G' is 
smooth at the unit section and therefore smooth everywhere since it is flat. We claim 
that the morphism G' -+ G is a group smoothening of G. To justify this, consider 
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an R-morphism Z -+ G where Z is a smooth R-scheme. Writing ks for the separable 
algebraic closure of k, the set of ks-valued points of Z, which lift to Rsh-valued points 
of Z is schematically dense in Z,; cf. 2.315. Thus, we see that, in the situation of 
Lemma 4, the special fibre of Z is mapped into Fk. Then the desired factorization 
of Z -+ G follows from 3.2/l(b), again. So we have derived the following facts on 
group smoothenings. 

Theorem 5. Let G be an R-group scheme of finite type with a smooth genericfibre 
GK. Then there exists a group smoothening G' -+ G of G. Due to its definition, G' is 
smooth and of finite type; it is characterized by the property that each R-morphism 
Z -+ G, where Z is smooth over R, factors uniquely through G'. 

Furthermore, i f  the map G(Rsh) + G(Ksh) is surjective and if G is separated, G' 
is a Ndron model of GK. 

Proof. Only the assertion concerning the Neron model remains to be verified. If 
G(R") -+ G(Ksh) is surjective and if G is separated, the same is true for G'(R") ---t 
G'(KSh) and G'. Thus G' is a NCron model of GK by the criterion given in Theorem 1. 

0 

As an application we want to examine how the Ntron model G of a K-group 
scheme G, behaves if we pass from GK to a subgroup HK c GK. 

Corollary 6. Let S be a Dedekind scheme with ring of rational functions K. Further- 
more, let G be an S-group scheme which is a Ndron model of its scheme of generic 
fibres GK, and let HK be a smooth subgroup of G,. Then HK admits a Nkron model 
H over S ;  more precisely, one can define H as a group smoothening of the schematic 
closure H of HK in G. The schematic closure H itself is a Ne'ron model of H, i f  and 
only if it is smooth. In particular, the latter is the case i f  char k(s) = 0 for all closed 
points s E S.  

Proof. First, let us show that there exists a group smoothening of H over S. Since 
HK is smooth, its schematic closure H is smooth over a dense open part S' of S. On 
the other hand, we know from Theorem 5 that, for each of the finitely many points 
s E S' - S, the group scheme H 63, Co,,, admits a group smoothening. Then, similarly 
as explained in the proof of 1.411, we can glue H 8, ES,, for s E S - Sf to H x, S', 
thereby obtaining a global group smoothening H of H over S. 

It remains to show that H is a NCron model of HK. To do so, we may assume 
that S is local. Consider a smooth S-scheme Z and a K-morphism ZK -+ H,. Then, 
since HK c GK and since G is a Nkron model of GK, this morphism extends uniquely 
to an S-morphism Z + G which, by the definition of H ,  must factor through H .  
Furthermore, we conclude from Theorem 5 that Z - H extends uniquely to an 
R-morphism Z + H. The latter is unique as an extension of ZK -+ HK. So 
H is a Nkron model of GK and the remaining assertions are clear since H is flat 
over S. 0 
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7.2 Base Change and Descent 

One cannot expect that, for a faithfully flat extension of discrete valuation rings 
R c R', the base change Spec R' ---+ Spec R transforms Neron models over R into 
Niron models over R'. In Example 7.113 of the preceding section we can see that, 
after adjoining a p-th root of the uniformizing element .n of R to K, the boundedness 
of G,(K"~) and, hence, the existence of a Neron model of GK is lost, since GK becomes 
isomorphic to the additive group G,,,. On the other hand, it follows from 1.212 and 
6.513 that Neron models behave well with respect to etale base change. The latter 
is true for a more general class of morphisms as we will see in this section (cf. 6.515 
for a partial result of this type). 

Consider a faithfully flat extension R c R' of discrete valuation rings with fields 
of fractions K and K'. As usual we indicate strict henselizations by an exponent "sh" 
and we may assume that Rsh is a subring of RtSh. Recall that R' is said to have 
ramification index 1 over R if a uniformizing element of R gives rise to a uniformizing 
element of R' and if the residue extension of R'IR is separable (cf. 3.611). 

Theorem 1. Let R c R' and K c K' be as above and consider a torsor X, under a 
smooth K-group scheme GK of finite type. Denote by X,, the torsor under GKr obtained 
by base change with K'. 

(i) Assume that X,, admits a Ndron model X' over R'. Then X, admits a Nkron 
model X over R, and there is a canonical R'-morphism X 8, R' + X', called mor- 
phism of base change. 

(ii) Let R'IR be of ramification index 1. Then X, admits a Nkron model X over 
R f and only if XK, admits a Ndron model X' over R'. If the latter is the case, the 
morphism of base change X @, R' - X' is an isomorphism. 

Proof. If XK, admits a Neron model, X,.(K'") is bounded in X,,. Using 1.115, we 
see that X,(K'") is bounded in XK. But then X,(Kd) is bounded in XK and a Neron 
model X of X, exists by 6.514. Since X OR R' is a smooth R'-model of X,., the 
identity on X,. extends to an Rf-morphism X O, R' -+ X' as required in assertion 
(i). 

In the situation of assertion (ii) we have only to consider the case where X, has 
a Neron model X. Furthermore, since Neron models are compatible with etale base 
change, we may assume that R and R' are strictly henselian. It has to be shown that 
X OR R' is a Ntron model of X,,. To do this, it is enough to look at the case where 
the torsor XK, is unramified. So consider a Kt-valued point of X,,. Interpreting it 
as a point a, E XK(K1) and working in an affine open neighborhood of its image in 
X,, we can find an R-model rl of X, of finite type such that a, extends to a point 
a E r ? ( ~ ' ) .  Due to 3.614, we may assume that 8 is smooth. But then, since X is a 
Neron model of X,, we have a morphism --t X. Thus each a, E XK(Kf) extends 
to a point a E X(R1) and, consequently, the canonical map (X @, R')(R1) + 

(X OR R')(Kf) is surjective. So X @, R' is a Neron model of X,, by 7.111. 0 

It will be of interest in 10.113 that the argument for showing that X OR R' is 
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a Neron model of X,, can be changed slightly so that the use of 7.111 can be avoided. 
Namely, look at a discrete valuation ring R" which is of ramification index 1 over 
R'. Then R" has ramification index 1 also over R and, if K" is the field of fractions 
of R", the above given argument shows that the map X(R1') + X ( K " )  is surjective. 
In particular, taking for R" the local ring of a smooth R'-scheme Z' at a generic 
point of the special fibre ZL, we see that X OR R' satisfies the weak Neron property. 
So if X,, is unramified, we may view X OR R' as an R'-group scheme, which satisfies 
the Ntron mapping property by the extension argument 4.411 for morphisms into 
group schemes. Thus X OR R' is a Ntron model of X,, in this case. 

Corollary 2. Over discrete valuation rings, the formation of Ne'ron models (of torsors 
or group schemes) is compatible with extensions R'IR of ramification index 1. For 
example, R' can be the completion of R. 

Giving another application of Theorem 1, we show that the NCron mapping 
property can be strengthened. 

Proposition 3. Let X ,  be a K-torsor under a smooth K-group scheme GK of finite 
type, and assume that a Ndron model X of XK exists. Let A be an R-algebra of type 
R ( t }  or R [ [ t ] ]  (strictly convergent or formal power series in a system of variables 
t = ( t l , .  . . , tn))  where R is complete. Then each K-morphism 

extends uniquely to an R-morphism u : Spec A + X 

Proof. Let v] be the generic point of the special fibre Spec(A 8, k) of Spec A. Then 
A, is a discrete valuation ring which is of ramification index 1 over R. Writing 
F for the field of fractions of A,, we see that u, gives rise to an F-morphism 
Spec F + X K  8, F.  Applying Theorem 1, this morphism extends to an A,-mor- 
phism Spec A, + X 8, A, and, hence, to an R-rational map u : Spec A ---+ X.  In 
particular, the special fibre X, is not empty and, thus, X,  cannot be a ramified torsor. 
We claim that u is a morphism. Then u extends u,, and it is unique since X is 
separated. 

If X ( R )  # a, we may view X as an R-group scheme, and one can conclude from 
Remark 4.413 that the R-rational map u is a morphism. In the general case, we 
choose a discrete valuation ring R' which is finite and Ctale over R and which satisfies 
the property that X ( R ' )  # @. The latter is possible since the torsor X ,  is unramified. 
Set A' = R1( t )  or A' = R1[[ t ] ]  depending on the type of power series we consider 
for A; note that R' is complete. Then it follows from the above special case that the 
composition of morphisms 

where pr is the canonical projection, extends to an R-morphism u' : Spec A' -+ X. 
In other words, the composition of the projection SpecA' --+ Spec A with the 
R-rational map u :  Spec A---+ X is a morphism. But then, by 2.515, u is defined 
everywhere and, thus, is a morphism. 0 



178 7. Properties of Nkron Models 

Using the technique of Weil restriction to be explained in Section 7.6, one can 
describe in a precise way how, in the situation of Theorem 1 (i) and under the 
assumption that the extension of discrete valuation rings R c R' is finite, a Ntron 
model X of XK can be constructed from a Neron model X' of XK,, at least in the 
case of group schemes. 

Proposition 4. Let S' + S be a flat and finite morphism of Dedekind schemes with 
rings of rational functions K and K'. Let GK be a smooth K-group scheme of finite 
type and denote by GK, the K'-group scheme obtained from GK by base change. Assume 
that the Ndron model G' of GKr exists over S'. Then the Ndron model G of GK exists 
over S and can be constructed as a group smoothening of the schematic closure of GK 
in the Weil restriction %s.ls(G'). 

Proof. Using 7.616, we see that the Weil restriction %s.ls(G') exists as a scheme and 
that it is a Ntron model of its scheme of generic fibres, i.e. of %K,IK(G;(r). Thus, 
considering the canonical closed immersion 

1 : GK + %K,,K(GK,) 

the assertion follows from 7.116. 

7.3 Isogenies 

We want to investigate under what conditions an isogeny G, -+ G;( between 
smooth and connected K-group schemes extends to an isogeny between associated 
Ntron models. In order to attack this problem, we begin by recalling some well- 
known facts about homomorphisms between group schemes over a field k. 

Lemma 1. Let f : G - G' be a homomorphism of group schemes which are smooth 
and of finite type over a field k. Assume that dim G = dim G'. Then the following 
conditions are equivalent: 

(a) f is flat. 
(b) f(GO) = G ' O  where Go and GI0 denote identity components of G and G'. 
(c) kerf is finite. 
(d) f is quasi-finite. 
(e) f is finite. 

A commutative group scheme G which is smooth and of finite type over a field 
k is called semi-abelian if its identity component Go is an extension of an abelian 
variety by a (not necessarily deployed) affine torus. The latter fact can be checked 
over the algebraic closure k of k. Indeed, one knows from Chevalley's theorem 9.211 
that G: is uniquely an extension of an abelian variety by a connected affine group 
HE.  Then HE decomposes into the product of a torus part and a unipotent part, 
where the torus part is already defined over k; cf. [SGA 3,J, Exp. XIV, 1.1. So we 
see that G is semi-abelian if and only if the unipotent part of HE is trivial. Over a 
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general base scheme S, an S-group scheme G is called semi-abelian if it is smooth 
over S and if all its fibres are semi-abelian in the sense explained above. 

Lemma 2. Let G be a commutative S-group scheme which is smooth and of finite type 
over an arbitrary base scheme S. Let 1 be a positive integer. 

(a) Suppose that G is semi-abelian. Then the 1-multiplication 1, : G + G is quasi- 
finite and j'lut. 

(b) Suppose that char k(s) does not divide 1 for all s E S. Then the 1-multiplication 
1, : G + G is dtale. 

Proof. In order to verify the flatness of 1, in the situation (a) or (b), we can use the 
characterization of flatness in terms of fibres 2.412. So we may assume that S consists 
of a field k. Then, since 1, is surjective on abelian varieties and on tori, and in the 
situation (b), also on unipotent groups, it follows from the structure of commutative 
smooth and connected group schemes over k that Go c im 1,. By Lemma 1 we see 
that 1, is quasi-finite and flat. 

In the situation of assertion (b) we have just seen that I ,  is flat. So we may 
use the criterion 2.418. Thus, just as before, we can assume that S consists of a 
field k. Then we can consider the Lie algebra Lie(G) and the endomorphism 
Lie(1,) : Lie(G) - Lie(G) induced on it by 1,. Since Lie(1,) is just the multiplication 
by 1 and since 1 is not divisible by char k, we see that it is bijective. So 1, : G + G 
is &tale by 2.2110. 0 

For an S-group scheme G as in Lemma 2, we write ,G for the kernel of the 
1-multiplication 1,: G -+ G. If char k(s)  does not divide I for all s E S, we deduce 
from Lemma 2 that ,G, being the fibre of 1, over the unit section, is etale over S ,  
whereas in the situation of Lemma 2 (a) we only know that ,G is quasi-finite and 
flat over S. 

In general, an S-group scheme H of finite type which is quasi-finite over S is 
not finite over S unless S consists of a field. However, if S is the spectrum of a 
henselian discrete valuation ring R and if H is quasi-finite and separated, one can 
consider its finite part H'. The latter is the open and closed subscheme of H 
consisting of the special fibre H, and of all points of the generic fibre H,  which 
specialize into points of H,. Namely, applying 2.314, one shows that His  the disjoint 
sum of two open and closed subschemes H' and H ,  where H' is finite over S and 
where the special fibre of H is empty. The finite part H' of H is an open subgroup 
scheme of H. 

Proposition 3. Let R be a discrete valuation ring and let 1 be a positive integer such 
that the residue characteristic of R does not divide I. Then, for any smooth commutative 
R-group scheme G of finite type, the canonical map ,G(R"~) + ,G(ks) is bijective, 
where Rsh is a strict henselization of R and where k, is the residue field of Rsh. 

Proof. We may assume that R is strictly henselian. Since ,G is ttale over R by Lemma 
2, its finite part is a disjoint union of copies of S = Spec R; cf. 2.311. C1 
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Definition 4. Let f :  G ---, G' be a homomorphism of commutative group schemes of 
finite type over an arbitrary base scheme S.  Then f is called an isogeny i f ,  for each 
s E S,  the homomorphism f, : G, -+ Gi is an isogeny in the classical sense; i.e., i f  f, is 
finite and surjective on identity components. 

Examples of isogenies are provided by 1-multiplications on commutative group 
schemes G where 1 and G have to be chosen as required in Lemma 2 (a) or (b). In 
the situation of the definition, each f, has a degree degf,, which can be defined as 
the rank of the finite k(s)-group scheme kerf,. Recalling some facts on commutative 
finite group schemes H over a field k, we mention that H is &tale if char k = 0 (by 
Cartier's theorem) or, more generally, if char k does not divide the rank of H. If H 
is connected, its rank is a power of char k. Furthermore, the 1-multiplication 
1, : H -+ H is the zero-homomorphism if 1 is a multiple of the rank of H. 

We need a well-known result relating isogenies over fields to 1-multiplications. 

Lemma 5. Let f :  G ---+ G' be an isogeny between smooth and connected commutative 
group schemes of finite type over a field k. Assume either that char k does not divide 
deg f or that G is semi-abelian. Then there is an isogeny g :  G' -+ G such that 
g o f  = 1, where 1 = degf. 

Proof. Setting 1 = deg f ,  we see that kerf c ker 1,. Then, f being flat and surjective, 
we have G' = Glker f and, thus, homomorphisms 

Since the 1-multiplication 1, : G -+ G is finite by Lemma 2, and since 1, factors 
through G/ker l,, the existence of g is clear. 0 

Now, working over a discrete valuation ring R and its field of fractions K ,  we 
can deal with the question of whether a homomorphism between R-group schemes 
is an isogeny as soon as it is an isogeny on generic fibres. 

Proposition 6. Let GK and G i  be smooth commutative and connected K-group 
schemes of finite type admitting Ndron models G and G' over R. Consider an isogeny 
f, : GK -+ G i  and assume either that the residue characteristic of R does not divide 
deg fK or that G is semi-abelian. Then f, extends to an isogeny f :  G + GI, and there 
is an isogeny g : G' + G such that g 0 f = 1, for 1 = deg f,. 

Proof. Using Lemma 5,  there is an isogeny g, : G i  --+ GK satisfying g, o f, = lGx 
for 1 = deg f,. Due to the Neron mapping property, f, and g, extend to homomor- 
phisms f :  G ---t G' and g : G' + G such that g 0 f = 1,. Then, by our assumptions 
on 1 = deg f, or on G, we see from Lemma 2 that 1, is an isogeny, and it follows 
easily that f and g are isogenies. 0 

Corollary 7. Let f, : GK -+ Gi be an isogeny of abelian varieties with Ndron models 
G and G'. Then G is semi-abelian if and only if G' is semi-abelian. 
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Proof. By the Neron mapping property, the isogeny fK extends to a homomorphism 
f :  G + G'. If G is semi-abelian, f is an isogeny by Proposition 6 and, consequently, 
G' is semi-abelian. Using an isogeny g, : Gi + GK, one shows in the same way that 
G is semi-abelian if G' is semi-abelian. 0 

7.4 Semi-Abelian Reduction 

Let G be a smooth group scheme of finite type over a Dedekind scheme S which, 
for simplicity, we will assume to be connected. We say that G has abelian reduction 
(resp. semi-abelian reduction) at a closed point s E S if the identity component G: is 
an abelian variety (resp. an extension of an abelian variety by an affine torus). In 
particular, if G is a NCron model of its generic fibre G,, where K is the field of 
fractions of S ,  we will say that GK has abelian (resp. semi-abelian) reduction at s E S 
if the corresponding fact is true for G. The latter amounts to the same as saying that 
the local Nkron model G x s  Spec Lo,,, of G, at s G S has abelian (resp. semi-abelian) 
reduction. 

If A, is an abelian variety over K, then AK is said to have potential abelian 
reduction (resp. potential semi-abelian reduction) at a closed point s E S if there is a 
finite Galois extension L of K such that A, has abelian (resp. semi-abelian) reduction 
at all points over s. To be precise, we thereby mean that the NCron model A' of A, 
over the normalization St of S in L has abelian (resp. semi-abelian) reduction at all 
closed points s' E S' lying over s. Instead of abelian reduction, we will also talk 
about good reduction. Let us begin by mentioning the fundamental theorem on the 
potential semi-abelian reduction of abelian varieties. 

Theorem 1. Each abelian variety AK over K has potential semi-abelian reduction at 
all closed points of S. 

The easiest way to obtain this result is via the potential semi-stable reduction 
of curves, as proved by Artin and Winters [I], a topic which is beyond the scope 
of the present book. So we will restrict ourselves to briefly indicating how the 
assertion of the theorem can be deduced from the corresponding results on 
curves. 

Since abelian varieties have good reduction almost everywhere, see 1.413, the 
problem is a local one, and we may assume that S consists of a discrete valuation 
ring R. One starts with the case where A, is the Jacobian J, = Pic&,, of a smooth 
and proper K-curve C,. Then the theorem on the potential semi-stable reduction 
of curves asserts that, replacing K by a finite separable extension if necessary, we 
can extend C, into a proper flat R-curve C whose geometric fibres have at most 
ordinary double points as singularities; cf. 9.217. For such a curve it is shown in 
9.411 that the relative Jacobian Pic:, is a smooth and separated R-group scheme 
having semi-abelian reduction. Since Pic&, is an S-model of J,, it follows from 
Proposition 3 below or from the more general discussion of the relationship between 
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NCron models and the relative Picard functor in 9.514 or 9.712 that Pic& is the 
identity component of the NCron model of J,. Thus JK has semi-abelian reduction. 

If A, is a general abelian variety, one knows, see Serre [I], Chap. VII, 9 2, n013, 
that there is an exact sequence of abelian varieties 

O+A;+ JK+AK+O 

where J, is a product of Jacobians. Using the fact that J, has potential semi-abelian 
reduction, it follows from the lemma below that A, has potential semi-abelian 
reduction also. 0 

Lemma 2. Let 0 + A;, + A, - A'; - 0 be ar2 exact sequence of abelian varieties 
over K.  Then A ,  has semi-abelian (resp. abelian) reduction i f  and only i f  A; and A; 
have semi-abelian (resp. abelian) reduction. 

Proof. Due to Poincare's complete reducibility theorem, see Mumford [3], Chap. 
IV, 5 19, Thm. 1, there is an abelian subvariety A"; in A, such that the canonical 
map A"' x Ak -+ A, and, thus, also the composition A"; + A,  ---+ A: are iso- 
genies. So we see that A, is isogenous to A; x A: and it follows from 7.317 that A, 
has semi-abelian reduction if and only if the same is true for Al, and A:. An 
application of 7.316 settles the case of abelian reduction. 0 

For the remainder of this section, let us assume that the base scheme S consists 
of a discrete valuation ring R with field of fractions K. We want to discuss properties 
of NCron models with abelian or semi-abelian reduction and to give criteria for the 
existence of NCron models with abelian or semi-abelian reduction over the given 
field K. 

Proposition 3. Let A ,  be an abelian variety with Nkron model A and let G be a smooth 
and separated R-group scheme which is an R-model of A,. Assume that G has 
semi-abelian reduction. Then the canonical morphism G + A is an open immersion; 
it is  an isomorphism on identity components. 

Proof. We can assume that R is strictly henselian. Furthermore, it is enough to show 
that Go ---, A0 is an isomorphism. So assume that G = Go. Let 1 be a positive integer 
which is not divisible by the characteristic of the residue field k of R. Considering 
the kernels ,G and ,A of 1-multiplications on G and A, we have a canonical commuta- 
tive diagram 
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where ,G(R) + ,G(K) is injective since G is separated and where all other vertical 
maps are bijective; the upper one on the right-hand side because A is a Ntron model 
of A, and the lower ones by 7.313. So the middle horizontal map is injective, and 
the same is true for the lower horizontal one. Now, using the facts that G has 
semi-abelian reduction and that k is separably closed, it follows that the points in 
G(k) which have finite order not divisible by char k are topologically dense in each 
connected subgroup of Gk. Therefore Gk --+ A: has a finite kernel. In particular, 
G --+ A0 is quasi-finite and, thus, surjective by reasons of dimension. But then 
Zariski's Main Theorem 2.312' shows that G + A0 is an isomorphism. 0 

Corollary 4. If an abelian variety A, has semi-abelian reduction, then the formation 
of the identity component of the Ndron model of AK is compatible with faithfully flat 
extensions of discrete valuation rings R'IR. 

We have seen above that points of finite order play an important role when 
dealing with Ntron models of abelian varieties. We want to use them in order to 
give a criterion for the existence of abelian or semi-abelian reductions over the given 
field K. As before, R will be a discrete valuation ring with field of fractions K and 
with residue field k. Let K, be a separable algebraic closure of K and consider rings 
R c Rh c RSh c R, c K, where Rh is a henselization of R, where R" is a strict 
henselization of R, and where R, is the localization of the integral closure of R in 
K, at a maximal ideal lying over the maximal ideal of R". AS usual Kh and Fh 
denote the fields of fractions of Rh and of Rsh. Then the inertia group of the maximal 
ideal of R, coincides with the Galois group Gal(K,/Ksh); cf. 2.311 1. Fixing the above 
situation, we will call I := Gal(K,/Kd) "the" inertia group of Gal(K,/K). 

Theorem 5. Let A, be an abelian variety over K with Nkron model A over R, and let 
1 be a prime dgerent from char k. Then the following conditions are equivalent: 

(a) AK has abelian reduction; i.e., the identity component A: is an abelian variety 
over k. 

(b) A is an abelian scheme over R. 
(c) For each v 2 0 the inertia group I of Gal(K,/K) acts trivially on I,AK(Ks), the 

set of K,-valued points of the kernel of the 1"-multiplication l i K  : A, + AK. In  other 
words, the canonical map [,A,(K") + I,AK(K,) is bijective. 

(d) The Tate module T(AK) = l i p  l,AK(K,) is unramified over R; i.e., the inertia 
group I of Gal(K,/K) operates trivially on IT;(AK). 

Proof. We begin by showing that conditions (a) and (b) are equivalent. If A: is an 
abelian variety, we can conclude from [EGA IV,], 15.7.10, that A0 is proper over 
R and, thus, is an abelian scheme over R. But then A0 is a Ntron model of its generic 
fibre by 1.218; thus, A = A'. This verifies the implication (a) ==+(b); the converse 
is trivial. 

The equivalence of (c) and (d) is clear. In order to verify the remaining implica- 
tions, consider the canonical maps 

(*) ,,A(K,) 4 I,A(KSh) Cl,A(R"h) * IYA(kS) 
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where k, is the residue field of Rsh and where the map on the right-hand side is 
bijective by 7.313. If A is an abelian scheme over R, the cardinality of both sets 
[,A(K,) and l,A(k,) is 1 v ' 2 n  where n is the dimension of A; cf. Mumford [3], p. 64. 
Therefore, all maps in (*) are bijective and we see that (b) implies (c). 

Conversely, assume that all maps in (*) are bijective. Then the cardinality of 
[,A(k,) is 1 v ' 2 n  for each v 2 0, and it follows from the structure of commutative 
group schemes of finite type (over an algebraically closed or perfect field k) that 
the identity component A: is an abelian variety. So we see that condition (c) implies 
condition (a). 0 

The equivalence of (a) and (d) in the above theorem is called the criterion of 
Nirron-Ogg-Shafarevich for good reduction. To apply it, one may work over a 
strictly henselian base ring R. Then A, has abelian reduction if and only if all 
1'-torsion points of A, are rational over K. The criterion can be generalized 
to the semi-abelian reduction case; see [SGA 7,], Exp. IX, 3.5. We include this 
generalization here without proof. 

Theorem 6. Let A, be an abelian variety over K ,  and let 1 be a prime different from 
char k. Then the following conditions are equivalent: 

(a) A, has semi-abelian reduction over R. 
(b) There is a submodule T' c T := T(AK(K,)) which is stable under the action 

of the inertia group I of Gal(K,/K) such that I acts trivially on T' and on TIT'. 

7.5 Exactness Properties 

In the following let S be a Dedekind scheme with ring of rational functions K. Except 
for the purposes of Proposition 1 below, we will only be concerned with the case 
where S consists of a discrete valuation ring R. Let G, be a smooth K-group scheme 
of finite type, and let X, be a torsor under G,. Then the NCron model X of X,, if 
it exists, may be viewed as a direct image z,X, with respect to the canonical 
inclusion : SpecK + S. More precisely, X represents this direct image if one 
restricts to smooth schemes over S. This consideration suggests that the Neron 
model might behave reasonably well with respect to left exactness. However we will 
see that, except for quite special cases, there will be a defect of exactness, the 
defect of right exactness being much more serious than the one of left exactness. We 
will give some examples at the end of this section, after we have presented the general 
results. Let us begin with an assertion concerning the existence of Neron models. 

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let 

(*I 0-+Gk+GK+Gf;+O 

be an exact sequence of smooth K-group schemes of finite type (not necessarily 
commutative). 
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(a) If GK admits a Ne'ron model over S, the same is true for G;, but not necessarily 
for Gg. 

(b) If Gk and G[ admit Ndron models over S ,  the same is true for GK. 

Proof. If GK admits a NQon model, then Gk admits a Neron model by 7.116. To 
justify the second part of assertion (a), we give an example showing that the existence 
of a Nkron model for GK does not imply the same for G[. Assume that S consists 
of a discrete valuation ring of equal characteristic p > 0 and, as in Example 7.113, 
let GK be the subgroup of G,,, x, Go,, given by the equation x + xP + nyP = 0, 
where n is a uniformizing element of R. Then GK admits a Neron model over S and 
the projection of G,,, x, G,,, onto its second factor gives rise to a smooth group 
epimorphism G, + G,,,. Writing Gi for its kernel, we have a short exact sequence 

O+Gk--- tGK-+Ga,K+O 

of smooth K-group schemes of finite type. The middle term admits a Neron model 
whereas the group Go,, on right-hand side does not. The example is quite typical; 
the reason that a Nkron model for GK does not imply the existence of a Ntron model 
for G;, comes mainly from the fact that the quotient of a K-wound unipotent group 
is not necessarily K-wound again. 

Next, to prove assertion (b), assume that G; and Gg admit Niron models G' and 
G" over S, where S is an arbitrary Dedekind scheme again. First, if the given exact 
sequence (*) extends to an exact sequence of smooth S-group schemes of finite type 

O - + G ' - + G - - + G U + O ,  

we claim that G is automatically a Neron model of GK by the criterion given in 
7.111. Namely, in order to verify this, we may assume that S consists of a strictly 
henselian discrete valuation ring R. Then it is enough to show that the canonical 
map G(R) -+ G(K) is bijective. However, this follows easily from the commutative 
diagram 

0 Gt(R) G(R) A G"(R) ---+ 0 

0 G'(K) - G(K) - G1'(K) 

by realizing that the first row is exact, due to the fact that the smoothness of G -+ G 
implies the surjectivity of G(R) + GU(R); cf. 2.2114. 

In the general case we can apply a limit argument ([EGA IV,], 8.8.2), and 
thereby extend (*) to an exact sequence of smooth group schemes of finite type over 
a dense open subscheme S' of S. Consequently, there is a Neron model of G, over 
S'. Then, using 1.411, it is enough to construct the local NCron models of GK at the 
finitely many remaining points of S - S'. So, in the proof of assertion (b), we are 
reduced to the case where S consists of a discrete valuation ring R. Since this 
problem does not seem to be accessible by elementary methods, we have to make 
use of a later criterion characterizing the existence of Neron models in terms of the 
structure of algebraic groups; cf. 10.211. It says that a smooth K-group scheme of 
finite type like GK admits a Neron model if and only if, after the base change 
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K -+ Ph, the group GK does not contain subgroups of type G, or G,; here is 
the field of fractions of kh, the strict henselization of the completion of R. Using 
this criterion, it is easily verified that GK admits a Neron model over R if the same 
is true for G& and G;. 0 

Next, consider an exact sequence 

and assume that the corresponding Ntron models G', G, and G" exist so that, due 
to the universal mapping property, there is an associated complex 

We want to examine under what conditions parts of the latter sequence are exact. 
To do this, it is enough to look at the local case. So, in the following, the base S 
will consist of a discrete valuation ring R with field of fractions K and with residue 
field k. 

Proposition 2. If char k = 0, the closed immersion G& ---, G, gives rise to a closed 
immersion G' + G of associated N6ron models. 

Proof. Denote by H the schematic closure of G& in G. Then G' + G factors through 
H c G and we know from 7.116 that the induced morphism G'- H is an 
isomorphism. 0 

Next, let us look at abelian varieties. 

Proposition 3. Consider an exact sequence of abelian varieties 

and the corresponding complex of N6ron models 

Let BK be an abelian subvariety of A, such that A, - A: induces an isogeny 
u, : BK + A:; let n = degu,. 

(a) If char k does not divide n, then A' + A is a closed immersion, A + A" is 
smooth with kernel A', and the cokernel of A, + A; is killed by multiplication with 
n. If, in addition, A has abelian reduction, (t) is exact. 

(b) If A has semi-abelian reduction, the sequence (7) is exact up to isogeny; i.e., it 
is isogenous to an exact sequence of commutative S-group schemes. 

Proof. The isogeny u, : BK -+ A: gives rise to an isogeny v, : A; x, B, + A, of 
degree n. So there is an isogeny w K :  A, + A; x, BK such that w, o v, is multi- 
plication by n. Let B be the NCron model of BK. Then u,, v,, and w, extend to 
R-morphismsu: B+AU,v:  A' x, B - + A , a n d w :  A- A' x, Bsuchthat w o v  
is multiplication by n on A' x, B. Assuming the condition of (a), the multiplication 
by n is an etale isogeny on A' xR B, and u, v, and w are easily checked to be etale 
isogenies, too. Then H := w-'(A') is a smooth closed subgroup scheme of A which 
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satisfies H i  = A;. It follows that the schematic closure of A; in H or A is an open 
subgroup scheme of H and, thus, is smooth over R. So, by 7.116, it coincides with 
the Nkron model A' of A; and we see that A' -+A is a closed immersion. The 
remaining assertions of (a) follow by using the ttale isogeny u. One shows that 
A --+ A" is flat, has kernel A' and, hence, is smooth. Furthermore, if A has abelian 
reduction, the same is true for A'' by 7.412 so that A --+ A" is surjective. 

Assertion (b) follows from the fact that v : A' x, B -+ A and u : B -+ A" are 
isogenies; use 7.316 and 7.317. 0 

Theorem 4. Let 0 -+ Al, + AK -+ A: -+ 0 be an exact sequence of abelian varie- 
ties and consider the associated sequence of Ne'ron models 0 --+ A' ---, A + A'' -+ 0. 
Assume that the following condition is satisfied: 

(*) R has mixed characteristic and the ramification index e = v(p) satisfies 
e < p - 1, where p is the residue characteristic of R and where v is the valuation 
on R, which is normalized by the condition that v assumes the value 1 at uniformizing 
elements of R. 

Then the following assertions hold: 
(i) If A' has semi-abelian reduction, A' -+ A is a closed immersion. 

(ii) If A has semi-abelian reduction, the sequence 0 ---+ A' + A -+ A" is exact. 
(iii) If A has abelian reduction, the sequence 0 -+ A' --+ A + A" + 0 is exact 

and consists of abelian R-schemes. 

Proof. Let us first see how assertions (ii) and (iii) can be deduced from assertion (i). 
If A has semi-abelian or abelian reduction, the same is true for A' and A" by 7.412. 
So A' -4 A is a closed immersion by (i), and we can consider the quotient AIA'; it 
exists in the category of algebraic spaces, cf. 8.319. Furthermore, AIA' is smooth and 
separated and, thus, a scheme by 6.613. Now look at the canonical morphism 
AIA' + A" which is an isomorphism on generic fibres. Since A has semi-abelian 
reduction, the same is true for AIA', and it follows from 7.413 that AIA' -+ A" is an 
open immersion. So assertion (ii) is clear. Finally, if A has abelian reduction, the 
same is true for A/A1. So the latter is an abelian scheme by 7.415 and, thus, must 
coincide with the Neron model A" of A;. Thereby we obtain assertion (iii). 

It remains to verify assertion (i) under the assumption of condition (*). As a key 
ingredient for the proof of this fact, we will need the following result on finite group 
schemes; cf. Raynaud [7], 3.3.6. 

Lemma 5. Let R be a discrete valuation ring satisfying condition (*) of Theorem 4. 
Let u : G' --+ G be a morphism of R-group schemes which are finite, flat, and 
commutative. Then, $ vK : G i  -+ GK is an isomorphism, v is an isomorphism. 

The lemma implies a criterion for finite and flat R-group schemes to be ttale. 
To state it in its simplest form, recall that a group scheme over a base scheme S is 
called constant if it is of the type H, with an abstract group H. 

Corollary 6. Assume that R is as in condition (*) of Theorem 4 and that, in addition, 
it is strictly henselian. Furthermore, consider a finite, flat, and commutative R-group 
scheme G whose generic fibre is constant. Then G is constant. 
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Proof of Corollary 6. Let G' + G be a group smoothening of G (see 7.1). Then G' 
coincides with its finite part and, thus, is finite over R since G is finite over R. 
Therefore G' -+ G is an isomorphism by the lemma. Using the fact that G' is Ctale 
over R and that R is strictly henselian, G is constant. 0 

Now let us indicate how to obtain assertion (i) of Theorem 4 under the assump- 
tion of condition (*). Since Neron models are preserved when R is replaced by its 
strict henselization or by its completion, we may assume that R is strictly henselian 
and complete. 

We begin by showing that u : A' -+ A is a monomorphism; i.e., that N := ker u 
is trivial. For this purpose it is enough to show that the special fibre Nk of N is 
trivial. If not, there is a prime 1, not necessarily different from char k, such that 
,A; n Nk is non-trivial; as usual, ,A' is the kernel of the 1-multiplication on A'. Since 
A' has semi-abelian reduction, ,A

f 
is quasi-finite and flat over R; cf. 7.312. Now, R 

being henselian, we can consider the finite part G' of ,A1; see 7.3. It is enough to 
show that u is a monomorphism on G'. Let G be the schematic image of G' under 
u and consider the morphism u' : G' -+ G given by u. Then u' is an isomorphism 
on generic fibres and thus, by the lemma, an isomorphism on G'. In particular, u' 
is a monomorphism, and it follows that u is a monomorphism. 

If A' has abelian reduction, it is an abelian scheme by 7.415 and, thus, proper 
over R. So it follows that u is proper. But then, being a monomorphism, it must be 
a closed immersion. This ends the proof in the special case where A' has abelian 
reduction. 

In the general case, some work remains to be done since there exist monomor- 
phisms which are not immersions; cf. [SGA 3,,], Exp. VIII, 7 and Exp. XVI, 1. Let 
B be the schematic image of u : A' + A; it is a closed subgroup scheme of A which 
is flat over R. We will show that B or, what is enough, that B0 is smooth. Then, due 
to the NCron mapping property, the morphism A' -+ B admits an inverse and u is 
a closed immersion. In order to do so, we denote by an index n reductions modulo 
zn, where .n is a uniformizing element of R. Since u is a monomorphism, it is a closed 
immersion modulo nn for all n > 0; cf. [SGA 3,], Exp. VI,, 1.4.2. So we can consider 
the exact sequence of RE-schemes 

O--,A;~+B;+Q,-+O 

where the quotient Q,  = B;/AL0 exists as an R-scheme by [SGA 3,], Exp. VIA, Thm. 
3.2, and is flat by [SGA 3,], Exp. VI,, Thm. 9.2. Furthermore, Q, is connected and, 
by reasons of dimension, finite over R,. Taking inductive limits for n going to 
infinity, we obtain an exact sequence of formal group schemes over R 

~ - ~ - + B - Q - o  

where Q is an R-scheme which is finite, flat, and connected. Let q be a power of p 
such that Q is annihilated by the q-multiplication on Q. Since AI' is p-divisible, the 
above sequence restricts to an exact sequence 

o-+,AI'+,&+Q-o 
on the kernels of q-multiplications; the latter are finite flat R-group schemes by 7.312. 
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Furthermore, ,Â' and ,B can be interpreted as the finite parts of the quasi-finite flat 
R-group schemes ,Af0 and ,BO. 

Applying Grothendieck's orthogonality theorem [SGA 7,], Exp. IX, Prop. 5.6, 
we see that the generic fibre of the quotient ,A'/,A '̂ is constant. Since A' and B 
coincide on generic fibres, it follows that the generic fibres of ,B/$ and, thus, of Q 
are constant. But then Q is constant by Corollary 6 and, being connected, it must 
be trivial. So AI' is isomorphic to 8 and, consequently, BO is smooth which remained 
to be shown. 0 

In the remainder of this section, we want to discuss the defect of exactness of 
Nkron models by looking at some special examples. 

Example 7. Let R be a complete discrete valuation ring with normalized valuation 
v. Let q be a non-zero element of R with v(q) > 0 and consider the Tate elliptic 
curves EK = Gm,,/qZ and EK = G,,,/(~')" where 1 is a positive integer not divisible 
by char K. Since the 1-multiplication on E, factors through Ek, it gives rise to an 
exact sequence 

where GK is a finite group scheme of order 1, contained in the kernel of the 
1-multiplication on E,; the latter is of order 1 2 .  Let 

be the associated sequence of NCron models. We want to show that there can be 
a defect of exactness at G, at E, or at E', depending on 1 and on the residue 
characteristic of R. 

Defect of exactness at G. Assume that R is of mixed characteristic, that 1 = p = 

char k, and that all p-torsion points of EK are rational over K. The latter condition 
implies that the ramification index e is at least p - 1; cf. Serre [4], Chap. IV, § 4, 
Prop. 17. Then GK -. (Z/pZ), and G (ZlpZ),. Furthermore, the kernel of E -- E' 
is the group p,,, of p-th roots of unity, and the morphism from G into the kernel 
of E + E' coincides with a morphism (ZlpZ), + p,,, sending 1 to a primitive p-th 
root of unity of R. However, the latter is not a monomorphism since p = char k. In 
particular, G -+ E is not a monomorphism. 

Defect of exactness at E. Keeping the situation we have developed above, we see 
that G cannot be mapped surjectively onto the kernel of E --, E' since the morphism 
(ZlpZ), -+ pp,, is not surjective. 

Defect of exactness at E'. The group of connected components of the special fibre 
of E has order v(q) whereas that of E' has order 1. v(q). So, without restrictions on 
the residue characteristic of R, the morphism E + E' cannot be surjective for 
arbitrary 1 > 1. 0 
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Next we want to show that the assertion of Theorem 4 can be false if we do not 
require condition (*) of this theorem. 

Example 8 (Serre). We will construct a morphism v : A' ---+ A of abelian schemes 
over R which is not a monomorphism, but which has the property that v,: 
A; -+A, is a closed immersion. The valuation ring R is supposed to have mixed 
characteristic. So if p = char k, we have to assume e := v(p) 2 p - 1 by Theorem 4. 
In the following we assume that R contains all p-th roots of unity so that e is a 
multiple of p - 1 by Serre [4], Chap. IV, § 4, Prop. 17. Now, similarly as in Example 
7, consider a morphism u : (ZlpZ), -+ p, sending 1 to a primitive p-th root of unity. 
Let E be an elliptic curve over R (i.e., an abelian scheme with elliptic curves as fibres) 
which contains p, as a subscheme. Then u extends to a morphism u : (ZlpZ), + E, 
which is a closed immersion on generic fibres, but which is not a monomorphism. 
Let E' be a second elliptic curve over R which contains (ZlpZ), as a subscheme (for 
example, a Serre-Tate-lifting of an elliptic curve over k containing (ZlpZ), as a 
subscheme). Then consider the co-cartesian diagram 

where F' is the quotient of E x E' with respect to the action of (ZlpZ),. Since the 
action is free, F' is an abelian scheme over R. Furthermore, uk is a closed immersion, 
but u' itself cannot be a monomorphism since u is not a monomorphism. 0 

Finally, we want to show that the condition on the semi-abelian reduction of A' 
in Theorem 4 cannot be cancelled. 

Example 9. Consider discrete valuation rings R c R' where R = Z(,, and R' = 

Z(,, [a] with a being a primitive p-th root of unity; p is a prime different from 2. Let 
u': E' + F' be a morphism of abelian Rr-schemes of the type constructed in 
Example 8; i.e., such that u' is not a monomorphism, but such that it is a closed 
immersion on generic fibres. Then apply the technique of Weil restriction of R' over 
R to u' (cf. Section 7.6) and consider the induced morphism u1 : El  -+ F1. It follows 
from 7.616 that El  and F' are Neron models of their generic fibres, and from 
7.612 that u1 is a closed immersion on generic fibres. We claim that u' is not a 
monomorphism. Indeed, the image of the map Lie (u') : Lie (E') -+ Lie (F') cannot 
be locally a direct factor in Lie(F1). The same is true for the Weil restriction of 
Lie (u'), and the latter is canonically identified with Lie (u') : Lie (El) -+ Lie (F1). 
So u1 : El  -+ F1 cannot be a closed immersion and, thus, not a monomorphism. 
Since v(p) = 1 < p - 1, where v is the normalized valuation on R, we see from 
Theorem 4 that E' cannot have semi-abelian reduction. 0 
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7.6 Weil Restriction 

The main purpose of this section is to discuss a criterion for the existence of Weil 
restrictions and to study the behavior of Neron models with respect to Weil 
restrictions. 

Let h :  S' + S be a morphism of schemes. Then, for any Sr-scheme X', the 
contravariant functor 

%s,Is(X') : (Sch/S)O -4 (Sets) , T H Hom,,(T x, S', X') , 
is defined on the category (Sch/S) of S-schemes. If it is representable, the corre- 
sponding S-scheme, again denoted by '%,,,(X1), is called the Weil restriction of X' 
with respect to h. Thus, the latter is characterized by a functorial isomorphism 

Hom,(T, %s,ls(X')) 2 Hom,,(T x, S', X') 

of functors in T where T varies over all S-schemes. There are several elementary 
properties of the functor %,.,,(X1) and, hence, of Weil restrictions, which follow 
immediately from the definition. We will derive some of them once we have men- 
tioned the adjunction formula in Lemma 1 below. 

Imposing an appropriate condition on h such as being finite and locally free 
(which we mean as a synonym for being finite, flat, and of finite presentation), the 
existence of the Weil restriction of the affine n-space A;, is trivial (cf. the beginning 
of the proof of Theorem 4). Then, in order to treat more general schemes, it is 
necessary to study the behavior of Weil restrictions with respect to open or closed 
immersions. In order not to worry about the representability of the functor '%srls(X') 
too much, we will work entirely within the context of functors from schemes to sets. 
In particular, we will make no difference between an S-scheme X and its associated 
functor Horn,(., X); in the same way we will proceed with S'-schemes. 

It is convenient to define the functor %s,ls(X') not only for Sr-schemes X', but, 
more generally, for arbitrary contravariant functors from the category (Sch/Sr) of 
St-schemes to the category of sets. So consider a functor 

F' : (Sch/Sf)O ---+ (Sets) . 

Then its direct image with respect to h : S' ---t S consists of the functor 

h, F' : (SchlS)' ---+ (Sets) , T H F1(T x, S') . 

Using 4.111, we see easily that the functor 

plays the role of an adjoint of h,; namely, the so-called adjunction formula is valid. 

Lemma 1. For any S-scheme T and any functor F' : (Sch/S1)O - (Sets), there is a 
canonical bijection 

Hom,(T, h,F') -2; Hom,.(T x, S', F') 

which is functorial in T and in F' 
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As an application of the above formula, we want to derive some elementary 
properties of Weil restrictions. Let X' be an S'-scheme. Then the identity on %s,,s(X') 
gives rise to a functorial morphism 

if %,,,,(X') exists as an S-scheme. Likewise, if X is an S-scheme, the identity on 
X x, S' defines a functorial morphism 

X -+ %s,ls(X X , S') . 

