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a la mémoire d’André Néron



Preface

Ntron models wereinvented by A. Néron in the early 1960's with the intention to
study the integral structure of abelian varieties over number fields. Since then,
arithmeticians and algebraic geometers have applied the theory of Ntron models
with great success, usually without going into the details of Ntron's construction
process. In fact, evenfor expertsthe existence proof given by Ntron wasnot easy to
follow. Quite recently,in connection with new devel opmentsin arithmetic algebraic
geometry, the desire to understand more about Néron models, and even to go back
to the basics of their construction, was reactivated. We have taken this as an
incentiveto present a treatment of Ntron modelsin the form of a book.

Thethreeof ushave approached NCron model sfrom different angles. Thesenior
author has been involved in the developmentsfrom the beginningon. Immediately
after the discovery of Ntron models, it was one of his first assignments from
A. Grothendieck to translate Ntron's construction to the languageof schemes. The
other two authors worked in the early 1980's on the uniformization of abelian
varieties, thereby finding a rigid analytic approach to Ntron models. It wasat this
timethat werealized that we had acommon interestin thefield and decided to write
a book on Néron modelsand related topics.

At first we had the idea of covering a much wider variety of subjectsthan we
actually do here. We wanted to start with a presentation of the construction of
Ntron models, on an elementary level and understandable by beginners, and then
to continue with a general structure theory for rigid analytic groups, with the
intention of applying it to the discussion of uniformizations and polarizations of
abelian varieties. However, it did not take long to redlize that an appropriate
treatment of Néron models would require a book of its own. So we changed our
plans; colleagues watching the project encouraged us in doing so. Now, having
finished the manuscript, we hope that the " elementary™ part of the book, which
consistsof Chapters1to 7, is, indeed, understandable by beginners.

We are, of course, indebted to Néron for the original ideas leading to the
construction of NCron models, and to the work of Grothendieck which provides
language and methods of expressing theseideasin an adequate context. There are
other sourcesfrom which we have borrowed, most noteworthy thework of A. Weil
aswd| as various contributionsof M. Artin.

In preparing thisbook we received help from many sides. We thank the Deutsche
Forschungsgemeinschaft for its constant support during the entire project.
Similarly wewish to thank the Centre National dela RechercheScientifique,aswell
as the Institute des Hautes Etudes Scientifiquesfor its hospitality. Finaly, we are
indebted to our home universitiesand Mathematics departmentsin Miinster and
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Orsay for their interest in the project, for their help whenever possible, and for
granting sabbaticals during which substantial work on the subject was done. Also
we thank the Heinrich-Hertz-Stiftung.

During the project Dr. W. Heinen from Munster wasof invaluablehelpto us; he
proofread the manuscripts and set up theindex. Wethank him heartily for hiswork.
Last but not least, our thanks go to the publishersfor their cooperation.

Miinster and Orsay Siegfried Bosch
June 1989 Werner Lutkebohmert

Michel Raynaud
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| ntroduction

Let K be a number field, S the spectrum of its ring of integers, and A, an abelian
variety over K. Standard arguments show that A, extends to an abelian scheme A
over a non-empty open part S o S. Thus A, hasgood reduction at al points s of
S inthesensethat 4, extendsto an abelian scheme or, what amounts to the same,
to a smooth and proper scheme over the local ring at s. In general, one cannot
expect that A also has good reduction at thefinitely many pointsin S — S. How-
ever, one can ask if, even at these points, thereisa notion of "good" models which
generalizes the notion of good reduction. It came as a surprise for arithmeticians
and algebraic geometers when A. Néron, relaxing the condition of properness and
concentrating on the group structure and the smoothness, discovered in the years
1961-1963 that such models exist in a canonical way; see Néron [2], see also
his lecture at the Seminaire Bourbaki [1]. Gluing these models with the abelian
scheme A', one obtains a smooth S-group scheme A of finite type which may be
viewed as a best possibleintegral group structureover Son A, Itiscaled a Néron
model of Ax and is characterized by the universal property that, for any smooth
S-scheme Z and any K-morphism uy : Zx — A,, thereis a unique S-morphism
u: Z — A extending ug. In particular, rational points of A, can beinterpreted as
integral points of A.

Neron himself used his models to study rational points of abelian varieties over
global fields, especially their heights. In his paper [3], he showsthat theloca height
contribution at a non-archimedean place can be calculated on the local Neron
model in terms of intersection multiplicities between divisors and integral points.

BeforeNéron’s discovery,in 1955, Shimura systematically studied the reduction
of algebraic varieties over a discrete valuation ring R, in the affine, projective, as
well asin theabstract" case; see Shimura [1]. In particular, he defined the speciali-
zation of subvarieties as well as the reduction of algebraic cycles. In the years 1955
101960, several other authors becameinterested in thereduction of abelian varieties,
either in the abstract form or in theform of Albanese and Picard varieties. Koizumi
[1] proved that if an abelian variety A, over K extends to a proper and smooth
R-scheme A, then the group structure of A, also extends. Furthermore, it follows
from Koizumi and Shimura [1] that A is essentially uniquely determined by Ag.
The latter corresponds to the fact that A is a Néron model of A, and therefore
satisfies the universal mapping property characterizing Neron models. Igusa [1]
showed that the Jacobian o a curve with good reduction has good reduction. He
also considered the case where the reduction of the curve has an ordinary double
point as singularity.
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Concerning the reduction of elliptic curves, a systematic investigation o de-
generate fibreswas carried out by Kodaira [1] for the specia case of holomorphic
fibrations of smooth surfaces by elliptic curves. Among other things, he cl: ssfied
the possible diagrams of the fibresfor minimal fibrations by using the inter jection
form. -

On the other hand, starting with an elliptic curve over thefield of fractions of
an arbitrary Dedekind ring R, equations of Weierstral3 type can provide natural
R-models, even at bad places. |t seemscertain that, at least in characteristic different
from 2 and 3, the minimal Weierstral model was known to arithmeticians at the
time Nkron worked on his article [2]. However, it was Néron’s idea to consider
minimal models which are regular and proper, but not necessarily planar. In [2],
after constructing Néron models for general abelian varieties, he turns to eliptic
curves, shows the existence of regular and proper minimal models, and works out
their different types. The classification of special fibreswhich he obtainsisthe same
as Kodairas. In order to pass to the “Néron model" as considered in the case of
general abelian varieties, one hasto restrict to the smooth locus of the corresponding
regular and proper minimal model. Furthermore, theidentity component coincides
with the smooth part of the minimal Weierstrall model.

In his paper [2], Néron usesa terminology whichisderived from that in Weil's
Foundations of Algebraic Geometry [1]. The terminology has earned its merits
whenworking with varieties over fields. However, applying it to arelativesituation,
evenif the baseisas simpleasa discreteval uation ring, one cannot avoid a number of
unpleasant technical problems. For example, sincethere are two fibres, namely the
genericand the special fibre, it is necessary to work with two universal domains, one
for each fibre. Both domains have to behave well with respect to specidization, and
so on. Clearly, Well's terminol ogy was not adapted to handle problemsdf this kind.

NKkron's paper appeared at a time when Grothendieck had just started a revolu-
tion in agebraic geometry. With his theory of schemes, he had developed a new
machinery, specially designed for treating problemsin relative algebraic geometry.
Ntron knew of this fact, but he did not want to abandon the framework in which
he was used working. In the introduction to hisarticle [2], he says that the notion
o a schemeover acommutative ring will frequently intervene in histext, inamore
or less explicit way. However —and now we quote— "faute d’étre suffisamment
accoutumk a ce langage, nous avons estime plus prudent de renoncer a son emploi
systematique, et d'utiliser le plussouvent un langage dtrivt de celui des Foundations
de Well ... ou de celui de Shimura ..., laissant les sptcialistes se charger de la
traduction.”

Certainly, a few specialists did the translation, but mainly for themselvesand
without publishing proofs. It wasonly about 20 yearslater, in 1984, at the occasion
of aconferenceon Arithmetic Algebraic Geometry, that M. Artin wrote a Proceed-
ings article [9] explaining the construction of Neron models from a scheme view-
point. So, at Neron's time, the situation remained somewhat mysterious. On the
onehand, it wasvery hard tofollow Néron’s arguments concerning the construction
of his models. On the other, arithmeticians were able to use the notion of Néron
models with great success, for example, in the investigation of Galois cohomol ogy
of abelian varieties. Since Ntron models are characterized by a simple universal
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property, it is possible to work with them without knowing about the actual
construction process.

After Néron’s work, substantial progress on the structure of Neron models was
achieved with the so-called semi-abelian reduction theorem. It states that, up to
finite extension o the ground field, NCron models of abelian varieties are semi-
abelian. A first proof of this result was carried out by Grothendieck during thefall
of 1964; heexplained it in a seriesdf letters to Serre, using regular modelsfor curves
and /-adic monodromy. The proof was published later in[SGA 7,]. Independently,
Mumford was able to obtain the semi-abelian reduction theorem via his theory of
algebraic theta-functions, at least for the case where the residue characteristic is
different from 2; for this proof see the Appendix II to Chai [1]. The behavior of
a Ntron model with respect to base change can be difficult to follow; however, in
the semi-abelian case it is particularly simple because the identity component is
preserved.

In the late sixties, Raynaud [6] further developed the relative Picard functor
over discrete valuation rings R in such a way that, in quite general situations, the
NCron model of the Jacobian of a curve could be described in terms of the relative
Picard functor of aregular R-model o thiscurve. Using Abhyankar's desingulariza-
tion of surfaces, one thereby obtains, at least in the case of Jacobians, a second
method of constructing NCron models whichislargely independent of the original
construction given by NCron.

Today, using the relative Picard functor, the semi-abelian reduction theorem is
viewed as a consequence o the corresponding semi-stable reduction theorem on
curves; see, for example, Artin and Winters [1], or see Bosch and Liitkebohmert
[3] for an approach through rigid analytic uniformization theory. To a certain
extent, the semi-abelian reduction theorem has changed the view on the reduction
o abelian varieties. Namely, it is sometimes enough to work with semi-abelian
models and to consider the corresponding monodromy at torsion points. As an
example, we refer to Faltings proof [1] of the Mordell conjecture.

On the other hand, there are questions where, in contrast to the above, Ntron
models are involved with al their beautiful structure, with their Lie agebra, and
with their group of connected components. An exampleisgiven by the preciseform
o the Taniyama-Weil conjecture on modular elliptic curvesover @; cf. Mazur and
Swinnerton-Dyer [1].

For further applications of NCron models, we refer to the work of Ogg [1] and
Shafarevich [1] concerning moderately ramified torsors over function fields. This
was extended by Grothendieck to arbitrary torsors; cf. Raynaud [1].

It should also be noted that the NCron model is of interest when studying the
Shafarevich-Tate group III. Namely, let A be the NCron model over a Dedekind
scheme S of an abelian variety A, where K isthefield of fractions of S. Then I
is the group of "localy trivia™ torsors under A, a group which is closely related
to the group H'(S, A). In this way the Néron model is involved in questions
concerning the group L. For .-.ample, concerning its conjectural finitenessin the
global arithmetic case.

Finally, to give another application involving torsors under abelian varieties,
we mention that Tate studied in [1] the group H'(K,A), where Ay isan abelian
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variety over alocal fiddd K of characteristic 0 having a finite residue field. He used
the compact group Ax(K) (Where Ay isthe dual abelian variety of 4x) aswell asits
Pontryagin dual. Later, when the theory of Néron models was available, there
appeared somevariants o thiswork for algebraically closed residuefield; cf. Bégueri
(1] and Milne [2]. Here the Néron model of Ag, in particular, its proalgebraic
structure plays an important role.

Theam of the present book isto provide an exposition o the theory of Neron
models and o related methods in algebraic geometry. Using the language axd———
techniques of Grothendieck, we describe Néron’s construction, discuss the basic
propertiesof Neron models, and explain the rel ationship between these modelsand
therelative Picard functor in the case of Jacobians. Finally, using generalized Nkron
modelswhicharejust locally of finitetype, westudy Néron models of not necessarily
proper algebraic groups.

We now describe the contents in more detail. Chapter 1 is meant as a first
orientation on Nkron models. The actual construction of Nkron modelsin thelocal
case takes placein Chapters 3 to 6. Instead of just using Grothendieck's [EGA] as
ageneral reference, we have chosen to explainin Chapter 2 some of the basic notions
we need. So, for the convenience of the reader, we give a self-contained exposition
d the notion of smoothness relating it closaly to the Jacobi criterion. A discussion
d henselian rings, an overview on flatness, as well as a presentation of the basics
on relative rational maps follows. Also, at the beginning o Chapter 6, we have
included an introduction to descent theory.

In Chapter 3, we start the construction of Néron models with the smoothening
process. Working over a discrete valuation ring R with fied o fractions K, this
process modifiesany R-model X (of finite type and with a smooth genericfibre Xg)
by means of a sequence of blowing-ups with centersin special fibresto an R-model
X' such that each integral point of X liftsto anintegral point of the smooth locus
o X'. Thisleads to the construction of so-called wesk Ntron models. Since there
is a strong analogy between the smoothening process and the technique of Artin
approximation, we have included the latter, although it is not actually needed for
the construction of Néron models.

Next, in Chapter 4, we look at group schemes. We consider a smooth K-group
schemedf finitetype X admitting a weak Neron model X and show that thegroup
law on X ¢ extendsto an R-birational group law on X if we removeall non-minimal
componentsfrom the special fibre of X; the minimality is measured with respect to
anon-trivial left-invariant differential form of maximal degree on X. In Chapter
5, working over a strictly henselian base and following ideas of M. Artin, we
associate to the R-birational group law on X an R-group scheme. The latter is, by
ageneralization of atheorem of Weil for rational maps from smooth schemesinto
group schemes, already the Néron model of X;. The generalization to an arbitrary
discrete valuation ring is done in Chapter 6 by means of descent. After we have
finished the construction of Néron modelsin Chapter 6, we discusstheir properties
in Chapter 7.

The next topic to be dealt withis the relative Picard functor and, in particular,
itsrelationship to Néron modelsin the case of Jacobians of curves. Sincethere seems
to be no systematic exposition of the relative Picard functor Pic,, available which
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takesinto account developments after Grothendieck's lectures[FGA], we thought
it necessary to include a chapter on this topic. In Chapter 8 we explain the various
representability resultsfor Ac,, intermsof schemesor agebraic spaces, mainly due
to Grothendieck [FGA] and Artin [5]. From thispoint on, dueto lack of space, it
wasimpossibleto givedetailed proofsfor all theresultswemention. Itisour strategy
to list the important results, to prove them whenever possible without too much
effort, or to sketch proofs otherwise. In any case, we attempt to give precise
references and to point out improvements which have appeared in the subsequent
literature.

The same can be said for thefirst half of Chapter 9 where we deal with relative
Jacobians of curves. Among other things, modulo some considerations contained
in Chapter 7, we show here how to derive the semi-abelian reduction theorem for
Néron models from the semi-stable reduction theorem for curves. A proof d the
latter theorem has not been included in the book since a detailed discussion of
models for curves and of related methods would be a topic of its own, too large to
be dealt with in the present book. Instead, for a proof using Abhyankar's desingu-
larization, we refer to Artin and Winters [1] or, for a proof using rigid geometry,
toBoschand Liitkebohmert [17]. Finally, in Sections5 to 7 of Chapter 9, wecompare
the Neron model with the relative Picard functor in the case of Jacobians. As an
application, we show how to compute the group of connected components of a
Néron model.

The book ends with a chapter on Neron models o commutative, but not
necessarily proper algebraic groups. In the local case, we prove a criterion for a
smooth commutative K-group scheme X, of finite type to admit a Neron model
which, over an excellent strictly henselian base, amounts to the condition that Xk
does not contain subgroups of type G, or G,,. We also indicate how to globalize
this result. In doing so, it is natural to admit Néron models which are locally of
finite type (Ift), but not necessarily of finite type. This way we can construct Néron
modelsfor tori aswell as study the same problem for K-wound unipotent groups.
Since our investigations seem to have few applications at the moment and, since
some o the statements are till at a conjectural stage, we have chosen only to give
short indications o proofs.

Bibliographical referencesare given by mentioning the author, with a number
in square bracketsto indicate the particular work we are referring to. An exception
is made for Grothendieck, where we also use the familiar abbreviations [FGA],
[EGA], and[SGA], aslisted at the beginning of the bibliography. Cross references
to theorems, propositions, etc., like Theorem 1.3/1, usually contain the number of
the chapter, the section number, and the number of the particular result. For
references within the same section, the chapter and the section numbers will not be
repeated.



Chapter 1. What Isa Neron Moddl?

This chapter is meant to provide afirst orientation to the basics of Néron models.
Among other things, it contains an explanation of the context in which Neron
modelsareconsidered, aswell asadiscussion of the main resultson the construction
and existence, including some examples.

Westart by looking at models over Dedekind schemes. In particular, the notion
o Ctde integral points is introduced, and models o finite type satisfying the
extension property for étale integral points are considered. For a local base, the
existencedf such modelsischaracterized intermsd a boundednesscondition. Then,
in Section 1.2, we define Neron model sand provesome elementary propertieswhich
follow immediately from the definition. We also discuss the relationship between
global and local NCron models as wdl as a criterion for a smooth group scheme of
finite type to be a Neron model. Next, in Section 1.3, we state the main existence
theorem for Neron models in the local case and explain the skeleton of its proof,
anticipating some key results which are obtained in later chapters.

I'n Section 1.4, we discussthe case o abelian varieties. More precisaly, we study
the notion of good reduction and show how the existence of local Néron models
leads to the existence of global Néron models. In Section 1.5, in order to provide
some explicit examples, we consider elliptic curves. In particular, we compare the
Néron model with the minimal proper and regular model and with the minimal
Weierstrall model. The chapter endswith alook at Néron’s article[2] which serves
as a basis for the construction of Neron models. For this section, a certain fami-
liarity with the contents of later Chapters 3 to 6 isadvisable.

1.1 Integral Points

When dealing with Néron models, one usually works over a base scheme S which
isa Dedekind scheme, i.e., a hoetherian normal schemeof dimension <1. Thelocal
rings of S are either fields or discrete valuation rings. For example, § can be the
spectrum of a Dedekind domain. We will talk about the local caseif S consists of
alocal scheme and, thus, is the spectrum of a discrete valuation ring or even of a
field; the general casewill be referred to asthe global case. Any Dedekind scheme S
decomposes into a digoint sum dof finitely many irreducible components S; with a
generic point #; each. We set K := (P k(x;), S0 K isthering of rational functionson
S. Furthermore, the affine scheme Spec K is referred to as the scheme of generic
pointsof S.If S isconnected — andthisisthe caseto keep in mind — thereisa unique
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generic point 4 € S. Its residue field is K and we can identify # with the associated
geometric point Spec K — S. It isonly for technical reasons that we do not require
Dedekind schemes to be connected.

There are three examples of Dedekind schemes, which are of special interest. To
describethefirst one, let K be a number fidd, i.e., afinite extension of Q, and let R
be the ring of integers of K. Then set § = Spec R. Similarly, we can consider an
algebraicfunction field K of dimension 1 over a constant field k and define S to be
the normal proper k-curve associated to K. I n both cases, Sisa Dedekind scheme.
Ontheother hand, we can start with a normal noetherian local schemeof dimension
2 and removethe closed point from it. Also this way we obtain a Dedekind scheme.

Now let S be an arbitrary Dedekind scheme with ring of rational functions K
and consider an S-scheme X. Wedefineitsgeneric fibre (or, more precisely, itsscheme
d generic fibres) by Xg := X ®s K, viewed as a scheme over K. Conversely, if we
start with a K-scheme X, any S-scheme Y extending Xy, i.e., with generic fibre
Yy = X, will be called an Smoddl of X. There is an abundance of such models.
For example, any change of Y (such as blowing up or removing a closed subscheme)
which takes place in fibres disjoint from X, will produce a new S-model of the
same K-scheme X,. On the other hand, X can be viewed as an S-model of itsdlf.
Inthelocal case, the latter iseven of finite type over Sif X, isof finite type over K.

The main problem we will be concerned with when studying the existence of
Néron models is to construct S-models X of X which satisfy certain natural
properties. One of them is the extension property concerning etale integral points,
or just etale points, as we will say; for the notion of étale see Section 2.2.

Definition 1. Let X beaschemeover aDedekindschemeS Thenwesay that X satisfies
the extension property for étale points at a closed point s e S if, for each étale local
Log,-dgebra R' with field of fractions K’, the canonical map X(R') — X (K') is
surjective.

Each étale local 0 -algebra is a discrete valuation ring again. In fact, it can
be seen from Chapter 2, in particular, from 2.4/8 and 2319, that the etale loca
&,,-agebras R' correspond bijectively to the (faithfully flat) extensions of discrete
valuation rings ¢s = R' with the properties that a uniformizing element of Lo,, is
also uniformizing for R, that the extension of fraction fields of Lo, < R’ isfinite
and separable, and that the residue extension of ¢ , — R' isfinite and separable.
So we conclude from the valuative criterion of separatedness[EGA 111, 7.2.3, that
the map X(R") — X((K') isinjective if X is separated over S. Furthermore, the
extension property for etale points as formulated in Definition 1 is similar to the
one occurring in the valuative criterion of properness [EGA 117, 7.3.8; the only
differenceisthat we restrict ourselves to valuation rings R' which areétale over Lo,

Instead of considering all etale local Cls,,-algebrasR' one can just as well apply
limit arguments and work with a strict henselization R of ¢ . The latter is the
inductivelimit over all pairs(R', @) where R' isan Ctalelocal Log,-dgebraand where
ais an R-homomorphism from R' into a fixed separable algebraic closure of the
residue field k(s); see Section 2.3. Then, if K" is thefield of fractions of R**, it follows
that X satisfiesthe extension property for Ctale pointsat s e Sif and only if themap
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X(R™) — X (K*"} is surjective. Furthermore, let us mention that X satisfies the
extension property for etale points at s € S if and only if X ®; 0s ,, viewed as a
scheme over ¢ ,, does.

A simplemethodfor constructing S-models o finitetypeisthemethod of chasing
denominators.It appliesto the case where Sis affine, say S = SpecR, and where X
is affine o finite type over K (resp. projective over K). The resulting models are
afine o finite type over R (resp. projective over R). To explain the affine case, let
X be the spectrum o aring

A= K[ty,...,t,1/1g;

ie., of aquotient of afree polynomial ring by anideal 1,. Then I is generated by
finitely many polynomialsf,,....f,, which we may assume to have coefficientsin R.
SO set

A=R[ty,....,)/I,

wherel istheideal generated by f1,..., f,. Then X := SpecRisan R-model of finite
type of Xy. Furthermore, since a module over a valuation ring isflat as soon as
thereisno torsion, we see that X will beflat over R if we saturate | ; i.c., if we set

I = Iy R[ty,..., 1, ]

Then, by its definition, X is just the schematic closure of X in the affine n-space
over R;for the notion of schematic closure see Section 2.5. Findly, the projective
case is completely analogous; here one works with the Proj of homogeneous
coordinaterings.

If Xy isprojective, any R-model X obtained by chasing denominators is projec-
tive and, thus, satisfies the extension property for etale points by the vauative
criterion o properness. If X is just of finitetype, but not projective, theconstruction
o an S model o finite type satisfying the extension property for ttale points can
be quite complicated or even impossible as the example o the affine n-space A%
shows. As a necessary condition in the local case, we will introduce the notion of
boundedness.

So assume that S consists of a discrete valuation ring R with field of fractions
K. Furthermore, consider a faithfully flat extension of discrete valuation rings
R = R and let K' bethefield of fractionsof R'. Then R and R’ give riseto absolute
values on K and on K'; we denote them by | | assuming that both coincide on K.
For usthe case where R' is a strict hensdlization R* of R will be of interest. Now,
for any K-scheme X, for any point x € X(K'), and for any section g of %, being
defined at X, we may view g(x) as an element of K' so that its absolute value |g(x)!
iswell-defined. I n particular, it makes senseto say that g is bounded on a subset of
X¢(K'). Applying this procedure to the coordinate functions of the affine n-space
A%, wearrive at the notion of a bounded subset of A%(K').

Definition 2. Asbefore, let R = R' bea faithfully flat extension d discrete valuation
rings with fields of fractions K and K'. Furthermore, let X be a K-scheme of finite
type and consider a subset E = X (K’).
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(a) If X isaffine, E is called bounded in X if there exists a closed immersion
Xy = A% mapping E onto a bounded subset of A%(K").

(b) Inthe general case, E iscalled bounded in X if there exists a covering of Xy
by finitely many affine open subschemes Uy, ..., U, = X as well as a decomposition
E = {J E;into subsets E, = U,(K’) such that, for each i, the set E; is bounded in U; in
the sense of (a).

It should be kept in mind that the definition of boundedness takesinto account
thechoiceof valuation ringsR = R' and, thereby, thechoiced particular valuations
on K and K’, although the latter is not expressed explicitly when we say that a
subset E = Xx(K’)isbounded in X,

If Xy isaffing say if Xy = SpecAg, condition (a) of the definition means that
there are elements g,, ..., g, € Ax generating Ax as a K-algebra which, as maps
Xx(K'y— K’,arebounded on E. Thelatter isequivaent tothefact thateachg € A,
is bounded on E and it is easily seen that, in the affine case, conditions (a) and
(b) o the definition are equivalent. Moreover, if there is one closed immersion
Xy = A% mapping E onto a bounded subset of A%(K"), it followsthat the latter
property isenjoyed by all closed immersions of type Xy = AX.

We want to show that condition (b) of Definition 2 is independent of the
particular affine open covering {U;} of X.

Lemma 3. Let R< R be a faithfully flat extension of discrete valuation rings with
fields of fractions K and K'. Furthermore, let X, be a K-scheme of finite type and
consider a subset E = Xg(K’). If there exists a finite affine open covering 2 = {U;}
of Xg such that condition (b) of Definition 2 is satisfied, then the latter condition is
satisfied independently of the particular covering U. More precisely, given any finite
affine open covering B = {V;} of Xy, there is a partition E = J F; into subsets
F; = V(K') such that F; is bounded in ¥; for each j.

Proof. Since conditions(a)and (b) of Definition 2 areequivalent in theaffine case, we
may assume that B is a refinement of U. Now pick an element U;e U, say U; =
SpecA, and let it be covered by the elements V,..., V, € 23 Then we may assume
that 7, is of type SpecAfp, p=1,...r,wherefi,..., f, generate the unit ideal in A.
So there is an equation 2a,f, = 1 with coefficients a, € 4. Let E, be a bounded
subset of U,(K’). Then it follows from the equation representing the unit 1 that

e:=inf{max{|f,(xX)|; p=1,...,r} ;x€ E;}
is positive. Therefore, setting
F,={x€eE;;|f,(x)>¢},

wehaveE,=F, U... UF, and each F, isbounded in ¥, = Spec A, . Proceeding in
the same way with all U, e U, we see that 23 satisfies condition (b) of Definition 2 if
U does. O

We want to give two immediate applications of the above lemma, the first
one saying that the image of a bounded set is bounded again and the second one
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that the notion of boundedness, in some sense, is compatible with extensions of the
fidd K.

Proposition 4. Let R = R' be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K’ and consider a K-morphism f: Xy — Y, between
K-schemes of finite type. Then, for any bounded subset E < X¢(K"), itsimage under
Xg(K')— Y¢(K') isbounded in Y.

Propogtion 5. Let R = R' be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let X be a K-scheme of finite type.
Then a subset E < X (K') is bounded in X if and only if the corresponding subset
E < X.(K') isbounded in Xg..

Both assertions are obvious in the affine case; the reduction to this caseis done
using Lemma 3. Next wewant to show that properness alwaysimplies boundedness.

Propodtion 6. Let R = R be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K’, and consider a proper K-scheme Xy. Then any
subset E ¢ Xx(K') isbounded in X.

Proof. Let us begin with the remark that the notion of boundedness as introduced
in Definition 2 works just as well without the discreteness assumption if we restrict
to faithfully flat extensions of valuation rings Rc R' corresponding to valuations
of height 1 on K and K'. The above mentioned properties of boundedness remain
true. So, for the purposes of the present proposition, we may extend the valuation
of K'toanalgebraicclosure of K' and thereby assumethat K" isalgebraically closed.

Dueto Chow's lemma[EGA I1], 5.6.1, there isa surjective K-morphism Yy —
X, Where Yy is projective. Then, using Proposition 4, we see that it is enough to
look at the case where Xy is projective or, more specifically, where Xy = P% and
where E = P%(K’). To do this, fix a set o homogeneous coordinates on P% and
consider the associated standard covering of P%. Fori = 0,...n,let U; ~ A% bethe
affine open part of P% where the i-th coordinate does not vanish. Writing points
X € P%(K’) in homogeneous coordinatesin theform x = (xg,...,X,) with xg,..., X,
e K', we can set

E;:i={X = (xg,...,%) €PKK'); x| = max(|xol,-..,|x,)} .
Then Px(K') = | ) E; with E; = U,(K’) being bounded in U;. Soit followsthat Pk (K")
is bounded in P%. U
If Xy isaclosed subscheme of A%, and if X isits schematic closurein A%, the
image of the canonical map
X(R") — Xg(K') = Ag(K')

consists of those pointsin X (K') whose coordinatesare bounded by 1. In particul ar,
multiplying coordinate functions on A% by suitable constants, we can aways
assume that the image of X(R’)- - Xg(K’) contains a given subset E c Xx(K’)
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provided E is bounded in X,. So, for affine schemes, we see that the following
characterization of boundednessis valid:

Proposition 7. Let R = R' be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let X, be a K-scheme (resp.an affine
K-scheme) of finite type. Then a subset E = X (K’) is bounded in X, if and only if
there is an R-model (resp. an affine R-model) X of X, of finite type such that the
image of the canonical map X(R') — X (K') contains E.

I n particular, taking for R” a strict henselization R** of Rand for K' the field K**
of fractions of R, there is an R-model (resp. an affine R-model) X of X, of finite
type satisfying the extension property for étale pointsif and only if X .(K**)isbounded

in X.

Proof. If, in the general case, E = X (K’) isbounded in X, one considers an affine
open covering {U, x} of Xy and a decomposition E = | J E; into subsets E; c
U, x(K') which are bounded in U; . Then one can find an affineR-mode!l U; of each
U, x such that E; belongs to the image of U;(R") — U, x(K'). Gluing the U; along
the generic fibre, one ends up with an R-model X of Xy such that the image of
X(R") — Xy(K’) contains E.

Remark 8. If X isaseparated K-scheme, the R-model X we obtain in Proposition
7 will not, in general, be separated. It requires substantial extra work to modify X
in such a way that it becomes separated; see 3.5/6.

Using the approximation theorem of Greenberg [2], we want to add here a
non-trivial criterion for boundedness.

Proposition 9. Let R be an excellent henselian discrete valuation ring with field of
fractions K and let X, be an open subscheme of a K-scheme X of finite type.
Furthermore, consider a subset E = X (K) which is bounded in X,. Then, if
(Xx — X)(K) = &7, the set E is bounded in Xy, too.

Proof. We may assume that X is affine. Let X = Spec A be an affine R-model of
X, such that each point of E extends to an R-valued point of X. Furthermore, let
Z betheschematic closure of X, — X in X sothat X, = X; — Z,. Therefore Z(K)
and, thus, also Z(R) are empty. Now fix a uniformizing element = of R and set
R, = R/(="). It follows then from Greenberg [2], Cor. 2, that Z(R,)isempty if nis
large enough. Therefore, if Z isdefined in X by the elementsf;,....f, € A, we must
have

max {|f;(3)],..., 1 £} > |7

for al X € Xg(K).
Using thelatter fact, itiseasy to show that E < Xy (K)isboundedin X. Namely
set

E; = {x e E | fix)| > |n"|}.
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Then E is the union of the E; and X is the union of the affine open subschemes
Spec A [f: 1] Furthermore, since E; is bounded in X, it is obvious that E; is
bounded in Spec A, [ f; *]. Thus E is bounded in Xj. O

Each separated K-scheme of finite type Xy admitsa compactification; i.e., there
isa proper K-scheme Xy containing X asa dense open subscheme; of. Nagata[1],
[2]. If there exists a compactification with (X; — X¢)(K) = &, we say that Xy
has no rational point at infinity. Using this terminology, we can conclude from
Propositions 6 and 9:

Corallary 10. Let R be an excellent discrete valuation ring with field of fractions K
and let X be a separated K-scheme of finite type with no rational point at infinity.
Then X (K) isbounded in X.

1.2 Néron Models

In the following, let S be a Dedekind scheme with ring of rational functions K.
Considering a smooth and separated K-scheme X of finite type, we are interested
in constructing S-models X of X, which are smooth, separated, and of finite type
over S. Furthermore, we may ask if among all such models X one can select a
minimal one; i.e., an S-model X such that for any other S-model Y of thistype there
is a unigue morphism Y — X restricting to the identity on the generic fibre.
Requiring this mapping property for arbitrary smooth S-schemes Y, we arrive at
the notion of Néron models.

Definition 1. Let Xx be a smooth and separated K-scheme of finite type. A Néron
model of X isan Smodel X which is smooth, separated, and of finite type, and which
satisfies the following universal property, called Néron mapping property:

For each smooth S-scheme Y and each K-morphismuy : Yy — Xy thereisaunique
Smorphismu:Y — X extending uy.

The restriction to schemes of finite type is not really necessary. In Chapter 10
we will consider Néron models, so-called Néron Ift-models, which are locally of
finite type (by the smoothness condition), but not necessarily of finite type. However,
adding the finiteness condition simplifiesthings to a certain extent. In many impor-
tant cases, Néron models are automatically of finite type; see, for example, the case
of abelian varieties.

As afirst step towards Neron models, we will have to consider a weaker form,
so-called weak Nérorn models of X,. Thereby we understand smooth S-models X of
finite type which satisfy the extension property for Ctde points 1.1/1; see also 3.5/1
for the definition we will work with in later chapters.

We want to list some elementary properties o Néron models which follow
immediately from the definition.
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Propostion 2. Let X be a smooth and separated S-scheme which isa Ne'ron model of
its generic fibre X.

(@) X isuniquely determined by X, up to canonical isomorphism.

(b) X is a weak Ne'ron model of its generic fibre; in particular, it satisfies the
extension property for étale points.

(c) The formation of Ne'ron models commutes with étale base change; i.e., if
S — Sis an étale morphismand if K' isthe ring of rational functions on S, then
X = X X, Sisa Neronmodd over S of the K-scheme X = Xy xx K'.

Proof. Assertion (@) follows immediately from the Neron mapping property. The
same is true for assertion (b) (modulo a limit argument as provided by Lemma 5
below); one has to apply the Néron mapping property to schemesY which are étale
over S. To verify assertion (c),we only have to show the Neron mapping property
for X,.. So consider a smooth §’-scheme Y' and a K’-morphism Yz, — Xj.. Com-
posing the latter morphism with the projection Xg. — Xg, we obtain a K-mor-
phism Y; — X, which uniquely extends to an S-morphism Y' — X since X
isa Neron model of Xg; namely, Y' issmooth over Ssince the composition o the
structural morphism Y' — S, which is smooth, with the Cte morphism S — S
is smooth again. Now Y' — X yiddsan §’-morphism Y' —+ X, and the latter is
a unique extension of the K’-morphism Yz — X O

Next, we mention that the notion of Néron modelsislocal on the base:

Propogtion 3. Let S be a Dedekind scheme and et (S;) be an open covering of S.
Furthermore, let X be an S-scheme. Then X isa Neron model of its generic fibre if
and only if, for each i, the same istrue for the S;-scheme X xg S;.

In the above assertion, one can replace the open subschemes S; = S by the
localizetions of S at closed points. However, then it is necessary to require the
scheme we start with to be of finite type.

Propostion 4. Let S be a Dedekind scheme and let X be an S-scheme of finite type.
Then the following assertions are equivalent:

(@) X isa Neronmodel of its generic fibre.

(b) For each closed point s € S, the Og -scheme X x g Spec s , isa Néron model
of its generic fibre.

If we want to verify the implication (a)==>(b), we cannot just apply an
argument of base change as provided by Proposition 2 (c). The reason is that
Speclo,, isalimit of open subschemes of S but not, in general, an étale extension
of S So we will have to combine limit arguments with arguments of base change.
Let us mention the necessary facts on limits.

Lemmas ([ EGAIV,], 8.8.2). Let Sbe a base scheme and let s be a point of S.
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(a) Let X and Y be S-schemeswhich are of finite presentation. Then the canonical
map

li_r)n Homg (X x5 8, Y x5 8) — Homy, (X ®;s s, ¥ @5 Us ;)

is bijective, the direct limit being taken over all open neighborhoods S d s inS

(b) Let X, be an O ~scheme d finite presentation. Then there are an open
neighborhood S d s in S and an S-scheme X' d finite presentation such that
X' ®g O, isisomorphicto X ,.

Proof d Proposition 4. To verify the implication (a)=(b), pick a point s€ S
and write X, = X ®; 05 ,. Let K be the field o fractions of 0. It is only to
show that X, satisfies the Neron mapping property. So consider a K-morphism
u :1;,),— X.x Where |;,isasmooth Us,-scheme; we may assume that Y, is of
finite type and, thus, of finite presentation over Lo,. Then we can extend |;,,to a
scheme Y' over a connected open neighborhood S « S o s and, taking S small
enough, we may even suppose that Y' is smooth just as ¥ is; cf. the definition of
smoothnessin 2.213. Using thefact that X' := X x, SisaNeron model of itsgeneric
fibre, it follows that uy extends uniquely to an S'-morphism u’: Y' — X'. Then
u' ®g Us 51 Yy — X5 isa unique Ug,,-morphism extending uy. So X, is a Neron
model of its generic fibre.

The opposite implication (b)=>(a) is obtained similarly. Let K be the ring
of rational functions on S and consider a K-morphism uy : Yy — Xy where Y
is a smooth S-scheme. Again we may assume that Y is of finite type and, thus,
of finite presentation over S. Then condition (b) implies that, over a neighbor-
hood S(s) of each closed point se S, the morphism u, extends uniquely to an
S(s)-morphism u(s): Y x5 S(s)— X x5 S(s). Gluing al u(s) yiddds a unique
Smorphismu: Y— X extending u. Since the smoothness and the separatedness
of the Lo,,,-scheme X ®s U5 s imply the smoothness and separatedness of X over a
neighborhood of s, we see that X isa Néron model of Xj. O

In the situation o condition (a) of Proposition 4 we will say that X is a global
Neron model of the generic fibre X whereas in the situation of condition (b) the
schemes X x, Spec s , will be called the local Néron models of X. Thus we see
that if X admits a global Neron model, al its local Néron models exist. The
converse of this assertion is not true as we will seein 10.1/11.

A further conseguence of the Neron mapping property is the fact that Néron
models respect group schemes.

Proposition 6. Let X be a smooth and separated S-schemewhich isa Néron model d
its genericfibre X,. Assumethat X isa K-group scheme. Then the group scheme
structure d Xy extends uniquely to an S-group scheme structure on X.

Remark 7. When dealing with group schemes, the separatedness occurring as a
condition in Definition 1is superfluous. Indeed, a group scheme is separated over
its base as soon asthe unit section isa closed immersion; cf. 7.112.So group schemes
over fields are automatically separated. Furthermore, let X be a smooth S-group
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scheme o finite type which satisfies the NCron mapping property. In order to show
that X isseparated over S, we may apply Proposition 4 and thereby assume that S
islocal. Then, due to the NCron mapping property, the unit section SpecK — Xy
o the generic fibre X extends uniquely to a section S — X, namely to the unit
section of X. It follows that the latter is a closed immersion, as can be seen from
7.1/1 and its proof. Thus X is separated as claimed.

Although Neron models have been defined within the setting of schemes, their
importance seemsto be restricted to group schemes or, more generally, to torsors
under group schemesas we will seein Chapter 6. For example, P; admits P} asa
smooth and separated S-model which, dueto the properness, satisfiesthe extension
property for Ctde points. But P§ isnot a Néron model of its generic fibre since not
all K-automorphisms of P} extend to S-automorphisms o P}; cf. 3.5/5. The situa-
tion is much better in the group scheme case as can be seen from an extension
theorem of Well for rational maps into group schemes; cf. 4.4/1:

Letu:Y -+ X bearational map between S-schemeswhere Y is smooth and where
X isa smooth and separated S-group scheme. Then,if u isdefined in codimension < 1,
it is defined everywhere.

Using this result, one can show without difficultiesthat abelian schemesover S,
ie., proper and smooth S-group schemes with connected fibres, provide examples
o Neron models.

Proposition 8. Let X be an abelian scheme over S. Then X is a Néron model of its
generic fibre Xk.

Proof. Let Y be a smooth S-scheme and let ug : Y — X be a K-morphism. We
claim that u; extends to a rational map u: Y ---» X with a domain of definition
V = Y which is Sdensg; i.c., which is dense in each fibre of Y over S. Namely,
consider a closed point s € Sand a generic point { of thefibreover sin Y. Then the
local ring Oy, is a discrete valuation ring; cf. 2.3/9. So the valuétive criterion of
properness impliesthat ug extends to amorphism Spec ¢y , — X or, using Lemma
5, to arational map Y ---+ X whichisdefined in a neighborhood of {. Therefore u
is defined in codimension < 1 and, thus, by Weil’s extension theorem, it is defined
everywhere. The uniqueness of the extension follows from the separatedness of
X. O

We have seen that Neron models satisfy the extension property for Ctde points.
On the other hand, using a similar argument as the one given in the above proof,
one can show that a smooth and separated group scheme satisfying the extension
property for Ctde pointsis aready a Néron model; see also 7.111.

Criterion 9. Let X be a smooth and separated S-group scheme of finite type. Then X
isa Neron modd of its generic fibreif and only if X satisfies the extension property
for étale points.

Describing the necessary steps of the proof, we mention first of all that, due to
Proposition 4, the criterion has only to be verifiedin the local case. So assume that
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Sisalocal scheme. Then one has to use thefact that X, as a weak Neron model of
itsgenericfibre, satisfies the so-called weak Néron mapping property; cf. 3513. The
latter means that each K-morphism ug : Y, — X extends to an S-rational map
u:Y-—-» X;ie.,toarational map whichis defined on an S-dense open subscheme
of Y. So, just asin the case of abelian schemes, theif-part of the assertion is reduced
to Weil's extension theorem for morphismsinto group schemes. U

1.3 The Local Case: Main Existence Theorem

As we have seenin 1.2/4, the existence of a Néron model over a global Dedekind
scheme Simplies the existence of the local Neron models at closed pointsdf S. In
fact, if global Nkron modelsareto be constructed, thefirst step isto obtain al local
ones. Then one can try to glue them in order to build a global model; see Section
14for the case of abelian varieties. The purpose of the present sectionisto present
the existence theorem for Nkron modelsin thelocal case.

Theorem 1. Let R be a discrete valuation ring with field of fractions K, with a strict
henselization R™, and with field of fractions K** of R*". Let Xy be a smooth K-group
schemeof finitetype. Then X admitsa Néron model X over Rif and only if X (K*)
isbounded in Xy.

In particular, since properness implies boundedness, abelian varieties admit
Neron modelsin thelocal case:

Corollary 2. Let Ag be an abelian variety over the field of fractions K of a discrete
valuation ring R. Then A, admitsa Néron model over R.

The only-if-part of Theorem 1 is a trivia consequence of 1.1/7 since Neron
modelsare o finitetype. The proof of theif-part, however,ismore complicated and
will be carried out in Chapters 3 to 6, each one of them dealing with a certain aspect
o theconstruction of local Neron models. At this placewe haveto content ourselves
with a simplified description of the necessary steps.

We start the construction by choosing a separated R-model X of X of finite
type which satisfiesthe extension property for etale points. If X is projective, we
can takefor X the schematic closure of Xy in a projective n-spaceover R. Similarly,
if X isaffine, wemay use the boundednesscondition and takefor X the schematic
closure of Xy in a suitable affine n-space over R. In the general case we use 1.1/7.
Since the model X obtained from 1.117 might not be separated and since we want
to avoid the result 3517 saying that a separated R-model can be found, we will
generalizethe situation dlightly in Chapters 3 and 4 by working with afinitefamily
(X;) of separated R-models of X such that the canonical map

[T Xi(R™") — Xg(K*")
issurjective.
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For simplicity, let us consider a separated R-model XV of finite type o Xy
satisfying the extension property for etale points. Then we apply the so-called
smoothening process to X, which will be explained in Chapter 3. Thereby we
obtain a proper R-morphism X® — X consisting of a sequence of blowing-ups
with centersin special fibres. It has the property that each R"-valued point of X
lifts to an R*"-valued point of X® which factors through the smooth locus X2
o X®;cf 3.1/3. Thus X := X&) ...isasmooth R-model of finitetype df X, which
sati sfiesthe extension property for etale points. In other words, X’ isaweak Néron
model o Xj. It satisfiesthe so-called weak Néron mapping property which means
that, for each smooth R-scheme Y and each K-morphism uy : Y, — X&), thereis
an R-rational extensionu: Y ---+ X®; i.e., arational extension which is defined on
an R-dense open part of Y; df. 3.5/3. Hence X® satisfiescertain aspectsof a Ntron
model. However, weak Ntron models are not unique and it might bethat the group
structure of X, does not extend to a group scheme structure on X®. Thus, one
cannot expect that X® is already a Ntron model of X.

In general, it is necessary to modify X®. This can be done by using the group
structure on Xy; d. Section 4.3. To simplify the notation, write X instead of X*.
Furthermore, let n be a uniformizing element of R, and let k = R/zR bethe residue
fidd o R. Fixing a non-trivia left-invariant differential form « on X, o degree
d = dim X, we define its n-order over each component Y, of the specia fibre X,
of X. Namely, let n be the generic point o Y,. Then Lo,, isadiscretevaluation ring
with uniformizing element #. Sincethe sheaf of relativedifferential forms Q% isa
line bundle, there is an integer n such that =" extends to a generator of Q% at
1, and we can set ordy,  := n. Then the w-minimal components o X, i.c., those
components for which the z-order of w is minimal, are uniquely determined by Xy
up to R-birational isomorphism. They occur in each wesk Néron model of Xy
and have to be interpreted as the components which have largest volume. More
precisely,any isomorphism uy : X, — Xg, Which leavesw invariant, extendsto an
R-rational map X ---» X which mapsthe w-minimal components of X, birationally
onto each other; d. 4312. So if X' is the open subscheme obtained from X by
removing all non-minimal components o the specia fibre X,, the isomorphism u
givesriseto an R-birational map X' ---> X' which evenisan openimmersion on its
domain o definition;see4.3/1 (ii). Applying this argument to general translations
on Xy, one can redlizethat the group multiplication m : Xg x Xx — X extends
toan R-birational mapm: X' x X' ---» X". Infact, m definesaso-called R-birational
group law on X'; df. 4.3/5. The R-scheme X' is, as we will seein the end (cf. 4.4/4),
aready an R-dense open subscheme of the Néron model we are going to construct,
athough X' will not, in general, satisfy the extension property for étale points
any more.

Now aNtron model of X, can bederivedfrom X' by consideringits" saturation”
under the birational group law. There is a standard procedure, first invented by
WEll for the case where the base consistsof afield and then generalized by A. Nirron
and M. Artin, which associatesgroup schemesto R-birational group laws. We will
explainit in Chapter 5for the case where the base ring R is strictly henselian; the
generalizationto an arbitrary discretevaluation ring isdonein Chapter 6 by means
of descent. Thereby we will see, d. 5.1/5, that X' can be enlarged to an R-group
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scheme X" which is an R-model of X o finite type and which has the property
that the group multiplication on X" restricts to the R-birational group law m on
X'. Then one uses a translation argument to show that X" satisfies the extension
property for Ctde points so that X" isa Néron model of X by Criterion 1.2/9.

14 The Global Case: Abelian Varieties

In the preceding section we have discussed the existence of Néron models in the
local case. If a global NCron model is to be constructed, one has to find a way to
glue thelocal Nkron models. The problem isthat the resulting global model might
not be o finitetypeagain, a property whichisnecessaryfor Néron models. However,
as we want to show in the present section, when dealing with abelian varieties the
gluing works well and we do obtain global Neron models this way. To start with,
let us state Proposition 1.214, which describes the relationship between local and
global Néron models, in aform whichis more useful for applications.

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let
X be a smooth and separated K-scheme of finitetype. Then the following assertions
are equivalent:

(a) There exists a global Néron model X of X, over S.

(b) There exists a dense open subscheme S « S such that X, admits a Néron
model over S as well as local NCron models at the finitely many closed points of
S-S.

Proof. The implication (a)=>(b) is trivial, due to 1213 and 1.214. To obtain the
opposite, we may assume that S is connected. Let s,, ..., s, be the closed points
which form the complement of S in Sand let X' be a NCron model of X, over §.
Furthermore, let X, be alocal Neron model of Xy over thering 05 .. Then, using
1.2/5, X, extends to asmooth and separated schemedf finitetype X; over asuitable
open neighborhood §; of s;. Since X; and X' coincide at the generic point of S, both
must coincide over a non-empty open part of S. Removing finitely many closed
points from S;, we may assume that S; n (S— S) = {s;} and that X; coincides with
X" over S n S;. But then we can glueeach X; with X' over S ~ §; to obtain a smooth
and separated S-model X of finite type satisfying X x S = X' and X ®q 0 ,, =
X, Thus X isaglobal Neron model of X, by 1.214. O

Now consider a connected Dedekind scheme S with field of rational functions
K and an abelian variety A, over K.Onesaysthat A, hasgood reduction at a closed
point s € Sif Ay extendsto asmooth and proper scheme A, over ¢ .. We want to
show that 4, is automatically an abelian scheme in this case and, thus, a Nkron
model of 4.
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Proposition 2. Let S be a connected Dedekind scheme with field of fractions K and
let A, bean abelian variety over K. Assume that A, extendsto an S-scheme A which
is smooth and proper. Then A is an abelian scheme under a group structure which
extends the given group structure on A. In particular, Aisa Néron model of Ag.

Proof. Using 1.2/4 we may assume that we arein thelocal case where S consists of
a discrete valuation ring. Since A is proper, the valuative criterion of properness
showsthat Aisalready a weak Neron model of Ax. Furthermore, the special fibre
A, of Aisconnected by [EGA I11,], 5.5.1. Therefore A, has to be viewed as an
w-minimal component, with @ being a generating differential form of degreedim A
on A; usethe weak Néron mapping property 3.5/3 and the result 4.3/1. On the
other hand, we know from 1.3/2 that A, admits a Néron model X. Thus, by the
Néron mapping property, there is a canonical S-morphism A— X which is an
open immersion by 4.3/1 (ii) or 4411. Because Ais proper, itsimageisclosedin X.
However, X isconnected due to thefact that X isflat over S, with the genericfibre
Xx = A, being connected. So A— X isanisomorphism and Aisa Neron model
o A. Thus, applying the Néron mapping property, the group structure of Ag
extendsto agroup schemestructureon Aand Aisseento bean abelianscheme. [

In order to apply Proposition 1in the case of abelian varieties A, we have to
show that A, has good reduction at almost al closed points of S and even more:
that A, extends to an abelian scheme A over a dense open subscheme S o S.
Looking at a simple example, assume that the characteristic of K isdifferent from
2 and consider the case where Ay isan elliptic curve in P2 given by an equation in
Weierstrafl form

2z = x> + pxz? + yz3

with a non-zero discriminant A = 48° + 27,2 Then the elements 8, y, A, and A™*
belong to almost all local rings ¢ . at closed points s € S. So there exists a non-
empty open subscheme S < Ssuch that §, y, and A extend to sectionsin ¢(S") and
such that A and 2 are invertible in @(S"). Consequently, A, extends to a smooth
projectivefamily A of elliptic curvesin P3. Then A' isan abelian schemeextending
Ay aswe have shown in Proposition 2. Alternatively, we can apply limit arguments
o type 1.2/5 and see directly that, after a possible shrinking of S, the scheme A
gives rise to an abelian scheme over S. In principle, the same reasoning applies to
any abelian variety A, over K.

Theorem 3. Let S be a connected Dedekind scheme with field of fractions K and let
A, be an abelian variety over K. Then A, admits a global Ndron model A over S.
Furthermore, let S' be the subset of S consisting of the generic point and of all closed
pointsin Swhere A, has good reduction. Then S is a dense open subscheme of S and
A X 8" isan abelian scheme over S.

Proof. We have to show that A, extends to a smooth and proper scheme over a
neighborbood of thegeneric point of Saswel asover a neighborhood of each closed
point of Swhere A, has good reduction. Then all such schemesare abelian schemes
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by Proposition 2 and, using the Ntron mapping property, they can be glued to give
an abelian schemeover S. Furthermore, dueto the existenceof local Ntron models
1.3/2, we conclude from Proposition 1 that A, admits a global Néron model A.

In order to show that A, extendsto asmooth proper scheme over a non-empty
open part of S, choose a closed embedding A, — P% into some projective n-space
and consider theschematic closure Adf A, in P%. Then Aissmooth over thegeneric
point of S and, thus, smooth over an open neighborhood S” of this point. So
A = A xg S isasmooth projectiveS”-model of Ag. Alternatively, wecan use1.2/5
to extend A to a scheme A' o finitetype over an open neighborhood S' o the
generic point in S, If §” is small enough, A" will be smooth and, by [EGA 1V,],
8.10.5, also proper. The same argument applies if we consider a closed point s € S
where Ay has good reduction. Namely, then 4; extends to a smooth and proper
scheme 4, over U5 and we can extend the latter over an open neighborhood
ofs O

It follows from the vauative criterion of properness that any K-rational map
u, : Y ---» A, from asmooth K-scheme Yy into an abelian variety Ay isdefinedin
codimension 1 and, thus, is defined everywhere by Weil's extension theorem 4.4/1.
Thereby it isseen that, in the case of abelian varieties, the Ntron mapping property
can be strengthened.

Proposition 4. Let S be a connected Dedekind scheme with field of fractions K and
let A, beanabelianvariety over K with Néron model Aover S. Then, for each smooth
S-scheme Y, and for each K-rational map uy : Yy ---» A, thereisa unique S-morphism
u:Y — Aextending ug.

For further generalizations of thisresult see8.4/6 and 10.3/1.

1.5 Elliptic Curves

In order to illustrate the construction of Ntron models, we want to look at Néron
models of eliptic curves. In this particular case, the procedure of construction can
be made quite explicit. The reader who isinterested in a more profound discussion
o models o elliptic curvesisreferred to Kodaira [1], Néron [2], and Tate {2]. In
our terminology, an ellipticcurvewill alwaysbe understood to havearational point.

We will work over a base scheme § consisting of a strictly henselian discrete
valuation ring R with field of fractions K and with an algebraically closed residue
field k. First we want to clarify the interdependence between Ntron models and
regular and proper minimal models of elliptic curvesover K. So consider an elliptic
curve Eg over K. Then Eg admits a Neron model, as we have stated in 1.3/2. It also
admits a proper minimal model. By the latter we mean a proper flat R-model E
which is a regular scheme and which is minimal among all models E' o this type
in the sense that each R-morphism E —> E' which is an isomorphism on generic
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fibresisan isomorphism itself. So there are noirreducible components of the special
fibre of E which can be contracted without loosing the regularity of E. Regular and
proper minimal models of curves are unique; see Abhyankar [1] and Lipman [1]
for the existence of regular and proper models and Lichtenbaum [1], Shafarevich
[1], or Néron [2] for the existence df regular and proper minimal models.

Proposition 1. Assume that R is a strictly henselian discrete valuation ring. Let E be
aregular and proper minimal model over R of the elliptic curve Ex. Then the smooth
locus of E isa Néron model of Ep.

Proof. Write E for the smooth locus of E. It followsfrom 3.1/2 that each R-valued
point of E factors through E. So, by the valuative criterion of properness, we see
that E satisfies the extension property for etale points and, thus, is a weak Neron
model of Ex. Furthermore,itfollowsfrom 2.3/5 that al k-valued pointsof the special
fibre E;, lift to R-valued points of E'.

Fix an invariant differential form « of degree 1 on Ex. We claim that all
components o the special fibre E; are w-minimal. To see this, consider two com-
ponents X, and X, of E; and two k-valued points y, € X; and z, € X,. Lift them
to R-valued points y, zaf E and restrict them to K-valued points yg, zx € Ex. Then
the translation by zgy* is a K-isomorphism of E, mapping yy to z,. Due to the
uniqueness o regular and proper minima models, this isomorphism extends to
an R-isomorphism o E and, thus, of E', mapping y onto z So there are
R-isomorphisms of E which operate transitively on the components of the special
fibre E; and which leave « invariant. Consequently, all components of E; must be
w-minimal; cf. 4.3/1.

Now, as explained in Section 1.2 or, in more detail, in Section 4.3 and Chapter
5, the group structure on E extends to an R-birational group law on E and, then,
to a group scheme structure on a bigger R-scheme E” containing E as an R-dense
open subscheme; cf. 5.1/5. However, using the fact that all translations by
K-valued pointson E extend toisomorphismson E', and to the transl ations by the
corresponding R-valued pointson E”, it followsthat E and E” coincide. SO E isa
Neron model of Eg. O

If Eisa proper andflat R-model of an ellipticcurve E; over K, then Eissmooth
over R at all points of the genericfibre. Furthermore, E is smooth at a point x of
the special fibre E, if and only if this fibre is smooth over k at x, or equivalently
since k is algebraically closed, if and only if E, is regular at x. So, in order to
pass to the smooth locus of E, one removes al irreducible components with
multiplicities > 1from E, aswdl asfrom theremaining part of E, all singular points;
the latter form afinite set. For algebraically closed residue field k, special fibres of
regular and proper minimal models of elliptic curves have been classified by Neron
[2], seedso Kodaira [1]; there isonly afinitelist of possible types. An algorithm
to compute the type of the special fibrefrom a given equation for E has been given
inTate[2].

If oneisinterested in a Néron model E of an elliptic curve Ex and not so much
initsregular and proper minimal model, one can construct E directly without too
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much effort starting out from an equation describing E in PZ, at least when the
residue characteristic of K is different from 2 and 3. To do this, one classifies
Weierstrall equations into a finite list of types, according to certain conditions
involving the values of their coefficients, discriminants, and j-invariants. Then one
can construct the Neron model E by direct computation in each of these cases. To
demonstrate this, assume that R is a strictly henselian discrete valuation ring with
residue characteristic char k differentfrom 2 and 3 and consider an ellipticcurve Ex
over K, definedin PZ by an equation in WeierstraB form

(*) yiz = x3 + Bxz? + 923
Then discriminant A and j-invariant j are given by
A=4p3+27y%, j=20-33-4p%A.
Viewing E, as a group scheme, we assume that the point (0, 1,0} defines the unit
section of Eg. Let « be a uniformizing element o R, and let v: K — Z be the

additive valuation given by R which satisfies v(r) = 1. We need some elementary
properties of the equation (x).

Lemma 2. For ne Z, the change of homogeneous coordinatesin P2
(x,,2) = (27 "x, 73"y, 2)
induces on the equation of Ej the change

pror*"B,  yron,  Ar—gl?A

Lemma3. () If v(j)= 0, then v(A) = min(v(B3), v(y?).In particular, v(A) = 0 (2) or
v(A) = 0 (3).

(b) If v(j) <0, then v(A)>v(B3%) =v(y?). In particular, v(8)=0(2) and
v(y) = 0(3).

Making a change of coordinates as described in Lemma 2, we can assume that
the coefficients § and y of (*) belong to R and, furthermore, that min(v($3), v(y?)is
minimal. Thereby we arrive at a so-called minimal WeierstraB equation of E; i.e.,
at a Weierstrall equation with coefficientsin R such that v(A) is minimal. We list
the possible cases which remain.

Lemma 4. Let the equation (*) be a minimal WeierstraB equation for Ex. Then, if
v(j) = 0, we have v(A) € {0,2,3,4,6,8,9, 10}. Furthermore, i v(j) <O, either v() =
v(y)=0,0r v(f)=2and v(y) = 3.

Using Néron’s symbolsasintroduced in histable[2], p. 124/125, the possibilities
for a minimal WelerstraB equation for E, as mentioned in the above lemma split
into the following subcases; see also the tablein Tate [2], p. 46.

@ v(j)=0, v(A)=0
() v)=-m<0, yp)=v()=0
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(cl) v(jy=0, viA)=2

(€2) v(j)=0, v(A)=3

c3) v(N=0, viay=4

4 v(ij)=0, v(A)=6

(5,) v())=-m<0, v(f)=2, vp=3
(c6) v(j)=0, v(A)=38

€ vjH=0, vA)=9

c® v(j)=0, v(A)=10

Now, to construct a Neron model of Eg, one proceeds as follows. One chooses
aminima Weierstra3 equation for Ex and usesit for the definition of an R-model
E o E, in P%. Let E° be the smooth part of E. Then one verifies by direct
computation, or by using general properties of planar cubics, that E° is a smooth
R-group scheme extending Eg. In fact, we will see that it is the so-called identity
component of the Néron model of Eg. There are three possibilities which we
characterize by thefirst letters of Neron's symbols:

(@) v(A) = 0. Then E is smooth, so E° = E isan abelian scheme extending Ex.
It followsthat E is an eiliptic curve with good reduction and that E isits Neron
model.

(b) v(A) > 0 and min(v(B), v(y)) = 0. Then E is not smooth; the special fibre of
E° isthe multiplicative group G, ;.

(¢) v(A) > 0 and min(v(B),v(y)) > 0. Also in this case, E is not smooth; the
specia fibre of E° isthe additivegroup G, .

Consider the invariant differential w = aTX on Eg. Then w has n-order 0 over

E°. We claim that, for the construction of the Néron model of Eg, it is enough to
extend E° into aweak Neron model E of E, with the property that the special fibre
of E consists of w-minimal components, all of them being isomorphic to E.

Lemmab. Let EY, ..., E" be smooth and separated R-models of Eg. Assume that, for
all p, the special fibre E£, as a k-scheme, is isomorphic to E2, that w has n-order 0
over Ef, and that the canonical map | [,—o E?(R) — Ex(K) is bijective. Then, gluing
the EP along the generic fibre Ex, we obtain a Néron model E of Eg. Furthevmore,
E° isthe identity component of E.

Proof. It isclear that E isa smooth R-model of finitetype of Ex which satisfiesthe
extension property for etale points 1.1/1. So E is a weak Neron model o Eg.
Furthermore, E is separated since, for p # 1, the intersection of EP x g E* with
the diagonal in E xx E isjust Ex. By the assumption on the n-order of w, all
components o the specia fibre E, are w-minimal. So, denoting by N the Néron
model of Eg, we have an open immersion E <, N by 4.311 or 4414. Then E° must
coincide with the identity component N° of the Neron model N. Thereby we see
that the special fibre N, consists of » * 1 copies of E2 which, in case (c)is the affine
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l-space A, andin case (b)is A; minus the origin. Sincethe sameis true for E, we
concludefrom thespecial typedf E? that E =, Nishijective. So E isa NCron model
o Eyg. O

In each of Néron’s cases, a NCron model E of Ey can be constructed via the
abovelemma. To show how to proceed, we will look at the cases(cl) and (¢2) which
are quite smple, as wel as at case (b,) which is more complicated. First note that
e, == (0,1,0) € E(k) isanon-singular point of the special fibre of E; in fact, it is the
unit section of E2. So the singularities of E, belong to the affinepart E, of E which
isdescribed in A% by the equation

(%%) PV=x3+Bx+7.

Thereis precisely one singularity p, in E, , in the cases (b) or (c);it corresponds to
a multiple zero o the right-hand side of (xx). So, in order to apply Lemma 5, we
have to concentrate on R-models E of E, such that theimage of Ef(R) -+ E((K)
consists of K-valued points which, in E, specializeinto the singular point p,.

Case(cl).Thenv(8) = 1and v(y) = 1 by Lemma 3; hencep, = (0,0), using affine
coordinates of E, ,. Since

{(x,y) € E(K)v(x) > 0,v(») > 0} = &,

it followsfrom Lemma 5 that E° = E — {p,} is the Néron model of E,. Alsoitis
easily checked that the minimal Weierstra3 model is regular and, thus, coincides
with the regular and proper minimal model. |

Case (c2). We have v(B) = 1 and v(y) > 2 by Lemma 3. Again, p, = (0,0) isthe
singular point of E, .. Thusall points(x,y) e E,(K)whichdo not extend to R-valued
points of E° must satisfy v(x) = 1and v(y) = 1. Usex :=z"'xand § := 'y asnew
coordinates and let E! be the R-model of E, obtained by gluing

SpecR[%, J1/(9* — n%> — n7' 2 — %)

along its generic fibre to Eg. Then al points (x,y) € E,(K), which satisfy v(x) > 1
and v(y) > 1, extend to R-valued points of E!. In addition, E! is smooth and
separated and hasspecial fibre E} ~ Al ~ E? asrequired. Furthermore, sincex and
$ do not vanish at the generic point of E, weseethat w =dx/y = d£/y isof n-order
0 over E}. Thus Lemma 5 can be applied. The NCron model of E isobtained by
gluing E° and E! aong the generic fibre Eg; its specia fibre consists of two
components. O

We mention here that the process of replacing a variable x by £ =z 'x isa
special case of adilatation, a technique to be applied systematically when we work
out the smoothening processin Chapter 3. Infact, the method we have used above
for the construction of E isa very explicit form of the smoothening process. It has
to be applied ina similar way for treating the remaining cases.
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Case (b,,). This case is o specid interest if R is complete; then Eg is a so-
called Tate elliptic curve. We have v(j) = —m <0, v(8) = v(y) = 0, and, hence,
v(A) = m > 0. Furthermore, E{ ~ G, ,.. Let uswrite

P(x)=x>+Bx+7y

for the right-hand side of (x+) and P(x) for the polynomial obtained from P(x) by
reducing coefficientsfrom R to k. Then P(x) has a singleroot a € k and a double
root b e k. So p, = (b,0) is the singular point o E,, and al points (x,y)e E,(K)
which do not extend to R-valued points of E° must reduce to p,.

Theroot z liftsto aroot ae R of P(x) sinceR isstrictly henselian. Set Q(x) .=
P(x)/(x — &).Then Q(x) has coefficientsin R and Q(x) = (x — b)? isthe polynomial
obtained from it by reducing coefficients from R to k. Extending the valuation v
from K to the algebraic closure K, the root b lifts to two roots b,, b, € K¢
o Q(x), where v(a — b;) =0 for i = 1, 2. Thus, the discriminant of P(x), which
is A, coincides with the discriminant of Q(x), up to a unit in R. Since v(A) = m,
we have

v(by — b)) =m/2 .

Furthermore, since R is strictly henselian, the extension of vfrom K to K(b,, b,) is
unique, just as for complete fields. So v(b,} = v(b,). Using an inductive argument
on m, interpreted as the value o the discriminant of Q(x), we want to construct
R-models E', ..., E™' which, together with E°, will satisfy the conditions of
Lemma 5.

To do this, choose an arbitrary liftingb e R of b and use x — basanew variable
instead of x; denoteit by x again. The effect is that the singular point p;, = (b,0) is
transformed into the origin (0, 0) thisway. We will denotetransformed polynomials
and roots by P(x), Q(x), a, b,, €tc., again, so that

Px)=(x—a)Q(x), Qx)=(x—>b)lx—b,)
where now
via)=0, v(by) = v(by) = 1/2.

For m =1 we obtain v(b; — b,) = 1/2 and, hence, v(b;)) = 1/2. Then each x € Rn
satisfies v(P(x)) = 1 and we seethat P(x) cannot have a square root in R. So there
are no points (x,y) e E,(K) satisfying v(x) = 1 and v(y) = 1, and we can conclude
from Lemma 5 that, in thiscase, E° isalready the Neron model of E,. Furthermore,
the minimal Weierstrall model isregular in this case.

Ifm > 1,weusen 'x and ="'y as new variables, writing x and yfor them again.
Then, looking for points (x,y) € E,(K) satisfying v(x) > 1 and v(y) > 1, we have to
look for integral solutions of the equation

y? = (a-nx).Q(x),

where we have written Q(x) instead of =~2Q(rnx) again. This way the discriminant
o Q(x) has been divided by #* so that itsvalueisnow m — 2. Assume m= 2. Then

Spec R[x, y)/(y* — (a — 7x)- Q(x))
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issmooth over R. Gluing it along its genericfibre to E,, we obtain an R-model E*
asrequired in Lemma 5. Namely, the special fibre of E* is

Specklx, y1/(y* — @Q(x))

with Q(x) having two distinct rootsin k. So it is PL minus two closed points and,
thus, isomorphic to EP. That the differential @ has n-order 0 over E}, is easily
checked. So, for m = 2, the Néron model is obtained by gluing E° and E* along the
genericfibre Eg; its special fibre consists o two components.

If m > 2, the polynomial Q(x) has a root of multiplicity 2 and the scheme

Spec R[x, y1/(y* — (a — mx)- Q(x))

is not smooth over R; its special fibre consists of two affinelinesintersecting each
other. Removing theintersection point, we can construct two R-models E* and E?
of E, with special fibreisomorphic to E? each. If m = 3, oneis reduced to the case
considered above where thediscriminant of Q(x) hasvalue 1. Thereby it isseen that
E°, E1, E2 satisfy theconditions of Lemmab. If m > 3, the value of the discriminant
o Q(x)is> 1 and can be reduced by 2 again as shown above. One continues this
way until the value of the discriminant of Q(x) is 1 or 0. Thereby one constructs
R-models EY, ..., E™* of E, which, together with E° satisfy the conditions o
Lemma5. So the special fibre of the Néron model E of Ex consists of m components.
With alittle bit of extra work one can show that the group E,/E; iscyclic of order
m. Also, by means of the arguments we have given, one can determine the regular
and proper minimal model of E. Its special fibre consists of achain of m projective
linesforming aloop (if m > 1) or of a rational curve with a double point (if m = 1).
In particular, we can thereby see that the regular and proper minimal model of Eg
will not be planar if m > 3, because a planar cubic cannot have more than 3
components. O

Itisuseful tolook at Tateelliptic curves also from the rigid analytic viewpoint.
So let R be a complete discrete valuation ring. We do not need that R is strictly
henselian or that the residuefield k is perfect. An elliptic curve E, over K iscalled
a Tate curve if, in the sense o rigid analytic geometry, it can be represented
as a quotient G, ;,/q° Where G,, ,;, is the analytification of the multiplicative
group G,, x and whereq € K* satisfies m := v(g) > 0. The quotient G ie/q” CaN bE
thought of as being constructed by gluing m annuli of type{x € G,, .;,; 17| < [x] < 1)
inacyclical way. Using this covering, we can extend G,, ,;,/¢” into aformal scheme
X whosespecial fibre X, isa projectivelinewith adouble point if m = 1and achain
d m projectivelinesforming aloop if m > 1.

Choosing an effective Cartier divisor D on X whose support is contained in the
smooth locus of X and which is very ample on al components of X, and on the
genericfibre X ;,, oneconstructsa projectiveembedding of X and, thus, an R-model
E o E, whoseformal completionis X . Then it turns out that the smooth locus E
o E isaNéron model of E,. The special fibre E, coincideswith the smooth locus
o X, and, thus, isan extension d G,, , by Z/mZ. See Bosch and Liitkebohmert [3]
for ageneralization o the construction to abelian varieties.
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1.6 Neron's Original Article

We want to give here some analysis of Neron's article “Mod¢éles minimaux des
variétés abéliennes sur les corpslocaux et globaux™[2] which appeared in 1964 and
which servesas a basisfor the construction of Néron models as donein this book;
seealso thelecture [1] given by Neronin 1961 at the Seminaire Bourbaki. Consider
an abelian variety A, over alocal fiedd K and think of it as being embedded into a
projective space PY. Let X be the schematic closure of A, in P¥ where R is the
discrete valuation ring of integers of K. Then X is an R-model d A, on which
integral points might not be read as nicely as possible. Moreover, it will be likely
that the group structure of A, does not extend to the smooth part of X. To obtain
R-models o A, whichdo not have these disadvantages, Néron had to apply aseries
o substantial modifications to X and, in doing so, he had to overcome a lot of
technical difficulties.

His article is divided into three chapters. The first one develops a language of
varieties over discrete valuation rings, taking Weil's" Foundations™ [1] as point of
departure. The main results are “Théoréme 3' on p. 57, which corresponds to our
smoothening process (see 3.1/3), and, as a corollary, " Theoreme 6” on p. 61, which
yields the existence of weak Ntron models (see 3512). In the second chapter, one
finds the construction of Ntron modelsfor abelian varieties or, more generaly, for
torsors under abelian varieties; Néron uses the terminology “modéle faiblement
minimal". The existence of Neron models is asserted in "' Theoreme 2' on p. 79 for
the local case and in “Théoréme 4" on p. 87 for the global case. Findly, the third
chapter, which is fairly independent of the others, contains the construction of
regular proper minima modelsfor elliptic curves.

Neron's article hasto be viewed asacontribution to relative algebraic geometry
over a discrete valuation ring; the applications he gives in the global case are
easily deduced from the local case. Concerning the construction of Néron models,
Chapters 1 and 2 of his article are quite difficult to read. To a substantial ex-
tent, this is due to the fact that they are very technical and also to the fact that
the terminology Neron applies is not commonly used; it has been abandoned
since.

To give some impression of his terminology, let us explain the basic setting
considered by Neron. We start with a discrete valuation ring R with maximal ideal
p. Denote by K thefield of fractionsaswell as by k the residuefield of R. The latter
is assumed to be perfect. Neron, familiar with the notion of generic pointsin the
sense of Wel's "Foundations" [1], works with universal domains on two levels.
First he chooses a universal domain f for the residue fild k and then a universal
domain & for thefield of fractions K. The latter isdone in such away that K isa
universal domain o thefield of fractions of aring R which servesas an "integral™
universal domain. To define R in theequal characteristic case, he considers alifting
o k to the completion of R as wdl asa uniformizing element T of R and takesfor
R the formal power seriesring ¥[[T]]. In the unequal characteristic case, he sets
R = R ®yy M) where R isthe completion of R and where W indicates rings of
Witt vectors. The interference of Witt vectors is the main reason why the residue
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fidd k is assumed to be perfect. Then he works with relative schemes over R,
so-caled p-varieties. To be precise, a p-variety corresponds to a flat R-scheme of
finite type; its points have vauesin the universal domains & or  or, when consider-
ing integral points, in the subring % of K. Such a p-varietyis caled p-simplefif it is
regular; it is caled simple modulo p at a point of the specid fibre if it is smooth
over R at this point. For both notions, Neron discusses the Jacobi criterion.

In the following, we want to examine Néron’s approach to the smoothening
processas presentedin hisChapter 1, without pursuing histerminology any further;
we will use the language o schemes, as generally applied in this book. Let X be a
flat R-scheme o finite type with a smooth generic fibre X, and consider R’-valued
points of X where R’ isa discrete valuation ring over R having same uniformizing
dement asR. (SoR' isd ramificationindex 1 over R, sincetheresiduefidd k of Ris
perfect) For such points X € X(R’), Ntron defines the integer I(x,X) which
measures the defect of smoothness of X along X; see his section n°17 starting on
p. 35 or our section 3.3. He shows that I(x, X) is bounded as a function o x. Then
he works out the smoothening process by relying on two techniques: the first one
is a generic smoothening and the second is the theory of pro-varieties.

The generic smoothening can be formulated asfollows:

Let u: SpecR — X be an R'-valued point of X where R’ is as above. Reducing
modulo the maximal ideal p of R, one obtains a morphism#: Speck' — X,. Let Y
be the closure of itsimage and let f : 8 — X be the blowing-up of Y on X. Then, if
ii: SpecR’ — X isthe lifting of u to X, one has

I(#@, X) < max(l(u, X), 1) .

In particular, after a finite repetition, one ends up with a factorization of u through
the smooth locus of a blowing-up of X.

Thestatement may beviewed asan individual smootheningfor R’-valued points
x o X. In order to obtain someform o smoothening which works simultaneously
for several x and R, Néron relies on the technique of pro-varieties; this is one o
the most delicate points in his construction. To give a sketch of his approach,
consider an affine open part o X and thereby suppose that X isembedded into an
affine space AY. Using the coefficients of formal series in I[[{T]] in the equal
characteristic case and Witt coordinates in the unequal characteristic case, Néron
introduces on the set of R/p"™-valued points of A} astructure of k-variety "AY. Since
X has asmooth genericfibre, theimaged X (R)in"A¥ givesriseto a constructible
subset "X and one obtains a projectivesystem of morphisms

wyntly _  ny ...

defining a k-pro-variety.

The possibility o parametrizing solutions o X modulo p" by a k-variety or,
more specificdly, d points o X with vaues in the completion R o R by a
k-pro-variety, had been systematicaily studied by M. Greenberg [1] within the
context of schemesand representablefunctors; seealso Serre[3]. The techniqueis
referred to asthe Greenberg functor. However, sinceNéron did not usethelanguage
o functors, he gave proofsd his own for the facts he needed.
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Let us return to the situation of a generic smoothening as above where we
consider ablowing-upf : X — X withcenter Y. Then thereisaninduced morphism
"f:" 8 — "X for each n and, taking limits over n, a bijection X(R) ~ X(R). To
obtain a simultaneous smoothening, Néron has to consider partial inverses o the
maps "f. More precisely,for each n, thereisa constructiblesubset"Y o "X given by
the points in X(R) which reduce to points of ¥ and he shows that there is a
constructible map "*'Y —s "X such that the diagram

n+1Y nX

L

Y <o, X
commutes. (In the case of Witt coordinates, a map of type "*'Y — "X involves
radicial morphisms of extracting p-th roots. Later, to overcome this kind of diffi-
culties, Serre[2] worked with quasi-algebraic varieties.)

Now set 1 = max I(x, X) where the maximum is taken over all R’-valued points
of X and let Z be an irreducible component o 'X. Combining blowing-ups and
shiftings as above, Néron shows the following assertion: there exists a non-empty
open part U of Z such that there is a simultaneous smoothening of X with respect
to al points of X(R’) whose image in 'X is already contained in U. Using this
assertion, he can finish the smoothening process by a constructibility argument; cf.
his “Théoréme 3" on p. 57.

The proof we will givefor the existence of the smoothening processis basically
the same as Néron’s, except for the fact that we can avoid using pro-varieties
and the Greenberg functor. We do this by establishing a more preciseform o the
generic smoothening; cf. 3.3/5. Namely, as we will see, considering the blowing-up
7:8— X, thereexistsa non-empty open subscheme V < ¥, described in terms of
differential calculus, such that, for each R'-valued point v of X whose specia fibre
factors through v, and for the lifting # of v to 8, we have

13, X) < max(I(v, X), 1) .

Then it is possible to end the smoothening process directly by a constructibility
argument without looking at solutions of X modulo higher powers of p.

At the end of Néron’s Chapter 1, there is the discussion of what we call weak
NCron modelsand the measuring of the size of their components. Thelatter isdone
with respect to a non-zero differential form @ of maximal degree of Xg. The
smoothening process implies that, up to birational equivalence, there are only
finitely many components of ""maximal volume" with respect to w. The arguments
are the same as we will present them later at the corresponding places in our
Chapters 3 and 4.

Let usdicuss now Néron’s Chapter 2. It starts with the definition of torsors, or
principally homogeneousspacesin histerminology. The definitionisgiven in terms
o ternary laws of composition in such away that the underlying group of thetorsor
ishidden. Presumably thisisdonein order not to separate the construction of Néron
models into the group case and the case of a torsor under a group scheme. So
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consider atorsor X under an abelian variety A, over K and a projective R-model
X' of Xg. Neron applies the smoothening process to X', restricts to the smooth
locus, and removesfrom the special fibre al irreducible components which do not
have maximal volume. The volumeis measured with respect to a non-zero invariant
differential form of maximal degree on X; write X for the resulting R-model of
X¢. Then he shows that the structure of torsor on X extends to a birational law
of torsor on X".

The next step is to show that finitely many "trandates” of X" (defined over
certain unramified extensions of R) cover al points of X' with valuesin unramified
extensions R' of R. The same problem occurs in our presentation at the end of the
construction of Néron models, where we want to prove their universal mapping
property; cf. 4.4/4.

To construct the Neron model X of Xy, itis, of course, necessary to really glue
translates of X ; thelatter is not a standard procedure since the translates are only
defined over certain unramified extensions of R. Starting with an ample invertible
sheaf on X , Neron shows that it extends to an ample invertible sheaf on the
translates of X" and, finally, on the Neron model X. So this part contains in one
step the construction of X in terms of gluing translates under the birational law on
X" as well as the descent and the quasi-projectivity of the resulting model. It
presents a tremendous accumulation of difficulties. In addition, explanations which
are given are not very detailed and in most cases quite complicated to follow. In
order to smplify things, it is possible to separate the construction into two steps.
First one constructs the Néron model over an Ctde extension R' of R, where one
has enough integral points to perform translations and where it is enough to
consider the group scheme case. Then, as a second step, one goes back from R’ to
R by means of descent, using ample invertible sheaves and thereby proving the
quasi-projectivity of the model. This is how M. Artin proceeds in [97; the same
strategy will be applied in the present book.

Finally, the universal mapping property of NCron models is established (in a
rudimentary form) quite early in Néron’s article, see n°4, pp. 71-73, even before
Néron models are constructed. It is based on Well's arguments [2], concerning
rational mapsfrom smooth varietiesinto algebraic groups.

It remains to say a few words about Neron's Chapter 3 where he constructs
proper and regular minimal R-modelsfor elliptic curves with a rational point over
K. Except for afew examples, already mentioned in Section 1.5, the subject will not
be touched in this book. Neron studies minimal WeierstraD equations and classifies
them according to the values of their coefficients, discriminants, and j-invariants.
Then he obtains the regular and proper minimal model as a successivejoint of new
components. His construction leads to the same diagrams as the ones obtained by
Kodaira [1]. But Neron's approach of discussing minima Weierstraf3 equations
case by caseis quite different, it does not use the existence of regular models nor
does it use the intersection form. An improved version of his method was later
published by Tate[2] in algorithmical form; it is known as the Tate algorithm.



Chapter 2. Some Background Material from
Algebraic Geometry

In this chapter we give a review of some basic tools which are needed in later
chaptersfor the construction of Néron models. Assumingthat the reader isfamiliar
with Grothendieck's definition of schemesand morphisms, we treat the concept of
smooth and étale morphisms, of henselian rings, and of S-rational maps; moreover,
we have included some facts on differentia calculus and on flathess. Concerning
the smoothness, we give a self-contained exposition of this notion, relating it closely
to the Jacobi criterion. For the other topics we simply state results, sometimes
without giving proofs. Most of the material presented in this chapter is contained
in Grothendieck's treatments [EGA 1V,] and [SGA 1].

2.1 Differential Forms

In this section we define the sheaf of relative differential forms of one scheme over
another. We introduce it by a purely algebraic method using derivations. So let us
first review the basic facts on derivations; detailed explanations and proofs can be
found in [EGA 051, 20.5.

In thefollowinglet R bearing, and let A be an R-algebra. An R-derivation of
Ainto an A-module M isan R-linear map d: A — M such that

d(fg) = fd(g) + gd(f) forall f,ge A

In particular, d(r.1) = O for all » € R. The set Derg(4, M) of al R-derivationsof A
into an A-module M iscanonically an A-module. One definesthe moduled relative
differential forms (of degreel) of A over R asan A-module Q} r, together with an
R-derivation d g : A — €, Which is universal in the following sense: For each
A-module M, the canonical map

HomA(Q}i/R, M) =5 Derg(4, M), e @o dA/R s

isbijective. Themap d,x iscalled theexterior differential. Such acouple (Qrs dajr)
is uniquely determined up to canonical isomorphism. The existence can easily be
verified in thefollowingway. If Aisafree R-algebraR[T;];., of polynomialsin the
variables T, i € I, then let Q' be the free A-module generated by the symbols dT;,
i el,and defined: A — Q! by theformula

oP
d(P) = -dT; ,
()= 2 77
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where dP/0T, isthe usual partial derivative of P with respect to T;. It iseasy to see
that (a*,d) isthe A-module of relative differential forms of A over R. In genera, an
R-algebra B isaresidue ring B = A/a of afree R-agebra of polynomials A. Then
the B-module of relative differential forms of B over R is given by the B-module

Q.}i/R/ (anli/R + AdA/Ra) >

and the exterior differential is canonically induced by d,&-

Wegivean alternatemethodfor proving theexistenceof modules of differentials.
Letm: A®x A— A bethemapinduced by themultiplicationon A, set | = ker(m)
and consider the map

d:A—II?, f+r—-1Qf—f®1 modIl*.

The (A ®x A)-modulel/I? isactually an ((A ®x A4)/I)-module. Using the canonical
isomorphism
A ®r A=A
one can view I/I? as an A-module, and one verifiesthat (I/1%,d) is the A-module
o relative differential forms of A over R.
The universal property of Q},r impliescertain functorial properties. For exam-
ple, each morphism ¢ : A — B o R-algebras induces a unique A-linear map

9}4/11 - QIIB/R s z fidA/R(gi) — Z (P(fi)dB/R((P(gi)) s
and hence a B-linear map
Q}UR ®4B— Qlli/R
Moreover, since each A-derivation of B isaso an R-derivation, one obtains a map

Q}y/R - Q}B/A > Z fidB/R(gi) — Z fidB/A(gi) .

Thus we have a canonical sequence
Qr ®y B—> Qpp — Q}y — 0

which can be shown to be exact. If B is a residue algebra of A, say B = A4/a, the
R-derivation d,,  induces a canonical B-linear map

6:0/a> —Qir®, B, ar—dr()®1

where @ denotes the residue class of ae a modulo 2. As a second important fact
on the behavior of differentials, one showsthat the sequence

ala > iR ®4 B—> Qpjr — 0
isexact.

Next we want to globalize the notion of modules of differentialsin terms of
sheaves over schemes. One can either show that the formation of modules of
differentialsis compatible with localization or, what is more elegant, use the alter-
nate description we have given above. Proceeding the latter way, consider a base
scheme S and an S-scheme X. The diagonal morphism

ArX —X xgX
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yieldsanisomorphism of X ontoitsimage A(X) whichisalocally closed subscheme
o X xg X;ie., A(X) is a closed subscheme of an open subscheme W of X xg X.
Let .# be the sheaf of ideals defining A(X) as a closed subscheme of W. Then we
define the sheaf of relative differential forms (of degree 1) of X over S asthe sheaf

Qyjs == AX(F/I?)

on X. Note that .#/.#% hasa natural structure of an @, y,-module; hence A*(.#/.#?%)
is canonically an Oyx-module. It is clear that Qs is a quasi-coherent (¢x-module,
whichisdf finite typeif X islocally of finite type over S. The canonical map

. 1
dX/S 10y — QX/S s

induced by the map sending a section f of 0y to the section p%f — p¥f of .# (where
p;: X xg X — X is the projection onto the i-th factor), is called the exterior
differential.

SinceQ},s isquasi-coherent, (Q} s, dy,s) can bedescribed inlocal terms: for each
open affine subset V = SpecR of S and for each open affine subset U = SpecA of
X lying over ¥, thesheaf Q 1y isthe quasi-coherent ¢ |,-module associated to the
A-module Q}, and the map dyl, is associated to the canonical map d,:
A— Q.

The sheaf of relative differential forms has similar functorial properties as the
moduled relative differential forms. Given an S-morphismf : X — Y, one can pull
back differential forms on Y to X. So one obtains a canonical ¢x-morphism

f*Qil//s - lef/s
Each section w of Qj 5 givesrise to asection o’ off *Qj} s and hence to a section »”
of Qj,s, Namely to theimage of «’ under the above map. It isconvenient to use the
notion f*@ for both &’ and »"; however to avoid confusion, we will always specify
the module, either f *Qj,s or Q,s, when we talk about the section f *w.
The canonical sequences between modules o differentials, as given above, can

immediately be globalized to the case of differentialsover schemes; cf. [EGA 1V,],
16.4:

Proposition 1. Let f : X — Y be an S-morphism. Then the canonical sequence of
9,-modules
f *Qllr/s - Q)&/s - le(/y —0
isexact.
Proposition 2. Letj: Y =, X be animmersion of S-schemes. Let # be the sheaf of
ideals defining Y as a subscheme of X. Then the canonical sequence d 9,-modules
F17? “o—’j*g)lr/s - Q%/s —0
is exact.

Furthermore, we cite that the formation of sheaves of relative differentials
commutes with base change and products:
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Propogtion 3. Let X and S be S-schemes. Let X' = X xg S bethe S-scheme obtained
by base change, and let p: X' — X be the projection. Then the canonical map

*01 ~ 1
p QX/S — QX'/S'

is an isomorphism.

Propodtion 4. Let X, and X, be S-schemes. If p;: X, x5 X, — X, arethe projections
for i = 1, 2, the canonical map

*)1 %yl ~ 1
PTQx,s @ P3Qx, s = Qx, x x5

is an isomorphism.

2.2 Smoothness

I n this section we want to explain the basic concept of unramified, etale, and smooth
morphisms from the viewpoint of differential calculus. Our approach differsfrom
the onegivenin[EGA 1V,], 17, in so far as we have chosen the Jacobi criterion as
point of departure. In the following, let S be a base scheme.

Definition 1. A morphismof schemes f : X — Siscalled unrarnified at a point x € X
if there exist an open neighborhood U of x and an Simmersion

jiU e AL
of U into some linear space A% over S suchthat the following conditions are satisfied:
(a) locally at j(x) (i.e., in an open neighborhood of j(x)), the sheaf of ideals .#
defining j(U) as a subscheme of Aj is generated by finitely many sections,
(b) the differential forms of type dg with sections g of .# generate QA at j(x).
The morphism f : X —+ Siscalled unramified if it isunramified at all pointsof X.

Condition (a)says that unramified morphisms are locally of finite presentation.
Obviously, animmersion whichislocally dof finite presentation isunramified. It can
easily be shown that the classof unramified morphismsis stable under base change,
under composition, and under the formation of products. We give some equivalent
characterizations of unramified morphisms:

Proposition 2. Let f : X — Shbe locally of finite presentation, let x be a point of X,
and set s = f(x). Then the following conditions are eguivalent:

(@) T isunramified at x.

(b) Qs =0

(c) The diagonal morphism A: X —+ X xg X isalocal isomorphism at x.

(d) The k(s)-scheme X, = X xg Speck(s) isunramified over k(s) at x.

(€) The maximal ideal m, of O , is generated by the maximal ideal i, of @ i,
and k(x) isa (finite)separable extension of k(s).
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Proof. The equivalence of conditions (a) and (b) followsfrom the exact sequence
2112. The equivaence of (b)and (c)is seen by using the identity

Qi’/s = A*(f/fz) s

where .# is the sheaf of ideals defining the diagonal in X xg X, and by applying
Nakayama's lemma. Furthermore, since unramified morphisms are preserved by
any base change, condition (a) implies condition (d). Conversely, if (d) is satisfied,
we know already

1 —
QXs/k(S),x =0.

Let mg be the maximal ideal of ¢,. Then, since the formation of sheaves of
differentialsis compatible with base change, we have

1 . 1 1
QXs/k(s),x = Q)(/s,x/ m Q%5+ »

and Nakayama's lemma yields Qs . = 0. So condition (b)is satisfied, and we see
that conditions (@) to (d) are equivalent.

In order to show that the equivalence extends to condition (€), we may assume
that Sis the spectrum o afield k. Then the implication (€)== (b) is an elemen-
tary algebraic fact, because Qy;s, . = Qi in this case. Conversely, let usshow that
condition (c)impliescondition (€). We may assume that X isaffine, say X = Spec A,
and that the diagonal morphism A : X — X x, X isan openimmersion. Let k be
the algebraic closure of k. It suffices to prove that A®, k is a finite direct sum of
fieldsisomorphic tok; then A will be afinitedirect sum of separablefield extensions
o k. To do this we may assume that k is algebraically closed. For a closed
pointzdf X,leth, : X — X betheconstant morphism mapping X to z, and consider
the morphism

(id, h):X— X x, X
Since A isan open immersion,
(idy, h,) 7 (A(X)) = {z}

isopenin X. Henceeach closed point of X isopen, and X consists of afinite number
o isolated points. In particular, A is a finite-dimensional vector space over k.
Shrinking X if necessary, we may assume that X consists of only one point. Then
the same is true for X x, X. Since A is an open immersion, the corresponding
morphism A* : A®, A— A is an isomorphism and, by comparing vector space
dimensions, we see A = k. O

If followsfrom condition (€) above that the relative dimension of an unramified
morphism is zero. More generaly, one can show that the relative dimension
dim, f = dim,f ~*(f(x)) at a point X of an S-subvariety X = A% with structural
morphism f: X — Sisr if, locally at x, the subvariety is defined by sections g1,

.y gn OF Opn and if the differentialsdg, ,(x), .. ., dg,(x) arelinearly independent in
Qs ® k(x). Namely, thisfollowsfrom theresult above and thefact that therelative
dimension decreasesat most by 1 if onegoesover from an S-scheme to a subscheme
defined by a single equation.
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Definition 3. A morphism f : X — S is called smooth at a point x of X (of relative
dimension r)if there exist an open neighborhood U of x and an S-immersion

jiU o, AL

of U into somelinear space A% over S such that the following conditions are satisfied:
(a) locally at y :=j(x), the sheaf of ideals defining j(U) as a subscheme of A% is
generated by (n— r)sectionsg,.q, ..., g, and
(b) the differentials dg,.,(y), ..., dg,(y) are linearly independent in QA»s ® k(y).
A morphismis called smooth if it is smooth at all points. Furthermore, a morphismis
said to be étale (ata point)if it is smooth (at the point)of relative dimension 0.

Note that, as we have explained above, the integer r is indeed the relative
dimension off at x and that, due to its definition, the smooth locus of a morphism
which islocally o finite presentation is open. It isan elementary task to verify that
the class of smooth (resp. etale) morphisms is stable under base change, under
composition, and under theformation of products. It isclear that open immersions
areétale. Furthermore, etale morphismsare unramified, but the converseisnot true
asis seen by thefollowing lemma.

Lemma4. Animmersion f : X — Sisétale if and only i ff isan open immersion.

Proof. Theif-part is obvious. For the only-if-part, it sufficesto consider the specia
case where f is a closed immersion. Furthermore we may assume that, as an
S-scheme, X has been realized as a closed subscheme of an affine open subscheme
V < A§, in such a way that X is defined by n sections g, ..., g, of Oxz ON V¥,
where the differentialsdg,, ..., dg, generate Qjxl,. Since f : X — Sis a closed
immersion, we may assume that the coordinate functions T;, ..., T, of A% vanish
on X Then we have relations

T, = Z a9

witha;; € Oan(V)fori,j = 1,...,n Taking thedifferentialsof these equations shows
that the matrix (ajj)isinvertible in a neighborhood of X. Dueto Cramer's rule, the
sheavesd idealsgenerated by (T3,..., T,) and (g4, ---,¢,) coincidein this neighbor-
hood. Thisimpliesthat f isan open immersion. |

More generally, one can show that étale morphisms are flat and, hence, open
(cf. 2.4);infact, a morphism isétale if and only if it isflat and unramified, see 2.4/8.
In particular, if Sis the spectrum of a field k, the notions étale and unramified
coincide. In this case, each Ctde S-scheme X consists of isolated reduced points
such that the residue field k(x) of each point x € X is a finite separable extension
of k.

Proposition5. Let f : X — Y be a smooth morphismof schemes. Then:
(a) Q,y islocally free. Itsrank at xe X isequal to the relative dimension of f
at X.
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(b) Iff is a smooth morphism d smooth S-schemes, the canonical sequence d
Oy-modules

0— f*Qi'/s - Q}(/s I Q)lf/y —0

is exact and locally split. (Actually, the assumptionon X and Y to be smooth over S
is unnecessary; cf. [EGA 1V,],17.2.3)

Proof. Since Q4 is free of rank n, assertion (a) follows immediately from the
definition of smoothness if one uses 2.1/2. In the situation (b) we know from 2.1/1
that the canonical sequence

f*Qll'/s - QJlr/s - Q)lr/Y —0
isexact. Dueto (@), the three @y-modules are locally free of finite rank. Hence, for

al x e X, the Oy,,-module (f*Qj5), isisomorphic to the direct sum of kera and
ima, both of which are free. Counting the ranks, one seeskera= 0. O

It is an easy consequence of (a) that, for a smooth morphism f : X — S, the
map x — dim, f islocally constant. Next we want to characterize smoothness by
theinfinitesimal lifting property for morphisms.

Propostion 6. Let f : X — S be localy d finite presentation. The following
conditionsare equivalent:

(a) T isunramified (resp. smooth, resp. ktae).

(b) For all S-schemes Y which are gffine and for all closed subschemesY, d Y
defined by sheavesd idedls ¢ d @y with #2 = 0, the canonical map

Homg(Y, X) — Homg(Y,, X)
isinjective (resp. surjective, resp. bijective).
Proof. First we want to treat the characterization of unramified morphisms. In this
situation, conditions (a)and (b)arelocal on X and S, so we may assumethat X and

S are affine, say X = SpecB and S = SpecR. Let C be an R-algebra, let J be an
ideal of C with J? = 0, and consider a commutative diagram

/N

R——C——C/J.
One easily shows that the map
{ e Homg(B,C) ;vo yy = ¢} — Derg(B,J), y—y— o,

between theset of liftingsof ¢ and the B-moduleof R-derivationsis bijective. Notice
that Jisa C/J-module and, hence, a B-modulevia &.

If X is unramified over S, we know Qfr =0 from Proposition 2 so that
Derg(B,J) = 0 in this case. Thus, the implication (a)==(b) is clear. In order to
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verify the implication (b)=>(a), set C:= (B®y B)/I?, where | is the kernel o
the map

m:B®;B— B, X @y XY

Furthermore, set J= I/I*. The considerations above show Derg(B,J) = 0. Since
J =~ Q. theimplication (b) = (a) follows.

Next we turn to the characterization of smooth morphisms. Starting with the
implication (a)==(b), let us first consider a specia case which corresponds to
the local situation of a smooth morphism. So let S be affing, say S = SpecR, and
let X = SpecB be a closed subscheme o an affine open subscheme V = SpecA of
Ajg. Let | betheideal o A defining X. Assumethat there are g4, ..., g, € A such
that dg,, ..., dg, form a basis of Q} ; and such that, for somer, theidea | = A of
X is generated by ¢,.4, ..., g,- Then, since I/I? is generated over B = A/I by the
residue classes of these elements, the canonical sequence
(*) 0— I/I* — Q) x ®; B— Qpr—0
is easily seen to be split exact.

Now let Y = Spec C be an affine S-scheme, and fix a closed subscheme Y, < Y
defined by an ideal J of C with J? = 0. To verify condition (b), we have to show
that each R-morphism ¢ : B— C/J liftsto an R-morphism ¢ : B— C. Dueto the
universal property of a polynomial ring, wecanlift @ toan R-morphismy : A— C
such that the diagram

A——— B = A/l
/Jw F
R——C——ClJ
is commutative. Since (1) = J, the map y givesriseto a B-linear map
I —J

Since the sequence (*) is split exact, the B-linear map i’ extends to a B-linear map
y" asfollows:

0—— /I —— 111/R®AB Q1%&/1% 0

v v
J

Hence, ¥ induces an R-derivation 6: A — J satisfying y|; = §|;. Then
(¥ — 6): A— Cisan R-morphism inducing aliftinge :B— C o 4.

It remains to reduce the general case of an arbitrary smooth morphism
f: X — Sto the specia case treated above. This can be done by showing that
condition (b)isaloca condition on X. So, as before, let Y = Spec C be an affine
S-scheme, and let Y, be a closed subscheme of Y defined by a sheaf of ideals ¢ of
Oy with #?2 =0. Let ¢:Y,— X be an Smorphism. Due to the specia case
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discussed above, there exists an open covering {Y,}, of Y such that @y ~y, liftsto
amorphism ¢, : ¥, — X. The obstruction for (¢,) to define a morphism from Y to
X isacocyclewith values in #omg, (0*Qy)s, £); see also [SGA 1], Exp. III, 5.1
Since this sheaf isa quasi-coherent (OY‘;—moduIe, itsfirst cohomology group vanishes
on the affinescheme Y;. So there exist liftings ¢, : ¥, — X of @ly,~y, such that (¢,)
gives rise to a morphism ¢ :Y — X lifting @. This establishes the implication
(8) = (b) for smooth morphisms.

In order to show the converse, we may assume that X isa closed subscheme of
alinear space A§ which is defined by afinitely generated sheaf of ideals .# = (xy.
Then it sufficesto show that the canonical sequence

0—>f/f2—>QA§/S®(9X—>Q}(/S—>O

is locally split exact. We will prove this in a more general situation where A% is
replaced by a smooth S-scheme Z. In order to do this, we may assume that S and
Z are &fine, say S = SpecR and Z = Spec A, and that X = SpecB is defined by a
finitely generated ideal | = A; in particular, we have B = 4/I. Due to condition
(b),the map

@ =id: A/l — A/l = (A/IH)1/1?)

liftsto an R-morphism ¢ : 4/I —+ A/I?. Then the exact sequence of R-modules
0— I/I> -5 A/1* 5 A)T — 0
splits; namely, ¢ isasection of v, and id,;;- — ¢ o v definesan R-linear map
:Al12 — I/I?
which isa section of theinclusion :. Since z(a)- (b} = 0 for dl a, b e A/12, we have
t(ab) = ab — @ o v(ab) + (a — @ o v(a))(b — ¢ o v(b)} = az(b) + br(a)

Hence 7 is an R-derivation giving rise to an A-homomorphism Q},z — 1/I°.
Consequently, the sequence

0— 112 — QL ® B—+Qp,—0
is split exact.
Finally, the characterization of etale morphisms follows from what has been
shown for smooth and unramified morphisms, sincea morphism isétale if and only
if it is smooth and unramified. U

In the definition of smoothnessiit is required that a smooth S-scheme X can
locally be redlized as a subscheme of a suitable linear space Ag such that the
associated sheaf of ideals satisfies certain conditions. Now we will see that these
conditions are fulfilled for each immersion of X into a smooth S-scheme.

Proposition 7. (Jacobi Criterion). Let X and Z be S-schemes,and let j: X <— Z bea
closed immersion which islocally of finite presentation. Let .# be the sheaf of ideals
of 0, which defines X as a subscheme of Z. Let x be a point of X, and set z = j(x).
Assume that, as an S-scheme, Z is smooth at z of relative dimension n. Then the
following conditions are eguivalent:
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(8) Asan Sscheme, X issmooth at x d relativedimensionr
(b) The canonical sequenced Ox-modules
0—> F/.57 — j* Qs —> Qs — 0

issplit exact at X, and r = rank(Q5,5 ® k(x)).
(©) If dzy,...,dz, isabasisd (Q}s),, ad if g4, ..., gy are loca sectionsd O,

generating .%,, there exists a re-indexing d thez,, ...,z and d theg,,..., gy such
that ¢,., ..., g, generate .# at z and such that dz,, ..., dz,, dg,.,, ..., dg, generate
(Qé/s)z'

(d) There exist local sections g¢,,4, ..., § d @, generating .#, such that the
differentials dg,.,(z), ..., dg,(z) are linearly independent in Q} s ® k(z).

Proof. The implication (a)==(b) follows from the preceding proposition.
Namely, if condition (a)issatisfied, X has thelifting property, and, as shown in the
last part of the proof of Proposition 6, the canonical exact sequence of (b)is split
exact. Furthermore, (Qy,s), isfree o rank r by Proposition 5.

The implication (b)=>(c) follows from Nakayamas lemma, whereas
(c)=>(d) is clear. Findly, the implication (d)=>(a) is eadly checked by
using alocal representation of Z at z as required for Z — S to be smooth at z.

O

Condition (d) can also be stated in terms of matrices. Namely, considering a
representation

_ v 99
dg; = i; 52, dz;
o thedifferential forms dg, ., ..., dg, with respect to a basisdz,, ..., dz, of (Q}s)..
condition (d)saysthat .7, isgenerated by the(n — r) elementsg; and that there exists
an (n — r)-minor of the matrix (dg;/dz;) which does not vanish at z. So we see that
Proposition 7 corresponds to the Jacobi Criterion in differential geometry. Wewant
to deriveasecond version of it (see[EGA 1V, ], 17.11.1for afurther generalization).

Proposition 8. Let f : X — Y be an S morphism. Let x be a point d X, and set
y = f(X).Assumethat X issmooth over Sat x and that Y issmooth over Sat y. Then
thefollowing conditions are equivalent:

(a) T issmooth at x.

(b) Thecanonical homomorphism (f *Qj5), — (Q%/s), isleft-invertible (i.e., isan
isomorphism onto a direct factor).

(¢) Thecanonical homomorphism (f*Qj ) ® k(x) — Q};s ® k(x) isinjective.

Proof. The implication (a)==>(b) is a direct consequence of Proposition 5; the
implication (b)==Hc) is trivia. Concerning the implication (c)=Ha, we
will first treat the case where Y = A$. Then the morphism f is given by global
sections £}, ..., f. o O, and condition (c) means that df, (x), ..., df,(x) are linearly
independent. Furthermore, we may assume that X isasubscheme o A" of relative
dimension r and that the sheaf of ideals defining X is generated by sections h, . ;,
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..., by, such that dh,.;(X),..., dh,(x) are linearly independent. Let us consider the
graph embedding

X s X xg Y oy AT xg A, x—(x, f(x)) .

We can lift the sections f; to sections f; defined in a neighborhood of xin A,". Then,
locally at (x,f(x)) we haverealized X asthe subscheme of AZ*s = A} whichisgiven
by

hr+17-'->hm7 Tl_fla---”rs_fs,
where T3, ..., T, denote the coordinate functions of A; = Y. This yields a local

representation of X as a subscheme of A} as required.
In order to handle the general case, let Y be smooth at y of relative dimension

sover S. Letg,,..., g, beloca sections at y of ¢y such that dg,, ..., dg, induce a
basis of (Qj/s),. After shrinking X and"Y, we may assume that g5, ..., g, are global
sections. Due to condition (c),there exist local sections i, ..., h, at x of Oy such
that

S*dgy, ..., frdy, dhgyys ..., dh,
is a basis of Q}s.. Wherer is the relative dimension at x of X over S. Again, we
may assume that Ay, ..., h, are global sections of ¢x. Setting
g=(91--,9): Y — Ay,
h=he,... ) X — AT,
we obtain the commutative diagram

X (f.h) Y XS Ars—s )4 Y

(goh) g xid
As

By the special case above, the maps (g of,h) and g x id are etale at x and v,
respectively. Hence, due to Lemma 9 below, the morphism (£, h)isetale at x. Then,
f = po (f,h)isacomposition of smooth morphisms and, hence, smooth at x. [

Lemma 9. Let X — S be unramified (resp. smooth, resp. étale), and let Y — S be
unramified. Then each Smorphism X —+ Y isunramified (resp. smooth, resp. étale).

Proof. The assertion followsfrom Proposition 6. Namely, one verifiesimmediately
that X — Y satisfies the lifting property (b) of this proposition. O

Let usstate theassertion o Proposition 8for the special casedf etale morphisms.

Corallary 10. Let f : X — Y be an Smorphism. Let x be a point of X, and set
y = f(x). Assumethat X is smooth over S at x and that Y is smooth over Sat y. Then
the following conditions are equivalent:

(a) fisétale at x.

(b) The canonical homomorphism ( f*Q3 ). — (Q%,s), is bijective.
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Thinking of the classical inverse function theorem, the corollary suggests an
analogy between the notions of ttale morphisms in algebraic geometry and in
differential geometry. But note that, in algebraic geometry, if one wantsto view Ctde
morphisms as local isomorphisms, the Zariski topology has to be replaced by the
so-called étale topology (cf. 2.3/8). In differential geometry, the implicit function
theorem shows that, locally, smooth morphisms are fibrations by open subsets of
linear spaces. Up to localization by etale morphisms, the sameis truein algebraic
geometry:

Proposition 11. Let f : X — S be a morphism, and let x be a point of X. Then the
following conditions are equivalent:

(a) f issmoothat x d relativedimension n.

(b) Thereexists an open neighborhood U d x and a commutativediagram

U—2—- Al

flo JP

S
where g isétale and p is the canonical projection.

Proof. That condition (b) implies condition (@) is clear, since the composition o
smooth morphisms is smooth. To show the converse, choose local sectionsg,, ...,
g, o Oy suchthat dg,, ..., dg, generate Qj s at X. Dueto Corollary 10, the latter is
equivaent tothefact that g4, ..., g, definean Ctaemap from an open neighborhood
U d x to Ag. ]

Remark 12. If X isasmooth S-schemeand if g4, ..., g, arelocal sections of ¢, at
apoint x € X, then, by Nakayama's lemma, the differentiadlsdg,, ..., dg, generate
Qs at x if and only if the differentias dg,(x), ..., dg,(x) form a basis of the
k(x)-vector space Qj,s. . ® k(x). Furthermore, as we have mentioned in the preced-
ing proof, this condition is equivalent to the fact that ¢4, ..., g, define an Ctde
morphism from an open neighborhood U o x to A%, If g4, ..., g, satisfy these
equivalent conditions, they will be called asystem d loca coordinatesat x (over S).
Thisterminology isjustifiedsince, up toan étale morphism, ¢,,..., g, indeed behave
likea set of coordinates of the affine n-space A%.

As a consequence dof Proposition 11, we obtain the following useful fact.

Corallary 13. If X isasmooth scheme over a field k, the set of closed pointsx d X
such that k(x) is a separable extensiond k isdensein X.

Proof. For each point x, of X, there exists an open neighborhood U of x, and a
factorization
U5 A2 Speck

wheregisetale. Then, if x isa point of U, the extension k(x) of k(g(x)) isfiniteand
separable. Hence it isenough to show g(U) contains a closed point y such that &(y)
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is a separable extension of k. The set of closed points y such that k(y) is separable
over kisdensein Aj;. Namely, thisisclear if kisperfect.If kisnot perfect,it contains
infinitely many elements so that the set of k-valued pointsis densein A;. Thusit
suffices to show that g(U) contains a non-empty open subset. However, the latter
isclear by reasons of dimension, sinceg(U) is constructible (cf. [EGA TV,], 1.8.4).
(Actualy, g(U) is open, because an Ctde map isflat and hence open.) U

Next we apply Proposition 7 in order to construct Ctae sections of smooth
morphisms.

Proposition 14. Let f : X — S be a smooth morphism. Let sbe a point of S, and let
x be a closed point of the fibre X, = X x5 Speck(s) such that k(x) is a separable
extension of k(s). Then there exist an étale morphismg: S — Sand a point s’ € S
above s such that the morphism f' : X x, S — S obtained from f by the base change
S — S admits a section h:S — X x, S, where h(s’) lies above X, and where
k(s') = k(x).

Proof. Let n be the relative dimension of X over Sat x. Let # = Oy, be the sheaf
o ideals associated to the closed point x of X;. Since Speck(x) — Speck(s)isCtae,
theidea ¢, isgenerated by nelements gy, ..., g, such that their differentialsdg;,
..., dg, generate Q} s ® k(x), as seen by the Jacobi criterion (Proposition 7). Now
weliftg,, ... , Ja tosections g4, ..., g, O O defined on an open neighborhood of x
in X. Thenlet S be the subscheme of X defined by g, ..., ¢.. Again by Proposition
7,thescheme S isétale over Sat x. After shrinking S we may assumethat S — S
is Ctde Then the tautological section h' : S — X' isa section as required. O

Using Proposition 7, the smoothness of a scheme X over a fied k can be
characterized by algebraic properties o the local rings of X. A k-scheme X which
islocaly o finitetypeiscalled regular if, for each closed point x of X, thelocal ring
Oy isregular. (Oneknowsthen that Oy, . isregular alsofor non-closed pointsx € X;
cf. [EGA 0], 17.3.2).

Proposition 15. Let X be locally of finite type over a field k. Let x be a point of X.
Then the following conditions are equivalent:

(a) X issmooth over k at x.

(b) Q%) is generated by dim, X elements (and hence free).

(c) There exist an open neighborhood U of x and a perfect field extension k' of
k suchthat U ®, k' isregular.

(d) There exists an open neighborhood U of x suchthat U &, k' isregular for all
field extensions k' of k.

Proof. We start with the implication (a)=>(d). Due to Proposition 11, there
existsan Ctdemorphism g : U — A}, defined on an open neighborhood U < X of
X. Then Proposition 2 showsfor each y e U that the maximal ideal nt, is generated
by m,,,. Som, isgenerated by n = dim U elements because A}, is regular; hence U
isregular. Since the situation remains essentially the same after extending the field
k to k', the assertion follows.
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The implication (d)=>(c) is trivia. So let us consider the implication
(c)=>(b). We may assume k= k' and X = U. Moreover, it suffices to show for
each closed point y € X that (Q%,), is generated by dim ¢y , elements. For such a
point y, thefield k(y) is separable over k. Hence Q;,,, = 0, and the exact sequence
o 2.1/2 yields an exact sequence

my,/m? — (Qu), @ k(y) — 0.

Sincem,/m? isgenerated by dimly, elements(dueto assumption (c)),theassertion
follows with the help of Nakayama's lemma.

Finally, we turn to the implication (b)=+@. We may assume that X is a
closed subscheme of an open subscheme V of A%, viatheimmersion j: X —, A}.
Let ¢ be the sheaf of ideals of g defining X, and let r = dim, X. Looking at the
exact sequence of 2.1/2

(F1I%)s — (5 Qaga))s — Qi) — 0,

we see that there exist local sections g,,4, ..., g, of # at x such that dg, 4, ..., dg,
generate a free direct factor of (Q4y,), of rank (n — r). We may assume that g4,

.., g, are defined on V and give rise to a smooth subscheme X' < V of dimension
r. SO X is a closed subscheme of X' and has the same dimension at x as X'. Let y
be a closed point of X, which isaspeciaization of x. Then, by what we have already
seen, Oy, isan integral domain. Sincedimly, = r, the surjective map 0y , —
0y, hasto beinjective by reasons of dimension. This showsthat X and X' coincide
in a neighborhood of x. ]

The property (d) o the preceding proposition gives rise to the following defini-
tion. A scheme X whichislocally of finite type over afield k is called geometrically
reduced (resp. geometrically normal, resp. geometrically regular) if X &®, k' isreduced
(resp. normal, resp. regular) for all field extensions k' of k.

Proposition 16. Let X be locally of finite type over a field k. If X is geometrically
reduced, the smooth locus of X isopen and densein X.

Proof. Itisclear that the smooth locusisopen. For the proof of the density, consider
a generic point x of X. For any field extension k' of k, the algebra k(x} ®, K' is
reduced. Thenitisan elementary algebraicfact that Q;,,, . isgenerated by nelements
where nisthe degree of transcendency of k(x) over k; cf. Bourbaki [1], Chap. V, $16,
n°7, Thm. 5. Since n equals the dimension of X at x, Proposition 15 shows X is
contained in the smooth locus of X. Thus, the smooth locus contains all generic
points of X. O

2.3 Henselian Rings

In the following we want to have a closer look at the local structure of Ctde
morphisms, in particular, we want to construct the (strict) henselization of a local
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ring; referencesfor this section are [EGA 1V,], 18, and Raynaud [S]. Let R be a
local ring with maximal ideal m and residuefield k. Let S be the affine (local) scheme
of R, and let s be the closed point of S From a geometric point of view, henselian
and strictly henselian rings can be introduced via schemes which satisfy certain
aspects of the inverse function theorem.

Definition 1. The local scheme S is called henselian if each étale map X — S isa
local isomorphism at all points x of X over s with trivial residue field extension
k(x) = k(s). If,inaddition, the residue field k(s) is separably closed, S iscalled strictly
henselian.

Notice that if S is strictly henselian, any etale morphism X — Siis a loca
isomorphism at al points of X overs. Usually oneintroducesthe notion of henselian
ringsintermsof properties of thelocal ring R; namely, one requires Hensel’s lemma
to be truefor R. Aswe will explain later (cf. Proposition 4), it sufficesto require a
seemingly weaker condition.

Definition 1'. The local ring R is called henselian if, for each monic polynomial
P e R[T1], all k-rational simple zeros of the residueclass P € k[ 77 lift to R-rational
zeros of P. If, in addition, theresidue field k is separably closed, R is called strictly
henselian.

It iseasily seen that the ring R is (strictly) henselian if the scheme S is (strictly)
henselian. The converse is also true, but the proof is not so easy; it is mainly a
consequence of Zariski's Main Theorem. For the statement of this theorem let us
recall the definition of quasi-finite morphisms. Let f: X — Y be a morphism
whichislocaly of finite type. Then f issaid to be quasi-finite at a point X of X if x
isisolated inthefibre X, = X xy Speck(y) over theimage point y := f(x); thelatter
is equivalent to the fact that the ring Oy ,/m,0x , is a finite-dimensional vector
space over the field k(y) = 0y, ,/m,, cf. [EGA II], 6.2.1. For example, unramified
morphisms are quasi-finite at all points. The set of points x € X such that f is
quasi-finite at x is open in X, cf. [EGA 1V,], 13.1.4. The morphism f is called
quasi-finiteiff isquasi-finiteat al pointsx e X and if fisof finitetype. For example,
acomposition of a quasi-compact open immersion X <, Z and afinite morphism
Z — Y is quasi-finite. Zariski's Main Theorem says that essentially every quasi-
finite morphism is obtained in this way.

Theorem 2 (Zariski's Main Theorem). Let f : X — Y be quasi-finite and separated.
Furthermore, assume that Y is quasi-compact and quasi-separated. Then there exists
a factorization

X c——> Z

N

off, where gisan openimmersion and where his finite.
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For aproof see[EGA IV, ], 18.12.13; amoredirect argument (for thelocal case)
can befound in Peskine [1]. For our applications we will need a weaker version
which iscloseto Zariski's original form of the theorem, cf. [EGA IV;], 8.12.10.

Theorem 2. Let f: X —— Y be quasi-finite and separated. Assume that X isreduced,
that Y is normal, and that there exist dense open subschemes U = X and V < Y such
that f|,: U — Visanisomorphism. Thenf isan openimmersion.

Theorem 2 can be used to investigate the local structure of Ctde morphisrns. In
terms of the corresponding extension of algebras, an Ctae extension is sort of a
lifting of afinite separable field extension which, dueto the theorem of the primitive
element, is always generated by a single element.

Propodtion 3. Let f: X — Y be a morphism of schemes, let x be a point of X, and
sety = f(x). Assumethat f isétrale at x. Then there exist an affine open neighborhood
U = SpecB of x, an affine open neighborhood V = Spec A of y with f(U) = V and a
Y-immersion U —, A, suchthat U becomes an open subscheme of a closed subscheme
Z < A}, where Z isdefined by amonic polynomial P € A[ 7T and where the derivative
P of P has no zeros on the image of U. Moreover, B is isomorphic to (A[T]/(P)),
for some Qe A[T].

A detailed proof isgiven in Raynaud [5], Chap. V. Theidea of the proof is easy
to explain. Namely, we may assume that X and Y are affine, and, due to Theorem
2, that X is an open subscheme of a scheme X' = SpecB' which is finite over Y.
Since k(x) isfinite and separable over k(y), there exists a non-zero element b € k(x)
such that b generates k(x) over k(y). Let b e B’ bealifting of » which vanishes at all
points of thefibre of X' — Y over y, except at X. Now b givesrise to a morphism
X'— A}, Since X' isfinite over Y, one can verify that this morphism induces an
open immersion of a neighborhood of x into a subscheme Z of Al of the required

type. N

It followsimmediately from Proposition 3 that the notions of henselian loca
rings and henselian local schemesare equivalent. This equivalence can be extended
by further conditions, cf.[EGA 1V,], 185, or Raynaud [5], Chap. |.

Proposition4. Let Rbealocal ring, and set S = Spec R. Then the following conditions
are equivalent:

(a) R ishenselian.

(b) Sishensdian.

(c) For each finite R-algebra A, the canonical map

I dempotent (A) - Idempotent (A®x K)

between the sets of idempotent elements is bijective.

(d) Each finite R-algebra A decomposes into a product of local rings.