On the other hand, each functorial morphism F' -+ G' between contravariant 
functors from (Sch/S') to (Sets) induces a functorial morphism h,F' -+ h, G'. Fur- 
thermore, h, commutes with fibred products, and it follows that h,Ff is a group 
functor if the same is true for F'. In particular, the Weil restriction of a group scheme 
is, if it exists as a scheme, a group scheme again. Also it is easy to see that the notion 
of Weil restriction is compatible with base change; ie., if T -+ S is a morphism of 
base change, and if we write T' := S' xs T, then, for any S'-scheme X', there is a 
canonical isomorphism 

%T,lT(X' xs T') E %s,,s(X') xs T 

of functors on (Sch/T). 
In the following we need the terminology of relative representability of functors; 

cf. Grothendieck [I], Sect. 3. Let 

F, G : (Sch/S)O -+ (Sets) 

be contravariant functors, and let u : F ---+ G be a functorial morphism. Then, for 
each functorial morphism T -+ G, where T is an arbitrary S-scheme, the fibred 
product FT = F x T may be viewed as a functor from (Sch/T)O to (Sets). One says 
that F is relatively representable over G via u if, for each T + G, the projection 
FT + T is a morphism in (Sch/S); i.e., if each F, is representable by a T-scheme. 
Many notions on morphisms between schemes can easily be adapted to the context 
of relative representability. For example, u is called an open immersion, or a closed 
immersion, or a morphism of finite type, etc., if the corresponding property is true 
for each morphism of schemes uT : FT -+ T, obtained from u : F + G by the "base 
change" T ---+ G. 

Proposition 2. Let u' : F' + G' be a morphism between functors from (Sch/S')O to 
(Sets). 

(i) Assume that u' is an open immersion and that h : S' -+ S is proper. Then the 
associated morphism h,(ul) : h,F' -+ h, G' is an open immersion. 

(ii) Assume that u' is a closed immersion and that h : S' ---, S is finite and locally 
free or, more generally, proper, flat, and of finite presentation. Then h,(ur) : h, F' -+ 

h, G' is a closed immersion. 

Proof. Let us write F = h,F' and G = h,G1, and let T + G be a morphism, where 
T is an arbitrary S-scheme. Setting T' := T xs S', we claim that T ---+ G factors 
canonically through h,  TI. Indeed, we have a canonical morphism T + h, T'. 
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Furthermore, T -+ G corresponds to a morphism T' ---+ G' and, hence, to a 
morphism h, T' -+ h, G' = G. That the composition with T -+ h, T' yields T -+ 

G is easily verified with the help of 4.111. Consequently, we can view FT as being 
obtained from F,*,, by means of the base change T --+ h, T', a fact to be used below. 

Furthermore, since h, commutes with fibred products, there are isomorphisms 

h, F& N F x h, T' N Fh*TI , 

and we can look at the canonical commutative diagram 

F;., - T' 

Fh*T' - h*T1 . 

In order to prove assertion (i), it has to be shown that the morphism in the middle 
row, which is obtained from the one in the lower row by the base change T -+ h, T', 
is an open immersion of schemes. We know already that the upper row is an open 
immersion of schemes; let U' be the image of F& in T', and set V' := T' - U'. Then 
V' is closed in T' and, since T' -+ T is proper, its image V in T is closed again. Set 
U := T - V. Interpreting FT as the fibred product of Fh*,, and T over h, T' ,  we have 

FT = H o m d .  x s  S', U') x, (. .ss,,Tr) Horn,(., 7') . 
Thus, if Z is an arbitrary S-scheme, FT(Z) consists of all S-morphisms Z -+ T where 
Z x, S' --+ T' factors through U'; i.e., of those S-morphisms Z ---+ T which factor 
through U.  Hence F, is represented by the open subscheme U of T and assertion 
(i) follows. 

Next, let us verify assertion (ii) for the case where h is finite and locally free. 
Similarly as before, let V' be the closed subscheme of T' which is given by the closed 
immersion F& -+ T'. Then we have to find a closed subscheme V of T such that, 
given any S-morphism Z -+ T, it factors through V if and only if Z x, S' --+ T' 
factors through V'. The problem is local on S, T, and Z, so we may assume that all 
three schemes are affine, say with rings of global sections R, A, and C. Let R ---+ R' 
be the homomorphism between rings of global sections on S and St. We may assume 
R' is a free R-module of rank n. Let el, . . . , e, be a basis of R' over R; then these 
elements give rise to a basis of A @, R' over R. Furthermore, let a' c A @, R' be 
the ideal corresponding to V', and fix generators aj, i E I, of a'. There are equations 

with coefficients cij E A. These coefficients generate an ideal a c A, and we claim 
that the associated closed subscheme V c T is as required. Namely, consider 
the homomorphism a :  A -+ C which is associated to Z -+ T as well as the 
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homomorphism a' : A OR R' + C OR R' associated to Z xs S' + T'. Since 

n 

ker a' = (ker o) OR R' = @ (ker a ) .  ei , 
i = l  

we see that a' c ker a' if and only if a c ker cr, i.e., that 2' is mapped into V' if and 
only if Z is mapped into I/. So it follows that V represents the functor F,. 

If, more generally, his proper, flat, and of finite presentation, one uses techniques 
from the construction of Hilbert schemes as in [FGA], n0221, Sect. 3, in order to 
show that there is a largest closed subscheme V of T such that an S-morphism 
Z + T factors through V if and only if, after base change with h : S' + S, it factors 
through V' c T'. 0 

A functor F : (SchlS)' ---t (Sets) is called a sheaf with respect to the Zariski 
topology (see 8.1) if, for each S-scheme T and for each covering { T )  of T, the sequence 

is exact. Of course, if F is a scheme, F is a sheaf in this sense. 

Proposition 3. If F' : (SchIS)' + (Sets) is a sheaf with respect to the Zariski topology, 
then the same is true for F := h,F'. 

Proof. Since, for any S-scheme T, we have 

the assertion is obvious. 

We want to apply the above results to the case where F' consists of an Sf-scheme 
X', and give a criterion of Grothendieck for the representability of X := h,X' = 
%,,,(X1) by an S-scheme. Then, if X is representable, it defines the Weil restriction 
of X'. 

Theorem 4. Let h : S' + S be a morphism of schemes which is finite and locally free, 
and let X' be an S'-scheme. Assume that, for each s E S and each finite set of points 
P c X' @, k(s), there is an affine open subscheme U' of X' containing P. Then 
h,X' = %,fl,(X') is representable by an S-scheme X and, thus, the Weil restriction of 
X' exists. 

Proof. We may assume that S and, hence, Sf are affine, say with rings of global 
sections R and R' and that R' is a free R-module, say with generators el ,  . . . , en. Let 
us first show that h,X' is representable if X' is affine. So assume X' is affine and 
view it as a closed subscheme of some scheme Spec Rf[t], where t is a (finite or 
infinite) system of indeterminates. Applying Proposition 2, it is only necessary to 
consider the case where X' = Spec R'[t]. Consider n copies of the system t and write 
t,, . . . , t, for these systems. Then, for any R-algebra A, there is a bijection 

HomRr(Rf[t], A OR R') + HomR(R[tl,. . . , t,], A) , 
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which is functorial in A. In order to define this map, consider an R'-homomorphism 
a' : Rf[t] -+ A OR R'. The latter is determined by the image ol(t) of t in A 8, R'. 
Using the direct sum decomposition 

we can write 

with systems o(t,), . . .,o(t,) of elements in A, and we can think of o as of a 
homomorphism o : R[t,, . . . , t,] + A. Then it is easily seen that o' H o defines 
the desired bijection. Consequently, in this case the functor h,X' is representable 
by the S-scheme Spec R[t,, . . . , t , ] ,  and it follows that the Weil restriction %srls(X') 
exists. 

Next, let us consider the case where X' is not necessarily afine. Let {U;)itI be 
the system of all affine open subschemes of X'. Then, by what we have just seen, 
each h,U,i is representable by an (affine) scheme Ui, and the open immersion 
U; c+ X' gives rise to a morphism Ui -+ h,X1 which is an open immersion by 
Proposition 2. Viewing the U; as open subschemes of X', we have canonical gluing 
data for them, and these data give rise to gluing data for the Ui. So, gluing the Ui, 
we obtain an S-scheme Y. Since X' is a sheaf with respect to the Zariski topology, 
the same is true for h,Xf (see Proposition 3) and there is a functorial morphism 
Y - h,X'. The latter is an open immersion by Proposition 2. 

In order to show that Y -+ h,X' is an equivalence of functors, it is enough 
to show that each functorial morphism a :  T ---t h,X1, where T is an arbitrary 
S-scheme, factors uniquely through Y or, what amounts to the same, that the latter 
is the case locally in a neighborhood of each point z E T. Let (zj) be the finite 
family of points in T x, S' lying over z. Furthermore, let a' : T xs S' + X' be the 
morphism corresponding to a, and set xj = af(zj). By our assumption, there is an 
affine open subscheme U' c X' containing all points xj. We know already that h, U' 
is representable by an S-scheme U and that the canonical morphism U -+ h,X' is 
an open immersion; the latter factors through Y by the definition of Y. Replacing 
T by a suitable open subscheme containing z, we may assume that a' : T' ---, X' 
factors through U'. Then a : T + h,X' factors through U and, hence, through Y. 
The factorization is unique due to the fact that Y -+ h,X' is an open immersion. 

0 

We want to mention some general properties of Weil restrictions, assuming that 
we are in the situation of Theorem 4. 

Proposition 5. Let S' + S be a morphism of schemes which is finite and locally free, 
and let X' be an S'-scheme. Assume that the Weil restriction X = 'iRsfls(X') exists as 
an S-scheme, and consider the following properties for relative schemes: 

(a) quasi-compact. 
(b) separated, 
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(c) locally of finite type, 
(d) locally of finite presentation, 
(e) finite presentation, 
(f) proper, 
(g) flat, 
(h) smooth. 

Then the above properties carry over from X' to X under the following additional 
assumptions: 

property (a) i f  S is locally noetherian or if S' --+ S is itale, 
properties (b), (c), (d), (e), and (h) without any further assumptions, and 
properties (f) and (g) if S' 4 S is itale. 

Proof. Let us begin with properties which carry over from X' to X without any 
additional assumptions, say with property (b). Since the Weil restriction of the 
diagonal morphism X' + X' x,. X' yields the diagonal morphism X + X x, X 
and since the Weil restriction respects closed immersions by Proposition 2, we see 
that X is separated if X' is separated. 

Next, let us look at properties (c) and (d). That they carry over from X' to X 
follows from the construction of Weil restrictions in the affine case. Namely, if X' 
is a closed subscheme of the affine n-space A:,, and if S' --+ S is a finite and free 
morphism of affine schemes, say of degree d, then it follows from Proposition 2 that 
X is a closed subscheme of %s,is(A:r) r A; where m = nd. So X is locally of finite 
type if the same is true for X'. Furthermore, the proof of Proposition 2 shows that 
the ideal defining X as a closed subscheme of A; is finitely generated if the same is 
true for X' as a closed subscheme of A:,. So it follows that X is locally of finite 
presentation if the same is true for XI. The latter result can also be obtained by 
functorial arguments using the characterization [EGA IV,], 8.14.2, of morphisms 
which are locally of finite presentation. 

If X' satisfies property (e), we can view it as an S-scheme of finite presentation. 
Using a limit argument, we may assume that S is noetherian. Then X is locally of 
finite presentation, since property (d) carries over from X' to X, and quasi-compact 
over S since, as we will see below, also property (a) carries over from X' to X if the 
base S is noetherian. But then X is of finite presentation over S. 

Finally, the characterization of smoothness in terms of the lifting property 2.216 
shows by functorial reasons that X satisfies property (h) if X' does. 

Now assume that S' --+ S is itale and finite. In order to show that X satisfies 
properties (a), (f), or (g) if X' does, we may work locally on S, say in a neighborhood 
of a point s E S. Furthermore, Weil restrictions commute with base change on S. So 
we may replace S by an Ctale neighborhood of s. But then, since locally up to Ctale 
base change etale morphisms are open immersions, see 2.318, we are reduced to the 
case where Sf consists of a finite disjoint sum U Si of copies Si of S and where S' ---, S 
is the canonical map. Then, in terms of fibred products over S, 

and it is trivial that X satisfies properties (a), (f), or (g) if X' does. 
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It remains to show that, under appropriate conditions, property (a) carries over 
from X' to X, a fact which is already known if S' + S is ttale. We claim that it is 
also true for radicial morphisms. To verify this, it is enough to prove that, for S' 
radicial over S, the Weil restriction transforms any affine open covering (q) 
of X' into an affine open covering (%sfls(U,c)) of X. Looking at fibres over S, we 
may assume that S is the spectrum of a field K. Then S' consists of a finite- 
dimensional local K-algebra K' whose residue field is purely inseparable over K. 
Now let (UJ be an affine open covering of X'. To see that the sets %KrlK(U,c) really 
cover X, consider a geometric point SpecE + X where E is a field over K. 
Then the scheme Spec(E @, K') consists of a single point and the corresponding 
morphism Spec(E OK K') ---t X' must factor through a member of the open cover- 
ing (Y) of Xi. Consequently, Spec E + X factors through a member of the family 
(%K'IK(Y)) which justifies our claim. 

Now assume that the base S is locally noetherian. In order to show that X 
satisfies property (a) if X' does, we may assume that S is noetherian. We will conclude 
by using a noetherian argument and a stratification of S. Let y be a generic point 
of S. Restricting ourselves to a neighborhood of y, we can assume that S is irreducible 
and, since quasi-compactness can be tested after killing nilpotent elements of 
structure sheaves, that S is reduced. Furthermore, we can assume that S and Sf 
are affine, say S = Spec R and S' = Spec R'. The fibre S; is the spectrum of the 
finite-dimensional K-algebra K' = R' @, K where K = k(y) = Q(R). Let L be the 
maximal etale K-subalgebra between K and K'. It is obtained as follows. Decom- 
pose K' into a finite direct product n Ki of local K-algebras Ki and, for each 
i ,  choose a maximal separable extension field Li between K and K:. Then the 
residue field of K: is purely inseparable over Li and we have L = IT Li. Set T := 
Spec(R1 n L) so that S' + S factors through T. Over the generic point y, the finite 
morphism T + S is ttale. Thus, using the openness of the &ale locus, we know 
that T --+ S is Ctale over an open neighborhood of y. Restricting to this neighbor- 
hood, we may assume that T + S is Ctale everywhere. Furthermore, for each a E Kt ,  
there is an integer n such that a n belongs to L. This property carries over to the 
fibres of S' + T so that the latter morphism is radicial. Since X = %Tls(%s~lT(X')), 
we see by what we have proved above for Ctale and for radicial morphisms that, 
working over a neighborhood of y, the scheme X is quasi-compact if X' is. 

The argument just given shows that the original morphism X --+ S is quasi- 
compact over a dense open subset of S if X' is quasi-compact over S'. Looking 
at the complement S, of this set and viewing it as a scheme with respect to the 
canonical reduced structure, we can perform the base change S, + S. It 
follows in the same way that X x, S, + S, is quasi-compact over a dense 
open subset of S,. Continuing this way, the procedure will stop after finitely 
many steps due to the noetherian hypothesis. Thus, finally, it is seen that X is 
quasi-compact over S. 0 

We want to add, again in the situation of Theorem 4, that, for any S-scheme X, 
the canonical morphism X + %,lls(X x, Sf) is a closed immersion, provided X 
and, thus, %,,,,(X x, S') are separated. This follows by means of descent from the 
fact that the composition of canonical morphisms 
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is the identity on X x ,  St. 
Finally, let us state how Nkron models behave with respect to Weil restrictions. 

Proposition 6. Let S' --+ S be a finite and flat morphism of Dedekind schemes. Let 
Spec K and Spec K' denote the schemes of generic points of S and S'. Furthermore, 
consider a torsor X' (under a smooth St-group scheme G') which is a Ntron model 
of the scheme of generic fibres X' x,, Spec Kt. Then the Weil restriction X = %,,,,(X') 
exists as an S-scheme and is a Ntron model of the scheme of generic fibres 
X x ,  SpecK. 

Proof. Using the quasi-projectivity of torsors over Dedekind schemes (cf. 6.4/1), the 
existence of X = %,.,,(Xt) as an S-scheme follows from Theorem 4. Furthermore, 
it follows from Proposition 5 that X is separated, of finite type, and smooth. 
Finally, that X satisfies the Nkron mapping property is a formal consequence of the 
definition of Weil restrictions, namely of the equation 

Horn&, X )  = Hom,,(Z x, S', X') . 



Chapter 8. The Picard Functor 

Following Grothendieck's treatment [FGA], we introduce the relative Picard func- 
tor Pic,,, and treat the notion of the rigidified relative Picard functor. The main 
purpose of this chapter is the presentation of various results on the representability 
of Pic,,,. We explain Grothendieck's theorem on the representability of Picxl, by 
a scheme and point out improvements due to Mumford [2] as well as those due to 
Altman and Kleiman [I]. In Section 8.3, we discuss the main steps of M. Artin's 
approach [5] to the representability of Pic,,, by an algebraic space; for details, the 
reader is referred to his paper. At the end of the chapter, there is a collection of some 
results on smoothness as well as on finiteness properties of Picxls, as can be found 
in [SGA 61. 

8.1 Basics on the Relative Picard Functor 

For any scheme X, we denote by Pic(X) = H1(X, 0;) the group of isomorphism 
classes of invertible sheaves on X. It is called the absolute Picard group of X. Fixing 
a base scheme S and an S-scheme X, we can consider the contravariant functor 

P,,, : (SchlS)' --+ (Sets) , T +-+ Pic(X xs T) , 

from the category (Sch/S) of S-schemes to the category of sets, which factors through 
the category of commutative groups. Using the procedure of sheafification, we want 
to associate a functor with P,,, which, under certain conditions, is representable; 
namely, the so-called relative Picard functor. 

To begin with, let us discuss a necessary condition for a functor F : (Sch/S)' + 

(Sets) to be representable. Let be a class of morphisms in (Sch/S) which is stable 
under composition and under fibred products and which contains all isomorphisms. 
Then F is called a sheaf with respect to '9JI or an %&sheaf if, for any family of 
S-schemes (TJ,,,, the canonical morphism 

is an isomorphism and if, for all morphisms T' --+ T i n  '2R, the sequence 

is exact (where T" = T' x , T' and where the double arrows on the right are induced 
by the two projections from T" onto T'). For example, we can consider the class 
fm = '%R,,, of all morphisms in (Sch/S) of type U T --+ T, where the maps T --+ T 
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are open immersions and where {T)i,I is an open covering of T If F is a sheaf with 
respect to !Dlz,,, it is said that F is a sheaf with respect to the Zariski topology. To 
give an equivalent condition, one can require that, for all open coverings {TIi,, of 
T, the canonical sequence 

is exact. 
There are further topologies of more general type; cf. [SGA 3,], Exp. IV, 6.3.1. 

We mention the fpqc-topology, the fppf-topology, and the Ctale topology. If top is 
any of the abbreviations 

fpqc ( = faithfully flat and quasi-compact), 

fppf (= faithfully flat and of finite presentation), or 

kt (= Ctale surjective), 

we write !Dlto, for the class of all morphisms in (Sch/S) which are of type top and 
say that a functor F : (Sch/S)O +(Sets) is a sheaf with respect to the top-topology 
(or, simply, with respect to top), if it is a sheaf with respect to both !Dl,,, and YX,,,. 

Proposition 1. Let F be a representable contravariant functor from (Sch/S) to (Sets). 
Then F is a sheaf with respect to fpqc and, hence, with respect to fppf, kt, and Zar. 

Proof. If F is represented by an S-scheme X, we have F(T) = Hom,(T,X). Since 
morphisms to X can be defined locally, it follows for any open covering {T) of T 
that the canonical sequence 

is exact. So F is a sheaf with respect to the Zariski topology. 
Furthermore, for any S-morphism T' ---t T which is fpqc, the canonical 

sequence 

is exact; namely, it is isomorphic to the sequence 

HomT(T, X,) ---+ HomT.(Tf, X,,) i HomT,.(Tt', X,,.) 

which, by descent theory, is exact, as shown in the proof of 6.116. Thus F is a sheaf 
with respect to fpqc. 0 

Returning to the functor 

Pxis : (SchlS)' --- (Sets) , T H Pic(X x, T) , 

it is easily seen that, in general, Pxp is not a sheaf, even with respect to the Zariski 
topology. As a consequence, we cannot expect its representability. Indeed, if Pxis 
were a sheaf with respect to the Zariski topology, a line bundle on X x, T would 
be trivial as soon as it trivializes over (the pull-back of) an open covering of T. 
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However, this is not the case. So if we want to deal with a functor from which 
representability can be expected, we have to sheafify Pxl,; this can be done by using 
standard methods from sheaf theory. 

In order to explain the procedure of sheafification, let us, again, consider a 
functor F : (Sch/S)O --+ (Sets) and a class lrJZ of morphisms in (Sch/S) which is stable 
under composition and under fibred products and which contains all isomorphisms. 
To give a sheafification of F (within the context of sheaves with respect to %R) means 
to construct a morphism F + Ft into a sheaf Ft such that each morphism from F 
into an arbitrary sheaf G (always with respect to IIJZ) admits a unique factorization 
through F+. The construction of Ft is straightforward. Let T' 4 T be a morphism 
in %R and denote by HO(T'/T, F) the subset of F(T1) consisting of all elements 5 
which are characterized by the following property: if 4 ,  and 5 ,  are the "pull-backs" 
of 4 with respect to the two projections from T" = T' x, T' onto T', there is a 
morphism rT ---t T" in !Dl such that the images of 5 ,  and 5,  with respect to 
F(T") --, ~ ( 7 )  coincide in F(T). If T' varies over (Sch/S), the sets H'(T'/T, F) form 
an inductive system. Provided llJl is not "too big", the direct limit of this system 
exists, and we can set 

It is verified without difficulties that Ft is a sheaf with respect to !Dl and that the 
canonical morphism F --+ Ft defines Ft as a sheafification of F. 

The direct limits which have been used to define the sheaf Ft exist if we take for 
YJl any of the classes lrJZZar, IIJZ;,, or !Dlfppf, whereas in the case YJl = Dlf,,, some 
precautionary measures, like working in a fixed universe, are necessary. However, 
since the class YJl,,,, is quite big, it may happen that sheafifications with respect to 
!Dlf,,, depend on the choice of the universe. It is for this reason that, when working 
with sheafifications, we will generally use the class W,,,, instead of lrJZ,,,,. 

Now, in order to construct a sheafification of the functor 

Pxls : ( S C ~ I S ) ~  --, (Sets) , T ++ Pic(X x, T) , 

say with respect to the fppf-topology, one first sheafifies Pxls with respect to D,,,,. 
The resulting sheaf PI might not be a sheaf with respect to YJlZ,, since morphisms 
in IIJZZar are not necessarily quasi-compact and, thus, not necessarily fppf. However, 
if T is affine, any morphism n Ti ---t Tin  YJl,,, which corresponds to a finite open 
covering { K }  of T by basic open subschemes c T is fppf. Hence PI is already an 
fppf-sheaf on affine schemes. Therefore we can sheafify PI with respect to !Dl,,, 
without destroying sheaf properties with respect to lrJZ,,,, on affine schemes. It 
follows that the resulting functor is a sheaf with respect to the fppf-topology; it is 
the fppf-sheaf associated to P,,,. Since P,,, is a group functor, the associated 
fppf-sheaf can be viewed as a group functor, too. In the same way, one can proceed 
with any other of the topologies introduced above. 

Definition 2. The fppf-sheaf associated to the functor 

Pxls : (Sch/S)O ---, (Sets) , T H Pic(X x, T) , 
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is called the relative Picard functor of X over S; it is denoted by Picxis. For any 
S-scheme T, we call Pic,,,(T) the relative Picard group of X xs T over T. 

Using the structural morphism f :  X + S as well as the notion of higher direct 
images off, we can define the relative Picard functor also by the formula 

Picx,s(T) = HO(T R1f*(G,)) 

which has to be read with respect to the fppf-topology; note that G, is the sheaf 
which associates to each scheme Z the group of units T(Z, 0;). We will see below 
that the restriction to the fppf-topology in place of the fpqc-topology is not too 
serious since we are mainly interested in the case where f : X -+ S is proper and 
fppf. 

Sometimes it is useful to have an explicit description of elements of relative 
Picard groups. So consider an element < E Picx,,(S) and assume for simplicity that 
S is affine or, more generally, quasi-compact. Otherwise one has to work locally 
with respect to an open affine covering of S. Then, in the quasi-compact case, t is 
represented by a line bundle t' E Pic(X x, Sf) where S' is fppf over S. Furthermore, 
there must be an fppf-morphism 3- S" = S' xs S' such that the pull-back of 5' 
with respect to 9- S" ---+ S' is the same for both projections from S" to S'. 
Conversely, each ti E Pic(X xs S') satisfying the latter condition gives rise to an 
element 4 E Picxls(S). Two such elements 5: E Pic(X xs Sf), i = 1, 2, with Si fppf 
over S represent the same element 4 E Picxi,(S) if and only if there exists an 
fppf-morphism S" -+ S; xs S; such that, on S, the pull-back of coincides with the 
pull-back of 5;. Also it should be noted that, due to the sheaf property of Picxls, an 
element 5 E Picxis(S) is trivial if it is induced by the pull-back to X of a line 
bundle on S. The converse is not true, in general. 

Proposition 3. Assume that f : X + S is proper and of finite presentation. Consider 
an element t E Picx,,(S) which is induced by a line bundle 9 on X. Then t is trivial 
if and only if there is an open covering {Si) of S such that 2 trivializes over X x, Si 

for each i. 

Proof. The if-part of the assertion follows from the sheaf properties of Pic,,. So it 
remains to justify the only-if-part. The direct image f,(Ox) is a quasi-coherent 
Os-algebra. Assuming S to be affine and interpreting f :  X + S as a limit of 
morphisms of finite type between noetherian schemes, we can use the Stein factoriza- 

h 
tion X -% T -+ S off,  where g satisfies g,(Ln,) = 0, and where h, being a limit 
of finite morphisms, is integral. Furthermore, since the fibres of g are the connected 
components of the fibres off, it follows that the fibres of h are set-theoretically finite. 
Now assume that 9 gives rise to the trivial element 5 E Pic,,,(S). We claim that the 
canonical homomorphism g*(g, ( 9 ) )  -+ 9 is an isomorphism. Using descent, this 
fact can be tested after base change with an fppf-morphism. For example, we can 
assume that, after such a base change, 9 becomes trivial. Since the formation of 
g,(9) commutes with flat base change, the above isomorphism has only to be 
established for the trivial bundle 9 .  But then the claim follows from the fact that 
g,(Lo,) = Lo,. So we see that 9 is the pull-back of the line bundle g,(9) on T. The 
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latter is locally trivial over T. Since h : T ---t S is integeral and, thus, a closed map, 
and since its fibres are set-theoretically finite, it follows that g , ( 9 )  is locally trivial 
also over S. Hence 2 is locally trivial over S. 0 

We assume in the following that f : X - S is quasi-compact and quasi- 
separated. Then the Leray spectral sequence associated to f and Gm (see [SGA 4,,], 
Exp. V, 5 3) gives the exact sequence 

0 + H1(S,f*(6,)) + H1(X, G,) + Picx,s(S) + H2(S,f*(Gm)) + H2(X, G,) 

where the cohomology groups are meant with respect to the fppf-topology. Since 
the descent with respect to fpqc-morphisms turns line bundles into line bundles, it 
follows that the group H1(X, 6,) is the same for the fpqc-, the fppf-, the &tale, 
and even for the Zariski topology. So we may use the Zariski topology and see 
H1(X, G,) = Pic(X). Thus the obstruction of representing an element of PicXis(S) 
by an element of Pic(X) is given by an element in H2(S, f,(Gm)) which becomes zero 
in HZ(X,G,). Just as in the case of H1(X,Gm), one shows that H1(S, f,(Gm)) is 
independent of the topologies mentioned above if f,(Ox) = OS or, by means of the 
Stein factorization, iff is proper. In particular, we have H1(S, f,(Gm)) = Pic(S) if 
f*(@x) = 0s. 

In order to determine the cohomology group H2(x ,  G,), one can use the &ale 
topology instead of the fppf-topology; cf. Grothendieck [3], pp. 171-183. The same 
is true for the cohomology group H2(S, f,(Gm)) if f,(Ox) = 9, or, without this 
assumption, iff is proper. Namely, by means of the Stein factorization, it is possible 
to reduce to the case where f,(Co,) = Lo,. So, for example, iff is proper, the above 
exact sequence shows that the relative Picard functor Picxls can be constructed by 
using the etale topology in place of the fppf-topology. In particular, the formula 

Picxls(T) = HO(T R1f*(Gm)) 

remains valid if, on the right-hand side the fppf-topology is replaced by the Ctale 
topology. 

The cohomology group H2(X, G,) is called the (cohomological) Brauer group 
of X. In particular, if we assume f,(Ux) = O,, the obstructions of representing 
elements in Picxls(S) by line bundles on X are given by elements of the Brauer group 
Br(S) which become zero in the Brauer group Br(X). All obstructions of this type 
disappear if the map H'(S, G,) --+ H2(X, G,) is injective; for example, iff : X --+ S 
has a section or if the Brauer group Br(S) vanishes itself. For an affine scheme 
S = Spec R, the group Br(S) is zero in each of the following situations: 

(a) R is a separably closed field. 
(b) R is the field of fractions of a henselian discrete valuation ring with algebra- 

ically closed residue field; cf. Grothendieck [3], Thm. 1.1, or Milne [I], Chap. 111, 
2.22. 

(c) R is a strictly henselian valuation ring; cf. Grothendieck [3], Prop. 2.1, or 
Milne [I], Chap. IV, 1.7 and 2.12. 

The equation f,(OX) = L?, is compatible with flat base change. We say that 
f,(Co,) = Os holds universally if the equation is true after any base change over S. 
Using this terminology, we want to summarize the above considerations. 
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Proposition 4. Let f : X ---, S be quasi-compact and quasi-separated and assume that 
f satisfies f,(Ox) = 0, (resp. that f,(Ox) = 0, holds universally). Then, for each 
S-scheme T which is flat over S (resp. for each S-scheme T), the canonical sequence 

is exact. If, in addition, f admits a section, the sequence 

0 -+ Pic(T) ---, Pic(X x, T) + Picxls(T) -4 0 

is exact. 

In particular, in the latter case, we can identify the relative Picard functor Picxls 
in the usual way with the functor 

(Sch/S)O --+ (Sets) , TI---* Pic(X x, T)/Pic(T) . 

If the existence of a global section is replaced by the condition that f : X + S has 
local sections, one can still say that the formula 

Picxls(T) = HO(T R1f*(G,)) 

remains valid if one considers the Zariski topology on the right-hand side. 
In order to see, in the above situation, that the relative Picard functor Picxl, is 

a sheaf even with respect to the fpqc-topology and in order to prepare the discussion 
of rigidificators, we want to look at the situation from another point of view. We 
assume that f,(OX) = Us holds universally and that f admits a section E : S + X. 
For any line bundle 9 on X, let us call an isomorphism a : Os S &*(dP) a rigidifica- 
tion of 9 .  Furthermore, the pair ( 9 ,  a) will be referred to as a line bundle which is 
rigidified along the section E. Then we can look at the functor (P, E) : (Sch/S)O -+ 

(Sets) which associates to each S-scheme T the set (P, &)(T) of isomorphism classes 
of line bundles on X, = X x, T which are rigidified along the section E, : T + X,. 
The functor (P, E) has the advantage that it is automatically a sheaf with respect to 
the Zariski topology. Namely, using the fact that f,(Lo,) = Os is true universally, 
one shows easily that rigidified line bundles do not admit non-trivial automor- 
phisms; hence the terminology of rigidifications is justified. Furthermore, it follows 
from descent theory that (P,E) is a sheaf even with respect to the fpqc-topology. 
Namely, consider a sequence 

(P, 4 (TI -+ (P, 4 (TI) = (P, 4 (TI') , 
where T' + T is an fpqc-morphism and where T" = T' x , T'. The map on the 
left-hand side is injective by 6.114. To show the exactness of the sequence, fix an 
element (dP', a') E (P, &)(TI) whose images in (P, E ) ( T )  coincide. Then we have an 
isomorphism pyf9' l p $ d P 1  between the two pull-backs of Y to T" which is 
compatible with rigidifications. Hence this isomorphism is automatically a descent 
datum, and the descent is effective by 6.114. Thus the above sequence is exact, and 
(P,E) is a sheaf with respect to fpqc. For each line bundle 9 on X, the bundle 
dP Q f *(~*(9- ' ) )  has a rigidification. Therefore we have 

(P, E)(T) = Pic(X,)/Pic(T) 
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for all S-schemes T Since (P, E )  is a sheaf with respect to the fpqc-topology and, 
thus, with respect to the fppf-topology, it is canonically isomorphic to the relative 
Picard functor Pic,,,. Thereby we see once more that the second assertion of 
Proposition 4 is true. 

Using the above argument, it can easily be shown that the relative Picard functor 
Pic,,, which has been defined within the framework of the fppf-topology is even a 
sheaf with respect to the fpqc-topology, provided f : X + S is fppf and satisfies 
f,(Ox) = $ universally. Namely, we may perform a base change with X over S and 
thereby assume that f has a section. Then, by considering rigidifications, it follows 
that Pic,!, is a sheaf with respect to fpqc. 

If the assumptions that the equation f,(O,) = CO, holds universally and that there 
is a section E: S + X are not satisfied, it is sometimes useful to introduce a 
generalization of the notion of rigidifications so that, similarly as above, one can 
deal with rigidified line bundles. 

Definition 5. Let f : X + S be proper, flat, and of finite presentation. Then a sub- 
scheme Y c X, which is finite, flat, and of finite presentation over S, is called a 
rigidificator off or, more precisely, of the relative Picard functor Picxis $ 

(Sch/S)O ---t (Sets) , T +--+ T(XT, Ox=) , 
is a subfunctor of the functor 

(Sch/S)O ---+ (Sets) , T w T(YT, OYT) ; 

i.e., if the map T(X,, OxT) + T(YT, OyT), which is derived from the inclusion 
Y, c, X,, is injective for all S-schemes T 

If f,(O,) = Os holds universally, it is immediately clear that, for each section 
E : S -+ X off, the closed subscheme E(S) c X is a rigidificator off. Furthermore, 
let us mention without proof two non-trivial examples where rigidifications exist; 
cf. Raynaud [6 ] ,  Prop. 2.2.3. 

Proposition 6. Let f : X + S be as in Definition 5. 
(a) If the fibres off do not have embedded components, f admits a rigidificator 

locally over S with respect to the &tale topology. 
(b) If S is the spectrum of a discrete valuation ring, f has a rigidificator. 

Let Y be a rigidificator off : X + S. Then an invertible sheaf on X which is 
rigidified along Y is defined as a pair ( 9 ,  a), where 9 is an invertible sheaf on X, 
and where cl is an isomorphism 9, S 9,, Rigidified line bundles do not admit 
non-trivial automorphisms. Therefore the functor 

(Pic,,,, Y) : (Sch/S)O -+ (Sets) , 

which associates to an arbitrary S-scheme T the set of isomorphism classes of line 
bundles on X, which are rigidified along Y,, is a sheaf with respect to the Zariski 
topology and, by descent theory, even with respect to the fpqc-topology. Further- 
more, (Pic,,,, Y) is canonically a group functor. 
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In order to relate the functor (Pic,,, Y) to the relative Picard functor Pic,,, it 
is necessary to look at rigidificators from another point of view. However, before 
we can do this, we have to discuss a basic result on the direct image of Ox-modules 
which are locally of finite presentation; by the latter we mean (quasi-coherent) 
Ox-modules which, locally, are isomorphic to the cokernel of a homomorphism of 
type OF --+ 0;. Furthermore, we need the concept of cohomological flatness. 
Assume that f :  X + S is proper and of finite presentation, and consider an 
Ox-module F of locally finite presentation, which is flat over S. Then 9 is said to 
be cohomologically flat over S in dimension 0 if the formation of the direct image 
f,(F) commutes with base change. If the condition is true for F = Ox, we say that 
f itself is cohomologically flat in dimension 0. The latter is the case iff is flat and 
if the geometric fibres off are reduced; cf. [EGA III,], 7.8.6. 

Theorem 7. Let f : X + S be a proper morphism which is finitely presented. Further- 
more, let F be an Ox-module of locally finite presentation which is S-flat. Then there 
exists an 4-module 22 of locally finite presentation, unique up to canonical isomor- 
phism, such that there is an isomorphism of functors 

f * W  gos J4 2 Xo@Ws(% J4 3 

which is functorial for all quasi-coherent 0,-modules 4 .  In particular, there is an 
isomorphism of functors 

T(X, F A) 7 Xomos(3?, 4 )  . 
The 0,-module 9 is locally free f and only if F is cohomologically flat over S in 
dimension 0. In the latter case, 22 and f,(9) are dual to each other and, in particular, 
f,(F) is locally free. 

We will not repeat the proof of the theorem from [EGA III,], 7.7.6. But to give 
some idea, we want to show how the assertions follow from the theorem on 
cohomology and base change as contained in Mumford [3], Chap. 11, 4 5. We may 
assume that S is affine, say S = Spec A. Then the theorem on cohomology and base 
change says there is a finite complex 

cP K ' : O + K 0 - - + ~ 1 - ~ 2 - . . . - ~ n + ~  

of finitely generated projective A-modules (we may assume of free A-modules, after 
restriction of S) as well as an isomorphism of functors 

H P( X , F  M) 2: HP(K' @ A  M) , p 2 0 , 
on the category of A-modules M. (Using Mumford's version of the base change, 
one has remove the noetherian hypothesis by a limit argument; furthermore, the 
above functors have to be considered on the category of all A-modules M and not 
just on the category of all A-algebras B.) Dualizing the map q : KO - K1 gives an 
exact sequence 

0 c coker cp* c (KO)* L ( K 1 ) *  , 

and we claim there is a functorial isomorphism 

(*I H'(K' OA M) = ker(q 8 M) S Hom,(coker q*, M) 
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of functors in M. Namely, applying the functor HornA(., M), which is left-exact, to 
the preceding exact sequence yields the exact sequence 

0 -+ HomA(coker cp*, M) + HomA((KO)*, M) --+ HomA((K1)*, M) . 

Then we compare it with the exact sequence 
v O M  O+ker(cp@M)-+KO@,M-K1@AM. 

The canonical homomorphisms Ki 8, M ---+ Hom,((Ki)*, M), i = 1, 2, are iso- 
morphisms since KO and K1 are free, and there is an isomorphism 

HO(K' 8, h1) 7 Hom,(coker cp*, M) , 

which is functorial in M. Hence the existence of the functorial isomorphism (*) is 
proved. Writing Q = coker cp* and using the theorem on cohomology and base 
change, the resulting functorial isomorphism 

implies the main assertion of our theorem. Since the tensor product is right-exact 
and since Hom is left-exact, the isomorphism (*) shows that 9 is cohomologically 
flat over S in dimension 0 if and only if Q = coker q* is a projective, i.e., locally free 
A-module. If the latter is the case, ker q is locally free since it is the dual of coker q*. 

0 

Iff : X -+ S is proper, finitely presented, and flat, the assertion of the above 
theorem holds for the Ox-module 9 = 9,. Restricting the resulting functorial 
isomorphism 

f * ( 9  "lo, A )  2 X~@@,(=% Jf) 

to quasi-coherent 0,-modules of type A = 9, which are obtained from morphisms 
T + S, one ends up with functorial isomorphisms 

r w , ,  OXT) 2 Homos($ 0,) 7 Homs(T, V) 

where V denotes the S-scheme corresponding to the symmetric 9,-algebra Y y ~ o s ( 9 )  
of 9 .  Dropping the middle term, we get a functorial isomorphism between functors 
on the category of all S-schemes 7: The scheme V is also referred to as the total 
space of the module 2. We say that V is locally free if this is true for 9 as an 
0,-module. The latter is equivalent to the fact that V is smooth over S. So we can 
state the following result. 

Corollary 8. Let f : X + S be proper, finitely presented, and flat, and let 22 be the 
Q-module associated to f,(O,) in the sense of Theorem 7. Then the functor 

(Sch/S)O -+ (Sets) , T H r(XT,  OXT) 

is represented by the total space V of 2. Furthermore, V is locally free if and only i f  
f is cohomologically flat in dimension 0. 

If, in addition to the above assumptions, f is finite, it is automatically cohomo- 
logically flat in dimension 0. In particular, the functor of global sections of a 
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rigidificator is always represented by the total space of a module which is locally 
free. Using the assertion of the corollary, we can give a further characterization of 
rigidificators. 

Proposition 9. Let f : X -+ S be proper, finitely presented, and flat, and consider a 
subscheme Y c X which is finite, flat, and of finite presentation over S. Let Vx (resp. 
Vy) be the S-scheme, which, as in Corollary 8, represents the functor of global sections 
on X (resp. Y). Then the following conditions are equivalent: 

(a) Y is a rigidificator off. 
(b) The morphism V, + Vy, which is induced by the inclusion Y c, X, is a closed 

immersion. 

Proof. Let 9 (resp. 2) denote the CIS-module which is obtained by means of Theorem 
7 from f : X + S (resp. Y + S). Then, for all S-schemes T such that 0, is a 
quasi-coherent CIS-module, the inclusion Y c, X gives rise to a sequence 

The latter is exact for all T if and only if Yis a rigidificator off. Now the sequence 
(*) corresponds to a sequence 

of 8,-modules which is exact if and only if (*) is exact for all T. On the other hand, 
(**) yields a sequence between associated symmetric CIS-algebras 

which is exact if and only if it is exact in degree 1, i.e., if and only if (**) is exact. 
This verifies the assertion of the proposition. 0 

As before, let f : X + S be proper, finitely presented, and flat, and let Vbe the 
S-scheme representing the functor T w T(X,, OXT) of global sections on X. Then 
V may be viewed as a functor to the category of rings and thus is a ring scheme. 
We claim: 

Lemma 10. The subfunctor of units T H r ( X T ,  Oz,) is represented by an open 
subscheme V* c K In particular, V* is a group scheme. 

Proof. The assertion is clear iff is cohomologically flat in dimension 0. Namely, 
then V is locally free and we can use a norm argument. In the general case, one 
views V and V* as functors and shows that the injection V* c, V is relatively 
representable by open immersions. In order to do this, consider an S-scheme T and 
a T-valued point g : T + V as well as the associated cartesian diagram 
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Then g corresponds to a global section in the structure sheaf of X x, T. Let U' be 
the maximal open subset of X xs T where g is invertible. Since f is proper, the 
complement of U' projects onto a closed subset F of T Therefore its complement 
U := T - F is an open subscheme of T, and it is easily verified that V* x, T --+ T 
is represented by the open immersion U c, T 0 

The canonical map 9, -+ f,(O,) defines a morphism G, -4 V which is a closed 
immersion as can be seen by using arguments as in the proof of Proposition 9. 
Restricting to the subschemes of units yields an immersion of group schemes 
6, --+ V* which is a closed immersion again. It is easily seen that f,(Lo,) = OS holds 
universally if and only if the map G, --+ V or, equivalently, the map 6, + V* is 
an isomorphism. 

Finally, let Y be a rigidificator off : X --, S and, as in Proposition 9, let Vx and 
Vy denote the schemes representing the functors of global sections on X and on Y. 
Then the closed immersion Vx r Vy gives rise to an immersion V,* r V;, and 
there is a canonical map V$ --+ (Picxls, Y) to the Picard functor (Picxls, Y) of line 
bundles which are rigidified along Y. Namely, fixing an S-scheme T, a global 
invertible section a on Y x, T is mapped to the pair (GT,a)  where the iso- 
morphism a : OXTlYT 1 QTIYT is the multiplication by a. Adding the canonical map 
(Picxls, Y) + Picxls, one obtains the sequence 

Proposition 11. The preceding sequence is exact in terms of sheaves with respect to 
the itale topology. 

The proof is straightforward; see Raynaud [6] ,  2.1.2 and 2.4.1. It is shown in the 
same article that (Picxls, Y) is representable by an algebraic space; cf. our discussion 
of the representability of Picard functors in 8.3. Thus, even if Picxls is not represent- 
able (by a scheme or by an algebraic space), but if there exists a rigidificator Y, there 
is a representable object which closely dominates the relative Picard functor. 

8.2 Representability by a Scheme 

There are two types of results concerning the representability of the relative Picard 
functor Picxl,; namely, results on the representability by schemes and results on the 
representability by algebraic spaces. If one wants Pic,,, to be a scheme, one has to 
ask strong conditions for the structural morphism f : X --+ S whereas, if one allows 
to work more generally within the context of algebraic spaces, one can obtain the 
representability of Pic,,, by an algebraic space under conditions which are not so 
restrictive and quite natural to ask. 

In the present section, we will give an outline of Grothendieck's method for 
representing Picxls by a scheme and, in the next section, we will roughly explain the 
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idea of M. Artin's approach for representing Picxls by an algebraic space. Let us 
start by stating the main results on the representability of Pic,,, by a scheme. 

Theorem 1 (Grothendieck [FGA], n0232, Thm. 3.1). Let f : X + S be projective 
and finitely presented. Assume that f is flat, and that the geometric fibres o f f  are 
reduced and irreducible. Then Picxls is representable by a separated S-scheme which 
is locally of finite presentation over S. 

The proof of Theorem 1 consists mainly of methods from projective geometry. 
If one replaces the condition "projective" by "proper", these methods are not 
applicable for a general base S. Furthermore, the assumption on the fibres off is 
an inevitable technical condition without which the proof cannot work. It is the 
very reason for getting representability by a scheme and for the fact that the 
representing S-scheme is separated. 