(e) For each quasi-finite morphism X — S, and for each point X above the closed
point of S, there exists an open neighborhood U of x suchthat U --+ Sis finite.
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We will only sketch the proof, following the ideas of Grothendieck. The impli-
cations (@)=(b) and (d)=>(e) (which are the hard ones) are clear by
Proposition 3 and Theorem 2. In order to show that (b) implies (c), one has to
observe that it sufficesto establish (c) in the case where A isafree R-module. Then
one can write down formally what the idempotent elements of A must look like,
and one notices that they are represented by an étale R-scheme. So it remains to
show that such an Ctde R-scheme admits an R-section. The proof of the remaining
implications is more or lesstrivial. O

The main reason for us to introduce strictly henselian rings is the fact that
smooth schemes over strictly henselian rings admit many sections. Due to the
geometric characterization of henselian rings, this property follows directly from
2.2/13 and 2.2114.

Proposition 5. Let R be a local henselian ring with residue field k. Let X be a smooth
R-scheme. Then the canonical map X (R) — X (k) fromthe set of R-valued points of
X tothe set of k-valued pointsof X issurjective. I n particular, if' Risstrictly henselian,
the set of k-valued points of X, = X ®; k which [ift to R-valued points of X is dense
inX,.

Examples of henselian rings arelocal rings occurring in analytic geometry such
as rings of germs of holomorphic functions. Furthermore, local rings which are
separated and complete with respect to the maximal-adic topology are henselian.
Inthelatter case the condition mentioned in Definition 1' isestablished by Hensel's
lemma; cf. Bourbaki [2], Chap. 111, §4, n°3, Thm. 1. Alternatively, using the
infinitesimal lifting property 2.216 for Ctale morphisms one can verify directly that
such rings fulfill Definition 1. Since a noetherian local ring R isalways a subring of
its maximal-adic completion R, theselocal rings R are a priori subrings of henselian
rings. The" smallest™ henselian ring containing R is called the henselization of R.

Definition 6. A henselization of a local ring R is a henselian local ring R* together
with a local morphism i:R-— R" such that the following universal property is
satisfied: For any local morphismu: R— A fromR toahenselianlocal ring A, there
exists a unique local morphismu": R"— Asuchthat u”oi = u.

If the henselization exists, it is unique up to canonical isomorphism. Moreover,
the residuefield of R" must be k. I n view of Definition 1, the henselization of R must
be the™union™ of al local rings ¢y ., of ttale R-schemes at points x above the closed
point s of S= Spec R, whose residue fields coincide with k. That such a "union™
existsin terms of inductive limits, becomes clear by the following result:

Lemma7. Let S be an étale R-scheme and let s be a point of S above the closed
point s of S = SpecR. Let R’ bethelocal ring 0. . of S ats”and let K betheresidue
field of R. Furthermore, let A be a local R-algebra with residue field k4. Then all
R-algebra morphisms from R to A are local. So there is a canonical map

Hompg(R’, A) —> Hom,(k', k) .
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This map is always injective; it is bijective if A is henselian.

Proof. Since the maximal ideal of R' is generated by the maximal ideal of R, all
R-morphisms R' — A are local. The injectivity of the map follows from the fact
that the diagonal morphism S — S xg S isan open immersion. The surjectivity
is due to the characterization of henselian local rings given in Definition 1. O

For the construction of the henselization of R, one considers the family (R;); . »
of all isomorphism classes of R-algebras which occur as local rings of Ctde
R-schemesat points over the closed point of Spec R and which have the same residue
fieddd as R. Due to Proposition 3, the family 1" is a set and, due to Lemma 7, there
isa natural partial order on I". Namely, one definesi < j for i, j e I"if there exists
an R-morphism u;: R; — R;. S0 (R;); = is an inductive system, which is seen to
be directed and one easily proves that

R":= lim R,
ietn

isa henselization of R (for details see Raynaud [5], Chap. VIII).

If one wants to introduce the smallest strictly henselian ring containing R, one
hasto bealittlebit morecareful. Namely, in view of Lemma7, there may bedifferent
R-morphisms between two (local) Ctale R-algebras unlesswe require that the residue
extensionistrivia. One has to eliminate this ambiguity, and then one can proceed
asin the case of the henselization.

Definition 6. A strict henselization of a local ring R is a strictly henselian local ring
R*" whoseresidue field coincideswith the separable algebraic closure k, of k, together
with a local morphism i:R-— R such that the following universal property is
satisfied: For any local morphismu: R — A from R to a strictly henselian ring A,
and for any k-morphism a: k, — k, fromk, to the residue field k, of A, there exists
aunique local morphism us": R — A such that u** o i = u and such that »** induces
aon the residue fields.

If R*" exists, it is unique up to canonical isomorphism. For the construction of
R let (R;);., be the family of all isomorphism classes of R-algebras which occur
aslocal rings of Ctale R-schemes at points over the closed point of SpecR. Let I
be the set of all couples(R;, «;) where R, isa member of | and where o;;: R; — k;
varies over al R-morphisms into a fixed separable closure &, of k. Dueto Lemma
7,thereexistsanatural order on1**. So((R;, a;;));, j  rsn 18 @directed inductivesystem,
and one easily verifiesthat

R = lim (R;a;)
G, HEIh
isthe strict henselization of R; cf. Raynaud [5], Chap. VIII.
Asan application df thisconstruction, we want to mention some results on Ctde

localizations of quasi-finite morphisms. Let uscall Y' — Y an ktale neighborhood
of a pointyinYif Y' — Y isCtdeand if y is contained in the image of Y".
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Proposition 8. Let f : X — Y belocaly d finite type. Let X beapointd X, and set
y =f(x)

(a) Iff isquasi-finite at x, then there exists an étale neighborhood Y' + Yd y
such that the morphismf *: X' — Y', obtained from f by the base change Y' — Y,
inducesafinite morphismf ‘| : U' — Y', where U’ is an open neighborhood d the
fibore d X' — X abovex. If, in addition, f isseparated, U’ isa connected component
d X'

(b) Iff isunramified at x (resp. étale at x), there exists an étale neighborhood
Y'— Y d y such that, localy at each point d X' above x, the morphism f7 (asin
(a))isan immersion (resp. an open immersion).

Proof. Let R be a strict henselization of the local ring ¢y , of Y at y, and set
S = SpecR. Then Risthelimit of al local rings ¢y ,» which occur aslocal rings of
etale neighborhoods Y' of ye Y at points y' above y. Using limit arguments (cf.
[EGA 1V,], 8.10.5), it sufficesto prove the assertionsin the case where Y = S. Then
(a)followsfrom Proposition 4, and (b) is a consequence of the fact that each finite,
local, and unramified R-algebra A isa quotient of R. Namely, the assumptionsyield
R/m = A/md, where m is the maximal ideal of R, and so Nakayama's lemma
applies. Finally, the case of étale morphismsisdeduced from the case of unramified
ones by means of 2.214. O

The preceding proposition justifies the interpretation of unramified, resp. étale,
resp. smooth morphisms given in 2.2. Namely, Proposition 8 tells us that, up to
base change by etale morphisms, unramified morphisms are immersions and Ctde
morphisms are open immersions. So, if we look at S-schemes X only up to Ctde
base change, asit isdone within the context of the Ctaetopology or, more generally,
inthetheory of algebraicspaces, we may view unramified morphisms asimmersions
and etale morphisms as open immersions. Furthermore, Proposition 22111 says
that smooth morphisms may be viewed asfibrations by open subsets of linear spaces
A%

Thelocal structure of Ctde morphisms X — Y (cf. Proposition 3) can be used
to study how algebraic properties are transmitted from Y to X. By a minor
calculation (cf. Raynaud [5], Chap. VII), one shows that all Ctde schemes over a
reduced (resp. normal) base are reduced (resp. normal) again. Using the elementary
fact that polynomial rings inherit such properties from the base, it follows from
2.2/11 that smooth schemes over a reduced (resp. normal) base are reduced (resp.
normal) again. Finaly, since polynomial rings over regular rings are regular,
smooth schemes over regular schemes are regular again; use 2.2111 and 2.2/2(e).
Summarizing, we can say:

Proposition9. Let X — Y be asmooth morphism. If Y isreduced (resp. normal, resp.
regular), then X is reduced (resp. normal, resp. regular).

Obvioudly, a directed inductive limit R of reduced (resp. normal) rings R; is
reduced (resp. normal). So we have the permanence of reducedness and normality
for the (strict) henselization. Moreover, since the maximal ideal m of R generates
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the maximal ideal m; of each R; which occurs in the construction of the (strict)
henselization of R, it isclear that m also generates the maximal ideal of the (strict)
henselization. In particular, we see that the (strict) henselization of a discrete
valuation ring is a discrete valuation ring, and that a uniformizing parameter of R
yieldsa uniformizing parameter of the (strict) henselization. Furthermore, one can
show that properties of local rings such as being noetherian or regular are preserved
by the process of (strict) henselization. We state thisfor later reference:

Propodtion 10. If R isa reduced (resp. normal, resp. regular, resp. noetherian) local
ring, the (strict) henselization is reduced (resp. normal, resp. regular, resp. noetherian)
again. In particular, if Ris a discrete valuation ring with uniformizing parameter =,
then the (strict) henselization is a discrete valuation ring, and 7 gives rise to a
uniformizing element there.

Finally, we want to have a closer look at the ring extensions
R— R¥— R,

Due to the local structure of étale morphisms (Proposition 3), these canonical
homomorphisms areinjective. Since R can also beinterpreted asthe strict hensel-
ization of R", it follows from the construction of R that the extension R" —_, R
isintegral, as can be seen by using the characterization of henselian rings mentioned
in Proposition 4(e). If R is normal, the rings R" and R** are normal and, hence,
integral domains. Thus we can consider their fields of fractions

KCKhCKSh,

which are separable algebraic over K. Moreover, K* is a Galois extension of K",
the Galois group of K** over K"acts on R, and the fixed subring of R""is R". Due
to Lemma 7, the Galois group is canonically isomorphic to the Galois group of k,
over k.

Propodtion 11. Let R be normal with field of fractions K. Let K, be a separable
closureof K,and let G betheGalois group of K, over K. Let R, betheintegral closure
of Rin K,, and let m; be a maximal ideal of R, lying over the maximal ideal m
of R. Let

D={oeG;ao(m)=m,)
be the decomposition group of m,, and let
| = {oeD;o(x)=xfor x e R;/m,}

be the inertia group of m,. Then the following assertions hold:

(a) Thelocalization R of the fixed ring R? of R, under D at the maximal ideal
m, ~ R? isthe henselization of R.

(b) The localization R” of the fixed ring Rf of R, under | at the maximal ideal
m, " Rl isthe strict henselization of R.

(c) The extension R" = R¥ is Galois. Its Galois group D/I is canonically iso-
morphic to the Galois group of the residue field extension k, over k.
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Proof. ((a Let P(T)e R'[T] be a monic polynomial whose reduction P(T) has a
simple zero @ lying in the residue ficld of R. Now P(T) hasa zero alyingin (Ry)y.
which induces aif we regard @ as an element of R,/m,. Since dis simple, there is
only onezero adf thiskind. Thenit iseasily seen that aisinvariant under D. Hence
aliesin R. Thuswe see R' is henselian. Moreover it is known that R' isa limit of
etale extensions R; of R which have the same residue fields as R; cf. Raynaud [5],
Chap. X. So R"isa hensdlization of R.

(b) followssimilarly as (&), one hasonly to replace the decomposition group by
the inertia group. Assertion (c) followsfrom (a) and (b) by formal arguments. [

2.4 Flatness

Let R bearing, and let M be an R-module. Then M is calledflat over R (or aflat
R-module) if
Mod, — Mody , N— N®xgM,

constitutes an exact functor on the category of R-modules Mod,. If R is afield,
flatness poses no condition, and if R isa Dedekind domain, theflatness of M means
that M hasno torsion. Flatnessisalocal property; i.e., an R-module M isflat over
Rif and only if, for each primeideal p of R, the localization M, is flat over R,,. For
alocal ring R, afinitely generated R-moduleisflat if and only if itisfree; cf. Bourbaki
[2], Chap. 1, §2, ex. 23. But, in general, flat modules do not need to be free or
projective (in the sense of being a direct factor of a free module); for example, the
field of fractions of a discrete valuation ring R is aflat R-module which cannot be
free. Nevertheless, it can be shown that an R-module M isflat if and only if M isa
direct limit of free R-modules o finite type; cf. Lazard [1], Thm. 1.2, or Bourbaki
[1], Chap. X, §1,n°6, Thm. 1. Aflat R-module M iscalledfaithfully flat if the tensor
product by M is a faithful functor; i.e., if N ®z M # 0 for all R-modules N # 0.
Viewing R-algebras as R-modules, one has also the notion of flatness (resp. faithful
flatness) for R-algebras. For example, localizations S71R are flat R-algebras and
polynomial ringsR[T;,..., T,] arefaithfully flat R-algebras. Furthermore, we want
to mention that a local flat morphism R — A of local rings is automatically
faithfully flat.

Now, turning to schemes, a morphismf : X — Sof schemesiscalledflat at a
point X of X if Og ,,— Ox.. isflat, and fiscaledflat if it isflat at all points of
X. Furthermore, a morphism f : X — Sissaid to befaithfully flat iff isflat and
surjective. If X and Sare affine, say X = Spec A and S = SpecR, thenf isflat (resp.
faithfully flat) if and only iff * : R — Aisflat (resp.faithfully flat). Obviously, open
immersions are flat, and it is easy to see that the class of flat (resp. faithfully flat)
morphisms is stable under composition, base change, and formation of products;
cf.[EGA 1V,],2.1and 2.2. I n the case where Sisthe spectrum of a discrete valuation
ring, /: X — Sisflat if and only if ¢y hasno R-torsion. So there are noirreducible
and no embedded components of X which are contained in the special fibre. Since
the notion of flatnessis quite transparent over valuation rings, it is useful to know
that thereis a valuative criterion for flathess which applies to the geometric case.
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Propodtion 1 ([ EGAIV,], 11.8.1). Let f: X — Sbe locally of finite presentation.
Let x be a point of X, and set s = f(x). Assume that ¢ , is reduced and noetherian.
Then f is flat at x if and only if, for each scheme S which isthe spectrumof a discrete
valuation ring, and each morphism S — S sending the special point s’ of S’ to s, the
morphismf' : X' — S obtainedfrom f by the basechange S — Sis flat at all points
x' e X' lying over x.

It is much more difficult to understand the notion of flatnessin the case where
the base has nilpotent elements, for example, where the baseisa non-trivial artinian
ring. In this case there exists no criterion to test flatness by geometric properties.

Furthermore, we want to mention a criterion which allows to test the flatness
d an S-morphism between flat S-schemeson fibres.

Proposition 2 (EGATIV,], 11.311). Let g: X — Sand h: Y — S be locally of
finite presentation. Let f: X — Y be an Smorphism. The following conditions are
equivalent:

(a) fisflat,and his flat at the points of f(X).

(b) £, = f xgk(s)is flat for all se S,and gis flat.

Now let usillustrate the meaning of flatness by some geometric properties of
flat morphisms o finite presentation. In the following, let f : X — Y aways be
a morphism o finite presentation. There are two genera facts concerning the
geometry of such morphisms. First, theimage f(C)d aconstructible subset C of X
isconstructiblein Y if Y isquasi-compact; a subset of a topological spaceis called
constructible if it is a union o a finite collection of locally closed subsets; cf.
[ EGAIV,], 1.8.4. Second, thefunction of relative dimension of f

X—N, x+—dim f7(f(x),

IS upper semi-continuous; i.e., for each n e N the subset wheretherelative dimension
is 2nisclosed; cf. [EGATV,], 13.1.3. If we assume that, in addition, f isflat, the
situation becomes much better.

Propostion3 ([ EGAIV,], 2.4.6). Let f : X — Y belocally of finite presentation. If
f is flat, then f is open.

Propogtion 4 ([ EGAIV,], 14.2.2). Let f : X — Y belocally of finite type and flat.
Assume that X is irreducible and that Y is locally noetherian. Then the relative
dimension off is constant on X.

Dropping the finiteness condition in Proposition 3, its assertion has to be
weakened.

Proposition 5 ([ EGAIV,], 2.3.12). Let f: X — Y be faithfully flat and quasi-
compact. Then the topology of Y isthe quotient topology of X with respect to f; i.e.,
asubset V = Yisopenif and only if f 1 (V)isopenin X.
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It isimpossible to characterize the flatness of an S-scheme X of finite type by
geometric properties when the base S is not reduced. But under reducedness
conditionson the baseand on thefibres,flatnessisequivalent to universal openness,
d. [EGA 1V,], 15.2.3. Moreover, if the base S is reduced and noetherian, each
S-scheme X o finitetypeisgenericaly flat.

Proposition 6 ([EGA 1V,], 6.9.1).Let Sbe reduced and noetherian, and let X be an
S-scheme of finite type. Then there exists a dense open subscheme S' of S such that
X x4 S isflat over S.

Anyway, the flat locus of an S-scheme which is locally of finite presentation
is open.

Proposition 7 ([EGA 1V,], 11.3.1). Let X be an Sscheme which is locally of finite
presentation. Then the set of points x € X suchthat X is flat over Sat x is open.

Non-trivial examples of flat morphisms of finite presentation are the smooth
ones; see below. Furthermore, there is a useful criterion which relates smoothness
over a general baseto flatness and smoothness o thefibres. The latter are schemes
over fieds; in this case one can apply the nicecriterion 2.2/15 to test smoothness.

Proposition 8. Let f: X — Shbelocally of finite presentation. Let x be a point of X,
and set s = f(x). The following conditions are equivalent:

(a) f issmooth at Xx.

(b) fisflat at x and the fibre X, = X xg k(s) is smooth over k(s) at x.

In Section 2.2, wegavedetailed proofsfor al statements concerning smoothness.
Proceeding similarly with Proposition 8, let us giveits proof. For the implication
(@)=>(b), it is only necessary to explain that smooth morphisms are flat. Due
t02.2/11, it sufficesto treat the Ctae case. But in this case the assertion followseasily
by looking at the local structure of Ctale morphisms; cf. 2.3/3.

If one wants to verify thisimplication without using the local structure of etale
morphisms (which involves Zariski's Main Theorem), one can proceed as follows.
If Z isasmooth S-schemewhichisflat over S, and if X isa subscheme of Z given
by one equation, say g = 0, such that dy(g) does not vanish at a certain point
x € X, then X isflat over S at x. It suffices to prove this statement, since, in the
general case, we can use an induction argument on the number of equations
describing X locally at x as a subscheme of A§. In order to prove the assertion
above, we may assume that S is noetherian. Then consider the exact sequence

g
(OZ,x I (QZ,x B (QX,x —0

If Sisthespectrum of afield, then @, . isanintegral domain and g must bearegular
element, so the map on the left-hand sideisinjectivein this case. Since smoothness
isstable under any base change, we seethat the map g ® k(s) isinjective, wherek(s)
isthe residuefield at theimage s of X. Because Z isflat over S we get

Tot{**(0y,, k(s)) = 0
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Hence X isflat over Sat X, cf. Bourbaki [2], Chap. III, $5, n°2, Thm. 1.

For the implication (b) =>(a), we may assume that X is a closed subscheme
o alinear space A} over an affine scheme § = Spec Rwhichisdefined by afinitely
generated ideal | < R[T;,...,T,]. Let r bethe relative dimension of X, at x. Since
X, is smooth over k(s) at X, there exist sections ¢,.4, ..., g, o | such that, locally
at x, the induced functions g,,, ..., g, define X, as a subscheme of A," and such
that dg,.,(x), ..., dg,(x) arelinearly independent in QAys ® k(x); cf. 2217. Now let
Z be the S-schemedefined by ¢,,4, ..., g, Noticethat Z issmooth at x and that Z
contains X as a closed subscheme. Thefibresdf X, and Z, coincidelocally at x. Now
let B bethe algebraassociated to Z, and let A be the algebra associated to X. Then
A isaquotient B/J of B by afinitely generated ideal J of B. Since A isflat over R
at x, the exact sequence

0—J—B—0A4—0

remainsexact at x after tensoring with k(s) over R. Since X coincideswith Z,locally
at x, we see that J®j k(s) vanishes at x. Nakayama's lemma yields J, = 0. So X
and Z coincidein a neighborhood of x and, hence, X issmooth over S at x. O

Since etale morphisms are flat, henselization and strict henselization are
direct limits of flat ring extensions and, hence, they areflat extensions o the given
ring.

Corollary 9. Let R bealocal ring. Thering extensionsR— R* — R, where R" is
a hensdization and R* a strict hensdlizationd R, arefaithfully flat.

Apart from the nice geometric results for flat morphisms o finite presentation,
the importance o flatness is expressed in the descent techniques for faithfully
flat and quasi-compact morphisms. We want to mention here only the de-
scent for properties of morphisms, the more involved program of the descent for
modules or schemes will be explained in Section 6.1. Consider the following
situation. Let

x—L .,y x—L,y

NV

be a commutative diagram o morphisms, and assume that the triangle on the
right-hand side is obtained from the one on the left by means of the base change
S — S. Frequently one wants to show that f enjoys a certain property provided
it is known that f* has this property. So it is useful to know that quite a lot of
properties descend under a faithfully flat and quasi-compact base change S’ -—- S;
for example, topological and set-theoretical properties (cf.[EGA 1V,], 2.6), finite-
ness properties (cf. [EGA TV,], 2.7.1), and smoothness properties (cf. [EGA TV,],
17.7.3).For precise statements, the reader is referred to the literature.
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25 S-Rational Maps

A rational map X ---+ Y between schemes X and Y is generaly defined as an
equivalence class of morphismsfrom dense open subschemes o X to VY; cf. [EGA
1], 7. Two such morphisms U — Y and U'— Y are called equivalent if they
coincide on a dense open part of U n U. However, when working over a base
scheme S, this notion does not behave well with respect to a base change 8’ — S.
So we want to introduce a relative version of rational maps over a base scheme S
which is compatible with base change. For our purposes, it is enough to consider
S-rational maps between smooth S-schemes. So wewill restrict ourselvesto thiscase;
for more general versionssee[EGA 1V,], 20.

An open subscheme U dof a smooth S-scheme X is caled S-dense if, for each
se S, the fibre U, = U x5 Speck(s) is Zariski-dense in the fibre X, = X xg k(s).
Clearly, finiteintersections of S-dense open subschemesaf X are S-densein X again.
Furthermore, if U is S-dense and open in X and if V is an open subscheme o X,
then U n V isS-densein V. Considering a second smooth S-scheme Y, an S-rational
map ¢ : X -—-+ Y isdefined as an equivalence class of S-morphisms U -— Y, where
U is some S-dense open subscheme of X. Two such S-morphisms U — Y and
U — Y are called equivalent if they coincide on an S-dense open part of U ~n U".
Wewill say that ¢ : X ---+ Y isdefined at apoint X ¢ X if thereisamorphismU — Y
representing ¢ withx € U. Theset of al pointsx e X where ¢ isdefined constitutes
an S-dense open subscheme o X. Itiscalled thedomainof definition of X ; we denote
it by dom(e); but note that, without any further assumptions, there is no global
morphism dom(p) — Y defining ¢. Furthermore, if ¢ : X ---» Y can be defined by
an S morphism U — Y which induces an isomorphism from U onto an S-dense
open subscheme o Y, then ¢ : X ---+ Y is called S-birational. In this case we have
an S-birational map ¢! : Y ---+ X which servesas an inverse of ¢. It is clear that
the notions S-dense, S-rational, and S-birational are preserved by any base change
S — S. In generd, the sameis not truefor the domain o definition of S-rational
maps. For example, set S = SpecZ, and consider the Z-rational map ¢ : A} -+ A%
given by therational function (T + 1)/(T — 1). Then the base change SpecZ/2Z —
SpecZ transforms ¢ into a morphism Az,7 — A,z

Let f: X — Y be a quasi-compact and quasi-separated morphism between
arbitrary schemes X and Y. Then the direct image f,.0x of the structure sheaf of
Xisaquasi-coherent 0,-module, cf.[EGA 1], 9.2.1,and thekernel .# of the canon-
ical morphism ¢y, —- f, 0y is a quasi-coherent sheaf of idealsin 0,. The schematic
image of f is defined to be the subscheme of Y associated to .#; it is the small-
est closed subscheme of Y that f factors through. If V is a subscheme of Y
such that the inclusion j:V — Y is quasi-compact, the schematic image of j
is also referred to as the schematic closure of V in Y. Furthermore, if the sche-
matic closure of ¥ in Y coincides with Y, we will say V is schematically dense
inY.

Lemmal. Let Y beasmooth S-scheme, and let V be an open quasi-compact subscheme
of Y.
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(a) If Yisaof finite presentation, the set of pointss e Ssuch that V, is not dense
in Y, islocally constructible in S (i.e. constructible if Sis quasi-compact; cf. [EGA
O, 9.1.12).

(b) If VisSdenseinY,itisschematically densein Y.

Proof. (a) We may assumethat the base S is noetherian. Let A be the closed reduced
subscheme Y — ¥, and denote by p: A — S the structural morphism. Then con-
sider the set

F = {y € A;dim, p~"(p(y)) = dim,(¥/S)}

Itisclear that V;isnot densein Y, if and only if s € p(F). Dueto[EGA 1V,],13.1.3,
the set Fisclosed in Y and, due to [EGA 1V,], 1.85, the image p(F) is locally
constructiblein S,

(b) followsfrom [EGA 1V,], 11.10.10. But, for the convenience of the reader,
we will treat the case where the baseislocally noetherian. It isenough to show that
the restriction map O, (Y') — Oy(V n Y'") isinjective for each open subscheme Y’
in a basis of the topology of Y; note that Vn Y' is S-dense in Y' for each open
subscheme Y' of Y. So we may assume that Sis an affine scheme SpecR, and that
Y isan affine scheme SpecA. It sufficesto show that A — @y (V) isinjective.

Since A isflat over R, cf. 2.4/8, the associated prime ideals of A are just the
associated primeideals p;; of p;4 where p,, ..., p, are the associated prime ideals
of R; cf.[EGA 1V,], 33.1. Since A is smooth over R, the prime ideals p;; are the
minimal prime ideals over p; A. So V meets each component V(p;;) and, hence, the
restriction map A — Oy (V) isinjective. O

For later referencewe state that the schematicimage iscompatible withflat base
change.

Proposition 2. Let f: X — Y be an Smorphism which is quasi-compact and quasi-
separated. Let g: S —+ S be a flat morphism, and denote by f': X' —+ Y' the
S’-morphism obtained from f by base change. Let Z (resp. Z’) be the schematic image
off (resp.off’). Then, Z x4 8’ iscanonically isomorphic to Z'.

Theassertionfollowsimmediately from thefact that the pull-back of 0,-modules
with respect to the projection Y' — Y gives rise to an exact functor from the
category of 0,-modules to the category of Cov,-modules, cf. [EGA 1V, ], 2.3.2.

Next we want to define the graph of an Srational map ¢ : X ---> Y, where X and
Y are smooth S-schemes of finite type. Let U be an S-dense open subscheme of X
such that ¢ is given by an S-morphism U — Y. We need to know that we may
assume U to be quasi-compact.

Lemma 3. Let U be an S-dense open subscheme of a smooth and quasi-compact
S-scheme X. Then U contains an S-dense open subscheme which is quasi-compact.

Proof. Let {U;};.; be an affine open covering of U and, for each i € I, consider the
second projection t;: X xg U; — U;. It admitsasection ¢;: U, — X xg U;, namely
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the tautological one. Denote by ¥; the union of al connected components of fibres
o t; which meet the image of §;. Then, z; being smooth, V; isopen in X xg U, by
[EGA 1V,], 15.6.5. Let Sat(U;) be the image of ¥V, under the first projection
X xg U;— X. Since U; issmooth and, hence, flat over S, the image Sat(U,) is open
in X and contains U;; it may be viewed as a saturation of U, with respect to the
structural morphism X — S Now {Sat(U,)};., is an open covering of X because
U isS-densein X, and this covering contains afinite subcover {Sat(U,),...,Sat(U; )}
because X is quasi-compact. Thus U':=U; v---u U, is Sdense and quasi-
compact in U. O

Sowe haveseenthat ¢ : X ---+ Y can be represented by an S-morphismU — Y
where U is S-dense open and quasi-compact in X. Let I, be the graph of this
morphism; it isalocally closed subscheme of U x Y (closedif Y isseparated over
S).SinceU isquasi-compact over S, one candefinethegraph I' of ¢ astheschematic
closure of U =Ty in X xg Y. In order to see that the definition is independent of
thechoiced U, it sufficesto mention thefact that any quasi-compact S-dense open
subscheme V = U isschematically densein U dueto Lemmal; hence V and U have
the same schematic closure I' in X xg Y.

Now let O be the largest open subscheme of X such that the projection
p: X Xg Y— X onto thefirst factor induces an isomorphism

Tnp Q) =Q.

Then Q = dom(g). Furthermore, if Y is separated over S, each graph I, as aboveis
closedin U xg Y sothat I' n (U xg Y) = I';. Therefore we have an isomorphism

TApi(U) U,

which shows U = Q. This showsdom(gp) < Q and thus dom{p) = Q. In particular,
there is a unique S-morphism dom(¢)— Y corresponding to the S-rational
map ¢:X--->Y; but note that, in genera, dom(e) iS not necessarily quasi-
compact.

Example4 Let & = (&,);.;andn = (1,);.; besystemsof variables, and let k beafield
with char(k) # 2. Let R denote the k-algebra £[&, #]/(&n) where (£y) is the idedl
generated by all products £;;, i€l and j € J. Set S= SpecR. Then we can view
X = Speck[(] and Y = Speck[#] as closed subschemes of S, intersecting each
other at asingle point, namely, at the origin of X and Y. Furthermore, the union of
X and Y is S. Now fix indicesi, €| and j, € J, and consider the S-rational map
¢ : Al---+ A}l given by the rational function

T2-1

(T— fi(, + IN(T— Hjs — 1) ’

where T is a coordinate of Al. Let D be the complement in A} of the domain of
definition dom(e). Then D n A isthe union of two closed subsets of Al; namely,
of thezeroset of (T - ¢, + 1) and of the closed point (¢, T— 1) which liesover the

origin of X. A similar assertion is true for D n Al. Since char(k) # 2, both parts
aredigoint. Thus, if the system & containsinfinitely many variables, the domain of
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definition dom(p) cannot be quasi-compact, since a subset of A} consisting of a
single closed point cannot be described by finitely many equations.

Proposition 5. Let X, X', Y be smooth S-schemes of finite type, and assume that Yis
separated over S. Let ¢:X---> Y be an Srational map, and consider a flat
Smorphism f : X' — X. Then f !(dom(g))} isan S-dense open subscheme of X', and
@ o fisan Srational map from X' to Y which satisfies

dom(p o f) = f(dom(g)) .

In particular, i ff is faithfully flat and if ¢ o f is defined everywhere on X', the map
¢ is defined everywhereon X.

Proof. Since fisflat and locally o finite presentation, cf. [EGA 1V, 1, 1.4.3, themap
f is open. Using this fact, one shows f~!(dom(¢p)) is S-densein X'. So ¢ o f is an
S-rational map and dom(e of )containsf ~*(dom(¢)). Denote by I' = X x5 Ythe
graph of ¢ and by I" = X' x5 Y the graph of ¢ of. Then we seefrom Proposition
2that

X' xyI'=T".

Let p:T'— X and p:I"— X' be the projections onto the first factors. Set
U' := dom(e of), and consider itsimage U := f(U’) which is an open subscheme
o X.Since U’ — U isfaithfully flat, the projection pisan isomorphism over U if
and only if g isanisomorphismover U. Therefore U c dom(p), and the assertion
isclear. O

Finally we want to show that the domain o definition d S-rational maps is
compatible with flat base change.

Proposition 6. Let ¢: X ---» Y be an S-rational map between smooth S-schemes of
finite type where Y is separated over S. Let ' — Sbe a flat morphism, and denote
by ¢’ : X' ---+ Y' the §'-rational map obtained from f by base change. Then

dom(¢’) = dom(p) x5 S .

Proof. It is clear that dom(¢) x5 S = dom(¢’). To show the opposite inclusion,
denote thegraph of ¢ by I' € X xg Y andthegraph of ¢’ by I =« X' x4 Y. Since
the schematic closure commutes with flat base change, we have

FxgS'=T1".

Let p:T'— X and p :I" — X' bethe projections onto thefirst factors. Further-
more, consider a point x' € dom(¢’), and let x beitsimage in X. Then we get a
commutative diagram

SpeC(OX’,x’ — SpeCCOX,x
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where the map in the first row is faithfully flat. Therefore, the fact that p’ is an
isomorphism over Spec @y .- impliesthat pisanisomorphism over Spec? .. Since
Y is o finite type over S, we seethat I is of finite type over X. Hence, there exists
an affine open neighborhood W o x such that p induces a closed immersion
p 1 (W)— W. Let Z be the schematic image in W of this map and let U be a
quasi-compact S-dense open subscheme of X where ¢ is defined. Then the open
subscheme U n Wd Wiscontained in Z. Since U n WisS-densein W, the scheme

Z coincides with W. Thus p~*(W)— W is an isomorphism, and x is contained
in dom(p). O



Chapter 3. The Smoothening Process

The smoothening process, in theform needed in the construction of Ntron models,
is presented in Sections 3.1 to 3.4. After we have explained the main assertion, we
discussthe technique of blowing-up which isbasicfor obtaining smoothenings. The
actual proof of the existence of smootheningsiscarried out in Sections 3.3and 3.4.
As an application, we construct weak Neron models under appropriate conditions.

Our version o the smoothening process differsfrom the one of Néron insofar
as we have added a constructibility assertion, thereby avoiding the use of pro-
varieties; for more details see Section 1.6. A generic form of Néron’s smoothening
process has also been explained by M. Artin in [4].

The chapter endswith a generalization of the smoothening along a section where
the base isa polynomial ring over an excellent discrete valuation ring. This kind of
smoothening techniqueisvery closeto that developed by M. Artin [4] for the proof
of his approximation theorem; see also Artin and Rotthaus [1].

3.1 Statement of the Theorem

In the following let R be a discrete valuation ring with field of fractions K, with
residuefield k, and with uniformizing element =. We denote by R" a henselization
of R and by R** a strict henselization of R. Then R" and R*" are discrete valuation
rings with uniformizing element = and the residue fild of R** equals the separable
closure k, of k. For any R-scheme X, let X, = X ®¢ K be its generic fibre and
X, = X ®z kitsspecid fibre.

Definition 1. Let X be an R-scheme of finite type whose generic fibre X is smooth
over K. A smoothening of X is an R-morphism f: X' — X which satisfies the
following conditions:

(i) fis proper and isan isomorphism on genericfibres.

(i) For each étale R-algebra R', each R’-valued point of X lifts uniquely to an
R’-valued point of X' which factors through the smooth locus Xi,, of X'. More
precisely, the canonical map X.,...(R') — X (R’) is bijective.

Each ttale R-algebra R issemi-local. Soin order to test condition (ii), one may
restrict oneself to local extensions R of R which are ttale. In particular, such rings
are discrete valuation rings; they areflat over R. Due to the valuative criterion of
properness [EGA 11], 7.3.8, condition (i) implies that the map X'(R’) — X(R’)
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deduced from f is bijectivefor any flat R-algebra R' which is a discrete valuation
ring. Hence, if condition (i) is satisfied, condition (ii) says that, for each local etale
extension R’ of R, the R’-valued points of X' factor through the smooth locusof X'.
Asseen in Section 2.3, the strict henselization R of R is the direct limit of all local
ttale extensions of R. So condition (ii) is fulfilled if and only if the canonical map
Xl moom(R*") — X(R®") is bijective.

Ingeneral, asmoothening X' — X isnot adesingularization of X (i.e., a proper
morphism X" — X from a regular scheme X to X which is an isomorphism over
the regular locus of X), because the pointsin the complement of the smooth locus
of X' do not need to be regular. However, a desingularization of X is aways
a smoothening, as we will see by using the following fact from commutative
algebra.

Propostion2. Let::R— Aands: A— R bemorphismsd regular local ringssuch
that £ o 7 = idg (i.e., ¢ defines asection d  the morphism Spec A — SpecR associated
to 2. Then theimage d each regular syssem d parameters d R under zispart d a
regular syssemd parametersd A. If 3isthekernel d ¢, then I isgenerated by a part
d aregular sysemd parameters. If 4, ..., t, isa minima system d generators d

3, thecompletiond A with respect to 5 is canonically isomorphicto R[ [ ¢4, ..., t, 1]

Proof. Let m be the maximal ideal of R, and let s, ..., s,, be a minimal system of
generators of m. Let m’ be the maximal ideal of A. As¢o:=id, theresiduefields
R/m and A/m’" are canonically isomorphic, and m/m? may be viewed as a sub-
space of m'/m’2. Hence (s,), ..., i(s,,) iS a part of a regular system of parame-
tersof A. So there exist elements¢t,, ..., t, inm' such that i(s,), ..., 1(s,,), t1, ..., L,
is a regular system of parameters in A. After replacing ¢; by t; — 1(e(r;)), we
may assume that t,, ..., t, are in the kernel 3 of &. An easy calculation shows
3={(t,,...,1) asrequired. The assertion concerning the J-adic completion of A
followsimmediately from the definition of a regular system of parameters. Ol

In order to show that a desingularization X" — X isa smoothening of X one
has only to verify that, for any ttale R-algebra R', each a ¢ X”(R’) factors through
the smooth locusof X". Oneknowsthat X &j R'isadesingularization of X ®z R’
(see2.3/9) and, furthermore, that theimage of a: SpecR' -— X" factors through the
smooth locusdof X" if the corresponding fact istruefor (a,id): SpecR' — X" ®z R’
([EGA 1V,], 17.7.4). So we may assume R = R'. Then it followsfrom Proposition
2 that X" is smooth over R along a; cf. [EGA 1V,], 17.5.3.

Theorem 3 (Smoothening Process). L et X bean R-schemed finite typewhosegeneric
fibre Xy issmooth over K. Then X admitsa smootheningf : X' — X.

Moreover, one can construct f as afinite sequence d blowing-upswith centers in
thespecialfibres. Inparticular,f X isquasi-projectiveover R, thesameistruefor X'.

Removing from X' the non-smooth locus, we see;

Corollary 4. Let X be as before. Then there is an R-morphismf : X” — X from a
smooth R-scheme X” d finite type to X such that



62 3. The Smoothening Process

(i) f isanisomorphismon generic fibres, and
(ii) the canonical map X" (RS")— X (R") is bijective.

Such schemes X" are not unique, and they do not need to be proper over R,
even if X is proper over R.

Thesmoothening processprovidesafirst step towardsthe construction o Néron
models. For example, if Xy is an abelian variety with a projective embedding
X = Pg, onecan apply the smoothening processto the schematicclosure X of Xy
in P%. Restricting the resulting R-scheme to its smooth locus, we obtain a smooth
R-model of X which, although it might not be proper over R, neverthelesssatisfies
the valuative criterion o propernessfor the special class o valuation rings which
are étale over R.

3.2 Dilatation

We have claimed that a smoothening of X can be constructed by blowing up
subschemes o the special fibre. First, let us explain what happens to the sections
X (R) when such a blowing-upis applied to X. Consider the following example. Set
X = SpecR[T], where T =(T;,...,T,) is a set o variables, and let Y, be the
reduced subscheme of X which consists of the origin o the specid fibre X, o X.
Then Y, isdefined by theideal 3 < R[T] whichisgenerated by n, T3, ..., T,. Using
an absolute value on K belonging to the valuation ring R, the R-valued points of
X correspond hijectivelyto therational pointsx, € A with|T(xg)l = 1,i=1,...,
n. Furthermore, the R-valued points of X which specidizeinto Y, correspond to
therational pointsx, € Ak with|T(xk)| < |n|. Now let X' — X be the blowing-up
d Y, in X. Let ©' be the sheef o ideals o ¢4 generated by 3, and denote by
X, the set o points of X' at which 9' is generated by 7. Then X, = SpecR[T"],
where T' = (T7,...,T;) is a second set o variables, and the morphism X, — X
corresponds to the morphism induced by sending T; to=T; fori = 1, ..., n.Itis seen
that X,(R) is mapped bijectively onto the set of those R-valued points of X which
specializeinto Y;; hence X, (R) corresponds to the rational points x, € A% which
satisfy | Ti(x k)| < |=|. Furthermore, two pointsx, y € X, (R) havethesamespeciaiza
tion over k if and only if |Ti(xx) — Ti(yx)| < I=?| for al i. We will call X, the
dilatation o Y, in X.

In order to construct dilatations o more general type, consider an arbitrary
R-scheme X o finite type and a closed subscheme Y, o the specid fibre X,. Let .#
be the associated sheef of idealsin O; in particular, = € 4.The blowing-up X' of .#
on X is defined as the homogeneous spectrum Proj(#) of the graded (x-algebra
L = P20 s (cf. [EGA 1I], 31 and 8.1.3). Locdly, it is defined as follows.
If X = SpecA, the sheaf o ideals 4 is associated to an idea 3 d A. Since
A is noetherian, 3 is generated by finitely many eements g, =7, g4, ..., g, O
A. Then X' is the closed subscheme of P% which is given by the homogeneous
ideal

3 =ker(4[Tp,...,T,] — P I,

nz0
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where we consider the graded homomorphism sending the variable T; to g; € 3.
Let U, be the affine open subscheme of P} where T; does not vanish. Then X' n U;
is affine, and the A-algebra of its global sectionsis given by

A |:g_o’ .. ,—gﬂ] / (g;-torsion)
gi 9i

where, suggestively, we have written

) In
A[g—(_):---a;:l =AlTy,-- ., T4, Tyys- - Tn]/(gj - gﬂ})j,—éi .
That we have to divide by the g;-torsion corresponds to the fact that the sheaf of
ideals #’ = .# - O4. isinvertible on X'. Furthermore, one showsthat X' isR-flat (i..,
has no 2-torsion)if the sameistruefor X.

Returning to the case of a global R-scheme X, we set

X, .= {xe X'; #] isgenerated by =} ,

whichisan open subscheme of X'. Over an affineopen part SpecA o X, it consists
o the affine A-scheme SpecA,;,, where

Ay = A |:g1’ . ’g,,:| / (n-torsion)
n

T

So X is aways flat over R, even if X isnot. Let u: X; — X be the canonical
morphism, and denote by an index k restrictions to special fibres. The pair (X, u)
has the following universal property:

If Zisaflat R-scheme, and if v: Z — X isan R-morphismsuchthat itsrestriction
v, to special fibres factors through Y,, then v factors uniquely through u.

Indeed, since the problemislocal on X and Z ,we may assume that both schemes
are dfine, say X = SpecA and Z = SpecB. Using notations as before, the fact
that v, factors through Y, implies that the ideal 3-B is contained in #B. Hence
there exist elements k; € B with v*g; = 7h;; the elements h; are unique, because B
has no ?2-torsion. Thus, the A-morphism A[T;,...,T,] — X sending 7T; to h;
yields a morphism w* : A;, — B and hence a morphism w: Z — X, .such that
vV=uUuow.

We summarize what we have shown.

Proposition 1. Let X be an R-scheme of finite type, let Y, be a closed subscheme of
its special fibre X, and let .# be the sheaf of ideals of Oy defining Y;. Let X' — X
be the blowing-up of ¥, on X, and let u: X, — X denote its restriction to the open
subscheme of X' where .# - 0. is generated by =.. Then

() X.isa flat R-scheme, and u, : (X,), — X, factorsthrough Y.

(b) For any flat R-scheme Z and for any R-morphism v:Z — X such that
v Z, — X, factorsthrough Y,, there exists a unique R-morphismv’: Z — X such
that v =uov".
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Dueto property (b),the couple (X, u)is unique (up to canonical isomorphism)
in the class of all couples (Z, v) satisfying property (a). We call X, the dilatation of
Y, on X. It is clear that one can construct dilatations also for locally closed
subschemes of X,,. We want to mention some elementary properties of dilatations.

Proposition 2. (a) All dilatations factor through the largest flat R-subscheme of X,
which is given by the ideal of n-torsion in 0.

(b) Dilatations commute with flat base change R — R where R is a discrete
valuation ring such that = is also a uniformizing element of R'.

(c) Let X beaclosed subscheme of an R-scheme Z, and et Y, be a closed subscheme
of X,. Thenthedilatation X, of ¥, on X canberealized as a closed subscheme of the
dilatation Z., of ¥, on Z.

(d) Dilatations commute with products: Let X' be R-schemes, and let Y be
subschemes of X} for i = 1, 2. Then the dilatation of ¥! x, Y2 on X' x X2 is the
product (X 1), x  (X?), of thedilatations of ¥on X'. In particular, if X isan R-group
scheme, and if Y, isasubgroup schemeof X, thedilatation X, of ¥, on X isan R-group
scheme and the canonical map X; — X isa group homomor phism.

Finally we investigate how dilatations behave with respect to smoothness.

Proposition 3. Let X be a smooth R-scheme, and let ¥, be a smooth k-subscheme of
X,. Then the dilatation X of Y, on X is smooth over R.

Proof. Let u: X, — X bethedilatation of Y, on X, let X' be a point of the specia
fibre of X., and set x = u(x’). Let n be the dimension of X, at X, and let r be the
dimension of Y; at x. Let.# bethesheaf of idealsof 0y defining Y, andlet .# = .#/n 0y
denote the sheaf of ideals of Oy, defining Y, in X,. Dueto the Jacobi Criterion 2.2/7
there exist £y, ..., f, € Ox, . a0d G ., Gue S such that fi, ..., fo Grors ... G
form a system o‘ Iocal coordinates of X, aI X (cf. 2.2/12), and such that Got1snrsOn
generate .£,.. On an afine neighborhood U of x in X there exist liftings f; € O (U)
o f; and g;e F(U) o g, Then fi, ..., fis Grs1» ---» g, TOrm a system of local
coordinates of X over R at X, and #, g,,+, ..., g, generate 4 at X. From the local
construction of X; weseethat df;, ..., df;, dg,+,, ..., dg, generate Q3. r at x', where
gi e Oy, » satisfies g; = mng;. Hence Q3.  is generated by n elementsat x'. Since the
relativedimension of X, over Risat least nat x' (cf.[EGA V], 13.1.3),it follows
from 2.4/8 and 2.2/15 that X is smooth over R at x'. O

3.3 Neron's Measurefor the Defect of Smoothness

Throughout this section, let X be an R-scheme of finite type whose generic fibre
X, issmooth over K. Let a be an R*-valued point of X, and let a, (resp. a,) denote
its generic (resp. specid) fibre. Consider the pull-back a*Qj}, of the Ox-module of
relative differential formsfrom X to SpecR'". By abuse dof notation, we will identify
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it with its module of global sections. Thereby a*Q%,; becomes an R*"-module of
finitetype. Since R*! is a discrete val uation ring, this module splitsinto a direct sum
of afreepart and of atorsion part. Therank of thefree part isjust the rank of Q}
at a, whichisthedimension of X at a, (since Xy issmooth at a). Looking at the
torsion part, we define

d(a) :=length of the torsion part of a*Qy

as Néron’s measure for the defect of smoothness at a. First we want to show that,
indeed, 6{(a) provides a measure of how far X isfrom being smooth at a.

Lemma 1. Let a be an R¥*-valued point of X. Thena factorsthrough the smooth locus
of X if and onlyif 6{a) = 0.

Proof. If ais contained in the smooth locus of X, then Qj z islocally freeat a, and,
hence, a* Q% isfree. Thus we have §(a) = 0. Conversely, if 8(a) = 0, then a* Qg x
can be generated by d elements, whered isthedimension of Xg ata, In particular,
Q% and, hence, Q , can be generated by d elements at a. Since the relative
dimension at a, isat least d (cf.[EGA 1V,], 13.1.3), it followsfrom 2.2/15 that X,
issmooth over k at a, of relative dimension d. Then X issmooth over R at a,. This
followsfrom 2.4/8, if it isknown that X isR-flat at a,. Avoiding theinterference of
flatness, one can proceed as follows. Choose a representation of a neighborhood
Uc X o a, as a closed subscheme o some A", Due to the Jacobi Criterion
2.2/7(c), there exist local sectionsg,.,, ..., g, on aneighborhood of a, € A% which
vanish on U, and which have the property that U, is defined by (7.g,:1,...,9,) at
a, and that dg,,,, ..., dg, generate a direct factor of 9/1-\;/R at a. Then, in a
neighborhood of a, thesubscheme Z of A% given by g,.+,..., 0, iISsmooth of relative
dimension d; furthermore locally at a, the scheme Z contains U as a closed sub-
scheme. Thus, by reasons of dimension and of smoothness, the generic fibres Uy
and Z, coincide at a, and, hence, U and Z coincide at a,. O

The Jacobi Criterion provides a useful method to calculate §(a). Namely, let U <= X
be a neighborhood of a which can be realized as a closed subscheme of an R-scheme
Z where Z is smooth over R and has constant relative dimension n. Assume that
there exist z4, ..., z, on Z such that dz,, ..., dz, congtitute a basis Q}/R, and let
g, ---» g DETUNCtiONS ON Z which generate the sheaf of ideals of ¢, defining U in
Z. Representing the relative differentialsdg, with respect to the basisdz,, ..., dz,,
say
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If distherelative dimension of X ata, wecall A theset of al (n — d)-minors A of J.
Inthissituation, Neron's measurefor the defect of smoothnessat acan becalculated
from the minors A € A. To give a precise statement, let v(r) denote the n-order of
elementsr e R.

Lemma 2. §(a) = min{v(a*A); Ac A).

Proof. Due to the Jacobi Criterion 2217, there exists a minor A € A with a*A # O;
any minor A" of Jwith more than n — d rows will satisfy a*A’ = 0. Furthermore, it
follows from 2.1/2 that a*Qj; is representable as a quotient F/M, where F:=
a*Ql . is a free R*-module of rank n, and where M is the submodule which is
generated by a*dg,,...,a*dg,. Sincetherank of M is(n — d),onecanfind abasise,,
..., e, Of Fsuch that M is generated by elements 7., €441, ..., 7,¢, Where r, e RS
and », # 0; this follows from the theory of elementary divisors. Thus the length of
thetorsion part of F/M, which is d(a) by definition, isgiven by theformula

oa) = v(ry) + ... +v(r,) .

Now consider theideal in R** whichisgenerated by all elementsa*A, A e A;itequals
the ideal generated by all values which are assumed on M by alternating (n — d)-
forms on F. Obviously, thisideal is generated by the product r,; ...r,, and there
existsaminor A € A with (a*A) = (v, ...r,). Thus the assertion isclear. O

The method we have just used can easily show that 6(a) is bounded when a
varies over the set of R*-valued points of X.

Proposition 3. There exists an integer ¢ such that §(a) < cfor all ae X(R*™).

Proof. Since an R-scheme of finite type is quasi-compact by definition, we may
assume that X isan affine R-scheme Spec A. Choose a representation

A= R[zl,...,z,,]/(gl,.--,gm)

of A asa quotient of afree polynomial ring R{z,,...,z,]. For integers d, let (Xy);
be the union of all irreducible components of dimension d of X, Then (X},
is non-empty for at most finitely many d and, since Xy is smooth, X is the dis-
joint sum of the (Xg),. Let X, be the schematic closure of (X), in X; ie.,
let X, be the subscheme of X which is defined by the kernel of the homo-
morphism A —+ Oy ((Xk),). Let A, beitsring of global sections. Considering the

Jacobi matrix
dg
J==
<52v >tvt§11 ,,,,, m ’

let A betheset of al (n— d)-minorsA of J. Then, due to the Jacobi Criterion 2.217,

we seefor each x e (Xx), that there existsaminor A e A satisfying A(x) # 0. Hence
thefamily (A),. 4 generates the unit ideal in A, ®; K. After chasing denominators,
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one can find elements f3, ..., ;€ A,, minors A,, ..., A, e A, as wdl as an integer
¢ = 0 such that

t
Z fiAi|x,,, =n°
i=1

Hence, by Lemma 2, we have é(a) < ¢ for all ae X(R*) whose generic fibre a
belongs to (X),. Since only finitely many of the schemes (X ), are non-empty, we
see that 6 is bounded on X (R*). O

It follows that the function ¢ assumes its maximum on X (R"). The maximum
of 6 can be viewed as a global measure of how far X isfrom being smooth at the
points of X (R*"). Since we want to construct a smoothening of X by blowing up
subschemes of X, we have to definesuitable centers Y, in the special fibre such that
the defect of smoothness, i.e., the maximum of 6, decreases. Smooth R*"-schemes
have many sections (cf. 2.3/5). So it is natural to look at subschemes Y, = X, such
that there exist enough R*"-valued points of X whose special fibres factor through
Y,. More precisdly, if k, denotes the residuefield of R*, we will consider thefollowing
property (N)for couples (X, ¥,) consisting of an R-scheme X of finite typeand of a
closed subscheme ¥, « X:

(N) Thefamily d those k-valued pointsd Y,, which lift to R"-valued points d
X, isschematically densein Y.

For the notion of schematic density (more precisely, of schematic dominance)
see [EGA 1V,], 11.10.2.1n our situation the condition just means that the sheaf
of Oy-ideals defining Y, equals the intersection of all kernels of morphisms
a* : Oy — a, Uspeer, Where a varies over the set of R™-valued points of X whose
specid fibres factor through Y.

Since the strict henselization R™" is the limit over all local etale extensions R' of
R, condition (N)isequivalent to the following condition: the set of closed points of
Y, which lift to R’-valued points of X for some local étale extension R of R
is schematically dense in Y,. For example, if X is smooth over R, and if ¥,
is a geometrically reduced closed subscheme of X, then it follows from 2.2/16,
22113 and 2.2/14 that (X, Y;) has the property (N).

Lemmad. If thecouple(X, Y;) satisfies property (N), then Y, isgeometrically reduced,
and the smooth locus d the k-scheme Y, is open and densein ¥,.

Proof. Property (N) yieldsthat the k,-valued points of ¥, are schematically densein
Y,. Since k, is a geometrically reduced k-algebra, Y, is aso geometrically reduced
(cf.[EGA 1V4], 11.10.7). So the assertion followsfrom 2.2116. O

Next we want to establish the key tool whichis needed for the proof of Theorem
3.113. 1t provides uswith a means of lowering the defect of smoothness of X so that
eventualy X becomes smooth at the points we are interested in.
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Proposition5. Let Y, be a closed subscheme of X, such that the couple (X, Y;) satisfies
property (N).Let U, be an open subscheme of ¥, such that U, is smooth over k and
such that the pull-back Q} gy, of Q% to U, is locally free. Let X}, — X be the
dilatation of ¥, in X and, for each ae X(R*™) with a, € Y;, denoteby a € X (R*") the
unique lifting of a. Then if ae X (R®") specializesinto a point of U,, we have

d(a") < max{0,(a) — 1} .

In particular, 6(a’) < 6(a) for all R"-valued pointsa of X which specialize into points
of U, and which are not contained in the smooth locus of X.

First wewant to look at an example which explains how the proposition works
in aspecial situation. Let X bethe closed subschemedof A% = SpecR[T;, T, ] which
isdefined by the equation T; T, = =%. Then X is affine, and its R-algebra of global
sectionsis

A=R[T, LT\ T, — 752) .

Let ¥, be the closed subscheme o X, which isdefined by (r, T}, T5); it consists of a
single k-valued point. Using the R-morphism

A— R, Ti+—m, L7,

this point lifts to an R-valued point of X. Hence (X, Y;) satisfies property (N).
Furthermore, an easy calculation shows é(a) = 1. The dilatation X, of ¥, in X isan
affine A-scheme with coordinate ring

A = AT, LT - 2T, T, - 2T;) = R[T}, GIAT{T; - 1).

In particular, X, is smooth over R, and the lifting @ e X.(R*) of a, which corres-
ponds to the R-morphism

A" — R, I—1, TL—1,

fulfills 8(a’) = O.

Proof of Proposition 5. Since the problem islocal on X, it isenough to work in a
neighborhood of a point u e U,. So we may assume that X isaffine,say X = SpecA,
that U, coincides with Y,, and that the latter isirreducible. Let » be the dimension
of Y,. Then the sheaves Q; , and Q} x|y, are locally free and the first is obtained
from the second one by dividing through the submodule which is generated by all
differentialsdg of functions g € A vanishing on Y (cf. 2.112).Shrinking X if necessary,
we can assume that both sheaves are free and that there exist elements y,, ..., 3,,
Z1» .-y Z, € A having thefollowing properties:

The differentialsdy;, ..., dy, giveriseto a basisof Q} ,, thefunctionsz,, ..., z,
vanishon Y, and dy,, ..., dy,,dz,, ..., dz, giverise to a basis of Q§(,R|Yk.

It follows then from Nakayama's lemma that Q}  is generated by dy, ..., d,,
dz,,...,dz, at al pointsof Y,. However, in general wewill not havea basis, because
Q},r does not need to be locally free. Therefore we want to construct a closed
embedding X =, Z into a smooth R-scheme Z such that the above generators o
Q} r lift to abasis of QF z. Thisis possible after shrinking X.
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Namely, represent A as a quotient of a free polynomial ring R[T1,..., T,1p4m]
with respect to anideal H and require that T; isalifting of y;fori=1,..., r and
that T, ;isalifting of z;for j = 1,..., n. Since Q x|y, is free of rank r + n, we know
that Qyx ® k(u) is of dimension » + n over k(x) where u is the point in ¥, around

which wewant to work. Hencethereexist h,, ..., h,, € H such that the Jacobi matrix

oOh,
: (u)>._
<a’1; l'_} .... t"n+n+m

=1,

at uisaof rank m. Writing Z for the closed subscheme of A%™*™ which is defined by
hy, ..., h, wehave closed immersions

Yy Xc,Z,

where Z issmooth at « of relativedimension » + n. Let C bethe R-algebra of global
sections of @,, and represent the algebras of global sectionson ¥, and X asquotients
of C; say A= C/I with | =1d(X) and B= C/J with J =1d(Y,). So we know
I < J. Furthermore, let y; & C be theimage of T; for i =1, ..., r, and z; e C the
image of T,,;for j=1,...,n. Then y;isalifting of y; € A, and the same s true for
z;and z;. Replacing Z by an affine open neighborhood of u, we may assume that Z
issmooth over R of relativedimension » + nand that dy,, ...,dy,, dz, ...,dz form
abasis of Q} . Also we may assume that ¥;, as a subscheme of Z, is defined by =,
Zy, ...y 2, 1€, that J = (7, z4,...,2,). Namely, these functions define a smooth
k-subscheme Y, of Z of dimension r. Since Y, is contained in ¥, and since Y, is
smooth of dimension r, we have Y, = Y, locally at u.

Now we come to the key point of the proof. Weclaim | < J2. Thisrelation will
enable us to givethe desired estimate for the function 6, when X isreplaced by the
dilatation X7. So consider an elementf € 1. Since | < J, we can write

f=grn+ Zi 9:Z;
whereg, g; € C. Thedifferential d vanisheson X and henceon Y,. Therefore wehave

Zi gidzi|Yk = df|Yk =0.

Then gy, =0, ie, gy, ..., §, €J, since zy, ..., Z, have been chosen in such a
way that their differentialsform part of abasisd Q3 gly, . |n particular, we can write
f as

(%) f=gn+h
with

h=g,z, +... + gz, € J?
since z,, ..., z € J. For any ae X(R™) with a, € Y;, we know h’(a) = 0 (mod =)
for al h' e J. Therefore h{a) = 0 (mod n?). On the other hand, we have f{a) =0
for al ae X(R*"). Thus the equation (*) implies g(a) = 0 (mod =) for all ae X(R™)

such that a, € Y;. Since the couple (X, Y;) satisfies property (N), thisyieldsgly, =0
and, hence,ge J. So | = J? asclaimed.
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Next consider the dilatation X, of ¥, in X. It can be redized as a closed
subschemeof thedilatation Z;, of Y, in Z. Giving a more precisedescription of these
dilatations, we have Z, = SpecC where

C’=C[é,...,z—"],
T T

and Z;, is smooth over R, since Z is smooth over R (cf. 3.213). Writing z; := ﬁ, the
L

differentialsdy,, ..., dy,, dz, ..., dz, form abasis of Q};/R. Then X, = Spec A with
A'=C'/I''and theided I' = C isthe smallest one such that I' contains theimage
of | and such that C’/I' has no n-torsion; i.e., I' consists of those elementsc' € C
such that n*¢’ e IC' for someve N. Sincel < J?, any element f € | can be written
as

(t) f=7f
with f' € C; hence f' e I'. The differential off has a representation
df =Y bdy; + Y ¢z
i=1 j=1
in Q7 r, Whereb;, ¢; € C. It implies the representation
df = ) bdy; + Y mc;dz;
i=1 j=1
in Q. . Furthermore, we have a representation
df' = ; bidy, T Y cjdz;
i= j=t1
in Q% r, whereb, c; € C'. Then the relation (+) implies

(TT) bi = 7C2bl-, ) C] = TEC]/ s

since the dy;, dz; form a basis of Qj, . Now choose a point ae X(R?) with
a, € U, = ¥, and let @ € X.(R*) be thelifting of a. Let d be thedimension of X, at
a. Inorder to relate é{a’) to é(a), we want to apply Lemma 2. Soletfi, ..., f; be
generators of |. Thereexistsan (r + n — d)-minor A of the Jacobi matrix

% o
ayi’azj A=t

such that é(a) = v(A(ag)). Then, using the equation (), we can define elements
fiel'by fi:==n"?f,. Let A betheminor o the Jacobi matrix

of5 o
ayi’azjf A=1,...,1

i=1,..., r;j=i,..., n

which corresponds to A. Then the relations(1+) show that A' is obtained from A by
multiplying each column of A with afactor =™ or z~2. Thus

V(A'(ag)) = v(Aag)) — (n +r —d)
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and, hence,
d@) < d@—(ntr—d).

If ntr —d> 0, the assertion of the proposition is clear. If n + r = d, the smooth
R-scheme Z has relative dimension d, and thisisjust thedimension of X, ata. So
Zy and Xy coincide on an open neighborhood of 8, Since X isa closed subscheme
o Z,and since Zy isschematically densein Z, we seethat X coincideswith Z locally
at a. So afactors through the smooth locus of X, and é(a) = 0 in this case. O

We mention herethat, as we have seen, the proof actually yieldsabetter estimate
for the defect of smoothness than the one stated in Proposition 5. For example, if
Xk isegquidimensional of dimension d, if Yy isequidimensiona of dimension r, and
if Q% xly, islocally free of rank r + n, then

HaYLo(a)—(n+r—d)

3.4 Proof of the Theorem

In order to prove Theorem 3113, let us fix the notation we will use. As in the
preceding section, X isan R-scheme of finite type whose genericfibre X is smooth
over K. Let E be a subset of X(R™). A closed subscheme ¥, o X, is caled
E-permissibleif thefollowing conditions are satisfied:

(i) Theset of k-valued pointsof Y, whichlift to R**-valued pointsin E is schemati-
cally densein Y;; in particular, the couple ( X,Y;) has the property (N).

(i) Let U, bethe largest open subscheme of ¥, which is smooth over k and where
Q5 rly, islocally free. Then thereisno ke-valued pointin Y, — U, whichliftstoa point
in E.
Note that the subscheme U, < Y, o (ii)isalways Zariski-dense in Y, dueto Lemma
3.314. Using the notion of E-permissible subschemes, we can formulate Proposition
3.3/5in amore preciseform.

Lemma 1. Let Y, be an E-permissible subscheme of X,, and let X' — X be the
blowing-up of Y, on X. For a point a e E, denote by a e X’(R*™) its (unique)lifting.
(a) If adoes not specialize into a point of Y;, then §(a) = 4(a’).
(b) If aspecializesinto a point of Y;, then é(a’) < max{0,d(a) — 1).

Proof. If a, ¢ Y, thereexistsan open neighborhood of a over which the blowing-up
is an isomorphism; hence é(a) = é(a’}). If a, € Y,, Proposition 3.2/1 shows that the
point @ is necessarily contained in thedilatation X, of ¥, in X. Since X, isan open
subscheme of X' and since Y, is E-permissible in X, Proposition 3.3/5 yields the
desired estimatefor é(a’). ]

If Y, is E-permissiblein X, the blowing-up X' —s X o Y, on X is said to be
E-permissible. For any blowing-up X' — X of a subscheme of the special fibre X,
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one has a canonical bijection X'(R*") =~ X (R%"). So we may identify E = X(R™")
with the corresponding subset of X'(R"). Hence we get the notion of E-permissible
blowing-ups for X' again. This alows us to formulate a more precise version o
Theorem 3.113.

Theorem 2. Let X bean R-schemed finite type with a smooth genericfibre X, and
let E be asubset & X(R™"). Then there exists a proper morphism X' — X which
consistsd afinite sequence d E-permissible blowing-ups with centers contained in
the non-smooth parts d the corresponding schemes, such that each R"-valued point
ae E factors through the smooth locusd X'. I n particular, f X is quasi-projective
over R,sois X'.

Proof. For a subset E c X (R*), we introduce the defect of smoothness of X along
Eby

6(X,E):= max{d(a)ac E} .

Dueto Proposition 3.3/3, we know J(X, E) isfinite. So we can proceed by induction
on §(X, E). If 8(X,E) =0, then each a e E factors through the smooth locus of X
(cf.Lemma 3.3/1), and the assertion istrivial. Solet §(X, E) > 0. Since we consider
only blowing-ups with centersin the non-smooth locus, we can remove from E all
points which factor through the smooth locus of X, and thereby we may assume
o{a) > Ofor al ae E

For the induction step, we have to arrange things in such a way that Lemma
1 can be applied. We do this by introducing a canonical partition of the set
E c X(R™). First let usfix some notations. For a subset F = X (R*"), we denote by
F, the subset of X (k,) whichisinduced from F by speciaization. Identifying points
in F, with their associated closed pointsin X,, let F, be the Zariski closure of F, in
X,, provided with the canonical reduced structure. Then (X, F,) satisfies property
(N).

In order to obtain the desired partition of E, set F* := E and Y;! := Fl. Let U!
be the largest open subscheme of ¥;! which is smooth over k and where Q |y, is
locally free, and define

El:={aeFYa e Ul}.
Proceeding in the same way with F? := F! — E*, and so on, we obtain

(i) adecreasing sequence F! o F? > ...in X(RY),
(i) subsets EL, E%, ... ¢ X(R*) such that E decomposesinto a disjoint union

E=E'V.. . OE UF™
(iii) dense open subschemes Uj = Yi:= F} such that Ei c U} and, moreover,
Yi*lc Y — Uhin particular, dim ¥i*! < dim Y if Y # .
Sowe seethat necessarily Y™ = @¥for somet e N bigenough and, consequent-
ly, that F**! = @. Hence we have the partition
E=E'V...UE.

Since each Uy is smooth over k, and since Q} x|y, is locally free on U, it follows
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that each Y is E-permissible, and that Y is, in fact, E-permissible. Furthermore,
note that, in terms of subsets of X, each Y; isdisjoint from the smooth locus of X,
since E, and, hence, all F} are disjoint from it, and since the non-smooth locus of X
isa closed subset of X,.
Now we can carry out theinduction step. Let X' — X be the blowing-up of ¥{
on X. Then
(X', E") < 6(X, EY

by Lemma 1, because Y{ is E'-permissible. Furthermore, due to the induction
hypothesis, there exists a morphism X — X' which consists of a sequence of
E-permissible blowing-ups with centers contained in the non-smooth loci of the
corresponding schemes, such that each a e E’, when viewed as an R¥"-valued point
of X", factors through the smooth locus of X". Considering the composition
X" — X' — X, thismodification does not affect the set E — E*. Soit isasequence
of E-permissible blowing-ups.
Writing (E” for the lifting of E' to X”(R**), let us consider the partition

E'=(E)' U...0(EY ™,

where E' is obtained from the lifting of E by removing (E")’; i.e., by removing the
set of points which factor through the smooth locus of X”. Then, obviously, this
partition equals the canonical partition of E . Since (X", E") < §(X, E), a second
induction on the length of such a partition yields a sequence of E™-permissible
blowing-ups X — X" with centersin non-smooth loci such that al pointsof E",
when viewed as R®-valued points of X", factor through the smooth locus of X"
Then
X"—X"—X —>X

is a sequence of E-permissible blowing-ups as desired. O

Remark 3. If in the situation of Theorem 2 it is not known that the generic fibre
Xy is smooth, the assertion nevertheless remains true if the generic fibres of the
points in E factor through the smooth locus of X and have a bounded defect of
smoothness. Namely, these are the properties of E and X, which are used in the
proof.

3.5 Weak Neron Moddls

In thefollowing let X be a smooth and separated K-scheme of finite type, and let
K" be the field of fractions of a strict henselization R* of R. As afirst step towards
the construction of a Ntron model of X, we want to look for a smooth and
separated R-model of finite type, say X, such that each K*-valued point of Xy
extends to an R"-valued point of X. We will see that such R-models X of X even
satisfy certain aspects of the universal mapping property characterizing Ntron
models.
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If X, admits a separated R-model X o finite type such that the canonical map
X(R%") — X (K is bijective, we can apply Corollary 3.1/4 to get a smooth
R-model of thetypewearelookingfor. For example,in thecasedf an abelian variety
X we can proceed in thisway, since thereisa closed immersion X, =, Pk into a
projective space; we can take X to be the schematic closure of X in Pg.

If it isonly known that X(K**)is bounded in X, and if no separated R-model
X o finitetype such that X (R%") — X (K" is bijectiveisgiven in an obvious way,
we will consider afinite collection of separated R-modelsinstead of a single one as
before. Using theflattening techniques of Raynaud and Gruson [1], onecan actually
show that there exists a single separated R-model X of finite type such that each
Ks"-valued point of X extends to an R"-valued point of X; we will give a sketch
o proof in Proposition 6 below. But, for our purpose, it is not necessary to make
use of this result, since we are mainly interested in group schemes X,. Namely,
in this case, it makes no difference if we start with a finite collection of R-models,
since group arguments will help us later to reduce to a single R-model. As the
second method is much more elementary, we will use it for our construction. We
begin with a definition characterizing the collections of R-models of X we want
to work with.

Definition 1. A weak Nkron model of X, isa finite collection (X;);.; of smooth and
separated R-models of finite type such that each K**-valued point of X, extendsto
an R"-valued point in at least one of these R-models.

Theorem 2. Let X be a smooth and separated K-scheme of finite type. If X, (K" is
bounded in X, there exists a weak Nkron model of Xp.

Proof. Since X (K**) isbounded in X, it followsfrom 1.1/7 that there existsafinite
family (X,);., of separated R-models of finite type such that each KS"-valued point
of X, extends to an R"-valued point in at least one of these R-models. Applying
Corollary 3.1/4 to each X;, we obtain smooth and separated R-models X; of finite
type such that the R*-valued points of X; and X; correspond bijectively to each
other. Hence (X});.; isaweak Néron model of Xy. O

Weak Néron models satisfy a certain mapping property whichlater leadsto the
universal mapping property characterizing Néron models.

Proposition 3 (Weak Néron Property). Let (X;);.; be a weak Néron model of Xy,
and let Z be a smooth R-scheme with irreducible special fibre Z,. Furthermore, let
ug : Zy -+ Xy be a K-rational map. Then there exists ani € | such that u; extends
toan R-rational mapu:Z---» X;.

Proof. There is an open dense subscheme Vy, < Z, such that uy is defined on V4.
Let F be the schematic closure of Fy := Z; — Vi in Z. Since we are working over a
discrete valuation ring, F, is nowhere dense in Z,, and we may replace Z by
V:=Z — FwhichisR-densein Z. Thereby we may assume that u is defined on
al o Z; and thusisa K-morphism Z, — X,. Moreover, we may assume that Z
isd finite type.
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Consider the graph of u, and denoteits schematic closurein Z x X; by T'. Let
p;: T'—+ Z and q,: T" — X; be the projections. It is only necessary to show that,
for somei € 1, the projection p; is invertible on an R-dense open part of Z. Then
u:=gq;op;':Z-->X,isasolution of our problem. One knows from Chevalley's
theorem ([EGA 1V,], 1.8.4) that T}, the image of I} under p,, is a constructible
subset of Z,, and we claim that, for somei e I, the set T;/ must contain a non-empty
open part of Z,. To verify this, we may assume R = R%", and hence, that k coincides
with its separable algebraic closure. Then, by 2.2/13, the set of k-rational pointsis
Zariski-dense in Z,, and each z, € Z,(k) lifts to a point ze Z(R). Let zx € Z(K)
be the associated generic fibre, and set xg := ug(zg). By the definition of weak
Néron models, there is an index i € | such that xg extends to a point x € X;(R).
Consequently, we must have (z,x) e T%(R) and thus z, € T'(k). This consideration
showsthat { J;.; T'(k) is Zariski-densein Z,, and, since all T;/ are constructible and
| isfinite, that there is some 7;! containing a non-empty open part of Z,.

Fixing such anindex i e I, let us consider the projection p;: I'' — Z. The local
ring ¢, , at the generic point » of Z, is a discrete valuation ring. Furthermore, as
we have seen, thereisa point £ € I above #. Thus ¢+ , dominates ¢ ,. Since p; is
an isomorphism on generic fibres and since T' is flat over R, both local rings
give rise to the same field as total ring of fractions so that ¢, — Or. ; is an
isomorphism. Since Z and T' are of finite type over R, there exist open neighbor-
hoods U of #in Z and V of <in T' such that p; induces an isomorphism between
U and V. Hence p; isinvertible over an R-dense open part of Z. 1

Corollary 4. Let Z be a smooth R-scheme, and let { be a generic point of the special
fibre of Z. Denote by R' the local ring ¢, . of Z at { and by K' the field of fractions
of R. If (X;);.risaweak Ntronmodel of Xg,then(X; ®z R’);,yisaweak Ntronmodel
of Xy ®¢ K.

Proof. Since the strict henselization of R' isa direct limit of étale extensions of R,
it suffices to show that, for any étale Z-scheme Z', for any point ' of Z' above {,
and for any K’-rational map ug. from Z;. to Xy, thereexistsanindex i € | such that
uy- extendstoarational map u' : Z' ---+ X; whichisdefined at {’. Since{" isa generic
point of the special fibre of Z', the assertion followsfrom Proposition 3. O

In the situation of Proposition 3, one cannot expect, in general, that the
R-rational map Z ---+ X isamorphism if Z, ---- X isamorphism, evenif the weak
Néron model (X,);.; of Xx consists of asingle proper R-model of Xk. In particular,
weak Neron modelsfail to be unique, even if onerestricts to the class of weak Néron
models consisting of a single R-model of X.

Example5 Set Z = X = P%, ther-dimensional projectivespace over R, and consider a K-isomorphism
ug: Zy = X ie., a K-automorphism uy : Py =5 [P%. Using a set o homogeneous coordinates xg, ...,
x, of P%, we can describeuy by

xi;—»Za,»jxj, I=0,...,r,
i=0

where A := (ay) is a matrix in Gl,,;(K). We may assume that all coefficients a; belong to R. Then, by
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the theory of elementary divisors, therearematrices S, T e Gl,.,(R) and integers0 < n, <... < n, such
that
m'e 0

SAT =
0 zr

Hencethereexist setsof homogeneous coordinatesx,... ., x, and Xo,. .., X, of P% such that u isdescribed
by

X; = wix] i=0,..,r,
wherewe may assumen, = 0.
If ng = ... =n,=0,itisclear that uy : P}y =, P% extends to an automorphism u: Pz = P%. How-
ever,if ng =... =n,=0and ng., ..., n, > 0 for somes < r, then ug extends only to an R-rational map

u: Py --» P%. Namely, u isdefined on the R-dense open subscheme V = P, which consists of the generic
fibre P% and of the open part V, < P} complementary to thelinear subspace Q, wherex, ..., x; vanish.
In fact, if @y isthelinear subspace in P}, wherex,.,, ..., x; vanish, wecan view u, asa projection o P;
onto Q;, with center @,.

Finally, as indicated at the beginning of this section, we want to show how, for a separated
K-scheme Xy of finite type, one can awaysfind a singleseparated R-model X of finite type such that
X(RsM—s X (K*" is bijective. The key fact which has to be established is the following result:

Proposition6. Let X be a separated (not necessarily smooth) K-scheme of finite type. Let X,, ..., X, be
separated R-models of X, which are of finite type. Then there exist a separated R-model X of finite type
of X, and proper morphisms X; — X;, i =1, ..., n, consisting of finite sequences of blowing-ups with
centers in the special fibres such that the given isomorphisms

XK % X®K
extend to open immersions X; < X.

Thus, using the valuativecriterion of properness, we obtain thedesired characterization of bounded-
ness.

Corollary 7. X, (K**) isbounded in X if and only if X admits a separated R-model X of finite type such
that each K-valued point of X, extendsto an R¥"-valued point of X.

Beforestarting the proof, let uslist some elementary facts we will need. Let U, U, V, V' be separated
and flat R-schemesd finite type and, for shortness, let us refer here to an R-morphism W— U asa
blowing-up if it is a finite sequence of blowing-ups with centers in the specia fibres; note that W is
separated, flat, and of finitetypeif U is.

(a) Let U'— U be a blowing-up, and let U <, V be an open immersion. Then there exists a
blowing-up V' — V such that U' — U isobtained from ¥’ -V by the basechange U <. V.

Just extend the center of the blowing-up U'— U to asubscheme of V and define V' by blowing up
this subschemein V.

(b) If U/ — U, i =1, 2, are blowing-ups, then there existsa commutative diagram of blowing-ups

U —— U

Uy —— U

Namely, if U; — U isthe blowing-up of theideal .#; of 0, i = 1, 2, then define U' as the blowing-up
o #,..#,onU. Notethat U isisomorphic to the blowing-up on U; of the pull-back of .#; under U, — U
and to the blowing-up on U; o the pull-back o .#, under U; — U.
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(c) Letf: U—V beafla R-morphism such that f, is an open immersion. Thenf is an open
immersion.

Let usjustify the latter statement. Sincef is open, we may assumef faithfully flat. Furthermore, it
isenough to show that f isan open immersion after faithfully flat base change. So we may perform the
base change U — V and thereby assume that f has a section . Then it is to verify that ¢ is an
isomorphism. We know already that ¢ is a closed immersion, sincef is separated. Thus we have the
canonical surjective map

a:0p—e,0,.

Since f, is an isomorphism, the kernel of « ®, K vanishes. But [) isflat over R, so the kernel of & must
vanish identically. Then « is an isomorphism and, hence, ¢ is an isomorphism.

Finally we mention the technique of flattening by blowing up which will serve as a key point in the
proof of Proposition 6; cf. Raynaud and Gruson [1], Thm. 5.2.2.

Let f: U — V bean R-morphism such that f isflat. Then there existsa blowing-up V' — V such
that thestrict transform f’: U’ — V' off isflat.

Here U’ isthe schematic closure of Ug in U x,, V’ (thestrict transform of U),andf "isthe restriction
off x, idy. to U.

Now let usgivethe proof d Proposition 6. By an induction argument, one reduces to the case where
only two R-models X, and X, are given. Denote by I" the schematic closure of the graph o the
isomorphism X, ® K - X, ® K in X; xz X,. Applying the flattening by blowing up, there exist
blowing-ups X; — X,, i =1, 2 such that the strict transform p;:I; — X; o the i-th projection
p:: ['— X isflat. Notice that the canonical map I} — I is a blowing-up, too. Then, by (c), the map
pi isan open immersion and, by (b), there is a commutative diagram of blowing-ups

I'" —— I}

|

r, —— .

Furthermore, since p;: I} — X; is an open immersion, there exists a blowing-up X} -— X; such that
I” — T} isobtained from X; — X/ by restriction to I'}; see (8). Then I'” — X} isan open immersion,
and we can glue X7 and X3 along I'”. Thereby we obtain an R-model X of Xx whichis of finite type,
and which contains X7 and X7 as open subschemes. Moreover, X is separated. Namely, let I'* be the
schematic closure of the graph of the isomorphism X7 ® K =5 X; ® K in X] x, X5. SinceI"” isflat
over R, the canonical isomorphismI™ ® K — I'* ® K extends by continuity toamorphism I — T*.
Similar arguments show that the canonical morphism I'* ® K — I ® K extends to a morphism
I'* — I'. Then, due to its construction, the morphism I — I is proper, and it follows from [EGA
1I], 5.4.3, that I — T* is proper. Thus " isclosed in T'* and hence closed in X§ % X3. Thereby it is
seen that Xis separated over R. O

3.6 Algebraic Approximation d Formal Points

Apart from itsimportance for the construction of Neron models, the smoothening
processis also a necessary tool for the proof of M. Artin’s approximation theorem,
which will be the subject of this section. As afirst step, we have to show that a
smoothening X' — X of an R-scheme X satisfiesthe lifting property not only for
R’-valued points, where R isetale over R, but even for alarger class of extensions
R’/R. For example, we are concerned with the case where R' is the z-adic
completion R of R.
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Definition 1. A flat local extensionR — R' of discrete valuation ringsis said to have
ramification index 1 if a uniformizing element = of R induces a uniformizing element
of R, and if theextensionof theresidue fieldsk' = R’/zR’ over k = R/nR isseparable.

Recall that an extension of fieldsk’/k isseparableif and only if k' ®, ! isreduced
for al fields 1 over k; cf. Bourbaki [1], Chap. VIII, §7, n°3.

To illustrate the definition, we mention that the z-adic completion R of R has
ramification index 1 over R. Furthermore, if R' is essentialy of finite type over R,
it has ramification index 1 over R if and only if R" is a loca ring of a smooth
R-scheme at a generic point of the special fibre. In this case, R — R’ or, better, the
morphism Spec R' — Spec R isregular in the sense of [EGA 1V,], 6.8.1. Theclass
of ring extensions of ramification index 1 is stable under the formation of direct
limits and completions.

If R— R' hasramification index 1 and if, in addition, the extension of fields of
fractions K'/K isseparable, theextension R'/R isregular. For example, theextension
R/R is regular or, equivalently, the extension of fields of fractions QR)/O(R) is
separable, if and only if R isexcellent (cf.[EGA 1V,], 7.8.2).

Lemma 2. Let R be an excellent discrete valuation ring. If R — R’ has ramification
index 1, then R— R’ is regular. In particular, since the completion of R' is of
ramificationindex 1 over R, it followsthat R' is excellent.

Proof. Let K (resp. K') bethefield of fractions of R (resp. R"). We have only to prove
that K" is separable over K. So we may assume p = char K > 0. It sufficesto show
that L ®, K" is reduced for each finite radicial extension L of K; cf. [EGA IV,],
6.7.7. Let usfirst consider the case where the extension L/K isradicia of degree p.
SinceR isexcellent, theintegral closure|? of Rin L isan R-module of finite type (cf.
[EGA 1V,], 7.8.3)and, hence, a free R-module of rank p. Moreover, |?is adiscrete
valuation ring. So let k be the residue field of 12, If the degree of & over k isp, then
nisauniformizing element of |? and R ®; R'/(n)isisomorphictok ®, k. Thelatter
isafield, since k' is separable over k and since k isradicia over k; hence R ®r R
is a discrete valuation ring with uniformizing element 7. If k& = k, the p-th power of
auniformizing element 7 of |?givesriseto auniformizingelement of R, and |?®; R’
isa discrete val uation ring with uniformizing element # ® 1. In both cases, |?®; R
isadiscrete valuation ring. Consideringitsfield of fractions, it followsthat L ®, K'
isreduced. Sinceafiniteradicia extension can be broken upinto radicial subexten-
sions of degree p, the same assertion remains truefor arbitrary radicial extensions
L of K. O

We mention that the ring of integers Z aswell asall fieldsare excellent and that
any R-algebrawhich isessentially of finite type over an excellent ring R isexcellent;
see[EGA 1V,], 7.8.3and 7.8.6.

We want to show that smoothenings are compatible with ring extensions R’/R
of ramificationindex 1. 1 n order to dothis, certain parts of the smoothening process
have to be generalized. Solet X bean R-scheme of finite type, and let R’/R bearing
extension of ramification index 1. Let a be an R’-valued point of X such that its
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genericfibre a, factors through the smooth locus of the genericfibre X. Then, as
in 3.3, we set

8(a) == length of the torsion part of a*Qj/ .

Without changes, the proof of 3.3/1 shows that é(a) = 0 if and only if a factors
through the smooth locus of X. Furthermore, the key proposition of the smoothen-
ing process remains valid:

Proposition 3. Let Y, be the schematic closure of a, in X,. Let X, — X be the
dilatation of ¥, in X, and denote by & the (unique)lifting of a to an R'-valued point
of X,. Thené(a’) < max{0,6(a) — 1).

Literally the same proof as the one of 3.3/5 works in this case; namely, one has
only to observe the fact that a, factors through the smooth locus of the k-scheme
Y,. Since Y, isgeometrically reduced, the generic point of ¥,, whichisa,, iscontained
in the smooth locus of the k-scheme ¥;; cf. 2.2/16. Applying Proposition 3 finitely
many times, one obtains an analogue of 3.113.

Proposition 4. Let X be an R-scheme of finite type, and consider an extension R’/R
of ramification index 1. Let a be an R’-valued point of X such that ay factorsthrough
the smooth locus of X,. Then there exists an R-morphism X' — X, which consists
of a finite sequence of dilatations with centersin special fibres, such that a liftsto an
R’-valued point of X' which factors through the smooth locus of X”.

Proposition 4 enables us to show that smoothenings are compatible with ring
extensions R'/R o ramification index 1 One has only to justify the followingfact.

Lemmab. Let X bean R-schemeof finitetype with smooth generic fibre,let X' — X
be a smoothening of X, and consider an extension R’/R of ramification index 1. Then
each R'-valued point aof X liftsto an R'-valued point & of X' which factors through
the smooth locus of X'.

Proof. Due to the properness o X' — X, the point ae X(R’') lifts to a point
ad € X'(R’). Due to Proposition 4, there exists a finite sequence of dilatations
a: X — X' such that ¢ is an isomorphism on generic fibres and such that the
(unique)liftinga’ d a' factors through the smooth locus of X". Since the schematic
closure 4; of a; in Xf isgeometrically reduced and, hence, generically smooth over
k by 2.2116, the set of those closed points x € Ay N X {00 Which have a separable
residue field k(x) over k is dense in A4y; cf. 2.2113. Since all these points lift to
R"-valued points of X , theimage of ¢; in X', which equals a;, is contained in the
smooth locus of X' (because X' isa smoothening o X). O

Corollary 6. Let X be an R-scheme of finite type with a smooth generic fibre, let
X' — X be a smoothening of the R-scheme X, and consider an extension R’/R of
ramification index 1. Then X' ® R — X ®z R isa smoothening of the R’-scheme
x ®R RI.
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Proof. Since R— (R')* has ramification index 1, the assertion follows from
Lemmab. O

Using the precedingresult and theexistence of Nagata compactifications(Nagata
[1]and [2])for separated schemesaf finitetype over R, we can generalize 3514 and
show that weak Neron models are stable under extensions R'/R of ramification
index 1. As usual, fields of fractionsare denoted by K, residuefields by k, and strict
henselizations by an index “sh™.

Proposition 7. Let X be a smooth K-scheme d  finite type admitting a weak Ndron
modd (X,);.; over R. Let R’/R bed ramification index 1. Then (X; ®g R');.r isa
weak Ndron modd d X over R

Proof. Using 3.5/6, one easily reduces to the case where the index set | consists of
asingleelement. So let X be a smooth and separated R-model of finite type of X
such that the canonical map X (R%") — X (K*")isbijective, and consider a K’-valued
point of Xg; ie, a K-morphism g : SpecK' — Xg. We have to show that g
extends to an R-morphism a: SpecR' — X. In order to do this, let X be a Nagata
compactification of X. The latter is a proper R-scheme containing X as a dense
open subscheme. Since X isflat over R, we see that Xy isdensein X and, hence,
that X, isdensein Xg.

By the properness of X, the morphism g extends to an R-morphism
a: SpecR' — X such that theimage of the generic point of SpecR' iscontained in
X and, thus, in the smooth locus of X. So wecan apply Proposition 4 and thereby
find afinite sequence of dilatations X’ — X with centersin special fibressuch that
aliftsto an R'-valued point @’ of the smooth locus of X . Similarly asin the proof
o Lemmalb, let A, be the schematic image of the special fibre of @’ in the special
fibre of X’. Since A, is generically smooth over k, the set E, of its closed points x,
which have separable residuefidd k(x;) and which belong to the smooth part of X’
isdensein A,

All points x, e E, lift to R"-valued pointsof X' by 2.2/14, and we claim that the
liftings can be chosen in such a way that their generic fibres factor through Xy.
Namely, as in the proof of 2.2/14, one uses the Jacobi Criterion 2.2/7 in order to
construct local coordinates g, ..., g, in a neighborhood U = X' of x, which, on
the special fibre, generate the ideal of x,. The g; give rise to an ttale morphism
g: U — A¥%. Since the image of Xy — Xy under gisthinin A%, it follows that x;
can beliftedtoapointx € X’ (Rs")WhosegenencﬂbrebelongstoXK(KS“)ascIalmed

Now, composing each such x € X’(R**) with the morphism X’ — X, we obtain
aset of points F < X(R™) whose generic fibres belong to X and whose specia
fibres are dense in A, But then, since X is a weak Néron model of X, we
must have F = X(R™), and it follows that the generic point of A, belongs to X.
Consequently, the R-morphism a: Spec R’ — X factors through X giving rise to
the desired extension of a : SpecK' — X,. O

For the remainder of this section, we will be concerned with approximation
theory. Let A bealocal noetherian ring with maximal ideal m, and denote by A its
m-adic completion. We say A satisfies the approximation property if, for each
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A-scheme X o finite type and for each A-valued point 4 of X, there exists an
A-valued point a of X such that the diagram

Spec A

is commutative. Since 4 is henselian, it is clear by Definition 2.3/1" that A is
henselian if it satisfies the approximation property. Morever, if A is henselian, we
see from 2.3/5 that, for each A-valued point @ of X which factors through the
smooth locus of X, there existsan A-valued point of X which coincides with @ on
Spec A/mA.

Using the smoothening process, it is easy to verify the approximation property
for discrete valuation rings which are henselian and excellent, as can be seen from
the following proposition.

Proposition 8. Let Rbean excellent discretevaluation ring,and let 1? beits completion.
Furthermore, let X be an R-scheme of finite type, and let ¢ be an 1?-valued point of
X. Then there exists a commutative diagramof R-morphism

Spec R

where X' is smooth over R.

Proof. We may assume that ¢ is schematically densein X. Since R is excellent, the
genericfibre X is geometrically reduced and, hence, smooth at the generic point;
f. 22116. So oy factors through the smooth locus of X and the assertion follows
from Proposition 4. U

Corollary 9. Let Rbe a discrete valuation ring which is henselian and excellent. Then
R satisfies the approximation property.

In thefollowing we denote by K thefield of fractions of |?. If X isa K-scheme
which islocally o finite type, we can provide X(K) with the canonical topology,
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whichisinduced by the valuation on K. Weclaim that thistopology coincides with
the one generated by all images d maps X(R) — X(K), where X varies over all
R-modelsd X which arelocally o finite type over R. Namely, each R-model U
o an open subset Uy = X, inducesan R-model X of X by gluing U and Xy over
Ug. Since X(R) = U(R), it is enough to check the equality of the topologiesfor an
affineK-schemeXy, say Xx = SpecA, Inthiscase, abasisdf thetopology of X (K)
induced by the valuation of K is given by thefamily of subsetsd type

U(Ql""lgr) ={XEXK(K) ) X*(gi)ERfori = l,...,i‘}

where g4, ..., g, € Ag. Without loss o generality, we may assumethat g,, ..., g,
generate A, as a K-algebra. Then consider the R-model X = Spec A of X, where
Aistheimage o the R-morphism

R[Tﬁla”n‘]—’AK5 ’1-l:|_——)gi'

It follows that U(g;,...,q,) is theimage of X(R) — X (K). Conversely, let X be
an R-model o locally finite type o X. It remains to show that the image of
X (R) — Xx(R)isopenin Xg(K). We may assumethat X is affine,say X = SpecA.
Let h,, ..., h, generate A as an R-algebra and denote by g, the pull-back of #; to
Xg. Then the image o X (R) — X(K) coincides with the set U(g,,...,0) (as
defined above) and, hence, is open in X(K).

Corollary 10. Let R be a hensdlian discrete valuation ring and let X be a K-scheme
which islocally of finitetype. Assume either that R is excellent or that X is smooth.
Then X(K) isdense in X(K) with respect to the topology induced by the valuation
of K.

Proof. It suffices to show that each R-model X o X, which admits an |?-valued
point admits an R-valued point. But thisfollowsfrom Corollary 9if R isexcellent,
and from Proposition 4if X, issmooth. O

There are examplesd discrete valuation rings which are henselian, but which
do not satisfy the approximation property; seethe exampl ebel ow. Such ringscannot
be excellent. In fact, it is easy to show that a discrete valuation ring R is excellent
if it satisfiesthe approximation property. Thus, the approximation property for R
isequivalent to thefact that R is henselian and excellent.

Example 11. Let k = [, be the prime field of characteristic p > O, and let A be the localization of the
polynomial ring k[T] at the maximal ideal generated by T. The completion A of A with respectto T is
thering k[[T]] of formal power series. Looking at the cardinality of k[[T]] (resp. of k[T]), itisclear
that the extension k((T))/k(T) of the fields of fractions is not algebraic. So pick an element ¢ = A which
is not algebraic over k(T). Set U = ¢*, and let L be thefield generated by T and U over k. Now define
Rastheintersection of L with A. Then Risadiscrete valuation ring whose completion R coincideswith
k[[T]]. Furthermore, K = Q(R) isnot separableover K = Q(R)sinceé e K — K. So R isnot excellent.
Thehensdlization R" of Rcan beviewedastheset of all elementsd k[ [ T]] whichareseparably algebraic
over K. In particular, ¢ is not contained in R", and it is easily verified that R" does not satisfy the
approximation property.
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Next we want to generalize Proposition 8 to the case where the base consists of
a polynomial ring over an excellent discrete valuation ring. The resulting assertion
will be crucial in the proof of M. Artin’s approximation theorem.

Theorem 12. Let R be an excellent discrete valuation ring, and denote by R its n-adic
completion. Let T;, ..., T, be variables, and set

S =SpecR[T,,...,T,],
S = SpecR[[T;,..., T,1].
Let X be an S-scheme of finite type, and let ¢ be an S-valued point of X. Then there
exists a commutative diagram of S-morphisms
X/

7

The proof isdone by induction on the number n o variablesT;, ..., T,. Thecase
n = 0 is settled by Proposition 8. So let » > 0. We may assumethat X isa closed
subscheme of AY and that X isdefined by global sections of Oy, SY

X= V(fls”'a.f;)CAN;

the coordinate functions of AY will bedenoted by Y;, ..., Y. Let 5 (resp.#) be the
generic point o the specia fibre o S (resp. S), let § be the closed point o S, and let
s beitsimagein S

In order to carry out the induction step, we will establish three lemmata, the
first and the third one under the assumption of theinduction hypothesis; i.e., under
the assumption that Theorem 12 is true for lessthan n variables.

where X' is smooth over S.

Lemma 13. Let f, be a global section of Uay such that o*f, does not vanish at 7.
Then there exists a commutative diagram of S-morphisms

S
~—.
~
-,
~e

.
~
.

~an
.
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such that V' is smooth over S and such that t*f, divides each t*f, i=1,..., r, in
ry,o,.).

In the proof o thelemma, we will use Weierstralj divisionfor theformal power
seriesring R[[T,..., T,]7; cf. Bourbaki [2], Chap. VII, § 3, n°8. Let usfirst recall
some basicfactsof thistheory. Anelement f € R[[T:,..., T,]]iscalled aWeierstral
divisor in T, of degree d = 0 if the coefficientsa, € R[[T;,..., T,_,]1] of the power
seriesexpansion

f=73 aT;
satisfy the conditions o
(1 a, isaunitinR[[T,,...,T,.-: 11,
2 ase(n,Ty,...,T,_y)for6=0,...,d — 1.

An element of R[[Ty,...,T,]] iscalled a Weierstraf polynomial in T, of degreed if
itisamonic polynomial in 7, of degree d with coefficientsin R[[T,,...,T,_,1] and
ifitisaWeierstraB divisor in T, of degreed. Notethat anelement f € R[[T.,..., T,]1]
isa WelerstraB divisor in T, of degree d if and only if the reduction off modulo =,
asan element of k[[T;,...,T,]], isa WeierstraB divisor in T, of degreed. Since R
is complete, the WeierstraB division theorem for k[[T;,..., T,]] lifts to a division
theoremfor R[[T,,..., T.1]:

| ff e R[[T;,...,T,]] is aWeierstraJ divisor in T, of degreed, then R[[T;,..., T,]1]
decomposesinto a direct sum

®  R[T.,...T,]1= ?90 RUT,.... T 11T ® R[[T,,.... T11-

of R[[T,,..., T,_,1]-modules. Furthermore, f can be written asa product of aunit in
R[[T,...,T,]] and a Weierstraf3 polynomial of degree d.

The last assertion follows easily if one applies the decomposition (*) to the
element T;¢, say

d—1
Ti=Y o, +uf
=0
Then u isa unit, and
d—1
p=T!— Z 057;.6
=0

isthe WeierstraB polynomial we arelooking for. Further, we want to mention that,
for each element f € R[[T,..., T,]] which does not vanish identically modulo =,
there existsan R-automorphism ¢ of R[[T;,..., T,]] of type

IL,— T,
T— T, + TY, i=1...,n—1,
such that ¢(f) isa Weierstralj divisor in T, of some degreed > 0.



36 Algebraic Approximationof Formal Points 85

Proof of Lemma 13. If 6*f, isa unit, then f, isinvertiblein a neighborhood of 4(3)
and, hence, the assertion is obvious. So we may assume that o*f; isnot a unit. Since
o*f, doesnot vanish at #, thereexistsan R-automorphism of R[[T},..., T, 1] of type

T,—T,, T— T, + T, i=1,...,n—1,

such that o*f, will be transformed by this automorphism into a WeierstraB divisor
of degreed > 1. So wemay assumethat o*f, isa WelerstraB divisor of degreed > 1.
Then o*f, can uniquely be written as

o*fo=1-p
with a WeierstraB polynomial
p=T!+a; T} +...+apeRI[T,,..., T,-,11[T]
of degreed and a uni}ﬁ inR[[T,...,T,]]. The WeierstraB division theorem yields
adecomposition of R[[T;,...,T,]] into adirect sum

d-1 .
(*) R[T,....T,1] = 6@0 RI[T,.... T, 1T} @ R([ T3, 1,11 P

of R[[T;,...,T,-,]]-modules. We will usethe decomposition (*) in order to make
the application of the induction hypothesis possible. First we want to construct an
auxiliary S-scheme V as a subscheme of AY', where

N =Nd+d+N.

Let
Y.s; v=1,...,N, 60=0,...,d— 1,
A, 0=0,...,d—1,
Z,; v=1,...,N,

be the coordinate functions of A" so that A" = Spec R[T,,, Y5, A5, Z,]. Consider
the polynomial

p=T + A, T+ ...+ Ao
and definean S-morphism z: Ay — AY by setting
d—1
T*va = Z )7\’6’1;15 + va
=0
forv=1,..., N.Then Euclid's division yields unique decompositions
d—1
(**) T*f;‘_‘meT;za'*'sza i=07~--5r7
=0

in Oy Where f;; is independent of 7, for all i and 6. Furthermore, each f;s is
independent of Z,, ..., Zy by the definition of 7. Thus we have

fiw€ RLT,, Y50, Ag Ju=1,...on-1;v=1,... . Ns#'=0....,d-1 .
Denote by S (resp. S') the spectrum of R[Ty,..., T,_, 1 (resp. R[[T},..., T,_; 11), set
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N'=d-N+N,

and regard the above ring R[T,, Y,;,As] as the ring of global sections of Ony-.
Then theinclusion

R[T;“ ),\JJ”A(Y] C—)R[T;n K)&'ﬁA&':Zv] s

where on theleft-hand side ¢ runsfrom 1to n — 1 and on the right-hand sidefrom
1to n, defines a projection

pAY — AY" .
Consider now the closed subschemes
W=V(fs)i=o,..., =AY, and
4=0,..., d—1
V=V(f)_, = <A}
3=0,...,d—1
Then V is the pull-back of W by the map p. So V isisomorphic to A}, and T,
Z,,...,Zycan beviewed ascoordinatefunctionsdf Aj!. Dueto the decomposition

{(+), for each v we obtain a representation
po=gtp=Wti P,
where
a-1
vo=2 vl
with y,; € R[[T,,..., T,-;11and £,€ R[[T.,..., T,]]. Then define an S'-morphism
@8 — AN
by setting
(' )V*Y,;=y., for v=1...,N, 6=0,...,d— 1,
(¢)*A; =a; for 6=0,...,d 1.
Furthermore, consider the S-morphism
¢:S— AY
defined by
O*Y5 = Vis; v=1..,N, 6=0,...,d- 1,
0*4, = aj; 6=0,...,d— 1,
o*Z, =%, v=1,...,N.

Then we have ¢ = 7 0 @, ¢*p = p, and @*f;; = (p')*f;; for al i and 6. In order to
seethat ¢’ factors through W, one considers Taylor expansions of

o*fi=fi(9) = £+ 2D,
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thereby obtaining
o*f,= f(y) modp-R[[T),...,T,]], 1=0,...,7.

Sinces*f,=0fori=1,...,r, it follows
f(y)=0 modp-R[[T,...,T,]]

for i > 0. Moreover, since p and a*f, differ by aunitin R[[T;,..., T,]], we have
f(y)=0 modp-R[[T,...,T,]]

for i = 0,t00. On the other hand, using (+x) we get relations

d—1

d—1
o*f; = ¢*t¥f; = ¢* <6ZO Jor T+ qi'p> =X @)V T+ 40

fori=0,...,r, where g, € R[[T:,..., T,]]. Then, since ¢*f; = 0 mod$, the direct
sum decomposition (*) implies(¢’)*f;; = 0 for al i and all 6. So ¢’ factors through
W, and the induction hypothesis can be applied. Thus there exists a factorization
o ¢’ into §’-morphisms

where W' is a smooth §’-scheme. By base change we obtain from W' the smooth
Sscheme W” = W' x5 Sand, hence, the smooth S-scheme

V=AY, = AJT

where Z,, ..., Zy giverise to a set of coordinates of AY,... Furthermore, we can
definean S-morphism

y:§—V
(over § — W") by setting
YrZ, =2, for v=1,...,N.
Then there isa commutative diagram of S-morphisms
AY 14 v

g @ l//

~

h) S .

The map V — A isinduced by z; let uscall it 7, too. It remains to show that t*f,
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dividest*f,,i = 1,...,r,atleast localy at ¢(8). Dueto the definition of Vit suffices
to know that the factor ¢, defined by the relation («x) isinvertible at ¢(3). But this
isclear. Namely, the equation

b-p = 0% = @*t*o = ¢*(4o) P
shows that ¢*(q,) = disaunitin R[[T},..., T,]]. O

We will apply the preceding lemmain the situation where f, is the square of a
maximal minor of the Jacobi matrix

of;

J = !
<6Yv>if1 ..... r
v=1 N

Before this can be done, however, we have to justify the following reduction step.

Lemma 14. It suffices to prove Theorem 12 in the case where X, at the point a(#), is
smooth over S of relative dimension N — m and where X, as a closed subscheme of
Ay, is defined by m global sections f;, ..., f;, Of Oay.

Proof. Replacing X by the schematicimage of ¢, one may assumeg to be schemati-
caly densein X. Sincethefieldsdf fractionsof R[[Ty,...,T,]]and of R[Ty,...,T,]
are separable over each other (cf. [EGA 1V,], 7.8.3), the generic fibre of X is
geometrically reduced and, hence, generically smooth over S. Denote by A the loca
ring of Sat 4 and by A' the local ring of § at 4. The extension A — A' is regular,
and = isa uniformizing element of A and of A'. Set T = SpecA and T' = SpecA".
Then g inducesa T'-valued point g, of X; = X x¢ T. Since the generic point t' of
T'ismapped to thegeneric point of X and sincethegenericfibreof X risgenerically
smooth over T, Proposition 4 shows the existence of a commutative diagram

where X issmooth over T and where X7 — X isconstructed as afinite sequence
of dilatations with centers in the specia fibres. Using a limit argument, we may
assume that X3 — X isinduced by the base change T — § from an S-morphism
X'— X which is constructed in the same way; namely, we can extend the centers
of the blowing-ups to closed subschemes which do not meet generic fibres. Due to
the construction of X', Proposition 3.2/1 implies that ¢ lifts (uniquely) to an
R-morphism ¢':§ — X' which induces a4 : T'— X7. Obviously, o' is an
S-morphism. Thus we may assume that X is smooth over S at ¢(#), say of relative
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dimension N — m. Due to 2.2/7, we may assume that f, ..., f, define X as a
subscheme of A at o(#). Now consider the closed subscheme V < A given by f7,
..., [ Then X < ¥, and both coincidein a neighborhood of &(#). In particular, the
morphism § — X factors through V. Since smooth S-schemesare locally integral,
we may replace X by V. Namely, if V. — V is an S-morphism from a smooth
S-schemeV to V such that § — V factorsthrough V. — ¥, we can assume that
V isintegral. Then there is an open dense subscheme V < ¥’ which is mapped
into X, and it follows that the map V' — V must factor through X because V is
integral and because X isclosedin V. O

Thuswe may assumethat X, asaclosed subscheme of AY, isdefined by m global
sections, say
X = V(fl:afm) < Ag ,

N
a}; l:l ..... 'r:'l1

does not vanish at ¢(4); cf. 2.2/7. We will now finish the proof of Theorem 12 by
establishing a third lemma; see Bourbaki [2], Chap. III, §4, n°5, for a similar
statement.

and that the determinant

Lemma 15. Consider a situation asin Lemma 13. Assume that X is as above and that
fo = A2 Then there exists a diagram

1% ’ mmmm————— X/
K\\
N
\ N
\\
T ; v \\?
¥ \\\

where X' — V' isktale; in particular, X is smooth over S. Except for the square in
the upper left corner, the diagramis commutative.

Proof. In the following, we write f for the column vector (f1,..., f,,); the index t
indicates the transpose. On V'’ we have a relation
(%) T = t*A%-a’

with a column vector @ = (a;,...,qa,,)’ o global sections of ¢.. Denoteby A, = A,
A, ..., A the(m x m)-minorsof




3. The Smoothening Process

Due to Cramer's rule, there exist (N X m)-matricesM,, A =1, ..., [, with globa
sections of Oay as entries such that

(%) JM,=A,-1,.

I,isthe(mx m)-unit matrix. Wewill construct X' asasubscheme of ALN. So denote
by Z,,,A=1,...,1v=1,..., N, the coordinate functions of Ag". Let Z,, be the
column vector (Z,,,...,Z,5), 4 =1,...,1 Now consider the S-morphism

p: ALY — AY
given by
]
p*Y = /121 T*A, Zgy + Y

where Y isthe column vector (Y;,..., Yy). By Taylor expansion we get an equation

1
Y A TRAL g
SH=

1

!
p¥f =% + ;1 *A TR 2y + .

with certain column vectors g, = (0, u15- -+ Gam)- E&Ch g,,; is @ polynomial in
the variables Z;, with global sections of ¢, as coefficients, and each monomial of
4, hasdegree > 2. Using (*) and (++), we can write

o = T*A(TFA - 1,)-a = t*A 17 .|,
with
a;n = ‘C*M1 'al .

Furthermore, we have

!
21 A G =T g
=

with

1
day= Y, "M, quw
u=1
Setting a(;, = 0for1=2,...,1 wesee
1
p*f = lzl T*A;"T*J’ [a(,}v) + Z(l) + q(l)] B
Thenlet X' be the closed subscheme of ALY which isdefined by the global sections

Ay + Zin + 4y A=1.1.

Dueto2.2/10, the projection X' — ¥’ isétale along the zero section of ALN — V..
Obvioudly, the morphism X' — AY induced by p factors through X. Since *A is
not a zero divisor, the relation

0 = o*f = o*A2-y*a’

implies y*a’ = 0 and, hence, y*a(;, = 0for A=1,..., . Thus, the zero section of
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ALY induces a lifting ¢ of . Replacing X' by the etale locus of X' — V7, the
assertion of thelemmais clear. O

Thereby we have finished the proof of Theorem 12. The statement of Theorem
12 was announced by M. Artin in [8]. Its proof, given in terms of commutative
algebra, has been published recently by M. Artin and C. Rotthaus; cf. Artin and
Rotthaus [1]. The method of proof is similar to the one used in Artin [4], where
it is shown that the henselization of R[T;,...,T,] at (=, T},...,T,) satisfies the
approximation property. In fact, the latter result can be obtained asa consequence
of Theorem 12.

Theorem 16. (M. Artin). Let R be a field or an excellent discrete valuation ring, and
let Abeahenselization of alocal R-algebra 4, which isessentially of finite type over
R. Let m bea proper ideal of A, and let A be the m-adic completion of A. Then, given
a systemof polynomial equations

f¥y=0

where Y = (Y;,..., Yy) are variables and f = (f;,....f,) are polynomialsin Y with
coefficients in A, given a solution § = (9,,...,9y) € A and an integer ¢, there exists
asolution y = (yy,...,yy) € A such that

y, =9, modm'-A

forv=1,...,N.

Proof. Following M. Artin, we will reduce the assertion to the special case where
A, isthelocalization of R[T3,..., T,] at the point (=, T3,..., T,) of SpecR[T},...,T,],
where the integer cis 1, and where the ideal m is the maximal ideal of A. In this
case, the assertion is an easy consequence of Theorem 12. So let us start with the
reductions.

One may assume that m is the maximal ideal of A and that the integer cis 1.
Namely, there exist elements a,e A such that

9, =a, modm. A
forv=1,..., N. Let mq, ..., m beasystem of generators of m°. Then there exist
elements J,; of 4 such that

1
Yy —a, — z yvjmj=0-
j=1

Let
t
gy = K’ —ay, — Z Yv\’jmf € A[Yv” valj,]v'=1 N
= =i
and consider the system of polynomial equations given by f, ..., f» 9., ..., gx in

the variables (Y,,) and (Y, ;). This system has the solution ((y,),(,;)) over A, and
any solution of this system lying in A gives rise to a solution of the required type
of the system we started with.
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We may assume that R is a discrete valuation ring and that the maximal idea
m of A liesover the closed point of SpecR. Namely, if R isa discrete valuation ring
and if m lies over the generic point of R, we can replace R by itsfield of fractions.
If Risafield, we can replace it by the power seriesring R[{T]], and view A asan
R[[T]]-algebra by sending T to zero. Since R{ [ T]] is excellent, this reduction is
permissible.

We may assume that the residue field k' = 4/m isfinite over k = R/zR. Since
A, isessentialy of finite type over R, thefield k' isfinitely generated over k. Let d
be its degree o transcendence. Then there exist elements z,, ..., z € A, such that
k' isfinite over k(z,,...,z;), where z; denotes the residue class of z, modm. Let R'
be the localization of R[Z,,...,Z,] at the primeideal (n). The R-morphism

R[Z,,..., 2] — A

sending Z,to z,foré = 1,...,dfactorsthrough R, sincez,, ..., z, aretranscendental
over k. Furthermore, R' isan excellent discrete valuation ring, see[EGA 1V,], 7.8.3,
and A, isessentiadly o finite type over R'.

We may assume that A is a finite S-algebra where S is a henselization of the
localization S, of a polynomial ring R[T3,...,T,] at (n, Ty,..., T,). Namely, let t,,
..., t, beasystem of generators of the maximal ideal of A,. The R-morphism

0:R[T,..., T,]— 4,

sending T; tot;fori = 1,..., ninducesamorphism S, — A4,. Since 4, isessentially
of finite type and since the residue field A/m isfinite over k, it is easily seen that
SpecA, —+ SpecS, is quasi-finite at the maximal ideal of A,. Then the extension
S— A, ®;, Sisfinite(cf.2.3/4);s0A, ®s, Sisadirect sum of local henselian rings.
Since A is among them, the extension S— A isfinite.

It sufficesto prove the theorem for a henselization S of the localization S, of a
polynomial ring R[T3,..., T, at (=, T3, ..., T,). Since we may assumethat A isfinite
over S, the m-adic completion 4 of A isisomorphic to A ®; S. Write A as aquotient
of a polynomial ring over S, say

0—a—S[X,...,X,] —4—0.

Then let a,, ..., a be afinite system of generators of a. Lifting the system f(Y)
over A to a system g(Y) over S[X] and lifting the given solution ¢ of f(Y) to
P =(P1,....Py) with 91, ..., Py € STXT ®s S, we get arelation

1
(%) gy = lz,l azf(x)

where 2, = (£,1,...,2,,) isa column vector of elements of S[X] ®;s S. Then con-
sider the system of equations

() g(Y) — ; a,Z; =0

over S[X], where Y =(Y,,...,Yy)and Z =(Z,),for Ai=1,...,Li=1,..., 1 ae
variables. Due to (), the system (%) has a solution in S[X]. Looking at the
coefficients of the polynomialsin X,, ..., X,, appearing in (x), we can rewrite ()
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as a finite system of polynomia equations over S which has a solution over S.
Clearly, asolution over S of this system induces a solution over A of the system we
started with.

Now let us show how, in this situation, the proof of the theorem followsfrom
Theorem 12. The polynomials f;, ..., f, € S[Y;,..., Yy] define a closed subscheme
X of A¥. Since only finitely many coefficients occur in f, ..., f., the scheme X is
actually defined over an R[T,..., T, ]-algebra o finite type. So we may view X as
an R[T,,..., T,]-scheme of finite type. The solution $ = (,..., $y) € S" givesrise
toan R[[Ty,..., T,]]-valued point acf X. Then Theorem 12 yieldsa commutative
diagram

~.
~.
~
~,
~
..
~,
~
.
~.,

~
-,
~

X% SpecR[[T]]

Spec R[T]

where X' is smooth over R[T]. The closed point § of Spec R[[T]] induces a
k-rational point X' = ¢'($) of X'. Due to 2.3/5, the k-valued point X' lifts to an
S-vaued point of X' and, hence, to an S-valued point x of X. Then, X gives riseto
asolution y over Soff (Y) = 0, the one we are looking for. O

Let us conclude with some remarks on the history o the approximation pro-
perty. Corollary 9 wasfirst established in Greenberg [2], wherethe author actually
proves a much stronger result, the so-called strong approximation property for
discrete valuation rings. Theorem 16 isdueto M. Artin, cf. Artin [4]; heeven shows
the strong approximation property for polynomia ringsk[T;,..., T,], wherek isa
field. By methods of model theory, it can also be seen from Artin’s result (Theorem
16) that all rings R[T,..., T,] satisfy that property whenever R is an excellent
discrete valuation ring; cf. Becker, Denef, Lipshitz, van den Dries [1]. Artin’s
conjecture that the approximation property holds for every excellent ring A was
recently verified by C. Rotthausfor the case where A contains the rational numbers;
see Rotthaus [1].

The importance of the approximation theorem is based on the applications to
moduli problems; there it is a powerful tool to show that certain functors are
representable by algebraic spaces; cf. Artin [5] and [6]. We will come back to this
point in Section 8.3.



Chapter 4. Construction of Birational Group Laws

In the previous chapter, we discussed the smoothening process and, as an applica-
tion, proved the existence of weak Neron models. The next step towards the
construction of Néron models requires the use of group arguments.

For the convenience of the reader, we start with a general section on group
schemeswherewe explain thefunctorial point of view. Then we discussthe existence
o invariant differential forms and their properties. They are used in order to define
the so-called minima components of weak Néron models, which are unique up to
R-birational isomorphism. The actual construction of Neron models is continued
in Section 4.3. Starting with a smooth K-group scheme X of finitetype and a weak
Neron model (X;);. ;, weselect the minimal componentsfrom the X;. After apossible
shrinking, we glue them along the genericfibre to produce a smooth and separated
R-model X o X; and we show that the group structure on Xy extends to an
R-birational group law on X. Admitting thefact (to be obtained in Chapters5 and
6) that X with its R-birational group law can uniquely be enlarged to an R-group
scheme X, we show in Section 4.4 that X will bea Neron model of X,. Thisisdone
by employing an argument of A. Well, saying that a rational map from a smooth
scheme to a separated group scheme is defined everywhere if it is defined in
codimension 1.

4.1 Group Schemes

Let C be a category; for example, let C be the category (Sch/S) of schemesover a
fixed scheme S. Each object X € C givesriseto itsfunctor of points
h, : C— (Sets)
which associates to any TE C the set
hy(T):= X(T):= Hom(T, X)

of T-valued points of X. Each morphism X — X' in C induces a morphism
h, — hy. o functors by the composition of morphismsin C. In this way one gets
a covariant functor

h: C — Hom(C?°,(Sets))

o C to the category of covariant functors from C° (thedual of C) to the category
of sets; the category Hom(C?, (Sets))is denoted by C; it is called the category o
contravariant functorsfrom C to (Sets).
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Proposition 1. The functor h: C — C isfully faithful; i.. for any two objects X,
X' e C, the canonical map

HomC(X9 X') - Homé(th hX’)
is bijective. More generally, for all objects X € C and & < C, there is a canonical
bijection
F(X) = Home(hy, F)

mapping u € % (X) to the morphism hy — & which to a T-vaued point g € hix(T),
where T is an object d C, associates the element #(g)(u) € % (T). The bijection
coincideswith the aboveonef % = hy. and isfunctorial in X and # in the sense that
F — Home(h(+), &) defines an isomorphism € — C.

Proof. Consider an element u € # (X). We have only to show that thereisa unique
functorial morphism sy — % mapping the so-caled universal point id, € hy(X)
onto ue #(X) and that it is as stated. Then al assertions of the proposition are
immediately clear. So let us show how to justify this claim. For any object T € C,
each T-valued point g : T — X factors through the universal point of X. Thus, if
hy — Z existsasclaimed, theimage of g under hy(T) — % (T) must coincide with
the image of u under Z#(g): #(X)— Z (T). Conversely, taking the latter as a
definition, we see that A, — % can be constructed as required. O

In particular, if a functor Qe Hom(C°,(Sets))is isomorphic to a functor iy,
then X is uniquely determined by & up to an isomorphism in the category C. In
this case, thefunctor & issaid to be representable. Thus Proposition 1 saysthat the
functor h defines an equivalence between the category C and the full subcategory
of Hom(C®, (Sets))consisting of all representable functors.

In order to define group objectsin the category C, it is necessary to introduce
the notion of alaw of composition on an object X of C. By the latter we mean a
functorial morphism

vihy X hy — hy .
Thus, alaw of composition on X consists of a collection of maps
91 2 hyx(T) X hy(T) — hy(T)

(laws of composition on the sets of T-valued points of X) where T varies over the
objects in C. The functoriality of y means that al maps y; are compatible with
canonical maps between points of X, i.e., for any morphism u: T' — Tin C, the
diagram

It

hy(T) x hy(T) ——— hy(T)

lhx(u) X hy(u) jvhx(u)

Yr

hy(T') X hy(T") —— hy(T")

is commutative. If the law of composition has the property that 74x(T) isa group
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under y; for al T, then y defines on hy the structure of a group functor, i.e., of a
contravariant functor from C to the category of groups. In this case, y is called a
group law on X.

Definition 2. A group object in C is an object X together with a law of composition
y:h, X hy — hy whichisa group law.

It follows that a group object in C isequivalent to a group functor which, as a
functor to the category of sets, is representable.