To illustrate this point, let us look at an example of Mumford. He considered a 
projective flat family of geometrically reduced curves where Picxls does not exist as 
a scheme. Namely let S = Spec R[[t]], and let X be the S-subscheme of P i  given 
by the equation X: + X< = t X i .  One may view X as a conic which geometrically 
degenerates into two projective lines. The special fibre over the closed point of S is 
irreducible whereas, after the base change with S' = Spec C[[t]], it decomposes 
into two lines which are conjugated under the Galois group 2/22 of S' over S. We 
claim that the Picard functor Picxflsr is a scheme. Indeed, it is a disjoint union of 
subschemes representing the subfunctors Pic$,ls,, d E Z, of P ~ C ~ , , ~ ,  which are given 
by line bundles of total degree d. Furthermore, each Pic$ls. is obtained by gluing 
copies of S' along the generic point; namely by gluing copies SL,, with a, b E Z and 
a + b = d where the decompositions d = a + b correspond to the possibilities of 
degenerations of a line bundle of degree d on the generic fibre into a line bundle 
with partial degrees a and b on the components of the special fibre. In particular, 

is not separated and there are orbits of the Galois action on Pic,,,, which 
are not contained in an open affine subscheme. So, the descent datum given by the 
Galois action cannot be effective, and hence Picxl, is not representable by a scheme 
over S. A closer look at this example shows that the very reason for this is the fact 
that the irreducible components of the fibres off are not geometrically irreducible. 
The same can be read from the following generalization of Grothendieck's result: 

Theorem 2 (Mumford, unpublished). Let f : X - S be flat, projective, and finitely 
presented with geometrically reduced fibres. Assume that the irreducible components 
of the fibres o f f  are geometrically irreducible. Then Picxls is representable by 
a (not necessarily separated) S-scheme which is locally of finite presentation 
over S. 

If the base scheme S is a field, one can prove the representability of Picxls under 
weaker assumptions than those mentioned in Theorem 1. This was first done by 
Grothendieck for the projective case; cf. [FGA], n0232, Sect. 6. Later on Murre and 
Oort treated the proper case. 
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Theorem 3 (Murre [I] and Oort [I]). Let X be a proper scheme over a field k. Then 
Pic,,, is representable by a scheme which is locally of finite type over k. 

The theorem of Murre can also be deduced from the results on the represent- 
ability of Picxl, by an algebraic space; cf. Section 8.3. Namely, a group object in the 
category of algebraic spaces over a field is representable by a scheme. 

Finally, we want to introduce the notion of universal line bundles which is quite 
convenient to work with when Pic,,, is representable. We assume that the structural 
morphism f : X ---, S has a section E and that f,O, = C?, holds universally. In this 
case Pic,,, is isomorphic to the functor 

(P, E) : (Sch/S)O --+ (Sets) 

which associates to each S-scheme S' the set of isomorphism classes of line bundles 
on X' = X x, S' which are rigidified along the induced section E' = E @ id,,; cf. 
Section 8.1. If Pic,,, is a scheme, it also represents the functor (P, E). SO the identity 
on Pic,, gives rise to a line bundle 9 on X x, Pic,,, which is canonically rigidified 
along the induced section. 9 is called the universal line bundle for (XIS, E). That this 
terminology is justified can be seen if we write down explicitly the condition of (P, E )  

being representable: 

Proposition 4. Let f : X + S be finitely presented and flat, and let E be a section of 
f. Assume that f,C?, = Los holds universally. If Pic,,, is representable by a scheme, 
the universal line bundle 9 for (XIS, E) has the following property: 

For any S-scheme S', and for any line bundle 9' on X' = X x ,  S' which is 
rigidified along the induced section E', there exists a unique morphism g : S' --+ Picxl, 
such that T', as a rigidified line bundle, is isomorphic to the pull-back of 9 under 
the morphism id, x g. 

Note that f ,  Lo, = Lo, holds universally under the assumptions of Theorem 1; cf. 
[EGA III,], 7.8.6. 

Next we turn to the proof of Theorem 1. Since the relative Picard functor is a 
sheaf for the Zariski topology, its representability is a local problem on S. So we 
may assume that X is a closed subscheme of the projective space Q. In order to 
state what the proof yields in this special case, we have to introduce some further 
notions. 

Following Altmann and Kleiman [I], a morphism of schemes f : X + S is 
called strongly projective (resp. strongly quasi-projective) if it is finitely presented and 
if there exists a locally free sheaf 6 on S of constant finite rank such that X is 
S-isomorphic to a closed subscheme (resp. subscheme) of P(6). Let Lox(l) be the 
canonical (relatively) very ample line bundle on X. For any polynomial @ E Q [ t ] ,  
one introduces the subfunctor Pic& of Pic,,, which is induced by the line bundles 
with Hilbert polynomial 0 (with respect to Lox(l)) on the fibres of X over S; cf. 
[EGA III,], 2.5.3 for the definition of Hilbert polynomials. Then one can state the 
following stronger version of Theorem 1, which clearly suggests that Grothen- 
dieck's result deals with a problem inside the category of (quasi-) projective 
S-schemes. 
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Theorem 5. Let f : X -4 S be strongly projective, and let S be quasi-compact. Assume 
that f is flat, and that the geometric fibres off are reduced and irreducible. Then, for 
every @ E Q[t], the functor Pic& is representable by a strongly quasi-projective 
S-scheme. Furthermore, Picxls is represented by the disjoint union of all Pic'&,, 
where cD ranges over Q[t]. 

In the following we want to sketch the main steps of the proof of Theorem 5; in 
particular, we want to point out where the specific assumptions of the theorem are 
employed. The proof itself decomposes into three parts: 

I) The notion of relative Cartier divisors gives rise to a functor 

Div,, : (Sch/S)O ---t (Sets) , 

which associates to an S-scheme S' the set of all relative Cartier divisors of the 
St-scheme X' := X xs S'. There is a canonical morphism 

which is relatively representable. We will show a slightly weaker version of the latter 
statement which is enough for our purposes. 

11) We will show that the functor Div,,, is representable by an S-scheme. More 
precisely, we introduce Hilbert polynomials with respect to the fixed very ample 
line bundle 0,(l), and we look at the subfunctor Div;,, which consists of all relative 
Cartier divisors with Hilbert polynomial @. Then we will show that D ~ V ? , ~  is an 
open subfunctor of Div,, and that Div?/, is a strongly quasi-projective S-scheme. 
Furthermore, DivxIs is the disjoint union of all schemes Div;/,, where (T, ranges over 
Q[t]. This part is the hardest of the whole proof, since the representability of the 
Hilbert functor is involved. 

111) For suitable polynomials @, the functor Pic!ls is a quotient (as a sheaf for 
the fppf-topology) of an open subscheme of DivXIS with respect to a proper smooth 
equivalence relation. We will show that such a quotient is representable by a scheme. 
Hence, Pic& is representable in such a special case. For general 0, there exists an 
integer n, such that the translate of Pic'& by the element associated to O,(n,) is of 
the type as treated in the special case. So Pic'& is representable again. More 
precisely, we will see that it is representable by a strongly quasi-projective S-scheme. 
Furthermore, Pic:!, is an open and closed subfunctor of Pic,,, so Picxls is repre- 
sented by the disjoint union of all schemes Pic&, where @ ranges over Q[t]. 

Let us start with part I. An effective Cartier divisor on a scheme X is a closed 
subscheme D of X such that its defining sheaf of ideals 9 is an invertible &-module; 
i.e., for each x E X, the ideal YX is generated by a regular element of Co,. We denote 
by Q,(D) the associated line bundle 

and by s, E T(X, Ox(D)) the global section associated to the inclusion 9 CL, 0,. We 
refer to s, as the canonical section of Ox(D). It corresponds to the canonical 
inclusion 0, c, OX(D). Thus, an effective Cartier divisor gives rise to a pair ( 9 ,  s) 
consisting of a line bundle 9 and a global section s E T(X, 9) which induces a 
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regular element s, on each stalk 9', x E X; i.e., the map is : 0, -+ $c: sending the 
unit element 1, of L?, to s, is injective. Two pairs ( 2 , s )  and (9 ' ,  s') are called 
equivalent if there exists an isomorphism cp : 9 -+ 2" such that cp(s) and s' differ 
by a factor which is a global section of 0;. Associating to a pair ( 2 ,  s) the subscheme 
D of X which is defined by the sheaf of ideals 9 - I  viewed as a subsheaf of 0, via 
the morphism is 8 9- ' ,  we obtain a bijection between the set of all effective Cartier 
divisors on X and the set of all equivalence classes of pairs (2, s), where 9 is a line 
bundle on X, and where s is a global section of 9 inducing a regular element on 
each stalk of 9. We denote by T(X, 9 ) *  the subset of T(X, 9 )  consisting of all 
global sections of 2 which induce regular elements on each stalk 2,, x E X. Thus 
the set of effective Cartier divisors D on X inducing the same line bundle 2' 
corresponds bijectively to the set T(X, 2)*/T(X, 0;). 

Now let f : X -+ S be locally of finite presentation. An effective relative Cartier 
divisor on X over S is an effective Cartier divisor D on X which is flat over S. Further 
characterizations of effective relative Cartier divisors are given by the following 
lemma. 

Lemma 6. Let 3 be a quasi-coherent sheaf of ideals of 0, which is locally of finite 
presentation, and let D be the closed subscheme of X defined by $. Let x be a point 
of D, and set s = f(x). Then the following conditions are equivalent: 

(i) 3 is invertible at x (i.e., 9, is generated by a regular element), and D is flat 
over S at x. 

(ii) X and D are flat over S at x, and the restriction Ds of D onto the fibre Xs 
over s is an effective Cartier divisor on X, at  x. 

(iii) X is flat over S at x, and $, is generated by an element f, which induces a 
regular element on X,  at x. 

Proof. To show the assertion (i) ==+(ii), let h be a local section of 9 which 
generates $1;. Then h is a regular element of Ox,,, and the multiplication by h gives 
rise to an exact sequence 

After tensoring with the residue field k(s) of s over OS,,, we obtain the sequence 

o ~ O ~ s , x ~ O ~ s , x ~ O ~ s , x ~ o  . 
Due to the flatness of D over S,  this sequence is exact. Thus, h gives rise to a regular 
element of OXs,, and, hence, Ds is an effective Cartier divisor on X,. In order to show 
that X is flat over S at x, we may use a limit argument ([EGA IV,], 8.5.5 and 
11.5.5.2) and thereby assume that S is locally noetherian. Looking at the long exact 
Tor-sequence, the flatness of D yields 

for n 2 1. Since S ist locally noetherian, and since X is locally of finite type over S,  
the modules Tor~~s(0,,,, k(s)) are finitely generated over Ox,,. But then Naka- 
yama's lemma implies Tor?~~(0,,,, k(s)) = 0 for n 2 1, because x E D. Hence X is 
flat over S at x by Bourbaki [2], Chap. III,§ 5, n02, Thm. 1. 
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The assertion (ii) ==+(iii) follows from Nakayama's lemma, and the remain- 
ing implication (iii) - (i) is a consequence of [EGA IV,], 11.3.7. 0 

It is clear from condition (ii) that the notion of effective relative Cartier divisors 
is stable under any base change S' -+ S. Thus, there is a functor 

Div,, : (Sch/S)O -+ (Sets) , S' ++ Div(X'/S') 

where Div(X'/S') denotes the set of all effective relative Cartier divisors of X' = 

X xs S' over S'. Associating to an effective relative Cartier divisor D the line bundle 
0,(D), we obtain the canonical morphism 

As a first step towards the representability of Picxl,, one proves that this morphism 
is relatively representable. Recall, this means that for each morphism T --+ Picxls 
from an S-scheme T to Picxls, the morphism 

obtained from Divxls + Picxls by the base change T + Pic,,, is a morphism of 
schemes. However, we will show the latter only under the assumption that the map 
T --+ Picxls, as an element of Picxls(T), is given by a line bundle on X x, T. This 
is enough for our application, because in part I11 we will apply it to the case where 
T = Divxl, and where the map T-+ Picxl, is the canonical one. On the other 
hand, each map T + Picxls corresponds to a line bundle on X x, T if f has a 
section; cf. 8.114. So in this case we will really get the relative representability of 
Divxls + Picxls. 

Proposition 7. Let f : X -+ S be as in Theorem 5, and let T be an S-scheme. Let 2' 
be a line bundle on X, = X x, T and denote by T -+ Picxl, the morphism cor- 
responding to 9 .  Then there exists an 0,-module F, which is locally of finite 
presentation, such that Divxls x , ~ , ~ , ~  T is represented by the projective T-scheme 
P(F). 

Furthermore, there is a canonical way to choose F. If 9 is cohomologically flat 
in dimension zero, then f , (9)  and F are locally free, and F is isomorphic to the dual 
off* ( 2 ) .  

Proof. We may assume T = S. The fibred product Divxls x , ~ , ~ , ~  S is isomorphic to 
the functor D2 : (Sch/S)O (Sets) which associates to an S-scheme S' the set of all 
relative Cartier divisors D' on ??/Sf such that OX,(D1) and 9' give rise to the same 
element in Picx,(S'), where 2" denotes the pull-back of 2 to X'. By Proposition 
8.113 the latter condition is equivalent to the fact that O,,(Dr) and 9' are isomorphic 
locally over S'. Hence, as we have shown during our general discussion of Cartier 
divisors, there is a bijection 

where f '  is obtained from f by the base change S' + S, and where ( f i2 ' ) "  denotes 
the subsheaf of (f; 9') consisting of all sections which induce regular elements on 
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every fibre X, off .  Thus, we have a bijection 

which is compatible with base change. Since f is proper and flat, there exists an 
&-module F of locally finite presentation such that there is an isomorphism 

which is compatible with any base change S' + S; see Theorem 8.117. Furthermore, 
g is canonically determined by 9. Since the geometric fibres off are reduced and 
irreducible, the local sections of ( f+2)*  coincide with the local sections of f+2 
which do not induce the zero section on any fibre X,. Interpreting them as local 
homomorphisms 9 -+ 0, via (+) and applying Nakayama's lemma, they cor- 
respond to those local homomorphisms F -+ 0, which are surjective. Thus, the 
sections of (f, 9)*/0: correspond bijectively to the set of quasi-coherent quotients 
of F which are invertible, and hence to the sections of the projective bundle P (9 ) ;  
cf. [EGA 111, 4.2.3. Since all maps under consideration are compatible with base 
change, F is as required. The last statement of the proposition has already been 
mentioned in 8.117. 0 

Thereby we have finished part I. Next, we discuss part 11. The representabil- 
ity of Divxls will be derived from the representability of the Hilbert functor. The 
latter is defined as follows. For any S-scheme X denote by Hilb(X/S) the set of 
all closed subschemes D of X which are proper, finitely presented, and flat over S. 
Then 

Hilb,,, : (Sch/S)O -+ (Sets) , S' + Hilb(X x, S1/S' )  

is a functor, the so-called Hilbert functor of X over S. We see from Lemma 6 that 
Divxls is an open subfunctor of Hilbxl, if X is proper, finitely presented, and flat 
over S. Thus the representability of Divxl, follows from the representability of 
Hilbxls. We want to mention that, for the representability of Hilb,,, by a scheme, it 
is essential that X is quasi-projective over S. Namely, there is an example by 
Hironaka of a proper and smooth manifold of dimension 3 over a field on which 
the group 2/22 acts freely. But the quotient with respect to this action does not 
exist in the category of schemes; cf. Hironaka [I]. One shows that, in this situation, 
the Hilbert functor cannot be represented by a scheme; namely, the equivalence 
relation given by the group action constitutes a closed subscheme R of X x, X 
which is proper and flat with respect to the second projection. Thus R gives rise to 
an element g E Hilbxls(X) and, if Hilb,, were representable as a scheme, the image 
of the morphism X -+ Hilbx1, given by g would serve as a quotient of X under the 
group action. 

For showing the representability of Hilb,,,, it is convenient to look at a more 
general situation. Given an Ox-module F which is locally of finite presentation, one 
introduces the functor 

QuotpwIs, : (Sch/S)O -4 (Sets) 

which associates to an S-scheme S' the set of quotients 9' of the pull-back 9' of 9 
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to X' = X xs S' where 27 is required to be locally of finite presentation over Ox,, 
to be flat over S', and to have proper support over S'. The key result on the 
representability of the functor Quot(,-lxls, is the following theorem of Grothendieck 
(cf. [FGA], n0221, Thm. 3.1); the strengthening from the projective to the strongly 
projective case is due to Altman and Kleiman [I], Thm. 2.6. 

Theorem 8. Let f : X + S be strongly quasi-projective, and let F be an 0,-module 
which is locally of finite presentation. Fix a (relatively) very ample line bundle Q ( l )  
associated to an embedding of X into a projective bundle over S. Assume that F is 
isomorphic to a quotient of an 0,-module of the form f *@ @ &(v) for some v E Z, 
where 97 is a locally free Lo,-module with a constant finite rank. Then  QUO^^^^^^^^ is 
represented by a separated S-scheme which is a disjoint union of strongly quasi- 
projective S-schemes. 

If, in addition, f is proper, then Quot(,-l,ls, is a disjoint union of strongly projective 
S-schemes. 

Note that, for F = Ox, the functors  QUO^(,-^^^^) and Hilbxls coincide. Further- 
more, DivxIs is a quasi-compact open subfunctor of HilbxIs if X is proper, finitely 
presented, and flat over S. Thus, if HilbxIs is represented by a disjoint union 
of strongly quasi-projective S-schemes, so is Divxl,. 

When a very ample line bundle Ox(l) is fixed, Quot(,-,,,, can be covered in a 
canonical way by open subfunctors which will correspond to quasi-compact open 
subschemes of Quot(,-l,ls, (resp. of Hilb,,,). Namely, for any Ox-module 9 which 
is locally of finite presentation and has proper support, and for any point s E S, one 
has the Hilbert polynomial ~(9,)(t);  its value at any n E Z is given by the Euler- 
Poincari: characteristic 

of 9(n) over the fibre X,, where we have written gS(n) for the restriction of 9 O Ox(n) 
to X,. The Hilbert polynomial has rational coefficients; cf. [EGA III,], 2.5.3. 
Furthermore, when 9 is flat over S, it is locally constant as a function of s E S; cf. 
[EGA III,], 7.9.11. So, for a polynomial @ E Q[t], let Quot>lxls, be the subfunctor 
of Q u ~ t ( , - ~ , ~ ~ ,  consisting of all quotients with a fixed Hilbert polynomial 0. In 
the same way, one introduces the subfunctor Hilb;,, of Hilbxp. It is clear that 
Q~ot>,, ,~, constitutes an open and closed subfunctor of Quot,~,,,, and that the 
subfunctors Q u o t ~ l x l s ,  cover Qu~t(,-,~~, if 0 ranges over Q [t]. Thus, it suffices to 
prove the following theorem. 

Theorem 8'. Let X be S-isomorphic to a finitely presented subscheme of P(&) where 
& is a locally free OS-module of constant finite rank. Denote by f : X + S the 
structural morphism and by G(1 )  the canonical (relatively) very ample line bundle on 
X. Let 9 be isomorphic to a quotient of (f *B) @ Ox(v) where v E Z and where W is 
a locally free sheaf on S of constant finite rank, and assume that F is locally of finite 
presentation. Furthermore, fix a polynomial 0 E Q[t]. Then, there exists an integer 
mo satisfying the following property: 
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For each m 2 m,, the map 

Quo~$/x/s) -+ Grasso(rn)(W O Yymv+rn(&)) 7 

which associates to an element 9' E Quot>lxls~(S') the direct image f,(9'(m)), con- 
stitutes a functor which is relatively representable by a quasi-compact immersion. In 
particular, QUO~$F~,,~, is representable by a strongly quasi-projective S-scheme. 

If, in addition, X is a closed subscheme of IF'(&), the immersion of above is closed 
and Q ~ o t ~ ~ , ~ ~ ~  is strongly projective over S. 

For a locally free Os-module 9 and a non-negative integer r, we denote by 
Grass,(2) the contravariant functor from (Sch/S) to (Sets) which associates to an 
S-scheme Sf the set of locally free quotients of 9 @ Osf of rank r. Then Grass,(9) 
is representable by a closed subscheme of P@), where 9 is the r-th exterior power 
of 2; cf. Grothendieck [2], § 2. Since we have not restricted ourselves to polynomials 
cD E Q [t] which take values @(m) in the non-negative integers for large integers m, 
we define GrassJ9) by the empty functor if r E Q - N. Note that Quot$~~,,, is the 
empty functor if the polynomial @ does not take values @(m) in the non-negative 
integers for large integers m. 

For 9 = Cn,, one has Quot& = Hilb&. If X is proper and flat over S, we 
know that Div,,, is an open subfunctor of Hilbxls. So we denote by Div& the 
induced subfunctor of Hilb;,,. Thus, Theorem 8' implies the following corollary. 

Corollary 9. Let f : X + S be strongly projective (resp. strongly quasi-projective), 
and let @ E Q[t]. Then Hilb;,, is representable by a strongly projective (resp. strongly 
quasi-projective) S-scheme. 

If, in addition, X is proper andflat over S, then Div;/, is representable by a strongly 
quasi-projective S-scheme. 

Now let us give an outline of the proof of Theorem 8'. First one reduces to the 
case where X is the projective space P(&) associated to a locally free sheaf d of 
constant rank e + 1 on S, and where 9 is isomorphic to f *W(v) := (f *W) @ Ox(v) 
for some locally free sheef W on S which has constant rank b over S. Namely, 
Q ~ o t > ~ , ~  is a locally closed (resp. closed) subfunctor of  QUO^^*^(,)^^^^^^^) of finite 
presentation. In the latter case, there is a canonical isomorphism 

28 o YY&"+,(&) - f*W(m)) 

for m E Z; cf. [EGA 1111], 2.1.15. We assume this situation from now on. Then a 
key point is the following observation of Mumford which simplifies the original 
proof of Grothendieck; cf. Mumford [2], Lecture 14. 

Proposition 10. There exists a constant m, depending on the integers e, b, v and on 
the coefficients of 0, such that the following property is satisfied: 

Let S' be an S-scheme, and let 9' E Q u o ~ ~ ~ ~ ~ ~ ) ( S ' ) .  Denote by 2' the kernel of the 
canonical map 9' -9'. Then, for all m 2 m,, the Ox,-module 2 ' (m)  is generated 
by the local sections of f;(%'(rn)), and Ry;(#'(m) vanishes for i 2 1. The same is 
true for F ( m )  and gf(m). 
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A detailed proof of this proposition can be found in [SGA 61, Exp. XIII, $ 1, for 
the case where S' defines a geometric point of S. The general case follows then by 
the theory of cohomology and base change; cf. Mumford [3], $5. 

Going back to the proof of Theorem 8', keep the notation of Proposition 10. 
Then, for m 2 m, and for each S-scheme S', the canonical map 

is surjective. Since Rif;B'(m) vanishes for m 2 m, and i 2 1, the direct image 
f;(Y(m) is a locally free Lo,,-module of rank @(m), due to [EGA III,], 7.9.9. Thus, 
we get the canonical morphism 

associating to a flat quotient 3' of F' on X' the direct image f,(Y'(m)). Moreover, 
one can reconstruct the subsheaf X' of 9' from the canonical surjective map 

f;(pf(m)) + f;(Y(m)) . 

Thus, one can view Qu~t>,,~,, as a subfunctor of the GraBmannian functor 
Grass,(,)(g O YY~,+, (6) )  which associates to an S-scheme S' the set of all locally 
free quotients of f;(gf(m)) of rank @(m). It remains to see that the monomorphism 

Quotgjxjs) + Grass,(rn,(B O ~ ~ v + m ( ~ ) )  

is representable by a quasi-compact immersion. So denote by G the S-scheme 
Grass,(,)(B O YYmv+,(6)) and by 2 the universal quotient of 9 O YYmv+,(Q). 
The latter is a quotient (as an 0,-module) of the pull-back ( B  O Yym,+,(b)), of 
O Y~m,+,(b) to G, which is locally free of rank @(m). Let 9, be the pull-back 

of F on X, = X x, G, and let f,: XG + G be the map obtained from f by the 
base change G -+ S. By using the canonical isomorphism 

The kernel of this map generates a subsheaf %,(m) of pG(m). Denote by 2, the 
OxG-module XG(m) O OxG(-m) and by 3, the quotient pG/XG. By reducing to a 
noetherian base scheme S, one shows that there exists a (unique) subscheme Z of G 
such that a morphism T + G factors through Z if and only if the pull-back YT of 
3, on X xs T is flat over Tand has Hilbert polynomial @ on the fibres over T; cf. 
[FGA], n0221, Sect. 3. Furthermore, the inclusion Z c G is finitely presented. 
Hence, Quot~l,ls,  is represented by Z which is strongly quasi-projective over S. 
Finally, Z is strongly projective because the valuative criterion is satisfied by [EGA 
IV,], 2.8.1. 0 

Thereby we have finished part 11. Finally we come to part 111. We begin by 
recalling some definitions on equivalence relations in categories. Let C be a category 
such that direct products XI x X, and fibred products XI x, X ,  exist in C. A 
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C-equivalence relation on an object X of C is a representable subfunctor R of X x X 
such that, for each object T of C, the subset 

is the graph of an equivalence relation on X(T). Denote by pi : R -+ X the projec- 
tion onto the i-th factor, i = 1, 2. A categorical quotient of X with respect to the 
equivalence relation R is a pair (2, u) consisting of an object Z of C and a morphism 
u : X --, Z satisfying up, = up, such that, for any morphism v : X + Y satisfying 
vp, = up,, there exists a unique morphism 77: Z + Y such that v = Eu. If it exists, 
it is uniquely determined, and we will usually denote it by X/R. Furthermore, due 
to the definition of a fibred product, there is a canonical morphism 

R is called an effective equivalence relation on X if the categorical quotient XIR exists 
and if the canonical morphism i is an isomorphism. In this case, XIR is called an 
effective quotient. Quite often, the canonical morphism i is not an isomorphism; this 
means that the equivalence relation given by the fibred product X xxl ,  X over the 
categorical quotient XIR, is usually larger than the given relation R. 

In the following, we consider the category of S-schemes. Then one can look at 
quotients also from the sheaf-theoretical point of view. Due to Proposition 8.111, 
any S-scheme X is a sheaf with respect to the fppf-topology (or the fpqc-topology). 
So, one can ask for the quotient of X with respect to R in the category of sheaves 
for the fppf-topology. Using the procedure of sheafification, one easily shows that 
such a quotient exists and that it is effective. Let us denote it by (XIR). Furthermore 
let us assume that the categorical quotient (in the category of S-schemes) XIR exists. 
So, viewing X and XIR as sheaves for the fppf-topology, one obtains canonical 
morphisms 

If (XIR) is represented by a scheme, (XIR) is the effective quotient of X with respect 
to R (for the category of S-schemes), and the canonical morphism (XIR) -+ XIR 
is an isomorphism. 

Example 11. Let f :  X + Y be an fppf-morphism of S-schemes. Denote by R(f)  
the subscheme X x ,  X of X x, X. Then R( f )  is an effective equivalence relation on 
X and (Y, f )  is the effective quotient of X with respect to R(f) in the category of 
S-schemes as well as in the category of sheaves for the fppf-topology. 

Proof. Since f is an fppf-morphism, Y is the quotient (in the category of sheaves 
for the fppf-topology) of X with respect to R( f ). Hence the assertion follows from 
what has been said before. 0 

For any property P applicable to morphisms, an equivalence relation R on an 
S-scheme X is said to satisfy the property P if P holds for the projections pi : R -- X. 
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We need the following general theorem on the existence of effective quotients with 
respect to proper flat equivalence relations. 

Theorem 12. Let f : X -+ S be strongly quasi-projective, and let R be a proper flat 
equivalence relation on X which is finitely presented. Assume that the fibres of the 
projection p, : R + X have only afinite number of Hilbert polynomials with respect 
to an embedding of X into P(&), where 8 is a locally free lo,-module of constant finite 
rank. Then R is effective, the quotient map q : X -+ X/R is strongly projective and 
faithfully flat, and X/R is strongly quasi-projective over S. 

In particular, X/R is the effective quotient of X with respect to R in the category 
of sheaves for the fppf-topology. 

The proof is easily done by using the existence of the Hilbert scheme; cf. Altman 
and Kleiman [I], 5 2. Namely, set H = U Hilb?,, where cD ranges over the finitely 
many Hilbert polynomials of p,; then H exists as a scheme and is strongly quasi- 
projective over S; cf. Corollary 9. Let D be the universal subscheme of X x s  H. The 
projection p : D --+ H is proper, flat, and finitely presented, and the equivalence 
relation R is a subscheme of X x s  X which is proper, flat, and finitely presented 
with respect to the second projection p,. So, using the universal property of the 
Hilbert scheme, there is a unique morphism g : X -+ H such that 

R = (id, x g)*D 

Now the idea is to realize the quotient as the image of g. 
For an S-scheme T and for points x,, x, E X(T), write x, - x, whenever 

(x,,x,) E R(T). Then one shows 

(*I x1 xz==-gx1 = gx20(x1,gx2) E D(T) . 
Namely, set Ri = (id,,x,)*R for i = 1, 2. Due to the definition of Hilbxls, we have 
gx, = gx, if and only if for all T-schemes T', the set R1(Tf) coincides with R2(Tf) 
viewing both as subsets of (X x ,  T)(T1). Since R is an equivalence relation, the 
latter is equivalent to (x,,id,) E R,(T) and hence to x, - x,. Thus, the first equiv- 
alence is clear. Due to the definition of g, the condition (x1,gx2) 6 D(T) is equiv- 
alent to (x,, x,) E R(T). Then the second equivalence is also clear. 

Now, denote by Tg the graph of g : X + H. Since H is separated over S, the 
graph Tg is closed in X x, H. Furthermore, because Tg is isomorphic to X, it is of 
finite presentation over S. Since Tg is contained in D due to (*), it is a closed 
subscheme of D. Moreover, Tg is of finite presentation over D, since D is of finite 
presentation over S. We want to show that Tg descends to a closed subscheme Z of 
H which is of finite presentation over H. So look at the projection p : D -+ H. Due 
to the definition of Hilbx1,, the map p is faithfully flat, proper, and finitely presented. 
Consider the canonical descent datum on D. In order to show Tg descends to a 
closed subscheme Z of H which is of finite presentation over H, it suffices to show 
that the closed subschemes Tg x H  D and D x H  T, of D x ,  D coincide. The latter is 
easily checked by looking at T-valued points and by using the equivalence (*). The 
map g : X ---, H factors through Z and, identifying X with Tg, the map g : X -+ H 
is obtained from p : D --+ H by the base change Z ---* H. Hence, g : X + Z is 
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faithfully flat, and strongly projective over 2, since D, being proper and strongly 
quasi-projective over H, is strongly projective over H. Because of (*), we have a 
canonical isomorphism 

R - + X  x , X .  

Then (Z, g) is an effective quotient of X with respect to R as explained in Example 
11. Finally, Z + S is strongly quasi-projective because Z is a closed subscheme of 
the strongly quasi-projective S-scheme H. 0 

Now we want to explain how the proof of Theorem 5 can be derived from the 
results we have discussed up to now. Let @ be a polynomial with rational coeffi- 
cients. Since the Hilbert polynomial of any Ox-module, which is locally of finite 
presentation over X and flat over S, is locally constant, Pic:/, is an open and closed 
subfunctor of Picxls. Thus, it remains to show that Pic'& is representable by a 
strongly quasi-projective S-scheme. 

In order to do this, we need the notion of bounded families of coherent sheaves 
on the fibres of X over S. So, let S be a quasi-compact scheme and let X be an 
S-scheme of finite presentation. Let A be a family of isomorphism classes of coherent 
sheaves on the fibres of X over S; i.e., for each s E S and for each extension field K 
of k(s), we are given a family of coherent sheaves FK on X,. Two sheaves FK and 
Fir belong to the same class if there exist k(s)-embeddings of K and K' into a field 
L such that .FK OK L and .FL, OK, L are isomorphic on X,. The family A is called 
bounded if there exists an S-scheme T of finite presentation and a sheaf F on 
X ,  = X x s  T which is locally of finite presentation such that A is contained in the 
family (F&; t E T ) .  There is the following proposition, cf. [SGA 61, Exp. XIII, Thm. 
1.13. 

Proposition 13. Let S be quasi-compact, and let X -+ S be strongly projective. Let A 
be a family of coherent sheaves on the fibres of X over S. Then the followig conditions 
are equivalent: 

(i) A is bounded. 
(ii) The set of Hilbert polynomials x(F,)(t) is finite where .FK ranges over the 

elements of the family A, and there exist integers n E Z and N E N such that A is 
contained in the family of all classes of quotients of Ox(n)N. 

Furthermore we need the following result; cf. [SGA 61, Exp. XIII, Lemma 2.1 1. 

Proposition 14. Under the assumption of Theorem 5, a family A of line bundles ZK 
on the fibres of X over S is bounded i f  and only i f  the set of Hilbert polynomials 
x(5fK)(t) is finite. 

Now consider the morphism 

Fix the polynomial 0, and denote by D(@) the inverse image of Pic:ls in Divx1,. It 
is clear that D(@) is a disjoint union of connected components of Divxl, Then it 
follows from Proposition 14 that there are only finitely many connected components 
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of DivxIs which are involved. Thus, due to Corollary 9, we see that D(@) is strongly 
quasi-projective over S. 

Let us assume for a moment that the following condition on Pic& is satisfied: 
for any S-scheme S' and for any line bundle 9' on X' = X x, S' which induces an 
element of Pic$,, we have 

RYi(6P1(n)) = 0 for i > 0 and n 2 0 ,  and 

fi(9'(n)) # 0 for n 2 0 . 

Note that such line bundles are cohomologically flat in dimension zero. Further- 
more, in this case, the map D(@) + Pic;!, is an epimorphism (in terms of sheaves 
for the fppf-topology). Let 9 be the h e  bundle on X x, D(@) which corre- 
sponds to the universal (relative) Cartier divisor on X x, D(@). Then the map 
D(@) --t Pic!l, is induced by 2. Iff(@) is the base change off by D(@) --+ S, the 
direct image of 2 under f(@) is locally free of rank @(O). Due to Proposition 7, 
the morphism 

is representable by the flat (even smooth) strongly projective morphism 

where F is the dual of the direct image of 9 under f (@), since 9 is cohomologically 
flat in dimension zero. Now in order to show the representability of Pic&, consider 
the following diagram 

D(@) x~ic;,~D(@) A D(@) 

It says that Pic;,, is isomorphic to the quotient (as sheaf for the fppf-topology) of 
D(@) by a proper and flat equivalence relation. Thus Pic& is representable by a 
strongly quasi-projective S-scheme; cf. Theorem 12. 

Now it remains to remove the special assumption on Pic& which has been 
made above. If n is an integer, we denote by Pic&, + n t  the functor which associates 
to an S-scheme S' the subset 

of Picxl,(S'). Note that this functor is of the form Pic:/, for a suitable polynomial 
Y E Q[ t ] .  It suffices to show that there exists an integer n such that Pic?, + n( 
fulfills the above assumptions. However, since Pic;,, is bounded due to Proposition 
14, the latter follows from Propositions 13 and 10 by base change theory. 

Thus we have finished part 111, and thereby we conclude our discussion of 
Theorem 5. 
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8.3 Representability by an Algebraic Space 

The most restrictive assumption in Grothendieck's theorem 8.211 on the represent- 
ability of Picxls is that the geometric fibres off : X + S have to be reduced and 
irreducible. As we have seen in the preceding section by looking at Mumford's 
example, even if X is projective and flat over S, there is an obstruction to Picxls 
being a scheme, which is located in the fibres off. However, in Mumford's example, 
there exists a surjective etale extension S' + S such that the functor Picxls xs S' 
is representable by a scheme over S'. Working within the category of algebraic 
spaces (the definition is given below), we can say that Picxls is representable, since 
this category is stable under quotients by ttale equivalence relations. This example 
suggests that, in comparison with Grothendieck's theorem, the assumptions on the 
S-scheme X can be weakened if one wants to represent Pic,,, by an algebraic space. 

Theorem 1 (M. Artin [5], Thm. 7.3). Let f : X --+ S be a morphism of algebraic spaces 
which is proper, flat, and finitely presented. Then, iff is cohomologically flat in 
dimension zero, the relative Picard functor Picxls is represented by an algebraic space 
over S. 

A proper and flat morphism f is cohomologically flat in dimension zero if, 
for example, the geometric fibres off are reduced; cf. [EGA III,], 7.8.6. Further- 
more, let us mention that there is a converse of Theorem 1 when the base S is 
reduced. 

Remark 2. Let f : X ---+ S be a morphism of schemes which is proper,flat, and finitely 
presented. Assume that S is reduced. Then Picxls is an algebraic space if and only if 
f is cohornologically flat in dimension zero. 

Namely, in order to show the cohomological flatness o f f  when Picxls is an 
algebraic space, one has only to verify that the dimension of HO(X,,  O X s )  is locally 
constant on S; cf. [EGA III,], 7.8.4. Then one can assume that S is a discrete 
valuation ring. Hence, the assertion follows from Raynaud [6], Prop. 5.2. 

As we will see below, the method for the proof of Theorem 1 is completely 
different from the one used in the last section. It does not involve projective methods 
nor does it make use of the representability of the Hilbert functor or of the functor 
of relative Cartier divisors. Also we want to mention that the theorem does not 
contain 8.211. Only for the case where the base scheme S is a field, 8.211 and 8.213 
are corollaries of Theorem 1, since a group object in the category of algebraic spaces 
over a field is represented by a scheme. 

If, in the situation of Theorem 1, f is not cohomologically flat in dimension zero, 
the only option which is left is to work with rigidificators (cf. 8.1/5), and one can 
look for the representability of rigidified relative Picard functors; cf. Section 8.1. 

Theorem 3 (Raynaud [I], Thm. 2.3.1). Let f : X -+ S be a proper, flat, and finitely 
presented morphism of algebraic spaces, and let Y be a rigidificator for Picxl,. Then 
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the rigidified Picard functor (Pic,,,, Y) is representable by an algebraic space over S, 
and there exists a universal rigidified line bundle on (Picxis, Y). 

The proofs of these theorems make use of a general principle for the construction 
of algebraic spaces which is due to M. Artin; cf. [ 5 ] ,  Thm. 3.4. Namely, there is a 
criterion describing a necessary and sufficient condition for the representability of 
contravariant functors from (Sch/S) to (Sets) by algebraic spaces. It is for this 
criterion that the category of algebraic spaces yields a natural environment for 
questions on the representability of contravariant functors from (Sch/S) to (Sets). 
Within the category of algebraic spaces one can carry out many of the fundamental 
constructions, as contained in [FGA], under more general conditions, and one 
achieves results on the representability of certain functors under quite general 
assumptions. 

Before we explain the criterion, let us briefly mention the basic definitions 
concerning algebraic spaces. As an introduction to the theory of algebraic spaces, 
we refer to M. Artin [3]. A detailed treatment can be found in Knutson [I]. 

In the following, let S be a scheme. Sometimes, for technical reasons, when 
we want to apply the approximation theorem 3.6116, we have to assume that the 
base scheme S is locally of finite type over a field or over an excellent Dedekind 
ring. 

Definition 4. A (locally separated) algebraic space X over S is a functor 

X : (Sch/S)O -+ (Sets) 

with the following properties: 
(i) X is a sheaf with respect to the itale topology. 

(ii) There exists a morphism z : U + X of an S-scheme U ,  which is locally of 
finite presentation, to X such that z is relatively representable by &ale surjective 
morphisms of schemes. 

(iii) The product U x, U is represented by a subscheme of U xs  U such that the 
immersion U x, U -+ U xs U is quasi-compact. 

Condition (ii) means that, for every S-scheme V and every morphism V + X, 
the product U x, V is represented by a scheme and that the projection U x, V ---, 
V is etale and surjective. Furthermore, it follows from (iii) that U x, V -+ U x, V 
is a quasi-compact immersion. The algebraic space X is called separated over S if 
U x, U is representable by a closed subscheme of U x, U.  

Keeping the notations of Definition 4, the algebraic space X is the quotient of 
U by the equivalence relation R = U x, U (in terms of sheaves with respect to the 
&tale topology). Conversely, given an S-scheme U of locally finite presentation and 
a finitely presented subscheme R of U x, U which defines an Ctale equivalence 
relation, one can show that the quotient of U by R (in terms of sheaves with respect 
to the &tale topology) is an algebraic space. Thus we also could have defined 
algebraic spaces over S as quotients of S-schemes by etale equivalence relations. 

A morphism of algebraic spaces over S is a morphism of functors. Viewing an 
algebraic space as a quotient of a scheme with respect to an &tale equivalence 
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relation, one can describe morphisms between algebraic spaces in terms of mor- 
phisms between schemes. 

Proposition 5. Let f : XI -+ X, be a morphism of algebraic spaces over S. Then, for 
each i, there exists a representation of Xi as a quotient of an S-scheme Ui by an itale 
equivalence relation (as above), and there is an S-morphism g : U, + U, such that 
one has the following commutative diagram 

Furthermore, any morphism g : U ,  -+ U, inducing a commutative square as on the 
left-hand side gives rise to a morphism f : XI d X,. 

Associating to an S-scheme its functor of points, one gets a canonical map from 
the category of S-schemes to the category of algebraic spaces over S. This map gives 
rise to a fully faithful left exact embedding of categories. In the following, we will 
usually identify an S-scheme with its associated algebraic space over S. 

Clearly, any property of S-schemes which is local for the irtale topology, carries 
over to the context of algebraic spaces. One just requires that the property under 
consideration holds for the scheme U in Definition 4. This applies to the properties 
of being reduced, normal, regular, locally noetherian, etc.. Similarly, any property 
of morphisms of schemes which is local for the &ale topology (on the source and 
on the target) carries over to the category of algebraic spaces. Thus, the properties 
of being flat, ttale, locally of finite type, locally of finite presentation, etc. are defined. 
In particular, an algebraic space is provided with an etale topology in a natural 
way; a basis for this topology is given by the family of S-schemes U which are etale 
over X. The structure sheaves O,, where U is a scheme mapping &tale to X, induce 
a sheaf (with respect to the etale topology) Ox on the algebraic space X. This sheaf 
is called the structure sheaf of X. 

A morphism Y---+ X of algebraic spaces over S is called an immersion (resp. 
open immersion, resp. closed immersion) if Y --+ X is relatively representable by 
an immersion (resp. open immersion, resp. closed immersion). Thus, the notions of 
open and of closed subspaces of X are defined in the obvious way as equivalence 
classes of immersions. In particular, X carries a Zariski topology. 

An algebraic space X over S is called quasi-compact if there exists a surjective 
etale morphism U + X where U is a quasi-compact scheme. A morphism X + Y 
of algebraic spaces is called quasi-compact if for any quasi-compact scheme Vover 
Y, the fibre product X x , V is quasi-compact. Then we define a morphism X + Y 
of algebraic spaces to be of finite type if it is quasi-compact and locally of finite type; 
and to be of finite presentation if it is quasi-compact, quasi-separated, and locally 
of finite presentation. 

A morphism X + Y of algebraic spaces is called proper if it is separated, of 
finite type, and universally closed. The latter has to be tested on the scheme level. 
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We mention that there is a valuative criterion for properness; cf. Deligne and 
Mumford [I], Thm. 4.19. 

Now let us introduce the notion of points of an algebraic space. 

Definition 6. A point x of an algebraic space X over S is a morphism x :  Spec K --+ X 
of algebraic spaces over S, where K is a field and where x is a categorical monomor- 
phism. The field K is called the residue field of x, usually denoted by k(x). 

Two points xi : Spec K i  - X, i = 1, 2, are called equivalent if there is an 
isomorphism 0 : Spec K ,  -+ Spec K ,  such that x ,  = x,o. We identify equivalent 
points. Since, in Definition 6, we have required x to be a monomorphism, it is easily 
seen that this notion of points is equivalent to the usual one when X is a scheme. 
Furthermore, if U + X is a morphism where U is a scheme, then each point of U 
induces a point of X. So every non-empty algebraic space X over S has a point 
whose residue field is of finite type over S. One can even show that, for each point 
x of X, there exists an Ctale map U + X from a scheme U and a point u of U 
mapping to x such that the induced extension of the residue fields k ( x )  + k(u) is 
trivial. Such a pair (U, u) is called an &tale neighborhood of ( X ,  x )  without residue 
field extension. By using Lemma 2.317, one easily sees that the family of all such 
Ctale neighborhoods is a directed inductive system. So we get the notion of a local 
ring at a point of an algebraic space. 

Definition 7. The local ring for the itale topology of an algebraic space X at a point 
x of X is defined by the inductive limit 

0 x 4  = l$ 0u,u 

where the limit is taken over the family of all &ale neighborhoods (U,u)  of ( X , x )  
without residue field extension. 

As explained in Section 2.3, this ring is henselian. If x is a point of a scheme X, 
the henselization of the local ring of X at x (in terms of schemes with respect to the 
Zariski topology) serves as the local ring of X at x if X is viewed as an algebraic 
space. 

Let us mention some conditions under which an algebraic space is already a 
scheme. So let us start with an S-scheme U and an etale equivalence relation R on 
U. If R is finite, then the quotient UIR (in terms of sheaves with respect to the etale 
topology) is represented by a scheme if and only if, for each point u of U, the set of 
points which, under R, are equivalent to u is contained in an affine open subscheme; 
cf. [FGA], n0212, Thm. 5.3. For example, if U is affine, then U/R is represented by 
the afine scheme defined by the kernel of the maps 

In general, such a quotient is just an algebraic space and not necessarily a scheme, 
even if R is finite. But it can be shown that, for any algebraic space X over S, there 
exists a dense open subspace which is a scheme. If the base scheme S is a field, 
separated algebraic spaces over S of dimension 1 are schemes. Furthermore, group 
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objects in the category of algebraic spaces over a field are schemes, as one easily 
shows by using the results of Section 6.6. 

Next we want to describe M. Artin's criterion for a functor to be an algebraic 
space. We begin by reviewing some notions which are needed to state the general 
theorem. In the following, let S be a base scheme which is locally of finite type over 
a field or over an excellent Dedekind ring, and let 

F : (SchlS)' ---, (Sets) 

be a contravariant functor. If T =  Spec B is an affine scheme over S, we will also 
write F(B) instead of F(T). 

The functor F is said to be locally of finite presentation over S if, for every filtered 
inverse system of affine S-schemes {Spec B,), the canonical morphism 

lim F(Bi) --+ F(l$ Bi) -+ 
is an isomorphism. Note that, if F is an S-scheme, then F is locally of finite 
presentation as a functor if and only if it is locally of finite presentation as a scheme 
over S; cf. [EGA IV,], 8.14.2. 

Furthermore, we need some definitions concerning deformations. Let s be a 
point in S whose residue field is of finite type over S, let k' be a finite extension of 
k(s), and let lo be an element of F(kl). An infinitesimul deformation of lo is a pair 
(A, t) where A is an artinian local S-scheme with residue field k', and where ( is an 
element of F(A) inducing lo E F(kl) by functoriality. A formal deformation of lo is 
a pair (A, {t,),. N), where A is a complete noetherian local &-algebra with residue 
field kt, where the elements 5, E ~ ( q r n " " )  are compatible in the sense that 5, 
induces (,-, by functoriality, and where i;, coincides with lo. Here m is the maximal 
ideal of A. If the sequence {(,lnd is induced by an element 5 E F(A) via func- 
toriality, then (A, {t,),,!) or (A, 5) is called an effective formal deformation of lo. 
A formal deformation (A, {(,),, M) of lo is said to be versa1 (resp. universal) if it has 
the following property: 

Let (B', y') be an infinitesimal deformation of lo and, for an integer n, let the 
(n + 1)-st power of the maximal ideal of B' be zero. Let B be a quotient of B', and 
denote by y E F(B) the element induced by 11'. Then every map 

(Aim"+', 5,) + (B, 11) 

sending i;, to 11 can be factored (resp. uniquely factored) through (B', y') in the sense 
of morphisms of Os-algebras. 

We mention that, in general, the canonical map 

(*I F(A) -+ l i p  F(&W+I) 

is - not injective. Hence, if (A, f )  is an effective formal deformation of lo,  the element 
( E F(A) does not need to be uniquely determined by the sequence {(,},, even if 
(A, z) is universal. Nevertheless, the ring A is uniquely determined (up to canonical 
isomorphism) if (A, 5) is a universal. deformation of lo .  But, for most of the functors 
we are interested in, the map (*) is bijective for any noetherian complete local 
Qalgebra A. For example, this is the case for the Hilbert functor Hilb,,, or for 
the relative Picard functor Pic,,, if X is proper over S, as one can show by using 
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Grothendieck's existence theorem on formal sheaves; cf. [EGA III,], 5 5. In par- 
ticular, in these cases any formal deformation is effective. 

Now let X be an algebraic space over S, and let x be a point of X which is of 
finite type over S. Denote by k(x)  the residue field of x and by [," the inclusion of x 
into X. Let A" be the completion of the local ring of X at x with respect to the 
maximal ideal, and let 

- 

t x :  ~ p e c A " - - + ~  

be the canonical morphism. The pair (A",") will serve as an effective formal 
deformation of [," which is universal. Thus, in order to show that a contravariant 
functor F from (Sch/S) to (Sets) is an algebraic space, one should first look for the 
existence of universal deformations at all points of F which are of finite type over 
S. Therefore, one introduces the following notion. 

A contravariant functor F : (Sch/S)O -+ (Sets) is said to be pro-representable if 
the following data are given: 

(a) an index set I, 
(b) for each x E I, an &-field of finite type kx and an element [," E F(kx), 
(c) for each x E I, a formal deformation (A", (t,"),. N) of [," E F(kX), 

satisfying the condition that, for each artinian local S-scheme T of finite type and 
for each y E F(T), there is a unique x E I and a unique map T ---t Spec A" sending 
(5,") to rl. 

Note that (A", {t,"),, ,) is a universal formal deformation of [,". Furthermore, 
F is called effectively pro-representable if each sequence (5,") is induced by an 
element E ~ ( 2 ) .  If F is effectively pro-representable, then the elements x E I are 
called the points of finite type of F. In the case where F is an algebraic space, the 
notion of points of finite type coincides with the one given in Definition 6; one 
associates to x E I the point of F given by the map [," : Spec kx -+ F. The universal 
deformations (A", p) of [,", x E I, are called the formal moduli of F. 

A morphism 5 : X -+ F from an S-scheme X to the functor F is said to be 
formally smooth (resp. formally itale) at a point x E X if t fulfills the following lifting 
property: For every commutative diagram of morphisms 

x - 2, 

4' 4' 

F - Z  
where Z is an artinian S-scheme, where Z, is a closed subscheme of Z defined by a 
nilpotent ideal, and where Z0 -+ X is a map sending Zo to x, there exists a 
factorization (resp. a unique factorization) Z + X making the diagram commuta- 
tive. One easily shows that, if 5 : X -+ F is relatively representable by morphisms 
which are locally of finite presentation, 5 is formally &tale at a point x of X if and 
only if, after any base change Y -+ F by an S-scheme Y, the projection X x, Y --t Y 
is etale at every point of X x, Y above x; use [EGA IV,], 17.14.2. 

Theorem 8 (M. Artin [ 5 ] ,  Thm. 3.4). Let S be a scheme which is locally of finite type 
over a field or over an excellent Dedekind ring. Let F be a functor from (Sch/S)O to 
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(Sets). Then F is an algebraic space (resp. a separated algebraic space) over S if and 
only if the following conditions hold: 

[O] (sheaf axiom) F is a sheaf for the itale topology. 
[I] (finiteness) F is locally of finite presentation. 
[2] (pro-representability) F is effectively pro-representable. 
[3] (relative representability) Let T be an S-scheme of finite type, and let 5, 

y E F(T). Then the condition 5 = y is representable by a subscheme (resp. a closed 
subscheme) of T x s  T. 

[4] (openness of versality) Let X be an S-scheme of finite type, and let 5 : X + F 
be a morphism. If 5 is formally dtale at a point x E X ,  then it is formally itale in a 
neighborhood of x. 

The necessity is not difficult to show and has already been discussed when 
introducing the above notions. For the sufficiency which is the more interesting 
part, one needs an approximation argument for algebraic structures over complete 
local rings; cf. M. Artin 151, Thm. 1.6. The rough idea for the proof of the sufficiency 
is the following. 

One has to find a morphism U --+ F from an S-scheme which is locally of finite 
presentation to F such that U -+ F is relatively representable by etale surjective 
morphisms. We will first construct an ttale neighborhood for each poict of F which 
is of finite type over S. Consider such a point x of F, and let (2, p) be the formal 
deformation pro-representing F at x. Then one constructs an algebraization of 
(A", 4"); i.e., an S-scheme X of finite type, a closed point x E X with residue field 
k(x) = kx, and an element 5 E F(X), such that the triple (X, x, 5) gives rise to a versa1 
formal deformation of ,". More precisely, there is an isomorphism &x,x A" such 
that 5 induces 5," in ~(A"lm"+') for each n E N. The existence of such an algebraiza- 
tion follows easily from the approximation theorem 3.6116 if the ring A" of the 
formal modulus is isomorphic to a formal power series ring ds,s[[tl,. . . , t,]], 
where $,, is the completion of a local ring of S.-For example, this holds for the 
Picard functor of a relative curve.-In this case, 2 is the completion of an S-scheme 
X of finite type at a point x of finite type. Namely, write A" as a union of CIS- 
subalgebras B of finite type. Since F is assumed to be locally of finite presentation, 
the element 4" is represented by an element 5 E F(B) for some CIS-subalgebra B of 
finite type. The inclusion B CL A" yields a map F(B) - ~ ( 2 )  sending 5 to p. Due 
to the approximation theorem, there is an ttale neighborhood (X',xf) of (X,x) 
without residue field extension such that there is a commutative diagram 

s p e c 2  - specA"/m2A" 

SpecB t-- X ' 

sending the closed point of ~ ~ e c A " / m ~ A "  to x'. The completion o x . , ,  is still 
isomorphic to the ring A". Denote by E F(X') the image of { under the functorial 
map F(B) + F(X'). Due to the versality of ( 2 ,  p), there is an automorphism 
cp : AX - A", which is the identity modulo m2A", and which sends 5," to 5; for each 
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n E N where (l, is induced by 5' via functoriality. Thus ( X ' , x l ,  5')  is the required 
algebraization. 

Now, let I be the set of points of F which are of finite type over S and, for x E I, 
denote by (U x,  ux, 5") an algebraization of the formal modulus (A", 4"). One easily 
shows that t X  : U x  + F is formally ttale at ux. Due to condition [4], after shrinking 
U x  we may assume that 5" is ttale at every point. Hence, since U x  -+ F is relatively 
representable by condition [3], it is representable by etale maps. If we denote by U  
the disjoint union of the U x ,  x E I, the map 

is representable by Ctale surjective maps. Furthermore, due to condition [3], the 
equivalence relation U  x, U  + U  x ,  U  is relatively representable by a subscheme 
(resp. by a closed subscheme) of U x ,  U .  Thereby we see that P is an algebraic space 
as asserted in Theorem 8. 0 

Conditions [O] and [I] are natural, and they are satisfied quite often. For 
conditions [2] and [3], it is convenient to suppose that there is a deformation theory 
for the functor F so that one can rewrite the conditions in terms of deformation 
theory. Then it is often possible to decide whether a functor is pro-representable or 
relatively representable. Condition [4] is the one which is most difficult to verify, 
but it can also be interpreted by infinitesimal methods. We mention that there is a 
general theorem by M. Artin which relates the representability of a functor admit- 
ting a deformation theory to a list of conditions which can be checked in specific 
situations; for instance for the Hilbert functor or the relative Picard functor; cf. 
M. Artin [5], Thm. 5.4. Since many technical details are involved, we omit precise 
statements here. 

To end our discussion, we want to indicate the procedure of proof for Theorem 
1. Details can be found in M. Artin 151, Section 7; see also the appendix of M. Artin 
[7]. Since X is assumed to be of finite presentation over S, one can reduce to the 
case where the base scheme S is of finite type over the integers Z. Then one applies 
the general criterion for a functor to be an algebraic space. The deformation theory 
for Pic,,, is given by the exponential map. Iff : X  ---t S is cohomologically flat in 
dimension zero, the deformation theory for Picxl, fulfills all conditions which are 
required in the list of the general statement. Thus Pic,,, is pro-representable. Due 
to Grothendieck's existence theorem on formal sheaves, [EGA III,], § 5, one obtains 
formal moduli for Picxl,, i.e., Pic,,, is effectively pro-representable. Then, due to 
M. Artin's approximation theorem, the formal moduli are algebraizable, and hence 
one gets local models for the space which will represent Pic,,,. Since these local 
models are unique up to etale morphism, they can be glued together to form an 
algebraic space over S. 

Finally let us mention that the definition of algebraic spaces is not generalized 
by allowing flat equivalence relations of finite type in place of etale ones. This 
is due to the following fact; cf. M. Artin [7], Cor. 6.3. 
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If U is an S-scheme of finite type over a noetherian base scheme S, and if R  is a 
flat equivalence relation of finite type on U ,  then the quotient U / R  in terms of 
sheaves for the fppf-topology is represented by an algebraic space. 

As a corollary, one obtains the following useful assertion. 

Proposition 9. Let H and G be group objects in the category of algebraic spaces 
over S and let H ---t G be an immersion. Assume that H is flat over S. Then the 
quotient GIH in terms of sheaves for the fppf-topology is represented by an alge- 
braic space. 

8.4 Properties 

In this section we want to collect some results concerning the smoothness and 
certain finiteness properties of Picxls. Let us start with a theorem which is contained 
in [FGA], n0236, Thm. 2.10, for the case where Picxl, is a scheme; but it is immedi- 
ately clear that it remains true if Picxls is an algebraic space. 

Theorem 1. Let f : X ---t S be a proper and flat morphism which is locally of finite 
presentation. Assume that f is cohomologically flat in dimension zero so that Picxls 
is an algebraic space. Then the following assertions hold. 

(a) There is a canonical isomorphism 

where Lie(Pic,,,) is the Lie algebra of Picxp. 
(b) If S is the spectrum of a field K ,  then 

and equality holds i f  and only i f  Pic,,, is smooth over K.  In particular, the latter is 
the case i f the characteristic of K is zero. 

Proof. (a) Write OS[&] for the %-algebra of the dual numbers over Os, and set 
S[e] = Spec(OS[e]). Then one can interpret Lie(Pic,,,) as the subfunctor of 
Hom,(S[&]), Pic,,) consisting of all morphisms which, modulo E, reduce to the unit 
section of Picxl,. Setting X[E] = X x, S[E], one obtains the exact sequence 

Since f is cohomologically flat in dimension zero, the canonical map f,8x[el --+ 

f,OX is surjective. Therefore the sequence of sheaves with respect to the etale- 
topology 

0 + R1f,Ox ---+ R1 f,@&, -+ R1 f,O$ - R2 f,Ox 
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is exact. Since Lie(Pic,,,) corresponds to the kernel of the map R1f,+O&el + 

R1 f, Co,*, it can be identified with R1 f, 0,. 
(b) follows from (a) and 2.2115. 0 

Proposition 2. Let f : X + S be a proper and flat morphism which is locally of finite 
presentation. Let s be a point of S such that H2(X,, CO,J = 0. Then there exists an 
open neighborhood U of s such that Picxi,I, is formally smooth over U .  

In particular, in the case of a relative curve X over S, both Picxls and (Pic,,,, Y), 
where Y is a rigidijkator for Picxi,, are formally smooth over S. 

Proof. Due to the semicontinuity theorem [EGA III,], 7.7.5, there exists an open 
neighborhood U of s such that H2(Xs, 0,) = 0 for all s E U .  We may assume U = S. 
In order to prove that Picxls is formally smooth over S,  we have to establish the 
lifting property for Picxls. So consider an affine S-scheme Z and a subscheme Zn of 
Z which is defined by an ideal A" of Lo, satisfying N 2  = 0. Then we have to show 
that the map 

R1(f x s  Z)*Gxsz - R1(f xs  Z n ) * ~ ~ x s z ,  

is surjective. The cokernel of this map is a subsheaf of the &-module 
R2(f xS Z)*(N @, 0,). The latter vanishes, since H2(Xs, OXs) = 0 for all s E S; 
use [EGA III,], 7.7.10 and 7.7.5 (11). Thus we see that Pic,,, satisfies the lifting 
property and, hence, is formally smooth over S. 

In the case of a relative curve X over S, the assumption H2(X,, OXs) = 0 is 
satisfied at all s E S, so Picxi, is formally smooth over S. Furthermore, since there 
is no obstruction to lifting a rigidification, we see that (Picxl,, Y) is formally smooth 
over S, too. 0 

Now we will concentrate on finiteness assertions for Pic,,,. When proving 
Grothendieck's theorem 8.211, we had seen in 8.215 that Pic;, is quasi-projective 
over S. But if we impose stronger conditions on the fibres of X, we can expect better 
results. 

Theorem 3 ([FGA], n0236, Thm. 2.1). Let f : X -+ S be a proper (resp. projective) 
morphism which is locally of finite presentation. Assume that the geometric fibres of 
X are reduced and irreducible. Then Picxls is a separated algebraic space (resp. 
separated scheme) over S. 

If, in addition, f : X -+ S is smooth, then each closed subspace Z of Pic,,, which 
is of finite type over S is proper (resp. projective) over S. In particular, ifS consists of 
a field K, the identity component Pic$, of PicxiK is a proper scheme over K. 

Proof. Picxls is an algebraic space over S, due to 8.311. If X is projective over S, we 
know from 8.211 that Picxis is a scheme over S and from 8.215 that each closed 
subspace Z which is of finite type over S is quasi-projective over S. The remaining 
assertions follow by using the valuative criteria for separatedness and properness. 

Indeed, we may assume that S is the spectrum of a discrete valuation ring R, 
and that X admits a section over S. For showing the separatedness, we have to 
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verify that a line bundle 2 on X which is trivial on the generic fibre is trivial. There 
exists a global section f E T(X, 2) which generates 9 on the generic fibre. Since 
the local ring Ox,, of X at the generic point y of the special fibre is a discrete valuation 
ring such that the extension R ---+ Ox,, is of ramification index 1, we may assume 
that f generates 2 at y. Then it is clear that f generates 2 on X and that 2 is 
trivial. Next assume that X is smooth over S. For the properness, we have to show 
that each line bundle on the generic fibre of X extends to a line bundle on X. Since 
the local rings of X are regular, the notions of Cartier divisor and Weil divisor 
coincide. Obviously, Weil divisors on the generic fibre of X extend to Weil divisors 
on X. So, each line bundle on the generic fibre extends to a line bundle on X. 

If S consists of a field K, then Picxl, is a scheme by 8.213. Since any connected 
K-group scheme is of finite type as soon as it is locally of finite type, we see that 
Pic&, is of finite type and, thus, proper over K. 0 

Next we want to discuss finiteness assertions for Picxls under more general 
assumptions. Since, in general, Picxls will have infinitely many connected com- 
ponents, it cannot be of finite type over S. So the best one can expect is that there 
exists an open and closed subgroup Pickls of Picxls which is of finite type over S 
and which has the property that the quotient of Picxls by Pickls has geometric fibres 
which are finitely generated as abstract groups. We want to introduce the subgroup 
Pick,, . 

If S consists of a field, we know that the relative Picard functor Picxls is a group 
scheme. Let Pic:,, be its identity component. Then we set 

where n : Picxls ---t Picxl, is the multiplication by n. Due to continuity, Pickls is an 
open subscheme of Picxl, 

For a general base S, we introduce Pic$, (resp. Pic&) as the subfunctor of Pic,, 
which consists of all elements whose restrictions to all fibres X,, s E S,  belong to 
Pic&,, (resp. PicHslk,,). If Picxl, is an algebraic space (resp. a scheme), and if it is 
smooth over S along the unit section, then Picil, is represented by an open subspace 
(resp. an open subscheme) of Pic,,,, cf. [EGA IV,], 15.6.5. 

Theorem 4 ([SGA 61, Exp. XIII, Thm. 4.7). Let f : X ---+ S be a proper morphism 
which is locally of finite presentation, and let S be quasi-compact. Then 

(a) The canonical inclusion Pici,, c, Picxls is relatively representable by an open 
and quasi-compact immersion. 

(b) If X ---+ S is projective and ifits geometric fibres are reduced and irreducible, 
the immersion Pickls c, Picxls is open and closed. 

(c) Pickls is of finite type over S in the sense that the family of isomorphism classes 
of line bundles on the fibres of X which belong to Pic",, is bounded. 

The hardest part of the theorem is assertion (c). One can reduce it to the case 
where X is a closed subscheme of a projective space P';. In this case, one shows that 
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all elements of Pic',,, have the same Hilbert polynomial (with respect to the S-ample 
line bundle belonging to the embedding of X into P;), and then the assertion can 
be deduced from 8.215. 

Next, we want to look at the special case where X is an abelian S-scheme, i.e., 
a smooth and proper S-group scheme with connected fibres. 

Theorem 5. Let A be a projective abelian S-scheme. 
(a) Then Pic>/, is a projective abelian S-scheme. It is denoted by A* and is called 

the dual abelian scheme of A. In particular, A* coincides with the identity component 
of Pic,,. 

(b) The Poincare' bundle on A x, A* gives rise to a canonical isomorphism 
z : A -+ A** where A** is the dual abelian scheme of A*. 

A proof of (a) can be found in Mumford [I], Corollary 6.8. For (b), since A and 
A** are flat over S, it suffices to treat the case where S consists of an algebraically 
closed field. In this case, the assertion follows from Mumford [3], Section 13, p. 132. 

In 1.2/8 we have seen that an abelian scheme over a Dedekind scheme is the 
Neron model of its generic fibre. Now, using the above theorem, one can show a 
much stronger mapping property for abelian schemes than the one required for 
Neron models. 

Corollary 6. Let A be an abelian S-scheme. Then any rational S-morphism rp : T ---+ A 
from an S-scheme T to A is defined everywhere if T is regular. 

Proof. We may assume T = S. Then A is projective over S;  cf. Murre [ 2 ] ,  p. 16. 
Due to Theorem 5, we can identify A and A**. So the map cp corresponds to a line 
bundle on A* xs  St where S' is a dense open subscheme of S. Since S = T is regular 
and since A* -+ S is smooth, the scheme A* is regular. So the line bundle extends 
to a line bundle on A* and, thus, gives rise to an extension S + A** of cpls,. 

Now let us return to the general situation of a proper morphism X + S of 
schemes. We want to discuss the group of connected components of Pic,, over a 
geometric point of S. Let s be a point of S and let F be a geometric point of S such 
that k(S) is an algebraic closure of the residue field k(s) at s. The group of connected 
components of P~C,~,,(~, is called the Ndron-Severi group of the geometric fibre 
Xi = X x, k ( S )  of X over s. It is denoted by NSxp(F) so that 

Theorem 7. ([SGA 61, Exp. XIII, Thm. 5.1). Let f : X -+ S be a proper morphism 
which is locally of finite presentation, and assume that S is quasi-compact. Then 
the Ndron-Severi groups NS,,(F) of the geometric fibres of X are finitely 
generated. Their ranks as well as the orders of their torsion subgroups are bounded 
simultaneously. 

Remark 8. The Neron-Severi group is of arithmetical nature; i.e., the set of points 
where the Ntron-Severi group is of a fixed type is not necessarily constructible. 
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For example, let E ---+ S be an elliptic curve with a non-constant j-invariant 
over an irreducible base S which is of finite type over a field. Then there are infinitely 
many geometric points s of S such that the geometric fibre Es has complex multi- 
plication, and there are infinitely many geometric points such that the geometric 
fibre Ei has no complex multiplication. Now consider the product X = E x, E. If 
E, has no complex multiplication, the rank of the Ntron-Severi group of X,  is 3 .  
If E, has complex multiplication, the rank of the Neron-Severi group of X,  is at 
least 4. 



Chapter 9. Jacobians of Relative Curves 

The chapter consists of two parts. In the first four sections we study the represent- 
ability and structure of Pic,,, for a relative curve X over a base S. Then, in the last 
three sections, we work over a base S consisting of a discrete valuation ring R with 
field of fractions K and, applying these results, we investigate the relationship 
between Picxl, and the Neron model of the Jacobian J, of the generic fibre X,. 

The chapter begins with a discussion of the degree of divisors on relative curves. 
Then we give a detailed analysis of the Jacobian J, of a proper curve X, over a 
field, showing that the structure of J, is closely related to geometric properties of 
X,. The next two sections deal with the representability of Jacobians over a more 
general base. First, imposing strong conditions on the fibres of the curve and 
working over a strictly henselian base, we prove the representability by a scheme, 
using a method which was originally employed by Weil [2] and Rosenlicht [I]; see 
also Serre [I]. Then we explain results due to Deligne [I] and Raynaud [6], which 
are valid under far weaker conditions. 

In the second half of the chapter, we follow Raynaud [6] and consider a proper 
and flat curve X over a discrete valuation ring R, assuming in most cases that X is 
regular at each of its points and that the generic fibre X ,  is geometrically irreducible. 
Let P be the open subfunctor of Picxl, consisting of all line bundles of total degree 
0 and let Q be the biggest separated quotient of P. We show that Q is a smooth 
R-group scheme whose generic fibre coincides with the Jacobian J, of the generic 
fibre X,. Thus if J is a Neron model of J,, there is a canonical R-morphism Q + J. 
Without assuming the existence of J, we can prove under quite general conditions 
that, for example, if the residue field of R is perfect, then Q is already a Ntron model 
of JK. Thereby it is seen that the relative Picard functor leads to a second possibility 
of constructing Neron models. Also there are important situations where the 
identity component of Pic$, is already a separated scheme and where the canonical 
morphism Pic& -+ J 0  is an isomorphism. More precisely, we will see that the 
coincidence of Pic$, and J0  is related to the fact that X has rational singularities. 

In the above cases where Q is already a Ntron model of J,, it is possible to 
compute explicitly the group of components (of the special fibre) of this model, using 
the intersection form on X. In Section 9.6, we explain the general approach and 
carry out some computations in particular cases. 

9.1 The Degree of Divisors 

Let X be a proper curve over a field K. If x is a closed point of X and iff is a regular 
element of Co,,,, we define the vanishing order off at x by 
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ordx(f) := lo,,,(Ox,,l(f 1) 
where lox,, denotes the length of Ox,,-modules. If, for example, x is a regular point 
of X, the local ring Ox,, is a discrete valuation ring and ordx( f )  corresponds to the 
order off in Ox,, (with respect to the canonical valuation on Ox,,). Since we have 

for a product of regular elements f, g E Ox,,, we can define 

for any element f/g of the total ring of fractions of Ox,,. 
Now let D be a Cartier divisor on X. For a closed point x E X, we set 

where fJg, is a local representation of D in a neighborhood of x. We can associate 
to D the Weil divisor 

C ordx(D).x 
xsx 

The degree of a Cartier divisor D is defined by 

deg(D) = 1 ordx(D). [k(x) : K] . 
xsx 

The degree function is additive, i.e., 

deg(Dl + D,) = deg(Dl) + deg(D,) . 

If D is effective, we can write 

deg(D) = dim, HO(X, OD) 

where OD denotes the structure sheaf of the subscheme associated to D. Thus we see 
that the degree of a Cartier divisor on X is not altered by a base change with a field 
extension K1/K. 

Assuming for a moment that X is reduced, we can consider the normalization 
3 - X of X. Then one can pull back Cartier divisors D on X to Cartier divisors 
B on 2. We claim that 

deg(D) = deg(B) . 

Indeed, it suffices to justify the following assertion. Let U = Spec(A) be an affine 
open subscheme of X and let A" be the normalization of A. Then, for each regular 
element f of A, one has 

dirnK(Al(f 1) = dimK(A"/(f 1) . 
In order to prove this, look at the commutative diagram 
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with exact rows, where the vertical maps are given by the multiplication with f. 
Since f is a regular element of both A and A". there is a long exact seouence 

Using dim,(C) < co, it follows that dim,(ker( f,)) = dim,(C/f. C). Hence, the asser- 
tion is evident. 

A Cartier divisor D on an arbitrary proper curve X is called principal if there 
exists a meromorphic function f on X such that D = div( f ). For a principal divisor 
D, we have deg(D) = 0. Two Cartier divisors Dl and D, are said to be linearly 
equivalent if the difference Dl - D, is principal. So we see that the degree of a Cartier 
divisor D is not altered if we replace D by a divisor which is linearly equivalent to 
D. Since each line bundle 9 on X corresponds to a Cartier divisor D which is unique 
up to linear equivalence, one can define the degree of a line bundle 9 by setting 
deg(9)  := deg(D). The degree plays an important role in the Riemann-Roch 
formula. 

Theorem 1. Let X be a proper curve over a field K, and let 9 be a line bundle on X. 
Then the Euler-Poincari characteristic 

~ ( 9 )  = dim, H0 (X, 9) - dim, H1(X, 9 )  

of 9 is related to the Euler-Poincard characteristic of Ox by the formula 

~ ( 9 )  = deg(W + ~ ( 0 x 1  . 
Proof. One proceeds as in the case of a smooth curve by looking at an exact sequence 

where D is an effective Cartier divisor on X such that 9 OX(D) is isomorphic 
to O,(E) with an effective Cartier divisor E on X. Furthermore, one has the exact 
sequence 

O+Ox-+Co,(E)-+O,-+O. 

Calculating the Euler-Poincare characteristic of both sequences, the assertion 
follows immediately from 2 Box Ox(D) E Ox(E) and deg 9 = deg E - deg D. 0 

If HO(X, Lo,) = K, for example, if X is geometrically reduced and connected, 
the Euler-Poincare characteristic of Ox is given by ~ ( 0 , )  = 1 - pa, where pa = 

dimKH1(X, Lo,) is the arithmetic genus of the curve X. 
If X --+ S is a relative curve and if Y is a line bundle on X, one can restrict 9 

to the fibres of X over S. So, for each s E S, we get a line bundle d%: on the fibre X,, 
and the degree deg($",) of YS on the fibre X,  gives rise to a Z-valued function on S. 

Proposition 2. Let X --+ S be a flat proper S-curve of finite presentation and let 9 
be a line bundle on X .  For s E S, denote by $P, the restriction of 9 to the curve Xs. 
Then the degree function 

deg : S -+ Z , s t-+ deg(Ys) 
is locally constant on S. 
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Proof. The Euler-Poincare characteristic of a flat family of coherent sheaves is 
locally constant on the base; cf. [EGA III,], 7.9.4. Thus, using the Riemann-Roch 
formula, one sees that the degree function must be locally constant on S. 0 

Now let us return to the situation we started with. Let X be a proper curve over 
a field with (reduced) irreducible components XI, . . . , Xr. If 9 is a line bundle on 
X, we can restrict 9 to each component Xi,  i = 1, . . . , r, and we define the partial 
degree of 9 on Xi by 

degxp') = deg(wxi) . 
In order to explain the relationship between the total degree and the partial degrees, 
we need the notion of multiplicities of irreducible components. 

Definition 3. Let X be a scheme of finite type over a field K ,  let I? be an algebraic 
closure of K ,  and set x = X @, K. Denote by X I ,  . . . , Xr the (reduced) irreducible 
components of X and, for i = 1, . . . , r, let y, E X be the generic point corresponding 
to Xi. The multiplicity of Xi in X is the length of the artinian local ring W e  
denote it by d i ;  so 

di = . 

The geometric multiplicity of Xi  in X is the length of the artinian local ring Ox,,-i 
where Ti is a point of x lying above y,. We denote it by 6,; so 

If X is irreducible, we talk about the multiplicity (resp. the geometric multipicity) 
of X ,  thereby meaning the multiplicity (resp. the geometric multiplicity) of X in X .  
Furthermore, we denote by 

ei = l(O,i,,i) 

the geometric multiplicity of Xi. 

Note that the definition is independent of the choice of Fj,, since all points of 2 
above yi are conjugated under the action of the Galois group of I? over K. There 
are some elementary relations between the different notions of multiplicities which 
are easy to verify. 

Lemma 4. Keeping the notations of Definition 3, one has 
(a) 6, = e, . di for i = 1, . . . , r. 
(b) 6, = ei if and only X is reduced at the point yi. 
(c) ei = 1 if the characteristic of K is zero; otherwise it is a power of the character- 

istic of K .  

Using the notion of multiplicity of components, one can state a relationship 
between the (total) degree and the partial degrees of a line bundle. 

Proposition 5. Let X be a proper curve over a field K with (reduced) irreducible 
components XI, . . . , X,. Denote by di the multiplicity of Xi in X ,  i = 1, . . . , r. Then 
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for each line bundle 9' on X .  

Proof. It suffices to establish the formula for Cartier divisors D whose support does 
not contain any intersection point of the different components. Since both sides of 
the formula are additive for divisors, we have only to consider effective Cartier 
divisors. Then the assertion follows from the lemma below. 0 

Lemma 6. Let A be a one-dimensional noetherian local ring and let p , ,  . . . , p,  be the 
minimal prime ideals of A. Let M be a finitely generated A-module, and let a be an 
element of A which is not contained in any p i .  Denote by a,  the multiplication by a 
on M and define 

eA(a, M) = l,(coker(a,)) - l,(ker(a,)) . 

Proof. Note that both sides are additive for exact sequences of A-modules. So we 
may assume M = Alp for a prime ideal p  of A; cf. Bourbaki [2], Chap. IV, § 1, n04, 
Thm. 1. If p  is maximal, both sides are zero. If p is minimal, then lAP(MP) = 1 and 
the localizations of M at the other minimal primes are zero. Thus, the formula is 
also clear in this case. 0 

The results about the degree of line bundles which are presented in the following 
will be used in Section 9.4 to establish the representability of Pic,!, if X is a relative 
curve over a discrete valuation ring. Furthermore, they will be of interest in Section 
9.5 where we will discuss the relationship between the Picard functor and Ntron 
models of Jacobians. 

Lemma 7. Let K be a separably closed field. Let X be an irreducible K-scheme of 
finite type of dimension r and let 6 be the geometric multiplicity of X .  Then, for each 
closed point x E X and for each system of parameters f = ( f,, . . . ,f,) of the local ring 
Lox,,, the following assertions hold: 

(a) dim~&,x/(f)  2 6. 
(b) I f f  is a regular sequence, dimKO,,,/( f )  is a multiple of 6. 
(c) If dimKLox,x/( f )  = 6, then f is a regular sequence. 

Furthermore, there exist x and f such that dim,Co,,,/( f )  = 6. 

Proof. After shrinking X ,  we may assume that f gives rise to a quasi-finite morphism 

Denote by K the algebraic closure of K and by cp the morphism q 0, K. Since K 
is assumed to be separably closed, there exists a unique point x of X = X 0, K 
above x. Consider now the henselization Y' of Y := AX at the origin. Let X' be the 
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local component of x xf; Y' above T. Then the map 

cp1:x' + Y' 

obtained from cp via base change is finite. Furthermore, cp' is flat if and only iff is 
a regular sequence; cf. [EGA O,,], 15.1.14 and 15.1.21. The local rings of X' at 
generic points are artinian of length 6 and the generic points of X' lie above the 
generic point of Y'. Hence, the degree of X' over Y' is a non-zero multiple of 6. So, 
by Nakayama's lemma, the degree of the closed fibre of cp' is greater or equal to 6. 
Since the degree of the closed fibre is equal to dimKO,,,/( f ), we see that assertion 
(a) is true. 

Iff is a regular sequence, X' is flat over Y'. Then the degree of the special fibre 
of cp' is equal to the degree of X' over Y'. Thus, assertion (b) is clear. 

If the degree of the special fibre is 6, it is equal to the degree of X' over Y'; then 
O,,(X') is free over O,,(Y') and, hence, flat. This shows that f is a regular sequence; 
so assertion (c) is true. 

Next we want to show that the value 6 can be attained. After replacing X by a 
dense open subset, we may assume that z,,, is smooth over I?. So the module Cl+redlx 
is locally free. Furthermore, since ClirCdiK is a quotient of CliIx, we may assume that 
there exist elements a,, . . . , a, E r (X ,  Ox) such that the images of the differentials 
da,, . . . , da, in Cl+rcd,E give rise to a basis of this module. Consider now the morphism 

a := (a , ,  ..., a , ) :X+  Y:=  Ak 

given by the functions a,, . . . , a,. The restriction of the induced map a :  x -+ Y to 
z,,, is &tale. After replacing X and Y by dense open subsets, we may assume that 
a is finite and flat. Let x be a point of X such that a(x) is a rational point of Y. We 
may assume that a(x) is the origin. Then f := (a,, . . . ,a,) is as required. Namely, 
using notations as above, we have to show that the degree of the finite and flat 
morphism cp' : X' + Y' is 6. Since the induced morphism 

cpie* : xie, = Yf 

is an isomorphism, the degree of cp' coincides with the length of the local ring Ox,,,, 
at the generic point y' of X', which is equal to 6. 0 

As a corollary of Lemma 7, we get a relation between the geometric multiplicity 
of a component Xi of X and the partial degree degXi(9) of a line bundle 9 on X. 

Corollary 8. Let X be a proper curve over a field K and let XI, . . . , X, be its (reduced) 
irreducible components. Let Y be a line bundle on X. Denote by ei the geometric 
multiplicity of Xi, i = 1, . . . , r. Then the partial degree degXi(9) of 9 on Xi is a 
multiple of ei for i = 1, . . . , r. 

Proof. We may assume that X = Xi is reduced and irreducible, and we may assume 
that 9 = Ox(D) is associated to an effective Cartier divisor D on X which is 
concentrated at a single point x. Let f be a regular element of Ox,, which represents 
D at x, so we have 
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Due to Lemma 7, if K is separably closed, the geometric multiplicity 6; = ei of 
X = Xi divides dim,Co,,,/( f )  = deg(9). In the general case, consider a separable 
closure K' of K. The irreducible component X = Xi decomposes into the irreducible 
components X; of X' = X @, Kt, but the geometric multiplicities eij of X;  coincide 
with e,. Thus we see that ei divides degXlj(9 @, K'), for all j. Now it follows 
from Proposition 5 that ei divides deg(9)  = degxi(9), since the degree function is 
compatible with extensions of the base field. 0 

If X is a scheme of finite presentation over a strictly henselian base S, Lemma 7 
can be used to show the existence of subschemes of X which are finite and flat over 
S and which have small degrees over S. 

Corollary 9. Let S be a strictly henselian local scheme, let s be its closed point, and 
let X be a flat S-scheme which is locally of finite presentation. Let X ,  be an irreducible 
component of the special fibre X,  of X and let 6 be the geometric multiplicity of X ,  
in X,. Then there exists an S-immersion a : Z + X ,  where Z is finite and flat over 
S of rank 6 and where a,(Z,) is a point of X ,  not lying on any other irreducible 
component of X,. 

Proof. Let U be an open subscheme of X such that U, = U x s  k(s) is non-empty 
and contained in X,. Due to Lemma 7, there exist a closed point x of Us and a 
regular system of parameters f of LOus,, = O,,, @os,s k(s) such that 

After restricting U, one can lift f to a sequence f of elements of T(U, Lo,). Then f is 
a regular sequence of O,,,; cf. [EGA O,,], 15.1.16. After restricting U, a local 
component Z of V ( f )  which contains x is finite and flat over S, so Z fulfills the 
assertion; cf. [EGA O,,], 15.1.16. 0 

Corollary 10. Let S be a strictly henselian local scheme with closed point s, and let X 
be a flat curve over S which is locally of finite presentation. Let X ,  be an irreducible 
component of the special fibre X,  with geometric multiplicity 6 in X,. Then there exists 
an effective Cartier divisor Z of degree 6 on X such that Z meets X,, but no other 
irreducible component of X,. Furthermore, degxo(Z) = e where e is the geometric 
multiplicity of X,. 

Corollary 9 implies the following criterion for the representability of elements 
of Pic,,, by line bundles. 

Proposition 11. Let f :  X -+ S be a quasi-separated morphism of finite presentation 
such that f,Ox = Os. Consider S-morphisms Zi ---t X ,  i = 1, . . . , r, where Zi is finite 
and flat over S of degree ni. Set n = gcd(n,, . . . , n,). Then, for each flat S-scheme T 
and for each element 5 E Picx,,(T), the multiple n .  5 is induced by a line bundle on 
X , = X x s T .  
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Proof. Since n is a linear combination of n,, . . . , n, with integer coefficients, it suffices 
to prove that each ni.  i" is induced by a line bundle. Due to [EGA III,], 1.4.15, and 
[EGA IV,], 1.7.21, the assumption f,Ox = Os remains true after flat base change. 
So we may assume S = 7: The morphism Zi + X gives rise to a Zi-section of 
X x s  Zi. So the pull-back of 5 in Pic,,,(Zi) is induced by a line bundle 9 on X x s  Zi; 
cf. 8.114. Then the norm of 9 with respect to the finite flat morphism X x s  Zi --+ X 
gives rise to the element ni .( in Pic,,,(S); cf. [EGA IV,], 21.5.6. 

As an application of Corollary 9 and Proposition 11, one obtains the following 
result. 

Corollary 12. Let S be a strictly henselian local scheme, let s be its closed point, and 
let f :  X --+ S be a flat morphism of finite presentation such that f,Ox = Us. Denote 
by 6 the greatest common divisor of the geometric multiplicities in X ,  of the irreducible 
components XI, . . . , X,  of X,. Then, for each flat S-scheme T, and each element 4 of 
Pic,,,(T), the multiple 6 . 5  is induced by a kine bundle on X x s  T. 

9.2 The Structure of Jacobians 

In the following let X be a proper curve over a field K. Then, due to 8.213 and 8.412, 
Pic:,, is a smooth scheme; we will also refer to it as the Jacobian of X. In the 
present section, we want to discuss the structure of Pic;, as an algebraic group 
depending on data furnished by the given curve X. To start with, let us mention 
some general results on the structure of commutative algebraic groups. 

Theorem 1 (Chevalley [I] or Rosenlicht 121). Let K be a field and let G be a 
smooth and connected algebraic K-group. Then there exists a smallest (not necessarily 
smooth) connected linear subgroup L of G such that the quotient G/L is an abelian 
variety. 

If K is perfect, L is smooth and its formation is compatible with extension of the 
base field. 

Chevalley has treated the case where K is algebraically closed and has shown 
that there exists a smooth connected linear subgroup L of G such that the quotient 
GIL is an abelian variety. If the base field is perfect, the existence of such a subgroup 
follows by Galois descent from the case of algebraically closed fields. It is clear that 
such a group is the smallest connected linear subgroup of G with abelian cokernel, 
and that its formation is compatible with extension of the base field. 

If the base field is not perfect, there exist a finite radicial extension K' of K and 
a connected smooth linear K'-subgroup H' of G' = G OK K' such that the quotient 
G'IH' is an abelian variety. Let us first show that there exists a connected linear 
subgroup H of G such that H OK K' contains H'. Let n be the exponent of the radicial 
extension K'IK. Then consider the n-fold Frobenius 
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(cf. [SGA 3,], Exp. VII,, 4.1); the second projection is induced by the inclusion 
K' + K'('Ipn). NOW let HA be the pull-back of the subgroup H'(Pn) of G'(Pn). If 4' is 
the sheaf of ideals of O,, associated to H', the sheaf of ideals associated to HA is 
generated by the pn-th powers of the local sections of 9'. Since K'IK is of exponent 
n, we see that 4' is generated by local sections of 0, and, hence, that HA is defined 
over K. Now it remains to show that there exists a smallest connected linear 
subgroup L of G having abelian cokernel. This follows immediately from the fact 
that an intersection of two linear subgroups of G is linear again and has abelian 
cokernel if each of them has abelian cokernel. 0 

For an arbitrary base field K, the connected linear subgroup L does not 
need to be compatible with field extensions. If the base field K is perfect and 
the group G is commutative, one has further information on the structure of the 
group L.  

Theorem 2 ([SGA Exp. XVII, Thm. 7.2.1). Let K be a field and let G be a smooth 
and connected algebraic K-group of finite type. Assume that G is commutative and 
linear. Then G is canonically an extension of a unipotent algebraic group by a torus. 

If, in addition, the base field K is perfect, this extension splits canonically; i.e., G 
is isomorphic to a product of a unipotent group and a torus. 

Now we come to the discussion of the structure of Pic$,. We start with a result 
which is a direct consequence of 8.412 and 8.413. 

Proposition 3. Let X be a proper and smooth curve over a field K. Then the Jacobian 
Pic$, is an abelian variety. 

If the base field K is perfect, the curve X is smooth over K if and only if it is 
normal. The two notions are not equivalent over arbitrary fields, so it may happen 
that Pic'&, is not proper although X is normal. 

Proposition 4. Let X be a proper curve over a field K. Assume that X is normal, 
geometrically reduced, and geometrically irreducible. Then Pic;/, contains neither a 
subgroup of type (6, nor a subgroup of type G,. 

Proof. Since, for any separable field extension K'IK, the Kf-curve X 8, K' is normal, 
we may assume that K is separably closed. Then there exists a rational point on X 
because X is geometrically reduced. So, for any K-scheme T, elements of PicxlK(T) 
can be represented by line bundles on X x, T; cf. 8.114. Now, let us assume that 
there is a subgroup G of PicxlK which is of type G, or G,. The inclusion G c, PicxlK 
corresponds to a line bundle 9 on X x, G. Since X is normal, the line bundle 9 
is isomorphic to the pull-back of a line bundle on X ;  cf. Bourbaki 121, Chap. VII, 

1, nOIO, Prop. 17 and 18. Hence, the map G + PicxlfL which is induced by 9 must 
be constant. So we get a contradiction and the assertion is proved. 0 
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Now we turn to more general cases. Let us denote by X,,, the largest reduced 
subscheme of X. By functoriality, we get a canonical map 

Pic;, -+ . 

So we can look at the kernel and at the image of this map. The algebraic group 
corresponding to the kernel can easily be described by the nilradical of Co,. 

Proposition 5. Let X be a proper curve over a field K. Then the canonical map 

P~CXIK + P~cx,,,IK 

is an epimorphism of sheaves for the itale topology. Its kernel is a smooth and con- 
nected unipotent group which is a successive extension of additive groups of type G,. 

Proof. Let X' + X be a closed subscheme which is defined by a sheaf of ideals N 
of Ox satisfying N 2  = 0. It suffices to show that the canonical map 

PicxlK + PicXrIK 

is an epimorphism of sheaves for the ttale topology and that its kernel is of the 
type described above. Let f :  X -+ Spec K be the structural morphism. The exact 
sequence given by the exponential map 

gives rise to the exact sequence 

~ l f , ~ l r  -+ RI~,O; + ~ t f , ~ ; ,  + R ~ ~ , N  

which has to be read as a sequence of sheaves for the Ctale topology. Because X is 
a curve, we have R2f ,N  = 0. Hence the canonical map 

Pic,,, = R1f ,  0; --+ PicxtlK = R l f ,  Lo,*, 

is an epimorphism. Since, for any K-scheme T, there is a canonical isomorphism 

the group functor R1f*Jlr is represented by the vector group H 1 ( X , N ) .  Then it 
follows from the exact sequence above that the kernel of the map we are interested 
in is a quotient of the vector group H1(X, N). The latter is a successive extension 
of groups of type G,. So, as can easily be deduced from [SGA 3,,], Exp. XVII, 
Lemme 2.3, the kernel is as required. 0 

It remains to study Pic&,! for reduced curves. Therefore, let us assume now that 
the curves under consideration are reduced. Before starting the discussion of the 
general case, we want to have a closer look at an example. 

Definition 6. Let S be any scheme, and let g be an integer. A semi-stable curve of genus 
g over S is a proper and Jlat morphism f :  X -+ S whose fibres Xs over geometric 
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points S of S are reduced, connected, one-dimensional, and satisfy the following 
conditions: 

(i) X, has only ordinary double points as singularities, 
(ii) dim,, H1 (Xs, Ox,) = g. 