When dealing with group objects, it is convenient to know that the category
in question contains direct products and a fina object, say S. The latter means
that, for each object T of C, there is a unige morphism T— S. So, in the
following, assume that C is of thistype, and consider a group object X of C with
group law y. Then, since the product X x X existsin C and since the functor
h: C— Hom(C?, (Sets)) commutes with direct products, the law of composition
y:hy X h, — hy corresponds to amorphism m: X x X — X, asisseen by using
Proposition 1. Furthermore, theinjection of the unit element into each group Ax(T)
yidlds a natural transformation from kg to hy, henceit corresponds to a morphism

e:S— X,

called the unit section of X, which is a section of the unigue morphism X — S.
Finally, theformation of theinversein each hy(T) definesa natural transformation
h, — hy and hence a morphism

1 X—X,

called the inverse map on X. The group axioms which are satisfied by the groups
hy(T), and hence by the functor hy, correspond to certain properties of the maps
m, ¢ and 7. Namely, the following diagrams are commutative:

(a) associativity

m x id,

XXX xX — XxX

b

XxX

(b) existence of aleft-identity

idy id
x P s x X v o x

idy J”’

where p : X — § isthe morphism from X to thefinal object S.
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(c) existence of a left-inverse

(z,idy)
X — 5 X x X

F Lt

S — X

(d) commutativity (only if all groups hx(T) are commutative)

XxX—" X xX

X

where t commutes the factors.

Note that a left-identity is also a right-identity and that a left-inverseis also a
right-inverse. It is clear that once we have an object X and morphisms m, ¢, and 1
with the above properties, we can construct a group object in the given category
from these data, and furthermore, that group objects in C and data (X,m,e,1)
correspond bijectively to each other.

Proposition 3 The group objects in a category C correspond one-to-one to data
(X, m,¢,7) where X is an object of C and where

m:XxX—oX, £e:S— X, 1 X—X

are morphisms in C such that the diagrams (a), (b), (c) above are commutatiue.
Furthermore, a group object in C is commutative if and only if, in addition, the
corresponding diagram (d) is commutatiue.

In thefollowingwe restrict ourselvesto the category (Sch/S) of S-schemeswhere
Sis afixed base scheme. Then the direct product in (Sch/S) is given by the fibred
product of schemesover S, and the S-schemeSisafinal object in (Sch/S).

Definition 4. An S-group schemeisa group object inthe category of S-schemes(Sch/S).

Due to Proposition 3, an S-group scheme G can be viewed as an S-scheme X
together with appropriate morphisms m, ¢, and z When no confusion about the
group structure is possible, we will not mention these morphisms explicitly. In
particular, in our notation we will make no difference between the group object G
and the associated representing scheme X. Also we want to point out that there
exist group functors on (Sch/S) which are not representable and thus do not
correspond to S-group schemes. For example, let X be asmooth S-scheme and, for
any S-scheme T, let Zy,5(T) be the set of all T-birational automorphismsof X, =
X xg T. Then, in general, the group functor #ys is not representable by a scheme,
even if X is the projective line over afield.
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It followsimmediately from Definition 4 that the technique of base change can
be applied to group schemes. Thus, for any base changeS — S, one obtains from
an S-group scheme G an §’-group scheme G :=G x, §'. If S= Spec R for some
ring R, we talk also about R-group schemesinstead of S-group schemes. Further-
more, if K = Risafield, an algebraic K-group is meant to be a K-group scheme of
finite type (not necessarily smooth).

There are many notionsfor ordinary groups which have a natural analogue for
group functors and thus for group schemes. For example, a homomorphism of
group functors 9' — ¢ is a natural transformation between ¢’ and ¢ (viewed as
functorsfrom (Sch/S) to (Groups)).If ¢’ and ¢ are represented by S-schemesG' and
G, respectively, such a homomorphism corresponds to a morphism G' — G which
is compatible with the group law on G' and on G. We also have the notions of
subgroup, kernel of a homorphism, monomorphism, etc., for group functors. How-
ever, when dealing with S-group schemes G, we reserve the notion of subgroup
schemes to such representable subgroup functors which are represented by sub-
schemes of G (thelatter is not automatic). A subscheme Y of G definesa subgroup
scheme df G if and only if the following conditions are satisfied:

(i) the unit-section ¢ : S— G factors through Y,

(ii) thegrouplaw m: G x, G— G restrictsto a morphism Y x, Y, and

(iii) theinverse map 1 : G — G restricts to a morphism Y ——+ Y.

Let us look at some examples of S-group schemes. We start with the classica
groups G, (the additive group), G,, (the multiplicative group), GL, (the general
linear group), and PGL, (the projective genera linear group). In terms of group
functors, these groups are defined asfollows. For any S-scheme T set

G,(T) = the additive group O(T)
G,,(T) := thegroup o unitsin O(T)
GL,(T) = the group of @4(T)-lincar automorphisms of (O(T))"
PGL,(T):= Aut, (P(0})) .

All these group functors are representable by affine schemes over Z. Working over
S:= SpecZ, the additive group is represented by the scheme

X = SpecZ[(]

(¢ is an indeterminate), where the group law m: X x X — X corresponds to the
algebra homomorphism

2] —7[(® 7[(], {—{®1+1®(

Similarly, for G,,, the representing object is Spec Z[¢,¢ 1] with the group law given
by {+——{® (. Inthe case of GL, we consider a set {;; of n? indeterminates. Then

X := SpecZ[{;, det((;) ]

is a representing object; the group law is defined by the multiplication of matrices.
Finally, PGL, is represented by the open subscheme

X < Proj Z[{;]
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where det {;; does not vanish. For a general base S, the representing objects are
obtained from the ones over Spec Z by base extension. It is clear that the above
procedure works as well for further classical groups (SL,, Sp,, O,,...). Also it
should be mentioned that one can define GL,,PGL,, ... for any vector bundle
V over S Just replace @% in the above definitions by the pull-back of V with respect
toT—S

All the above group schemes are affine, i.c., the representing schemes are affine
over the base S. Another important classof group schemesconsists of the so-called
abelian schemes over S. Thereby we mean smooth proper S-group schemes with
connected fibres (thelatter are abelian varietiesin the usual sense). They are always
commutative. As examples one may consider elliptic curves over fields which have
arational point or, more generally, Jacobians of smooth complete curves.

4.2 Invariant Differential Forms

Throughout this section, let G be a group scheme over a fixed scheme S. First we
want to introduce the notion of translations on G. In order to do this, consider a
T-valued point

g. T—G

o G;i.e., an S morphismfrom an S-scheme T to G. Theng givesriseto the T-valued
point

gr:=(9,1d;): T— Gy =G x5 T

o the T-scheme Gy .= G xg T. If p; : G — Gdenotes thefirst projection, we have
g=p; 0. Inthespecia casewhere T:= G and g:=id, isthe universal point of
G, the morphism g, equals the diagonal morphism A of G. For any other T-valued
point g of G, the morphism g, is obtained from A by performing the base change
9g:T— G

As usudl, let m: G xg G— G be the group law o G and write m, for its
extension when a base change T— Sisapplied to G. Then, for any T-valued point
g of G, wedefinethe left translation by

gr x id

1,1 Gyp = Txp Gp 225 Gy xp Gp — Gy

and the right translation by
id % g
7 Gp = Gy xp T—5 Gy Xy Gp—5 Gy
Both morphisms are isomorphisms. Quite often we will drop the index T and
characterize the map z, by writing

7,:G— G, X gx ;

the same procedure will be applied for 7, and for similar morphisms. In the special
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case where T := G and g:=id, isthe universal point, z, is the so-called universal
left translation, namely the morphism

O:TxgsG—TxsG, (%, y) — (x, xy).
Similarly, ©, givesrise to the universal right translation

V:GxsT—GxsT, (x,3)—(xy,))

Each |eft translation by a T-valued point g: T — Gisobtained from the universa
left translation @ by performing the base change g: T— G; in a similar way one
can proceed with right translations.

Now let us consider the sheaf Qs of relative differential forms of some degree
i 2 00on G;itisdefined asthei-th exterior power of Q¢ 5. For any S-scheme T and
any T-valued point ge G(T), the left translation 7, : G — Gy gives rise to an
isomorphism

%y ~ i
g Q61 = Qo1

A global section w in Qs is called left-invariant if t}w, = wy in Qf r for all
ge G(T) and all T, where w; is the pull-back of w with respect to the projection
py: Gy — G (see 2.1/3 for the canonical isomorphism p}Qf,s = Qf;_r; see also
Section 2.1 for our notational convention on the pull-back of differential forms).
Using right translations z,, one defines right-invariant differential formsin the same
way. Since each translation on the group scheme Gy is obtained by base change
from the universal translation, it isclear that one has to check the invariance under
translations only for the universal translation. Generally, in connection with
translations, we will drop theindex T and write w instead of w if no confusion is
possible.

In the following we will frequently use the fact that two global sections w and
o' of asheaf % on G are equal provided they coincide on every T-valued point g
of G; ie., provided gfw; = g¥wt in g% %, where #; is the pull-back of & to G,.
Thisiseasily verified by using the universal point g:=id, of G; namely,for T = G,
we have the commutative diagram

T_ 9 Gy

G

where G; — G is the projection. Similarly, one shows that two sheaves # and %
areisomorphic if their restrictions to each T-valued point of G areisomorphic.

Propostion 1. Let G be an S-group schemewith unit sectione : S— G. Then, for each
oy € T'(S, e¥Q4;5), there exists a unique left-invariant differential formom e T'(G, Q5 5)
suchthat e*w = @, in e*Qf,s. The same assertion is true for right-invariant differential
forms.
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Proof. It is only necessary to consider left-invariant differential forms since the
inversemap G — G, x 1 x~ !, transforms|eft-invariant formsinto right-invariant
ones.

The unigqueness assertion is easy to obtain. Consider two global left-invariant
sections w, o’ of Qfs such that e*w = e*w’ = w, in £*Qy,5. Then we have g*w =
g*w' in g*Qf s for each point g € G(S), sinceg = 7, o e. Hence w and w' coincide at
al points of G(S). Thisfact remains true after base change. So w and o' coincide at
the universal point of G and we have w = w'.

In order to settletheexistencepart, itisonly necessary to consider thecasewhere
i = 1. Furthermore, the problemislocal on S; so we may assume that w, liftsto a
section o' of Qs which is defined over a neighborhood U o the unit section
e : S— G. Then the decomposition

(*) Qb x5 GIS = p’fgé/s @ PEkQIG/S
of 2.1/4 gives a decomposition

m*o' = w, ® w,
over m™*(U), wherem: G x, G — Gisthegroup law. If

5:G— G x53G, x> (x71, %)

denotes the twisted diagonal morphism, m*w’ is defined in a neighborhood o the
image of 6 so that 6*w, givesrise to aglobal section w of Qg ;. We claim that w is
left-invariant and satisfies e*w = w, in e*Qg;s.

For an arbitrary T-valued point g € G(T), the commutative diagram

G —*, G

P

’
‘L'gq X Tg

GxG 11— GxG

givest}d*w, = 6%(1,-1 x 1,)*w,in Qg 7. SO w will beleft-invariant if we can show
(t;-1 X 15)*w, = w,. Sincetheproduct map t,-: X 1, respectsthe decomposition (x)
over m™1(U), we see
;o= (¢ X T)f;€ T (U), pF@bys))» G =12
However mo (-, x 7,) = mso that
m*w/=a)1@w2 =d)l®d)2 .

The two decompositions must coincide. Hence @, = w,, and w isleft-invariant.
It remains to show &*w = w, in ¢*Q} 5. Consider the morphism

er: T =G—GxgT=Gx5G

obtained from the unit sectione : S— G by thebasechange T — S. Sincee%pQgs
vanishesin QL s and sincemo &5 = idg, we have

* — X — oKk 1 1
t¥w, = ef(w, + w,) =efm*o' =’ In Qgg.
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Sincep, oe, =id, = p, o 6, thereisa canonical identification
$P3Qs = Qs = 0 D3 QUys
Then6 oe =&, o ¢ implies
e*0*w, = e*efw, in QY.
Furthermore, we know é*w, = w. So we get
e*w = % 6%w, = e*ehw, = ¢*w = w, In e*Qgs .

Thus w is as desired. |

Using thestructural morphism p : G— S, wecan state the result of Proposition 1
more elegantly in the following form:

Proposition 2. There are canonical isomorphisms
pHe* Qg 5 Qs ieN,

which are obtained by extending sections in e¥Q% s to left-invariant sectionsin Q5.
Similar isomorphisms are obtained by using right-invariant differential forms.

Actually, Proposition 1 provides only an 0,-module homomorphism
p*e* Qs — QL which, under the pull-back by £, becomesan isomorphism. How-
ever, applying translations, the same assertion is true for any S-valued point o G.
In particular, after base change T:= G— S, the above homomorphism is an
isomorphism at the point g, € G(T) whichisinduced by the universal point g of
G. Hence, the above homomorphism is an isomorphism already over G. O

We are specially interested in the case where G is a smooth group scheme over
alocal schemeS. Then each 0,-module Qs is locally free, and e*Qj s is a free
0,-module. Thuswe s

Corallary 3. Let G be a smooth group scheme of relative dimension d over a local

. d
scheme S. Then each Qg 5, 0 <i < d, is a free Og-module generated by (1) left-
invariant differential formsof degreei. The sameistrue for right-invariant differential
forms.

For the rest of this section, let us assume that G isa smooth Sgroup scheme of
relative dimension d, and that there is a left-invariant differential form w € Q% 5(G)
generating Q¢ as an 0,-module. For an arbitrary T-valued point g of G we can
consider theinterior automorphism

int,=7,07,-.:G—G, x— gxg !,

given by g.
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Proposition 4. There exists a unique group homomorphismy : G — G, (acharacter
on G) such that

intfo =t 0 = y(glo

for each T-valued point g of G.

Proof. Since left translations commute with right tranglations, we see immediately
that

*

e A% "
mt; o = 157,00 =150

is left-invariant (on G) for any T-valued point g of G. Hence, since w and int} @
generate Qf 1, there existsa well-defined unit x(g) € O(T)* such that

it} o = x(g9)w ;

recalling the functorial definition of the multiplicative group &,, and o group
homomorphisms, one easily shows that g — y(g) definesa group homomorphism
1:G— G,,. ]

Now let us consider the case where S= Spec K and where K is the field of
fractions of adiscrete valuation ring R. Asusual, let RS" denote a strict henselization
o R and K* thefield of fractionsof R"". Let | | be an absolute value on K and K**,
which correspondsto R and R'*. We want to look alittle bit closer at the character
¥ occurring in the above lemma.

Proposition 5. Let G be a smooth K-group scheme of relative dimension d, and assume
that G(K) (resp. G(K*®"))is bounded in G. Then the character x of Proposition 4
satisfies |x(g)| = 1 for each g€ G(K) (resp. each ge G(K*™")).

Proof. The character y is bounded on G(K); hence we may view y(G(K)) as a
bounded subgroup o K*. Such a subgroup consists of unitsin R. U

Remark 6. If, in the situation of Proposition 5, the group G is connected, one can actually show that
the character y istrivial. To see this, one uses the fact that G contains a maximal torus T defined over
K,[SGA 3,], Exp. X1V, L.1.If yisnon-trivial, it induces asurjectivemap T — G,,, and T must contain
a subtorus isogenous to G,,. But then G(K) cannot be bounded.

4.3 R-Extensionsd K-Group Laws

Let R beadiscrete val uation ring with uniformizing element z, withfield of fractions
K, and with residuefield k. Asusual, R denotes a strict henselization of R, and K"
denotesthefield of fractionsof R*". Let X bea smooth K-group schemeof dimension
d, assume that X, isof finite type, and that X (K**) is bounded in X . Asa group
scheme over a fidd, X is automatically separated. The purpose o this section
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isto construct a smooth and separated R-scheme X of finite type with genericfibre
X such that the group law of X extendsto an R-birational group law on X and
such that each translation on Xy by a K**-valued point extendsto an R**-birational
morphism of X. Later, it will turn out that X isaready an R-dense open subscheme
of the Neron model of Xy.

We start our construction by choosing a weak Néron model (X;);.; of X; for
the existencesee Theorem 3.5/2. Thereis no restriction in assuming that the specia
fibres X; ®x k are (non-empty and) irreducible for al i el. We will pick certain
"minimal components™" o this collection and glue them along the generic fibre to
obtain the R-model X of X wearelooking for.

In order to define minimal components, consider a left-invariant differential
form w of degree d on Xy which generates Q% ; for the existence see 4.2/1 and
4213, It follows that @ is unique up to a constant in K*. We want to define the
order of w on smooth R-models X of X which have an irreducible special fibre
X,, dwaysassuming that X isseparated and of finite type over R.

To do this, consider a general situation where ¢ is aline bundle on a smooth
R-scheme Z and where { is a generic point of the specia fibre Z,. Then the local
ring ¢, . isadiscrete valuation ring with uniformizing element = and, for any section
f o & over the genericfibre Z; which does not vanish at the generic point of Zx
lying over {, thereisa unique integer nsuch that z="f extendsto a generator of &
at {. Theinteger niscalled the order off at ¢, denoted by ord, f.

Going back to the situation wherewe considered the section « over the generic
fibre of X, there isa unique generic point & of the special fibre X, since the latter
has been assumed to be irreducible. We call ord.w the order of w at X and we
denoteit by ordyw. If n = ordyw, then = ™"m generates Q%  over X. Namely, n ™"
isdefinedon X upto pointsof codimension = 2,and X being normal, =" m extends
to aglobal section of X. Furthermore, since the zero set of a non-zero section in a
linebundleis of purecodimension 1 on anirreducible normal scheme, it isseen that
7~ " extends to a generator of Q% over X. Similarly, for sectionsa e I'(Xy, Oy )
(provided ais non-zero at the generic point of X, lying over X;), the order ord,a
can bedefined. If m= ordya, it followsthat =™™a extends to a global section of ¢y.
The latter isinvertible if aisinvertible over Xg. In this case, we have |a(x)| = |7™|
for each K*-valued point x of X which extendsto an R**-valued point of X.

Lemma 1. Let X" and X be smooth and separated R-modelsd X, which as above
have irreducible special fibre each. Consider an R-rational map u : X' ---» X" which
is an isomorphism on generic fibres; in particular, there is a unit ae I'(Xg, 0%,)
satifying ufw = aw. Assume that |a(x)] = 1 for some x e Xy (K" such that x
extends to a point in X'(R*"). Then:

(i) N :=ordy.w = N' := ordy.w.

(i) If U is the domain of definition & u, the morphismu: U — X" is an open
immersgonf andonly f n =n".

Proof. Since n™" o (resp. n~" w) generates Q% (resp. Q%. ), there is a section
be I'(X’, 0y.) such that
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w(r " w)=bn"w

over X'. Actually, bisonly defined over U; however X' — U isd codimension =2
in X" so that bextends to asection over X'. The preceding equation givesa = =~ "b
over Xg. Sinceordy.a = 0 by our assumption on a, we see

n—n"=ordyb=0

This verifies thefirst assertion.

To obtain the second one, we seefrom 2.2/10 that uisetale on U if and only if
u*Qf. r — Qf pishijective; ie., if and only if bisinvertible over U and hence over
X'. Thelatter isequivalent ton’ — ' = 0. Furthermore, since uy isan isomorphism,
Zariski's Main Theorem 2.3/2" impliesthat uisétale on U if and only if it isan open
immersion. D

Let X' and X" be smooth, separated R-modelsdof X, which are of finitetype over
R and which have irreducible special fibres. Then X' and X" are called equivalent
if theidentity on X extends to an R-birational map X' ---» X".

Proposition 2. Let X, be a smooth K-group scheme of finite type such that X  (K*")
is bounded in X.

(i) Thereexistsalargest integer n, such that ordyw = n, for all R-models X of
X, which are smooth, separated, and of finite type over R, and which have an
irreducible special fibre X;. All such R-models X with ordym = n, are called
w-minimal.

(ii) Up to eguivalence there exist only finitely many R-models X, ..., X,, of Xg
which are w-minimal.

Proof. (i) Let (X;);.; be aweak Néron model of X; for the existence see 3512. We
may assume that the specia fibre of each X; isirreducible. So the order of w is
defined with respect to each X;. Let n, be the minimum o the finite set {ordy, w;
i e 1). We claim that », satisfies assertion (i). Namely, consider a smooth R-model
X o Xy which is separated and of finite type over R and which has an irreducible
special fibre. Due to the weak Neron property 3.5/3, the identity on X, extends to
an R-rational map u: X ---» X; for somei e l. Then ordyw = ny by Lemma 1. In
asimilar way, assertion (ii) isdeduced from Lemma 1 (ii). O

Sincew, asaleft-invariant differential form of degreed,isunique uptoaconstant
in K*, it isclear that the notion of w-minimality does not depend on the choice of
. One has to interpret the w-minimal R-models as those smooth R-models with
irreducible special fibre, which are of ""biggest” sze, just as can be seenfrom thetwo
R-models

SpecR[(,{™']  and  SpecR[(,(7%( — D]

of the multiplicative group G,, over K, and from the left-invariant differential form
w = ¢{71d¢. Furthermore, we leave it to the reader to verify that, for the additive
group G, over K and for theleft-invariant differential form w := d{, there does not
exist any w-minimal R-model.
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Lemma 3. Let Z be a smooth R-scheme, and let # be a generic point of the special
fibre of Z. Denote by R the local ring @, , of Z at #, and by K’ the field of fractions
of R.If Xy,..., X, isaset of representativesof the w-minimal R-models of X, then,
up to a splitting ofspecial fibresinto connected components, X; ®; R, ..., X, @z R
represent the '-minimal R'-models of Xx ®g K', where W is the pull-back of w to
Xy ® K.

Proof. Due to 3.5/4, weak Néron models are compatible with the base change
R — R'. Furthermore, each generic point ¢ of the special fibred X; ®x R liesover
ageneric point & of the special fibre of X;. Thus, we have ord,w = ord. «’. Hence
the R’-extension df an w-minimal R-model of X decomposes into a union o
w’-minimal R’-models d Xg.. |

Now we are able to construct the R-model X of X, we arelooking for.

Proposition4. Let X be a smooth K-group scheme of finite type such that the set of
K-valued points of X, isbounded in X, Then there exists an R-model X of X
which is smooth, separated, faithfully flat, and of finitetype over R and which satisfies
the following conditions:
(i) Each open subscheme of X which isan R-model of X with irreducible special

fibre is w-minimal.

(i) For each w-minimal R-model X' of X, the identity on Xy extends to an
R-rational map X' ---» X which is an open immersion on its domain of definition.

(iii) Let R be the local ring ¢, , of a smooth R-scheme Z at a generic point  of
the special fibre, and let K’ be the field of fractions of R'. Then each translation on
Xy by a K'-valued point of X. extends to an R’-birational morphismof X ®; R,
which is an open immersion on its domain of definition.

Proof. Let X4, ..., X, beaset of representativesd the o-minimal R-modelsdf X.

By shrinking thespecial fibre of each X, wemay assumethat thefollowingcondition

is satisfied:

(+) For each pair of indicesi,je {1,...,n) withi # j, the diagonal of Xy xx X
constitutes a Zariski-closedsubset in X; x X.

Namely, let A, bethediagonal in X, x g Xk, and consider its schematic closure A
inX; xz X;. Let p,: A— X, for h =i or j be the projection onto thefirst or second
factor. It isenough to know that theimage of A, under p; isnowheredensein (X;),.
Assumethe contrary. Then theimage of A, contains a non-empty open part of (X;),
and, hence, thereisa point # € A above the generic point ¢ of the special fibre o X.
Thus the local ring b, dominates @ .. Since p; is an isomorphism on generic
fibresand since A isflat over R, bothlocal ringsgiveriseto thesamefidd o fractions.
But then, ¢y . being a discrete valuation ring, the map Oy, . — 0, , is an iso-
morphism. Since A is o finite type over X;, there exist open neighborhoods U
of £in X; and V o 5 in A such that p; induces an isomorphism between V
and U; df. [EGA 1], 6.54. Hence p; is invertible over an R-dense open part o
X;, and
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p;©° (Pl X X;

constitutes an R-birational map, asis seen by Lemma 1. However, this contradicts
the choiceof X4, ..., X,.

Now we can construct the desired R-model X of Xy by gluing all models
X, ..., X, dong generic fibres. Then X is separated due to condition (*), and it
satisfiesconditions(i) and (ii) by construction.

To verify condition (iii), assume first R = R, and consider a translation g :
Xy — X on Xg by a K-valued point. Fix an open subscheme U of X consisting
of the generic fibre X and o an irreducible component of the specia fibre X,.
Furthermore, let (X;);., be a weak Néron model of X, where the special fibre of
X, isirreduciblefor each i e |. Then, due to the weak Néron property 3.5/3, there
exists an index i € 1 such that 74 extendsto an R-rational map t: U ---+ X;. Since
U is o-minimal, the map 7 is R-birational; it is an open immersion on its domain
of definition by Lemmal (notethat, for right translations, the assumption of Lemma
lissatisfied by 4.215). Moreover, X; is w-minimal. Then it is clear that 7 extends
to an R-rational map

7: X -+ X.
Likewise, one can construct an R-rational extension
T:X -+ X

o the inverse translation (zx)™ on X. Since t and ¢’ are composable with each
other intermsof R-rational maps, it iseasily seen that they are, in fact, R-birational.
Finally, Lemma 1 shows that ¢ is an open immersion on its domain of definition.
So, if R =R, condition (iii)issatisfied. I n the genera case, we can perform the base
change R — R, and thereby reduce to the above special case by using 3.5/4 and
Lemma 3. l

Applying assertion (iii) of the preceding proposition, we want to show next that
wecan extend the K-group law on X , toan R-birational grouplaw on the R-scheme
X we have just constructed.

Proposition 5. Let X be a smooth K-group scheme d finite type such that the set of
K*"-palued pointsd X isboundedin X . Let X bethe R-model obtained in Proposi-
tion 4 by gluing a set of representativesd o-minimal R-models. Then the group law
m on X, extendsto an R-birational group law on X.

More precisely,m extends to an R-rational map

m:X xgX-—--+»X
such that the universa translations
DX xzg XX xz X, (x, y) > (x,m(x, y))
VX xgX—->X xg X, (x,y) — (m(x,y),y)

are R-birational. Furthermore, m is associative; i.e., the usual diagram for testing
associutivity iscommutative asfar as the occurring rational mapsare defined.
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Proof. Let £ be a generic point o the special fibre X, of X, and denote by R' the
localring Oy . X at £. Let S bethespectrum df R'; it can beviewed asan X-scheme
and as an R-scheme. Due to Proposition 4, the translation ¢, obtained from @, by
the base change S — X extendsto an §’-birational map

T8 Xpg X =8 Xz X .

Now consider the commutative diagram of rational maps

Tz: 8 Xpg X =mmmeme >8 xg X
DX xp X > X xg X

It followsfrom 2.5/5 or by a simpledirect argument that @ isdefined at all generic
points o the special fibre of X x, X which project to ¢ under the first projection.
As we can apply this reasoning to any generic point o the speciad fibre X, we see
that @ is R-rational. Sinceeach 7, is §'-birational, it followsthat @ is R-birational.

Dealing with ¥ in the same way as with @ yields an R-birational extension
¥ o Y. Choose an R-dense open part W < X x, X containing the genericfibre
suchthat ® and Y aredefinedon W. Then, composing® with the projection onto the
second factor o X xg X, and W with the projection onto the first factor, we obtain
two extensions W — X d the group law myx of Xy, which must coincide. Thus, my
extendsto an R-rational map

m: X X, X --» X,

and weseethat ® and ¥ can bedescribed by masstated. I n particular, the associati-
vity is a consequence d the uniquenessd R-rational extensionsdf K-morphisms.
U

It is a general fact that an R-birational group law on X, as obtained in the
preceding proposition, alwaysdeterminesan R-group scheme X; cf. 5.1/5.

Theorem 6. Let X be a smooth K-group scheme of finite type. Let X be a smooth
and separated R-model of Xx which isof finite type, and assume that the group law
mg Of X extends to an R-birational group law m: X xx X ---+ X. Then there is a
smooth and separated R-group scheme X of finite type, containing X as an R-dense
open subscheme, and having X as generic fibre such that the group law on X extends
the R-birational group law mon X. Up to canonical isomorphism, X is unique.

This result which, for the case of birational group laws over afield, goes back
toA. Weil [2],§ V, n°33, Thm. 15, will be provedin Chapter 5for astrictly hensdian
base ring R. The generalizationfor an arbitrary discrete valuation ring will follow
in Chapter 6 by means of descent theory. That X satisfies the Néron mapping
property will be shown in the next section by using an extension theorem for
morphismsinto group schemes; cf. 4.4/4.



4.4 Rational Maps into Group Schemes 109

4.4 Rational Mapsinto Group Schemes

In order to establish the Neron mapping property for the R-group scheme X which
has been introduced in the last section, we want to make use of an extension
argument of Well for rational maps into group schemes; cf. Weil [2], § 11, n°15,
Prop. 1.

Theorem 1. Let S be a normal noetherian base scheme, and let u:Z ---+ G be an
Srational map froma smooth S-scheme Z to a smooth and separated S-group scheme
G. Then,if uisdefined in codimension <1, it is defined everywhere.

Asin Wel's proof, which deals with the case where the base consists of afield,
we will proceed by reducing to the diagonal; thefollowing basic fact is needed:

Lemma 2. Let u: Z -+~ Spec A be a rational map from a normal noetherian scheme
Z into an affine scheme Spec A. Then the set of pointsin Z, whereu is not defined, is
of pure codimension 1. In particular, if u is defined in codimension =1, it is defined
everywhere.

The assertion (cf.[EGA 1V,], 20.4.12)isdue to thefact that a rational function
on Z, which isdefined in codimension =<1, is defined everywhere or, equivalently,
that any noetherian normal integral domain equals the intersection over al its
localizations at primeideals of height 1.

Now let usstart the proof of Theorem 1. Consider the rational map

v:Z xsZ--+G, (21,22) — u(zy)u(z,) 7",
and let U (resp. V) denote the domain of definition of u (resp.v).Then U xg U is
contained in V. First we want to show that Vcontains the diagonal A of Z x5 Z.
Since
VAAS (U xgUynA=U

(where we have identified Z with A), we see that vl factors through the unit
sectione: S— G.Set F :=(Z xg Z) — V. We havetoshow F n A = . Consider a
point x o F~ A and let se S be theimage of x in S Let H be an affine open
neighborhood of ¢(s)in G. Then thereexistsan open neighborhood Wof XinZ xg Z
such that vinduces a rational map

v'i=v|lp W--->H

Let V' bethedomain of definition of v'; wehaveV' < V. Sincev|y ~a factors through
H, wesee V' nA=VnA. Furthermore, set F := W — V. Since H is affine and
Z x, Zisnormal (cf.2.3/9), it followsfrom Lemma 2 that F isaof pure codimension
1lin W. Since

FAA=FnAcZ-U
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(wherewe have identified Z with A again), we know that F ~ A is of codimension
> 2in Aif uisdefinedin codimension <1. Let d bethereativedimension of Z over
Sat x. SinceF' isof purecodimenson 1inW e« Z x, Z,and, since A= Z X, Zis
defined locally by d equations, due to the smoothness of Z, we get

dim (F' A A) = dim, F' — d = dim (Z x¢ Z) — 1 —d = dim,A — 1 .

However, this contradicts the fact that F n A is of codimension >2in A. Thus V
must contain the diagonal A as claimed.

It remains to show that this fact implies U = Z. Due to 2515 it is enough to
show that there exists a faithfully flat S-morphism f : Z' — Z from a smooth
S-scheme Z' o finite type to Z such that u of is defined everywhere. So, let Z' be
theintersection of VwithZ x, UinZ x Z.Thenthefirst projection from Z x, Z
to Z gives rise to a faithfully flat morphism f : Z"— Z. Namely, since smooth
morphisms are flat, it only remains to show that f is surjective. So, let z: T— Z
be a geometric point of Z;i.e., T isthespectrum of afield. Viewing V asa Z-scheme
with respect to thefirst projection, theschemeT %, Visnon-empty since Vcontains
thediagonal Aof Z x¢ Z. Furthermore, the domain of definition U of uis S-dense
open in Z. Hence theintersection o T x, Vwith T xg U in T X, Z isnot empty.
Thus we see that the morphism f is surjective and, hence, faithfully flat. Now look
at the morphism

Vn(Z xsU)— G, (z1,22) ¥ v(z1,2,)u(z,).

It is clear that this map coincides with « of, in terms of S-rational maps. Thus,
the S-rational map u is defined everywhere, and we have finished the proof of
Theorem 1. 1

Remark 3. The method of reduction to the diagonal which was used in the proof of
Theorem 1 works al so within the context of formal schemesor rigid analytic spaces.
So, if R isa complete discrete valuation ring, the assertion of Theorem 1 remains
trueif Z isd type SpecR[[¢]] or SpecR{t} (formal or strictly convergent power
seriesin afinite number o variableszt,,...,t,).

Now it iseasy to show that the R-group scheme X we haveintroduced in Section
4.3 satisfies the Néron mapping property and thereby to end the proof of the
existencetheorem 1.311 for NCron models over adiscrete valuation ring R (modulo
the proof of Theorem 4.316). Recall the situation of 4.3. Starting with a smooth
K-group scheme of finite type X, such that the set of its KS"-valued points is
bounded in X, we have constructed in 4.3/4 a smooth and separated R-model of
finitetype X such that the group law on Xy extendsto an R-birational group law
on X; cf. 4.3/5. In 4316 we have claimed that thereis a unique extension of X to a
smooth and separated R-group scheme of finite type X containing X asan R-dense
open subscheme.

Corollary 4. Let X be the R-model of X as considered in 4314 and 4.3/5, and let X
be the associated R-group scheme in the sense of 4.3/6. Then X isa Néron model of
Xg over thering R.
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Furthermore, for each u-minimal R-model X' of X, the identity on X extends
to an open immersion X' =, X over R.

Proof. In order to show that X satisfies the Néron mapping property let Z be a
smooth R-scheme and let uy : Z, — X be a K-morphism. We have to show that
ug extends to an R-morphism u: Z —s X.

It is enough to consider the case whereZ has an irreducible special fibre. Let ¢
be the generic point of the special fibre of Z, and let R' = ¢, , be the local ring of
Z atl.

Look first at the rational map

7z XRX---+Z ><RX ’ (Z,X)“—>(Z, uK(Z)x)’

which is defined on the generic fibre. Applying the base change SpecR' — Z, this
map is turned into an R’-rational map; cf. 4.3/4. Then it follows from 2515 that
the map

11 Z Xg X X, (z,x) — ug(2)x ,

isdefined at all generic pointsof the special fibreof Z x , X which project to ¢ under
thefirst projection. So 7 isan R-rational map. Sinceit isdefined at the genericfibre,
it is defined everywhere by Theorem 1. Therefore, if we denote by p the structural
morphism of Z, and by ¢ the unit section of X, the composition of the morphism

(idg,eop):Z—Z xzg X

with 7 yieldsan R-morphism u: Z — X extending u,. The uniqueness of « follows
from the separatedness of X.

If X isan w-minimal R-model of X, theidentity on X extendsto an R-rational
map from X’ to X by 4.3/4. Hence it extends to an R-morphism from X to X by
Theorem 1 Then it isan open immersion, due to 4.3/1. O



Chapter 5. From Birational Group Lawsto
Group Schemes

For the construction of Néron models, we need the fact that an S-birational group
law on a smooth S-schemewith non-empty fibres can be birationally enlarged to a
smooth S-group scheme; see 4.3/6. The purpose of the present section isto prove
this result in the case where S is strictly henselian. In Chapter 6, the result will be
extended to a more general base.

The technique o constructing group schemes from birational group laws is
originally due to A. Weil [2], § V, n°33, Thm. 15; he considered birational group
laws over fields. More general situations were dealt with by M. Artin in[SGA 31,
Exp. XVIII, among them birational group laws over strictly henselian rings. The
proof we give in this chapter, essentialy follows the exposition of M. Artin [9].
Finally, in Chapter 6, descent techniques can be used to handle the case where the
baseis of a more general type.

5.1 Statement of the Theorem

In thefollowing, let S be a scheme, and let X be a smooth separated S-scheme of
finite type. Furthermore, we will assume that X has non-empty fibres over S or,
which amounts to the same, that X isfaithfully flat over S.

Definition 1. An S-hirational group law on X isan S-rational map
m:X xg X -5 X, (x, ) — xy,

such that
(a) theS-rational maps

DX xg X->X xg X, (x, y) — (x,xy) ,

PiX xg X+ X x X, (x,y)— (xy,Y),

are S-birational, and

(b) misassociative;i.e., {(xy)z = x(yz) whenever both sides are defined.

Just as in the case d group schemes, the maps ® and ‘¥ will be referred to as
universal left or right translations.

Note that, in place df (a),it isenough to require ® and ¥ to be open immersions
on an S-dense open subscheme U of X x ¢ X. To seethis, one hasonly to verify that
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theimages V = ®(U)and W =¥ (U) areS-densein X xg X. Sinceeach fibred U
over S has the same number of components as the corresponding fibreof X xg X
over S, thesameistruefor thefibresof Vand W over S. Hence V and Ware S-dense
in X xg X if ® and ¥ are open immersions on U.

The notion of S-birational group law is compatible with base change. Further-
more, an S-birational group law on X induces an S-birational group law on each
S-dense open subscheme of X. In particular, if X isan S-group schemeand if X is
an S-dense open subscheme of X, the group law of X induces an S-birational group
law on X. But there are S-birational group laws which do not occur in this way.
Namely, evenif the base consists of afield, one can blow up a subscheme of agroup
scheme X and consider the induced birational group law on the blowing-up. So it
isnatural to shrink X in order to expect that an S-birational group law on X extends
to a group law on an S-scheme X containing X.

Definition 2. Let mbe an Shirational group law on a separated and smooth S-scheme
X which is faithfully flat and of finite type over S. A solution of misa separated and
smooth S-group scheme X of finite type over S with group law 7, together with an
S-dense open subscheme X' = X and an open immersion X' =, X such that

(a) theimage of X' is Sdense in X, and

(b) m restrictstomon X'.

First we want to show that solutions of S-birational group laws are unique.

Proposition 3. Let mbean S-birational group law on a separated and smooth S-scheme
X which is faithfully flat and of finite type over S. If there exists a solution of m, it
is uniquely determined up to canonical isomorphism.

For the proof we need the following well-known lemma.

Lemmad4. Let G beasmooth Sgroup scheme, and let U be an S-dense open subscheme
of G. Then the morphism
Ux,U—G, (x,y) —> xy

is smooth and surjective.

Proof of Proposition 3. Let

a,:X,c,X, ad o6,:X,c,X,
be solutions of the S-birational group law mon X, and set Y := X; n X;. Then Y
isan S-dense open sub_schemeoc X, and each ¢;(Y)isS-denseopenin X;,i =1, 2.
The group laws m; of X; give rise to morphisms

mo(o,xo0):YxgY—X,, i=12,

which arefaithfully flat by Lemma 4. Furthermore, the morphismsg, and a, yied
an S-birational map B 3

a=0,00; : X, —+X,
which is compatible with the group laws; i.e.,

My o(0y X 02) =0 0m, o (0, X 0,).
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So, due to 2515, the map a is defined everywhere. Since a is compatible with the
group laws, it is clear that « isa group homomorphism. Similarly, 8 = g, 0 55" is
a group homomorphism which is defined everywhere. Sinceaand § areinverse to
each other, they yield S-isomorphisms between X, and X,. O

Next we want to look at the existence of solutions of S-birational group laws.
In the present chapter we will consider the case where the base consists of a discrete
valuation ring; see 6.611 for the case where the base is more general.

Theorem 5. Let S be the spectrumof a field or of a discrete valuation ring, and let m
be an S-birational group law on a smooth separated S-scheme X which is faithfully
flat and of finite type over S. Then there existsa solution of m, i.e., a smooth separated
S-group scheme X of finite type with a group law 7, together with an S-dense open
subscheme X' < X and an S-dense openimmersion X' =, X such that mrestricts to
mon X'.

The group scheme X is unique, up to canonical isomorphism. If (inthe case where
the base S consists of a valuation ring) the generic fibre X of X isa group scheme
under the law my, the above assertion is true for X' = X. So, in this case, it is not
necessary to shrink X.

The proof o the existencewill follow in the subsequent sections (cf. 5.2/2, 5.2/3,
and 6.5/2), whereas the uniqueness has already been proved. So, accepting the
existence of X, let us concentrate on the additional assertion on the domain X'
where the group laws on X and X coincide. Assume that the base S consists of a
discrete valuation ring and that the generic fibre X is a group scheme. By the
uniqueness assertion, the S-rational map

1 X s X

induced by X' =, X restricts to a K-isomorphism
1o X — X

Hence: isdefinedin codimension <1 so that, by 4.4/1, the rational map : isdefined
everywhere. Now let o beadifferential form generating Q%s, wheredisthe relative
dimension of X over S; of. 4.2/3. Pulling back o, we get a differentia form 7*w on
X which generates Q% over X’ u Xy; hencer*w generates Qf s in codimension <1.
Since on a normal scheme, the zero set of a non-vanishing section of aline bundle
isempty or of purecodimension <1, weseethat 1*o has no zeros. Thus: is etale
by 2.2110. Since: is birational, Zariski's Main Theorem 2.3/2" implies that z is an
open immersion. Ol

5.2 Strict Birational Group Laws

In thefollowing, let S be a scheme, and let X be a smooth separated S-scheme o
finitetype. Furthermore, we assume that X isfaithfully flat over S.
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If X is an S-dense open subscheme of an S-group scheme X, then, for each
T-valued point x: T— X, the set of points ye T xg X which is characterized
symbolically by the conditions

xyeT xs X, xlyeT xg X, and xyteT xgX

is T-denseand open in T x, X. Thus, we see that the group law of X inducesan
S-birational group law on X which is of a specia type. Namely, there is an open
subscheme U o X xg X whichisX-densein X xg X (with respect to both projec-
tions p,;: X x, X — X, i=1, 2; e, X-dense when X x, X is viewed as an
X-schemeviaeach p;), such that the universal translations

O:X ><S)(""))( Xs X, (X,y)H(X,Xy),
VX xg X=X xs X, (xp—(x)),

aredefined and openimmersionson U, and their images V := ®(U) and W:= ¥(U)
are X-densein X x X. Just takefor U theintersection of X x, X withtheinverse
imagesd X x, X under the group law and both universal translations on X. So it
is natural to introduce the following terminol ogy:

Definition 1. An S-birational group law on X is called a strict (S-birational) group
law if it satisfies the following condition: There is an X-dense open subscheme U of
X x, X, on which misdefined, such that the universal translations

DX Xxg XX xs X, (x5))r—(xxy),
VX s XX xsX, (X3 (x3,)),

are isomorphisms from U onto X-dense open subschemes V := ®(U) and W:=
Y(U) in X xg X. (As before, X-density is meant with respect to both projections
from X x¢ X onto its factors.)

Note that X-density implies S-density. So the subschemes U, ¥, and Wabove
are Sdense in X x, X. Thefirst step in the existence proof o 5.1/5 consistsin
showing that each S-birational group law on X induces a strict group law on an
S-dense open subschemed X if Sconsistsdf afied or o adiscrete valuation ring.

Proposition 2. Let S consist of a field or of a discrete valuation ring. Let X be a
smooth separated S-scheme of finite type, and consider an Shirational group law m
on X. Then there exists an S-dense open subscheme X' of X such that m restricts to
a strict group law on X'

Proof. Let U be the S-dense open subschemed X x, X such that mis defined at
U and such that the universal tranglations® and ¥ are open immersionson U. Set
V==&U)and W= Y¥(U). SinceU, ¥, and Ware S-densein X x, X, the set

Z=UnVnW

is again S-dense open in X xg X. We want to show that there exists an S-dense
open subscheme ©Q, o X such that Z n(R, xg X) is Q;-dense in Q, x, X with
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respect to thefirst projection p,. Due to 2.5/1, the set
T, ={XEX; Zn(x xg X)is not denseinx xg X}

isconstructible in X. Since Z isS-densein X x, X, the generic points of the fibres
o X over Sdo not belong to T;. Hence the closure T; of T; in X cannot be dense
inany fibred X if Sconsistsd a discrete valuation ring. So the open subscheme
Q, = X — T, isS-densein X and has the required property. Similarly, one defines
asubscheme 2, o X by considering the second projection. Then the subscheme

X =Q,nQ,

isSdenseopenin X, and Z n (X' x, X") is X’-dense in X' xg X" (with respect to
both projections).

Setting
U:=UnX X, X)nmly) (X),
V=o',
W = "P(U),

it remains to show that these open subschemes are X'-dense in X' x4 X'. As a
general argument, we will use thefact that U, ¥, and W giverise to X’'-dense open
subschemesin X' x, X',becauseZ = U n V~ W. Now considerapoint as X'. We
may assumethat the base Sis afield and that aisan S-valued point o X'. First we
will show that U’ is X’-dense in X' x, X' with respect to thefirst projection p,. If
weview X X, X asan X-schemeviap,, the basechangea— X transforms® into

Dla, ) Unaxs X) S Vnlaxs X)caxg X,

which is an open immersion with dense image. Then the open subscheme
®(a, ") 1V n(axs X)) =(mly) "(X)n(@x X)

isalso denseina x X. Thisshowsthat U' is p,-dense, i.e., X'-dense with respect
to p,. In asimilar way, using ¥, one shows U’ is p,-dense. Next, it is clear that
V' is p,-dense, since V' n(ax, X") is the image o the dense open subscheme
U n(ax, X')d ax, X under the open immersion ®(a, -); the latter has a dense
imagein a x4 X. By the same argument, using ¥(-,a), we see that W' is p,-dense.
In order to show that W' is p,-dense, set U, := m™~*(a), and consider the diagram of
isomorphisms

U —~ s WnaxsX)=W,

N

? UN—\P,W

+ +
V.=Vn(X xga)= V



5.2 Strict Birational Group Laws 117

Sincea belongsto X', theset V, isdensein X xga,and W, isdensein a xg X. The
sameistrueif wereplace V, by itsrestriction to X' xg aand W, by itsrestriction to
a xg X'. Taking inverseimages with respect to ® and ¥, the set

UnU =01 V,n(X xga))n ¥ W, n(axg X))

isopen and dense in U,. Hence itsimage under ¥, whichisW' n (a xg X),isopen
and densein a xg X. Thereby we seethat W' is p;-dense. Similarly, one shows that
V' is p,-dense. O

The proposition reducesthe proof of Theorem 5.1/5 to the problem of enlarging
astrict group law on X to agroup law on a group scheme X. If the base scheme S
is normal and strictly henselian (of any dimension), we will construct the group
scheme X in a direct way. The case where S consists of a field or of a discrete
valuation ring, without assuming that thelatter isstrictly henselian, will be reduced
to the preceding one by means of descent theory, cf. 6.512. For further generaiza-
tions see Section 6.6.

Theorem 3. Let S be the spectrumof a strictly henselian local ring which is noetherian
and normal, and let m be a strict group law on a separated smooth S-scheme X which
is faithfully jlat and of finitetypeover S. Thenthereexistsanopenimmerson X < X
with S-denseimage into a smooth separated S-group scheme X of finite type such that
the group law i of X restrictsto mon X.

The S-group scheme X isunique, up to canonical isomorphism.

The uniqueness assertion of Theorem 5.115, which has already been proved in
Section 5.1, yields the uniqueness assertion of the present theorem. A proof o the
existence part will be given in Section 5.3, assuming that the base S is strictly
henselian. The idea is easy to describe, although a rigorous proof requires the
consideration of quite a lot of unpleasant technical details. Namely, a smooth
scheme X over a strictly henselian base S admits many sections in the sense that
the points of the special fibre X, whichlift to S-valued points of X are schematically
densein X;; of. 2.3/5. So theideaisto construct X by gluing"translates” of X. More
precisely, consider an S-valued point a df X and a copy X(a) o X, thought of asa
left translate of X by a. Then one can glue X and X (a) along the correspondence
given by theleft translation by a

®a, ): X -+ X
Theresult isa new S-scheme X' = X u X(a), and it has to be verified that the strict
group law mon X extendsto a strict group law mi on X'. Theleft translation by a
D). X X

is now defined on the open subscheme X of X'. Repeating such a step finitely many
times with suitable S-valued points a,, ..., a, € X(S), and applying a noetherian
argument, one ends up with an S-scheme X = X™ such that the strict group law m
on X extends to a strict group law m on X, such that the S-rational map

X xg XX
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isdefined on theopensubschemeX x, X « X x, X.Thenitisnot difficult to show
that m definesa group law on X, and that X is the S-group scheme we are looking
for.

The technical problemsin the proof o Theorem 3 are due to the fact that, for
a point ac X, the product ax is only defined for "generic” x € X. This drawback
disappears, when we look at the situation from the point o view o group functors.
Let mbe astrict group law on X, asin Theorem 3, and consider the group functor

R s (Sch/S) —> (Sets)

which associatesto each S-schemeT theset of T-birational mapsfrom X, =X x, T
onto itsdf. Identifying X withitsfunctor o pointshy = Hom(+, X), cf. 4.1, weclaim
that there is a monomorphism X =, %y, respecting the laws of composition on
X and Zy,s. Namely, due to the definition o strict group laws, one knows that the
universal left tranglation

P: X xg X -——+X X, X, (x,y) — (X,m(x,y))

is X-birational if X xs X isviewed as an X-scheme via thefirst projection. So, for
any Sscheme T and any T-valued point ae X(T), the map

T T Xg X —»T xg X,

the"left trandlation™ by aobtained from ® by meansd the basechangea: T — X,
is T-birational and thus belongsto #x,s(T). It is clear that the maps

X(T)_)‘%X/S(T) » aF—1,,
congtitute a morphism o functors X — Zx;s.

Lemma 4. The morphism X — Zy, is a monomorphism which respects the laws d
compogtion on X and on Zys; i.e., for any Sscheme T and all T-vaued points a,
b, ce X(T) satisfying m(a, b) = ¢, onehasz, o 7, = 7..

Proof. We have to show that al maps X(T) — Zx,5(T) are injective. So consider
a, be X(T)witht, = 7,. Applyingthe base change T — S to our situation, we may
consider T as the new base, writing Sinstead o T. Let U be the X-dense open
subschemed X x¢ X required by Definition 1 (on which the universal translations
are open immersions). Using the X-density d U with respect to thefirst projection,
we see that the compositions

¥, 85 x, X 2 X %, X e X X, X
b xi
W,:S5% X — %, X X X et X X, X
are defined as S-rational maps. Since¥,, = (t,,id) and ¥, = (t3,id) whenS x, X
isidentifiedwith X, we seethat =, = 7, yidds¥, = ¥,. Now ¥ isan openimmersion
onU,soax id, and b x id, must coincide on the S-dense open subscheme

X' = (a x idy) " HU)Y A (b x idy) (V)

of Sx, X, henceonal o S x, X. In particular, their first components agreg, i.e.,
a = b. Thuswe see that X — Zy,s isa monomorphism. That this transformation
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respects the laws of composition followsimmediately from the associativity of m.
O

If X has been expanded into an S—groupéscheme)? such that X is S-dense and
openin X and such that the group law on X restricts to the strict group law mon
X, then thereis a canonical commutative diagram of natural transformations

X —— Ay

|

X _— e@f/s

2

wherethevertical arrow on theright-hand sideisanisomorphism, since X isS-dense
in X. Although it is not in general true that the group functor X isgenerated by X,
i.e., that X(T) generatesthegroup X(T)for al S-schemes T, thelatter is nevertheless
correct if Tisastrictly henselian local S-scheme. Namely thegroup law on X induces
a surjective and smooth S-morphism

X xsX—X,

cf. 5114, so that, by 2.315, each T-valued point of X liftsto a T-valued point of
X xg X.

5.3 Proof of the Theorem for a Strictly Henselian Base

Wehave already seenin 5.2/2 that Theorem 5.2/3 implies Theorem 5.1/5 if the base
isstrictly henselian. So we may restrict ourselves to strict group laws and give only
a proof of 5213. In this section we assume that the base S consists of a strictly
henselian local ring which is noetherian and normal. Furthermore, let X bea smooth
and separated S-scheme which isfaithfully flat and of finite type over S, and let m
be a strict group law on X ; the symbols @, ¥, and U, ¥, W will be used in the sense
of 5.2/1.

Introducing further notational conventions, let X" be the n-fold fibred product
of X over S,and, forintegers1 < i, <... <i, = n,let

Di, ..., - X"— X"

be the projection of X" onto the product of thefactorswithindicesi,,...,i.. Insuch
asituation, we can view X" as an X"-scheme with respect to the morphism p;, ;.
So we have the notion of X'-density in X"; to be more precise, we will speak
of p;, . -density. Sometimes, we will write x = (X,,...,x,) for points in X" and
(xi,s-..,x; )instead of p; _; (x)for their projectionsonto X'. Asusual, the S-rational
map m: X2 ---> X will be characterized by (x, x;) +— x, x,.
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Lemma 1. Let Q be theset d points(x,y,z,w) € X4 such that
(z,we U, (y,wyelU, and (x,ywm)e U .
Then Q is p, ,5-dense in X*.

Proof. Recall that the intersection of finitely many p;,,-dense open subschemes of
X*4is p;,,-dense and open again. Since U is p,-dense in X2, thefirst two conditions
pose no problem. So it remains to show that the set Q' of al points (x,y,w) € X3,
satisfying (y,w) € U and (x,yw) € U, isp;,-dense and open in X>. We can describe
Q' astheinverseimage of U with respect to the following morphism:

id, x® p 2
X xsU —— X% —2 5 x°,

(xay,W) — (x,y,yw) — (x,yw)

Since U is p;-dense in X?, and since @ leaves the first component fixed and is an
open immersion on U with a p;-dense imagein X2, we see that ' isp, ,-dense and
openin X3, O

The assertion of Lemma 1 isonly an example for similar assertions o this type.
Roughly speaking, it says that, fixing X, y, and z, the stated conditions form open
conditions on w; these are satisfied if wis generic.

Lemma 2. Let T be the schematicclosurein X2 d thegraphd m: U — X.Let T
bean S-scheme. If (a,b, ¢) isa T-valued point inT'(T) = X3(T), then, using thefunctor
Ry;s d 5.2, the T-birational mapst,, 1, and 7, & X, iy 7,0 7, = 7. In By5(T).

Proof. Let Q be the p,,,-dense open subscheme o X* which was considered in
Lemma 1. Then the S-rational maps

A X*ems X* ’ (X,y,Z,W)*—)(X,y,X(yW), W),
#:X4"'->X4 s (x;y,Z>W)'_’(X,J’>ZW>W) >

are defined on Q. Next, let &' := Qnp,, 1 (U). We claim that Q' ~n (I’ xg X) is
schematically densein Q n (I x, X).Namely, p,, *(U)n(I" x X)isschematically
densein I' xg X by the definition of T" (since X isflat over S), and this density is
not destroyed when we intersect both sets with an open subscheme of X# such as
R. Since the law m is associative, the morphism u|r «, x)~o factors through A,
the schematic image of |q. By continuity, also u|r «, x) ~q factors through A, and
thus yields a morphism

w:IxgX)nQ—A .
Now set
¢ =(a,bc) xidy: T xg X — X*,

and Q, , .= ¢ 1(Q). ThenQ, , .is T-denseand openin X,. Let ¢ : X; — X% be
the T-morphism derived from ¢, and let z, be the T-morphism obtained from u by
means of the base change T—> S. Then p; o uy o @7 coincideswith z. on Q, , .., but
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alsowithz, o 7,sinceu o g factorsthrough A. Hence, wehavet, o 7, = 7.in &y s(T).
O

We state an important consequence of Lemma 2.

Lemma 3. Let I" be the schematic closurein X2 d the graph of m: U — X, and
let g,;: T — X2 be the morphisms induced from the projections p;;: X — X2.
Then each g;; is an open immersion and has an image which is p, -dense and p,-dense
inX?2

Proof. First we want to show that each g;; isinjectiveas a map of sets. If (a,b,c) is
a T-valued point in I'(T) for some S-scheme T, then ¢, o 1, = 7, by Lemma 2. Since
thisisan identity in the group Zy,s(T), any two of the maps ,, 7,, 7. determine the
third one. As stated in 5.2/4, the natural transformation X — %y is a mono-
morphism. Hence a point of I" is known if two of its components are given. This
implies that g,; isinjectiveas a map o sets and, hence, that g;; is quasi-finite. We
claimthat the maps g; are, infact, S-birational. Namely, using the notation of 5.2/1,
the projection g, givesrise to an isomorphism ¢73(U) =% U because mis defined
on U. Furthermore, ¢, ; defines an isomorphism g73(V) =5 V because g, 5 isinjec-
tive and because @ is an isomorphism U =, V. Likewisg, ¢,, defines an iso-
morphism ¢33 (W)= W becauseq, isinjectiveand because¥ ;; isanisomorphism
U = W.Thus, by Zariski's Main Theorem 2.3/2’ (recall that Sis normal), each g;;
is an open immersion and, due to the X-density of U, ¥, and W in X2, the image
of each g;; is X-densein X 2 (with respect to p, and p). 0

Fixing points a, b, ce X(T) for some S-scheme T, we see from the preceding
lemma that there exists at most one point x € X(T) such that ax = ¢ and at most
onepoint y e X(T) such that yb = c. Suggestively, we will write a~'¢ for x and ¢b™*
for y. With this notation the assertion of Lemma 3 can be interpreted asfollows:
The maps

gi3°q15: X>->X>,  (a,b)—>(a,ab),
Gr30qri: X%+ X%, (a,b)r—> (b,ab),
dra0qi3: X2 > X2, @c)— (a"'c,0),
120 qrs: X% X2, (a,0)— (a,a7 '),
4i3°q53: X*->X*, (hor—(cb',0),
qi2°qas:X*->X%, (b)) (cb7},D),

areS-birational. They are openimmersions on their domains of definition; thelatter
as wdl as the corresponding images are X-dense in X2 (with respect to both
projections). In addition, the lemma shows that the law m: X2 ---+ X is defined at
a point (x,y) € X2 as soon as the fibre g;3((x,y)) is non-empty. This fact will be
needed in the next lemma
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Lemma4. Let a be an Svalued point of X, and consider another point b e X. Then
a x5 b can be viewed as a point in X2, and the law m: X? ---+ X is defined at a xs b
if and only if the birational map z,: X ---+ X is defined at b.

Proof. It is only necessary to verify the if-part of the assertion. Considering the
S-dense open subscheme U, :=U n(ax X)of a xg X = X, weknow that 7, isat
least defined on U,. Let T, bethe schematic closurein X2 of the graph of 7. Then
we have

(axgT)naxsU, x¢ X) T

and, by continuity, alsoa x4 I, = I'. Sincethe image of the morphism
axgT,c, [ —22 , x2

contains the point a x, b, thefibre over it with respect to g,, is non-empty. Thus,

the assertion followsfrom Lemma 3. O

The preceding lemma is very useful if one wants to expand the domain of
definition of m: X2 ---» X by meansof enlarging X. Namely, one hasonly to enlarge
the domain o definition of z,: X ---+ X for suitable sections ae X(S). This can be
done by introducing sort of atranslate of X by a and by gluingit to X.

Therefore, fix a section ae X(S) and, asin the proof of Lemma 4, consider the
schematicclosure T, in X2 of thegraph of theS-birational mapt,. Thena xs T, = T
and, by Lemma 3, both projections p;: T, — X are injective as maps of sets.
Since ¢, is S-hirational, Zariski's Main Theorem implies that p, and p, are open
immersions; furthermore, p, and p, have S-denseimagesin X. So these projections
define gluing data, and we obtain an S-scheme

X =XoprX,

whichissmooth and dof finitetype over S and whichiscovered by two S-dense open
subschemesisomorphic to X. Due to its definition, T, isclosed in X2, hence X' is
separated over S.

We need to distinguish between the two copies of X which cover X'. So let us
write more precisely

p: I, — X(a),
pz:ra—)X

for the gluing data, where X (a) isanother copy of X. Thisway we havefixed one of
the two canonical embeddingsof our original S-scheme X into X'. We want to show
that X (a) can beinterpreted asa "left translate” (in X") of X by a. Namely, consider
the S-birational map z,: X ---+ X. It is defined at least on U, so that we have the

following factorization:
™
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Working in X', we can write this diagram also in theform

I
/ \"1
U,

X(a)

Since the horizontal map is the restriction to U, d the canonical isomorphism
X =5 X(a), we see that 7,: X ---» X extends to an isomorphism z,: X = X{a),
namely the canonical one. In particular, =, extendsto an S-birational map X' ---+ X'
which is defined on X.

Lemma 5. As before, let X' be the S.scheme obtained by gluing a left translate
X(a) = 1,(X) for somepoint ae X(S) to X. Then X' contains X as an S-dense open
subscheme, and the strict group law m on X extends to a strict group law m on X'

Proof. We have aready seen that X is S-densein X'. So it is clear that mextends
to an S-hirational group law m on X', and we have only to show that m is strict,
ie., that thereexistsan X'-dense (with respect to both projections) open subscheme
U = X' xg X' satisfying thefollowing conditions:

(&) m isdefined on U,

(b) the universal trandations

DX X X -+ X x5 X', x,y)— (x, xy),
.4 XSX,""’X/ XSXla (XJ)'——’(X)’,J’),

are open immersions on U’, and the images V' :=®(U’) and W' := ¥(U") are
X'-dense in X' xg X" (with respect to both projections).
The product X' x¢ X" isthe union o the open subschemes
X xg X, X(a) xg X, X x5 X(a), and X(a) xg X(a) .

In order to define U, let U, as before, be the open subscheme o X x, X whose
exigenceis required in Definition 5.2/1 for the strict group law mon X. Further-
more, let U; betheimaged U under the isomorphism
T, x1d,t X xg X =5 X(a) xg X .
Then m isdefined on U sincemisdefined on U, and theisomorphismz, : X =5 X(a)
can be used in order to obtain the morphism
Ul B X(a) ’ (Ta(x)a y) L ‘Ca(xy) »

from m: U — X. Both morphisms coincide on an S-dense open part of U, due to
theassociativity of m. Thusm' isdefined on the open subschemelU u U, o X' x4 X"
thelatter is X’-dense with respect to thefirst projection.

Next consider the open subscheme

{(x,y9,2)e X*;(x,») e U, (xy,2) € U}

o X3. Similarly asin the proof of Lemma 1, one showsthat it is p,;-dense in X3,
Hence, intersectingit with X xg a x¢ X and applying the isomorphism



124 5. From Birational Group Lawsto Group Schemes

X xgaxsX —P , x2 W X5, x o X(g),

we obtain an open subscheme U, o X X, X(a) which is X (a)-dense with respect to
the second projection. Then the morphism

(*) U2 - X s (x5 Ta(y)) — (xa)y

is defined and, using the associativity of m, it coincides with the multiplication
m: U — X on an S-dense open part o U. Thus, writing U' for the X'-dense (with
respect to both projections) open subscheme U u U, u U, d X' x¢ X', we see that
m is defined on U’ and, hence, that U’ satisfiescondition (a).

In order to verify condition (b), notice that the universal translations ® and ¥’
corresponding to m extend the universal translations® and ¥ corresponding to m.
Thus, since @ and ¥ are open immersionson U, we see that @ and Y' are open
immersionson each one o the schemesU, U,, and U,. In particular, " and Y' are
quasi-finiteon U'. Since these are S-birational maps on X' x, X', Zariski's Main
Theorem 2.3/2 implies that they are open immersionson U'.

Asin 5.2/1, set V:= ®(U). Furthermore, let V; be the image o V under the
isomorphism

T, X T X X, X5 X(a) X, X(a).

Then V' := &'(U’) contains V uV,, and the latter is X'-dense in X' x, X' (with
respect to both projections);in particular, ¥’ is X’-dense in X' xg X".

Similarly, one showsthat W := ¥'(U’) is X'-dense in X' x, X' with respect to
the first projection. In order to see that the sameis true for the second projection,
noticethat W, :=¥'(U") is X-densein X' x¢ X with respect to the second projec-
tion. Furthermore, consider the open subscheme

W, :=¥'(U,) c X x5 X(a)

and look at the description (=) o m on U, which was discussed above. Then W, is
seen to be X(a)-dense in X' X, X(a) with respect to the second projection since, for
any T-valued point z df X, the right translation

Xy Xrp, X xz,

is T-birational. Hence W = W’'(U") is X’-dense in X' x, X" with respect to both
projections. The latter finishesthe verification o condition (b). O

Now consider a sequence a,, a,, ... & Svaued points d X. Iterating the
construction of X' by using these points, we obtain a sequence d S-schemes

X=XOcXDccXDc_ .,

where X® = XtD y XY (g,). Each X contains X asan S-dense open subscheme,
and X is separated, smooth, and of finite type over S. Furthermore, Lemma 5
shows that the strict group law m on X extendsto a strict group law m® on each
X%, Using a noetherian argument, we want to show that the sequence X© <
XM <= X@ < .. becomesstationary at a certain X®. Then, for asuitable choice of
the a;, we will seethat X™ is the S-group scheme we are looking for.



5.3 Proof of the Theorem for a Strictly Henselian Base 125

Lemma 6. There exist finitely many S-valued pointsa,, ...,a, € X(S) such that, for
X™ as above, the Srational mgp m: X x5 X---+ X extends to an S-morphism
X X, X — X®,

Proof. First we show that wecanfind a,, ..., a, € X(S) in such a way that, for each
ae X(S), the S-birational map 7,: X ---» X extends to an S-morphism X — X®,
Proceeding indirectly, consider a sequencea,, a,, ... in X(S) such that

T 1 X > X0 i=12...,

is not defined everywhereon X. Let T be the schematic closure in (X®)® o the

graph of m: U — X. It coincides with the schematic closure of the graph o the
induced strict group law m!» on X®; so we know from Lemma 3 that

Pis: TH_ x® Xg X
isan open immersion. Setting
Q9= p, (MY N (X x5 X),

the Q® form an increasing sequence of open subschemes of X x, X, since the '
form an increasing sequence. However, the base S consists of a noetherian ring,
which impliesthat the topological space X xg X is noetherian. Thus the 0 must
becomestationary at acertainindex ne N, and weclaimthat, for a = a,+,, themap
1,: X ---» X® isdefined everywhere. Namely, consider a point be X. By the defini-
tion of X**), the birational map ,: X ---+ X®*? is defined everywhere. So we see
from Lemma 4 that the law m®*D on X®*1 is defined at a x, b. Hence the fibre
over a X, bof

p12 . r(n+1) N X(n+1) XS X(n+1)
isnon-empty, and a x, be @"*Y. But, since "™ = 0™, the fibre over a X, bof
Pt T — X Xg xX®

cannot be empty, and we seefrom Lemma 3 that the law m™ on X® is defined at
ax b.In particular, 7, . =1,: X ---» X" is defined at b. This contradicts our
assumption on the sequence a,, a,, ...; SO there must exist a,, ...,a, € X(S) such
that 7, : X ---+ X™ isdefined everywherefor each ae X(S).

It remainsto show that, inthissituation, the S-rational mapm: X xg X ---+ X®
isdefined everywhere. We know already from Lemma 4 that misdefinedona x g X
for each S-valued point a of X. However, thisis not enough, and we now have to
use the fact that our assumption on X to be a faithfully flat and smooth scheme
over adtrictly henselian base S yields the following property:

Let t be a point of S, and let C, be the reduced subscheme of X X, t whose
underlying topological space is the closure in X xgt of the set of points
{a(t);a € X(S)}. Then there exists a component X? of X, contained in C,; cf.
Lemma 7 below.

Moreover, let k' be an extension field of k(t), and let t' be the schemeof k'. Then
C, x, t' coincides with the reduced subscheme of X x t' whose underlying topo-
logical space is the closure of the points {a(’);a € X(S)}; f. [EGA 1V, ], 11.10.7.
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Inparticular, if Z,.isadenseopen subschemedf X xg t', thereexistsapointae X(S)
such that a x4 t' givesriseto a point of Z,.

Now let us continue the proof of Lemma 6. Using the notation of Lemma 3, we
know that

q23° qf% X Xg X > X Xg X, (W,x)l—>(w_1x,x) s

isan S-birational map. It isan open immersion on its domain o definition D, and
thisdomain as well asitsimage are X-densein X2 with respect to both projections.
Now consider a point t € X2. It follows that the set

Z:= ((wx,y)e X3;(w,x)e Dand (w™'x,y) e U},

where U isasin 5.2/1, isopen and p,;-dense in X2 and, hence, open and densein
X Xg t. So, applying the base changet — X2 to X xg X2, the assumption on X as
explained aboveimpliestheexistencedf apointae X(S)suchthata xgte Z. Then
the S-rational map

XxsX-—>X, ®xyr—@'x)y,
isdefined at t. Furthermore, since the left translation
T, X - X®
is defined everywhere, we see that
X X X X",  (x,y)—a(@a'x)y),

is defined at t. However, this map coincides on X x4 X with the strict group
law m, since mis associative. So we see that m extends to an S-rational map

X xg X -+ X®
which is defined at all points of X2. O

Lemma 7. Let T be a noetherian scheme, let Y — T be a morphism of finite type,
and let {a,,i € 1) bea family of sectionsof Y. Let t, and ¢, be points of T such that
to isa specialization of t,. Let C; be the closure of the set of points {a(t;), i€ 1) in
the fibre Y,j,j =0,1. ThendmC, = dim¢C,.

In particular, if T is strictly henselian and noetherian, and if Y — T is smooth
and surjective, then, for each point t € T, there exists a connected component Y,° of
the fibre Y, such that the set of the points {a(t), ae Y(T)} isdensein Y,°.

Proof. It suffices to show the first assertion after a base change ¢ : T' — T such
that the pointst,, t, belong to theimage of ¢. So, due to [EGA 1I], 7.1.4, we may
assumethat T consists d a discrete valuation ring with generic point ¢, and closed
point ¢,. Denote by V the schematic closure of C; inY;so Visflat over T,since T
consists of a discrete valuation ring. Then it is clear that

dimV, 2dimV,_;

cf. [EGA 1V,], 14.3.10. Since C, = V, thefirst assertionisclear.
For the second, we may assume that the relative dimension of Y over T is
constant on Y. Due to 2.3/5 the closure of the set of points {a(to), a€ Y(T)} is Y,
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for the closed point z, of T. Hence the second assertion followsfrom thefirst one.
l

Now the proof of Theorem 5.2/3 is quite easy. Namely, let X be the S-scheme
X™ constructed in Lemma 6. Then X is separated, smooth, of finite type, and
contains X as an S-dense open subscheme. Furthermore, by Lemmata5 and 6, the
strict group law mon X extends to a strict group law m on X, and the S-rational
map m: X2 ---+ X is defined on X 2. It is a general fact that X isan S-group scheme
inthissituation; so wecan end the proof of 5.2/3 by establishing thefollowing result:

Lemma 8. Let X be asmooth and separated S-schemed finite type which isequipped
with a strict group law 7. Assume that X(S) is non-empty and that there exists an
S-dense open subscheme X d X such that m is defined on the open subscheme X 2 d
X2 Then X isan S-group scheme with respect to the law 7.

Proof. First we want to show that
m:X xg X > X, (x, y)—xy,

is defined everywhere. Since the domain of definition is compatible with faithfully
flat base change (2.5/6), it sufficesto show that, for each point (b,c) € X2, the map

iy =idy x m: X xg X2 —>X xg X

is defined at some point (a,b,c) e X xs X above (b,c). For example, let (a, b, c) be
ageneric point of thefibre over (b,c). Then (a,b) e X X, X isageneric point in the
fibre over b and the map

Xxs)?--—->X, (W, x) — xw,

isdefined at (a, b), since Mis a strict grouplaw on X. Likewise, using Lemma 3, the
map

X ><S‘)z""))( » (WaY)’_—’W_ly s

is defined at (a,¢) which isa generic point in thefibre over c. Since m is defined on
X2, the map

m': X XSX XSX"")X XSX_ > (Waxsy)'_')(w, (xw)(w_ly)) B

is defined at (a b, ¢), and the associativity of M shows that m' coincides with .
Thusmisdefined on al of X2
Similar arguments show that the map

)?xs)?——»)f, (x,y)|—>x_1y,

is defined everywhere. But then 7 defines on X the structure of an S-group scheme.
Namely, returning to thefunctorial point of view, consider the monomorphism

X, Rx/s

of 5.2/4. The group law on %y restricts to the law M on X, and X(T) # & for
T = Sand, hence, for al S-schemes T Thus, sincethemap (x,y) — (x~!y)isdefined
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on X xg X, we see that each X(T) is a subgroup of %s(T). So X is a subgroup
functor of Zx,s and in fact, the representability being granted, an S-group scheme
with group law . O

So we have finished the proof of Lemma 8 and thereby also the proofs of 5213
and o 5.1/5 for the case where the base S consists of a strictly henselian valuation
ring or of a separably closed field.



Chapter 6. Descent

During the years 1959 to 1962, Grothendieck gave a series of six lectures at the
Seminaire Bourbaki, entitled " Technique de descente et théorémes d'existence en
géométrie algébrique”. In thefirst lecture[FGA], n°190, the general technique of
faithfully flat descent isintroduced. It isan invaluable tool in algebraic geometry.
Quite often it happens that a certain construction can be carried out only after
faithfully flat base change. Then one can try to use descent theory in order to go
back to the original situation one started with. Before Grothendieck, descent was
certainly known in theform of Galois descent.

We begin by describing the basic facts o Grothendieck's formalism and by
discussing some general criteria for effective descent, including several examples.
Then, working over a Dedekind scheme, our main objectiveisto study the descent
o torsors under smooth group schemes; see Raynaud [4]. As a preparation, we
discussthetheorem o thesquare and useit to show the quasi-projectivity of torsors.
Relying on the latter fact, effective descent of torsors can be described in a very
convenient form; we do thisin Section 6.5. As an application, welook at existence
and descent of Néron models for torsors. Also, working over a more general base,
weareableto extend the technique of associating group schemesto birational group
laws as discussed in Chapter 5. The chapter ends with an example of noneffective
descent.

6.1 The General Problem

Let p:S —+ S be a morphism o schemes and consider the functor & — p*&#,
which associates to each quasi-coherent S-module % its pull-back under p.
Then, in its simplest form, the problem o descent relative to p:S — S is to
characterize the image o this functor. The procedure of solution is asfollows. Set
S =S x4 8, and let p;: " — S be the projection onto the i-th factor (i = 1,2).
For any quasi-coherent §’-module %", cal an §”-isomorphism ¢ : p¥ %’ — p¥F’
a covering datum of 9" .Then the pairs (#', ¢) of quasi-coherent S-modules with
covering data form a category in a natural way. A morphism between two
such objects (#', ¢) and (¥¢',y) consists of an S-morphism f: %’ — %" which
is compatible with the covering data ¢ and ; thereby we mean that the
diagram
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iscommutative.
Starting with a quasi-coherent S-module %, we have a natural covering datum
on p*&, which consists of the canonical isomorphism

p¥p*F) = (pop)*F =(pop)*F = p5(p*F) .

So we can interpret the functor # 1 p*# as a functor into the category of
guasi-coherent S-modules with covering data. It is this functor which will be of
interest in the following. We will show that it is fully faithful if p:S— S is
faithfully flat and quasi-compact, and that, furthermore, it is an equivalence of
categoriesif, instead of covering data, weconsider descent data; i.e., specia covering
datawhich satisfy a certain cocyclecondition. The problem of descent can be viewed
as a natural generalization of a patching problem; cf. Example 6.2/A.
As usual we will call adiagram

B
A-5B =
of maps between sets exact if « isinjective and if ima = ker(8,y), where ker(8,Y)
consists of al elements be B such that f(b) = y{b). Working in the category of
abelian groups, the exactness of such a diagram isequivalent to the exactness of the

sequence 5
0—A4- 5B C.

Propogtion 1. Assumethat p: ' — S is faithfully flat and quasi-compact. Let # and
% be quasi-coherent Smodules, and set q:=pe p; = po p,. Then, identifying g*F
canonically with pF(p* %) for i = 1, 2, likewise for ¢g*¥, the diagram

£ P1
Homg(#, %) > Homg (p* #, p*%) —3 Homg(¢* 7, 4*9)
Pz

is exact. In other words, the functor & + p*# from quasi-coherent Smodules to
quasi-coherent S’-modules with covering data is fully faithful.

Proof. The assertion is local on §, so we can assume that § is affine. Then S is
quasi-compact, and it is covered by finitely many affine open subschemes S; < S,
i € I. Consider thedigjoint union S”:= | |, S of these schemes.

Let u:S'— S be the canonical morphism, p: S’ — § its composition with
p:S — S, and let p,, p, denote the projections of §” := S’ xS’ onto its factors.
Then we obtain a diagram

pi
Homg(#,8) ——— Homg (p*9 ,p*9) ——= Homy.(¢*F,¢*9)

u* (u x u*

| !

Homy(#,%) — ' Homg(5*#,p*%) —= Homg(§*F,7*%)
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whereg := Po p; = Po p,. Thediagramiscommutativeif, in theright-hand square,
we consider single horizontal arrows, either p¥ and pi*or p% and p#. Furthermore,
u being faithfully flat, the vertical maps are injective. Using this fact, it is easily
checked that the upper row is exact if the lower row has this property. In other
words, we may replace p: S — Sby 7: S’ — Sand thereby assume that Sand S
are affine, say S= SpecR and S = SpecR'. Then the problem becomes a problem
on R-modules.
Let

() R— R 3R @R

be the diagram which corresponds to the projectionsS' == S — S. Weclaim that
the assertion of the proposition followsif we can show that the tensor product of
(*) with any R-module M yieldsan exact diagram. Namely, consider R-modules M
and N such that # (resp. 4} is associated to M (resp. N), and assume that we have
exact diagrams

M—>M®R ,:M®RRI®RR,’

N-—N®zR =3N®R @R

Then the injectivity o N— N ®; R' implies the injectivity of the map p* in the
assertion. Similarly, it is seen that any R'-homomorphism M ®; R' — N ®z R,
which corresponds to an element in ker(p¥, p%), restricts to an R-homomorphism
M — N.Thisyieldsimp* = ker(p%, p%). Sincethe opposite inclusionistrivial, our
claim isjustified. So, in order to finish the proof of the proposition, it remains to
establish the following result:

LemmaZ2 Let R — R' beafaithfully flat morphismd rings. Then,for any R-module
M, the canonical diagram

M-—>M®g R =3MQ@zR QR

is exact.

Proof. We may apply afaithfully flat base change over R, say with R'. Thereby we
can assume that R — R' admits a section R' — R. So all the maps in the above
diagram have sections, and the exactness is obvious. O

Next wewant to introduce descent dataand the cocyclecondition characterizing
them. Set S :=S x5S x5 8, and let p;: S" — S’ be the projections onto the
factors with indices i and j for i < j;i, j=1, 2, 3. In order that a quasi-coherent
§’-module ©" with covering datum ¢ : p¥#’' — p% %’ belongs to the essential
image of thefunctor # —— p*&, it is necessary that the diagram

e P30
% % gF ¥ ok G — pk ¥ G % % g
pPIpTS — > P12P3 S = piapiF ——— Paps S

pispi 7’

pisp3F’
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is commutative; the unspecified identities are the canonical ones. Namely, if #' is
the pull-back under p of a quasi-coherent S-moduleand if ¢ isthe natural covering
datum on £, then thediagramiscommutative, because all occurring isomorphisms
are the canonical ones. The commutativity of the above diagram is referred to as
the cocycle conditionfor ¢; in short, we can writeit as

PTa@ = P30 ° phao

It correspondsto the usual cocyclecondition on triple overlaps when aglobal object
isto be constructed by gluing local parts. A covering datum ¢ on %’ which satisfies
the cocycle condition is called a descent datum on . The descent datum is called
effective if the pair (#”, ) isisomorphic to the pull-back p*# of a quasi-coherent
S-module & where, on p*%, we consider the canonical descent datum. Also we
want to mention that the notions of covering and descent data are compatible with
base change over S.

InthecasewhereSand S are affine, covering and descent data can be described
in terms of modules over rings. Namely, let S = SpecR, S = SpecR', and consider
a quasi-coherent S’-module %’ with a covering datum ¢ : p¥ %’ — p¥ %', where
F' is associated to the R'-module M'. Then p¥.%’ and p%¥%’ are associated to
M'®; R and R' ®z M, both of which are viewed as R' ®; R'-modules. Thus the
covering datum ¢ on &' corresponds to an R’ ®; R’-isomorphism

M @R =R @M

which, again, will be denoted by ¢. Using the canonical map M' — M' ®; R
as well as the composition of the canonical map M' — R ®z M’ with ¢ ', we
arrive at a co-cartesian diagram M' =3 M' ®; R' over the canonical diagram
R =3 R ®; R. This means that, considering associated arrows in both
diagrams, M' ®x R is obtained from M' by tensoring with R' ®; R' over R.
Conversely, any such co-cartesian diagram determines a covering datum on M’
and, hence, on &#'.

If ¢ isadescent datum on %, we can pull it back with respect to the projections
p;:S — S'. Due to the cocycle condition, the various pull-backs of #” to $” can
be identified viathe pull-backs of ¢. Thereby we obtain in a canonical way homo-
morphisms (depending on ¢)

M @R =S M QxR QR
such that the diagram
(*) M S3M®;R =M @R ® R
is co-cartesian over the canonical diagram
(o) RQR SR QxR QR
Furthermore, (*) satisfies certain natural commutativity conditionsjust aswe hasz
them for (+x) or for the associated diagram
s"=s =5,
where p, o p;, = p; o p; 3, €C. Conversely, one can show that each co-cartesian
diagram (*) over (%), which satisfies the commutativity conditions, determines a
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descent datum on M', and henceon #'. It isclear that a descent datum ¢ on %' is
effectiveif and only if the associated co-cartesian diagram M' =S M' ®; R can be
enlarged into a commutative co-cartesian diagram

M—M =M@z R
over the canonical diagram
R—R 3R &R.
Returning to the case where Sand S’ are arbitrary schemes, it is sometimes con-
venient to formulate the cocycle condition within the context of T-valued points of
S, where T is an arbitrary S-scheme. So consider a quasi-coherent S’-module %’
with a covering datum ¢ : p¥ &' — p¥F'. For ¢,, t, € S'(T), denote by
O, T F — 3F
the pull-back of ¢ under the morphism (¢4,¢,): T — S'. Adding a third point
t; € S'(T), we can consider the morphism
(ty,15,t3): T—> 8"

and composeit with each one of the projections S — S”. Then, pulling back ¢ to
T, we see that ¢ satisfies the cocycle condition if and only if

Dtit2 = Py, ° Prir
for al ¢, t,, t; € §(T) and al T. In particular, for t =¢t, =t, = {5, the cocycle
condition implies ¢, , = ¢?, and, hence, ¢, , = id. For example, if t : S — S is the
universal point of S, weseethat the pull-back of adescent datum ¢ : p¥ %' — p¥ %’
with respect to the diagonal morphism A: S — §” yidlds theidentity on #".

Lemma 3. Assume that the morphismp : S — S admits a section. Then any descent
datum ¢ on a quasi-coherent S’-module ' is effective. More precisely, the choice of
a section s: S — S of p determines an Smodule &, namely & = s*%", such that
p*Z isisomorphic to the pair (%', ¢).

Proof. Writing T := S, let usconsider the pointst := idg and 7 := s o p of S'(T).
Then t*#’ = #' and i*#' = p*#, and we can consider the isomorphism
f= (pt’;:f/gp*ﬁ

It is enough to show that f is compatible with the descent datum on p*.#; ie., we
have to show that the diagram

prF —— piF

j if l psf

Pip*F == pip*F
iscommutative. In order to do this, consider the following S-valued points of S:

Pi, P, and ty:=sopop =sopop,.
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Then ¢ = ¢, ,, since(p;,p,): S' — S" istheidentity, and we have
pif=rptoi=0,,., fori=12,

since the diagram

NG ($28 ta) ’
Xg S

\\\\\ ///in—Msom

is commutative. Now the cocycle condition for ¢ yields

Doty = Ppauts © qux:Pz
and thus
pif =pifeo. U

Now we are ready to prove the desired result on the descent of quasi-coherent
S’-modules.

Theorem4 (Grothendieck).Let p: S — Sbe faithfully flat and quasi-compact. Then
the functor # — p*#, which goes fromquasi-coherent S-modules to quasi-coherent
S-modules with descent data, is an equivalence of categories.

Proof. We know already from Proposition 1 that the functor in question is fully
faithful. So it is enough to show that each descent datum on a quasi-coherent
S’-module iseffective. Thelatter isclear by Lemma3if p: S — S admitsa section.
We will reduce to this case.

First observe that we may replace the morphism p: S’ — S by a composition
p:8-5S £, s whereu:§'— S is faithfully flat and quasi-compact. This is
true since the functor 9"+ u*%" is fully faithful (see Proposition 1) and since
descent data on #” (with respect to p) can easily be pulled back to descent data on
u*&’ (with respect to p). So, proceeding as in the proof of Proposition 1, we may
assume that Sand S' are affine, say S= SpecR and §’' = SpecR'.

Let M' be an R-module with descent datum ¢ : M' ®z R' =5 R ®; M'. Then
¢ determines a co-cartesian diagran M' = M' ®; R over R =3 R ®; R If M"
descends to an R-module, we know from Lemma 2 that it must descend to the
R-module

K:=%ker(M' =S M'®;R).
So let us work with this module. We claim that the diagram
K—M=7TM®®zR
is commutative and co-cartesian over
R— R 3R @ R

and, hence, that ¢ is effective. In order to verify this, we may apply a faithfully
flat base change and thereby assume that R — R' admits a section. Then it
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follows from Lemma 3 that (M', ¢) descends to an R-module M. More precisely,
'3 M' ®; R' extends to a commutative co-cartesian diagram

M—M3M @R
over
R-+~R 3R ®R .
Since M ismapped bijectively onto K by Lemma 2, our claim is justified. O

Keeping the morphism p:S — S, we want to study the problem of when an
S’-scheme X' descends to an S-scheme X. The general setting will be the sameasin
the case of quasi-coherent modules, and the definitions we have given can easily be
adapted to the new situation. For example, a descent datum on an S-scheme X' is
an S”-isomorphism

¢:piX —piX’

which satisfies the cocycle condition; p¥ X' is the scheme obtained from X' by
applying the basechange p; : S' — S. Againthereisacanonical functor X — p*X
from S-schemes to §'-schemes with descent data. If p: S -— Sisfaithfully flat and
guasi-compact, we see from Theorem 4 that this functor gives an equivalence
between affine S-schemes and affine §’-schemes with descent data. More generaly,
the same assertion is true with affine replaced by quasi-affine (use Theorem 6(b)
below). Thus, in this case, descent data on affine or quasi-affine S’-schemes are
awayseffective. Recall that an §’-scheme X' iscalled affine (resp. quasi-affine) over
S if, for each affine open subscheme S; < S, the open subscheme S; xg X' of X'is
affine (resp. quasi-affine). T o be precise, one has, of course, to mention the fact that
onecan easily generalize Theorem 4from quasi-coherent modul es to quasi-coherent
algebras, so that it can be applied to structure sheaves of schemes over S or S.
Working with an additional structure such asa multiplication on a quasi-coherent
S’-module, this structure descendsif it is compatible with the descent datum.

Itisnot truethat descent data on schemes are alwayseffective, evenif p: S — S
is faithfully flat and quasi-compact; see Section 6.7. So one needs criteria for
effectiveness. First we mention that Lemma 3 carries over to the scheme situation.
Since the proof was given by formal arguments, no changes are necessary.

Lemma5. Assumethat p: S — S hasa section. Then all descent data on S'-schemes
are effective.

In order toformulate another criterion, consider an S’-scheme X' with a descent
datum ¢ : p¥ X' — p¥ X', and let U’ be an open subscheme of X'. Then U’ iscalled
stable under ¢ if ¢ induces a descent datum on U’; i.e., if ¢ restricts to an iso-
morphism p¥U’ = p% U.

Theorem 6. Let p: S — S befathfully flat and quasi-compact.
(@) Thefunctor X — p*X from S-schemes to S-schemes with descent data is
fully faithful.
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(b) Tosimplify,assume Sand S affine. Then a descent datum ¢ on an S'-scheme
X" is effective If and only if X' can be covered by quasi-affine (or, alternatively, by
affine) open subschemes which are stable under ¢.

Proof. Assertion (a)isan immediate consequence of Proposition 1. Namely, consider
S-schemesX and Y, and write X', Y' for the schemes obtained by the base change
p:S —+ S Thenitisto show that the sequence

Homg(X, Y) > Homg (X', Y') =3 Homg. (X", Y")
123

isexact. The problemislocal on Sand Y. So we may assume that Sand Y areaffine.
Furthermore, replacing S by afinitedigoint sum of affine open parts of §', we may
assume that S is affine. Then, up to alocal consideration on X, we can pose the
problem in terms of quasi-coherent algebras so that Proposition 1 can be applied.
In order to verify theif-part of assertion (b), we may use (a) and assume that X'
isquasi-affine. Thismeansthat X' is quasi-compact and can be realized as an open
subscheme of an affine scheme or, equivalently, that the canonical map

X' —> SpecT(X', 0y)) =: Z

is a quasi-compact open immersion; cf. [EGA 117, 5.1.2. Let S= SpecR and S =
SpecR'. Then, using the fact that, for quasi-compact R’-schemes, the functor o
global sections commutes with flat extensions of R, the descent datum on X' gives
a descent datum on the R’-module I'(X’, @y.) and hence on the affine S’-scheme Z'.
Thusit followsfrom Theorem 4 that Z' descendsto an affineS-scheme Z. Consider-
ing the canonical projections
2727 %7,
9z

whereZ" isobtained from Z by the basechangeS' — S, weseeg;1(X') = ¢3*(X")
since the descent datum of Z'isstable on X'. However, thisimpliesg 1 (q(X")) = X’;
in particular, the inverse image of ¢(X') with respect to ¢ is open. Using the fact
that g: Z' — Z isfaithfully flat and quasi-compact and that therefore the Zariski
topology on Z isthe quotient of the Zariski topology on Z' (cf.[EGA 1V,],2.3.12),
we see that ¢(X') isopen. So X' descends to the quasi-affine piece g(X') of Z. The
only-if-part of assertion (b)istrivial. O

Wewant to add acriterionfor theeffectivenessdf descent data on schemeswhich
uses ample line bundles. Let us recall the definition of ampleness, cf.[EGA 1], 4.5
and 4.6. An invertible sheaf ¥ on a scheme X is called ample on X if X is
guasi-compact and quasi-separated, and if for some n > 0 there are global sections
l1,...,1, generating ¥®" such that X, , the domain where the section I; generates
$®" is quasi-affinefor each i. In fact, if .# isample on X, then, for any n > 0 and
any global section 1of #®*, the open subscheme X, = X isquasi-affineaswill follow
from arguments given below. An invertible sheaf .# on an S-scheme X is called
S-ampleon X (or relatively ample over S) if there existsan affine open covering {S;}
of Ssuch that therestriction of # onto X xg S;isamplefor al j. The definition of
S-amplenessisindependent of the choice of the particular covering {S;}, see[EGA
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], 4.6.4 and 4.6.6. If X admits an S-ample sheaf, then, by definition, it is automat-
ically quasi-separated over S.

Consider now a quasi-compact and quasi-separated morphismf : X — Sand
an invertible sheaf # on X. For each ne N, the direct image f, #®" is a quasi-
coherent sheaf on S, seel EGA 1], 9.2.1. Let U, be the open set of al points x € X
such that the canonical morphism

(f*ful L), — L2 "

issurjective. Then U, consists of all pointsx e X such that there isa section of #®"
which is defined over the f-inverse o a neighborhood o f(x) in S and which
generates #®" at x. Denote by U the union of al U, for n> 1. Let
A= @ f (2%
n20

be the quasi-coherent graded S-algebra associated to %, and set P = Proj A ; see
[EGA I1],§ 2. Thereisalwaysacanonical S-morphism r: U — P. Namely, assum-
ing S affine, one shows for each global section 1of #®" with n > 0 that thereisa
canonical isomorphism

(B, 0p) = T(X,, O) |
usgl EGA 1], 9.3.1, and hence a morphism
X,— Pl c,P.

The morphism isan openimmersion if and only if X; isquasi-affineover S. Thereby
it is seen that the sheef ¥ isS-ampleon X if and only if U = X and the canonical
morphismr: U — P isan open immersion.

Returning to the problem of descent relative to a morphism p: S'— S, the
notion of descent data generalizes naturally to pairs (X', #’) where X' is an
§’-scheme and %’ is an invertible sheaf on X'. Namely, a descent datum on such a
pair consists of a descent datum

¢:pfX' — piX’
on X' and of an isomorphism
AP — @* Y,

where %/ is the pull-back of .’ with respect to the projection p¥ X' — X'. Of
course, A must satisfy the cocycle condition, which is a cocycle condition over the
cocycle condition for ¢. More precisaly, introducing the total space L' associated
to &, we can say that a descent datum on (X', 9" )s a commutative diagram

pT’ — pT’
prxX —2— pix’,

wherethe vertical maps are the projections of thelinear fibre spaces p¥ L’ onto their
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bases p#¥ X', where ¢ and 1 are descent data for schemes, and where 1 is an

isomorphism of linear fibre spacesover ¢. Another possibility isto view the descent
datum ¢ as a cartesian diagram

! r i ! ’i) 7
X X8 xs8 =3 X" x5 353X

J J qz l
S//r 5 Sr/ :)_) S/

with natural commutativity conditions (similar to what we have explained for
§’-modules), and to view 1.as an isomorphism

1.gt¥ — g & .

The cocycle condition for 1.can then beformilgted as usual by using pull-backs
with respect to the projections X' xgS xS — X' x5 S".

Theorem 7 (Grothendieck).Let p: §' — S befaithfully flat and quasi-compact. L et
X' beaquasi-compactS’-scheme, and consider an invertibleshesf £ whichisS’-ample
on X'. Then, if thereisa descent datum on (X, %), the descent iseffective on X', and
the pair (X',9") descendsto a pair (X,9 ) with an S-ampleinvertible sheef £ on X.

Wegiveonly asketch of proof for the casewhereSand S are affine. First, using
Theorem 4, the graded S-algebra A* = (P),.. o f/1(£'®"), where f": X' — S isthe
structural morphism, descendsto agraded S-algebra.# = ), A,.. Next, let ' be
aglobal section in some #'®". Then we can write

m

I'=Y a®I
i=1
with global sections a; of @5 and global sections ; o A,,. If I' generates #'®" at a
certain point x € X', at least one of the global sections 1 ® I; must generate #'®"
at this point. Thereby it is seen that X' can be covered by quasi-affine open pieces
X, wherelisaglobal section in some %’®" which descends to a global section in
A . Then the descent datum is stable on the X, and X' descends to X by Theorem
6. Finaly, %’ descendsto £ with respect to the canonical projection X' — X since
one can use Theorem 4 again.

6.2 Some Standard Examples of Descent
We start with an example which shows that the problem of descent occurs as a
natural generalization of a patching problem.

Example A (Zariski coverings). Consider a quasi-separated scheme S and a finite
affine open covering (S,);.; of S. Let S :=[];.;S; be the digoint union of the S;,
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and let p: S"— S be the canonical projection. Note that p is faithfully flat and
quasi-compact. A quasi-coherent §’-module #’ may be thought of as a family of
Srmodules &. Under what conditions does %' descend to a quasi-coherent
Smodule &; i.e., under what conditions can one glue the &, in order to obtain
a quasi-coherent S‘module & from them? By Theorem 6.114 we need a descent
datum for %" with respectto p: S — S. Such a datum consists of an isomorphism
o :prF = piF satisfying the cocyclecondition, wherep, and p, are the projec-
tionsfrom S' onto S. In our case, we have

S'=8xs8=1]] SixsS= 1] 8n5§;,
i,jel i,jel
and on §; xg §; = S;n S;, the first projection p, is the inclusion of S;~ S; into S;
whereas p, istheinclusion of S; nS; into §;. Thus the isomorphism ¢ consists of a
family of isomorphisms

(e gﬂsimsj = %lsimsj
satisfying the cocycle condition, namely, the condition that

@ik|s,-msjmsk = (ij|sirxsjmsk © (Pij|S,-r'\Sjr\Sk

for dl i, j, ke I. So the descent datum ¢ is equivalent to patching data for the
S;-modules %;, and the cocycle condition assures that the patching data are com-
patible on triple overlaps.

Example B (Galoisdescent). Let p: S — S be afiniteand faithfully flat morphism
o schemes, and assume that p isa Galois covering; i.e., thereisafinitegroup I" of
S-automorphisms of S such that the morphism

I'x§S—8", (6,x) — (ox,x) ,

isan isomorphism; I" x S isthe digoint union of copies of S, parametrized by I".
For example, if K'/K is a finite Galois extension of fields, the morphism p:
SpecK' — Spec K is such a Galois covering. Similarly, for a pair of discrete
valuation rings R = R’, the morphism p: Spec R — Spec Ris a Galois covering if
Rishenselian, R is(finite)Ctdeover R, and the residueextension of R'/R isGaais;
use2.3/7 and thefact that R' ishenselian. We want to describe the descent of schemes
with respecttop: S — S.

Consider an §’-scheme X' with an action T" x X' — X" which is compatible
with the action of " on S; i.e., we require that, for each ¢ € T, the diagram

X/ o X/

]

S/_____U__)S/

is commutative (for simplicity, automorphisms given by o are again denoted by
0). Notice that the diagram is cartesian. We claim that an action on X' o the type
just described is equivalent to a descent datum on X'.
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Namely, from the isomorphism
I'x§.-=8, (6,x)— (0x,X),
we obtain an isomorphism
I'xI'x S8 =8, (a1, x) = ((ao )%, X, X) .

Taking these isomorphisms as identifications, the projections p;:S — S and
p;: S — S’ define projections

ITxTx833Txs=33¢
which are described by

P12

—=> (0,1X)

©) (0,1,%) —25 (@on,x), (6,X)

D23 (’L’, X)

Now assume that we have an action o I- on X' which is compatible with the
action of T on S. Then we can use the same definitions (0) in order to define
"projections” from I’ x I' x X' toI' x X' and from the latter to X'. Thereby we
obtain adiagram

IxTx X 3T xX =X

- T

IxIT'x§ 3T xy=¢
where the vertical maps are the canonical ones. Since the diagram (x) is cartesian,
al squares above are cartesian if in the first and second rows maps are considered

which correspond to each other. Furthermore, in the last row we have the usual
commutativity relations

(i) propPi2=P1°P13>
(i) pyopz3 =Ps°Pi12>
(i) ps© P23 =P2° P13
The same relations hold for the first row. Indeed, (ii) and (iii) are trivial whereas (i)
isequivalent to the associativity condition
oltx)=(co1)x; g,tel’, xeX'.

Soitisclear that (%) yields a descent datum on X', the associativity of the action
accounting for the cocycle condition.

Conversely, start with a descent datum ¢ on X'. Then, applying the base change
X' — §" to the morphism

t P t
IrxXCxS3Trxs = s,
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we obtain thefollowing canonical diagram
I'xI'x X' — I'x X’ X'

o 1 J J

I'xI’'x§y — I'x§ — §

which has cartesian squares. I n particular, we have canonical isomorphisms
I'x X' 58 x¢ X',
and
FxTx X 58 xg8 xg X'

Thereforewe can write the descent datum ¢ in theform of a diagram (==). Further-
more, we may assume that (***) formsa part of (**), the one, wherein both rows
o (x+) only the lower morphisms are considered. We claim that the morphism
I'x X' — X" over p, :T x & — §' defines the desired action on X'. To justify

this, notefirst that each ae T” acts as an automorphism on X'. Next, the commuta
tivity conditions (i) and (iii) imply that the morphisms

IxI'x X’ 3T x X

aredefined asin (O)and, finally, as before, condition (i)accountsfor the associativity
d theaction o I" on X'.

As for the effectiveness of the descent, one may look at the condition givenin
Theorem 6.1/6. Assuming S and, hence, S &ffine, as well as X' quasi-separated, a
necessary and sufficient condition is that the I'-orbit of each point x € X' is con-
tained in a quasi-affine open subscheme o X'. Namely, considering translates of
such subschemes under elementsae I' and taking their intersections, we can cover
X' by quasi-affine open pieces which are |--invariant and hence stable under the
descent datum. For example,if X' — S isquasi-projective,thecondition isfulfilled,
and the descent is dways effective.

Example C (Descent from R to R, where R = R is an étale extension of discrete
valuation rings with same residue field). Let K (resp. K") be thefidd of fractions of
R (resp. R'). We want to show the following result on the descent from R to R,
which will befurther generadized in ExampleD.

Proposition C.1. The functor which associates to an R-scheme X thetriple (X, X', 2),
consisting of the K-scheme Xg := X ®g K, the R'-scheme X' := X ®; R, and the
canonical isomorphism 7: Xy ®x K' =5 X'®g K', is fully faithful. Its essential
image consists of all triples (X, X', z) which admit a quasi-affine open covering.

The notion of an open covering o a triple (X, X', z) is meant in the obvious
way. Such acoveringconsistsa afamily o triples(Uy ;, Ui, t;), wherethe Uy ; (resp.
the U;) form an open covering d X (resp. X'), and where 7 restricts to an
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isomorphism 1;: Ug; ®x K' + U] ®g K'. The covering is called quasi-affineif all
Ug.; and al U; are quasi-affine.

Starting with a triple (X, X’,7), we have the canonical descent datum on
X ®x K'. Transporting it with z, we obtain a descent datum on the generic fibre
X'®g K’ o X', and by the lemma below, this descent datum extends canonically
to adescent datum on X'. Then the assertion of Proposition C.1 isaconsequence of
6.1/6. So it isenough to show:

Lemma C.2. For each R’-scheme X', any descent datum with respect to K — K' on
the generic fibre of X' extends canonically to a descent datumwithrespect toR— R
on X',

Proof. Let us use the notations R' and R" for R ®; R and R ®; R’ ®; R".
Since R' is étale over R, the diagonal embedding SpecR' — SpecR" is open (cf.
2212). Thus its image, the diagonal A" of SpecR”, is a connected component
of SpecR". Furthermore, since the residue extension of R’/R is trivia, the special
fibre d A" coincides with the special fibre of SpecR"; i.e, SpecR' = A" U T"
where the special fibre of T" is empty. A similar assertion is true for the diagonal
A" in SpecR".

Write K" and K" for the two- and threefold tensor products of K' over K.
Furthermore, consider an R’-scheme X' and a descent datum with respect to
K — K' on its generic fibre. Indicating generic fibres by an index K, the descent
datum on X corresponds to a diagram

" — " —_—> 1
XYy /3 Xy = Xx

- 11T

SpecK = SpecK" == SpecK'

with cartesian squares such that the rows satisfy the usual commutativity condi-
tions. In order to extend the descent datum to a descent datum on X', it isenough
to extend the diagram (*) to adiagram

— .

1" ” !
X J— X = X

- 1017

SpecR” =3 SpecR” —3 SpecR

of the sametype. In order to do this, we haveto realizethat, by restriction, thelower
row in (*) gives rise to unique isomorphisms
(%) x =5 Ax =5 Spec K7,
and that the upper row in (*) gives rise to unique isomorphisms
(P") (A% 25 () (A) = X
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That themaps Xy =3 X} coincide on the p”-inverse of A% followsfrom thefact that
the pull-back of descent data with respect to diagonal maps aways yields the
identity map (cf. 6.1). Asimilar reasoning applies to the maps Xy — X.

Now it is easy to extend (*) into (x*). Since the special fibre of SpecR” is
concentrated at the open and closed subscheme A", similarly for SpecR” and its
diagonal A , we have just to extend the part of (*) which lies over (x#x). However
thisistrivia by the above isomorphisms.

Example D (Descent from R to R where R < R is a pair of discrete valuation
rings with same uniformizing element = and with same residue field). The situation is
more general than the one considered in Example C. For example, R' can be the
maximal-adic completion of the discrete valuation ring R. But we will see that,
nevertheless, the results C.| and C.2 remain valid in this case.

Consider a pair o discrete valuation ringsR = R' asrequired, and denote their
fieldsdf fractionsby K and K'. By anindex K we will indicate tensor products with
K over R. Let 6: SpecR — SpecR” be the diagonal embedding where, as usudl,
R'=R ®z R.

LemmaD.1. Let M be an R"-module and denote by M' its pull-back with respect to
6. Assume that the quotient M”/T” is flat over R' where T” is the kernel of the
canonical map M” — M. Then the canonical diagram

M// MI

|

" !
Mg — My

is cartesian; i.e., M” is a fibred product of Mg and M' over My (inthe category of
sets, resp. R-modules, resp. R”-modules).

For example, the flatness condition on M”/T” is satisfied if we start with an
R'-module M' and take for M the pull-back of M’ with respect to a projection
p;i - SpecR' — SpecR.

Proof. Since the horizontal maps are surjective, we may extend the diagram to a
commutative diagram o exact sequences

0 L M" S M — 0
0 s Ly ~ M} My —— 0

The second row can be thought of as being obtained from the first one by taking
tensor products over R with K. We claim that the map L — Lg isan isomorphism;
ie., that L isaready a K-vector space. Then it isimmediately clear that M" is the
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fibred product of Mg and M' over My; the universal property is checked by means
of diagram chasingin (a).

So it remains to show that L isalready a K-vector space. Let us consider the
first row of (a) for the special case where M = R". Thereby we obtain the exact
sequence

(%) 0—3 —>R'—R —0

of R-modules (or, alternatively, R”-modules). I n terms of R-modules, the sequence
is split exact, since R"— R' admits a section. In particular, taking the tensor
product of (+*) over R with R/z"R for any n > 0 gives a split exact sequence

0 - Sll/nnSIl _ R///TEHR// — R//TCnR/ - 0 .

By the assumptions on R and R', we see that the map
R///nnR// - Rl/nan

is bijective. Thus, for n= 1, we have 3"/z3” = 0 and, therefore, 3" = =J". So 3'
is a K-vector space since R" and, hence, 3' have no n-torsion. Now, tensoring
(=+) over R" with M" and using the fact that M" is the pull-back of M with
respect to the diagonal morphism Spec R' — Spec R”, we get the exact sequence
3'®M"—M — M'— 0. Comparing it with the first row in (a), we have a
surjective R-homomorphism 3' ®,~ M" — L. Therefore, since 3" is a K-vector
space, the same must be truefor L, provided L has no n-torsion.

Thusit remains to show that the n-torsion of L istrivial. To do thiswe consider
first the case where M = T”. Using a limit argument, we may assume z"M"” = 0
for some integer n. But then the isomorphism R"/z"R" =, R'/z"R’' yields an
isomorphism ~ i )

M// — M///nnM//___)M/n M = M
so that L istrivial in this case. In the general case we tensor the exact sequence
0 —_— T// - M// — M!I/TI/ —_ 0
over R" with R, thereby obtaining the sequence
0 — T// ®R" Rl — M/ — (M///TII) ®R” R/ — 0

Thelatter isexact because M"/T" isflat over R". By thesamereason, (M"/T") ®g- R’
isflat over R' and, thus, T':= T" ®,~ R’ isthetorsion-submodule of M'. Since the
canonical homomorphism M" — M' maps T" surjectively onto T', the first row
of the diagram (=) yieldsan exact sequence

0O—LNnT'—-T'—>T —0

and it follows from the specia case considered above that L ~ T" must be trivial.
So the n-torsion of L istrivial and we seethat L isa K-vector space. Il

Reversing arrows in the definition of cartesian diagrams and fibred products,
onearrives at the notions of co-cartesian diagramsand amalgamated sums. We want
to translate the assertion of the above lemma into a statement on amalgamated
sums of schemes. First note that LemmaD.| remainstrueif wework in the category
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of R-algebrasor R”-algebras. So it yieldsa statement on amalgamated sumsin the
category of affineR-schemesor R”-schemes. We want to generalize it to the case of
not necessarily affine schemes. Set S= SpecR, S = SpecR, S' = SpecR”, and let
6:S — S' bethe diagonal embedding. For any R-scheme X, let Xz = X ® K be
its generic fibre.

Proposition D.2. Let X' be an §’-scheme and let X" be its pull-back with respect to
oned the projectionsp;: §” — S. Then the canonical diagram

Xy = 0* Xz —> X

|

X/ — 5*X” N X//

is co-cartesian in the category d R-schemes (resp. R”-schemes); i.e., in this category,
X" isthe amagamated sum d X' and X under Xx.

Proof. In order to reduce the assertion of the proposition to Lemma D.|, we need
to know that a subset F < X" isclosed if and only if Fn X"isclosed in X' and
Fn Xy isclosed in Xg; note that, in terms of sets, the above diagram consists of
injectionsand that X" = X' u Xg, duetotheassumption on R and R'. The necessity
of the condition is clear. In order to show that it is sufficient, we may assume that
X' is affing, say X' = SpecA'. Then the above diagram of schemes corresponds to
adiagram of R"-algebras

A/I A/

|

" ’
AK AK s

which is cartesian in the category of sets. Now assume that Fn X" isclosed in X'
and that Fn Xg isclosed in Xg. Let 3 = A" and 3% < Ax be the corresponding
reduced ideals. Since F ~ X' coincides with F~ X on X§, we have

rad(Ax3’) = rad(Ax3%) .

The fibred product of 3’ and Ik over A, existsin the category of sets. Denoting it
by 3", we see that we have a canonical inclusion 3" —, A"; furthermore, it iseasily
verified that 3” isanideal in A". Weclam

rad(3’4)=3  and  rad(3'4Y) =TI .

Theinclusion “«<--istrivial in both cases. T ojustify the oppositeinclusions, consider
anelement f e 3. Using the equation between radicals above, it isseen that a power
off hasaninverseimagein 3";sof e rad(3"4’). Similarly, iff € 3%, a power of ©
timesa power off hasaninverseimagein 3' and, hence, f € rad 3" A%. Thisjustifies
the above description of 3 and J%, and it follows that the closed subset of X" given
by 3' coincides with F~ X' on X' and with Fn~ Xg on Xk. Hence Fisclosed in
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X7, dnce X” = X' u Xg. Thereby we have proved the desired topological charac-
terization of closed setsin X". Looking at complements of closed sets, we see that
a subset of X” isopen if and only if its intersection with X' is open in X' and its
intersection with X isopenin Xg.

Now it is easy to verify the assertion o the proposition. Consider a scheme Z
and a commutative diagram

i "
Xy —— Xx

wherethe solid arrows are given and where the square is the canonical diagram. It
has to be shown that the diagram can be supplemented by a unique morphism
X ---» Z.Let W bean open affinesubscheme of Z, let U’ beitsinverseimagein X'
and Uy itsinverse image in Xk. Then by the above topological characterization,
U” := U u Ug isan open subscheme of X" which extends Ug and whose pull-back
with respect to the diagonal embedding 6 : X' — X vyields U. So we can look at
the problem

1 "
UK K

|

Working locally on U” and applying Lemma D.I, we want to show that it has a
unique solution. To do this, it isenough to verify the flatness condition of Lemma
D.l or, equivalently, thefact that the schematic closure X o Xgin X" isflat over
R". Sincetheprojection p, weareconsidering isflat, weseethat X can beinterpreted
asthe pull-back under p; of the schematic closure X' of Xy in X'; cf. 2.5/2. However,
X isflat over R by itsdefinition. So X isflat over R" and LemmaD.l isapplicable.
It follows that the above local problem has a unique solution U” — W and, by
working with respect to an affineopen covering o Z, that theabove global problem
has a unique solution X —+ Z. O

Now we want to explain how the results D.I and D.2 imply that descent data
with respect to SpecK' — SpecK extend to descent data with respectto S — S

Lemma D.3. Consider an R'-module M' (resp. an R’-scheme X')and a descent datum
@ With respect to K — K' on Mg (resp.on X). Then ¢x extends uniquely to a
descent datum with respect to R— R on M' (resp.on X).
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Proof. A descent datum with respect to R— R on M' may be viewed as a

commutative diagram
@

M/ ®R Rl Rl ®R M/
M/ M/ ,

where ¢ is an isomorphism satisfying the cocycle condition and where the vertica
mapsare the canonical ones obtained from thediagonal mapé: S — S'. Similarly,
for the descent datum ¢ on the genericfibre of M', we get the upper square of the
following commutative diagram

(M’ ®g R')g — (R ®r M')x

M’ = M

Then, taking the fibred product of the first and third rows over the second row,
Lemma D.I shows that ¢, extends uniquely to an R”-isomorphism

oM @R —RQR M,

whose pull-back with respect to the diagonal map ¢ : S — S yields the identity
on M'. That ¢ satisfies the cocycle condition followsin a similar way from Lemma
D.1. Thus ¢ isa descent datum on M' which extends ¢; it is unique. For the case
of schemes, the assertionis deduced in formally the same way from Proposition D.2.

]

Now, applying Theorems 6.114 and 6.1/6, we can derive from the above lemma
the desired generalization of Proposition C.1.

Proposition D.4. (a) The functor which associates to each R-module M the triple
(Mg, M',7), where My = M @ K. M =M @i R,and 1: My @ K' = M ® K’
is the canonical isomorphism, isan equivalence of categories.

(b) The functor which associatesto each R-scheme X thetriple (X, X', 1) consist-
ing of the K-scheme X, :=X @ K,theR’-scheme X' = X @ R', and the canonical
isomorphism 7 : Xx ®x K’ -55 X' ®g K', is fully faithful. Its essential image consists
of all triples (Xg, X',7) which admit a quasi-affine open covering.

Finally, we want to mention that it is an easy exerciseto verify assertion (a) of
the proposition by a direct argument. Applying a limit argument, one reduces to
the case of finitely generated R- or R’-modules, whereit is possibleto treat the case
o torsion and of freemodules separately. However, for the purpose of assertion (b),
it was necessary to prove more preciseresults also in the module case.



148 6. Descent

6.3 The Theorem of the Square

Let Sbeascheme, let X bean S-scheme, and consider an S-group scheme G which
acts on X. Using the notion of T-valued pointsfor arbitrary S-schemes T, such an
action corresponds to an S-morphism

GxsX—X, (9, x) > gx,
where
glg’x)=1(gg')x and lyx=x

for arbitrary points g,g' € G(T), x € X(T), and for the unit element 1, € G(T).
Alternatively, interpreting G (resp. X) as afunctor from the category of S-schemes
to the category of groups (resp. sets), we can say that the group functor G acts on
X; ie., that, for each S-scheme T, we have an action of G(T) on X(T) which is
compatible with S-morphisms T' — Tin the usual way. Similarly asin the case o
group schemes, one definesfor any g € G(T) the translation

T, X — X, XF—gx,

where, more precisely, t, has to beinterpreted as a T-morphism from X to X,.

Now let us fix an invertible sheaf % on X. Its pull-back to X; will again be
denoted by ©9.So we can talk about the pull-back of &% with respect to atranslation
1,, g € G(T'), thus obtaining the invertible sheaf

F=1rg
on X,. Let Py be thefunctor which associates to any S-scheme T the group
Pic(T x5 X)/p*Pic(T) ;

i.e., the group o invertible sheaves on X x, T modulo the pull-back under the
projection p: T x, X — Tof invertible sheaves on T. Then Py isa commutative
group functor, and we can consider the morphism

Qy:G— Py, gr—classd ¥,® ¥,

which is a functorial morphism between functors from the category of S-schemes
to the category o sets. We will say that & satisfies the theorem of the squareif ¢
respects group structures and, thus, is a functorial morphism between group
functors. We do thisin analogy to the classical case, where X is an abelian variety
over afidd K, and where the action of G on X isgiven by trandation. In this case,
thefunctor Py s coincides with the relative Picard functor Hc,,  (see8.1/4), and the
classical theorem of the square asserts that, for each invertible sheaf # on X, the
morphism ¢ & isamorphism of group functors. For proofsseeWeil [2],§ V111, n°57,
Thm. 30, Cor. 2, as well as Lang [1], Chap. 111, $3, Cor. 4, and Mumford [3],
Chap. 11, § 6, Cor. 4.

The purpose of the present sectionisto extend theclassical theorem o the square
to a more general situation. For the applications we have in mind, it is enough to
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know that, for each invertible sheaf .# on X, a power .#®" sttisfies the theorem of
the square.

Theorem 1. Let S be a Dedekind scheme and let G be a smooth S-group scheme with
connected fibres which actsonan S-scheme X, where X — Sis smooth, of finitetype,
and has geometrically connected generic fibres. Then, for any invertible sheaf % on
X, thereisan integer n > 0 such that #®" satisfies the theorem of the square.

If the generic fibres of X are proper or if the local rings Oy - at generic points
& e Sare perfect fields, the assertion holds for n = 1.

We will reduce the theorem to the classical situation where Sconsists of afield.
Infact, wewill show that % satisfiesthe theorem of the squareif and only if thisis
the case over each generic point of S; see Lemma 2. In order to carry out this
reduction step, it is necessary to writedown somewhat moreexplicitly the condition
of @4 : G— Py being a morphism o group functors. Let m be the group law on
G. Set T := G x4 G, and consider the projections p;, p, : G xg G =3 Gas T-valued
points o G. Furthermore, let

fiGxgG xg X —GxgG
be the projection onto thefirst two factors. Then we claim that ¢ isa morphism
o group functorsif and only if
M= Ly, p) ® g’p_ll ® gp_zl ®Z,

as an invertible sheaf on G x4 G x5 X, isisomorphic to the pull-back f*.4" o an
invertible sheaf 4" on G x5 G.
Infact, theclassof .# in Py;5(G x5 G)isgiven by

©(m(p1,P2)) — 02(p1) — 02(p2)

Thusitistrivia if ¢4 isamorphism of groupfunctors. I n order to show theconverse,
we mention the following fact:
For an arbitrary S-scheme T and two points g,¢g" € G(T), the invertible shesf
Loa' @ L7 ® Z' ® & isthe pull-back of .# with respect to the morphism
(9,9) xgidy: T xg X — G x5G x5 X .
Soif 4 = f*4 for some invertible sheaf 4" on G x4 G, the commutative
diagram

id
Txg X 2255 6 G xg X

P J lf
T 49, Gx6
where pisthe projection onto thefirst factor, yields

Lna.n @ Ly @ Ly ® L = p*((9.9)4(A)
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and, hence,

0r(m(g,g)) = 09(q9) + 0u(g’) .

This justifies our claim. We will now reduce the theorem of the square to generic
fibres.

Lemma?2 Let S, G, X and ¥ be asin Theorem 1, and let A be the invertible sheaf
on G xg G xg X which has been defined above. Then the following conditions are
equivalent:

(a) There exists an invertible sheaf 4" on G x, G such that A s isomorphic to
the pull-back f *.4" of .4 with respect to the projection f : G x, G x, X — G x5 G;
ie, & satisfies the theoremof the sguare.

(b) For each generic point £ of S, the invertible sheaf .# satisfies the theorem of
the square after performing the base change Speck(¢) — S

Proof. The fact that an invertible sheaf on X satisfies the theorem dof the squareis
preserved by any base change. Thus the implication (a) = (b)is obvious.

In order to show the converse, we may assume that Sisirreducible with generic
point &. If condition (b) is given, there is an invertible sheaf .#; on (G x, G),
satisfying

‘%5 = f;f*('/‘/:f) s

where the index 4 indicates restrictions to generic fibres. We can extend .4; to an
invertible sheaf 4" on G xg G because G xg Gisregular. For example, this can be
done by considering a divisor on (G X, G), which corresponds to .4;. Taking its
schematic closure in G xg G, the associated invertible sheaf on G xg G may be
viewed as an extension of .47.