A point x of a curve X over an algebraically closed field K is an ordinary double 
point if the completion fix,, of the local ring Ox,, of X at x is isomorphic to the 
quotient I?[[[, 511 A [ { )  of the formal power series ring I?[[[, 511 in two variables. 
For a curve X over a field K, one can formulate the condition of X being semi-stable, 
without performing the base extension by an algebraic closure K of K. Namely, a 
geometrically connected curve X over a field K is semi-stable if and only if for each 
non-smooth point of X there exists an etale neighborhood which is Ctale over the 
union of the coordinate axes in A;. 

The interest in semi-stable curves comes from the semi-stable reduction theorem, 
see Deligne and Mumford [I] or Artin and Winters [I], which we want to mention 
without proof. 

Theorem 7 (Semi-stable Reduction Theorem). Let R be a discrete valuation ring with 
fraction field K. Let XK be a proper, smooth, and geometrically connected curve over 
K. Then there exist a finite separable field extension K' of K and a semi-stable curve 
X' over the integral closure R' of R in K' with generic fibre Xi,  E XK OK K'. 
Furthermore, X' can be chosen to be regular. 

If X is a semi-stable curve over an algebraically closed field K, one can associate 
a graph r = r (X)  to it: the vertices of r are the irreducible components of X, say 
XI, .  . . , Xr, and the edges are given by the singular points of X; namely, each singular 
point lying on Xi and on Xj defines an edge joining the vertices Xi and Xj. Note 
that Xi = Xj is allowed. 

Example 8. Let X be a semi-stable curve over a field K.  Then Pic;/, is canonically 
an extension of an abelian variety by a torus T. 

More precisely, let X I ,  . . . , Xr be the irreducible components of X, and let Ti be 
the normalization of Xi, i = 1,. . . , r. Then the canonical extension associated to Pic;/, 
is given by the exact sequence 

n* 1 -+ T c, Pic& - n - 1 
i = l  

where n* is induced via functoriality by the morphisms xi : 8, - X, i = 1, . . . , r. The 
rank of the torus part T is equal to the rank of the cohomology group H1(T(X 8, K), Z). 

Proof. Let n : 8 --+ X be the normalization of X. The connected components of 2 
are the normalizations zi of the irreducible components Xi. They are proper and 
smooth over K, hence is an abelian variety over K. Furthermore, the map 
n* is compatible with field extensions. So we may assume that K is algebraically 
closed. Now look at the exact sequence 
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The quotient 2 = x,O$/O; is concentrated at the singular points x,, . . . , x, of X. 
The associated long exact sequence 

can be written in the following way 

where 

KT = HO(gi,  OZi) r K* and Kj* = (K(Zjl) x K(Zj,)*)/K* z K* 

if Zj, and Zj2 are the points of 8 lying above the double point xj. Using the long 
exact sequence of sheaves with respect to the Ctale topology which is associated to 
(*), one sees that n* is an epimorphism, since R1f,$ = 0 where f :  X - SpecK is 
the structural morphism. Furthermore, the kernel of TC* is given by the quotient of 
the map ROf,(x,O$) + R0f*(2). The latter is a quotient of a torus and, hence a 
torus. The assertion concerning the rank of the torus follows from the exact sequence 
(**I. 0 

Now let us return to the general situation of a reduced curve over a field K. As 
in the theorem of Chevalley, one can expect to describe the torus part and the 
unipotent part of Pic&, in geometric terms, at least if the base field is perfect. 
So, in the following, let K be a perfect field and let X be a proper curve over K 
which is reduced and geometrically connected. Denote by 8 - X the normal- 
ization of X. We want to introduce an intermediate curve X' lying between X 
and 8. 

Since there is a dense open part of X which is smooth, there exist only finitely 
many non-smooth points of X. We will define X' by identifying all the points of 8 
lying above such a non-smooth point of X. In order to explain this procedure, we 
can work locally. So consider a non-smooth point x of X, and let U = Spec A be 
an affine open neighborhood of x such that x is the only non-smooth point of U .  
Let El, . . . , 2, be the points of 8 lying above x, and let D = spec A" be the inverse 
image of U in 8. Then we define the open affine subscheme U' = Spec A' of X' lying 
over U by taking for A' the amalgamated sum of the maps 

and 

So A' consists of all elements f E A" which take the same value r E k (x )  at all points 
Z,, . . . , 2,. These local constructions fit together to build a proper curve X', and we 
get canonical morphisms 

The map f maps the points T I ,  . . . , Zn to a single point x' of X' with residue field 
k(x). So g does not change the residue field. Let tTti c A be the ideal of the point Zi, 
i = 1, . . . , n. Then we obtain the exact sequences 
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where m' is the maximal ideal of Ox.,,.. The first vertical map is bijective, and 
the last one corresponds to the embedding of k(xl) = k(x) into the product of the 
residue fields k(xi), i = 1, . . . , n. Due to the construction, it is clear that the map 
X' -+ X is a universal homeomorphism. Moreover, X' is the largest curve between 
8 and X which is universally homeomorphic to X. One shows easily that the 
construction of X' is compatible with field extensions, since K is perfect. The 
singularities of X' are as mild as possible. Namely, after base extension by an 
algebraic closure K of K, the singularities of X' OK K are transversal crossings of 
a set of smooth branches (i.e., analytically isomorphic to the crossing of the coordi- 
nate axes in An for some n). 

Proposition 9. Let X be a proper reduced curve over a perfect field K. Let g : X' -+ X 
be the largest curve between the normalization 8 of X and X which is universally 
homeomorphic to X. Then the canonical map 

$ : PicxlK -+ Pic,,lK 

is an epimorphism of sheaves for the &ale topology. The kernel of $ is a connected 
unipotent algebraic group which is trivial if and only if the canonical map X' -+ X 
is an isomorphism. 

Proof. Let 8 c Ox (resp. 2 c Lo,,) be the sheaf of (reduced) ideals defining the 
non-smooth locus of X (resp. of X'). There exists an integer e E N such that 
g,$" c 8. Consider the exact sequence 

and set %' := (1 + g,2)/(1 + 8 ) .  It is a sheaf which is concentrated on the finitely 
many points of X which are not smooth; more precisely, its support consists of the 
points of X which are not ordinary multiple points. Let f :  X -+ Spec K be the 
structural morphism. Since Rlf,%' = 0 and f,O: = f,g,O,*,, the exact sequence of 
above gives rise to an exact sequence 

of sheaves for the Ctale topology. Thus, we see that * PicxlK = Rlf,O,* -+ PicxfiK = R 1 ( f  o g),Lo,*, = ~ l f , ( g , 0 , * , )  

is an epimorphism. Due to Serre [ I ] ,  Chap. V, n015, Lemma 20, the group ROf,g 
and, hence, the kernel of t+h is represented by a unipotent group. For a further 
description of this group see Serre [I], Chap. V, n016 and n017. Moreover, the kernel 
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of t j  is trivial if and only if the group HO(X, V) vanishes; i.e., if and only if g,2 = 9 
or, equivalently, if and only if X' -+ X is an isomorphism. 0 

Proposition 10. Let X be a proper reduced curve over a perfect field K, and let K be 
an algebraic closure of K. Let X' -+ X be the largest curve between the normalization 
8 of X and X which is universally homeomorphic to X. Then the canonical map 

cp : Pic,,lK -+ Pic,-/, 

is an epimorphism of sheaves for the itale topology. The kernel of cp is a torus. The 
latter is trivial i f  and only i f  each irreducible component of X OK l? is homeomorphic 
to its normalization and the configuration of the irreducible components of X a, K 
is tree-like; i.e., H1(X OK K ,  Z) = 0. 

Proof. The proof can be done similarly as in Example 8. We may assume X = X'. 
Let .n : 8 -+ X be the normalization of X. The connected components o f 8  are the 
normalizations Ti of the irreducible components Xi. Let xi, i = 1, . . . , N, be the 
singular points of X, and let Zij, j = 1, . . . , n,, be the points of 8 lying above Zi. 
Consider the exact sequence 

The quotient 2 = 71*0$/0; is concentrated at the points xi, i = 1, . . ., N. The 
associated long exact sequence 

can be written in the following way 

where r *  = HO(X, O;), Ti* = ~ ' ( r ? , ,  OX), KT = k(xi), and K: = k(Zij). As in Ex- 
ample 8, one shows that cp is an epimorphism for the Ctale topology and, moreover, 
that the kernel of cp is the quotient of the map ROf,(n,O$) --+ Ry*(2) where 
f :  X -+ Spec K is the structural morphism. The latter is a quotient of a torus and, 
hence, a torus. 

It remains to show the last assertion. We may assume that K is algebraically 
closed. The kernel of cp is trivial if and only if the canonical map 

is surjective. If the map is surjective, it is clear that, for any singular point xi of X, 
the points Zij ,  j = 1, . . ., n,, lie on pairwise different components of 2 .  Hence, 
each irreducible component of X is homeomorphic to its normalization. Further- 
more, the surjectivity implies H1(X,K*) = 0 which is equivalent to H1(X, Z) = 0. 
The converse implication follows by similar arguments. 0 
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Now we can deduce from Propositions 9 and 10 the structure of the linear part 
of Pic:,,. 

Corollary 11. Let X be a proper curve over a perfect field K and denote by 8 the 
normalization of the largest reduced subscheme X,,, of X .  Then the canonical map 

PicxlK -+  PIC^^, 

is an epimorphism of sheaves for the itale topology. Its kernel consists of a smooth 
connected linear algebraic group L.  The quotient of pic$, by L is isomorphic to ~ i c j , ,  
which is an abelian variety. 

Next we want to look at a reduced curve X over a perfect field K. As before, let 
X' denote the largest curve between X and its normalization 8. Via functoriality, 
we get the following sequence of algebraic groups 

where each map is an epimorphism of sheaves for the etale toplogy. Due to continu- 
ity, we obtain epimorphisms between the identity components 

Furthermore, if Pic;,, does not contain a torus, Pic:,lK does not either; for example, 
this can be deduced from Theorem 2. So, we obtain the following corollary. 

Corollary 12. Let X be a reduced proper curve over a perfect field K and let K be an 
algebraic closure of K. 

(a) If PiciIK contains no unipotent connected subgroup, the singularities of X OK K 
are analytically isomorphic to the crossing of the coordinate axes in A". 

(b) If Pic;/, contains no torus, each irreducible component of X OK K is homeo- 
morphic to its normalization and the configuration of the irreducible components of 
X OK K is tree-like. 

(c) If Pic:,, is an abelian variety, the irreducible components of X are smooth and 
the configuration of the irreducible components of X OK K is tree-like. 

Finally we want to discuss the degree of line bundles belonging to Pic:,,. For 
example, if X is a connected proper and smooth curve over an algebraically closed 
field K, the elements of Pic$,(K) correspond to the line bundles of degree zero. 
Indeed, consider the universal line bundle 2 on X x, Pic,,,. Due to 9.112, the 
degree of the restriction 2( of 9 to the fibre over a point 5 E Pic:,, is zero. 
Conversely, a line bundle of degree zero is isomorphic to a line bundle O,(D) where 
D is a Cartier divisor which can be written as 

D = (x, - x,) + . . . + (x, - x,) , 

where x,, . . . , x, are closed points of X. Since X is connected, the image of the map 

x Pic,,, , x - C%(x - x0)l , 
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is contained in Pic$,. Thus we see that each line bundle of degree zero gives rise 
to an element of Pic;!,. For arbitrary curves over fields, one has to look at the 
partial degrees on the irreducible components. 

Corollary 13. Let X be a proper curve over a field K and let K be an algebraic closure 
of K. Then Pic;lK consists of all elements of PicxlK whose partial degree on each 
irreducible component of X @, l? is zero. 

Proof. We may assume that K is algebraically closed. Let XI , .  . . , X,  be the (reduced) 
irreducible components of X. For i = 1, . . . , r, let xi be the normalization of Xi. 
Then consider the canonical morphism 

Pic,, + PicailK 

which is defined by functoriality. Due to continuity, the identity components are 
mapped into each other, so we have morphisms 

P id IK  + Pic$,lK . 

Since the degree of a Cartier divisor on Xi and the degree of its pull-back on Ti 
coincide, we see that the partial degrees of elements of Pic$,(K) are zero. Due to 
Corollary 11, the canonical morphism 

is an epimorphism and its kernel is a connected subgroup of PicxlK. So the kernel 
is contained in Pic'$,. Since the canonical map induces an epimorphism on the 
identity components, we see that line bundles on X whose partial degrees are zero 
belong to Pic;,,. 0 

Corollary 14. Let X be a proper curve over an algebraically closed field K with r 
irreducible components XI,  . . . , Xr. Then the Ndron-Severi group of X is a free group 
of rank r. 

More precisely, the map given by the partial degrees 

is injective and has finite index. 

9.3 Construction via Birational Group Laws 

We want to explain how the proof of Grothendieck's theorem 8.211 can be modified 
in the case of relative curves in order to recover the Jacobian variety as constructed 
by Serre [I] and Weil [2]. We begin by repeating what Grothendieck's approach 
to the representability of Pic, yields in the case of a relative curve X over a 
scheme S. 
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Theorem 1. Let X -+ S be a projective and flat curve which is locally of finite 
presentation. If the geometric fibres of X over S are reduced and irreducible, Picxls 
is a smooth and separated S-scheme. 

More precisely, there is a decomposition 

Pic,,, = JJ (Picxls)" 
n e i l  

where (Picxls)" denotes the open and closed subscheme of Picxls consisting of all line 
bundles of degree n; the scheme (P~C,~ , )~  coincides with the identity component Pic;,, 
of Picxls. Moreover, (Picxls)" is quasi-projective over S and is a torsor under PicgIs 
for all n E Z. 

Proof. The representability of Picxls is due to 8.211; see also 8.215. The smoothness 
follows from 8.412. Due to 9.112, the degree of line bundles belonging to a fixed 
connected component of Picxls is constant, thus Picxls breaks up into the disjoint 
union of the (Pic,,,)" n n E. In order to show that (Picxls)" is a torsor under Pic$,, 
it remains to show that (Picxls)" and Pic;, become isomorphic after faithfully flat 
base extension. So we may assume that X has a section over S. Then it suffices to see 
that (P~C,~, )~  is isomorphic to Pic$,. Since the geometric fibres of X over S are 
irreducible and reduced, the latter follows immediately from 9.2113. 0 

Let us mention some conditions under which X is projective over S. 

Remark 2. Let X be a proper flat curve over S which is locally of finite presentation 
and whose geometric fibres are reduced and irreducible curves of genus g. Assume 
that X is a relative complete intersection over S. Then the relative dualizing sheaf 
is a line bundle. If g 2 2, it is S-ample and, hence, X ---t S is projective. Likewise, 
if g = 0, the dual of the relative dualizing sheaf is S-ample and, hence, X -+ S is 
projective; moreover it is smooth. If g = 1, it follows that X ---+ S is projective 
locally for the etale topology on S, since X -+ S admits a section through the 
smooth locus after etale surjective base change, and since the line bundle of all 
meromorphic functions having only simple poles along the given section is relatively 
ample. 

Now we turn to a more general situation where we can construct Pic;, via 
birational laws. In the following let f :  X --t S be a quasi-projective morphism of 
schemes which is of finite presentation. We want to explain some basic facts on the 
relationship between the n-fold symmetric product (XIS)'") and the Hilbert functor 
Hilbg,, where Hilbxl, is the Hilbert functor associated to the constant polynomial 
n. We can say that, for any S-scheme T, the set Hilbxls(T) consists of all subschemes 
D of X xs T which are finite and locally free of rank n over T. The n-fold symmetric 
product (XIS)'") is defined as the quotient of the n-fold product of X over S 
by the canonical action of the symmetric group. Let us start by discussing the 
representability of (XIS)("). 

For any commutative ring A and for any A-module M, define the symmetric 
n-fold tensor product of M by 
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where M@" is the n-fold tensor product of M over A and where 6, is the symmetric 
group acting on M@" by permuting factors. If M is a free A-module, TS;(M) is also 
free and there is a canonical way to choose a basis of TS;(M) after fixing a basis of 
M. Thus, we see that TS;(M) is compatible with any base change if M is a free 
A-module. Since any flat A-module is a limit of finitely generated free A-modules, 
TS",M) is a flat A-module and compatible with any base change if M is flat over 
A. If B is an A-algebra, T$(B) is a subalgebra of B@". If X and S are affine, 
say S = Spec A and X = Spec B, the symmetric product (X/S)(") is represented by 
Spec(TSi(B)). If X is quasi-projective over S, one can establish the representability 
of the symmetric product (X/S)(") as an S-scheme by gluing such local pieces, since 
any finite set of points lying on a single fibre of X/S is contained in an open affine 
subscheme of X. Furthermore, as we have seen above, the symmetric product 
(X/S)("' of a flat S-scheme X is flat over S and compatible with any base change. 

A polynomial law f from an A-module M to an A-module N consists of the 
following data: for any commutative A-algebra A', there is a map 

such that, for any morphism u : A' --+ A" of commutative A-algebras, the diagram 

is commutative. A polynomial law from M to N is called homogeneous of degree n if, 
in addition, for any a' E A' and for any m' E M @, A', the equation 

fA,(af . m') = (a')". fA.(mt) 

holds. For example, the map 

y n  : M --+ TSI(M) , m w m @ . . . @ nz (n times) 

gives rise to a homogeneous polynomial law of degree n. Furthermore, if M is a free 
A-module of finite rank, the map y n  is universal; i.e., any homogeneous polynomial 
law f from M to N of degree n is induced by a unique A-linear map q : TS",M) --+ N. 
The latter means 

fA' = ((P @ A') (yn @ A') ; 

cf. [SGA 4,,,], Exp. XVII, 5.5.2. Since a flat A-module is a limit of free A-modules, 
the map y n  is universal if M is a flat A-module. 

Let us fix S = Spec A, X = Spec B and f :  X --, S. For any B-module L which 
is free of rank n over A, there is a canonical morphism 

det, : TS",B) -+ A 

which is compatible with any base change A ---, A'. Indeed, viewing the multiplica- 
tion on L by an element b E B as an A-1inea.r map, the determinant yields a 
homogeneous polynomial law of degree n from B to A and, hence, a map of TSI(B) 
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to A. Furthermore, one can show that det, is a morphism of A-algebras; cf. [SGA 
4,,,], Exp. XVII, 6.3.1. 

Iff: X --+ S is affine and if 9 is an Ox-module such that f,9 is locally free over 
S of rank n, one can construct a morphism 

by gluing the local morphisms constructed above. 
Now let f :  X + S be quasi-projective and consider an element D E Hilb;,,(T) 

for an S-scheme T, i.e., a subscheme D of X xs T which is finite and locally free of 
rank n over T. Then (f,),OD is a locally free 0,-module of rank n. So the above 
construction gives rise to a section 

Thus we get a canonical morphism 

On the other hand, i ff :  X -+ S is a separated smooth curve, each section s of 
f gives rise to a relative Cartier divisor s(S) of X over S of degree 1. Namely, due 
to 2.217 the vanishing ideal of o(S) is locally principal. So we get a morphism 

X" -+ Hilb;rIs , (sl,. . . , s,) t-* si(S) , 

from the n-fold product of X over S to the Hilbert functor which is symmetric. 
Hence it factors through (XIS)("). Note that, in this case, Hilb$, coincides with the 
subfunctor of Div;,, consisting of all divisors with proper support. So it induces a 
morphism 

a : (XIS)'") + HilbxIs . 

Proposition 3 ([SGA 4,,,], Exp. XVII, 6.3.9). If X + S is a smooth and quasi- 
projective morphism of relative dimension 1, then, for each n E N, the canonical 
morphisms 

o : Hilb$, -+ (XIS)'") and a : (XIS)'") -+ Hilb;,, 

are isomorphisms and inverse to each other 

Now let us consider the case where f :  X + S is a faithfullyflat projective curve 
of genus g whose geometric fibres are reduced and connected. Denote by X' the 
smooth locus of X. Note that X' is S-dense in X and that, moreover, the canonical 
map 

(xr/S)(g' + (x/s)(g) 

is an open immersion with S-dense image, as one can easily verify by using the fact 
that (X/S)(g) commutes with any base change. Since X is proper over S, the functor 
Hilb$,, is an open subfunctor of Hilb:,,, and since X' is smooth over S, it is already 
an open subfunctor of Divg,,,; cf. 8.216. Furthermore, since X is proper and flat over 
S, the functor Diva,, is a subfunctor of Hilbg,,,. Hence, we have a commutative 
diagram of canonical maps 
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The S-scheme (X'/S)(,) is smooth. Indeed, by dale localization it is enough to treat 
the case X' = A;. But then the smoothness of (X'/S)(q) follows from the theorem on 
symmetric functions. Now, let D c X x, (X'/S)(q) be the effective relative Cartier 
divisor of degree g which is induced by the map (X1/S)(g) -+ D~V$~,.  We will refer 
to D as the universal Cartier divisor of degree g. Let W c (X'/S)(q) be the subscheme 
of all points w E (Xr/S)(,) such that H1(Xw, Oxw(D,)) vanishes; so 

Then, due to the semicontinuity theorem [EGA III,], 7.7.5, W is an open subscheme 
of (X'/S)(q), and the following lemma shows that W - S is surjective. 

Lemma 4. Let X be a proper curve over a separably closed field K .  Assume that X 
is geometrically reduced and connected. Then there exists an effective Cartier divisor 
Do of degree g = dim,H1(X, Ox) on X whose support is contained in the smooth locus 
of X and which satisfies HO(X, @,(Do)) = K and H1(X, Ox(D0)) = 0. 

In particular, keeping the notations of above, the map W + S is surjective. 

Proof. The Riemann-Roch theorem implies HO(X, @,(Do)) = K if H1(X, Ox(Do)) = 

0. So it suffices to show the existence of an effective Cartier divisor Do of degree g 
satisfying H1(X,Ox(Do)) = 0. Let o be a dualizing sheaf on X; cf. [FGA], n0149, 
Sect. 6, Thm. 3 bis. Then, for any Cartier divisor E of X, there is a canonical 
isomorphism 

where a( -E)  is the 0,-module o @ Ox(-E). In particular, dimKHO(X,o) = g. 
Proceeding by induction, we will show that there exist points x,, . . ., x, of the 
smooth locus of X such that 

dimKHO(X,o(-x, - . . .- x i) )  = g - i ,  for i = 1 ,..., g 

Since the Ox-module o has no embedded components, the support of a non- 
zero section of o cannot consist of finitely many points. So one can choose a 
rational point xi+, of the smooth locus of X such that there is an element of 
HO(X,o(-xl - . . . - xi)) which does not vanish at xi+,. Then, 

is an effective Cartier divisor as required. 

Due to [EGA III,], 7.9.9, the direct image (fw),Ox xsw(D) is locally free of rank 
1, and the canonical morphism 

( ( fw)*@~.~w(D))~  @ow,, k(w) HO(Xw, Oxw(Dw)) 
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is bijective; cf. Mumford [3], Sect. 5, Cor. 3. 
The universal Cartier divisor D gives rise to a canonical map 

p : W --, Picg), 

where Pic$], is the open subfunctor of Pic,,, consisting of line bundles of (total) 
degree g; cf. Section. 9.1. Next we want to prove that p is an open immersion. 

Lemma 5. Keeping the notations of above, the canonical map 

p : W -+ Pity), 

is an open immersion. 

Proof. First of all let us show that p is a monomorphism. So, let L, and L, be 
elements of W(T) for an S-scheme T giving rise to the same element in Pic$ls(T). 
Let us denote by L,  (resp. L,) the associated divisors of X xs T, too. Due to 8.113, 
we may assume that the associated line bundles OxT(L1) and OxT(LZ) are isomorphic. 
Since the direct images (fT),OxT(Li) are locally free of rank 1, it follows that L, 
and L, are equal and, hence, that p is a monomorphism. Now we prove 
that p is relatively representable by an open immersion. It has to be shown 
that, for any S-scheme T and for any morphism I I  : T + Pic$)s, the induced 
morphism 

pT : W X piC(d T + T 
XIS 

is an open immersion. Since it suffices to check this after ttale surjective base change, 
we may assume that the morphism I I  is induced by a line bundle 9 on X x, T. The 
image of p, is contained in the subset T' of T consisting of all points t E T satisfying 
H 1 ( X t , g )  = 0. Since T' is open in T by [EGA III,], 7.7.5, we may replace T by 
T'. In this case, HO(X, ,g)  is a k(t)-vector space of rank 1 for each t E T. Moreover 
(fT),9 is locally free of rank 1 and a local generator of (fT),9 gives rise to a 
generator of HO(Xt, zt) on any fibre Xt. Therefore, a local generator of ( fT) ,9 is 
uniquely determined up to a unit of the base. Hence, the local generators of ( fT ) ,9  
give rise to a closed subscheme L of X x, T whose defining ideal is locally generated 
by one element. Due to 8.216, there exists a largest open subscheme T" of T such 
that the restriction of L to X xs T" is an effective relative Cartier divisor. It is clear 
that p, factors through T". So we may replace T by T" and we may assume that L 
is an effective relative Cartier divisor. Thus we can view A as a section of D ~ V $ , ~  and, 
hence, of (X/S)(g). Since W is an open subscheme of (X/S)(g), the map p, can be 
represented by the open immersion of the inverse image X1(W) into T. 0 

Lemma 6. Keeping the notations of above, there exist a surjective itale extension 
S' -+ S, an open subscheme W' of W x, S' with geometrically connected fibres, and 
a section E' : S' ----+ W' such that 

is an open immersion, where p' : W' + S' is the structural morphism. 
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Proof. If there is a section E : S + W, we can assume that the geometric fibres of W 
are connected after replacing W by an open subscheme; cf. [EGA IV,], 15.6.5. Then 
we can transform the morphism 

by a translation into an open immersion 

where p : W + S is the structural morphism. Since the fibres of W over S are 
geometrically connected, the image of the above map is contained in Pic$,. In the 
general case, one can perform a surjective etale extension Sf + S in order to get a 
section S' + W, because W + S is smooth and surjective. Since the g-fold sym- 
metric product (X/S)(g) commutes with the extension S' -+ S, one is reduced to 
the case discussed before. 0 

In the following, keep the notations of Lemma 6. Assume S = S' and W = W' 
and that there is a section E :  S + W. The group law of Picxl, induces an 
S-birational group law on W. We want to describe this S-birational group law on 
Win  terms of divisors. So consider the projections 

for i = 1,2, and let p be the structural morphism p : W --+ S. Since a morphism from 
an S-scheme T to W corresponds to an effective relative Cartier divisor of degree g 
on X x, T, namely, to the pull-back of the universal divisor D on X x, W, the 
projections p ,  and p, give rise to divisors Dl and D, on X x, W x, W Furthermore, 
let Do be the divisor on X x, W x, W induced by E. Then consider the locally free 
sheaf 

9 = ~xx,wx,w(D1 - Do + 0 2 ) .  

on X x, W x, W. The pull-back of 9 via 

(id,,&op): W + W x ,  W 

is isomorphic to Ox xsw(D). Since the fibres of Ware geometrically irreducible, there 
is a p,-dense open subscheme W, of W x, W such that, for each point t of Wl, the 
restriction of 9 to the fibre X x, t satisfies H1(Xt,Yt) = 0. As before, we 
conclude that ( f w l ) , 9  is locally free of rank 1 over Wl and that, for any t G W,, a 
generator of HO(X,, g) lifts to a local generator of ( f w t ) , 9  at t. A local generator 
of ( fwl ) ,9  is uniquely determined up to a unit of the base. Hence, the local 
generators of (fw,),9 give rise to a subscheme D,, of X x, W, whose defining 
ideal can locally be generated by one element. Since the pull-back of Dl, by 
(id,, E 0 p) coincides with D which is an effective relative Cartier divisor, we see by 
Lemma 8.216 that there exists a p,-dense open subscheme Vl of Wl such that D,,lVl 
is an effective relative Cartier divisor of degree g. Since W is an open subfunctor of 
Div$,,, we see, after replacing Vl by a smaller pl-dense open subscheme of Vl, that 
D,,lVl gives rise to a Vl-valued point of W. Proceeding similarly with the other 
projection, it is easy to show that the mapping 
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gives rise to a strict S-birational group law; cf. 5.211. 
In analogy to the classical case where the base S consists of a field, we call the 

S-group scheme associated to this S-birational group law the Jacobian of X over S 
if it exists. In the case where S consists of a field, it can easily be shown that the 
existence of the Jacobian implies the representability of Picxls; namely the latter is 
a disjoint sum of "translates" of the Jacobian. Furthermore, it is clear that the 
Jacobian coincides with Pic$,. So, even for a general base, the Jacobian represents 
the subfunctor Pic$, as defined in Section 8.4. For example, if S is a local scheme 
which is normal and strictly henselian, the results of Section 5.3 can be used to show 
that the Jacobian is represented by a separated and smooth S-scheme. Summarizing 
our discussion, we can state the following result. 

Theorem 7. Let S be a normal strictly henselian local scheme and let f :  X + S be a 
flat projective morphism whose geometric fibres are reduced and connected curves. 
Then the Jacobian of X is a smooth and separated S-scheme. I t  coincides with Pic$, 
as defined in Section 8.4. 

If one admits Theorem 8.311, namely that Picxls is an algebraic space over S, 
one can drop the assumption of S being normal in Theorem 7. Indeed, due to 8.412, 
Picxls is smooth over S, since X is a relative curve. Hence, Picils is represented by 
an open subspace of Picxls. So in order to prove that Pic&, is a scheme, it suffices 
to show that Pic'& can be covered by the translates AW', where W' is the open 
subscheme of Pic&, constructed in Lemma 6, and where A ranges over Wf(S). Since 
W' is smooth and faithfully flat over S, we have enough sections A to cover Pic&, 
by translates AW'; cf. 5.317. So every point of Pic& has a scheme-like neighborhood. 
Hence Pic&, is a scheme. 

If the geometric fibres of X over S are irreducible and reduced, and if there is a 
section o : S + X contained in the smooth locus of X, one can construct the whole 
Picard scheme Picxls from Pic&, by translations. Namely, 

where [o(S)] is the element of Picxls associated to the Cartier divisor o(S); due to 
2.217 the vanishing ideal of o(S) is an effective relative Cartier divisor of degree 1. 
It is not hard to show directly that the right-hand side represents the relative Picard 
functor in this case. So, for a normal and strictly henselian base, one obtains a 
different approach to the representability of Picxls in the case of a flat projective 
curve X over S whose geometric fibres are reduced and irreducible. 

In the case where the base S consists of a field, one has to perform a finite 
separable field extension S' + Sin order to get enough sections. Then the preceding 
construction yields the representability of Pic$, x, S' over the base S' and the 
representability over the given base is reduced to a problem of descent. If S consists 
of a field, this problem is not a serious one and can be overcome easily as was 
demonstrated by Serre and Weil. In Section 9.4, we will dicuss the representability 
of Pic$, by a separated S-scheme in the case of a more general base. 
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9.4 Construction via Algebraic Spaces 

In the following, let f :  X -+ S be a proper and flat curve which is locally of finite 
presentation over the scheme S. So far we have discussed the case where the 
geometric fibres of X are reduced and connected. Now we want to study more 
general cases. Due to the general result 8.311, we know that Pic,, is an algebraic 
space iff  is cohomologically flat in dimension zero. Recall that f is said to be 
cohomologically flat in dimension zero if, for every S-scheme S', the canonical 
morphism 

(f* 0x1 @ Os, = f; Ox, 

is an isomorphism, where X' = X x, S'. For example, the condition is satisfied if 
the geometric fibres of XIS are reduced; cf. [EGA III,], 7.8.6. The cohomological 
flatness off is closely related to the condition that the arithmetic genus of the fibres 
of X is locally constant on S. 

Indeed, i f f  is cohomologically flat in dimension zero, f,Ox is a locally free 
Os-module by 8.117 and dim,,!H0(X,, Ox) is locally constant on S. Moreover, since 
the Euler-Poincart characteristic of the fibres of X is locally constant on S by 
[EGA III,], 7.9.4, the dimension dim,(,,H1(Xs, Loxs) must be locally constant on S. 
Conversely, if the arithmetic genus of the fibres of X is locally constant on S, the 
same arguments as above show that dim,(,,HO(Xs, OXa) is locally constant on S. Then 
it follows from [EGA Ill,], 7.8.4 that f is cohomologically flat in dimension zero 
at least if S is reduced. 

If X is cohomologically flat over S in dimension zero, Picxls is an algebraic space 
over S, but, in general, we cannot expect Picxl, to be a scheme, as Mumford's 
example shows; cf. Section 8.2. Since Picxls is smooth over S by 8.412, Pic:,, is 
represented by an open subspace of Picxls which may be a scheme, even if Pic,,, is 
not. The main task of this section will be to present conditions under which Pic&, 
is a scheme. We remind the reader that by Theorem 9.317 this is the case if the fibres 
of X are not too bad and if X admits many sections over S. Now let us first state 
the main results on the representability of Picxl, and of Pic;,, in the case of relative 
curves, afterwards we will sketch their proofs. 

Theorem 1 (Deligne [I], Prop. 4.3). Let X -+ S be a semi-stable curve which is locally 
of ,finite presentation. Then Picxls is a smooth algebraic space over S. The identity 
component Pic$, is a smooth separated S-scheme and there is a canonical S-ample 
line bundle 2'(X/S) on PiciIs. Furthermore, Pic;l, is semi-abelian. 

If the base scheme S is the spectrum of a discrete valuation ring, one can prove 
the representability of Picxl, by an algebraic space and the representability of Pic;, 
by a separated S-scheme under far weaker assumptions on the fibres of X than in 
Theorem 1. 

Theorem 2 (Raynaud [6], Thm. 8.2.1). Let S be the spectrum of a discrete valuation 
ring. Let f :  X --t S be a proper flat curve such that f,Ox = 0, and let X be 
normal. If the greatest common divisor of the geometric multiplicities of the irreducible 
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components of X, in X, is 1 where s is the closed point of S, then 
(a) Picxls is an algebraic space over S, 
(b) Pic!ls is represented by a separated S-scheme. 

Corollary 3. Let S be the spectrum of a discrete valuation ring. Let f :  X -+ S be a 
proper flat curve with connected generic fibre. Assume that X is regular and that there 
is a rational point on the generic fibre of X. Then Picxls is an algebraic space over S 
and Pic;,, is a separated S-scheme. 

Corollary 3 is easily deduced from Theorem 2. Indeed, due to the valuative 
criterion of properness, the given rational point on the generic fibre extends to a 
section o of X over S. Due to 3.112, the image of o is contained in the smooth locus 
of X. So there exists an irreducible component of the special fibre X, of X having 
geometric multiplicity 1 in X,. Therefore Theorem 2 applies and the assertion is 
clear. 0 

Now let us turn to the proofs. For the proof of Theorem 1, we need further 
information on Pic&, in the case of smooth relative curves. 

Proposition 4. Let f :  X -+ S be a proper smooth morphism of schemes whose geo- 
metric fibres are connected curves. Then Pic&, is an abelian S-scheme and there is a 
canonical S-ample rigidified line bundle 9(X/S) on Pic!,,. 

The construction of 2'(X/S) is canonical in such a way that, for any base change 
S' -+ S, there is a canonical isomorphism of rigidified line bundles 

where X' denotes the S'-scheme X x s  S'. One will use this fact to show the represent- 
ability of Pic!,, by an S-scheme in the more general case of semi-stable curves. 

Proof of Proposition 4. In order to keep notations simple, let us write P instead of 
Pic!,, in the following. Due to 6.117, it suffices to prove the assertion after Ctale 
surjective base change S' -+ S. So we may assume that X -+ S is projective; cf. 
9.312. Then Picxls is a separated smooth S-scheme by 9.311 and the identity compo- 
nent P is quasi-projective over S. Since P is proper over S by 8.413, it is even 
projective over S. So it remains to explain the construction of the canonical S-ample 
sheaf 9(X/S)  on P. 

It is enough to look at the universal case. So, since the base of the versa1 
deformations of a smooth curve is smooth over Z (cf. Deligne and Mumford [I], 
Cor. 1.7), we may assume that S consists of a regular noetherian ring. Due to 8.211, 
the Picard functor Picpl, is a separated S-scheme and, due to 8.415, the identity 
component Pic:,, is represented by an abelian S-scheme. Denote it by P* and call 
it the dual of P. There is a universal line bundle 9 on P x s  P*, the PoincarC bundle, 
which is rigidified along the unit sections of P and P* over S; cf. 8.214. For the 
construction of the canonical S-ample sheaf 9(X/S)  on PIS, we need the existence 
of the canonical isomorphism 
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which is given by the @-divisor. To define the @-divisor, assume first that X S 
has a section a : S -+ X. Then one has a morphism 

+ P = Pic$,s , D, H [D,] - (g - 1) LoT] , 

where, for any S-scheme T and for any T-valued point D, of (X/S)(g-l) (i.e., for any 
effective Cartier divisor on X x, T of degree g - I), we denote by [D,] the element 
of Pic,,,(T) corresponding to DT and where o, denotes the relative Cartier divisor 
of X x, T associated to the section a, = a x, T. Let Wgpl be the schematic image 
of this morphism; note that it depends on the section o. It is not hard to see that 
the induced map 

(x/s)(g-l)+ wq-1 

is S-birational; cf. Lemma 9.315. Furthermore, Wg-I is an effective relative Cartier 
divisor on P, usually denoted by 0,. If one replaces o by a second section, 0, has 
to be replaced by a translate. Now let us consider the morphism 

%" : P -+ P* , t H 0PT(~t*(@J) O (OpT(@u))-l 

where, for an S-scheme T, we denote by PT the T-scheme P x, T and where 
7, : PT --t PT is the translation by the T-valued point t E P(T). This map is indepen- 
dent of the choice of a; so we can drop the o. If we do not have a section, we may 
perform an ttale surjective base change in order to get a section and, hence, to 
obtain cp@. Because cp, is independent of the chosen section, it is already defined 
over the given base S by descent theory. 

In order to check that the above map is an isomorphism, one can assume that 
the base scheme S consists of an algebraically closed field. In this case, the assertion 
is classical; cf. Weil [2], n062, Cor. 2. Now we set 

where m : P x, P --t P is the group law of P and where pi : P x, P --t P are the 
projections for i = 1,2. Note that, a priori, this definition depends on the chosen 
section o, but that in fact, due to the theorem of the square, 9 ( @ )  is independent 
of a. Again, by descent theory, it is already defined over S. The morphism fp, gives 
rise to an isomorphism 

id, x,q, :P x , P - z i P  x,P* 

such that there is an isomorphism of rigidified line bundles 

9 ( @ )  l (id, x, p0)*8 . 

Consider now the pull-back of 8 by the map 

(id,, cp,) : P -+ P x, P* 

and denote this line bundle on P by 

Y(X/S) = (id,, fp,)*8 = (id,, idp)*2?(@) 

which is isomorphic to 8,(@ + (-I)*@). Then 2(X/S)  is rigidified along the unit 
section and one can show that Y(X/S) is S-ample on P. 0 
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For the proof of Theorem 1, we will use the canonical S-ample sheaf 9(X/S)  
which was constructed in Proposition 4 for smooth curves X over S. Namely, due 
to Theorem 9.317 and the explanation following it, we know already that Pic$, is 
a scheme locally for the etale topology on S. Thus, we are concerned with a problem 
of descent. It suffices to verify the assertion concerning the canonical S-ample 
invertible sheaf 6P(X/S). Due to 6.117, it is enough to give the definition of 9(X/S)  
after ttale surjective base extension. Moreover, it suffices to look at the universal 
case. Since the base of the versa1 deformations of a fibre of X is smooth over L (cf. 
Deligne and Mumford [I], Cor. 1.7), we may assume that S is regular. In this 
situation, we have to construct 9(X/S). Denote by So the open subscheme of S 
where X is smooth over S; note that So is dense in S. Due to Propositio1l4, there 
is a canonical line bundle 9(Xo/So) on Pic~olso. Since S is regular, we can extend 
9(Xo/So) to a line bundle 9(X/S) on Pic$, such that the pull-back of 9(X/S)  
under the unit section is trivial on S. Since the geometric fibres of Pic:, are 
connected, the extension is unique. Then it follows from Raynaud [4], Thm. XI.1.13, 
page 170, that 6P(X/S) is S-ample, since the restriction of 9(X/S) to So is So-ample 
and since, for all points s E S of codimension 1, the restriction of Pic;/, to Spec(O,,,) 
is the identity component of the Neron model of its generic fibre; cf. 7.413 and 9.218. 

0 

Finally we want to sketch the proof of Theorem 2. Denote the generic point of 
S by y and the closed point of S by s. Let P be the open subfunctor of Picxl, consisting 
of all line bundles of total degree zero. 

Let Y ct X be a rigidificator for Picxls; cf. 8.116. Then, due to 8.313, the functor 
(Picxl,, Y) is an algebraic space over S. Denote by (P, Y) the open subfunctor of 
(Pic,,,, Y) consisting of all line bundles of total degree zero. Due to 8.412, (P, Y) is 
smodth over S. Let 

r : (P, Y) -+ P 

be the canonical morphism. There is a largest separated quotient Q of P (in the sense 
of sheaves for the fppf-topology), and one knows that Q is a smooth and separated 
S-group scheme; cf. 9.513. Let 

q : P - + Q  

be the canonical morphism. It is clear that r and q are epimorphisms of sheaves 
with respect to the fppf-topology. 

We want to show that q induces an isomorphism of Po to QO. Note that q, is 
an isomorphism. First we want to see that q x, S' admits a section over Q0 where 
S' is a strict henselization of S. We may assume S = S'. Due to 9.1112, there exists 
a universal line bundle 9, on (X x, Picxl,),. Let (&,a) be the universal line 
bundle of (P, Y). Since 9, induces the universal line bundle of P,, the line bundles 
(id, x q 0 r)*9, and A, define the same homomorphism to P,. So, due to 8.114, 
there exists a line bundle M, on (P, Y), such that 

(id, x q o r)*9, E A, @ f *(M,) 
Since (P, Y) is smooth over S and since S is regular, N, extends to a line bundle M 
on (P, Y). After replacing by A! O f  *M, we may assume that A! extends 
(id, x q 0 r)*9,. By computing the associated divisor, one can show that, over the 



9.4 Construction via Algebraic Spaces 263 

identity component (P, Y)', the line bundle A/, .,(,, ,,o descends to a line bundle 2 
on X xs QO. Namely, as X is normal, A is determined by a Weil divisor D on 
X x (P, Y)'. Since .&,, descends to 9,, we may assume that D, descends, too. So it 
suffices to look at "vertical" Weil divisors on X x (P, Y)O with support contained 
in the special fibre. To treat the latter we remark that the sets of vertical Weil divisors 
(with support contained in special fibres) on X, on X x (P, Y)', or, on X x Q0 are 
in one-to-one correspondence under the pull-back maps. Then 2 gives rise to a 
morphism A : Q0 ---, Po. Since Q is separated and since (q o A), = idgn0, it follows 
that q 0 A = idQp Moreover, one shows easily that A is a group homomorphism. 

Next we claim that P is an algebraic space over S. Due to 8.311, it remains to 
see that f is cohomologically flat in dimension zero. By what we have said at the 
beginning of this section, it suffices to show that 

Due to 8.411, we know that dimk(,,H1(X,, Oxs) is equal to the dimension of Picxslk(,) = 
(Picxls),. Moreover we have dim P,, = dim Q, = dim Q,. The latter holds, since Q is 
flat over S. So it remains to see that the canonical map q, : P, --+ Q, is locally 
quasi-finite or, that the kernel of q,Ip4 is finitely generated as an abstract group. 
Indeed, a group scheme of finite type over a field whose group of geometric points 
is finitely generated is finite; so the morphism q,lPp is quasi-finite, since P,O is of finite 
type over k(s). The kernel of q,lpp is smooth over k(s) since, due to the existence of 
the section A,, it is a quotient of the smooth group P,O. So, assuming that S is strictly 
henselian, it remains to see that the set of k(s)-rational points of the kernel is finitely 
generated. Since the map (P, Y), -+ P, is smooth, the rational points of P, are 
induced by rational points of (P, Y),. Since (P, Y) is smooth over S,  the rational 
points of (P, Y), are induced by S-valued points of (P, Y); in particular, by line 
bundles on X. Due to the existence of the section A which is defined by a line bundle, 
we see that the k(s)-rational points of the kernel of qsIp8 are induced by line bundles 
on X which are trivial on the generic fibre. Due to the assumption on X, such a line 
bundle 2 is associated to a Cartier divisor D having support on the special fibre 
only; hence 9 Co,(D). Thus we see that the kernel of the morphism q,lpS, is finitely 
generated as an abstract group; namely, the group of Cartier divisors having support 
only on the special fibre is a subgroup of the free group generated by the irreducible 
components of the special fibre of X. 

Now it is easy to complete the proof. In order to show that q : Po + Q0 is an 
isomorphism, we may assume that S is strictly henselian. Recall that q is unramified 
and an isomorphism on generic fibres. Now look at the commutative diagram 

It follows from 2.219 that R is ttale. Then it is clear that A and, hence, q are 
isomorphisms. 0 
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Finally we want to mention that, in the case where X is regular, there is a direct 
proof of the cohomological flatness in Artin and Winters [I] which uses the 
intersection form. 

9.5 Picard Functor and NCron Models of Jacobians 

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual 
we denote by K the field of fractions of R and by k the residue field of R. In the 
following we will fix a proper and flat curve X over S; its generic fibre XK is assumed 
to be normal as well as geometrically irreducible. Let JK = be the Jacobian 
of XK. It is a smooth and connected K-group scheme of finite type and we can ask 
if there is a NCron model J of JK. The purpose of the present section is to describe 
J ,  if it exists, in terms of the relative Picard functor Picxls. Thereby we will obtain 
a second method to construct NCron models, which is largely independent of the 
original method involving the smoothening process. 