Now consider the invertible sheaf A' :=.# ® (f*(4#)™ on G x4 G x, X.
Using the projection p: G x5 G x, X — S, weclaim thereisadivisor A on S such
that

M = p*(Us(D)) -

Namely, .#; is trivial. So we can choose a global generator and view it as a mero-
morphic section of .#’. Then it generates .#’ over an open subset of G x5 G x4 X
whose complement consists of at most finitely many fibres over closed points in
S.Thusthereisadivisor Don G xg G x ¢ X whosesupport meetsonly finitely many
fibres of pover closed points of S such that

M= (OG XSGXSX(D) .
Now look at the projection
P3:GxgGxg X — X

Since the structural morphism G xg G— S is smooth and has geometrically
irreducible fibres, the same s true for p; and it is easily seen that the pull-back of
aprimedivisor on X yieldsaprimedivisoron G xg G x4 X.Hence, theWell divisor
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D, whose support is not dominant over X, is of the tye p%(A’) with a Well divisor
A' of X. So we have

(=) M =M (fHAN) = pE(Ux(A)),

and it remains to show that 0(A’) isthe pull-back of an invertible sheaf on S. If X
hasirreduciblefibres over S,asimilar argument as above showsthat A' is pull-back
of adivisor on S. Inthe general case, consider the morphism

g=1(5861dy): X — G x3G x5 X,

whereEeis the composition of the structural morphism X — S with the unit section
S— G. Pulling back (x) with respect to g, we get on the right-hand side 04 (A"). On
theleft-hand side, the pull-back of .# istrivial; it istheevaluation of A at the unit
sectionof G x, G. Furthermore,sincefo q: X — G x, Gfactorsthrough S, we see
that g* (f *(.#"))isthe pull-back of aninvertible sheaf on S. So ¢, (A")isthe pull-back
of aninvertible sheaf on Sasclaimed; we can writeitin theform ¢s(A) with adivisor
AonS.
Now, looking at the isomorphism

M= fHA) @ p*(Us(D))

obtained from (=), we can replace .4 by its tensor product with the pull-back of
04(A) to G x4 G. Then the resulting invertible sheaf, again denoted by A4, satisfies
M= FEA). Thus 4 isasrequired in condition (a). O

The essence of the lemma consistsin the fact that an invertible sheaf .# on X
satisfies the theorem of the square as soon as the pull-back of ¥ to each generic
fibre of X satisfies this theorem. So, in order to establish Theorem 1, it can be
assumed that Sisthe spectrum of afield.

Inthe main case where G = X isan abelian variety we are done by the classical
theorem of the square. For the general case, we refer to Raynaud [4], Thm. 1V. 3.3,
in order to see that a power of % satisfies the theorem of the square. In fact, one
shows that . itsalf satisfies the theorem of the square if the field K is replaced by
afinite radicial extension; cf. Raynaud 4], Thm. V. 2.6.

We want to add two possibilitiesdf obtaining the theorem of the square in special situations, always
assuming that the baseisafield. First, let usconsider the case where X is proper. I n order to show that

@y G—> PX/K

is a morphism o group functors, look at the relative Picard functor Picy, (cf. Section 8.1). Since X is
proper, smooth, and geometrically connected over K, the canonical morphism

PX/K — PiCX/K
isinjective(cf.8.1/4). Soit isenough to show that ¢ definesa morphism of group functors
@1 G — Picy g

Now we use the fact that Picy  isrepresentable by a group schemeover K (cf. 8.2/3) and that (Picy/k)req
isan abelian variety A over K; cf. [FGA], n°236, Cor. 3.2. Since ¢} maps unit sections onto each other,
it must factor through A. Then the rigitiy lemma (cf. Lang [1], Chap. IL § 1, Thm. 4) shows that the
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resulting morphism
G— A
isamorphism o group functors. Hence, it followsthat .# stisfies the theorem of the square.
The second method we want to mention applies to the case where X is a torsor under G. The
applications of Theorem 1 we have in mind refer to this situation. Still considering the case where S
consists of afield K and replacing K by its algebraic closure, we may assume that X coincideswith G

and, thus, is an algebraic group over an agebraically closed field. Then, by the theorem of Chevalley
9.2/1, there is an exact sequence of algebraic groups over K

1—-Gy—G—A—1

where G, is smooth, connected, and affine, and where A is an abelian variety. Since the Picard group
o the affinegroup G, consists only of torsion, one can show that a power of % isthe pull-back of an
invertible sheaf on A. So oneisessentially reduced to the case where G is an abelian variety.

6.4 The Quasi-Projectivity of Torsors

We want to introduce the notion of torsors, a notion whichisclosely related to the
concept of group schemes. Consider a base scheme S, an S-scheme X, and an
S-group scheme G which acts on X by means of a morphism

GxsX—X, (gx)r—gx.

Assume that Gis (faithfully)flat and locally of finite presentation over S. Then X
is called a torsor (with respect to the fppf-topology), more precisely, an S-torsor
under G if

(i) the structural morphism X — S is faithfully flat and locally of finite
presentation, and

(ii) themorphism G x X — X x X, (g9,X) — (gx,X), isan isomorphism.
Viewing G x X and X x, X as X-schemes with respect to the second projec-
tions, we see that the isomorphism in (ii)is, in fact, an X-isomorphism. In other
words, applying the base change X — S to X and G, both schemes become
isomorphic. The sameis, of course, true for any base change Y — S which factors
through X. In particular, if X(S) # ¢, the choice of an S-valued point of X gives
riseto an S-isomorphism from Gto X, and there is no essential difference between
G and the torsor X. We say that the torsor X istrivial in this case. Furthermore,
X — Ssatisfies any of the conditionslisted in[EGA 1V, ], 2.7.1and [EGA 1V,],
17.7.4, for example, being smooth, separated, or of finite type, provided these
conditions are satisfied by G—> S. Namely, in order to apply the cited results, it is
enough to consider thecasewhereSisaffine. Then, sinceX — Sisopen, thereexists
aquasi-compact open subscheme Y of X such that Y — Sissurjectiveand, hence,
faithfully flat as well as locally of finite presentation. So, what we have claimed
follows from the isomorphism G x5 Y -=% X xg Y by faithfully flat and quasi-
compact descent. In particular, if Gissmooth, X issmooth and it can betrivialized
after asurjectiveétale basechange S’ — S because, after performing a suitable base
change o this type, X will have sections by 2.2/14.
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Examples of torsorsareeasy to describe. Consider afinite Galoisextension L/K
o fields. Then SpecL is a (SpecK)-torsor under the constant group Gal(L/K). Or,
consider an invertible sheaf . on a scheme X and remove the zero section from its
associated total space. Theresulting schemeisan X-torsor under the multiplicative
group (G, )x. It istrivia if and only if & istrivial. We want to formulate now the
main result to be proved in this section.

Theorem 1. Let S bea Dedekind scheme, and let X bea torsor under an S-group scheme
G. Assume that G is smooth, separated, and of finite type over S. Then X is quasi-
projective over S. In particular, G itselfis quasi-projective over S.

For the proof we haveto construct an S-ample invertible sheaf .% on X. In order
to do so, we use the theorem of the square.

First we show that, for any effective divisor D on X, the associated invertible
sheaf ¥ := Oyx(D)isS-ampleif X — supp(D) satisfies certain properties.

Proposition2. Let S be a Dedekind scheme and let G be a smooth S-group scheme with
connected fibres which acts on an S.scheme X, where X is smooth and of finite type
over S. Assume there exists an open subscheme U < X such that U is affine over §
and such that U meetsall G-orbitsof pointsin X;i.e., such that theaction of G induces
a surjective morphism G xg U — X. Then, for any effective divisor D on X with
support X — U, the invertible sheaf ¥ = 04(D) is S-ample.

For example, X — U provided withitsreduced structure givesriseto such a divisor
D;¢f [EGATIV,], 21.127.

Proof. In afirst step we want to reduce to the case where Sislocal. So assume ¥
is an invertible sheaf on X such that, for each s e S, the pull-back #(s) of £ to
X(s):== X x4 Speclo,, isample. Then there exist global sections!,, ..., generating
a certain power Z(s)®" such that the open subscheme X(s),, = X (s) where I; gen-
erates #(s)®" is affine; use [EGA 1II], 45.2, or the characterization of ample
invertible sheavesgivenin Section 6.1. By alimit argument, the /; extend to sections
I; of ®" over some neighborhood S’ of s € S and, by [EGA 1V,], 8.10.5, we may
assume that the I/ generate #®" over S, that the projection X xgS — S’ is
separated, and that the open subscheme X, = X xs S’ where I; generates #®" is
affine. Thereby we seethat . isample over anei ghborhood df each point s € S and,
thus, that . is S-ample on X.

Let usassume now that S isthe spectrum of alocal ring R. Since ampleness can
be checked after faithfully flat and quasi-compact base change, as follows from
[EGA 1V,], 2.7.2,it isenough to treat the case where R is strictly henselian. Using
the fact that G has geometrically connected fibres, we see that G operates on the
connected components of X. So we can assume that X is connected. We claim that
itisenough to consider the casewherethestructural morphism X — Sissurjective.
In fact, X — S isopen and, if X — Sisnot surjective, we replace S by theimage
o X. However, doing so, we may loose the property of S being local and strictly
henselian. In this case we have to go back to the beginning and to start the proof
anew. Therefore, by induction on the dimension of S, we are reduced to the case
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where S islocal and strictly henselian, where X — S is surjective, and where X is
connected. Then X has sections by 2.3/5 and, thus, its genericfibreis geometrically
connected by [EGA 1V,], 45.13.1.

In thissituation, wewant to establish the assertion of the proposition. Replacing
the divisor D by a multiple of itself, we can assume that the invertible sheaf
& = Ox(D) satisfiesthe theorem of the square; see 6.3/1. Then thedivisor D, + Dy
islinearly equivalent to 2D, where we have written D, for the translate of D under
g. Hence there isa section 1€ I'(X, £®?) such that

X, =X —supp(D,+D,-)=gUng™'U.

As the intersection of two affine open subschemes of a noetherian scheme, X is
quasi-affine. Furthermore, it follows that . is ample, provided we can show that
the open subschemes gU n g~ U cover X if g varies over G(S).

So it remains to verify the latter fact. Fix a point x € X. Write s for itsimagein
Sand set k = k(s). We claim that thereisa dense open subscheme Z; < G, such that

xegU,ng U,

for each g € Z (k). To see this, we may assume that x isa closed point d X,. Then
we apply the base change k — k' to fibres over s, where k' = k(x) isfinite over k.
Let W be theinverse of U; ®, k' under the morphism

Gk — X, & k', ar—ax,

and write W™ for its inverse under the group law on G, ®, k'. Then, since U
meets all G-orbits of pointsin X and since G has geometrically connected fibres,
Wn W™ is a dense open subscheme o G, ®, k. Furthermore, the relation
X e g(U;®; k') n g (U, ®, K') is equivalent to g 'x e U, ®, k' and gx e U, ®, K.
Thusx € g(U; ®, k') n g™ (U, ®, k') for allg e (Wn W) (k’). Then, using methods
o descent, wefind a dense open subscheme of W~ W™ descending to a dense open
subscheme Z; of G, such that x e gU; g * U, for all g € Z,(k).

Now it is easy to see that the open subschemes gU ~ g 1 U cover X if g varies
over G(S). Namely, we have only to realize that, for each dense open subscheme
Z, = G, o afibreover apoints € S, thereexistsasectionin G(S) which, by restriction
to G,, yiddsa section of Z_. If sisthe closed point o S, thisfollowsfrom 2.3/5. If s
belongs to the genericfibre of S, we can consider the schematic closure of G, — Z;
in G. Its special fibreis nowhere dense in the specia fibre of G so that an argument
as the one given before will finish the proof of Proposition 2.

Later, in 6.6/1, we will use the sameidea df proof again without the restriction
that the base S isof dimension < 1. In this case, one can apply the assertion of 5.3/7
in order to end the proof. ]

In order to derive the assertion of Theorem 1 from Proposition 2, we need some
further preparations. Let G° be the identity component of G; i.e., G° is the open
subscheme of G which isthe union of all identity components of the fibres G, over
points s € S (cf. [EGA 1V,], 15.6.5). Then G° has geometrically connected fibres,
and it acts on X. Therefore we can apply Proposition 2 if we can find an open
subscheme U = X such that U isaffineover Sand such that U meets all GP-orbits
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o pointsin X. As is easily checked on geometric fibres, the latter condition is
equivalent to thefact that U is S-densein X:

Lemma 3. Let X be atorsor under a smooth S-group scheme G which is of finite type
over S, and consider an open subscheme U < X. Then U meets all GP-orbitsof points
in X if and only if U is S-densein X.

In order to really construct an open subscheme U < X as required in Proposi-
tion 2, we have to derive some information on the existence of affine open sub-
schemesdf X.

Lemma 4. Let S= SpecR be an gffine scheme which is noetherian, and consider an
S-scheme X of finitetype whichis normal and separated. Let (x;);.; bea finite family
of pointsof codimension < 1inX. Thenthere existsan affine open subscheme U < X
containing al points x;.

Proof. We may assume that X is connected with field of rational functions L and,
furthermore, that all x; are of codimension 1. Then thelocal rings ¢ , are discrete
valuation rings contained in L, and they are pairwise different since X is separated.
So we can use the approximation theorem forinequivalent valuations (cf. Bourbaki
[2], Chap. VI1,§7, n°l, Prop. 1) and see that

A=) 0,
iel
isasemi-local ring with local components ¢y .. We can write A asadirect limit of
R-algebras 4; of finitetype. Interpreting theelementsof each 4; asrational functions
on X, we obtain for each j a rational map

uJ s x == %eCA]

whichisan S-morphismin a neighborhood of each x;. Since X and 4; are of finite
type over R, our construction shows that ; is an open immersion at each x; if jis
big enough; cf. [EGA IV, ], 8.10.5. Thuswe have reduced the assertion of thelemma
to the case where X is quasi-affineand whereit is easily verified. O

Now we are able to prove the assertion of Theorem 1. As explained before, we
have only to construct an S-dense open subscheme U < X which is affine over S.
In order to do this, fix a closed point s € S. Working over an affine neighborhood
S of sin S and applying Lemma 4, there isan affine open subscheme U’ = X x S
which contains all generic points of X xg §” and al generic points of the fibre X.
Thecomplement of U’in X xg 8’ equalsthesupport of finitely many prime divisors
Dy,...,D, of X x5 8. Removing from S al closed points S such that the support
of some D; is contained in X, we may assume that U’ is §’-dense in X x S.
Proceeding this way with all closed points in S, and using a quasi-compactness
argument, we obtain affineopen subschemes U1, ..., U" of X such that U'isS-dense
over an affineopen part S of S and such that theS' cover S. For simplicity, assume
that S is irreducible with generic point . Let D, be an effective divisor on X,
with support
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let D beits schematic closure in X, and set U := X — suppD. Then U is S-dense
in X since al U; are densein X, and since supp D cannot contain components of
closed fibres of X. Furthermore, U is affine over S. Namely, U x, S is contained
in U'; it differsfrom the affine scheme U’ by the support of a divisor. Therefore the
inclusion U x5 S' =, U' is affine, as can be checked locally, and it follows that
U x S must be affine itslf; f. [EGA 117], 1.3.4. So we have constructed U as
required in Proposition 2, thereby finishing the proof of Theorem 1. O

6.5 The Descent of Torsors

I'n thissection we want to apply the descent techniquesaf 6.1 to torsors under group
schemes. So far we have dealt only with the descent of schemeswithout considering
a group structure or a structure of torsor on them; however, we will see that the
methods of 6.1apply immediately to the new situation. Namely, consider afaithfully
flat and quasi-compact morphism of schemes p:S — S as wdl as an §'-group
schemeG'. Asin6.1,set S”:=S x S, andlet py, p,: S — S bethe projections.
Recall that, in terms of schemes, a descent datum on G with respect to p consists
of an S-isomorphism
¢:pfG — p3G
satisfying the cocycle condition. Using the canonical isomorphisms
p¥(G' x5 G') = pFG x4 pFG, i=12,
one obtains from ¢ a descent datum
¢ x @:pf(G xg G')— p3(G’ x5 G')

on G' x4 G. Talking about descent data on group schemes, it is required that the
descent datum ¢ on G' is compatible with the group multiplicationm: G x5 G —
G, ie., that the diagram

?

PHG x5 G) —2225 pH(G x5 G)

piim) p3(m)

Pr¢  —2—  piG
iscommutative. Viewing p¥ G’ as the S"-group scheme obtained from G' by means
of the base change p,: S— S, the condition simply says that the descent datum
@:piG — p3G

is an isomorphism of S”-group schemes. Then, if the descent is effective, ie., if G
descends to an S-scheme G, Theorem 6.1/6 implies readily that the group structure
descendsfrom G to G and, hence, that G isan S-group scheme.
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The procedureissimilar for torsors. Consider an S'-scheme X' whichisatorsor
under an $’-group scheme G. Let ¢ be a descent datum on G' which is compatible
with the group multiplication on G. Then a descent datum ¢ on X' issaid to be
compatible with the structure of X' asa torsor under G' if theaction

G x5 X' — X'

is compatible with the descent data ¢ and . If ¢ and y are effective, G' descends
to an S-group scheme G and X' to an S-scheme X which is a torsor under G.

In the following, we want to exploit the existence of ample invertible sheavesin
order totreat thedescent of torsors over discrete val uation rings. Sinceit isnecessary
to study the problems on generic fibresfirst, our considerations will include the
more or lesstrivial case wherethe base consists of afield.

Theorem 1. Let R — R bea faithfully fiat extension of discrete valuationrings (resp.
of fields). Let G' be an R’-group scheme which is smooth, separated, and of finite type
over R',and let X' bean R’-torsor under G'. Furthermore, assume that there are descent
data with respect to R+ R on G' and X' such that these data are compatible
with the group structure on G' and with the action of G on X'. Then G' descends
to an R-group scheme G, and X' descends to an R-torsor X under G. Furthermore,
by the properties of descent, G and X are smooth, separated, and of finite type
over R

Before we give the proof, let us discuss some applications of the theorem. First
we go back to Section 5, where we have studied the problem of associating group
schemesto birational grouplaws; cf. 5.115.1n 5213, which appliesto strict birational
group laws, we had worked out a solution for the case where the base consists of a
strictly henselian local ring R whichis noetherian and normal. Now, using descent,
we can show that 5.2/3 remains true if we work over a discrete valuation ring or
over afield, without assuming that the latter is strictly henselian. Thereby we will
fill the gap which was left in the proof of 5115; we refer to Section 6.6 for a more
rigorous approach to the problem.

Corollary 2. Let Rbeadiscretevaluationring or a field, and let mbe a strict birational
group law on an R-scheme U which is separated, smooth, faithfully flat, and of finite
type over R. Then there exists an open immersion U —, G with R-dense image into
a smooth and separated S-group scheme G such that the group law on G restricts to
mon U. The group scheme G is unique up to canonical isomorphism.

Proof. Write R for a dtrict henselization of R. Then, applying the base change
R— R to our situation, we obtain a strict birational group law m on the
R’-scheme U’ = U ®¢ R. It has a unique solution by 5.2/3; i.e, there is an open
immersion U' =, G' into an R’-group scheme G', just as we have claimed for U
and m.

In order to prove the corollary, it is enough to extend the canonical descent
datum on U’ to adescent datum on G whichiscompatiblewith the group structure
on G. Then Theorem 1 can be applied. As usual, set R' = R ®, R and write p;,
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p, for the projectionsfrom SpecR" to Spec R'. The canonical descent datum on U’
consists of the canonical isomorphism

prU = iU’
Working over the base R", we see immediately from the uniqueness assertion in
5.113 that thisisomorphism extends to an isomorphism of R”-group schemes

piG - p3G
A similar argument shows that the isomorphism satisfiesthe cocycle condition; so
we have a descent datum on G' as required. [

As a second application, we want to discuss the existence of Néron models for
torsorsin thelocal case. Since, over strictly henselian valuation rings, torsors under
smooth group schemes are trivial, the problem isa question of descent.

Corallary 3. Let R = R' = R™ be discrete valuation rings, where R*™ is a strict
henselization of R, and let K, K' and K*" denote the fields of fractions of R, R and
R, Furthermore, let X be a K-torsor under a smooth K-group scheme Gy of finite
type, and assume that, after the base change K — K', there are Ndron models G of
Gg and X' of X,. over R. Then G (resp. X') descends to a Nkron model G of G
(resp. X of X,) over R. Furthermore, if the torsor X isunramified, i.e., if X (K™ # &,
the structure of Xy as a torsor under Gy extends uniquely to a structure of X asa
torsor under G.

Postponing the proof for a moment, let usfirst explain why X might not be a
torsor under G. The universal mapping property of Néron models implies that the
action of Gg on X extends uniquely to an action of G on X giving rise to an
isomorphism

GxgX—X xz X, (g, x) — (gx,x) .

However, in general, X will not be atorsor under G, since the structural morphism
X — SpecR might not be surjective; i.e., it can happen that the special fibre of X
isempty. Dueto 2.3/5, the latter isthe caseif and only if X (R*")isempty or, by the
Neron mapping property, if and only if X (K**)is empty. The torsor X is called
ramified if X(K*")= ¢, and unramified if X, (K*")# gf. Combining the assertion
of 1.3/1 with the preceding corollary, we can say:

Corollary 4. Let R, K, K** be as before, and let X be a K-torsor under a smooth
K-group scheme Gy of finite type. Then the following conditions are equivalent:

(@) Xk admitsa Ndron model over R.

(b) X(K*")isbounded in X.

(©) Xy isramified or Gx(K*") isbounded in G.

Proof of Corollary 3. Asfar as the NCron model of X, is concerned, the assertion
istrivia if X' hasempty specia fibre and thus coincides with X .. So assume that
the latter is not the case and, hence, that X' is a torsor under G. We claim it is
enough to verify that the canonical descent data on Gi. and Xy extend to descent
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dataon G and X'. Namely, the extensions are unique since both G' and X" areflat
and separated over R'. By the same reason, we obtain the compatibility of the
descent data with the group structure of G and the structure of X' asatorsor under
G. Then Theorem 1 is applicable, and it followsthat the pair (G, X") descends to a
pair (G,X) over R. That G and X satisfy the universal mapping property of Néron
models is a consequence of 6.1/6 (a) and, again, of the fact that G and X' are flat
and separated over R'. So, as claimed, it is enough to construct extensions of the
canonical descent data on Gi. and Xy.. Next, observe that G and X' are of finite
type over R. SinceR' = R™, we see by a limit argument that G' and X' (aswell as
the group structure of G' and the structure of X' as a torsor under G') are already
defined over an étale extension of R. So it is enough to consider the case where R
isetale over R.

Now write R”:= R ®,; R' and let p;,: SpecR' — SpecR', i = 1, 2, be the
projections. Then, since the formation of Neron models is compatible with etale
base change (cf. 1.2/2), we see that p¥ (X"} isa Neron model of p#(X%.) over SpecR".
Thus, by the Neron mapping property, the canonical descent datum

px 2 Y (Xk) — (X%

extends to an isomorphism
@ :pT(X") — p3(X)

which, in fact, constitutes a descent datum on X'. In the same way, the canonical
descent datum on Gy is extended to a descent datum on G. O

Remark 5. The assertion of Corollary 3 remains valid if, instead of a pair R ¢ R
where R iscontained in a strict henselization of R, one considers a pair of discrete
valuation rings R = R' such that a uniformizing element of R gives rise to a
uniformizing element of R' and such that the residue extension of R’/R is trivial.
For example, R' can be the maximal-adic completion of R (actually,itisonly neces-
sary torequirethat R isof ramification index 1 over R; see 7.211). Namely, reviewing
the proof of Corollary 3, thefirst part, which reduces the assertion to the problem
of extending descent data from Gg. to G (resp. Xg to X'), remains valid. That the
required extensions of descent data exist is a consequence o Lemma 6.2/D.3.

It remainsto give the proof of Theorem 1. For the applications in Corollaries 2
to 4 which have just been discussed, the theorem is not needed in itsfull generality.
Namely, in thefirst case (Corollary 2), we know that

(a) there exists an R’-dense open subscheme U' c X', stable under the descent
datumof X', such that the descent is effective on U',

whereas in the second case (Corollaries 3 and 4) we know that
(b) K', the field of fractions of R, isalgebraic over K, the field of fractions of R.

Both properties can simplify the proof substantially. In order to demonstrate
this, we will first establish the theorem under the additional assumption (a): and
then under (b). Finally, we will indicate how to reduce the general case to the
situation (a). Also we want to mention that we have only to work out the descent
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for the torsor X', because G' can be handled in the same way by viewing it as a
trivial torsor under itsalf.

As afirst step we show that, independently of conditions (a) or (b), the descent
we have to perform is always effective on generic fibres. So consider the extension
K — K" of the fields of fractions of R — R'. Since X}. is of finite type over K',
we may use alimit argument and thereby replace K' by a K-subalgebra C of finite
type. Then the quotient C/m by some maximal ideal m = C isa finite extension of
K. If [C/m:K]=1, the morphism SpecC -— SpecK has a section, and the
descent with respect toit iseffectiveby 6.1/5. If [C/m: K] > 1, the same argument
applies to Spec(C ®g C/m) — Spec C/m so that we may replace K' by C/m.
Thereby we are reduced to the case where[K': K] < oo, and we may assume that
K’ isquasi-Galois, or since the descent is trivial for radicial extensions, that K' is
Galoisover K. Then the descent on X}. isa Galois descent (seeExample 6.2/B) and,
in order to show it is effective, it isenough to know that finitely many given points
of X are always contained in an &ffine open subscheme of X%.. That the latter
condition isfulfilled can be seen either from the quasi-projectivity of X. (use 6.4/1)
or, in a more elementary way, by using standard translation arguments. So the
descent iseffective, and X}, descendsto a K-scheme X .. This settles the assertion of
Theorem 1 for the case where R and R’ arefields.

Next, let us assume that condition (a) is satisfied. Then U' descends to an
R-scheme U, where U is open in X. Applying Lemma 6.4/4 to U, we can find an
R-dense affine open subscheme of U, and hence, by pulling it back to U’, an
R'-dense affine open subscheme of U’ which is stable under the descent datum on
X'.Inother words, wecan assumethat U'isaffine. Weclaim onecanfind an effective
divisor D' on X" with support X' — U’ such that D' isstable under the descent datum
on X'. Denoting the descent datum on X' by ¢ : pf X' — p%¥ X', the latter means
that p¥ D’ corresponds to p% D’ under the isomorphism ¢. In order to obtain such
adivisor D', choose an effective divisor Dy on X with support X — Uy (cf.[EGA
Iv,], 21.12.7), and define D' as the schematic closure of the pull-back of Dy to X%..
By the properties of the schematic closure, the descent datum on X' extends to a
descent datum on the pair (X',9') where &’ := (4(D’). Considering the action of
the identity component of G' on X', we conclude from 6412 and 6.413 that .#’ is
ample. Hence, 6.1/7 shows that the descent is effective on X'. This settles the
assertion of Theorem 1 if condition (a)is given.

Now let usassume that condition (b)is satisfied. We want to reduce to condition
(8). Applying Lemma 6.414, there is an R’-dense affine open subscheme Q' ¢ X'.
In particular, Fg. := Xg. — Qf. is nowhere dense in X% and, since K' is algebraic
over K, itsimage Fy in Xy is nowhere dense. Set Uy := X — Fx. Then Uy =
Uy ®x K’ is a dense open subscheme of Qf.. Subtracting from X' the schematic
closureof X4 — Ui wearriveat an R’-dense open subscheme U’ of X' whose generic
fibreis Ug.. Furthermore, by construction, U' is stable under the descent datum on
X', and it is quasi-affine since U’ ¢ &'. Thelatter inclusion is verified by using the
fact that X' — Q' isthe support of adivisor and that, since ' is R’-dense in X', the
schematic closure of X — Q% in X' coincides with X' — . In particular, the
descent is effective on U' by 6.1/6, and we have thus reduced assumption (b) to
assumption (a).
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In order to prove Theorem 1 in its general version, some preparations are necessary. Consider a
smooth and separated scheme X d finite type over a discrete valuation ring R. Let K be the field
of fractions o R, and let k be the residue fidd of R. Writing A :=I'(X, 0), we have a canonica
morphism

u: X — Spec A

whoseformation is compatible with flat base change. For eachf < A, we denote by A, the localization
of Abyf and by

up: X, — SpecA,

the morphism obtained from u by the base change Spec A. —» SpecA.

In this situation, u is o finite type since X is d finitetype over R. Furthermore, Spec 4 isflat over
R and normal since the sameistruefor X. Sincetheformation of global sectionson X commutes with
flat base change, there are canonical isomorphisms

Ag = A®g K =T(Xy, Oy)
and, forf € A,
A, 2 T(X,,0) .
Moreover, we have a canonical injection
A= A®gk < T(X,, 0x,) .

So aglobal section h € A vanisheson the special fibre X, if and only if h e 74, wherer isa uniformizing
element of R.

Lemma 6. Let u: X — SpecA be as above and assume that the generic fibre X is affine. Then ug:
X, — SpecA, isanisomorphism and, if X, # &, there exists an element f € A suchthat X, n X, # <
and such that u, : X, —> Spec A, is an isomorphism.

Proof: The first assertion is clear. Next, assume X, # . Using the separatedness o X, we can apply
Lemma 6.4/4 and find an R-dense affine open subscheme U c X. Since u: X — SpecA is an iso-
morphism on genericfibres, thereisanf € A, wemay assumef < A, such that (X,)x = Ug. Furthermore,
X, is not empty, so we may assumef € A — nA. Then consider the schematic closure of X — (X;)g in
X;itiscontained in X — X,. Similarly, since U is R-dense and affinein X, its complement X — U 1s of
pure codimension 1 by [EGA 1V, ], 21.12.7, and we see that it equals the schematic closure of Xx — Uk
in X. So weobtain from (X;)x c U theinclusions

Xy — (Xf)K o Xy — Uk
and, hence,
X-X;>nX-U

Therefore X; ¢ U and, thus, X, = U; isaffine. Interpreting A asthering of global sectionson X, the
morphism u,: X, — SpecA. isan isomorphism. Consequently, sincef does not vanish identically on
X,, theassertion o the lemmafollows. [

It should berealized that, in the situation of Lemma 6, we cannot expect tofind a global section f'e A
such that u, : X, — SpecA, is an isomorphism and X, is R-dense in X. For example, consider an
irreducible conic C c P% whose specidl fibre consists of two projective lines P, and P,. Assume that C
admits an R-valued point meeting P,, but not P,. Removing this point from C, we obtain an R-scheme
X whose generic fibre is affine and whose special fibre consists of two components, one of them P;.
Since each global section of @ must be constant on P;, weseethat any subscheme X, ¢ X, asin Lemma
6, must be disjoint from P;. So X cannot be R-densein thiscase.

Returning to the proof of Theorem 1, itisenough to construct an open subscheme U' = X' asrequired
in condition (a). In order to do this, we will forget about the special situation given in Theorem 1 and
assumeonly that X' isasmooth and separated R'-scheme o finitetype with a descent datum on it, which
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is effective on the generic fibre X§.. In particular, we may apply the above considerations to X' as a
scheme over R (and to suitable open subschemes of it). First we reduce to the case where the generic
fibre of X' is afine; then Lemma 6 is applicable. Let K — K’ be the extension of fields of fractions
corresponding to R— R'. We know already that the generic fibre X%. descends to a K-scheme X.
Choose an affinedense open subscheme U, = X and consider its pull-back Ug. to X.. Then Xg, — Ug.
isthin in X§., and its schematic closureis R'-thin in X". If we removeit from X', we obtain an R’-dense
open subschemewhose genericfibreis affineand which isstable under the descent datum on X'. Wecan
replace X' by this subscheme and thereby assume that the genericfibre of X' isaffine.

Now set A = I'(X’, 0.) and consider the canonical morphism u’: X' — Spec A'. Then the descent
datum on X' yields a descent datum on SpecA' such that the morphism ' is compatible with these
descent data. Let U’ be the open subscheme of X' consisting of all points of X' where u is quasi-finite.
We claim that

(i) thegenericfibredf U’ coincides with X%, and the special fibredf U' is non-empty,

(ii) U'isstable under the descent datum of X', and

(iii) U'isquasi-affing;in particular, the descent datum is effective on U'.

Namely, property (i)is a consequence of Lemma 6, whereas property (ii) followsfrom the fact that, for
a morphism o finite type, quasi-finitenessat a certain point can be tested after surjective base change
such as provided by the projections SpecR' x SpecR' =3 Spec R'. In order to justify the latter claim,
observe that quasi-finitenesscan be tested on fibres. So it is enough to consider a field as base and a
field extension as basechange. I n thissituation, adimension argument givesthedesired assertion. Finally,
property (iii)followsfrom Zariski's Main Theorem (intheversion2.3/2');itimpliesthat u" : X' — SpecA'
restricts to an open immersion on U. So U' is quasi-affine,and the descent iseffective on U’ by 6.1/4.

If U'isR’-dense in X', we have obtained an open subscheme of X' asrequired in condition (a). If U’
isnot R’-dense in X', removefrom X' all components of the special fibre which meet U'. The resulting
open subscheme of X', call it X3, isagain stable under the descent datum. So, concluding as before, X
contains an open subscheme U} satisfying conditions (i) to (iii). Continuing this way, we can work up the
finitely many components of X, and thereby obtain finitely many open subschemes U’, U3,..., U, < X'
satisfying conditions (i) to (iii). Then the union of these subschemesis R’-dense in X' and, hence, gives
riseto an open subscheme of X' as required in condition (&), thereby finishing the proof of Theorem 1.

|

6.6 Applications to Birational Group Laws

In this section, we want to sharpen M. Artin’s result on the construction of group
lawsfrom birational group laws, which isexplained in [SGA 3,1, Exp. XVIII. Let
S be a scheme, and consider an S-birational group law m on asmooth S-scheme X.
Itisshown in[SGA 3,1, Exp. XVIII, that, if misstrict in the sense of 5.2/1, there
exists a solution X in the category of algebraic spaces such that X contains X as
an S-dense open subspace; for the notion of algebraic spaces see Section 8.3. We
will admit this result. However, if the base S is normal, it could also have been
obtained by the construction technique of Section 5.3. Thelatter method yieldseven
more, namely that X is a scheme for the etale topology of S. Using the descent
techniques of Section 6.5, we want to show that X is already a scheme. So, we will
mainly be concerned with the representability of a smooth group object in the
category o algebraic spaces.

Theorem 1. Let S be a scheme, and let m be an S-birational group law on a smooth
and separated S-scheme X which is faithfully flat and of finite presentation over S.
Then there exists a smooth and separated S-group scheme X of finite presentation



6.6 Applicationsto Birational Group Laws 163

with a group law m, together with an S-dense open subscheme X' = X and an open
immersion X’ =, X having S-dense image such that 7 restricts to mon X’.

The group scheme X is unique up to canonical isomorphism. |f the Sbirational
group law mis strict, the assertion istrue with X’ replaced by X.

Proof. Due to the uniqueness assertion 5.1/3, we may assume that S is affine and,
using limit arguments, that Sisnoetherian. If the S-birational law isstrict, it follows
from the result of M. Artin that there exists a solution X of the strict law in the
category of algebraic spaces containing X as an S-dense open subspace of X. As
we will see by the theorem below, the solution isrepresented by a scheme. Thereby,
Theorem 1 will be proved for the case where the S-birational group law is strict.
Now we want to treat the general case accepting the assertion of Theorem 1 for
strict S-birational laws.

Let U be the largest open subscheme of S such that the S-birational group law
has a solution over U; hereand in thefollowing, solutionsare meant in the category
of schemes. If U # S choose the generic point s o an irreducible component of
S — U. Sincewe consider only S-schemesof finite presentation, it sufficesto verify
that there existsa solution after the basechange Spec(0s ;) — S. So we may assume
that Sisaloca scheme, and that s isthe closed point of S;then U =S — {s).

Assume first that, for each component X! of X, there exists a section o; of X
over S crossing the given component. Let X(s;) be the union of all components of
the fibres of X meeting the section o;; due to [EGA 1V,], 15.6.5, X(g;) isan open
subscheme of X. Denote by X, the union o the X(qg;); note that X, might not be
S-densein X. Then minduces an S-birational group law m, on X,. Moreover, due
to the construction, the components of thefibresdf X are geometrically irreducible.
Now one can proceed asin the proof of 5.2/2. The set Z (in the proof of 5.2/2) will
provide an S-dense open subscheme X, of X, such that m, induces a strict law my
on X;. Namely, set

Q= U (ﬂ pi(Zn(X(o;) x5 X(O'j)))>

4

wherep; : X x, X — Xisthefirst projection. Then &, isS-denseopenin X,, and
Zn(Q; X, X,)isQ,-denseinQ; xg X,. DefiningQ, in asimilar way by using the
second projection, theintersection Q; n Q, definesan S-dense open subscheme X
o X,. Asin 5.2/2, oneshowsthat the restriction m, of m to X; isstrict. Aswe have
said above, there is a solution X;, of the strict law m; which contains X;, as an
S-dense open subscheme. Since X}, x5 U is an open subscheme of the solution X,
of the restriction of mto U, one can glue X, and X, along X;, x5 U in order to get
asolution of m.

In the general case, one performsfirst an étale surjective extension S* — § of
the base in order to get enough sections of X. So one obtains a solution X* of the
S*-birational group law m xg S*. Now consider the S*-birational map

11X xgS*ces X ¥,

The canonical descent datum extends to a descent datum on X* by the uniqueness
o solutions; cf. 5.1/3. Furthermore, there exists a largest open subscheme X* of



164 6. Descent

X x S*, where the map : is defined and where 1 is an open immersion; use the
separatednessof X x S* and of X* aswel asthebirationality of . Sincethedomain
o definition is compatible with flat base change (cf. 2.5/6), the formation of the
largest open subscheme where 1 is defined and where z is an open immersion is
compatible with flat base change. So X* is stable under the descent datum and,
hence, there exists an open subscheme X' of X which is S-dense in X such that
X' x S =X*.Thenitiseasy to see that the S-birational law mon X restricts to
astrict law on X". O

In order to complete the proof of the preceding theorem, it remains to show the
following result on the representability of algebraic spaces with group action.

Theorem 2. Let S be a locally noetherian scheme and let G be a group object in the
category of algebraic spaces over S. Assume that G is smooth over S and that G has
connected fibresover S. Let X be a smooth algebraic space over S and let

0:Gxg X — X

beagroup actionon X. Let Y beanopensubspace of X. ThentheimageGY of G x5 Y
in X is an open subspace of X. If GY equals X, the following assertions hold:

(a) If Y isseparated (resp.of finite type) over S, the sameistrue for X.

(b) If Yisa scheme, then X isa scheme.

(c) If Sisaffine and if Y is quasi-affine, any finite set of pointsof X is contained
in an affine open subset of X.

(d) If Sisnormal and if Y is affine over S, any effective Weil divisor of X with
support X — Yisa Cartier divisor,and is Sample. I n particular, X isquasi-projective
over S.

Corollary 3. Let Sbe a Dedekind scheme, and let G be a group object in the category
of algebraic spaces over S. Assumethat G is separated, smooth, and of finite type over
S. Then Gisa scheme.

Proof of Corollary 3. Let Y be the open subspace of G consisting of all points which
admit a scheme-like neighborhood. Due to Raynaud [6], Lemme 3.3.2, Y contains
al the generic points of thefibresdf G over S. Hence, YisS-densein G. So Theorem
2 yieldsthat G is ascheme. O

Proof of Theorem 2. The group action ¢ is the composition of the maps
G X X (p1,0) G X X P2 X

where p; is the projection onto the i-th factor, i = 1, 2. The first map is an iso-
morphism, and the second oneis smooth, since G issmooth over S. Hence, the map
oisopen, and theimage GY isan open subspace of X.

(a) In order to prove the separatedness of X, we can use the valuative criterion.
So, we may assume that S consists of a discrete valuation ring R with field of
fractions K and residuefield k. Then we have to show that any two R-valued points
X1,%, € X(R)which coincideon thegenericfibreareequal. Let x,, X, betheinduced
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closed points. Sincethe sets
U={GeGxsk g'xeYxsk}, i=12,

are open and non-empty, they are densein G x, k. Due to the smoothness of G
over S, there exist an étale surjective baseextension R — R'and asectiong e G(R')
inducing a point of U; n U,. Thus X; € gY and, hence, x; e gY fori =1, 2. Since Y
isseparated over S, we seethat x, = X,.

In order to show that X isdf finitetype over S if Y is, it suffices to verify that X
is quasi-compact if S isaffine. Sincethe map

0:GxXgY— X

issurjective, theassertionfollowsfrom thefact that G isquasi-compact, ascan easily
be deduced from Lemma 5.1/4.

(d) We may assume that Sisaffine. Dueto assertion (), X is of finite presenta-
tion and separated over S. Let D be an effective Well divisor with support X — Y.
Due to the theorem of Ramanujam-Samuel [EGA 1V,], 21.14.3, D is a relative
Cartier divisor. Namely, as can be seen by an &taldocalization on X, this theorem
carries over to the case of algebraic spaces. Next we want to show that % = 0y(D)
isS-ample. To do this, we need thefact that #®" satisfies the theorem of the square
for large integers n if the genericfibresof X over Sare geometrically irreducible, cf.
Section 6.3. Namely, after étale localization of the base, X can be covered by open
subspaces of type X, where ! varies over the global sections of #®" The X, are
affine as intersections of translates of Y; cf. the proof of 6.4/2 or Raynaud [4],
Thm. V.3.10, p. 88. In order to verify that ¥ ®* satisfies the theorem of the sguare
for large integers n, one proceeds as follows:

Similarly asin the proof of 6.3/2, one reduces to the case where S consists of a
field. Then G is a scheme; cf. Section 8.3. We claim that X is a scheme, too. Let U
be the set consisting of al points of X admitting a scheme-likeneighborhood. Using
finite Galois descent, one easily shows that U isinvariant under G, since any finite
set of points of U iscontained in an affine open subscheme of U. In our case, due
to the assumption X = GY, one has U = X. So, X is a scheme, and the assertion
followsfrom Raynaud [4], Thm. IV 3.3(d), p. 72.

Finally, since Y — § is dffine, the reduced subscheme with support X — Y is
aWaell divisor by [EGA 1V, ], 21.12.7,and thus an S-ample Cartier divisor. There-
fore X =+ S is quasi-projective.

(c) First, let us show assertion (c) under the additional assumption that S is
normal. Let x,, ...,x befinitely many pointsof X, and lets,,..., s, be their images
in S. Since Y is quasi-affine, there exists an affine open subscheme Y* o Y which
gives rise to a dense open subscheme of the fibres Y, ,..., Y, . Then the points
Xq,...,% arecontainedin theimage X* of G x Y* under a. We may replace X by
X*, and so we may assume that Y isaffine. In this case, the assertion follows from
assertion (d). Namely, X admits a relatively ample line bundle, since X — Y with
its reduced structure gives rise to a Well divisor; cf. [EGA 1V,], 21.12.7. So, X is
quasi-projective over S, and hence X satisfies assertion (c).

Now let us consider the general case. Using limit arguments, we may assume
that S is of finite type over the ring of integers Z. Let S be the normalization o S,
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and set 8= X xg8 and G =G x5 §. Then X is a scheme by what we have just
proved, and any finite set of points of X iscontained in an affine open subscheme
of 8.Furthermore, X' = X xg S is a scheme after étale surjective base extension
S — §, since there are finitely many sections of G such that X can be covered
by the translates of Y under these sections, asfollows from 5.3/7; see also 6.4/2. In
order to show the effectivity of the canonical descent datum on X' we make use of
the following result which is contained in Raynaud [3], Cor. 3.8 and Thm. 4.2:

Let Sbe alocally noetherian scheme, let S — S be a faithfully flat quasi-compact
morphismof schemes, and let § — S be a finite surjective morphism of schemes. Let
X be a sheaf for the fppf-topology of S(c¢f. Section 8.1). Assume that X' = X x5 S
is represented by an S'-scheme which is locally of finite presentation, and that 8 =
X xS isrepresented by an S-scheme. Then

(i) X isrepresented by an S-scheme of finite presentation if and only if, for each
point % of 8,there exists an affineopen subscheme of X which contains all points of
X giving rise to the same point of X as %.

(i) If X satisfiesthe property that any finite set of pointsof 8 iscontained inan
open affine subscheme, so does X.

Thusweseethat X isascheme, and any finite set of pointsof X iscontainedin
an affine open subscheme of X, since X has this property.

Assertion (b) follows from (c). ]

6.7 An Example of Non-Effective Descent

Let R be a discrete valuation ring with field of fractions K and residue field k. In
the present section we will consider relative curves over R; ie., flat R-schemes X
whosefibresare of puredimension 1. We assumethat, in addition, X isnormal and
proper over R and that the genericfibre X isconnected. Then X isregular (infact,
smooth over K if char K = 0), and the set of singular points x of X (i.e., of those
points where the local ring 0y . is not regular) is afinite subset of the special fibre
X,; see[EGA 1V,1,5.86,and[EGA 1V,], 6.12.6. The example we want to present
isbased on thefact that, after replacing the base R by a henselization R", irreducible
components of X, can be contracted in X whereas, over a non-henselian ring R,
such a procedure is not always possible.

To construct an R-curve with a non-effective descent datum on it, set A =
C[r,771], where 7 is an indeterminate, and start out from a smooth and proper
ellipticcurve E over S = Spec A which has non-constant j-invariant. Alternatively,
we can consider the ring A = Q[+, t™'] and the elliptic curve with constant
j-invariant E = PZ which is given by the equation

yiz = x* + txz?

Replacing A by thelocal ring R = ¢ , at aclosed point t € Sif A = C[z,77'] (resp.
at a suitable closed point t € S corresponding to a maximal ideal (r — t) ¢ Awith
te @*if A= Q[r,z™'7), wewill show in Proposition 5 that there exists a rational
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point a, € E, such that none o the multiples ra, with » > 0 admits a lifting to an
R-valued point of E. Blowing up a, in E yields a proper curve X over R which is
regular. Its special fibre X, consists of two components, the strict transform E, of
E, and theinverseimage of a, whichisaprojectiveline P,; both intersect transversal-
ly at a single point.

In thissituation we will seein Lemma 6 that one cannot contract the component
E,in X;i.e., theredoes not exist an R-morphismu : X — Y of proper normal curves
over R which is an isomorphism over Y— {y} and which satisfies £, = u~!(y).
However, if we pass from R to a henselization R" and consider the curve X' =
X ®x R* over R", the special fibre of X remains unchanged, and we will be able to
conclude from Proposition 4 below that E, can be contracted in X'.

Letu : X' — Y' besuch acontraction. There are canonical descent data on X'
and on Y' with respect to R — R"; namely on X', since it is obtained from X by
means of the basechange R — R",and on Y' sinceu' isan isomorphism on generic
fibres and since each descent datum on the genericfibre of Y' extends uniquely to
a descent datum on Y' by 6.2/D3. Furthermore, u’ is compatible with these data.
So if the descent datum on Y' were effective, u': X' — Y' would descend to an
R-morphism u: X — Y, where Y is a proper normal curve by [EGA 1V,], 27.1
and 6.5.4. Sinceu’ coincides with u on special fibres, the latter morphism would be
a contraction of E, in X. However such a contraction cannot exist by Lemma 6
and, consequently, the descent datum on Y' cannot be effective.

Now, after we have given the description of the curve Y' and the non-effective
descent datum on it, let usfill in the results mentioned above which are needed to
make the example work. We begin with the explanation of contractions; see also
M. Artin [ 1], [2]. So consider an arbitrary discrete valuation ring R and an R-curve
X where, aswe have said at the beginning of this section, X isassumed to be proper
and normal and to have a connected generic fibre. Let (X;);., be the family of
irreducible components of the special fibre X, providing them with the canonical
reduced structure. For a strict subset J < I, a contraction of the components X;,
je J,in X consists of an R-morphism u: X — Y of proper normal curvesover R
such that

(a) for each j e J, theimage u(X;) consists of asingle point y; € Y, and

(b) u definesanisomorphism X — | );,X; = Y = {J;es{yi}-

Then « is automatically proper since X is proper over R and since Y is separated
over R. Furthermore, using the Stein factorization[EGA 111, ], 4.3.1, it iseasly seen
that u depends uniquely on the subset J < | and that thefibresof u are connected.
In order to give a criterion for the existence of contractions, we use the notion of
effective relative Cartier divisors; cf. Section 8.2, in particular 8.216.

Theorem 1. Let X be a proper normal R-curve with connected generic fibre Xy, let
(X;);1 be the family of irreducible components of the special fibre X, and consider
a non-trivial effective relative Cartier divisor D on X. Let Jbe the set of all indices
j € | such that supp(D) n X; = &. Then the canonical morphism

u: X — Y:= Proj (é"-j r, (OX(mD)))

m=0
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isa contraction of the components X, j € J,and Y isa proper normal R-curve which
is projective.

Before we give a proof, let us look at properties of Y which follow from its
definition as a projective spectrum of a graded ring.

Lemma2. Let X bea proper schemeover anoetherianring Rand let .# beaninvertible
sheaf on X suchthat, for somen > 0, the sheaf #®"is generated by its global sections.
Then, for

A= @ 1-(X, 2%,
m=0

the scheme Y = Proj(A4) is projective over R and the canonical morphismu: X — Y
has connected fibres. If,in addition, X isnormal, Y is normal also.

Proof. Applying [ EGAIIL, ], 3.3.1, we see that the ring A is of finite type over R.
Thus Y = Proj(A) is projective over R; cf. [EGA II], 4.4.1.
For any section 1e I'(X, £®"), the morphism u gives rise to an isomorphism

Ay = T(X, O)

S0 u, (Oy) = Oy and, since u is proper, it follows from [EGA 111, ], 4.3.2, that the
fibres of « are connected. Finally, if X is normal, the ring I'(X,, ¢) is seen to be
integrally closed initstotal ring of fractions. Thisimpliesthat Y isnormal. O

Now we come to the proof of Theorem 1. Set % := 0 (D). We claim that £ ®*
isgenerated by itsglobal sectionsif nislarge enough. Then Y will be projectiveand
normal by the preceding lemma. In order to justify the claim, it is enough to find
global sections generating #®* at the points of supp(D); the constant 1, as a global
section of @y, will generate #®" elsewhere. So consider the exact sequence of
Ox-modules

0— Oy(—D)— Oy — 0, — 0.
Taking the tensor product with .%#®" yields the exact sequence
0— £O1 20" 0,0 9" 0,
and we can use the following part of the associated cohomol ogy sequence:
) H(X, P HYX,0,® ¥®") — HYX, %" 1) — HY (X, ¥®)— 0.

Note that H1(X,0p ® £®") = 0 since D defines a closed subscheme of X which
is affine; the latter is due to thefact that D is quasi-finite, proper and, hence, finite
over R.

Next, consider the restriction Dy of D to the generic fibre Xg. Then Dy has a
positivedegreeon X sinceD iseffectiveand non-trivial,and weseethat D, isample
since X isirreducible. Therefore H1(X«, #®") = 0 for n big enough, and it follows
that HX(X, #®") is an R-torsion module of finitelength sinceit is of finitetype. The
exact sequence (*) impliesthat the length is decreasing for ascending n. Hence the
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length will become stationary and, for n big enough, the map
HY(X,#®" 1) — H'(X, £%")
is an isomorphism. But then
H(X, %% — H(X, 0, ® L")

is surjective. Thereby we see that #®" is generated by its global sections at the
points o supp(D) and, hence, at al points of X, as claimed.

It remainsto show that u : X — Y isacontraction of the components X;, j € J.
Fix such a component X;. Then, since X; is proper, each global section of ¢x(nD)
inducesa constant function on X; i.e., an element of thefinite extension I'(X, Ox,)
d k. Therefore the image u(X;) consists o a single point y; e Y. Next look at a
component X; withie | — J. Fix apoint x € X; nsupp{D) and, for somen e N hig
enough, choose a global section ! o @4 (nD) such that ! generates Oy(nD) over a
neighborhood U o x. Then 1/l may be viewed as a section in @, over Y, or (by
means of the pull-back under u) as a sectionin @, over X,. By its construction, 1/!
vanishes on U n supp(D) and is non-zero on U — supp(D). Therefore the image
u(X;) cannot consist of a single point so that ¥ must be quasi-finiteon X,. Findly,
usingthefactsthat thefibresd u: X — Y are connected and that Y isnormal (see
Lemma 2), one concludeswith the help of Zariski's Main Theorem 2.3/2' that u is
acontraction of the components X;, j € J.

Corollary 3. Let X be a proper normal R-curve with connected irreducible generic
fibre X and let X, i e 1, bethe irreducible components of the special fibre X;. Let J
be a strict subset of 1. Then the following conditions are equivalent:

(a) There exists a contraction X — Y of the components X;, j € J, where Y is
projective over R.

(b) There exists a contraction X — Y of the components X, j € J, and there is
a non-empty R-dense gffine open subset V = Y such that the images of the X as well
as all singular points of Y are contained in V.

(c) Thereexists an effective relative Cartier divisor D on X with the property that
supp(Dyn X; = $3 for all je Jand supp(D)n X; # $3 for all iel — J.

Proof. The implication (a)=> (b) is clear since the set of singular points of Y is
afinite subset of the special fibre Y, and since Y is projectiveover R. To show the
implication (b)=>(c), choose an R-dense affine open subscheme V = Y which
contains the images of the components X, j € J, as well as al singular points d Y.
Then Y — V gives rise to a relative Cartier divisor on Y whose inverse under
X —Yisadivisor on X as required in condition (c). Finaly, the implication
(€)= (a) followsfrom Theorem 1. O

Propostion 4. In the situation of Corollary 3, assume that the valuation ring R is
henselian. Then there exists an effective relative Cartier divisor D on X asrequired in
condition (c)of Corollary 3. 1n particular, any strict subset of the set of irreducible
components of X, can be contracted in X.
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Proof It isenough to construct an effective relative Cartier divisor D on X whose
support meets only a single given component X; of X,. In order to do this, choose
a closed point
xeX;— J X,
i#j

which is regular on X; such a point exists since there are at most finitely many
points where X is not regular. Using the fact that prof ¢y , = 2, one can find an
affineopen neighborhood U = SpecA o x such that there is a non-zero-divisor
f € A®g k which vanishes at x. Lifting f to fe A, this dlement defines a closed
subscheme A = U which we may interpret as an effective rel ative Cartier divisor on
U. However, A might not be a closed subscheme of X; it can happen that its
schematicclosureA cannot beinterpreted as a relative Cartier divisor on X or that
A meets components C; with i # j. So we cannot, in general expect, that A extends
to arelative Cartier divisor on X satisfying the required properties.

But we know that A — SpecR isquasi-finite.So, R being henselian, we can use
2.3/4 in order to obtain an open neighborhood V ¢ U o x such that A nV —
SpecR isfinite. Then theimmersion A n V —, X isfinite, and itsimageis closed in
X sothat wemay regard A n V asardative Cartier divisor on X. Thelatter isdf the
required type. [

For theremainder o thissection, we want to look at smooth and proper elliptic
curves E = PZ (having a section) over a base scheme S = SpecA where A =
Clr,7 '] or A = Q[r,7 '] and where 7 is an indeterminate. So S is a Dedekind
scheme; let K beitsfidd o fractions. For t € C* (resp.t € Q*), we will writet also
for the closed point in S which corresponds to theideal (t— t)< A. As usud, for
closed pointst € 8, thefibre of E over t isdenoted by E,.

Proposition 5. Consider the following property of E at closed pointst € S:

(P) Thereexistsarational point a, € E, such that none of its multiplesna,, n > 0,
(inthe sense of the group law on E) lifts to an Ug,,-valued point of E or, equivalently,
of £®y @S,t'

Then, if A=C[t,77'], and if E is a smooth and proper elliptic curve over
S = Spec A with non-constant j-invariant, the property (P) is true for all te C*.
Furthermore, if A= Q[t, t~'1and if E = PZ is given by the equation

y2z = x> + xz? ,

(P)is true for somet € Q*; for example, it holds for all primesp = 5(mod 8), where
p < 1000.

Proof. Let us start with the case A = C[7,77!]. Fix aclosed point t € S and set
R = @ ,. Then, using the relative version of the Mordell-Weil theorem for function
fields as contained in Lang and Neron [1], we see that the group E(K) is finitely
generated. By the valuative criteria of separatedness and o properness, the latter
group isisomorphic to E(R). Now let I" betheimage of E(R) in E(C) and let T be
thesubgroup o E,(C) consistingdf all points b, such that a multiplenb, iscontained



6.7 An Example of Non-Effective Descent 171

in I". Then, since E(R) is countable, the group T is countable. But E,(C) is not
countable. So E,(C) — T contains a point a, as required.

Next let usconsider the casewhere A = Q[z,77 1. Weclaim that E(K) isfinite.
In order to justify this, we look for t € Q* at the specialization map

E(K) = E(0s,)) — E(Q)

and use the following facts which we cite without proof

(a) E(Q) isfinitefor infinitely many t e Q*; for example for all primes p with
p=7orp= 11l(mod 16); cf. Silverman [1], Chap. X, 6.2 and 6.2.1.

(b) The specialization map E(K) — E,(Q) isinjectivefor allmost all t € @*; cf.
Silverman [1], Appendix C, 20.3.

(c) There exist elementst € Q* such that E,(Q) is of rank > 1, for example for
al primes p = 5(mod 8) less than 1000; cf. Silverman [1], Chap. X, 6.3.

It follows from (&) and from (b) that E(K) ~ E(0s ) is finite for all te Q*.
Choosingt asin (c),one canfindarational point a € E,(Q) which hasinfinite order.
But then none of its multiples can admit a lifting to a point of E(Us ,). 1

Now let E be a smooth and proper elliptic curve over a discrete valuation ring
R such that the special fibre E, contains a rational point a whose multiples na,,
n> 0, (inthe sense o the group law on E) do not admit liftingsto R-valued points
o E. Aswe havejust seen, examples of such curvesdo exist. By blowing up a, in E,
one obtains a proper curve X over R whichisregular. Its special fibre X, consists
of the strict transform E, of E, and of the inverseimage of a whichisa projective
line P,; both intersect transversally at a single point.

Lemma 6. The strict transform E, d E, under the blowing-up X — E cannot be
contracted in X. More precisaly, there is no R-morphism u: X — Y onto a proper
normal R-curve Y which maps E, onto apoint y e Y and which is an isomorphism over

Y—{y}.

Proof. Assume that such a contraction u: X — Y exists. Then Y isregular at all
its points except possibly for y, and the complement of any affine open neighbor-
hood o y yields an effective relative Cartier divisor D on X, whose support meets
P, and is digjoint from E,; cf. Corollary 3. Let D, be the genericfibre of D and D'
its schematic closure in E. Then D' is an effective relative Cartier divisor on E; let
d > 0 beitsdegree. The support of D' isthe projection of D on E; so theclosed fibre
D; isda,. If eisthe unit section of E, theinvertible sheaf £ = Og(D' — de) hasdegree
0 and, thus, corresponds to an element of Picg/R(R); cf. Section 9.2. Now, using the
canonical isomorphism

E — Picgk , X Og(x — @),

it followsthat . corresponds to a point be E(R). Restricting ourselves to speciad
fibres, we see that b, = da,. However, this contradicts the choice o g, € E,. O



Chapter 7. Propertiesof Neron Models

Although the notion of a NCron model isfunctorial, it cannot be said that NCron
models satisfy the properties, one would expect from a good functor. For example,
Néron models do not, in general, commute with (ramified) based change; aso, in
the group scheme case, the behavior with respect to exact sequences can be very
capricious. The situation stabilizes somewhat if one considers NCron models with
semi-abelian reduction.

The purpose of the present chapter is to collect several properties of NCron
models, and to give a number of examples which show that certain other, perhaps
desirable, properties are in general not true. We prove a criterion for a smooth
group schemeto bea Neron model and discussthe behavior of NCron models with
respect to the formation of subgroups as well as with respect to base change and
descent. Then we look at isogeniesand Néron models with semi-abelian reduction.
For example, we prove the criterion of Néron-Ogg-Shafarevich for good reduction.
Thereis also a section dealing with various aspects of exactness properties. The
chapter ends with a supplementary section where we explain the Weil restriction
functor. If oneworkswith respect to afiniteand faithfully flat extension of Dedekind
schemes S’ — S, thisfunctor respects NCron models. Furthermore, if K and K’ are
the rings of rational functions on S and §’, the Wall restriction is used to describe
the behavior of associated Neron models if one descends from a K’-group scheme
X toaK-group scheme Xy.

7.1 A Criterion

Throughout this section we will denote by R a discrete valuation ring, by R
its strict henselization, and by K and K** the corresponding fields o fractions.
Furthermore, k is the residue field of R, and k, its separable algebraic closure. In
the following we will consider R-group schemes G of finite type with a smooth
generic fibre and with the property that each Ks"-valued point of G extends to an
Reh-valued point of G. We are interested in conditions under which Gisa Neron
model of its generic fibre Gy or, more generally, in the way of deriving a Néron
model of G, from G.

Theorem 1. Let G be a smooth R-group scheme of finite type or a torsor under a
smooth R-group scheme of finite type. Then the following conditions are equivalent:
(i) Gisa Néron modd of its generic fibre G
(i) Gis separated and the canonical map G(R*) —s G(K**) is surjective.
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(iii) The canonical map G(R%") — G(K")is hijective.