The key point of the whole construction is the fact that the relative Picard 
functor Picxls satisfies a mapping property which is similar to the one enjoyed 
by Ntron models. To explain this point, assume that X is regular and that XK 
admits a section. Furthermore, consider a smooth S-scheme T and a K-morphism 
u, : TK --+ PicXKiK. Then, using 8.114, u, corresponds to a line bundle iJK on X ,  x, T,, 
and the latter extends to a line bundle 5 on X xs T since X x, T is regular; see 2.319. 
Thus it follows that uK extends to an S-morphism u : T + Picxls, where u is unique 
if Picxls is separated. The same mapping property holds for Pic:, if the special fibre 
X, is geometrically irreducible; use 9.112 and 9.2113. So if, in addition, we know 
that Pic$, is a smooth and separated S-group scheme, for example if we are in the 
situation of Grothendieck's theorem 9.311, it follows that Picii, is a Neron model of 
JK = PicgKIK. In the latter case the assumption on X to have a section is not really 
necessary. Namely, if the special fibre of X is geometrically reduced (as is required in 
9.3/1), then the smooth locus of X is faithfully flat over S by 2.2116. Working over a 
strict henselization Rsh of R, it follows from 2.315 that X @, Rsh admits a section. So, 
due to the fact that NCron models descend from R" to R by 6.513, we can state the 
following result. 

Theorem 1. Let X be a flat projective curve over S which is regular and which has 
geometrically reduced and irreducible fibres. Then Picg1, is a NCron model of its 
generic fibre; i.e., of the Jacobian J, of XK. In particular, the special fibre of the 
Niron model of JK is connected. 

Before we construct NCron models of Jacobians J, of a more general type, 
let us state the mapping property of the relative Picard functor Pic,, in the 
form we will need it later. The curve X is as mentioned at the beginning of this 
section. 
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Lemma 2. Assume either that X ,  admits a section or that K is the field of fractions 
of a henselian discrete valuation ring R with algebraically closed residue field k. Then 
each element of Pic,,,(K) is represented by a line bundle on X K .  In particular, f X 
is regular, the canonical map PicXls(R) -+ Picx,(K) is surjective. 

Proof. Let K' be the direct image of OXx with respect to the structural morphism 
X K  -+ Spec K. Since X K  is geometrically irreducible, Kt is a field and the extension 
K'IK is finite and purely inseparable. If X ,  admits a section, K' coincides with K 
and the first assertion of the lemma follows from 8.114. On the other hand, if R is 
henselian and k is algebraically closed, there is a classical result of Lang saying that 
the cohomological Brauer group Br(K) vanishes (see Grothendieck [3], 1.1, or 
Milne [I], Chap. 111, 2.22). In the same way we can show that Br(K1) vanishes. 
Namely, K' can be viewed as the field of fractions of the integral closure R' of R in 
K' and R' is a discrete henselian valuation ring with algebraically closed residue 
field k; use 2.311' or 2.314 (d) to show that R' is henselian. Thereby we see that there 
are no obstructions to representing elements of Picxl,(K) by line bundles on XK; cf. 
8.114. 

If X is regular, each line bundle on X K  extends to a line bundle on X and the 
second assertion is clear also. 0 

If X is more general than in Theorem 1, but say, still regular, Pic:, might not 
be representable by a scheme or by an algebraic space. Moreover, even if Pic& 
exists as a scheme and, thus, is a smooth scheme by 8.412 (for example, if X admits 
a section), the canonical map Picgls 4 J  to a possible Ntron model J of JK is not 
necessarily surjective. To remedy this, we replace PicgIs by the open and closed 
subsheaf P c Pic,/, consisting of all line bundles of total degree 0 and pass to the 
biggest separated quotient Q of P. As we will see, the latter is a good candidate for 
a Ntron model of JK. 

The subfunctor P c Picxl, may be viewed as the kernel of the degree morphism 
deg : Pic,,, -4 7 and is formally smooth since the same is true for Pic,,; cf. 8.412. 
Furthermore, the fibres of P over S are representable by smooth schemes (8.213 and 
8.412) and, on the generic fibre, P coincides with Pic:,, so that P, = JK. 

In order to pass to the biggest separated quotient of P, we extend the notion of 
separatedness from S-schemes to contravariant functors (Sch/S)O ---+ (Sets) by using 
the valuative criterion as a definition; thus a contravariant functor F : (schlS)' --+ 

(Sets) is called separated if, for any discrete valuation ring R' over R with field 
of fractions Kt, the canonical map F(Spec R') --+ F(Spec K') is injective. If F is 
representable by a scheme or by an algebraic space and if the latter are locally of 
finite type over S (which, for algebraic spaces, is automatically the case by our 
definition), then the separatedness in terms of functors coincides with the usual 
notion of separatedness for schemes or algebraic spaces. 

Now consider the quotient Q = PIE (say, in the sense of fppf-sheaves) where E 
is the schematic closure in P of the unit section S, -+ PicXKIK; then E is a subgroup 
functor of P. To define E if Pic,,, is not necessarily representable by a scheme (or 
by an algebraic space), consider the sub-fppf-sheaf of Pic,!, which is generated 
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by all morphisms Z --+ Picxls in PicxIs(Z) where Z is flat over S and where 
2, - (Picxls), = PicXKIK factors through the unit section of PicXKIK. Since the 
latter is a closed immersion, one recovers the usual notion of schematic closure if 
Pic,, exists as a scheme or as an algebraic space. Likewise, one can extend the 
notion of schematic closure in PicxIs to any closed subscheme of the generic fibre 
of Picxls. For example, we can view P as the schematic closure in Pic,, of the 
Jacobian PiciKIK = JK. 

Proposition 3. As before, let X be a flat proper curve over S such that X, is normal 
and geometrically irreducible. Then the quotient Q = PIE is representable by a smooth 
and separated S-group scheme; it is the biggest separated quotient of P. Furthermore, 
the projection P + Q is an isomorphism on generic fibres and, thus, the generic fibre 
of Q coincides with the Jacobian JK of X,. 

Proof. Instead of just dealing with the most general case, we will explain how to 
proceed depending on what is known about Picxls. That P ---t Q is an isomorphism 
on generic fibres is due to the fact that, by the definition of E, the generic fibre EK 
coincides with the generic fibre of the unit section S - P since the generic fibre of 
P is separated. Furthermore, it is clear that Q is the biggest separated quotient of 
P if Q is representable by a separated scheme. 

1st case: Picxls is a scheme. In this situation P is a smooth group scheme whose 
identity component Po is separated by [SGA 3,], Exp. VI,, 5.5. So the intersection 
of E with Po is trivial and it follows that E is Ctale over S. More precisely, E + S 
is a local isomorphism with respect to the Zariski topology. Then it is easily seen 
that the quotient Q = PIE is representable by a smooth scheme and that the 
projection P -+ Q is a local isomorphism with respect to the Zariski topology. 

2nd case: Picxls is an algebraic space. Since the unit section of P is locally closed, 
E is still Ctale over S, and it is clear that the quotient Q = PIE exists as an algebraic 
S-group space which is smooth and separated. Furthermore, it follows from 6.613 
that Q is an S-group scheme. 

3rd case: Picxls is not necessarily representable by a scheme or by an algebraic 
space. Then we can apply 8.116 and choose a rigidificator Y c X of the structural 
morphism f :  X + S. Associated to it is a sequence 

which is exact with respect to the Ctale topology; cf. 8.1/11. Considering only line 
bundles of total degree 0, this sequence restricts to a sequence 

which, again, is exact with respect to the Ctale topology. One knows from 8.313 and 
8.412 that (Pic,,,, Y) and, hence, (P, Y) is an algebraic space which is smooth over S. 

Consider the exact sequence 

v ; - + P , Y ) L P + o ,  

and let H be the schematic closure of the kernel of r,. Then H is an algebraic 
subgroup space of (P, Y); it contains the kernel of r, as is easily seen by using the 
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fact that V;F is flat over S. Furthermore, the quotient (P, Y)/H exists as an algebraic 
space by 8.319 since H is flat over S; it is separated due to the definition of H. We 
claim that (P, Y)/H is canonically isomorphic to Q = PIE. To see this, we mention 
that, by continuity, r maps H into E. So r induces a morphism 7 :  (P, Y)/H -+ PIE. 
On the other hand, one concludes from ker(r) c H that the projection (P, Y) --. 
(P, Y)/H splits into morphisms 

(P, Y) P 5 (P, Y)/H . 

Since (P, Y)/H is separated and, thus, E c ker q, we thereby obtain a morphism 
q :  PIE -+ (P, Y)/H which is an inverse of F. So Q is isomorphic to (P, Y)/H and 
therefore is an algebraic group space. But then Q is a separated group scheme by 
6.613, which is smooth by the analogue of [SGA 3,], Exp. VI,, 9.2, for algebraic 
group spaces. 0 

In order to show that the smooth and separated S-group scheme Q of 
Proposition 3 is, in fact, a NCron model of JK, we have to work under conditions 
like the ones given in Lemma 2 assuring that each K-valued point of Q extends 
to an R-valued point of Q (assuming R to be strictly henselian). Also we have to 
show that Q is of finite type over S. 

Theorem 4. Let X be a proper and flat curve over S = Spec R whose generic fibre is 
geometrically irreducible. Assume that, in addition, X is regular and either that the 
residue field k of R is perfect or that X admits an itale quasi-section. Then: 

(a) If P denotes the open subfunctor of Picxls given by line bundles of total degree 
0 and if E is the schematic closure in P of the unit section SK -+ PK, then Q = PIE 
is a NCron model of the Jacobian J, of X,. 

(b) Let XI, . . . , X,, be the irreducible components of the special fibre Xk and let 
6, be the geometric multiplicity of Xi in Xk; cJ: 9.113. Assume that the greatest 
common divisor of the 4 is 1. Then Pic;,, is a separated scheme and, consequently, 
the projection P + Q gives rise to an isomorphism Pic:/, S QO. Thus, in this case, 
Pic:,, coincides with the identity component of the Ne'ron model of JK. 

Remark 5. In the situation of the theorem, the assumption that X admits an 
ttale quasi-section is automatically satisfied if the special fibre X, is geometrically 
reduced or, more generally, if Xk contains an irreducible component which has 
geometric multiplicity 1 in Xk. Namely, then the smooth part of X must meet such 
a component and, passing to a strict henselization of S, we have a section by 2.315. 
On the other hand, if X admits an ttale quasi-section over S, say a true section after 
we have replaced S by an ttale extension, then, X being regular, this section factors 
through the smooth locus of X; see 3.112. In particular, there are irreducible 
components which have geometric multiplicity 1 in Xk so that the condition in 
Theorem 4 (b) is automatically satisfied. 

Now let us start with the proof of Theorem 4. The main part will be to show 
that Q is of finite type over S. We will use the remainder of the present section to 
establish this fact; see Lemmata 7 and 11 below. But let us first explain how to obtain 
assertions (a) and (b) if we know that Q is of finite type. 
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The formation of the schematic closure E is compatible with flat extensions of 
valuation rings. Likewise, the regularity of X remains invariant under Ctale base 
change by 2.319. Thus, in order to show that Q is a NCron model of JK, we may 
assume that R is strictly henselian. 

It is already known from Proposition 3 that Q is a smooth and separated S-group 
scheme with generic fibre JK. Furthermore, it follows from Lemma 2 and 9.112 that 
the canonical map P(R) + P(K) is surjective. So we see that the canonical map 
Q(R) ---t Q(K) is surjective and, hence, bijective since Q is separated. Thus, if Q is 
of finite type, it is a NCron model of JK by the criterion 7.111. This verifies assertion 
(a). Using the representability result 9.412 for Pic&,, assertion (b) is a consequence 
of assertion (a). 

It remains to show that the quotient Q = PIE is of finite type over S. We will 
present two methods to obtain this result. The first one is based on the existence 
theorem for Neron models 10.211 and uses the fact that the NCron-Severi group of 
the special fibre of Picxls is finitely generated. But it works only under the additional 
assumption that the generic fibre X K  is geometrically reduced (which is the case if 
X admits an &tale quasi-section; see 3.112). Relying on the existence of a NCron 
model J of JK, there is a canonical morphism Q -+ J and it is to show that the 
latter is an isomorphism. The second method is independent of the theory of 
NCron models and uses the intersection form which is associated to the irreducible 
components of the special fibre X,. It works in the general situation of Theorem 4 
and, as we will see in Section 9.6, provides a means of computing the group of 
connected components (of the special fibre) of the Ntron model J of J,. 

Q is of finite type, a first proof via the existence of a Niron model J of J,. We 
start by translating the existence theorem for NCron models 10.211 to our situation, 
a result which we will prove in Chapter 10 and which is independent of Chapter 9. 

Proposition 6. Let X ,  be a proper curve over K which is geometrically reduced and 
irreducible. Let JK be its Jacobian. Then J, admits a N k o n  model J of finite type 
over S if any of the following conditions is satisfied: 

(a) XK is smooth, 
(b) X,  x, K is normal, where I? is the completion of K ,  
(c) XK is normal and R is excellent. 

Proof. If X K  is smooth, JK is an abelian variety by 9.213. So JK has a NCron model 
J of finite type. 

If only condition (b) is known, JK is not necessarily an abelian variety. However, 
condition (b) is compatible with separable extensions of the field I?. So, for any 
separable field extension L over I?, we know from 9.214 that JL does not contain 
subgroups of type G, or G,. Therefore we can conclude from 10.211 that J, has a 
NCron model J of finite type. 

Finally, condition (c) implies condition (b) since I? is separable over K in this 
case. 0 

Let us apply Proposition 6 in order to show that, in the situation of Theorem 
4 and under the additional assumption of X K  being geometrically reduced, the 
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Jacobian JK of XK admits a NCron model of finite type. Since X is proper over S, 
all closed points of X belong to the special fibre X,. Therefore, if I? is the completion 
of R, the local rings at closed points of X,- may be viewed as completions of local 
rings of X and, thus, the hypothesis on the regularity of X remains unchanged if we 
replace R by its completion 2. So, in particular, X i  is regular and, thus, JK admits 
a Neron model J of finite type by Proposition 6. Now it is quite easy to prove that 
Q is of finite type. 

Lemma 7. In the situation of Theorem 4, assume that X, is geometrically reduced. 
Then Q = PIE is of finite type over S. 

Proof. As we have just seen, JK admits a Neron model J .  Since the formation of 
Q and of J is compatible with &tale base change, we may assume that the base 
ring R is strictly henselian. Furthermore, recall that Q is a smooth and separated 
S-group scheme such that the canonical map Q(R) + Q(K) is bijective. It is 
enough to show that the canonical morphism v : Q -+ J restricts to an isomorphism 
Q0 1 JO. Namely, using the bijectivity of Q(R) ---, J(R), this implies that the 
groups Q(R)IQO(R) and J(R)/JO(R), which by 2.315 can be interpreted as the groups 
of connected components of the special fibres of Q and J ,  coincide and thus are 
finite. Consequently, Q will be of finite type. 

So let us show that v induces an isomorphism QO ---+ JO. The group of connected 
components Q(R)/QO(R) = Q(k)lQO(k) may be viewed as a quotient of a subgroup 
of the NCron-Severi group of the special fibre of Pic,,, and, thus, is finitely generated 
(in the sense of abstract groups); see 9.2114. Since the map v : Q + J is surjective 
on R-valued points and, hence, on k-valued points, it follows that the quotient 
J,Olu(Q,O) is a connected smooth algebraic group over k whose group of k-valued 
points is finitely generated. However, then J,Olv(Q,O) must be of dimension zero and, 
thus, is trivial as is easily seen by considering the multiplication with an integer n 
not divisible by char k. Therefore QO + J0 is surjective and quasi-finite. But then, 
being an isomorphism on generic fibres, it must be an isomorphism by Zariski's 
Main Theorem 2.312' so that the desired assertion on Q follows. 0 

Q is of finite type, a second proof via the intersection form associated to the special 
fibre X,. This approach requires a detailed analysis of divisors on X which have 
support on the special fibre X, only. 

Lemma 8. Let X be a proper flat curve over S = Spec R such that X is normal and 
such that X, is geometrically irreducible. Assume that R is a strictly henselian discrete 
valuation ring. Let D be the group of Cartier divisors on X which have support on the 
special fibre X,, let Do be the subgroup of all divisors in D which are principal, and 
let E be as in Theorem 4. Then the canonical map DID, + E(R) is bijective. 

Proof. The injectivity of the map follows from 8.113. To show the surjectivity, we 
consider the Stein factorization 

9 h X-Y-+S 
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of the structural morphism f :  X -+ S, where g,(0,) = 9, and where h : Y -+ S is 
finite. Then Y is the spectrum of a normal ring R' which is finite over R. Since X, 
is geometrically irreducible and since X is normal, it follows that Kt  = R' @, K is 
a finite purely inseparable field extension of K and that R' is the integral closure of 
R in K'. So, similarly as in the proof of Lemma 2, it is seen that R' is a strictly 
henselian discrete valuation ring and that each a 6 E(R) is represented by a line 
bundle 9 on X. 

Now fix a point a E E(R) and a representing line bundle 9 on X. Since the 
restriction of 2 to the generic fibre X, is trivial, 9 is of the form O,(A) where A is 
a Cartier divisor on X having support on the special fibre of X. Thus a is represented 
by A E D. 0 

Let be the family of reduced irreducible components of the special fibre 
Xk. As in 9.113, we write di for the multiplicity of Xi in Xk and ei for the geometric 
multiplicity of Xi. Then ei is a power of the characteristic of k and = diei is the 
geometric multiplicity of Xi in Xk; cf. 9.114. 

For any line bundle 9 on X, one can consider its degree degi(9) on the 
component Xi; it is a multiple of the geometric multiplicity ei of Xi; cf. 9.118. In 
particular, we can consider the map 

which, composed with the canonical map D + Pic(X) yields a map a : D + Z', 
where D is as in Lemma 8. 

Lemma 9. Let R, X, D, Do, and E be as in Lemma 8. Then there is a canonical 
complex 

P O ~ D o c , D ~ ~ ' - Z - O  

where fl is given by P(al, . . .,a,) := C aidi. The latter gives rise to a surjection 

a : ker Him a ---t Q(S)/QO(S) 

which is bijective $ P + Q = PIE induces a surjection 

between S-valued points of the identity components of Pic,,, and Q. Furthermore, $ 
im a has rank card(I) - 1, then ker Plim a and, thus, also Q(S)/Qo(S) is finite. 

Proof. To begin with, recall that divisors in D have total degree 0 and that therefore 
p o a = 0 by 9.114 and 9.115. So the sequence in question is a complex. Furthermore, 
the map p : Pic(X) ---+ Z' is surjective by 9.1110. Since R is strictly henselian and 
since Pic,, can be defined by using the ttale topology in place of the fppf-topology, 
we can interpret Pic(X) as Pic,,,(S). So P(S) is mapped surjectively onto ker P and, 
due to 9.2113, we have the exact sequence 

0 -+ Pic$,,(S) + P(S) -+ ker P + 0 
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Using Lemma 8 we can interpret imcl as the image of E(S) under the map p : 
Pic(X) + Z'. Therefore we have a canonical isomorphism 

P(S)/(P~C;,~(S) + E(S)) G ker P/im a 

Taking the above isomorphism as an identification, we define o as the canonical 
map 

To show that it is surjective, it is enough to show that the canonical map 

is surjective. We will prove the latter fact by relating (**) to the canonical map 

The map (***) is surjective. Namely, k is separably closed, and P, is smooth, as 
follows from the formal smoothness of P. Thus, (w*) may be interpreted as mapping 
connected components of P, to connected components of Q,. So it is surjective, due 
to the surjectivity of P, ---, Q,. 

Since we know already from Proposition 3 that Q is a smooth group scheme 
and since the base S is strictly henselian, it follows from 2.315 that the restriction map 

is bijective. The same is true for 

if P is a scheme or an algebraic space which is locally of finite type over S. Namely, 
then the formal smoothness of P says that P is, in fact, smooth. So (**) will be 
surjective in this case. 

In the general case, we must work with a rigidificator Y and consider the 
associated exact sequence 

0 + V? c& v; -+ (P, Y) + P + 0 

of 8.111 1. It is enough to show that 

is surjective, or, that the composition 

(P, Y)(S) + (P, Y)k(k) + Pdk) 

is surjective. The first map (P, Y)(S) + (P, Y),(k) is surjective by 2.315 since (P, Y) 
is smooth (8.412). Furthermore, (P, Y), is an extension of the smooth group scheme 
Pk by the quotient (V;*),/(V?),. The latter is smooth since V; is smooth; cf. [SGA 
3,], Exp. VI,, 9.2. Thus, by the same reference, we see that the morphism (P, Y), + 

P, is smooth and it follows, again from 2.315, that (P, Y),(k) + P,(k) is surjective. 
This shows that the map (**) is surjective. 

The injectivity of o under the assumption that Pic&,(S) + Qo(S) is surjective 
is easily derived from the exact sequence 
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Finally, the submodule kerb c Z' has rank card(1) - 1. If the same is true for 
im a, it follows that ker b/im a and, thus, also Q(S)/QO(S) is finite. 

Let us assume now that X is regular. Under this assumption we can give an 
explicit description of the Z-submodule ima c Z' considered in the preceding 
lemma. To do so we introduce the intersection matrix ( (X i .X j ) ) i , jGI  where the 
intersection number ( X i .  X j )  is defined as the degree on Xj  of the line bundle which 
is associated to Xi as a Cartier divisor on X .  Thereby we obtain a symmetric bilinear 
intersection pairing D x D + Z on the group D - Z' of divisors on X which have 
support on the special fibre X,; see also [SGA 7,,], Exp. X, 1.6. The map a is closely 
related to the intersection pairing; namely, a : D - Z' -+ Z', as a Z-linear map, is 
described by the matrix (e;' ( X i .  Xj))i, j , I  which is called the modified intersection 
matrix. 

Lemma 10. Let R, X ,  and D be as in Lemmata 8 and 9 and assume that, in addition, 
X is regular. Let di be the multiplicity of Xi in X,, i.e., the multiplicity of Xi  in the 
divisor (71) = "special fibre of X ,  and let d be the greatest common divisor of the di, 
i E I. Then, for any divisor n i x i  E D, we have 

Therefore the intersection form D x D + Z is negative semi-definite and its kernel 
is generated by the divisor A = E d i K I X i  E D. Furthermore, the Z-module imcc of 
Lemma 9 is isomorphic to DIZA and thus has rank card(1) - 1. 

Proof. Tensoring with Q, we can extend the bilinear pairing D x D -+ Z to a 
bilinear pairing D @ Q x D @ Q + Q. Therefore we may work with rational 
coefficients. Set Y,  = diXi and mi = nid;l. Since (71) = C d j X j  = 1 5  and since 
(& . (71)) = ( X i .  (71)) = 0 for all i, we can write 
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All assertions of the lemma follow easily from this computation since the special 
fibre of X is connected. The latter is due to the fact that X i s  proper over S and that 
the generic fibre of X is connected. 0 

Now it is easy to complete the proof of Theorem 4 and to show that the group 
scheme Q is of finite type over R. 

Lemma 11. Assume that X is a flat proper curve over R which is regular and 
which has geometrically irreducible generic fibre XK. Then the smooth and separated 
S-group scheme Q = PIE is of finite type. 

Proof. We may assume that R is strictly henselian. Then it follows from Lemmata 
9 and 10 that ker p/im cc and thus Q(S)/QO(S) are finite. The latter implies that Q is 
of finite type since it is locally of finite type; cf. [SGA 3,], Exp. VI,, 3.6. 0 

Remark 12. In the assertion of Theorem 4, we may replace the condition that X be 
regular by the condition that all local rings of X x,  spec(^") are factorial (Rsh 

being a strict henselization of R); only this is needed for the proof of Lemma 2. In 
particular, it is enough to require the strict henselizations of all local rings of X to 
be factorial. 

Remark 13. The above approach to the proof of Theorem 4 via the relative Picard 
functor and via the intersection form provides a second method of constructing 
Neron models, which is fairly independent of the one presented in earlier chapters. 
However, if one starts with a proper and smooth curve X, over K ,  say under the 
assumption that R is excellent and that its residue field k is perfect, then in order to 
apply Theorem 4 to the Jacobian JK of XK, one first has to construct a proper 
R-model X ofX, which is regular; i.e., one has to use the process of desingularization 
for curves over R; see Abhyankar [I] or Lipman [I]. Alternatively, for a smooth 
curve X,, one can apply the semi-stable reduction theorem and thereby construct 
a semi-abelian Ntron model of JK, after replacing R by its integral closure in a finite 
extension of K. Then the technique of Weil restriction leads to a Ntron model of 
JK over R; cf. 7.214. Proceeding either way, one constructs Neron models for 
Jacobians of smooth curves and eventually for general abelian varieties. But it 
should be kept in mind that the original construction of Neron models which we 
have given in Chapters 3 and 4 is more elementary in the sense that it uses just the 
smoothening process and not the theory of Picard functors as well as the existence 
of desingularizations or semi-stable reductions. 

9.6 The Group of Connected Components of a Neron Model 

In the following we assume that the base scheme S = Spec R consists of a strictly 
henselian discrete valuation ring R. Then, if J is an R-group scheme which is a Neron 
model of its generic fibre JK, we can talk about the group J(R)/JO(R) of connected 
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components of J or, more precisely, of the special fibre of J. The purpose of the 
present section is to give explicit computations for this group in the situation of 
Theorem 9.514, where we deal with Ntron models J of Jacobians and where J can 
be described in terms of the relative Picard functor of a proper and flat S-curve X .  
As a key ingredient, we will use Lemma 9.519 of the previous section. 

The notations will be as in 9.514. So X is a flat proper curve over S which is 
regular and whose generic fibre is geometrically irreducible. Furthermore, let (Xi) ie  I 

be the family of reduced irreducible components of the special fibre X k ,  and let di 
(resp. e,, resp. 6, = diei) be the multiplicity of Xi  in Xk (resp. the geometric multi- 
plicity of Xi,  resp. the geometric multiplicity of Xi  in X,); cf. 9.113. Usually we will 
set I = (1,. . . , r}. Also recall that the intersection number ( X i .  X j )  between irredu- 
cible components of Xk  has been defined as the degree on Xi of the line bundle given 
by X j  as a Cartier divisor on X ;  it is divisible by the multiplicity ei. 

Theorem 1. Let S be the spectrum of a strictly henselian discrete valuation ring R and, 
as in 9.514, let X be a flat proper curve over S which is regular and whose generic fibre 
is geometrically irreducible. Furthermore, assume either that the residue field k of R 
is perfect (and, thus, algebraically closed) or that X admits an &ale quasi-section (and, 
thus, a true section). 

Let J, be the Jacobian of X,, and let be the family of (reduced) irreducible 
components of Xk .  Then, considering the maps 

of 9.519, where a is given by the modified intersection matrix ( e ; l (X i .X j ) ) i , j s I  and 
where j3(al,. . . , a,) = aidi, the group of connected components J (R) /JO(R)  of the 
Ndron model J of J, is canonically isomorphic to the quotient ker Plim a. 

Proof. It follows from 9.514 that the Ntron model J of JK exists and coincides 
with the quotient Q = PIE, where P is the kernel of the degree morphism deg : 
Picxls + Z and where E is the schematic closure of the generic fibre of the unit 
section S -+ Picxl,. Furthermore, Lemma 9.519 provides a canonical surjection 

ker B/im a -+ Q(S)/QO ( S )  = J(S)/JO(S) 

which we have to show is bijective. As stated in 9.519, the bijectivity will follow if 
the canonical map 

is surjective. So let us prove the latter fact. 
The easiest case is the one where X admits a section or, more generally (see 

9.5/5), where the gcd of the geometric multiplicities di of the components Xi in X,  
is 1. Then it follows from 9.514 (b) that Pic;ls is a separated scheme and that the 
canonical morphism Pic:, + QO is an isomorphism. So the bijectivity of (*) is 
trivial in this case. 

It remains to treat the case where the residue field k is algebraically closed. To 
do this, we may assume that, in addition to our assumptions, the base ring R is 
complete. Namely, the assumptions of the theorem are not changed if R is replaced 
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by its completion; for the regularity of X this has been explained after 9.516. 
Furthermore, note that the special fibre X, remains the same if R is replaced by its 
completion and that the formation of Q is compatible with such a base change since 
it commutes with flat extensions of discrete valuation rings. 

The canonical morphism P -+ Q is an isomorphism on generic fibres. Further- 
more, the map P(S) + P(K) is surjective by 9.512 and Q(S) ---+ Q(K) is bijective 
since Q is a Neron model of its generic fibre. So the canonical map 

is seen to be surjective. In order to derive the surjectivity of (+) from this fact, 
we will use the Greenberg functor; see Greenberg [I]. Having no information on 
the representability of P at hand, it is necessary to work within the context of 
rigidificators. 

Therefore, choose a rigidificator Y c X, and let (P, Y) be the open and closed 
subfunctor of the Picard functor of rigidified line bundles (Pic,,,, Y) which equals 
the kernel of the degree morphism. We claim that the canonical map (P, Y)(S) --+ 

P(S) is surjective. Namely, each element of P(S) is given by a line bundle 9 on X 
and the pull-back of 9 to Y is trivial. The latter is true because Y is finite over S 
and because S is a local scheme. Hence, the composite map (P, Y)(S) + Q(S) is 
surjective. For our purposes, it is enough to show that it restricts to a surjection 
(P, Y)O(S) + QO(S). Then, a fortiori, PO(S) -+ QO(S) will be surjective. Therefore, 
using the fact that (P, Y) is a smooth algebraic space (see 8.313 and 8.412) and that 
(P, Y)(S)/(P, Y)O(S) can be viewed as a quotient of a subgroup of the NCron-Severi 
group of the special fibre of X and, thus, is of finite type by 9.2114, we have reduced 
the problem to showing the following assertion: 

Lemma 2. Let R be a complete discrete valuation ring with algebraically closed residue 
field k. Let G ---t H be an R-morphism of smooth commutative algebraic R-group 
spaces with the property that G(R)/GO(R) is finitely generated (in the sense of abstract 
groups). Then, if G(R) --+ H(R) is surjective, the same is true for GO(R) --+ HO(R). 

By means of the Greenberg functor, we will be able to reduce the assertion to 
the corresponding one where R is replaced by the algebraically closed field k and 
where we consider a k-morphism G -+ H of smooth commutative k-group schemes 
of finite type such that G(k)/GO(k) is finitely generated. Then, if G(k) + H(k) is 
surjective, it is easy to see that the map GO(k) + HO(k) is surjective. Namely, 
proceeding indirectly, assume that GO(k) -+ HO(k) is not surjective. Then Go -+ H0 
cannot be an epimorphism since we are working over an algebraically closed field 
k. So the image of Go in H0 is a closed subgroup M such that HO/M is of positive 
dimension. Its group of k-valued points may be viewed as a quotient of a subgroup 
of G(k)/GO(k) and thus, by our assumption on G(k)/GO(k), is finitely generated. 
However, then HO/M cannot have positive dimension as is easily seen by consider- 
ing the multiplication on HO/M by an integer which is not divisible by char k. Hence 
we have derived a contradiction and it follows that GO(k) --+ HO(k) is surjective as 
claimed. 
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Next let us recall some basic facts on the Greenberg functor from Greenberg 
[I]; see also Serre [3], 9 1. Let n be a uniformizing element of R and set R, := R/(nn). 
Then the Greenberg functor Gr, of level n associates to each R,-scheme Y, of locally 
finite type a k-scheme (I), = Gr,(Y,) of locally finite type in such a way that, 
functorially in Y,, we have Y,(R,) = (I),(k). For example, in the equal characteristic 
case, R, may be viewed as a finite-dimensional k-algebra and the Greenberg functor 
Gr, associated to R, is just the Weil restriction functor (see 7.6) with respect to the 
morphism Spec R, -+ Speck. Weil restrictions are always representable by schemes 
in this case, due to the fact that R, is an artinian local ring with residue field k. 

In the unequal characteristic case, R, cannot be viewed as a k-algebra and the 
notion of Weil restriction has to be generalized. Then, k being perfect, R is canon- 
ically an algebra of module-finite type over the ring of Witt vectors W(k) and W(k) 
is a complete discrete valuation ring of mixed characteristic, just as R is; see 
Bourbaki [2], Chap. 9, 1 and 2, in particular, 9 1, n07, Prop. 8, and 5 2, n05, 
Thm. 3. So, in terms of W(k)-modules, R, is a direct sum of rings of Witt vectors 
of finite length over k. Using the definition of Witt vectors, we can identify the set of 
R, with a product km in such a way that the ring structure of R, corresponds 
to a ring structure on km which is given by polynomial maps. Thereby it is immedi- 
ately clear that we may interpret R, as the set of k-valued points of a ring scheme 
2, over k where, as a k-scheme, 9, is isomorphic to A;. 

Similarly as in the case of Weil restrictions, one defines Gr,(Y,) for any 
R,-scheme Y, on a functorial level before one tries to prove its representability by a 
k-scheme. Namely, consider the functor h* which associates to any k-scheme T the 
locally ringed space h*(T) consisting of T as a topological space and of Hom,(T, 92,) 
as structure sheaf. Then 

h*(Spec 4 = Spec(R, OW(,, W(A)) 

for any k-algebra A. In particular, taking A = k, we see that h*(T) is a locally ringed 
space over Spec R,. It is shown in Greenberg [I] that, for R,-schemes Y, of locally 
finite type, the contravariant functor 

Gr,(Y,) : (Schlk) -+ (Sets) , T t-+ HomRn(h*(T), Y,) 

is representable by a k-scheme (I), which, again, is locally of finite type. So (I), = 

Gr,(Y,) is characterized by the equation 

Hom,(T, 9,)  = HomRn(h*(T), Y,) 

and, in particular, setting T := Speck, we obtain (I),(k) = Y,(R,), the property of the 
Greenberg functor Gr, we have mentioned at the beginning. 

The canonical projection R,,, + R, gives rise to a functorial transition mor- 
phism Gr,,, + Gr,. Furthermore, the Greenberg functor Gr, respects closed 
immersions, open immersions, and fibred products. In fact, by establishing the first 
two of these compatibility properties, the representability of 9, = Gr,(Y,) is reduced 
to the trivial case where Y, = Agn and where (I), = (9,)". Furthermore, it can be 
shown that the Greenberg functor respects smooth and Ctale morphisms. So this 
functor extends in a natural way from schemes to algebraic spaces. Working with 
group objects in the sense of algebraic spaces, we see that (I), will be an algebraic 
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group space and, thus, by 8.3, a group scheme over k if Y is an algebraic group space 
over R,. Moreover, for smooth group objects, the Greenberg functor respects 
identity components. 

After this digression, let us turn to the proof of Lemma 2. Let R ,  = R/(nn)  be as 
above. Applying the base change R --+ R,  and then the Greenberg functor of level 
n, we can associate to G -+ H a morphism of k-group schemes of locally finite type 
6,  ---t f j ,  such that the maps 

can be identified. Since G(R) + H ( R )  is surjective by our assumption and since 
H ( R )  + H(R,) is surjective by the lifting property 2.216 characterizing smoothness, 
we see that G(R,) + H(R,) and, thus, B,(k) -+ $j,(k) is surjective. Furthermore, it 
follows that B,(k)/Q,O(k), as a quotient of G(R)/Go(R), is finitely generated. Thus, as 
we have explained before, Q,O(k) -+ fj,O(k) and therefore also Go(R,) -4 HO(R,) 
must be surjective. 

The map Go(R) + Ho(R)  can be interpreted as the projective limit of the 
surjective maps B!(k) + s;(k) ,  n E N .  In order to show the surjectivity of 

I@ 6,O(k) ---t l i p  $3,O(k) , 

it is enough to show that the system (%,), where %, is the kernel of the morphism 
8; ---, fj:, satisfies the Mittag-Leffler condition. However, this is clear since each 
6: is a k-scheme of finite type and, thus, satisfies the noetherian chain condition. 
So we have finished the proof of Lemma 2 and thereby also the proof of Theorem 1. 

0 

The assertion of Theorem 1 reduces the computation of the group of connected 
components J(R)/Jo(R)  to a problem of linear algebra. In the remainder of the 
present section, we want to give some formulas for the order of J(R)/JO(R) as well 
as determine this group explicitly in some special cases. Let us start with some easy 
consequences of Theorem 1. 

Corollary 3. Assume that the conditions of Theorem 1 are satisfied. Set I = {I, .  . . , r )  
and let n,, . . . , nr-,, 0 be the elementary divisors of the modified intersection matrix 
A = (e;l(Xi.Xj))i,j,, .  Then the group of connected components J(R)/J O(R)  of the 
NCron model J of J, is isomorphic to Zln,  L @ . . . @ Z/nr-, Z.  Its order is the greatest 
common divisor of all (r - 1) x (r - 1)-minors of A. 

Proof. Since the image of fi : Zr -+ Z has no torsion and, thus, is free of rank 1, it 
follows that kerP is a direct factor in Zr, free of rank r - 1. We know from 9.5110 
that the submodule im a c ker P is of rank r - 1 also and, thus, can be described 
by non-zero elementary divisors n,, . . . , n,-,. But then n,, . . . , nr-,, 0 are the elemen- 
tary divisors of im a viewed as a submodule of Zr and the assertions of the corollary 
are clear. 0 

If, in the above situation, all geometric multiplicities ei are trivial, i.e., if ei = 1 
for all i, then the modified intersection matrix A coincides with the intersection 
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matrix ((Xi. Xj))i, j,I. Considering the associated intersection pairing on the group 
D - Z' of all Cartier divisors on X which have support on the special fibre X,, we 
know from 9.5110 that the pairing is negative semi-definite and has a kernel A .  Z 
of rank 1, where A = Edid-'Xi, as a divisor in D; the element d is the gcd of the 
multiplicities d,. Dividing out the kernel, we get a quadratic form on DIAL 2: 
Z1/ker a whose discriminant yields the order of the group of connected components 
J(R)/JO(R). 

Corollary 4 (Lorenzini [I], 2.1.2). Assume that the conditions of Theorem 1 are 
satisfied and that, in addition, all geometric multplicities ei, i E I, are equal to 1. Let 
I = (1,. . . , r). Then, for all indices i, j E I, the absolute value of 

where a$ is the (r- 1) x (r- 1)-minor of index (i, j) of the intersection matrix 
A = ((Xi. Xj)), is independent of i and j. I t  equals the order of the group of connected 
components J(R)/JO(R). 

The proof is by establishing a lemma from linear algebra (see Lemma 5 below) 
which allows to compute the gcd of the (r- 1) x (r- 1)-minors of the intersec- 
tion matrix A. To apply it, set dl := did-'. Then the assertion of Corollary 4 follows 
from Corollary 3. For the purposes of the lemma, we will use an exponent "t" to 
denote transposition of matrices. 

Lemma 5. Let A = (aij) E Zr 
X r  define a semi-definite quadratic form of rank r - 1. 

Let its kernel be generated over Z by the vector d' = (d:, . . . , d:)' E Zr and let A* = (a;) 
be the adjoint matrix of A. Then there exists a positive integer v such that 

A* = f v.d ' .d" .  

Furthermore, v is the gcd of all (r - 1) x (r- 1)-minors of A. 

Proof. Since gcd(d;, . . . , di) = 1, the assertion on the greatest common divisor of 
the (r- 1) x (r- 1)-minors of A follows from the formula for A*. So it is enough 
to establish this formula. To do this, note that the kernel of A as a semi-definite 
quadratic form on Zr coincides with the kernel of A as a Z-linear map Zr + Lr. 
Then, using the equation 

A .  A* = det(A).unit matrix = 0 , 

we see that all columns of A* belong to the kernel of A. So there is a vector 
c = (c, , . . . , c,)' E Zr satisfying A* = d . cf. Since A* is symmetric, we have c . d" = 

d' . c' and, thus, A .  c . dlt = 0. This implies A. c = 0 since d' # 0 so that c belongs to 
the kernel of A. Hence there is an element v E Z satisfying c = v .  d'. Replacing v by 
its absolute value if it is negative, we have A* = f v . d' . d" as required. 0 

If one wants to prove more specific assertions on the group of connected 
components J(R)/JO(R), it is important to have information on the configuration 
of the components Xi of the special fibre X,. The latter can be described using 
graphs. There are several possibilities to associate a graph to X, depending on how 
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multiple intersections of components as well as multiplicities of intersection points 
are treated. We will deal with two cases, the one where the graph of Xk, in the 
weakest possible sense, is a tree and the one where X is a semi-stable curve. As a 
general assumption, we require that we are in the situation of Theorem 1 and that, 
in addition, the multiplicities ei, i E I, are equal to 1. For example, the latter is the 
case if k is algebraically closed. The index set I will always be the set (1,. . . , r). 

The case where the graph of Xk is a tree (cf. Lorenzini [I]). The graph we 
want to associate to Xk is constructed in the following way: the vertices of T are the 
components Xi of Xk, and a vertex Xi is joined to a vertex Xj different from Xi if 
the intersection number (Xi. Xj) is non-zero. In particular, the precise number of 
intersection points in Xi n Xj is not reflected in the graph T. We define the multi- 
plicity si of Xi, as a vertex of T, as the number of edges joining Xi; so 

s i = c a r d ( j f I ; i  # j  and (Xi.Xj) # O )  . 

Furthermore, we need the multiplicity di of Xi in the special fibre Xk (which coincides 
with the geometric multiplicity 4 of Xi in Xk since ei = I), the number d = 

gcd(d,, . . . , d,), and the quotients dl = didp' which are relatively prime. 

Proposition 6. In the situation of Theorem 1, assume that the graph T is a tree and 
that the geometric multiplicities ei are equal to 1. Then, writing aij = (Xi. Xj), the group 
of connected components J(R)/JO(R) has order 

Furthermore, if all dl are equal to 1, we have 

The assertion will be reduced to Corollary 3 by means of the following result: 

Lemma 7. Let A = (aij) E Zr " be a symmetric matrix, which is negative semi-definite 
of rank r - 1, and let the vector (d;, . . . , d:)' E Zr with positive entries dj generate the 
kernel of A. Furthermore, let r be the graph associated to A in the manner we have 
described for intersection matrices above. Then, if r is a tree, the greatest common 
divisor of all (r - 1) x (r - 1)-minors of A is given by the product 

Furthermore, if dj = 1 for all i, the elements aij occurring in the first factor constitute 
the non-zero elementary divisors of A. 

Proof. Let us first assume dl = 1 for all i. Then, since the vector (d;, . . . , d:) belongs 
to the kernel of the intersectiol: matrix A = (aij), it follows that the sum of all 
columns of A is zero. The same is true for the sum of all rows of A since A is 
symmetric. Consider a terminal edge C of T; i.e., an edge with attached vertices, say 
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XI and X,, such that s, = 1 and s, = 2. Then the intersection matrix A has the 
following form where aij = aji and where empty space indicates zeros: 

Now add the first column to the second column and, likewise, the first row to the 
second row. Using the fact that the sum of the columns or rows in A vanishes, we 
have a,, = -a,, = -a2,. Thus, we see that this operation kills the entries a,, and 
a,, so that the resulting matrix is of the form 

where a;, = a,, + a,,. Let T' be the graph obtained from T by removing the 
terminal edge C we are considering as well as the vertex X,. Then T' is a tree again 
and it can be viewed as a graph which corresponds to the lower bloc, call it A', of 
the above matrix, where A' has again the property that the sum of its columns or 
rows vanishes. Thus we can proceed with A' and I" in the same way as we have 
done before with A and T. Since r is a tree, the procedure of removing terminal 
edges and vertices stops after finitely many steps with a graph which is reduced to 
a single vertex and with an associated (1 x 1)-matrix which is zero. At the same time 
we have converted A by means of elementary column and row operations into a 
diagonal matrix; the diagonal elements, except for the last entry which is zero, 
consist of all elements -aij, i < j, such that Xi is joined to Xj by an edge of T. This 
verifies the assertion of the proposition in the case where all dj are equal to 1. 

In order to verify the remaining assertion on the greatest common divisor of 
all (r-l)x(r-1)-minors of A in the general case, we consider the matrix 
B = (aijdjd;). It is negative semi-definite of rank r - 1 again and has the property 
that the sum of its columns or rows is zero. So, using the graph T, we can determine 
its elementary divisors as before. In particular, the gcd of all (r - 1) x (r - 1)-minors 
of B equals the product 
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Let v be the gcd of all ( r-  1) x (r-  1)-minors of A. Writing A,, and B,, for the 
matrices obtained from A and B by removing the first column and the first row, we 
see from Lemma 5 that 

d e t A , , = f ~ ( d ; ) ~ ,  d e t B , , = f p .  
Thus 

= f det B,, = f (d;.  .. d:)'det A,, = f ( d ; .  .. d:)2v , 

and the desired assertion follows from the above equation for p. 0 

Remark 8. The graph l- associated to the special fibre X,  of a curve X as above is 
a tree if the Neron model J of the Jacobian J, of X ,  has potential abelian reduction 
or, more generally, if the special fibre J, does not contain a non-trivial torus. Namely, 
using the notation of 9.514, we have J, = P,IE,, where E: is a unipotent group by 
Raynaud [6] ,  6.318. So if J, does not contain a non-trivial torus, the same is true 
for P, and, thus, for Picxk,,. Then the configuration of the components Xi  of X ,  is 
"tree-like" by 9.2112. However, it should be noted that the graph l- as we have 
defined it can be a tree also in some cases where the configuration of the components 
of X ,  is not "tree-like". For example, X ,  can be a semi-stable curve consisting of 
two components which intersect each other in several points. In this case, it follows 
from 9.2110 again that J, contains a non-trivial torus. 

We want to apply Proposition 6 in order to show that the order of the group 
of connected components J (R) /J O(R)  is bounded if JK has potential good reduction. 
See Lorenzini [ I ]  for more precise bounds and McCallum [ I ]  for a generalization 
to abelian varieties. 

Theorem 9. Let R be a strictly henselian discrete valuation ring with algebraically 
closed residue field k and with field of fractions K. Furthermore, let X ,  be a proper 
smooth curve over K,  which is geometrically connected, has a Jacobian JK with 
potential good reduction, and admits a regular minimal model X over R. 

Then, for each integer g > 0, there exists a bound M(g)  such that, for each choice 
of R, K ,  and k ,  and for each curve X ,  of genus g as above, the order of the group of 
connected components J (R) /J O(R)  of the N h o n  model J of JK is bounded by M(g). 

Proof. We will use the methods of Artin and Winters [ I ] ;  the notation is as before. 
The connected components of X ,  are denoted by Xi ,  and di is the multiplicity of Xi 
in X,. Furthermore, let d be the gcd of the di and set dj = did-'. Let XL be the scheme 
given by C dIX,, the latter being viewed as a Cartier divisor on X .  Then 

(*) HO(XL, Lo,;) = k 

by Artin and Winters [ I ] ,  Lemma 2.6, since the gcd of the dl is 1. 
We want to compute the arithmetic genus of XL. Let R be a relative canonical 

divisor on X .  Then we can compute the Euler-PoincarC characteristic of Lo,; as 

the last equality is due to the fact that the degree of Si is the same on the generic 
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and on the special fibre of X. So, using the equality (*), the arithmetic genus g' of 
XL is given by 

g' = 1 - ~(0,;) = 1 + (XL. R)/2 = 1 + (g - l)/d . 

In particular, g' coincides with the abstract genus introduced by Artin and Winters 
[I], 1.3, and we have g' 5 g. If HO(Xk, OXk)  # k, which may be the case if d > 1, and 
if we compute the arithmetic genus of Xk, it can happen that the latter is greater 
than g. This is the reason why one has to introduce the curve X;. 

Now, in order to determine the order of the group of connected components 
J(R)/JO(R), one applies Corollary 3 and determines the greatest common divisor of 
all (r - 1) x (r - 1)-minors of the intersection matrix ((Xi.Xj)); let us denote it by 
v. The intersection matrix is the same for Xk and for XL. Thus, also the graph I- is 
the same for both curves, and it follows from our explanations given in Remark 8 
that r is a tree since J, has potential good reduction. We want to show that the 
integer v remains invariant if we contract an exceptional curve C of the second kind 
in the sense of Artin and Winters [I], 1.4, in Xk. Such a curve C corresponds to the 
middle edge of a chain 

x a  Xh x,. 
P 

in r such that d: = dJ, = d: and (Xu. X,) = ( X ,  . X,) = 1 and such that s, = 2; i.e., 
there is no ramification at the vertex X,. Contracting X, modifies l- to the extent 
that we have to replace the above chain by 

where now d;, = d:, d:, = d:, and (X,:X,,) = 1, all other intersection numbers 
remaining untouched. It follows from the formula in Lemma 7 that the integer v 
remains unchanged under such a contraction process. In a similar way one shows 
that contractions of exceptional curves of the first kind, as considered in Artin and 
Winters [I], Lemma 1.18, cannot cause v to increase. 

We now use the fact proved in Artin and Winters [I], Thm. 1.6, that, up to 
contraction of exceptional curves of the first and second kind, there are only finitely 
many possible types of graphs and intersection matrices for a given genus g' and, 
thus, for the finitely many genera g' < g. So there are only finitely many possible 
values for the integer v and, hence, for the order of the group of connected compo- 
nents J(R)/JO(R). 0 

The case of semi-stable curves. In the following we will assume that all geometric 
multiplicities di = diei are equal to 1. So, in addition to ei = 1, we have di = 1 for 
all i E I. We do not require from the beginning that the special fibre Xk of the curve 
X is semi-stable; we will restrict ourselves to this case later. The graph we want to 
consider here is the so-called intersection graph r of Xk. Its vertices are given by 
the irreducible components Xi of the special fibre Xk as before, whereas, different 
from the graph used above, its edges correspond to the intersection points of such 
components; i.e., Xi and Xj, i # j, are joined by as many edges as there are irreducible 
components in the intersection Xi n Xj. 
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We want to compute the group J(R)/JO(R) of connected components of the 
Nkron model of the Jacobian JK of X, by describing the group kerfilirna of 
Theorem 1 in terms of the graph T. To do this, choose an orientation on T and 
consider the (augmented) simplicia1 homology complex 

a, o-- c , ( T , z ) A  c0(r,Z)-Z 

of T with coefficients in Z. Then im 8, = ker 8, since T is connected. Identifying 
Co(T,Z) with Z', the map 8, coincides with p :  Z'-+ Z. Thus, if M is any 
Z-submodule of C,(T, Z) lifting ima, i.e., whose image under a, coincides with 
im a c Z' - C,(T, Z), we see that 

J(R)/JO(R) -- ker b/im a - Cl(T, Z)/(M + H,(T, Z)) , 

where the first cohomology group H,(T, Z) is the kernel of the map a,. 
A canonical lifting M of im a can be obtained by choosing canonical liftings ti 

of the generators ti = ((Xi. Xj))j,I, i E 1, of im a. Namely, define ti as a sum xp  cipyip 
where the cip are integers which will be specified below and where the yip vary over 
all edges joining the vertex Xi with a second vertex Xj. Up to its sign, the multiplicity 
cip is the local intersection number of Xi and Xj at the irreducible component x 
of Xi n Xj which corresponds to yip. The sign of tip is "+" or "-" depending on 
the orientation of yip. We use "+" if yip originates at X i  and ends at Xj and 
"-" otherwise. Then, since X,, as a Cartier divisor on X, is principal, we have 
Cj,,(Xi.Xj) = 0 for all i E 1 and we see that M := xi , , l iZ  is a lifting of ima so 
that 

We want to give an explicit example. 

Proposition 10. Let X be a proper and flat curve over S ,  which is regular and has a 
geometrically irreducible generic fibre X, as well as a geometrically reduced special 
fibre X,. Assume that X, consists of the irreducible components X,,. . . , X, and that 
the local intersection numbers of the Xi are 0 or 1 (the latter is the case f different 
components intersect at ordinary double points). Furthermore, assume that the inter- 
section graph l- is of the type 

1. e., T consists of 1 arcs of edges starting at X ,  and ending at X,. For each ;1 = 1,. . . , 1, 
let the A-th arc consist of the edges y,, , . . . , yAml, where m, is its length. Then the group 
J(R)/JO(R) has order 
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More precisely, J(R)/JO(R) is trivial if 1 = 1. For 1 2 2 it is isomorphic to the group 

where g, is the greatest common divisor of all summands occurring in the i-th elemen- 
tary symmetric polynomial 

Proof. We use the formula (*). A basis of Cl(T, Z) is given by the elements 

Y~m,-Ylrn,-l 9 ... Y ~ r n , - Y 1 r n , - 1  

Next we write down generators for the canonical lifting M of im a: 

and for HI (T, Z): 

Using the above generators for C,(T,Z), M, and H,(T,Z), as well as the fact 
that 

if follows that J(R)/J'(R) - Cl(T, Z)/(M + Hl(T, Z)) is isomorphic to the quotient 
of the free Z-module generated by y,,, . . . , v],,, divided by the submodule generated 
by the relations 

The relations are described by the matrix 
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Computing the determinant of A by developing it via the first column, we get 

det A = 0,-,(m,, . . . , m,) . 

Thus, by the theory of elementary divisors, this is already the group order of 
J(R)/JO(R).  To determine the elementary divisors of A explicitly, we use the criterion 
involving the gcd of minors; cf. Bourbaki [I], Chap. 7, !j 4, n05, Prop. 4. 

The gcd of all coefficients of A is 1; so this is the first elementary divisor. For 
1 < A < 1, the gcd of all ( A x  A)-minors is the gcd of all products occurring as 
summands in the (A - 1)-st elementary symmetric polynomial 0,-,(ml,. . . , m,); 
hence it is 9,-, . Therefore the elementary divisors of A are 

Corollary 11. Let X be a flat proper curve over S. Assume that the generic fibre XK 
is smooth and that the special fibre XK is geometrically reduced and consists of two 
irreducible components Xl and X, which intersect transversally at 1 rational points 
x,, . . . ,xi.  Thus, for each A = 1,. . . , I ,  the curve X is, up to &ale localization at x,, 
described by an equation of type uv = nm< If X has no other singularities, then, just 
as in the situation of Proposition 9, the group of connected components of the Ntron 
model J of the Jacobian J, of XK is isomorphic to the group 

where g, is the greatest common divisor of all summands occurring in the i-th elemen- 
tary symmetric polynomial 

The assertion is a direct consequence of the preceding proposition since the 
minimal desingularization of X is of the type considered in Proposition 10. Curves 
of this type occur within the context of modular curves; see the appendix by Mazur 
and Rapoport to the article Mazur [I]. 

Remark 12. If in the situation of Proposition 10 the graph l- of the special fibre of 
X is of type 
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i.e., consists of 1 loops of length m,, . . . , m, starting at X, each, the group of connected 
components of J can be computed as exercised in the proof of Proposition 10. One 
shows 

Thereby one obtains an analogue of Corollary 11 for curves X whose special fibre 
is irreducible and has at most ordinary double points as singularities. 

9.7 Rational Singularities 

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual, 
K is the field of fractions and k is the residue field of R. Starting with a proper and 
flat S-curve X which is normal and has geometrically irreducible generic fibre, we 
want to relate the fact that a Neron model J of the Jacobian JK of XK exists and 
that the canonical morphism Pic;,, -+ J0 is an isomorphism to the fact that X has 
singularities of a certain type, namely rational singularities. To explain the latter 
terminology, assume that X admits a desingularization f :  X' + X (which, by 
Abhyankar [I] or Lipman [I] exists at least in the case where R is excellent). There 
are only finitely many points where X is not regular. X is said to have rational 
singularities if R1f*(B,,) = 0. It can be shown that the latter condition is indepen- 
dent of the chosen desingularization. 

Theorem 1. Let X be a flat proper curve over S which is normal and which has 
geometrically irreducible generic fibre X,. Let XI, . . . , X,  be the irreducible compo- 
nents of the special fibre Xk. Assume that X admits a desingularization f :  X' + X 
and, furthermore, that the following conditions are satisfied: 

(i) The residue field k of R is perfect or X admits an dtale quasi-section. 
(ii) The greatest common divisor of the geometric multiplicities 4 of Xi in 

Xk (cf. 9.113) is 1. 
Then, by (i), the Jacobian JK of XK admits a Ndron model J of finite type and, by 

(ii), the identity component Pic;,s of the relative Picard functor is a scheme. Further- 
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more, the canonical morphism Picgls + J0 is an isomorphism if and only if X has 
rational singularities. 

Proof. It is easily seen that conditions (i) and (ii) carry over from X to X'. For 
example, if X admits an &ale quasi-section over S, the same is true for X' by the 
valuative criterion of properness since f :  X' -+ X is proper. Thus it follows from 
condition (i) and from 9.514 that J,, which is also the Jacobian of Xk, has a NCron 
model J of finite type. Furthermore, the canonical morphism ii: P'jE' + J is an 
isomorphism where P' is the subfunctor of Picxrls given by line bundles of total 
degree 0 and where E' is the schematic closure of the generic fibre of the unit section 
of Picx,/,. 

On the other hand, using 9.412, condition (ii) implies that Pic;, and Pic$,s are 
represented by separated schemes. So we get canonical maps between S-group 
schemes 

the latter map being an isomorphism by 9.514. So Pic$, --, JO is an isomorphism 
if and only if Pic$/,  pic^,,, is an isomorphism and the latter is the case if 
and only if Lie(Pic$,) -+ Lie(Pic$,,) is an isomorphism. Writing R[E] for the 
algebra of dual numbers over R, we can interpret Lie(Pic$,) as the subfunctor of 
Homs(Spec R[E], Pic$l,) consisting of all morphisms which modulo E reduce to the 
unit section of Pic&,. Then, as we have seen in the proof of 8.411, it follows that 
Lie(Pic;,,) can be identified with the cohomology group H1(X, Ox). Proceeding in 
the same way with X', we see that Lie(Pic$,) + Lie(Pi~'$~,) is an isomorphism if 
and only if the canonical map H1(X, 8,) -+ H1(X', Ox,) is an isomorphism. 

Now let us look at the Leray sequence associated to f :  X' + X. It starts as 
follows: 

0 + H1 (X, Co,) ---t H1 (X', Co,,) + HO(X, R (Ox)) --+ H (X, Ox) 

Since X is a curve, we have, in fact, a short exact sequence 

0 + H'(X, Ox) + H1(X', Ox.) -+ H'(x, R ' ~ * ( L O ~ ) )  + 0. 

So H ~ ( X ,  Ox) -+ H1(X', Ox.) is an isomorphism if and only if HO(x,  R' f,(Ox)) = 0. 
Since R1f,(Ox) is concentrated at a finite number of closed points of X, the latter 
is equivalent to R1f,(Ox) = 0; i.e., to the fact that X has rational singularities. This 
establishes the desired equivalence. 0 

For semi-stable curves over S (cf. 9.2/6), assumptions (i) and (ii) of Theorem 1 
are automatically satisfied. So, using 9.2j8, we see: 

Corollary 2. Let X be a semi-stable curve over S which is proper, flat, and normal, 
and which has a geometrically irreducible generic fibre X,. Then the Jacobian Jx of 
X, has a Ndron model J and the canonical morphism Pic:,, --+ J0 is an isomorphism. 
In particular, J has semi-abelian reduction. 
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In the situation of the theorem we can say that Pic& is independent of the choice 
of the S-model X of X,  as long as we limit ourselves to proper, normal, and flat 
S-curves which have rational singularities. Namely, then Pic$/, coincides with the 
identity component of the Nkron model J of the Jacobian JK of XK.  

We want to give an application to the modular curve Xo(N).  To recall the 
description of this curve, let N be a positive integer and write UN for the open 
subscheme of SpecZ where N is invertible. Then Xo(N)IuN is a proper and smooth 
curve over UN; it is the compactified coarse moduli space associated to the stack of 
couples (E, C) of the following type: E is an elliptic curve over some UN-scheme S 
and C is a subgroup scheme of E which is finite, &tale, and cyclic of order N.  For 
N = 1 one obtains the projective line P over Z, to be interpreted as the compactifica- 
tion of the affine line where the j-invariant of elliptic curves serves as a parameter. 

Writing X o ( N )  for the normalization of P in Xo(N)IuN, the curve X o ( N )  is proper 
over Z and extends the curve we had already over UN. For example, if p is a prime 
strictly dividing N ,  the curve Xo(N)  has semi-stable reduction at p. More precisely, 
the fibre of Xo(N)  over p consists of two smooth components which intersect 
transversally at the supersingular points; cf. Deligne and Rapoport [I], Chap. VI, 
Thm. 6.9, or the appendix by Mazur and Rapoport to Mazur [I], Thm. 1.1. 

If P2 divides N ,  the geometry of fibres is more complicated and certain compo- 
nents have non-trivial multiplicities. In this case one can use the modular interpreta- 
tion a la Drinfeld which yields information on Xo(N), particularly at bad places. 
Namely, X,(N) is the coarse moduli space associated to a certain modular stack 
which is relatively representable and regular over Z; cf. Katz and Mazur [I], 5.1.1. 
Then, if x is a closed point of Xo(N),  the henselization at x is a quotient of a regular 
local ring by a finite group whose order divides 12. From this one deduces by means 
of a norm argument that the singularities of the fibres of X o ( N )  over any prime 
p > 3 are rational. Furthermore, over each prime p, there are irreducible compo- 
nents which have geometric multiplicity 1 in the fibre over p; cf. Katz and Mazur 
[I], 13.4.7. So, using 9.412, and Theorem 1, as well as a globalization argument of 
the type provided in 1.214, we obtain: 

Proposition 3. The modular curve Xo(N)  is cohomologically flat over Z and P ~ c : ~ ( ~ ) ~ ~  
is representable by a group scheme. Furthermore, outside p = 2 and 3, it is the identity 
component of the Ndron model of the Jacobian of Xo(N)  OZ Q. 



Chapter 10. Nkron Models of Not Necessarily 
Proper Algebraic Groups 

For this last chapter we introduce a new type of Ntron models, so-called Neron 
lft-models. To define them, we modify the definition of Neron models by dropping 
the condition that they are of finite type. Then, due to the smoothness, Ntron 
lft-models are locally of finite type. This is the reason why we use the abbreviation 
"lft". For example, tori do admit Neron lft-models whereas, for non-zero split tori, 
Neron models (in the original sense) do not exist. 

We begin by collecting basic properties of Ntron lft-models and by explaining 
some examples. Then, for the local case, we prove a necessary and sufficient condi- 
tion for a smooth algebraic K-group GK to admit a Nkron model (resp. a Neron 
lft-model). In the special case where the valuation ring is strictly henselian and 
excellent, it states that G, admits a Ntron model (resp. a Neron Ift-model) if and 
only if GK does not contain a subgroup of type G, or G, (resp. of type 6,). In the 
last section, we attempt to globalize our results for excellent Dedekind schemes. An 
example of Oesterle shows that one cannot expect a local-global-principle for the 
existence of Neron models. However, in the case of Neron lft-models, we feel that 
such a principle is true and formulate it as a conjecture: G, admits a Ntron lft-model 
if G, does not contain a subgroup of type G,. Finally, admitting the existence of 
desingularizations, we are able to show that the existence of Ntron models (in the 
original sense) is related to the fact that GK does not contain a non-trivial unirational 
subvariety. 

10.1 Generalities 

If R is a discrete valuation ring with field of fractions K, the set of K-valued points 
of the multiplicative group G,,, is not bounded in G,,,. Thus G,,, does not have 
a Ntron model of finite type over R. We will see, however, that there exists a unique 
R-model of G,,, which is a smooth R-group scheme and satisfies the NCron 
mapping property, but which is not of finite type. This is one of the reasons why we 
want to generalize the notion of Neron models. 

Definition 1. Let S be a Dedekind scheme with ring of rational functions K .  Let XK 
be a smooth K-scheme. A smooth and separated S-model X is called a Ndron lft-model 
of XK if X satisfies the Ndron mapping property; cf. 1.211. 

Since we do not require X to be of finite type over S, such models are just locally 
of finite type (Ift) over S. As in the case of Nkron models, it follows from the NQon 
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mapping property that Ntron Ift-models are unique and that their formation is 
compatible with localization and etale base change. In particular, the analogue of 
1.214 remains valid: an S-scheme X which is locally of finite type is a NCron Ift-model 
of XK over S if and only if X 8, Lo,,, is a NCron Ift-model of XK over Spec Co,,, for 
each closed point s E S. The Neron Ift-model X of a group scheme XK is a group 
scheme again. In this case the identity component X0 is of finite type. Namely, 
locally on S, there exists an S-dense open affine subscheme U of X0 and the map 
U x, U -+ X0 induced by the group law is surjective. Furthermore, it follows from 
6.411 that any finite set of points of a fibre of X is contained in an affine open 
subscheme of X. 

In the following we want to generalize certain results on NCron models to the 
case of NCron lft-models. Let us start with the criterion 7.111. 

Proposition 2. Let R be a discrete valuation ring and let G be a smooth and separated 
R-group scheme. Then the following conditions are equivalent: 

(a) G is a N6ron Ift-model of its generic fibre. 
(b) Let R + R' be a local extension of discrete valuation rings where R' is 

essentially smooth over R. Then, if Kt is the field offractions of R', the canonical map 
G(R')  + G(K1) is surjective. (Recall that R' is said to be essentially smooth over R 
if it is the local ring of a smooth R-scheme). 

Proof. The implication (a)=+(b) is a consequence of the Neron mapping 
property. For the implication (b) ==+(a), consider a smooth R-scheme Z and a 
K-morphism ZK -+ GK of the generic fibres. Due to the assumption, this map 
extends to an R-rational map Z ---+ G and, hence, to an R-morphism Z -+ G by 
Weil's extension theorem 4.411. Thus we see that G satisfies the NCron mapping 
property. 0 

Note that, in Proposition 2, it is not sufficient to ask the extension property for 
Ctale integral points, as it is in 7.111 in the case of Neron models. Next we want to 
formulate 7.211 (ii) for Ntron Ift-models; the second proof we have given in Section 
7.2 carries over without changes. 

Proposition 3. Let R be a discrete valuation ring and let R -+ R' be an extension of 
ramification index 1 with fields of fractions K and Kt. Assume that GK is a smooth 
K-group scheme. If G is a Ndron Ift-model of GK over R, then G @,'R1 is a N k o n  
Ift-model of GK OK K' over R'. 

Moreover, there is an analogue of 7.214. 

Proposition 4. Let S' -+ S be a finite flat extension of Dedekind schemes with rings 
of rational functions K' and K .  Let GK be a smooth K-group scheme and denote by 
GK, the K'-group scheme obtained by base change. Let HK be a closed subgroup of GK 
which is smooth. Assume that GK, admits a NCron Ift-model G' over S'. Then the NCron 
lft-model of HK over S exists and can be constructed as a group smoothening of the 
schematic closure of HK in the Weil restriction %s,,s(G'). 
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Proof. Since any finite set of points of G' is contained in an affine open subscheme 
of G', the Weil restriction %,,,,(GI) is represented by an S-scheme which is separated 
and smooth; cf. 7.614 and 7.615. By functoriality it is clear that 'iRSf,,(Gf) is the Ntron 
Ift-model of %,,,,(Gk,) over S; cf. 7.616. There is a canonical closed immersion 

Denote by H the schematic closure of HK in 'iRs,ls(G'). Then H is flat over S. Similarly 
as exercised in Section 7.1 by applying the smoothening process to the closed 
fibres of H, we get a morphism H - H from a smooth R-group scheme H to 
H by successively blowing up subgroup schemes in the closed fibres. Indeed, 
H n %,r,s(G')O is of finite type over S, since the identity component %s.l,(G')O of 
%s,,s(G') is of finite type over S. So H n %,.,,(G')O has at most finitely many 
non-smooth fibres over S. Using translations, one sees that the same is true for H 
and, furthermore, that the non-smooth locus of H is invariant under translations. 
Then it is clear that the process of group smoothenings will work as in the finite 
type case, since it suffices to control the defect of smoothness over H n %sr,s(G')O. 
As in 7.116, one verifies that H is the Ntron Ift-model of H ,  over R. 0 

Example 5. Let S be a Dedekind scheme with ring of rational functions K. The 
multiplicative group G,,, over K admits a NLron Ift-model G over S. Its identity 
component is isomorphic to G,,,. 

Proof. In order to give a precise description of G, one proceeds as follows.. Let s be 
a closed point of S and let 71, be a generator of the ideal corresponding to the closed 
point s E S over an open neighborhood U(s)  of s. So, for each v E Z, we can view TCJ 
as a (U(s)  - {s))-valued point of G,,,. Then, let 71,". G,,, be a copy of G,,, x ,  U(s),  
viewed as the translate of G,,, by 71," in the Ntron Ift-model we want to construct. 
The translations by the sections n,", v E Z, define gluing data between G,,, and the 
71:. G,H,s over U(s)  - (s) in a canonical way. So we can define 

as the result of the gluing of G,,, with the copies (n;. G,,,) where IS1 is the set of 
closed points of S. 

In order to show that G is a Ntron lft-model of G,,, over S, note first that G is 
a smooth and separated S-group scheme with generic fibre G,,,. So we have only 
to verify the Neron mapping property for G. Since the construction of G is com- 
patible with localization of S, we may assume that S consists of a discrete valuation 
ring R; cf. the analogue of 1.214. Due to Proposition 2, it suffices to show for any 
extension R -+ R' of ramification index 1 that each K'-valued point extends to an 
R'-valued point of G. Since the construction of G is compatible with such ring 
extensions, we may assume R = R'. But then it is clear that the canonical map 
G(R) -+ G ( K )  is bijective, so that we are done. 0 

The example we have just given can be generalized to tori over K. 
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Proposition 6. Let S be a Dedekind scheme with ring of rational functions K. Any 
torus TK over K admits a Ndron lft-model over S. 

Proof. We may assume that S is affine and that it consists of a Dedekind ring R. If 
the torus is split, the assertion follows from the above example. In the general case, 
there exists a finite separable field extension K'IK such that T,. = T, @, K' is split. 
If R' is the integral closure of R in K', then T,, admits a NCron Ift-model over R'. 
Now the assertion follows from Proposition 4. 0 

Also we can handle the case of extensions of certain algebraic K-groups by tori. 
For technical reasons we will restrict ourselves to split tori, although this restriction 
is unnecessary as can be seen by using 10.212. 

Proposition 7. Let S be a Dedekind scheme with ring of rational functions K. Let GK 
be a smooth connected algebraic K-group which is an extension of a smooth algebraic 
K-group H, by a split torus T,. Assume that Hom(H,, G,,,) = 0; for example, the 
latter is the case if HK is an extension of an abelian veriety by a unipotent group. 
Then, i f  H, admits a Ntron lft-model over S,  the same is true for GK. 

Proof. Since T, is a split torus, say of rank r, the extension GK of HK by TK is given 
by primitive line bundles Sfl,. . . , Sfr on HK; cf. Serre [I], Chap. VII, n015, Thm. 5. 
Although Serre considers only the case where H, is an abelian variety, the result 
extends to our situation, since each homomorphism of H, to G,,, is constant. A 
line bundle 9 on a group scheme G is called primitive if there is an isomorphism 

where m is the group law of G and where pi : G x G ---, G are the projections, i = 

1,2. Since the local rings of the Ntron model H of H, are factorial, the line bundles 
9p, p = 1,. . . , r, extend to primitive line bundles on the identity component H0 of 
H. Thus, they give rise to an extension 

whose generic fibre is the extension we started with. Then Go will be the identity 
component of the Ntron lft-model G of G, whereas G itself has to be constructed 
by gluing "translates" of Go. 

In order to do this, let us start with the construction of the local Neron lft-model 
at a closed point s of S. Let Rih be a strict henselization of the local ring R, and let 
K:h be its field of fractions. Then set 

where I, is isomorphic to Zr. Due to Hilbert's Theorem 90, the quotient &/I, is 
canonically isomorphic to the group H(K:h)/Ho(R:h). In the case where A, can be 
represented by a set (A,) of K-valued points of G,, we can, similarly as in Example 
5, define a smooth and separated R-group scheme 
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as the result of a gluing where the gluing data are concentrated on the generic fibre 
and are given by the translations with the sections A,. Then each K-valued point of 
GK extends to an R-valued point of G. Since this construction is compatible with 
any extension R -+ R' of ramification index 1, each K'-valued point of G, extends 
to an R'-valued point of G where K' is the ring of fractions of R'. Then, using 
Proposition 2, one shows that G(s) satisfies the Neron mapping property. Hence, it 
is the Neron lft-model of G, over R,. If the sections {A,) are not defiued over R,, 
one shows by means of descent that the group G(s) which can be defined over a 
strict henselization R:h of R, is already defined over the given ring R, and, hence, is 
a Nkron lft-model of GK over R,. In the global case, the Ntron lft-model G of GK is 
given by gluing the local models G(s), s E ISI, where IS1 is the set of all closed points 
of S ;  hence 

In order to explain the gluing procedure, consider a "component" G(s)' of G(s); 
thereby we mean an open subscheme consisting of G, and of a connected component 
of G(s). Then G(s)' is of finite type over R,  and, hence, it extends over an open 
neighborhood U(s)  of s. Since G, is connected, we may assume that G(s)' coincides 
with Go over U(s)  - {s) .  So this way we obtain gluing data between Go and each 
component G(s)' of G(s) and, hence, between Go and G(s). It is clear that these data 
give rise to gluing data for the family (G(s); s E ISI). In particular, the pull-back of 
G to the local scheme Spec CIS,, is isomorphic to G(s). Thus, it is clear that G satisfies 
the Neron mapping property and, hence, is a N k o n  lft-model of GK over S. 

Unipotent K-groups may contain a subgroup of type G,. So they do not 
necessarily admit Neron Ift-models as we will see by the following proposition. But 
we mention that, if K is not perfect, there are smooth connected unipotent groups, 
so-called K-wound unipotent groups, which do not contain the additive group G,,,. 
In Section 10.2 we will discuss the existence of Ntron models for such groups. 

Proposition 8. Let S be a Dedekind scheme with ring of rational functions K. If GK 
admits a Ndron lft-model, then GK does not contain a subgroup of type 6,. 

Proof. Since Ntron lft-models are compatible with localizations and Ctale extensions 
of the base scheme, we may assume that S consists of a strictly henselian discrete 
valuation ring R with uniformizing parameter n. Proceeding indirectly, we may 
assume by Proposition 4 that GK = G,,, and that G, admits a Nkron lft-model G. 
Let us fix a coordinate function (, for GK, say G, = Spec KC(,]. Then set Gn = 

Spec R[( , ]  for n E N, where the 5, are indeterminates, and consider the morphisms 

Gn = Spec RE(,] -+ Gn+' = Spec R[(,+,] 

induced by sending (,+, to n.5,. These morphisms induce the zero map on the 
special fibres. We regard each Gn as a smooth R-model of GK via the isomorphism 
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induced by the map K [ t o ]  + K [ t , ]  sending 4 ,  to 71-"4,. Thus, we get commuta- 
tive diagrams 

Due to the Neron mapping property, these diagrams extend to communtative 
diagrams 

The morphisms induce the zero map on special fibres. So we see that each S-valued 
point of G specializes into the zero section, since such a point can be regarded as 
an S-valued point of some G". Hence, we arrive at a contradiction. 0 

Next we will discuss a criterion relating the existence of global Ntron lft-models 
to the existence of local Neron lft-models. 

Proposition 9. Let S be a Dedekind scheme with ring of rational functions K. Let G, 
be a smooth connected algebraic K-group. Assume that, for each closed point s of S, 
the local Ne'ron lft-model of GK over CIS,, exists. Then the following conditions are 
equivalent: 

(a) GK admits a global Ndron lft-model over S. 
(b) There exists a dense open subscheme U of S and, over U, a smooth group 

scheme with connected fibres which coincides with the identity component of the local 
Ne'ron lft-model G, for each closed point s of U. 

(c) There exists a coherent (locally free) CIS-module 3 which, over each local ring 
of S, coincides with the Lie algebra of the local Nkron lft-model of G,. 

Proof. The implication (a) +(c) is trivial. To show the implication (c) ==+ 
(b), let G(s)O, for any closed point s of S, be the identity component of the local 
Ntron lft-model of G, over Us,,. Since G(s)O is quasi-compact, there exist an open 
neighborhood U(s) of s and a smooth U(s)-group scheme G&, with connected fibres 
such that G&,, induces G(s)O over the local ring Co,,,. Furthermore, due to the 
assumption (c), we may assume that the Lie algebra of G&,, coincides with the Lie 
algebra of the local Neron lft-model at each point t of U(s). Then, for each t E U(s), 
the canonical map 

is &tale and, hence, an isomorphism, since it is an isomorphism on generic fibres. 
So condition (b) is clear. 

For the implication (b) +(a) we will first construct the identity component 
of the Neron lft-model. So let Gg be the U-group scheme given by condition (b). If s 
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is a closed point of S not contained in U ,  the identity component G(s)O of the Ntron 
Ift-model of GK over CIS , ,  is of finite type over Lo,,, and, hence, extends to a smooth 
group scheme G&,, with connected fibres over an open neighborhood U(s)  of s. Since 
Gg and G&,, coincide on the generic fibre, they coincide over an open neighborhood 
of s in U n U(s). So we get gluing data and, hence, a smooth S-group scheme Go 
with connected fibres which coincides with the identity components of the local 
Neron lft-models at closed points of S. Now, a Ntron lft-model G of GK is obtained 
by gluing the local Neron Ift-models G(s), s E ISI, where IS1 is the set of all closed 
points of S ;  i.e., 

The procedure is the same as in Proposition 7. Also the Ntron mapping property 
is verified as exercised in the proof of Proposition 7. 0 

Since a smooth group scheme with connected fibres over a Dedekind scheme is 
quasi-compact, the proof of the implication (b) +(a) of the above proposition 
shows the following fact: 

Corollary 10. Let S be a Dedekind scheme with ring of rational functions K .  Let GK 
be a smooth connected algebraic K-group. Assume that there exists a global Niron 
lft-model of G, over S. Then GK admits a Niron model over S if and only i f  the groups 
of connected components of the local Ndron lft-models are finite and, for almost all 
closed points of S, are trivial. 

Finally, we want to give an example showing that the existence of local Ntron 
models does not imply the existence of a global Nhron model. 

Example 11 (Oesterlk [I]). Let R be an excellent Dedekind ring with field of fractions 
K of positive characteristic p, let K'jK be a radicial field extension of order pn, and 
let R' be the integral closure of R in K'. Let G, be the Weil restriction of the 
multiplicative group Gm,,, with respect to K'IK. Consider the quotient U, = 

GKjGm,,  where G,,, is viewed as a subgroup of G, via the canonical closed 
immersion 

For each closed point s of Spec R ,  we will see that the local Ntron model exists and 
that its group of connected components is a cyclic group of order e, where e, is the 
index of ramification of the extension Ri/R,. Moreover, U, admits a global Ntron 
lft-model over R which, in general, will not be of finite type over R if R has infinitely 
many maximal ideals. 

As a typical case, one may take for R the ring of an affine normal curve over a 
perfect field. In this case, the ramification index at each closed point coincides with 
the degree of the radicial extension [K' : K ] .  In particular, U, does not admit a global 
Ntron model if the extension K'IK is not trivial. 
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So let us justify the fact on UK we have claimed above. Due to Hilbert's Theorem 
90, we have 

If R is a discrete valuation ring and R --+ R' is of ramification index e, the group 
UK(K) can be written in the form 

Similarly as for the generic fibre, we have a canonical map 

which is a closed immersion. Thus, we can define the quotient 

U0 = GR/Grn,R . 

which is a smooth separated algebraic space; cf. 8.319. Due to 6.613, it even is a 
smooth R-group scheme. Moreover, we have 

For each closed point s of Spec(R), the local Ntron model U(s) is obtained by gluing 
U0 OR R, with e, copies of it along the generic fibre where the gluing data are given 
via the translation on the generic fibre by representatives of U(K)/UO(R,). Then, as 
in Example 5, it is easy to see that Us satisfies the Ntron mapping property. By 
Proposition 9, we see that there exists a global Neron lft-model of U, over R. 

One can show that the global NCron lft-model of UK is isomorphic to the 
quotient of the Weil restriction of the Neron model of G,,,, by the NCron model 
of Grn,,. 0 

10.2 The Local Case 

In the following, let R be a discrete valuation ring with field of fractions K and let 
GK be a smooth commutative algebraic K-group. So, in particular, GK is of finite type 
over K. We want to discuss criteria for the existence of a Nkron model (resp. of a 
NCron lft-model) of GK over R depending on its structure as algebraic group. To fix 
the notations, let RSh be the strict henselization of R with field of fractions K", let 
Ph be the strict henselization of the completion I? of R, and let Ph be the field of 
fractions of Ph. Since certain parts of our considerations will require an excellent 
base ring, recall that the strict henselization of an excellent discrete valuation ring 
is excellent again by 3.612. So Ph is excellent. In particular, the extension Ph/I? is 
separable. Furthermore, if R is excellent, Rsh is excellent and the extension I Z " h / ~  is 
separable. 

We will first concentrate on Neron models. We know already that GK admits a 
Neron model if and only if the set of its Ksh-valued points is bounded in GK. Now 
we want to formulate a necessary and sufficient condition for the existence of a 
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Nkon model for GK in terms of the group structure of G,. Let us begin with some 
definitions. If X is a separated K-scheme of finite type, a cornpactification of X is an 
open immersion X c, x of X into a proper K-scheme 2 such that X is schemati- 
cally dense in X. The subscheme X - X will be referred to as the infinity of the 
compactification. Due to Nagata [I], [2], compactifications always exist. If, in 
addition, X and x are regular, we will call x a regular cornpactification of X .  For 
a regular K-scheme X, there exists a regular compactification if the characteristic 
of K is zero or if the dimension of X is 1 2 ;  cf. Hironaka [2] and Abhyankar [I]. 

Theorem 1. Let R be a discrete valuation ring with field of fractions K, and let GK 
he a smooth commutative algebraic K-group. Then the following conditions are 
equivalent: 

(a) GK has a Ndron model over R. 
(b) GK OK Ph contains no subgroup of type G, or G,. 
(c) GK QK ph admits a cornpactification without a rational point at infinity. 
(d) G,(IZ"~) is bounded in GK. 
(e) GK(Ph)  is bounded in GK. 

If, in addition, R is excellent, the above conditions are equivalent to 
(b') GK @, KSh contains no subgroup of type (6, or G,. 
(c') GK OX KSh admits a compactification without a rational point a f  infinity 

For example, a K-wound commutative unipotent algebraic K-group admits a 
NCron model over R if R is excellent. Namely, such a group does not contain 
subgroups of type G, or 6, and this property remains true after any separable field 
extension; cf. Tits [l], Chap. IV, Prop. 4.1.4. 

If GK is the Jacobian JK of a normal proper curve X,  over K assumed to be 
geometrically reduced and irreducible, then, due to 9.214, there is no subgroup of 
type 6 ,  or G ,  in J, @, L, for any separable field extension L of K .  SO, if K is the 
field of fractions of an excellent discrete valuation ring R, our theorem implies that 
J, admits a Neron model over R; cf. 9.516. Furthermore, there is a natural compacti- 
fication of JK without a rational point at infinity; cf. Example 9. 

Before starting with the proof of Theorem 1, we want to deduce a criterion for 
the existence of NCron lft-models. 

Theorem 2. Let R be a discrete valuation ring with field of fractions K and let GK 
be a smooth commutative algebraic K-group. Then the following conditio?zs 
equivalent: 

(a) GK admits a N h o n  lft-model over R. 
(b) GK OK RSh contains no subgroup of type G,. 

If, in addition, R is excellent, these conditions are equivalent to 
(b') GK contains no subgroup of type G,. 

Let us first deduce Theorem 2 from Theorem 1. The implications (a) * ibi 2:: 
(a) ==+(b') follow from 10.113 and 10.118. Next let us show the implication k t ?  I * 
(a) under the assumption that R is excellent. Let T, be the maximal torus of G,. c i  
[SGA 3,,], Exp. XIV, Thm. 1.1. Then we have an exact sequence of alge'rrzc 
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where H ,  is an extension of an abelian variety by a linear group and where the 
latter is an extension of a unipotent group U, by a finite multiplicative group; cf. 
9.211 and [SGA 3,,], Exp. XVII, Thm. 7.2.1. Due to [SGA 3,,], Exp. XVII, Thm. 
6.1.1(A)(ii), the K-groups H K  and, hence, U, do not contain a subgroup of type G,, 
since the same is true for G,. Then it follows from Tits [I], Chap. IV, Prop. 4.1.4, 
that U, @, K' and, hence by [SGA 3,,], Exp. XVII, Lemme 2.3, that H ,  @, K' does 
not contain a subgroup of type G, for any separable field extension K' of K. 
However, there exists a finite separable field extension K' of K such that TK @, K' 
is split. So, if R' is the integral closure of R in K', the K'-group H K  @, K' admits a 
Neron model over R' by Theorem 1, since R' is excellent. Hence, G, @, K' admits 
a Ntron lft-model over R' by 10.117. Then it follows from 10.114 that GK admits a 
Ntron lft-model over R. For the proof of (b) ==+(a), we may assume R = kh by 
10.114. In particular, R is excellent now and, hence, the assertion follows from the 
implication (b') +(a) which has just been proved. 0 

Now we come to the proof of Theorem 1. Some parts of it have already been 
proved: 

(a) ===+ (b) Ntron models are compatible with base change of ramification index 
1; cf. 7,212. Hence G, @, Ph admits a NCron model of finite type over k h .  SO the 
set of kSh-valued points of GK is bounded in GK and, hence, GK Ph cannot 
contain a subgroup isomorphic to G, or G,. 

(b) + (b') is trivial. 
(c) +(d) follows from 1.1110, since Ph is excellent. 
(c') +(e) follows from 1.1/10, since R" is excellent. 
(d) + (e) is trivial. 
(e) ==+ (a); cf. Theorem 1.311. 
The remainder of this section is devoted to the proof of the implications 
(b) ==+ (c) and (b') * (c'). 

Let us first explain the meaning of conditions (c) and (c') 

Proposition 3. Let X be a smooth and separated K-scheme of finite type. Consider the 
,following conditions: 

(a) There exists a compactification 2 of X such that there is no rational point in 
x - X. 

(b) For any affine smooth curve C over K with a rational points, each K-morphism 
C - ( s )  -+ X extends to a K-morphism C + X. 

(c) The canonical map X(K[[(]]) --+ X(K((t))) is bijective, where 5 is an in- 
determinate and where K((5)) is the field of fractions of K[[(]]. 

Then one has the following implications: (a) ==+ (b)* (c). If, in addition, X admits 
a regular compactification X', conditions (a), (b), (c) are equivalent and, moreover, they 
are equivalent to 

(d) ( X  - X ) ( K )  is empty. 
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Proof. (a) +(b) is trivial, since such a morphism C - { s )  --+ X extends to a 
morphism C --+ 2 and since the image of s gives rise to a rational point of 2. 

(b) +(c). Let R be the localization of K [(I at the origin and let a E X(K((5))). 
1f x is a compactification of X, one can view a as a K[[t]]-valued point of X. Since 
R is excellent, it follows from 3.619 that there exists a local etale extension R' of R 
with residue field K and an R'-valued point a' of 2 inducing the given point a on the 
closed fibre. Furthermore, we may assume that the generic fibre of a' is contained 
in X. Rewriting the situation in terms of curves, it means that there are an etale map 
cp : C -+ A; of an affine curve to the affine line, a rational point s of C lying above 
the origin, and a morphism a : C -+ x such that the local ring of C at s is isomorphic 
to R' and such that a induces the R'-valued point a'. Due to (b), the image of a is 
contained in X. Thus, we see that a is a K[[t]]-valued point of X and the 
implication (b) + (c) is clear. 

(c) 3 (b). The completion of the local ring of C at s is isomorphic to a formal 
power series ring K[[<]]. Hence the assertion follows as in 2.515. 

(b) + (d). Let x be a rational point of x - X. By taking hyperplane sections, 
one can construct an irreducible subvariety C of X' of dimension one such that C 
is not contained in X' - X, such that the point x lies on C, and such that Cis smooth 
at x. We may assume that C is smooth over K .  Hence, the inclusion C --+ x yields 
a contradiction to (b). 

(d) J (a) is evident. 0 

In order to complete the proof of Theorem 1, it suffices to show that a commuta- 
tive algebraic K-group G which contains no subgroup of type 6, or 6, admits a 
G-equivariant compactification G without a rational point at infinity. A compactifi- 
cation G is called G-equivariant if G acts on G and if the action is compatible with 
the group law on G. Let us start with some technical definitions. 

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X of finite 
type. A subscheme Z of X is called a K-orbit under the action of G if there exist a 
finite field extension K' of K and a K'-valued point x' of Z @, K' such that Z @, K' 
is the orbit of x' under G @, K'. 

Definition 5 (Mumford [I], Chap. 1.3). Let G be an algebraic K-group with an action 
a on a K-scheme X. Let n : L ---+ X be a line bundle on X. A G-linearization is a 
bundle action A of G on L which is compatible with the G-action on X ;  i.e., the diagram 

id, x n I 
is commutative. 

For example, look at the canonical action of GL .+, on Pn and at the canonical 
ample line bundle Op.(l). There is a canonical GL,+,-linearization on Lop,(l), but 
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where H K  is an extension of an abelian variety by a linear group and where the 
latter is an extension of a unipotent group U, by a finite multiplicative group; cf. 
9.211 and [SGA 3,,], Exp. XVII, Thm. 7.2.1. Due to [SGA 3,,], Exp. XVII, Thm. 
6.1.1(A)(ii), the K-groups H K  and, hence, U, do not contain a subgroup of type G,, 
since the same is true for G,. Then it follows from Tits [I], Chap. IV, Prop. 4.1.4, 
that UK OK Kt and, hence by [SGA 3,,], Exp. XVII, Lemme 2.3, that H K  QK K' does 
not contain a subgroup of type G, for any separable field extension Kt of K. 
However, there exists a finite separable field extension K' of K such that T, Q, K' 
is split. So, if R' is the integral closure of R in K', the K'-group H K  8, K' admits a 
Ntron model over R' by Theorem 1, since R' is excellent. Hence, GK QK Kt admits 
a NCron lft-model over R' by 10.117. Then it follows from 10.114 that GK admits a 
NCron lft-model over R. For the proof of (b) ==+(a), we may assume R = by 
10.114. In particular, R is excellent now and, hence, the assertion follows from the 
implication (b') ==+(a) which has just been proved. 0 

Now we come to the proof of Theorem 1. Some parts of it have already been 
proved: 

(a) * (b) NCron models are compatible with base change of ramification index 
1; cf. 7.212. Hence GK OK I?h admits a NCron model of finite type over Ph. SO the 
set of Ph-valued points of GK is bounded in GK and, hence, GK QK I?h cannot 
contain a subgroup isomorphic to G, or G,. 

(b) + (b') is trivial. 
(c) ==+(d) follows from 1.1/10, since R"h is excellent. 
(c') +(e) follows from 1.1/10, since R" is excellent. 
(d) ==+ (e) is trivial. 
(e) ==+(a); cf. Theorem 1.311. 
The remainder of this section is devoted to the proof of the implications 
(b) * (c) and (b') ==+- (c'). 

Let us first explain the meaning of conditions (c) and (c') 

Proposition 3. Let X be a smooth and separated K-scheme of finite type. Consider the 
following conditions: 

(a) There exists a compactij'ication x of X such that there is no rational point in 
x - x. 

(b) For any affine smooth curve C over K with a rational point s, each K-morphism 
C - { s )  + X extends to a K-morphism C + X .  

(c) The canonical map X(K [[[I]) + X(K((4))) is bijective, where [ is an in- 
determinate and where K((4)) is the field of fractions of K[[[]]. 

Then one has the following implications: (a) ==+ ( b ) ~  (c). IJ; in addition, X admits 
a regular compactijication X', conditions (a), (b), (c) are equivalent and, moreover, they 
are equivalent to 

(d) (X' - X ) ( K )  is empty. 
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Proof. (a) +(b) is trivial, since such a morphism C - Is} -+ X extends to a 
morphism C + x and since the image of s gives rise to a rational point of 2. 

(b) ==+ (c). Let R be the localization of K [<I at the origin and let a E X(K((5))). 
1f x is a compactification of X, one can view a as a K [[<]]-valued point of X. Since 
R is excellent, it follows from 3.619 that there exists a local Ctale extension R' of R 
with residue field K and an R'-valued point a' of x inducing the given point a on the 
closed fibre. Furthermore, we may assume that the generic fibre of a' is contained 
in X. Rewriting the situation in terms of curves, it means that there are an ktale map 
cp : C A; of an affine curve to the affine line, a rational point s of C lying above 
the origin, and a morphism a : C -+ X such that the local ring of C at s is isomorphic 
to R' and such that a induces the R'-valued point a'. Due to (b), the image of a is 
contained in X. Thus, we see that a is a K[[<]]-valued point of X and the 
implication (b) + (c) is clear. 

(c) ==+ (b). The completion of the local ring of C at s is isomorphic to a formal 
power series ring K[[(]]. Hence the assertion follows as in 2.515. 

(b) ==+(d). Let x be a rational point of X' - X. By taking hyperplane sections, 
one can construct an irreducible subvariety C of X' of dimension one such that C 
is not contained in X' - X, such that the point x lies on C, and such that Cis smooth 
at x. We may assume that C is smooth over K. Hence, the inclusion C -+ X yields 
a contradiction to (b). 

(d) ==+ (a) is evident. 0 

In order to complete the proof of Theorem 1, it suffices to show that a commuta- 
tive algebraic K-group G which contains no subgroup of type G, or G, admits a 
G-equivariant compactification G without a rational point at infinity. A compactifi- 
cation G is called G-equivariant if G acts on G and if the action is compatible with 
the group law on G. Let us start with some technical definitions. 

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X of finite 
type. A subscheme Z of X is called a K-orbit under the action of G if there exist a 
finite field extension K' of K and a Kt-valued point x' of Z OK K' such that Z OK K' 
is the orbit of x' under G @, K'. 

Definition 5 (Mumford [I], Chap. 1.3). Let G be an algebraic K-group with an action 
on a K-scheme X .  Let 71 : L -+ X be a line bundle on X. A G-linearization is a 

bundle action il of G on L which is compatible with the G-action on X; i.e., the diagram 

is commutative. 

For example, look at the canonical action of GL .+, on P" and at the canonical 
ample line bundle Op,(l). There is a canonical GL,+,-linearization on Op,(l), but 
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the action of the projective linear group PGL, cannot be lifted to a PGL,- 
linearization of Lop,(l). 

Now consider a scheme T and a flat T-group scheme G of finite presentation 
which acts on a T-scheme X of finite presentation. Let P be a torsor under G over 
T Then G acts freely on X x T  P by setting 

Denote by (X x T  P)/G the quotient (in terms of sheaves for the fppf-topology) of 
X x  P with respect to the G-action. The quotient commutes with any base change 
T' ---t T. If P T admits a section, there is an isomorphism (X x  , P)/G + X. 
So, (X x T  P)/G becomes isomorphic to X and, hence, is representable after a 
base change with an fppf-morphism, since P -+ T is of this type. If L is a line bundle 
on X with a G-linearization, then M = (L x ,  P)/G gives rise to a line bundle on 
(X x T  P)/G provided that (X x ,  P)/G is a scheme. Due to 6.117, we have the 
following lemma. 

Lemma 6. If L is T-ample, then (X x  , P)/G is a T-scheme and M = (L  x  , P)/G is 
T-ample. 

Now let T be the affine scheme of a field K and let G be a smooth K-group 
scheme. If, in addition, X is projective, the quotient (X x ,  P)/G is always a scheme. 
Namely, after a finite Galois extension K'IK, there exists a K'-valued point of P. 
So, the quotient is representable after the extension K'IK. Since finite Galois descent 
is effective for quasi-projective schemes, we see that (X x ,  P)/G is represented by a 
quasi-projective K-scheme. 

The proof of the implications (b) ==+ (c) and (b') ==+ (c') in Theorem 1 will be 
provided by Theorem 7 below. Namely, if G is not connected, then (Go x  G)/GO 

yields a compactification of G as required, where G O  is a compactification of the 
identity component Go as in condition (d) below. 

Theorem 7. Let K be a field and let G be a connected (not necessarily smooth) 
commutative algebraic K-group. Then the following conditions are equivalent: 

(a) G contains no subgroup of type G, or G,. 
(b) G admits a compactification G without a rational point at infinity. 
(c) G admits a G-equivariant projective cornpactification G such that, for each 

K-torsor P under G, there is no rational point in (G x ,  P)/G - (G x ,  P)/G. 
(d) G admits a G-equivariant projective cornpactification G such that there is no 

K-orbit of G under G contained in G - G. 
If, in addition, G is linear, these conditions are equivalent to 
(d ')  G admits a G-equiuariant compactification G together with a G-linearized 

ample line bundle such that there is no K-orbit of G under G contained in 6 - G. 

Remark 8. (i) For a smooth K-wound unipotent algebraic group, the existence of 
an equivariant projective compactification without rational points at infinity has 
also been established by Tits (unpublished). 

(ii) Presumably, the commutativity of G in Theorem 7 is not necessary. In 
particular, one can expect that a smooth algebraic K-group which does not contain 
a subgroup of type G, or G, admits an equivariant projective compactification 
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without rational points at infinity. The latter is mainly a question of linear groups. 
It can be answered positively if G is semi-simple; cf. Bore1 and Tits [I]. 

Before starting the proof of Theorem 7, let us have a look at Jacobians where, in 
certain cases, canonical compactifications exist; cf. Altman and Kleiman [I] and [ 2 ] .  

Example 9 (Altman and Kleiman [I], Thm. 8.5). Let X be a proper curve over a 
field K, assumed to be geometrically reduced and irreducible, and let J = Pic;,, be 
its Jacobian. Let J be the fppf-sheaf induced by the functor which associates to a 
K-scheme S the set of isomorphism classes of modules on X x, S which are locally 
of finite presentation and S-flat, and which induce torsion-free modules of rank 1 
and degree 0 on the fibres of X x, S over S. Then J is a projective K-scheme 
containing J as an open subscheme. If, in addition, Xi s  normal, there is no rational 
point contained in J - J .  

Indeed, we may assume that K is separably closed, so X has a rational point. 
Then a rational point of 7 represents a torsion-free rank-1 module of degree 0 on 
X. Since X is a normal curve, such a module is invertible and, hence, represents a 
point of J. Moreover, since J is smooth, any K-orbit of under J is smooth, too. 
So, by the same argument as above, it is clear that there is no K-orbit of J contained 
in J - J. 

Let X be locally planar (i.e., the sheaf of differentials is locally generated by at 
most two elements); for example, this is the case, if X is normal and if K admits a 
p-basis of length at most 1. Then J is schematically dense in 7 and, hence, J is a 
compactification of J in our sense; cf. Rego [I]. The canonical action of J on itself 
by left translation extends to an action of J on 7 and, hence, J is a J-equivariant 
compactification of J .  In the general case, the schematic closure of J in 7 is an 
equivariant compactification in our sense. 

Now let us prepare the proof of Theorem 7. The implications 

(d') ===+ (4 * (c) ==+ ('4 ===3 (a) 
are quite easy whereas the proof of (a) + (d') (resp. of (a) * (d)) will be explained 
in the remainder of this section. If G is smooth over a perfect field K, it is an extension 
of an abelian variety by a smooth connected linear group L which is a product of 
a torus and a unipotent group, cf. 9.2/1 and 9.2/2, Furthermore, the unipotent part 
is a successive extension of groups of type G,; cf. [SGA 3,,], Exp. XVII, Cor. 4.1.3. 
Thus, condition (a) implies that the unipotent part of L is trivial and, hence, that G 
is an extension of an abelian variety by a torus in this case. So, when we are given 
a smooth K-group G, the later considerations concerning unipotent groups are only 
of interest in the case where the base field K is not perfect. 

Due to the structure of commutative algebraic groups, we will reduce the general 
situation by "devissage" to the following special cases: 
-K-wound unipotent (not necessarily smooth) algebraic K-groups; i.e., con- 

nected unipotent K-groups which do not contain subgroups of type G,. 
-anisotropic tori; i.e., tori which do not contain subgroups of type G,,. 
We will begin by discussing the K-wound unipotent case. If the group under 

consideration is smooth and killed by multiplication with p, one has a rather explicit 
description of it. 
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Proposition 10 (Tits [I], Chap. 111, Section 3). Let K be a field of characteristic p > 0 
with infinitely many elements. Let G be a smooth connected commutative algebraic 
K-group of dimension n - 1 such that p. G = 0. Then G is K-isomorphic to a closed 
subgroup of G: defined by a p-polynomial 

n mi 

F(T, ,..., T,) = x c ~ ~ . ~ ~ ' E K [ T ~  ,..., T,] . 
i=1 j = ,  

If, in addition, G contains no subgroup of type G,, one can choose F(T l , .  . . , T,) in 
such a way that the polynomials 

are non-zero, i = 1,. . . , n, and that the principal part 
n 

f (TI,. . . , T,) = 1 Cirni .  y"E 
i=l 

of F(Tl, . . . , T,) has no non-trival rational zero in A:. 

Using the specific situation of Proposition 10, it is easy to find an equivariant 
compactification for smooth unipotent commutative groups which are K-wound 
and are killed by multiplication with p. 

Proposition 11. Let K be a field of characteristic p > 0. Let G be a smooth connected 
commutative algebraic K-group which is killed by multiplication with p. If G is 
K-wound, then G admits a G-equivariant compactification G together with a 
G-linearized ample line bundle such that there is no K-orbit of G under G in G - G. 

Proof. We may assume that K has infinitely many elements; otherwise G is trivial. 
Keep the notations of the last proposition and assume that the exponents occurring 
in the principle part of the p-polymonial satisfy 

Let P be the quasi-homogeneous space over K with coordinates 

having weights 

w, = pmn-m~ 
1 , i = O  ,..., n ,  

where we have set m, = m,. The open subspace U, of P where Y, is not zero can 
be viewed as the group G: with coordinates 

The action of Uo on itself extends to an action on P by setting 
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We regard G as a closed subscheme of Uo given by a p-polynomial F(T1,. . . , T,). 
Now, let Xo, . . . , X ,  be the coordinates of the projective space I& and let 

be the morphism sending Xi to (x)P"'. Denote by V, the open subscheme of P i  
where Xo does not vanish. We can view Vo as the group (6," with coordinates 

The morphism u induces a morphism 

of algebraic K-groups and the morphism u is equivariant. In terms of coordinates 
of rational points the equivariance means the commutativity of the following 
diagram 

where si = tfm' for i = 1,. . . , n and where xi = (yi)Pm' for i = 0,. . . , n. The canonical 
sheaf OP1;(l) has a VJinearization. Hence, u*(OP1;(1)) is an ample invertible sheaf 
on P which has a Uo-linearization. 

The schematic closure G of G in P is given by the polynomial 

which can be viewed as a weighted homogeneous polynomial in the variables 
Yo,. . ., Y,. Due to the choice of the weights, the principal part f(Y,,. . . , Y,) of 
F(Y1,. . . , Y,) is a weighted homogeneous polynomial and describes the set of the 
points at infinity of the compactification G. So, we have 

Due to Proposition 10, there is no rational point in G - G. Moreover, G acts 
trivially on G - G. So G cannot contain a K-orbit under G at infinity. 0 

In order to generalize Proposition 11 to smooth unipotent commutative 
K-wound groups which are not necessarily killed by multiplication with p, we will 
need the following lemma. 

Lemma 12. Let G be a connected unipotent commutative algebraic K-group. Assume 
that G is smooth and K-wound. Then there exists a filtration 

such that the successive quotients have the same properties as G, and, in addition, are 
killed by multiplication with p. 
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Proof. Let n be the smallest integer such that G is annihilated by pn. We will proceed 
by induction on n. Let N (resp. I) be the kernel (resp. the image) of the p-multiplica- 
tion on G. Then I is a smooth connected subgroup of G and, hence, K-wound. The 
group N is not necessarily smooth. So, consider the largest smooth subgroup M of 
N. Then M is K-wound as a subgroup of G and, since M is the largest smooth 
subgroup of N, the quotient N/M is K-wound, too. Since the image of the multiplica- 
tion by pn-l is contained in N and is smooth, the quotient G/M is killed by 
multiplication with pn-'. Moreover, G/M is K-wound, since it is an extension of I 
by NIM both of which are K-wound. Then we can set GI = M and the induction 
hypothesis is applicable to GIM. 0 

Proceeding by dkvissage, we are now able to prove Theorem 7 for unipotent 
groups which are smooth. But when treating general commutative groups, we will 
also be concerned with unipotent groups which occur as unipotent radicals. Such 
unipotent groups do not need to be smooth. Therefore, we need the following 
lemma. 

Lemma 13. Let G be a connected unipotent commutative algebraic K-group which is 
not necessarily smooth. 

(a) There exists an immersion of G into a connected unipotent commutative 
algebraic K-group G' which is smooth. 

(b) If G is K-wound, one can choose G' to be K-wound, too. 

Proof. (a) We will first show that G can be embedded into a smooth unipotent 
commutative group. Denote by Fn the kernel of the n-fold Frobenius morphism on 
G. Due to [SGA 3,], Exp. VII,, Prop. 8.3, there exists an integer n E N such that 
the quotient G/F, is smooth. Thus, it suffices to show the assertion for the group F,. 
So we may assume that G is a finite connected unipotent group. Hence, it is a 
successive extension of groups of type a,; cf. [SGA 3,,], Exp. XVII, Prop. 4.2.1. 
Consider now the Cartier dual G* of G, which is a successive extension of groups 
of type a, also. Hence, the algebra A = T(G*, a,*) is local. The algebraic group U 
representing the group functor 

(SchlK)' + (Groups) , T H T(T x K  G*, 0TXK c*) 

is smooth. Interpreting the points of G as characters of G*, one gets a morphism 
G + U which is an immersion and which is closed, since G is finite. Since A is local, 
U is a product of the multiplicative group 6, and of a smooth connected unipotent 
group G'. Since G is unipotent, the morphism G + U yields an embedding of G 
into G'. 

(b) Let us start by collecting some facts on extensions of commutative unipotent 
algebraic groups by ttale groups. 

(1) If N is an Ctale K-group and H is an algebraic K-group, the canonical map 

Ext(H, N) ---t Ext(H 8, K', N OK K') 

is bijective for any radicial field extension K'IK; cf. [SGA I], Exp. IX, 4.10. 
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(2) Let 
l - + G l + G 2 + G 3 + l  

be an extension of smooth commutative unipotent algebraic K-groups. Then the 
canonical sequence of quasi-algebraic commutative group extensions 

1 ---+ Ext(G3, Qp/Zp) + Ext(Gz, Qp/Zp) - Ext(G1, Qp/Zp) -+ 1 

is exact. If G2 is killed by multiplication with pn, one can replace Qp/Zp by Z/pnZ. 
Now, due to (I), we may assume that K is perfect. In this case, the result is provided 
by Begueri [I], Prop. 1.21. 

(3) If K is not perfect, there exists for each smooth connected commutative 
unipotent K-group G a commutative extension 

1-N-G-G-1 

of G by a finite Ctale group N such that e is K-wound. 
Namely, we may assume that G is an extension 

l - + G a + G - G o - 1  

of a smooth connected unipotent K-group Go by 6,.  Proceeding by induction on 
the dimension of the group, we may assume, that there exists a commutative 
extension Go of Go by a finite Ctale group such that Go is connected and K-wound. 
Then, one is easily reduced to the case where Go is K-wound. For the group 6, and 
each element x E K - KP, consider the extension 

1 - ZlpZ -+ G,(x) - 6, + 1 

where G,(x) is defined as a subgroup of G, x G, by the p-polynomial 

T,P + x T ~  - TI 

and the map G,(x) - G, is the second projection. Then, due to (2), there exists an 
extension -+ G by a finite ktale group which induces G,(x) + G, by restriction. 
Thus, is K-wound as an extension of K-wound groups. 

Using these results, the proof of assertion (b) is easily done. Assume that K is 
not perfect and let G be connected, unipotent, commutative, and K-wound. Due to 
(a), there exists an immersion of G into a smooth unipotent commutative connected 
group GI. Let H be the quotient of G, by G, so we have the exact sequence 

l + G - + G l + H + l .  

Since GI is smooth, H is smooth also. Due to (3), there exists a commutative 
extension 

~ - + N + B + H - + ~ .  

of H by a finite ttale group N such that i? is K-wound and connected. Pulling back 
this extension to GI, one gets a commutative extension 

Note that G, is smooth and unipotent. Denote the identity component of el by G'. 
Hence, one gets an exact sequence 
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So the group G' is smooth, unipotent, commutative, and connected, and, as an 
extension of K-wound unipotent groups, it is K-wound, too. 0 

Next we want to discuss the compactification of tori. Let T be a torus, denote 
by M the group of characters of T and by N the group of 1-parameter subgroups 
of T. Then 

M = Horn,-(T, G,) and N = Horn,-(G,, T) 

are Gal(QK)-modules, where K is an algebraic closure of K. There is a perfect 
pairing 

M x N - + Z .  

Hence, N and M are canonically dual to each other. Recall that T is anisotropic if 
one of the following equivalent conditions is satisfied: 

(i) T does not contain a subgroup of type G,. 
(ii) T does not admit a group of type 6, as a quotient. 
(iii) M does not contain the unit representation. 
(iv) N does not contain the unit representation. 

Proposition 14. Let T be an anisotropic torus over K. Then T admits a T-equivariant 
compactijication T such that T is normal and projective, such that T - T does not 
contain a K-orbit under T, and such that there is an ample line bundle on T with a 
T-linearization on it. 

Proof. Equivariant compactifications of tori are closely related to rational poly- 
hedral cone decompositions of NQ = N QZ Q. Over an algebraically closed field, 
this technique is well documented in the literature; cf. Kempf et al. [I], Chap. I, 55 1 
and 2. So, we will only give advice how to proceed in the case of an arbitrary field. 

Consider a finite rational polyhedral cone decomposition {a,) of NQ, which is 
invariant under Gal(mK). The vertex of each cone is the origin of NQ. Let T be the 
associated T-equivariant compactification of T. The variety Tis normal and projec- 
tive. It has a finite number of orbits under T and these correspond bijectively to 
the faces of the decomposition {a,}; cf. Kempf et al. [I], Chap. I, 5 2, Thm. 6. Since 
{a,) is invariant under Gal(QK), the Galois group acts on the K-variety T and, 
hence, by projective descent, T is defined over K. 

We are going to show that T - T does not contain a K-orbit under T. So assume 
that there is a K-orbit in T - 7: It corresponds to a non-zero face a of the 
decomposition {a,} which is stable under Gal(mK). Consider now the set of the 
extreme edges of a which consists of a finite number of half lines { L , ,  i E I}.  This set 
is invariant under Gal(QK). Now we can choose non-zero points xi E L,,  i E I ,  such 
that the set { x i ,  i E I }  is invariant under Gal(QK). So the point x = xi,, xi is a 
non-zero point of a which is invariant under Gal(QK) and, hence, gives rise to a 
non-zero element of N .  Thus, we get a contradiction to T being anisotropic. 

It remains to show that there is an ample T-linearized line bundle on Let 9 
be the ample line bundle on T. Since the Picard group of T is discrete (use Kempf 
et al. [I]. Chap. I, 4 2, Thm. 9), 9 is invariant under T. Hence, it is easy to see that a 
power of 9 admits a T-linearization. 0 
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For the devissage, we need a technique of constructing an equivariant compact- 
ification of an extension of groups with given equivariant compactifications. This 
part works also for not necessarily commutative groups. 

So consider an exact sequence 

of algebraic K-groups. In particular, E --+ His  a torsor over H with respect to the 
H-group scheme G, = G x, H. In order to avoid problems with representability 
of quotients, we will work with projective equivariant compactifications admitting 
ample line bundles with linearizations. We have to introduce some more notations: 

Let X be a K-scheme with an action of G on X on the left and let L be an ample 
line bundle on X with a G-linearization. Then G, acts on X, = X x, H as an 
H-group scheme and LH = L x, H is an H-ample line bundle on X, with a 
GH-linearization. GH acts freely on X x, E = XH xH E by setting 

Denote by (X, x, E)/G, the quotient (in terms of sheaves for the fppf-topology 
over H )  of (XH x, E) with respect to the GH-action. Introduce similar notations for 
L instead of X. Due to Lemma 6, (XH x, E)/G, is an H-scheme and (L, x, E)/GH 
is an H-ample line bundle on (XH x, E)/GH. 

Furthermore, there is an action of E (on the right) 

(X x, E) x, E --+ (X x, E) , ( (x ,  e), e ' )  H (x,  ee') . 
This action is compatible with the left action of G on X. So the E-action on (X x, E) 
induces an E-action on (XH x, E)/G, in a canonical way. The projection 

(XH x H E)IGH -+ H 

is E-equivariant where E acts on H by right translation. Similarly, the line bundle 
(LH X H  E)/GH on ( X H  x, E)/GH has a canonical E-linearization with respect to the 
E-action on ( X ,  x, E)/G,. 

Lemma 15. Consider the exact sequence 

l -+G--+E+H+1 

of algebraic K-groups. Let G be an equivariant compactification of G and let L be an 
ample line bundle on G with a G-linearization. Set Y = (g x, E)/GH and M = 

(L, x, E)/G,. Then 
(a) Y is a projective H-scheme which contains E as an open subscheme and the 

canonical action of E on itseEf by right translation extends to an action on Y and is 
compatible with the G-action on Y. The projection p : Y + H is E-equiuariant where 
E acts on H by right translation. The line bundle M has an E-linearization and is 
H-ample. Y is quasi-projective over K. 

If G - G does not contain a K-orbit under the action of G, then Y - E does not 
contain a K-orbit under the action of E. 

(b) Let H be an equivariant compactijkation of H and let N be an ample line bundle 
on H with an H-linearization. Then there is a commutative cartesian diagram 
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such that the following is satisfied: Y c, Y is an E-equivariant compactification and 
p is E-equivariant. Y is a projective K-scheme and has an ample line bundle with an 
E-linearization. 

If G-G and H-H do not contain K-orbits, then Y - Ydoes not contain a K-orbit 
under the action of E. 

Proof. Assertion (a) follows mainly from what has been said before. Y is quasi- 
projective, since H is quasi-projective. It remains to show that there is no K-orbit 
contained in Y - E. So consider a K-orbit Z of Y under the action of E. Its image 
p(Z) is a K-orbit of H and, hence, p(Z) = H. The E-action on Y induces a right 
action of G on the fibre over the unit element of H which is canonically isomorphic 
to G. This action is related to the left action of G we started with by the relations 

Thus we see that the intersection of Z with the fibre over the unit element of H is 
a K-orbit of G under the action of G. So it must be G. Then we get Z = E. 

(b )  After replacing L by LO" for a suitable integer n, we may assume that L is 
very ample and, hence, that M is very H-ample. Since H admits an ample line bundle 
with H-linearization, it is affine. So, we may assume that M is very ample. 

The K-vector space T(Y, M )  has an E-action induced by the E-linearization of 
M .  Now there is a finite-dimensional subspace W of the vectorspace T(Y, M )  which 
defines an embedding of Y into its associated projective space P = P(W) .  Since the 
smallest subspace which is stable under E and which contains W is also of finite 
dimension, we may assume that W is stable under E. So E acts on P and there is 
an E-linearization on Co,(l). Due to the choice of W, there is an E-equivariant 
embedding Y + P such that the pull-back of &(l) is isomorphic to M .  Now 
consider the morphism 

induced by Y + P and Y ---t H + H. Let Y be the schematic image of Y in 
P x, H. Then Y is projective. Since Y is proper over H, the schematic closure Y 
coincides with Y over H. By continuity, the action of E on Y extends to an action 
on Y. Let 

be the projections. The restriction M of pT(Co,(l)) on Y has an E-linearization 
extending the given E-linearization on M and is H-ample. 

For n E N, the tensor product p : ( ~ @ " )  O @ has a canonical E-linearization 
with respect to the E-action on Y and, for large integers n, it is ample on 
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It remains to prove the assertion concerning the orbits. So let Z be a K-orbit of 
Y under the action of E. The projection p2(Z) is a K-orbit of H under the action of 
H. Due to our assumption, p2(Z) must be contained in H and, hence, is equal to H. 
Now we can continue as in part (a) in order to show that Z coincides with E. 

Proof of Theorem 7. We start with the implication (a) ==+(a). Since G is linear, it 
is an extension of a unipotent group U by a subgroup of multiplicative type M; cf. 
[SGA 3,,], Exp. XVII, Thm. 7.2.1. Due to [SGA 3,], Exp. XVII, Thm. 6.1.1 (A) (ii), 
the unipotent group U is K-wound. The multiplicative group M is an extension of 
a finite multiplicative group N by a torus T which is necessarily anisotropic since 
G does not contain a subgroup of type G,. Hence, due to Lemma 15 (b), we are 
reduced to prove the assertion for the groups N, T, and U.  It is clear for N. 
Furthermore, Proposition 14 provides the assertion in the case of T. In the case of 
U ,  we may assume that K has characteristic p > 0 and, due to Lemma 13, that U 
is smooth. Using Lemma 15 and Lemma 12, we are reduced to the case where 
U is killed by the multiplication with p. However, this case has been dealt with in 
Proposition 11. 

Next let us turn to the implication (a) +(d). It follows from the theorem of 
Chevalley (cf. 9.211) that there exists a connected linear subgroup H of G such that 
the quotient G/H is an abelian variety. Namely, the kernel Fn of the n-fold Frobenius 
morphism on G is an affine subgroup of G and, for large integers n, the quotient 
G/Fn is smooth, cf. [SGA 3,,], Exp. XVII, Prop. 4.2.1. Then the assertion follows by 
Lemma 15 (a) from the implication (a) ==+ (d'). This concludes the proof, the remain- 
ing assertions being trivial. 

The above verification of the implication (a) + (d') shows that a commutative 
linear group G which does not contain a subgroup of type G, or G, admits a 
G-equivariant compactification G together with a G-linearized ample line bundle 
such that there is no K-orbit contained in G - G. So, due to Lemma 15 which is 
valid for not necessarily commutative groups, the construction carries over to the 
case of solvable groups G; cf. Remark 8. Namely, a K-wound solvable group admits 
a filtration 

such that G, is a normal subgroup of Gi-, and Gi-,/Gi is commutative and K-wound, 
i = 1,. . . , n; cf. Tits [I], Chap. IV, Prop. 4.1.4. 

10.3 The Global Case 

Let S be an excellent Dedekind scheme with infinitely many closed points and let 
K be its ring of rational functions. Let GK be a smooth commutative algebraic 
K-group. 
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The existence of a Neron lft-model (resp. of a Ntron model) of G, over S  implies 
the existence of a Neron lft-model (resp. of a Nkron model) over each local ring of 
S.  But, as we have seen in Example 10.1/11, the converse is not true when dealing 
with Neron models. The example was given in the case where the characteristic of 
K is positive. 

If K has characteristic zero, we claim that the existence of a global NCron 
lft-model (resp. of a global Neron model) is equivalent to the existence of the local 
NCron lft-models (resp. of the local Ntron models). Namely, due to 10.212, the 
existence of Ntron Ift-models over each local ring of S  is equivalent to the fact that 
the unipotent radical of G, is trivial. Then G, is an extension of an abelian variety 
by a torus T and, hence, admits a Ntron lft-model over S ;  the latter follows from 
10.117 by using 10.114. Moreover, when the local Neron lft-models are of finite type 
over each local ring of S, the subtorus T of G, is trivial. Indeed, T splits over a finite 
separable field extension K' of K. There exists a closed point of S  at which K' is 
unramified. Since Ntron models are compatible with localization and &tale exten- 
sions, there is a closed point s' of S', where S' is the spectrum of the integral closure 
of Co,,s in K', such that GK @, K' admits a local Neron model at sf .  Then, it follows 
from 10.211 that the torus T is trivial. Thus, we see that GK is an abelian variety 
and, hence, that G, has a Niron model over S ;  cf. 1.413. 

The existence of Nirron Ift-models or Neron models over a global base is 
still an open question when K has positive characteristic. We conjecture that 
G, has a NCron lft-model over S  if and only if G, has one over each local 
ring of S.  Using Theorem 10.212, we can state this conjecture in the following 
way. 

Conjecture I .  Let S  be an excellent Dedekind scheme with ring of rational functions 
K and let GK be a smooth commutative algebraic K-group. Then GK admits a Niron 
lft-model over S if G, contains no subgroup of type G,. 

As explained before, the conjecture is true if the characteristic of K is zero, but 
in the case of positive characteristic it is still an open question. 

For the remainder of this section we want to concentrate on the existence of 
Ntron models (of finite type). We can give a criterion for the case where GK admits 
a regular compactification. Let us begin with some definitions. 

A K-variety X (i.e., a separated K-scheme of finite type which is geometrically 
reduced and irreducible) is called rational (resp. unirational) if its field of rational 
functions is purely transcendental over K (resp. contained in a purely transcendental 
field extension of K). In geometric terms, the latter means that there is a rational 
map from A; to X which is birational (resp. dominant). An algebraic K-group G, 
is called rational (resp. unirational) if its underlying scheme is rational (resp. unira- 
tional). It is easy to see that unirational groups are smooth and connected. For 
example, tori are unirational; also the K-group of Example 10.1/11 is unirational. 
Each unirational subscheme of G, which contains the origin generates a unirational 
subgroup of GK. In particular, GK contains a largest unirational subgroup denoted 
by uni(GK). If GK is an abelian variety, then uni(G,) = 0. 
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Theorem 1. Let GK be a smooth algebraic group over a field K, where GK is connected 
and commutative. Then the following conditions are equivalent: 

(a) uni(G,) = 0 
(b) Each K-rational map from the projective line P i  to  GK is constant. 
(c) For any smooth affine curve C, over K and for any closed point x of C,, each 

morphism of CK - {x) to GK extends to a morphism from C, to G,. 
(d) For any smooth K-scheme X,, each K-rational map from X, to GK is defined 

everywhere. 
I f ,  in addition, G, admits a regular compactijication G, these conditions are 

equivalent to 
(e) The smooth locus of & coincides with GK. 

The implications 

are quite easy to verify and we leave them to the reader. Also it is not difficult to 
show the implication (e) +(c) (if GK admits a regular compactification) and 
(c) ==+ (d). Finally the implication (a) ==+ (c) requires more efforts. 

To start the proof, let us begin with the verification of implication (e) ==+(c). 
Let cp : C, - { x }  -+ G, be a K-morphism. Due to the valuation criterion of 
properness, cp extends to a K-morphism @ : CK + g. Now consider the C,-scheme 
GCK = GK xK C, which is regular; cf. 2.319. Due to assumption (e), the smooth locus 
of GK over C, coincides with G, x K  C,; cf. [EGA IVJ, 17.7.2. By base extension, 
@gives rise to a section (PCK of G,-- Now it follows from 3.112 that GK factors through 
the smooth locus of GK and, hence, cp maps to GK. 

For the implication (c) + (d), consider a rational map cp, : X, ---+ GK, where 
XK is smooth and irreducible of dimension n. Since we consider K-schemes of finite 
type, cp, is induced by a T-rational map cp : X ---+ G from a smooth T-scheme X to 
a smooth and separated T-group scheme G, where Tis an irreducible regular scheme 
offinite type over the ring of integers Z. We may assume that K is the field of rational 
functions on T Due to 4.411, the complement F of the domain of definition of q~ is 
of pure codimension 1 and, hence, is a relative Cartier divisor. We have to show 
that F is empty. Proceeding indirectly, let us assume that F is not empty. Then look 
at the graph T, of cp, in X, x, GK. It is clear that the image QK of TK under the first 
projection p, cannot contain a generic point of FK as seen by a similar argument as 
used in the proof of 4.314. Since Q, is constructible, we may assume, after shrinking 
X,, that Q, is disjoint from FK. Now we will derive a contradiction by constructing 
a smooth curve C, contained in X,, but not in FK such that CK meets FK at a closed 
point. Namely, due to assumption (c), the curve CK must be contained in Q,. Since 
F is not empty, there exists a closed point x in F. Let t be the image of x in 7: The 
residue field of t is finite and hence perfect. So k(x) is separable over k(t). Then it 
follows from the Jacobi criterion 2.217 that there exist elements f,, . . . , f, in the 
maximal ideal of the local ring of X at x which, in a neighborhood of x, define an 
irreducible relative smooth Tcurve C. We may assume that F induces a relative 
Cartier divisor on C. In particular, C n F is flat over T. Hence, the generic fibre of 
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C n F is not empty. Now, the induced morphism C, ---+ G, yields a contradiction 
to (c). 

The proof of the implication (a) * (c) is delicate. It will follow from Corollary 
3 below which makes use of the theory of Rosenlicht and Serre on rational maps 
from curves into commutative algebraic groups. In the following we want to sketch 
the main ideas of this theory. 

So let X be a proper irreducible curve over K ,  assumed to be geometrically 
reduced. Denote by U the smooth locus of X, which is open and dense in X. Let G 
be a smooth commutative algebraic K-group. We want to study rational maps 

If V is the domain of definition of cp, then, for any n E N, there is a canonical 
morphism of the n-fold symmetric product V(") to G induced by cp. We will denote 
it by cp'") : V'") -+ G. By restriction to (U n V)'") we get a morphism of the set of 
Cartier divsors of degree n with support in U n V to G; cf. Section 9.3. We denote 
this map by cp, too. A finite subscheme Y of X is called a conductor for cp if 
cp(div( f )) = 0 for each rational function f of X which is defined on Y, which induces 
the constant function with value 1 on Y, and whose associated divisor has support 
i n U n K  

Now let Y be a finite subscheme of X. If Y is non-empty, it is a rigidificator for 
Picxl,. As introduced in Section 8.1, we denote by (Pic,,,, Y )  the rigidified Picard 
functor. We set (Pic,,,, Y) = Pic,,, if Y is empty. Since, for a K-scheme T, any 
section of (U - Y) x, T induces an effective relative Cartier divisor on U x, T 
of degree 1 whose associated invertible sheaf is canonically rigidified along Y by the 
function 1, there exists a canonical map (U - Y) -+ (Picxl,, Y) and, hence, a 
rational map 

zy : X ---+ (PicxlK, Y) . 
By construction Y is a conductor for z,. If Y is empty, we will write z instead of z,. 

For the proof of the implication (a) ==+- (c) we will use the following result. 

Theorem 2. Keeping the notations of above, the following hold: 
(a) A finite subscheme Y o f  X is a conductor for cp if and only if there exists a 

K-morphism of algebraic groups al : (PicxlK, Y) -+ G making the following diagram 
commutative: 

Moreover, the map is uniquely determined. 
(b) There exists a conductor for cp and there even is a smallest one. The latter is 

called the conductor of cp. 
(c) Let o : 8 --i X be the normalization of X and let x be a closed point of X 

such that o-'(x) is contained in the smooth locus of 8. If q 0 o is defined at K-'(x), 
then x is not contained in the support of the conductor of cp. 
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(d) If X is smooth at x and if x is not contained in the conductor of cp, then cp is 
defined at x. 

(e) The conductor of cp commutes with finite separable field extensions. 

Proof. If K is algebraically closed and if X is smooth, the result is classical and is 
due to Rosenlicht and Serre, cf. Serre [I]; for (a) and (d) see Chap. V, n09, Thm. 2, 
for (b) and (c) see Chap. 111, n03, Thm. 1. We want to give some indications on how 
to proceed in the general case. We may assume that X is geometrically irreducible. 
Namely, using assertion (e), one can easily reduce to this case. 

(a) The if-part is obvious. For the only-if-part, consider first the case where Y 
is empty. Then the factorization follows from the construction of PicxlK via sym- 
metric products a la Weil as explained in Section 9.3. The uniqueness of the 
factorization is due to the fact that Picxl, is generated by the image of I .  Now let Y 
be a non-empty conductor for cp. There exists a finite birational morphism X -+ X' 
which contracts Y to a rational point Y' and which is an isomorphism outside Y 
and Y'. One easily checks that the canonical map 

is an isomorphism. Thus, the general case is reduced to the case discussed above. 
(b) Let Y, and Y,  be finite subschemes of X. Then the diagram 

is co-cartesian. Thus, by using the characterization given in (a), we see that the 
intersection of two conductors is a conductor again. So the existence of a conductor 
implies the existence of a unique smallest one. Furthermore, one can see by the same 
argument that the smallest conductor of cp is compatible with finite Galois exten- 
sions of the base field; thus assertion (e) is clear. So it remains to show that there is 
at least one conductor for cp which satisfies assertion (c); hence the smallest one will 
satisfy (c), too. By what we have said above, we may assume that K is separably 
closed. Denote by n: : 8 --+ X the normalization of X. Assume for a moment that 
the base field is algebraically closed. Then, due to Rosenlicht and Serre, there exists 
a conductor P for cp 0 n: whose support is disjoint from the domain of definition 
of cp o n. Now let Y be the schematic image of P in X. Then one shows easily 
by using the very definition of conductors that Y is a conductor for cp satisfying the 
assertion (c). When K is not necessarily algebraically closed, we can first work over 
an algebraic closure K of K. So there is a conductor Y of cp OK K. We can replace 
Y by a larger conductor, say Y, without changing its support. Furthermore, we can 
assume that Y is defined over K, since K is radicial over K. So Y fulfills assertion (c). 

(d) follows from (a). 

Corollary 3. Let X be a proper curve over a field K and assume that X is normal and 
geometrically reduced. Let G be a smooth commutative algebraic K-group. Let 
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cp : X ---+ G be a rational map and let Y be the conductor of cp. 
(a) If G does not contain a subgroup of type G,, then Y is reduced. 
(b) If uni(G) = 0, the conductor of cp is empty and cp decomposes into a composi- 

tion cp = @ o z where @ : Picxl, -+ G is a morphism of algebraic groups. In particular, 
cp is defined on the smooth locus of X .  

Proof. Denote by Y the largest reduced subscheme of Y. Then, we get an exact 
sequence 

l+U-+v~+v;-+l 

of algebraic groups where V? and V+ are the algebraic groups representing the 
functor of global units on Y and on Y; cf. 8.1110. The kernel U is a unipotent group 
which is a successive extension of groups of type G,. Now look at the exact sequence 
of 8.111 1 

0 ---t V? -+ VT -+ (Pic,,,, Y) - Pic,,, -+ 0 

In the case of assertion (a), the canonical map 

0 : (Pic,,, Y) + G 

induced by cp sends the image of U in (Picxl,, Y) to zero. Hence, 0 factors through 

(Pic,,,, Y) -+ (Pic,,,, Y) . 
Thus, due to Theorem 2, Y is also a conductor for cp, hence Y = Y is reduced. In 
the case of assertion (b), the kernel of the map 

(picX/K? y, -+ P i ~ X / K  

is the group of global units on Y modulo K* which is unirational. Thus, we see that 
0 factors through Pic,,, and that the conductor of cp is empty. Then the assertion 
follows by Theorem 2. 0 

Corollary 3 yields the proof of the implication (a) + (c) of Theorem 1 and thus 
completes the proof of Theorem 1. 

Remark 4. Using the characterization (c) of Theorem 2, one sees immediately that 
the condition uni(G,) = 0 is stable under finite separable field extensions. 

Conjecture 11. Let S be an excellent Dedekind scheme with ring of rational functions 
K and let G, be a smooth commutative algebraic K-group. If uni(G,) = 0 then GK 
admits a Ndron model over S. 

If one admits Conjecture 11, Conjecture I is mainly a problem of unirational 
groups; use the technique of 7.511 (b). Conjecture I1 is true if K has characteristic 
zero. Indeed, if K is an algebraic closure of K ,  one has uni(G, 8, K) = 0 due to 
Remark 4. Then G, @, I? cannot contain a subgroup of type G, or G, and, 
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hence, GK is an abelian variety. In the case of positive characteristic, some parts 
of the conjecture can be proved, provided it is known that G, admits a regular 
compactification. 

Theorem 5. Let S be an excellent Dedekind scheme with ring of rational functions K 
and let G, be a smooth commutative algebraic K-group. 

(a) Assume that G, admits a regular compact$ication G,. If uni(GK) = 0, then GK 
admits a Nkrorz model over S. 

(b) If S is a normal algebraic curve over a field and GK admits a Nkron model 
over S, then uni(GK) = 0. 

Proof. (a) Let us first show that the local Ntron models exist. So, we may assume 
for a moment that S is the affine scheme of a local ring R. Since uni(GK) = 0, it 
follows by Remark 4 that uni(G, OK Fh) = 0 where Ksh is the field of fractions of 
a strict henselization of R. Then GK OK Ksh cannot contain a subgroup of type G, 
or of type G,. Since S is excellent, it follows from 10.2/1 that a Ntron model of GK 
exists over S. Now let us return to the general situation. It remains to see that there 
exists a dense open subscheme U of S such that a Neron model of GK exists over 
U; cf. 1.411. There exists a dense open subscheme U of S such that GK extends to a 
proper flat U-scheme G. Since S is excellent, the regular locus of is open by 
[EGA IV,], 7.8.6. So we may assume that is regular. Let Gu be the smooth locus 
of G. Since uni(GK) = 0, we see by Theorem 1 that the generic fibre of G, coincides 
with G,. After replacing U by a dense open subset, we may assume that G, is a 
group scheme over U .  Now we claim that Gu is the Ntron model of G, over U. Let 
U(s) be the spectrum of the strict henselization of the local ring of U at a closed 
point s of U .  Since x u  U(s) is regular, the U(s)-valued points of factor through 
the smooth locus G, by 3.112. Then it follows from 7.111 that Gu x u  Spec Os,, is the 
local NQon model of GK over Us,, and the assertion follows from 1.214. 

(b) Let us assume that uni(G,) is non-trivial. Due to Theorem 1, there exists an 
affine smooth curve CK with a closed point x, and a morphism 

YK : CK - {xKI --+ GK 

such that yK does not extend to C,. Since we are free to replace S by an ttale 
extension (cf. 1.2/2), we may assume that the residue field k(xK) is radicial over K. 
Since CK is smooth over K, the extension k(xK) can be generated by one element 
over K. So, after shrinking S, there exist an element f E T(S, Os) and a p-power p" 
such that k(xK) is generated by the pn-th root off. Now CK ---+ Spec@) is induced 
by a smooth relative curve C -+ S. Denote by Z the schematic closure of the point 
x, in C. We may assume, after shrinking S, that Z is a subscheme of A; defined by 
(TPn - f).  It is a general fact that there exist infinitely many closed points s of S 
such that the polynomial (T Pn 

- f )  has a solution over the residue field k(s); cf. 
Lemma 6 below. If G, admits a Neron model G of finite type over S, the morphism 
qK extends to a morphism 

Now look at the graph Tq c C x, G of q viewed as a rational map C ---+ G. So T, 
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is closed in C x s  G. Let Q be the image of T, under the first projection 
p, : C x s  G + C. Since G is of finite type over S, the subset Q is constructible. The 
point x, is not contained in Q, because cp, is not defined at x,. As x, is the generic 
point of Z, we may assume, after shrinking S, that Q is disjoint from Z. Now let z 
be a point of Z such that the field extension k(z)/k(s) is trivial where s is the image 
of z in S. So there exist an ttale extension Sf + Sand an S'-valued point x' of C such 
that z is the image of a point s' of St under x' and such that x,  does not belong to 
the image of x'. Due to the NCron mapping property, xk o (p, extends to an Sf-valued 
point of G. By continuity, x' factors through the graph T,. Thus, we see that the 
point z must belong to Q and we get a contradiction. 

In the last proof we have used the following fact. 

Lemma 6. Let k be a field of positive characteristic p and let A be an integral 
k-algebra of finite type and of dimension d 2 1. Let n be a positive integer and let f 
be an element of A. Then, for any n 2 1, there exist infinitely many prime ideals p of 
A of codimension 1 such that the equation TP" - f = 0 has a solution modulo p. 

Proof. It suffices to show that there is at least one such prime ideal. By standard 
limit arguments, we may assume that k is of finite type over its prime field k,. Then 
there exists a smooth and irreducible k,-scheme R, such that k is the field of rational 
functions of R,, and there exists an R,-scheme So of finite type such that the generic 
fibre of So is isomorphic to S, where S is the affine scheme of A. We may assume 
that So is affine, irreducible, and reduced. Moreover we may assume that f extends 
to a global section of Oso. Now let x be a closed point of So. Then k (x )  is a finite 
field and, hence, perfect. So we can write 

where g and h are global sections of Oso and where h(x )  = 0. Since the relative 
dimension of S over R, is d 2 1, we can choose g and h in such a way that the 
subscheme V(h) defined by h is dominant over R,. So there is a generic point s of 
V(h)  lying above the generic point of R,. Let p c T(S,, Oso) be the prime ideal 
corresponding to s. Then g is a solution of the equation TP" - f = 0 modulo p ,  and 
p gives rise to a prime ideal of A as required. 0 

If we want to apply Theorem 5(a) to an algebraic K-group G,, it has to be 
known that GK admits a regular compactification &, a question which is related 
to the resolution of singularities in characteristic >O. Since it is widely accepted 
that the latter problem should admit a positive answer, we get strong indications 
for Conjecture I1 being true. Also note that, for a K-wound unipotent group GK, 
Thm. VI.3.1 of OesterlC [I] implies uni(G,) = 0 if K is of characteristic p and if 
dimG,<p- 1. 
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