Proof. It is enough to consider the case where Gis a group scheme. Indeed, if G is
atorsor we may assume by 6.5/3 that R isstrictly henselian and, furthermore, that
G is unramified. Then G admits a section over R and we can view G as a group
scheme.

In the following, let us assume that G is a group scheme. The implications
(i)=> (i) = (i1i) are trivia, the second one by the vauative criterion o
separatedness. Moreover, it is easy to see that condition (ii) implies condition (i).
Namely, if G satisfies (ii),it isa weak Néron model of its generic fibre Gx. Hence
theweak Ntron property 3.5/3 and theextension theorem4.4/1 show that G satisfies
the definition of Néron models.

Turning to the remaining implication (iii) = (ii), we have to verify that (iii)
implies the separatedness of G. Using Lemma 2 below, it is only to show that
the unit section e: SpecR — G is a closed immersion or, what amounts to the
same, that ims is closed in G. Restricting £ to generic fibres, we know that &g :
SpecK — Gy is a closed immersion. Let F be the schematic image o ¢ in G.
Then, pointwise, ime and F coincide on G, and we have to show the same for the
special fibre G, of G. So consider a point ¢, € Fn G,. Working in an affine open
neighborhood U < G of ¢, let A be the ring o global sections on F~ U. Then
R < A = K and, thus, R = AsinceRisadiscretevaluation ring. Hencetheinclusion
of FAU into G gives rise to a point ee G(R) extending ¢k € G(K). However,
condition (iii)impliese = &. So F consists of only two points, namely, the points of
ime, and it followsthat imeisclosedin G. O

Lemma 2. A group scheme Gis separated over a base scheme Sif and only if the unit
section e is a closed immersion.

Proof. If G isseparated, the diagonal morphism6: G— G x4 G isaclosed immer-
sion. Then the same is true for the unit section e: S— G =S x3 G Snce E is
obtained from 6 by means of the base changee: S— G.

Conversely, viewing the diagonal in G x4 G as the inverse image of im ¢ with
respect to the morphism

GXSG——_)G9 (gsh)'_)g'h_l5
it followsthat Gisseparated if eisa closed immersion. Il

In order to demonstrate how Theorem 1 can be applied, let us give an example
o an algebraic K-group which, although it is affine, admits a Ntron model.

Example3. Let R be a discrete valuation ring of equal characteristicp > 0, and let
7 be a uniformizing element of R. Consider the subgroup Gof G, z xz G, g Which
is given by the equation

x+xP+ny?=0.

Then Gisasmooth R-group scheme o finite type. Furthermore, looking at values
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of solutions of the above equation, one shows easily that the map G(R%") — G(K ")
is surjective. Thus Gisa Néron model o its genericfibre G¢. The group Gy isan
example o a so-called K-wound unipotent group; i.e., of a connected unipotent
algebraic K-group which does not contain G, , as a subgroup. Smooth commu-
tative groups of thiskind admit Neron modelsof finite type, at least in thecasewhere
Risexcellent; cf. 10.2/1.

Next consider an R-group scheme G o finite type such that the genericfibre G
issmooth. If the residue characteristic of R iszero, the special fibre G, issmooth by
Cartier's theorem, [SGA 3,1, Exp. VI,, 1.6.1, so that, if Gisflat, it will be smooth
over R. However, sincethelatter result does not extend to the general case, we want
to describe a procedure which, by means of the smoothening process, associates a
smooth R-group scheme G to G such that the canonical map G'(R*") — G(R*™) s
bijective. Let us call a morphism of R-group schemes G' — G, where G' is smooth
and of finite type over R, a group smoothening of Gif each R-morphism Z — G
from a smooth R-scheme Z admits a uniquefactorization through G. Then, by the
defining universal property, G' — Gis an isomorphism on generic fibres since Gg
issmooth. In particular, if G(R™) —+ G(K™)is bijective, G will be a Néron model
o Gy by Theorem 1. Group smoothenings can be defined in the same way using a
global Dedekind scheme as base. However, their existencecan only be guaranteed
in thelocal case; cf. Theorem 5 below.

Lemma 4. Let G be an R-group scheme of finite type which has a smooth generic
fibre. Denote by F, the Zariski closure in G, of the set of k,-valued pointsin G, which
lift to R"-valued pointsof G. Then F,, provided with its canonical reduced structure,
is a closed subgroup scheme of G,. Furthermore, let u: Y — G be the dilatation of
F, in G. Using the notation é for the defect of smoothnessasin 3.3, we have

d(a') < max{0,d(a) — 1)
for each R -valued point a of G and itslifting a to Y.

Proof. Sincethe set of R*-valued points of G forms a group, it isclear that F, isa
subgroup scheme of G,. In order to justify the second assertion, we use Lemma
3.4/1; it isonly to show that F, = G, is E-permissible, where E = G(R*"). However
thisisclear. By construction, F, is geometrically reduced and, hence, smooth over
k, being a group scheme of finite type over a field. Furthermore, using 4.2/2, we
see that the restriction of the sheaf of differentials Qg x to G, is free and, hence,
that the restriction of Q¢ to F, is free. Thus the two conditions characterizing
E-permissibility are satisfied. O

It follows from 3.2/2(d) that the scheme Y of Lemma 4 isan R-group scheme
again and that «: Y — Gisagroup homomorphism. So afinite repetition of the
construction leads to an R-group scheme G which has generic fibre G, and defect
of smoothness 0, and thus issmooth at all its R"-valued points. In particular, G is
smooth at the unit section and therefore smooth everywheresinceitisflat. Weclaim
that the morphism G' — Gisa group smoothening of G. To justify this, consider
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an R-morphism Z — GwhereZ isasmooth R-scheme. Writing &, for theseparable
algebraic closure o k, the set of k,-valued points of Z, whichlift to RS"-valued points
o Z is schematically dense in Z,; cf. 2315. Thus, we see that, in the situation of
Lemma 4, the special fibre of Z is mapped into F,. Then the desired factorization
o Z — Gfollowsfrom 3.2/1(b), again. So we have derived the following facts on
group smoothenings.

Theorem 5. Let G be an R-group scheme of finite type with a smooth genericfibre
Gg. Then there exists a group smoothening G — Gof G. Dueto its definition, G is
smooth and of finite type; it is characterized by the property that each R-morphism
Z —> G, where Z is smooth over R, factors uniquely through G.

Furthermore, if the map G(R™) — G(K") is surjective and if G is separated, G
isa Ndron modd of Gg.

Proof. Only the assertion concerning the Neron model remains to be verified. If
G(R*™"y — G(K™issurjectiveand if G is separated, thesameistruefor G'(R™) —
G'(K¥) and G. Thus G isa Néron model of Gy by thecriterion givenin Theorem 1.

O

As an application we want to examine how the Néron model G of a K-group
scheme G, behavesif we passfrom Gy to a subgroup Hy = Gy.

Corollary 6. Let S be a Dedekind scheme with ring of rational functions K. Further-
more, let G be an Sgroup scheme which is a Néron modd of its scheme of generic
fibres G, and let Hg be a smooth subgroup of Gi. Then Hy admits a Néron model
H over S; more precisely, one can define H asa group smoothening of the schematic
closure H of Hy in G. The schematic closure H itself is a Néron model of Hy if and
only if it is smooth. In particular, the latter isthe caseif char k(s) = 0 for all closed
pointss € S.

Proof. First, let us show that there exists a group smoothening of H over S. Since
H, issmooth, its schematic closure H issmooth over adense open part S of S. On
the other hand, we know from Theorem 5 that, for each of thefinitely many points
se S — S thegroupschemeH ®; 05 , admitsagroup smoothening. Then, similarly
as explained in the proof of 1.411, we can glue H ®; 05 ,for se S— S'to H x5 S,
thereby obtaining a global group smoothening H of H over S.

It remains to show that H isa Néron model o Hg. To do so, we may assume
that Sislocal. Consider asmooth S-schemeZ and a K-morphism Z, — H. Then,
since Hy — Gy and since GisaNeéron model of Gy, thismorphism extends uniquely
to an S-morphism Z — G which, by the definition of H, must factor through H.
Furthermore, we conclude from Theorem 5 that Z — H extends uniquely to an
R-morphism Z — H. The latter is unique as an extension of Zy— Hg. SO
H is a Néron model of G, and the remaining assertions are clear since H is flat
over S. O
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7.2 Base Change and Descent

One cannot expect that, for a faithfully flat extension of discrete valuation rings
R = R, the base change Spec R' — SpecR transforms Néron models over R into
Néron models over R'. In Example 7.1/3 of the preceding section we can see that,
after adjoining a p-th root of the uniformizing element = of R to K, the boundedness
o G¢(K**) and, hence, the existence of a Neron model of G islost, since Gx becomes
isomorphic to the additive group G, . On the other hand, it followsfrom 1.2/2 and
6.5/3 that Neron models behave wdll with respect to etale base change. The | atter
istruefor a more general class of morphisms as we will seein thissection (cf. 6.5/5
for a partial result of thistype).

Consider afaithfully flat extension R = R' of discrete valuation rings with fields
o fractionsK and K’. Asusual weindicate strict henselizationsby an exponent **'sh”
and we may assume that R is a subring of R"**. Recall that R' is said to have
ramification index 1 over Rif auniformizing element of R givesrisetoa uniformizing
element of R' and if the residue extension of R’/R isseparable (cf. 3.6/1).

Theorem 1. Let R< R’ and K = K’ be as above and consider a torsor X under a
smooth K-group scheme Gy of finite type. Denote by X .. thetorsor under G- obtained
by base change with K'.

(i) Assumethat X . admitsa Ndron modd X' over R. Then X admitsa Nkron
modd X over R, and there is a canonical R’-morphism X ®z R' — X', called mor-
phism of base change.

(i) Let R'/R be of ramification index 1. Then X admits a Nkron modd X over
Rif and only f Xy admitsa Ndron model X' over R'. If the latter is the case, the
morphism of base change X ®x R' — X" isan isomorphism.

Proof. If X admits a Neron model, X.(K'**) is bounded in X,.. Using 1.115, we
seethat Xg(K**)isbounded in Xg. But then X (K**)isbounded in X and a Néron
model X of Xy exists by 6.5/4. Since X ®; R is a smooth R’-model of X,., the
identity on X, extendsto an R’-morphism X ®; R' — X' asrequired in assertion
().

In the situation of assertion (ii) we have only to consider the case where X has
a Neron model X. Furthermore, since Neron modelsare compatible with etale base
change, we may assumethat R and R' are strictly henselian. It hasto be shown that
X ®z R is aNéron model of X4.. Todothis, it isenough tolook at the case where
the torsor X, is unramified. So consider a K'-valued point of Xg.. Interpreting it
asapointa e Xy (K’) and working in an affine open neighborhood of itsimagein
Xy, We can find an R-model X of X of finite type such that a extends to a point
ae X(R'). Due to 3614, we may assume that X is smooth. But then, since X isa
Neron model of Xy, we have a morphism X — X. Thuseach a e X,(K') extends
to a point ae X(R’) and, consequently, the canonical map (X ®; R')(R') —
(X ®g R)(K") issurjective. SO X ®x R isa Neron model of X by 7.1/1. U

It will be of interest in 10.1/3 that the argument for showing that X ®z R’ is
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aNeronmodel of X. can bechanged slightly so that the usedf 7.111 can be avoided.
Namely, look at a discrete valuation ring R" which is of ramification index 1 over
R'. Then R" has ramification index 1 also over R and, if K" is thefield of fractions
of R", the above given argument shows that the map X(R”) — X (K") issurjective.
In particular, taking for R' the local ring of a smooth R’-scheme Z' at a generic
point of the special fibre Z;, weseethat X ®; R' satisfiesthe weak Neron property.
Soif Xy isunramified, wemay view X ®g R' asan R’-group scheme, which satisfies
the Néron mapping property by the extension argument 4.4/1 for morphisms into
group schemes. Thus X ®; R isa Néron model of X,. in thiscase.

Corollary 2. Over discrete valuation rings, the formation of Néron models (of torsors
or group schemes) is compatible with extensions R’/R of ramification index 1. For
example, R can be the completion of R.

Giving another application of Theorem 1, we show that the Néron mapping
property can be strengthened.

Proposition 3. Let Xi be a K-torsor under a smooth K-group scheme Gy of finite
type, and assume that a Néron model X of Xy exists. Let A be an R-algebra of type
R{t} or R[[¢]] (strictly convergent or formal power seriesin a system of variables
t=(ty,---,t,)) Where R is complete. Then each K-morphism

ug : Spec(A ®p K) — Xi

extends uniquely to an R-morphismu : Spec A — X

Proof. Let 4 be the generic point of the special fibre Spec(4 ®z k) of SpecA. Then
A, is a discrete valuation ring which is of ramification index 1 over R. Writing
F for the fied of fractions of A, we see that u, gives rise to an F-morphism
SpecF— Xy ®¢ F. Applying Theorem 1, this morphism extends to an A,-mor-
phism SpecA, — X ®x A, and, hence, to an R-rational map u : SpecA ---+ X. In
particular, thespecial fibre X, isnot empty and, thus, X cannot bearamified torsor.
We claim that « is a morphism. Then u extends ug, and it is unique since X is
separated.

If X(R) # &, wemay view X asan R-group scheme, and one can concludefrom
Remark 4.4/3 that the R-rational map u is a morphism. In the general case, we
chooseadiscrete valuation ring R' whichisfiniteand Ctdeover R and which satisfies
the property that X (R’) # . Thelatter ispossiblesincethetorsor X isunramified.
Set A' = R'{t} or A' = R'[[¢]] depending on the type of power serieswe consider
for A; notethat R’ iscomplete. Then it followsfrom the above special case that the
composition of morphisms

Spec(4’ ®g K) > Spec(4 ® K) =5 X,

where pr is the canonical projection, extendsto an R-morphism u’: Spec A — X.
In other words, the composition of the projection Spec A’ —+ SpecA with the
R-rational map u: Spec A---+ X is a morphism. But then, by 2.5/5, u is defined
everywhere and, thus, is a morphism. O



178 7. Properties of Néron Models

Using the technique of Well restriction to be explained in Section 7.6, one can
describe in a precise way how, in the situation of Theorem 1 (i) and under the
assumption that the extension of discrete valuation rings R = R is finite, a Néron
model X o X can be constructed from a Neron model X' of X, at least in the
case of group schemes.

Proposition4. Let S — Sbe a flat and finite morphism of Dedekind schemes with
rings of rational functions K and K'. Let Gg be a smooth K-group scheme of finite
type and denote by Gy. the K’-group scheme obtained from G, by base change. Assume
that the Ndron model G of Gy existsover S. Then the Ndron model G of Gy exists
over Sand can be constructed as a group smoothening of the schematic closure of Gg
in the Weil restriction Rg.,5(G').

Proof. Using 7.6/6, we see that the Well restriction Rs.,(G’) existsas a schemeand
that it is a Néron model of its scheme of generic fibres, ie. of R x(Gg). Thus,
considering the canonical closed immersion

1: Gy —— SRK'/K(GK') s

the assertion followsfrom 7.116. O

7.3 Isogenies

We want to investigate under what conditions an isogeny Gy, — Gy between
smooth and connected K-group schemesextends to an isogeny between associated
Néron models. In order to attack this problem, we begin by recalling some well-
known facts about homomorphisms between group schemes over afield k.

Lemma 1. Let f : G— G be a homomorphism of group schemes which are smooth
and of finite type over a field k. Assume that dimG = dim G. Then the following
conditions are eguivalent:

(a) fisflat.

(b) f(G°) = G’° where G° and G’° denote identity components of G and G'.

(o) kerf isfinite.

(d) f isquasi-finite.

(e) f is finite.

A commutative group scheme G which is smooth and of finite type over afield
k is called semi-abelian if its identity component G° is an extension dof an abelian
variety by a (not necessarily deployed) affine torus. The latter fact can be checked
over the algebraic closure k of k. Indeed, one knows from Chevalley's theorem 9.2/1
that G2 is uniquely an extension of an abelian variety by a connected affine group
Hj. Then Hy decomposes into the product of a torus part and a unipotent part,
where the torus part is already defined over k; cf.[SGA 3;], Exp. X1V, 1.1. So we
see that G is semi-abelian if and only if the unipotent part of Hy istrivial. Over a
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general base scheme S, an S-group scheme G is called semi-abelian if it is smooth
over Sand if all itsfibresare semi-abelian in the sense explained above.

Lemma 2. Let G be a commutative S-group scheme which is smooth and of finite type
over an arhitrary base scheme S. Let 1 be a positiveinteger.

(a) Supposethat Gis semi-abelian. Then the 1-multiplication{; : G— Gis quasi-
finite and flat.

(b) Suppose that char k(s) does not divide 1 for all s € S. Then the 1-multiplication
le: G— Gisétale.

Proof. I n order to verify the flatness of I; in the situation (&) or (b), we can use the
characterization of flatnessin terms of fibres2412. So wemay assumethat S consists
o afield k. Then, since [ is surjective on abelian varietiesand on tori, and in the
situation (b),also on unipotent groups, it followsfrom the structure of commutative
smooth and connected group schemesover k that G° =im] By Lemma 1 we see
that 1, isquasi-finite and flat.

In the situation of assertion (b) we have just seen that I; is flat. So we may
use the criterion 2.4/8. Thus, just as before, we can assume that S consists of a
field k. Then we can consider the Lie algebra Lie(G) and the endomorphism
Lie(lg): Lie(G) — Lie(G)induced onit by | SinceLie(l;)isjust the multiplication
by L and since lis not divisible by char k, we see that it is bijective. So l;: G— G
is étale by 2.2110. O

For an S-group scheme G as in Lemma 2, we write ;G for the kernel o the
1-multiplication I; : G— G. If char k{(s) does not divide for al s € S, we deduce
from Lemma 2 that ,G, being the fibre of I; over the unit section, is etale over S,
whereas in the situation of Lemma 2 (a) we only know that ,G is quasi-finite and
flat over S.

In general, an S-group scheme H of finite type which is quasi-finite over S is
not finite over S unless S consists of a field. However, if S is the spectrum o a
henselian discrete valuation ring R and if H is quasi-finite and separated, one can
consider its finite part H'. The latter is the open and closed subscheme of H
consisting of the special fibre H, and of al points of the generic fibre Hg which
specidizeinto pointsof H,. Namely, applying 2.3/4, oneshowsthat Histhe digoint
sum of two open and closed subschemes H' and H , where H' is finite over Sand
where the special fibredf H isempty. Thefinite part H' of H isan open subgroup
scheme of H.

Proposition 3. Let R be a discrete valuation ring and let 1 be a positive integer such
that theresidue characteristic of Rdoesnot dividel. Then, for any smooth commutative
R-group scheme G of finite type, the canonical map ;G(R*") — ,G(k,) is bijective,
where R¥ is a strict henselization of R and where k, is the residue field of R,

Proof. We may assumethat R isstrictly henselian. Since G isétale over R by Lemma
2, itsfinite part isa digoint union of copiesdf S = SpecR; cf. 2.3/1. O
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Definition 4. Let f: G— G' be a homomorphism of commutative group schemes of
finite type over an arbitrary base scheme S. Then f is called an isogeny if, for each
s € S, the homomorphism f; : G, — G isan isogeny in the classical senseg;i.e., if f; is
finite and surjective on identity components.

Examples of isogeniesare provided by 1-multiplicationson commutative group
schemes G where 1 and G have to be chosen as required in Lemma 2 (a) or (b).In
the situation of the definition, each f; has a degree deg f;, which can be defined as
therank of thefinite k(s)-group schemekerf,. Recalling somefacts on commutative
finite group schemesH over afidd k, we mention that H is étale if char k = 0 (by
Cartier's theorem) or, more generaly, if char k does not divide the rank of H. If H
is connected, its rank is a power of char k. Furthermore, the 1-multiplication
1 :H— Histhezero-homomorphism if / isa multiple of the rank of H.

We need a well-known result relating isogenies over fields to 1-multiplications.

Lemmab. Let f: G— G be anisogeny between smooth and connected commutative
group schemes of finite type over a field k. Assume either that char k does not divide
degf or that G is semi-abelian. Then there is an isogeny g: G — G such that
gof =1 wherel =degf.

Proof. Setting 1= deg f, we seethat ker f = ker | Then, f beingflat and surjective,
we have G' = G/ker f and, thus, homomorphisms

6L G — Glkerly .

Since the 1-multiplication I;: G— G is finite by Lemma 2, and since |, factors
through G/ker I, the existence dof gisclear. O

Now, working over a discrete valuation ring R and itsfield of fractions K, we
can deal with the question of whether a homomorphism between R-group schemes
IS an isogeny as soon asit isan isogeny on generic fibres.

Proposition 6. Let Gy and G; be smooth commutative and connected K-group
schemes of finite type admitting Ndron models Gand G over R. Consider an isogeny
fx: Gx — Gy and assume either that the residue characteristic of R does not divide
deg fx or that G is semi-abelian. Then f; extendstoanisogeny f : G — ', and there
isanisogeny g: G — Gsuchthat go f =1 for 1 = deg fx.

Proof. Using Lemma 5, there is an isogeny g, : Gx — G satisfying g, o fy = I,
for 1 = deg fx. Dueto the Neron mapping property, fx and g, extend to homomor-
phismsf:G— G and g: G — Gsuchthat go f=1 Then, by our assumptions
on 1= degfx or on G, we see from Lemma 2 that I; is an isogeny, and it follows
easly that f and g are isogenies. O

Corollary7. Let fi : Gy — Gk be an isogeny of abelian varieties with Néron models
G and G'. Then Gis semi-abelian if and only if G’ is semi-abelian.
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Proof. By the Néron mapping property, theisogeny fx extends to a homomorphism
f:G— G. If Gissemi-abelian, fisan isogeny by Proposition 6 and, consequently,
G issemi-abelian. Using anisogeny g, : Gx — G, oneshowsin the same way that
Gissemi-abelianif G' is semi-abelian. U

7.4 Semi-Abelian Reduction

Let G be a smooth group scheme dof finite type over a Dedekind scheme S which,
for simplicity, we will assume to be connected. We say that G has abelian reduction
(resp. semi-abelian reduction) at a closed point s € Sif the identity component G? is
an abelian variety (resp. an extension o an abelian variety by an affine torus). In
particular, if Gisa NCron model o its generic fibre G, where K is the fied of
fractions o S, wewill say that G, has abelian (resp. semi-abelian) reductionat s € S
if the corresponding factistruefor G. Thelatter amounts to the same as saying that
thelocal Néron model G xg Speclo,, of G at s € Shasabelian (resp. semi-abelian)
reduction.

If Ag is an abelian variety over K, then 4y is said to have potential abelian
reduction (resp. potential semi-abelian reduction) at a closed point s e Sif thereisa
finiteGaloisextension L of K suchthat A, hasabelian (resp. semi-abelian) reduction
at all pointsover s. To be precise, we thereby mean that the NCron model A' of A,
over the normalization 8’ of Sin L has abelian (resp. semi-abelian) reduction at all
closed points s € S lying over s. Instead of abelian reduction, we will also talk
about good reduction. Let us begin by mentioning the fundamental theorem on the
potential semi-abelian reduction of abelian varieties.

Theorem 1. Each abelian variety A over K has potential semi-abelian reduction at
all closed pointsof S.

The easiest way to obtain this result is via the potential semi-stable reduction
o curves, as proved by Artin and Winters [1], a topic which is beyond the scope
o the present book. So we will restrict ourselves to briefly indicating how the
assertion of the theorem can be deduced from the corresponding results on
curves.

Since abelian varieties have good reduction almost everywhere, see 1.4/3, the
problem is alocal one, and we may assume that S consists of a discrete valuation
ring R. One starts with the case where Ak is the Jacobian J, = Pic&dK of asmooth
and proper K-curve Cg. Then the theorem on the potential semi-stable reduction
o curves asserts that, replacing K by a finite separable extension if necessary, we
can extend Cy into a proper flat R-curve C whose geometric fibres have at most
ordinary double points as singularities; cf. 9.2/7. For such a curve it is shown in
9411 that the relative Jacobian Picg,s is a smooth and separated R-group scheme
having semi-abelian reduction. Since Pics is an S-model of J, it follows from
Proposition 3below or from themoregeneral discussion of the rel ationship between
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Néron models and the relative Picard functor in 9.5/4 or 9.7/2 that Picls is the
identity component of the Néron model of Jg. ThusJg has semi-abelian reduction.

If A, isageneral abelian variety, one knows, see Serre[1], Chap. VII, § 2, n°13,
that thereis an exact sequence of abelian varieties

0— Ay — Jy— Ay —0

whereJg isaproduct of Jacobians. Using thefact that J; has potential semi-abelian
reduction, it follows from the lemma below that Ax has potential semi-abelian
reduction also. O

Lemma2. Let0 — Ay — Ay — A% —> 0 bean exact sequence of abelian varieties
over K. Then A has semi-abelian (resp. abelian) reduction if and only if Ax and A%
have semi-abelian (resp. abelian) reduction.

Proof. Due to Poincare's complete reducibility theorem, see Mumford [3], Chap.
IV, §19, Thm. 1, there is an abelian subvariety Ay in A such that the canonical
map A" x Ay — A, and, thus, also the composition A% — A, —s A% are iso-
genies. So we seethat A isisogenous to Ay X Ay and it followsfrom 7.3/7 that A,
has semi-abelian reduction if and only if the same is true for A% and A%. An
application o 7.3/6 settles the case of abelian reduction. O

For the remainder of this section, let usassume that the base scheme S consists
o adiscretevaluationring R withfield of fractions K. Wewant to discuss properties
of Néron models with abelian or semi-abelian reduction and to givecriteriafor the
existence of Néron models with abelian or semi-abelian reduction over the given
fidd K.

Proposition 3. Let A, be an abelian variety with Nkron model A and let G be a smooth
and separated R-group scheme which is an R-model of A. Assume that G has
semi-abelian reduction. Then the canonical morphism G — A is an open immersion;
it is an isomorphismonidentity components.

Proof. We can assume that R isstrictly henselian. Furthermore, it isenough to show
that G® — A4°isanisomorphism. So assumethat G = G°. Let [ bea positiveinteger
which is not divisible by the characteristic of the residuefield k of R. Considering
thekernels,G and ;4 of 1-multiplicationson Gand A, we have a canonical commuta-
tive diagram

G(K) —>— A(K)
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where ,G(R) — ,G(K) isinjectivesince G is separated and where all other vertica
mapsare hijective; the upper one on theright-hand side because A isa Néron model
o A, and the lower ones by 7.313. So the middle horizontal map isinjective, and
the same is true for the lower horizontal one. Now, using the facts that G has
semi-abelian reduction and that k is separably closed, it follows that the points in
G(k) which havefinite order not divisible by char k are topologically densein each
connected subgroup o G,. Therefore G, — 4¢ has a finite kernel. In particular,
G— A° is quasi-finite and, thus, surjective by reasons o dimension. But then
Zariski's Main Theorem 2.3/2’ shows that G— A is an isomorphism. O

Coroallary 4. If an abelian variety A, has semi-abelian reduction, then the formation
of the identity component of the Néron model of Ay is compatible with faithfully flat
extensions of discrete valuation rings R'/R.

We have seen above that points of finite order play an important role when
dealing with Ntron models of abelian varieties. We want to use them in order to
giveacriterionfor the existenced abelian or semi-abelian reductionsover thegiven
field K. As before, R will be a discrete valuation ring with field of fractions K and
with residuefield k. Let K, be a separable agebraic closure of K and consider rings
RcR"c R¥ < R, cK, where R" is a henselization of R, where R*" is a strict
henselization of R, and where R, is the localization of theintegral closure of R in
K, at a maximal ideal lying over the maximal ideal of R'". As usua K" and K*
denotethefiddsdf fractionsdf R" and of R. Then theinertia group of the maximal
ideal of R, coincideswith the Galois group Gal(K,/K**); cf. 23111. Fixing the above
situation, we will call 1 := Gal(K,/K*") "the" inertiagroup of Gal(K,/K).

Theorem 5. Let A, be an abelian variety over K with Nkron model A over R, and let
L be a prime different fromchar k. Then the following conditions are equivalent:

(a) A, hasabelian reduction; i.e., the identity component Ay is an abelian variety
over k.

(b) Aisan abelian scheme over R.

(c) For eachv > 0 theinertia group | of Gal(K,/K) actstrivially on ,Ag(Kj), the
set of K -valued pointsof the kernel of the 1"-multiplication Iy, : A, — Ak. In other
words, the canonical map ,, 4 (KS")—> Ag(K) is bijective.

(d) The Tate module T(A,() = hm AK(KS) is unramified over R;i.e., the inertia
group | of Gal(K,/K) operates tr|V|aIIy on T(Ag).

Proof. We begin by showing that conditions (a) and (b) are equivalent. If 47 isan
abelian variety, we can conclude from [EGA 1V,], 15.7.10, that A° is proper over
R and, thus, isan abelian schemeover R. But then 4° isa Ntron model of itsgeneric
fibre by 1.2/8; thus, A = A°. This verifies the implication (a)=> (b); the converse
istrivial.

The equivalence of (c)and (d)isclear. In order to verify the remaining implica-
tions, consider the canonical maps

() pAK,) > JAK?) &= ARY) 25 A(k,)



184 7. Properties of Néron Models

where k, is the residuefidd of R™ and where the map on the right-hand side is
bijective by 7.313. If A is an abelian scheme over R, the cardinality o both sets
LAKK) and ,A(k,) is 2" where n is the dimension  A; cf. Mumford [3], p. 64.
Therefore, all mapsin (*) are bijectiveand we see that (b) implies (c).

Conversely, assume that al maps in (*) are bijective. Then the cardinality o
yA(ks) is 12" for each v > O, and it follows from the structure of commutative
group schemes o finite type (over an algebraically closed or perfect fidd k) that
theidentity component A isan abelian variety. So we seethat condition (c)implies
condition (a).

The equivalence o (a) and (d) in the above theorem is called the criterion of
Néron-Ogg-Shafarevich for good reduction. To apply it, one may work over a
strictly hensdlian base ring R. Then A, has abelian reduction if and only if al
I-torson points o Ay are rational over K. The criterion can be generaized
to the semi-abelian reduction case; see [SGA 7,1, Exp. IX, 35. We include this
generalization here without proof.

Theorem 6. Let A be an abelian variety over K, and let L be a prime different from
char k. Then the following conditions are equivalent:

(@) A has semi-abelian reduction over R.

(b) Thereisa submodule T' < T := T;{Ax(K,)) which is stable under the action
of theinertia group | of Gal(K,/K) such that I actstriviallyon T' and on T/T".

7.5 Exactness Properties

I nthefollowinglet SbeaDedekind schemewith ring o rational functionsK. Except
for the purposes of Proposition 1 below, we will only be concerned with the case
where Sconsistsdf adiscretevaluation ring R. Let G, bea smooth K-group scheme
o finite type, and let X, bea torsor under G Then the Néron model X o X, if
it exists, may be viewed as a direct image 1, X; with respect to the canonical
inclusion z: Spec K — S More precisaly, X represents this direct image if one
restricts to smooth schemes over S. This consideration suggests that the Neron
model might behavereasonably wdl with respect to left exactness. However we will
e that, except for quite specia cases, there will be a defect of exactness, the
defect d right exactnessbeing much more seriousthan the one d left exactness. We
will givesomeexampl esat theend of thissection, after we have presentedthe general
results. Let us begin with an assertion concerning the existence of Néron models.

Proposition 1. Let Sbe a Dedekind scheme with ring of rational functions K and let

(*) 0— Gy — Gy —> G —0

be an exact sequence of smooth K-group schemes of finite type (not necessarily
commutative).
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(a) If Gi admitsa Néron modd over S, the sameistrue for Gy, but not necessarily
for Gg.
(b) If Gy and Gg admit Néron models over S, the sameistrue for Gg.

Proof. If Gy admits a Néron model, then Gi admits a Neron model by 7.116. To
justify the second part of assertion (&), we give an example showing that the existence
of a Néron model for Gx does not imply the same for Gg. Assume that S consists
o adiscrete valuation ring of equal characteristic p > 0 and, asin Example 7.113,
let Gy be the subgroup o G, ¢ x G,  given by the equation x + xP+ ny? = 0,
wheren isa uniformizing element of R. Then G, admits a Neron model over Sand
the projection of G, x xx &, x Onto its second factor gives rise to a smooth group
epimorphism Gy — G, . Writing Gx for itskernel, we have a short exact sequence

0— Gx— Gy — G —0

o smooth K-group schemes o finite type. The middle term admits a Neron model
whereas the group G, _x on right-hand side does not. The example is quite typical;
thereason that a Néron model for G does not imply theexistenceof a Néron model
for Gg, comesmainly from thefact that the quotient of a K-wound unipotent group
is not necessarily K-wound again.

Next, to proveassertion (b),assume that Gx and Gx admit Néron models G' and
G' over S, where Sisan arbitrary Dedekind scheme again. First, if the given exact
sequence (*) extends to an exact sequence of smooth S-group schemesof finite type

0—-G—>G—G—0,

we claim that G is automatically a Neron model of Gy by the criterion given in
7.1/1. Namely, in order to verify this, we may assume that S consists of a strictly
henselian discrete valuation ring R. Then it is enough to show that the canonical
map G(R) — G(K) is bijective. However, thisfollows easily from the commutative
diagram

0 —— GR) —— GR) —— G"(R) ——— 0

12 l’
0 —— G(K) —— G(K) —— G"(K)

by redlizingthat thefirst row isexact, dueto thefact that thesmoothnessof G— G
implies the surjectivity of G(R) — G"(R); cf. 2.2/14.

In the general case we can apply a limit argument ([EGA 1V,], 8.8.2), and
thereby extend () to an exact sequence of smooth group schemesd finite type over
a dense open subscheme S of S. Consequently, thereisa Neron model of Gy over
S. Then, using 1.4/1, it isenough to construct the local Néron models of G, at the
finitely many remaining points of S— S. So, in the proof of assertion (b), we are
reduced to the case where S consists of a discrete valuation ring R. Since this
problem does not seem to be accessible by elementary methods, we have to make
use of alater criterion characterizing the existence of Neron modelsin terms of the
structure of algebraic groups; cf. 10.211. It says that a smooth K-group scheme o
finite type like Gy admits a Néron model if and only if, after the base change
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K — K**, the group G does not contain subgroups o type G, or G,,; here K" is
the fidd of fractions o R*, the strict henselization d the completion of R. Using
thiscriterion, it iseasly verified that G, admits a Néron model over R if the same
istruefor Gy and Gg. |

Next, consider an exact sequence
0— Gy — Gg— Gy — 0

and assume that the corresponding Néron models G, G, and G” exist so that, due
to the universal mapping property, thereis an associated complex

0—G—>G— G —0.

We want to examine under what conditions parts of the latter sequence are exact.
To do this, it is enough to look at the local case. So, in the following, the base S
will consist of a discrete valuation ring R with field of fractions K and with residue
fidd k.

Propostion 2. If chark = 0, the closed immersion Gy — G gives rise to a closed
immersion G' — Gof associated Néron models.

Proof. Denote by H the schematicclosured G in G. Then G — Gfactorsthrough
H < G and we know from 7.1/6 that the induced morphism G¢'— H is an
isomorphism. |

Next, let uslook at abelian varieties.

Proposition 3. Consider an exact sequence of abelian varieties
0— Ay — Ay — A3 —0

and the corresponding complex of Néron models

5 0—A—4—>4"—>0.

Let By be an abelian subvariety of A; such that Ay — A% induces an isogeny
ug i By — A%; let n = deguy.

(a) If chark does not divide n, then A — A isa closed immersion, A— A" is
smooth with kernel A', and the cokernel of A, — Ay iskilled by multiplication with
n. If, in addition, A has abelian reduction, (f) is exact.

(b) If A has semi-abelian reduction, the sequence () is exact up to isogeny; i.e., it
isisogenous to an exact sequence of commutative S-group schemes.

Proof. The isogeny uy : By — A% givesriseto anisogeny vg : Ax xx By— A o
degree n. So thereis an isogeny wg : A, — A% X, Bg such that wy o vy is multi-
plication by n. Let B be the Néron model of Bg. Then ug, vy, and w, extend to
R-morphismsu: B—> A", v: A xzg B— A,and w: A— A' xz Bsuchthat wo v
ismultiplication by non A" x, B. Assuming the condition of (a), the multiplication
by nisan etaleisogeny on A" xz B, and u, v, and w are easily checked to be etale
isogenies, too. Then H := w™!(4’) is a smooth closed subgroup scheme o A which
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satisfies HY = Aj. It follows that the schematic closure of A% in H or Aisan open
subgroup scheme of H and, thus, is smooth over R. So, by 7.1/6, it coincides with
the Néron model A of Ay and we see that A — A4 is a closed immersion. The
remaining assertions of (&) follow by using the étale isogeny u. One shows that
A~ A'isflat, has kernel A and, hence, is smooth. Furthermore, if A has abelian
reduction, the sameistruefor A" by 7.4/2 sothat A —+ A" issurjective.

Assertion (b) follows from the fact that v: A xzg B— A and u:B— A" are
isogenies; use 7.3/6 and 7.317. O

Theorem4. Let 0 — Ay — Ax — A% — 0 be an exact sequence of abelian varie-
tiesand consider the associated sequenceof Néron modelsG— A — A—s A" — 0.
Assume that the following condition is satisfied:

(*) R has mixed characteristic and the ramification index e = v(p) satisfies
e< p- 1, where pis the residue characteristic of R and where v is the valuation
on R, which is normalized by the condition that v assumes the value 1 at uniformizing
elements of R.

Then the following assertions hold:

(i) If A has semi-abelian reduction, A — Alis a closed immersion.

(i) If A has semi-abelian reduction, the sequence — A — A — A" isexact.

(i) 1f Ahasabelian reduction, the sequence0 — A — A— A' — ( isexact
and consists of abelian R-schemes.

Proof. Let usfirst see how assertions (ii) and (iii) can be deduced from assertion (i).
If A has semi-abelian or abelian reduction, thesameistruefor A and A" by 7.4/2.
So A — Aisaclosed immersion by (i), and we can consider the quotient 4/4’; it
existsin the category of algebraic spaces, cf. 8.3/9. Furthermore, A/A’ issmooth and
separated and, thus, a scheme by 6.613. Now look at the canonical morphism
A/A’ — A" which is an isomorphism on generic fibres. Since A has semi-abelian
reduction, the sameistruefor A/A4’, and it followsfrom 7.4/3 that 4/4" — A" isan
open immersion. So assertion (ii) is clear. Finaly, if A has abelian reduction, the
sameis truefor 4/4’. So the latter is an abelian scheme by 7.4/5 and, thus, must
coincide with the Neron model A' of A%. Thereby we obtain assertion (iii).

It remainsto verify assertion (i) under the assumption of condition (). Asakey
ingredient for the proof of thisfact, we will need thefollowing result on finite group
schemes; cf. Raynaud [7], 3.3.6.

Lemma . Let R be a discrete valuation ring satisfying condition (*) of Theorem 4.
Let »: G — G be a morphism of R-group schemes which are finite, flat, and
commutative. Then, if v : Gx — Gg iSan isomorphism, v is an isomorphism.

The lemma implies a criterion for finite and flat R-group schemes to be ttale.
To stateit in its simplest form, recall that a group scheme over a base scheme Sis
called constant if it is of the type Hg with an abstract group H.

Corollary 6. Assume that Risasin condition () of Theorem 4 and that, in addition,
it is strictly henselian. Furthermore, consider a finite, flat, and commutative R-group
scheme G whose generic fibre is constant. Then G is constant.
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Proof d Corollary 6. Let G — G be a group smoothening of G (see7.1). Then G
coincides with its finite part and, thus, is finite over R since G is finite over R.
Therefore G — Gisan isomorphism by thelemma. Using the fact that G is Ctde
over R and that R isstrictly henselian, G is constant. O

Now let usindicate how to obtain assertion (i) of Theorem 4 under the assump-
tion of condition (). Since Neron models are preserved when R is replaced by its
strict henselization or by its completion, we may assume that R isstrictly henselian
and complete.

We begin by showing that u: A — Aisamonomorphism;i.e., that N := ker u
is trivial. For this purpose it is enough to show that the specia fibre N, of N is
trivia. If not, there is a prime 1 not necessarily different from char k, such that
A 0 N isnon-trivial; as usua, ;A" isthe kernel of the 1-multiplication on A'. Since
A has semi-abelian reduction, ,A is quasi-finite and flat over R; cf. 7.3/2. Now, R
being henselian, we can consider the finite part G of ,4’; see 7.3. It is enough to
show that uisa monomorphism on G. Let G be the schematicimage of G under
u and consider the morphism u : G — G given by u. Then u' is an isomorphism
on generic fibres and thus, by the lemma, an isomorphism on G'. I n particular, U
isa monomorphism, and it followsthat u isa monomorphism.

If A has abelian reduction, it is an abelian scheme by 7.4/5 and, thus, proper
over R. Soit followsthat u is proper. But then, being a monomorphism, it must be
a closed immersion. This ends the proof in the special case where A has abelian
reduction.

In the general case, some work remains to be done since there exist monomor-
phisms which are not immersions; cf. [SGA 3,1, Exp. VIII, 7 and Exp. XVI, 1. Let
B be the schematic image of u: A — A; it isaclosed subgroup scheme of A which
isflat over R. We will show that B or, what is enough, that B® issmooth. Then, due
to the Néron mapping property, the morphism A — B admitsaninverseand uis
aclosed immersion. In order to do so, we denote by an index n reductions modulo
=", wherer isa uniformizing element of R. Sinceu isamonomorphism,itisaclosed
immersion modulo =" for all n > 0; cf.[SGA 3,1, Exp. VI3, 1.4.2. So we can consider
the exact sequence of R.-schemes

0— AP — B — 0, —0

wherethe quotient @, = B?/A4;? existsasan R-scheme by [SGA 3,], Exp. VI,, Thm.
3.2,andisflat by [SGA 3], Exp. VIg, Thm. 9.2. Furthermore, Q, isconnected and,
by reasons of dimension, finite over R,. Taking inductive limits for n going to
infinity, we obtain an exact sequence o formal group schemes over R

O——)A\'—)B\—)Q——»O

where Q is an R-scheme which isfinite, flat, and connected. Let g be a power of p
such that Qis annihilated by the g-multiplication on Q. Since 4’ is p-divisible, the
above sequence restricts to an exact sequence

O—Qqﬁ’—»qé—vQ—ﬁO

onthekernelsof g-multiplications; thelatter arefiniteflat R-group schemesby 7.3/2.
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Furthermore, ,4’ and ,B can beinterpreted asthefinite parts of the quasi-finiteflat
R-group schemes ,A" and ,B°.

Applying Grothendieck's orthogonality theorem [SGA 7,1, Exp. IX, Prop. 5.6,
we see that the generic fibre of the quotient ,4'/,4" is constant. Since A' and B
coincide on genericfibres, it followsthat the genericfibres of qB/q/i’ and, thus, of Q
are constant. But then Q is constant by Corollary 6 and, being connected, it must
betrivial. So A’ isisomorphic to B and, consequently, B® issmooth which remained
to be shown. 4

In the remainder of this section, we want to discuss the defect of exactness of
Néron models by looking at some special examples.

Example7. Let R be a complete discrete val uation ring with normalized valuation
V. Let g be a non-zero element of R with v(q) > 0 and consider the Tate eliptic
curves Ex = G,, /q° and Ex = G,, x/(¢")* wherelisa positiveinteger not divisible
by char K. Since the 1-multiplication on E factors through E%, it gives rise to an
exact sequence

0— Gy — Ex— Ex—0,

where Gy is a finite group scheme o order 1 contained in the kernel o the
1-multiplication on E; thelatter isof order 12. Let

0—-G—DE—E—90

be the associated sequence of Néron models. We want to show that there can be
a defect of exactness at G, at E, or at E, depending on 1 and on the residue
characteristic of R.

Defect of exactness at G. Assume that R is of mixed characteristic, that 1=p =
char k, and that all p-torsion points of E, are rational over K. Thelatter condition
implies that the ramification index eisat least p — 1; cf. Serre [4], Chap. IV, §4,
Prop. 17. Then G =~ (Z/pZ)x and G ~ (Z/pZ)x. Furthermore, thekernel of E— E'
isthe group p, z o p-th roots of unity, and the morphism from G into the kernel
of E— E coincideswithamorphism(Z/pZ), — n,, r Sending 1to aprimitive p-th
root of unity of R. However, the latter is not a monomorphism sincep = chark. In
particular, G— E is not a monomorphism.

Defect of exactness at E. Keeping the situation we have developed above, we see
that G cannot be mapped surjectively onto thekernel of E — E' sincethe morphism
(Z/pZ)g — n,,& is NOt surjective.

Defect of exactness at E'. The group of connected components of the specia fibre
of E has order v(g) whereas that of E has order - v(g). So, without restrictions on
the residue characteristic of R, the morphism E— E cannot be surjective for
arbitrary 1> 1. ]
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Next we want to show that the assertion of Theorem 4 can befalseif we do not
require condition (*) of this theorem.

Example 8 (Serre). We will construct a morphism v : A' — A of abelian schemes
over R which is not a monomorphism, but which has the property that v;
Ay — Ay isaclosed immersion. The valuation ring R is supposed to have mixed
characteristic. Soif p = char k, we have to assumee:= v(p) > p — 1 by Theorem 4.
In the following we assume that R contains all p-th roots of unity so that eis a
multiple of p — 1 by Serre [4], Chap. 1V, §4, Prop. 17. Now, smilarly asin Example
7, consider amorphism u : (Z/pZ), — p, Sending 1to a primitive p-th root of unity.
Let E beandllipticcurveover R (i.e., an abelian schemewith elliptic curves asfibres)
which containsp, as a subscheme. Then u extendsto amorphism u: (Z/pZ)r — E,
which is a closed immersion on generic fibres, but which is not a monomorphism.
Let E beasecond elliptic curve over R which contains(Z/pZ)g as a subscheme (for
example, a Serre-Tate-lifting of an elliptic curve over k containing (Z/pZ), as a
subscheme). Then consider the co-cartesian diagram

Z/p2)y —— E

|

E —X . F

where F' is the quotient of E x E' with respect to the action o (Z/pZ)x. Since the
action isfree, F isan abelian scheme over R. Furthermore, ug isaclosed immersion,
but u" itself cannot be a monomorphism sinceu is not a monomorphism. O

Finally, we want to show that the condition on the semi-abelian reduction of A'
in Theorem 4 cannot be cancelled.

Example 9. Consider discrete valuation rings R = R' where R=7,, and R' =
7,8 withabeing a primitive p-th root of unity; p isa prime differentfrom 2. Let
u': E— F be a morphism o abelian R-schemes of the type constructed in
Example 8; i.e., such that »’ is not a monomorphism, but such that it is a closed
immersion on generic fibres. Then apply the technique of Weil restriction of R' over
Rtou' (cf.Section 7.6) and consider theinduced morphism u! : E* — F*. It follows
from 7.6/6 that E* and F are Neron models of their generic fibres, and from
7.6/2 that u' is a closed immersion on generic fibres. We claim that u' is not a
monomorphism. Indeed, the image of the map Lie(u’) : Lie(E")— Lie(F")cannot
be locally a direct factor in Lie(F"). The same is true for the Weil restriction of
Lie(u"), and the latter is canonically identified with Lie(u!): Lie(E!) — Lie(F?).
So u': E! — F* cannot be a closed immersion and, thus, not a monomorphism.
Since v(p) =1 < p — 1, where v is the normalized valuation on R, we see from
Theorem 4 that E' cannot have semi-abelian reduction. ]
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7.6 Well Restriction

The main purpose of this section is to discuss a criterion for the existence of Well
restrictions and to study the behavior of Neron models with respect to Well
restrictions.

Let h:S — S be a morphism o schemes. Then, for any S’-scheme X', the
contravariant functor

R s(X) 1 (Sch/S)° — (Sets), T+ Homg (T x4 S, X"),

is defined on the category (Sch/S) of S-schemes. If it is representable, the corre-
sponding S-scheme, again denoted by Rs.s(X"), is called the Wl restriction of X'
with respect to h. Thus, the latter is characterized by afunctorial isomorphism

Homg(T, Ry 5(X")) = Homg (T x5 S,X’)

o functorsin T where T varies over all S-schemes. There are several elementary
properties of the functor Rs.,s(X’) and, hence, & Weil restrictions, which follow
immediately from the definition. We will derive some o them once we have men-
tioned the adjunction formulain Lemma 1 below.

Imposing an appropriate condition on h such as being finite and locally free
(whichwe mean as a synonym for being finite, flat, and of finite presentation), the
existenced the Well restriction of the affine n-space Ag. istrivia (cf. the beginning
o the proof of Theorem 4). Then, in order to treat more general schemes, it is
necessary to study the behavior of Weil restrictions with respect to open or closed
immersions. I n order not to worry about the representability of thefunctor Ry s(X")
too much, we will work entirely within the context of functorsfrom schemesto sets.
In particular, we will make no difference between an S-scheme X and its associated
functor Homg(-, X);in the same way we will proceed with §'-schemes.

It is convenient to define the functor R 5(X") not only for §’-schemes X', but,
more generally, for arbitrary contravariant functors from the category (Sch/S’) of
§’-schemes to the category of sets. So consider a functor

F':(Sch/S")° — (Sets).
Then its direct image with respect to h: S — Sconsists o the functor
h,F :(Sch/S)° — (Sets), T— F(T x5 S).
Using 4.1/1, we see easily that the functor
(Sch/S) — (Sch/S’) , T— T %55,
playsthe role of an adjoint of h,; namely, the so-called adjunction formulaisvalid.
Lemma 1. For any S-scheme T and any functor F :(Sch/S')® — (Sets), there is a
canonical bijection
Homg(T, h, F') -~ Homg (T x5S, F')

which isfunctorial in Tand in F
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As an application of the above formula, we want to derive some elementary
propertiesof Weil restrictions. Let X' bean §'-scheme. Then theidentity on Ry, 5(X’)
givesrise to afunctorial morphism

Sns//s(X,) XS S, — X,

if Mg 5(X’) exists as an S-scheme. Likewise, if X is an S-scheme, the identity on
X X, S definesafunctorial morphism

X— SRS’/S(X Xy S) .

On the other hand, each functorial morphism F — G' between contravariant
functorsfrom (Sch/S’) to (Sets)induces a functorial morphism 4, F" — h G. Fur-
thermore, h, commutes with fibred products, and it follows that k, F’ is a group
functor if thesameistruefor F. In particular, the Well restriction of agroup scheme
is, if it existsas a scheme, agroup schemeagain. Alsoit iseasy to seethat the notion
of Well restriction is compatible with base change; i.c., if T— Sisa morphism of
base change, and if we write T' := S x; T, then, for any S’-scheme X', there isa
canonical isomorphism

Ry pp(X xs T) > Re(X) xg T

of functors on (Sch/T).
In thefollowing we need the terminology of relative representability of functors;
d. Grothendieck [1], Sect. 3. Let

F, G: (Sch/S)° — (Sets)

be contravariant functors, and let u: F— G be a functorial morphism. Then, for
each functorial morphism T — G, where T is an arbitrary S-scheme, the fibred
product Fr = F x5 T may beviewed asafunctor from (Sch/T)° to (Sets).One says
that Fis relatively representable over G via u if, for each T — G, the projection
Fr— T isamorphism in (Sch/S); i.e., if each F; is representable by a T-scheme.
Many notions on morphisms between schemescan easily be adapted to the context
o relative representability. For example, u is called an open immersion, or a closed
immersion, or a morphism o finite type, etc., if the corresponding property is true
for each morphism of schemesu,: F;, — T, obtained from u: F— G by the"'base
change" T — G.

Proposition 2. Let 4’ : F — G be a morphism between functors from (Sch/S')° to
(Sets).

(i) Assumethat u' is an open immersionand that h: S — Sisproper. Then the
associated morphism h,(u'): b F' — h G'isan open immersion.

(ii) Assumethat u' isa closed immerson and that h: S — Sisfinite and locally
firee or, moregenerally, proper,flat,and d finite presentation. Thenh, (u'):h F —
h G isaclosed immersion.

Proof. Let uswrite F= b, F' and G= kG, and let T — G be a morphism, where
T is an arbitrary S-scheme. Setting T':= T x4 S, we claim that T — G factors
canonically through h, T". Indeed, we have a canonical morphism T—h T'.
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Furthermore, T — G corresponds to a morphism T' — G' and, hence, to a
morphism h, T' — h, G = G. That the composition with T— h, T' yidlds T —
G is eadily verified with the help of 4.1/1. Consequently, we can view Fr as being
obtained from F, ;- by meansdf thebasechange T —- h, T',afact to be used below.

Furthermore, since h, commutes with fibred products, there are isomorphisms

hoFr.~F Xgh, T ~F, 1,
and we can look at the canonical commutative diagram

Fp,. —— T

P — T

By ——— T .

In order to prove assertion (i),it has to be shown that the morphism in the middle
row, whichisobtained from theonein thelower row by the basechange T — h, T',
isan open immersion of schemes. We know aready that the upper row isan open
immersion of schemes; let U' betheimaged Fr. in T',andsetV' :=T' — U'. Then
V'isclosedin T' and, since T' — T is proper, itsimage V in T isclosed again. Set
U :=T — V.Interpreting Fr asthefibred product of F, ;-and T over h, T',we have

FT - HomS'(. XS S,’ U’) Xﬂoms,(. X 8. T") HOI’DS(', T) .

Thus, if Zisan arbitrary S-scheme, F(Z) consists of all S-morphismsZ — T where
Z x5 S —— T'factorsthrough U'; i.e., of those S-morphisms Z — T which factor
through U. Hence F; is represented by the open subscheme U of T and assertion
(Hfollows.

Next, let us verify assertion (ii) for the case where his finite and locally free.
Similarly as before, let V' bethe closed subscheme of T' whichisgiven by the closed
immersion Fy. — T'. Then we have to find a closed subscheme V o T such that,
given any S-morphism Z — T, it factors through Vifandonly if Z x¢S — T'
factors through V'. The problemisloca on S, T, and Z, so we may assume that all
three schemesare affine, say with rings of global sections R,A,and C.Let R— R
be the homomorphism between ringsof global sectionson Sand §'. We may assume
R isafree R-module of rank n. Let ey, ..., e, be a basis o R over R; then these
elements give rise to a basisof A ®x R' over R. Furthermore, let d <« A®z R be
theideal corresponding to V', and fix generatorsa;, i € |, of a. There are equations

ai = ), ¢, iel,

=

with coefficients ¢;; € A. These coefficients generate an ideal a = A, and we claim
that the associated closed subscheme V < T is as required. Namely, consider
the homomorphism a: A— C which is associated to Z— T as wdl as the
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homomorphisma : A®, R' — C ®; R' associatedto Z x4 S — T'. Since
kera = (kero) @ R = @ (kero)-¢; ,
i=1

weseethat @ ckera' if and only if a ¢ ker o, ie., that Z’ is mapped into V' if and
only if Z ismapped into V. So it followsthat V represents the functor F;.

If, moregenerally, hisproper,flat, and of finite presentation, one usestechniques
from the construction o Hilbert schemes asin [FGA], n°221, Sect. 3, in order to
show that there is a largest closed subscheme V of T such that an S-morphism
Z — Tfactorsthrough V if and only if, after basechangewith h: S — §, it factors
through V' ¢ T'. [

A functor F:(Sch/S)° — (Sets) is called a sheaf with respect to the Zariski
topology (see8.1)if, for each S-scheme T and for each covering {7;} of T, the sequence

Homg(T, F) — [ | Homy(T;, F) =3 [ | Homg(T; " T, F)
i i j )
isexact. Of coursg, if Fisascheme, Fis a sheaf in this sense.

Proposition 3. If F :(Sch/S)° — (Sets)isashesf with respect to the Zariski topology,
then the sameis truefor F := h,F'".

Proof. Since, for any S-scheme T, we have
Homg(T, F) = Homg (T x5 S, F'),

the assertion is obvious. O

We want to apply the above results to the case where F’ consists of an §'-scheme
X', and give a criterion of Grothendieck for the representability of X := h, X' =
Rss(X’) by an S-scheme. Then, if X is representable, it definesthe Weil restriction
o X'

Theorem 4. Let h: 8" — S bea morphisnd schemeswhich isfinite and locally free,

and let X' be an §’-scheme. Assume that, for each s € S and eachfinite set d points
P < X' ®s k(s), there is an gffine open subscheme U’ d X' containing P. Then
h X' = Ry s(X") isrepresentable by an S-scheme X and, thus, the Wil restriction d

X' exists.

Proof. We may assume that S and, hence, S’ are affine, say with rings of global
sections R and R' and that R" isafree R-module, say with generatorse, ..., e,. Let
us first show that h, X" is representable if X' is affine. So assume X' is affine and
view it as a closed subscheme of some scheme Spec R'[£], where t is a (finite or
infinite) system of indeterminates. Applying Proposition 2, it is only necessary to
consider the casewhere X' = Spec R'[t]. Consider ncopiesdf the systemt and write
ti,..., t, for these systems. Then, for any R-algebra A, there isa bijection

Homg. (R'[¢],A ®r R) — Homg(R[t,...,t,],A),



7.6 Weil Restriction 195
whichisfunctorial in A. I n order to definethis map, consider an R’-homomorphism

o :R'[t] — A ®z R. Thelatter is determined by theimage ¢'(t) of tin AQr R.
Using the direct sum decomposition

A®RR,=@(A®RR)ei7

we can write

=

) =Y olt) ®e,

13

with systems o(¢y),...,0(t,) of elements in A, and we can think of ¢ as of a
homomorphism o: R[¢;,...,t,] — A. Then it is easily seen that ¢’ — ¢ defines
the desired bijection. Consequently, in this case the functor k, X’ is representable
by the S-scheme Spec R[4, ...,t,], and it follows that the Weil restriction Rg/s(X’)
exists.

Next, let us consider the case where X' is not necessarily affine. Let {U;};.; be
the system of all affine open subschemes of X'. Then, by what we have just seen,
each h,U; is representable by an (affine) scheme U;, and the open immersion
U/ <, X' gives rise to a morphism U; — h, X’ which is an open immersion by
Proposition 2. Viewing the U; as open subschemes of X', we have canonical gluing
datafor them, and these data give rise to gluing data for the U;. So, gluing the U;,
we obtain an S-scheme Y. Since X' is a sheaf with respect to the Zariski topology,
the same is true for h, X’ (see Proposition 3) and there is a functorial morphism
Y — h,X'. Thelatter isan open immersion by Proposition 2.

In order to show that Y — h, X' is an equivalence of functors, it is enough
to show that each functorial morphism a: T— h, X', where T is an arbitrary
S-scheme, factors uniquely through Y or, what amounts to the same, that the latter
is the case locally in a neighborhood of each point ze T. Let (z;) be the finite
family of pointsin T x4 S lying over z. Furthermore,leta' : T x¢ S — X' be the
morphism corresponding to a, and set x; = a’(z;). By our assumption, there is an
affineopen subscheme U’ = X' containing all pointsx;. Weknow already that h, U’
is representable by an S-scheme U and that the canonical morphism U — h, X' is
an open immersion; the latter factors through Y by the definition of Y. Replacing
T by a suitable open subscheme containing z, we may assume that a' : T' — X'
factors through U'. Then a: T— h, X" factors through U and, hence, through Y.
Thefactorization is unique due to thefact that Y — h, X’ isan open immersion.

O

We want to mention some general properties of Weil restrictions, assuming that
we arein the situation of Theorem 4.

Proposition5. Let S — S bea morphismd schemes which isfinite and locallyfree,
and let X' be an §'-scheme. Assume that the Wall redtriction X = Ry 5(X’) existsas
an S-scheme, and consider thefollowing propertiesfor relative schemes:

(a) quasi-compact.

(b) separated,
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(c) locally of finite type,

(d) locally of finite presentation,

(e) finite presentation,

(f) proper,

(&) flat,

(h) smooth.
Then the above properties carry over from X' to X under the following additional
assumptions:

property (@) if Sislocally noetherian or if S — S isétale,

properties (b), (c), (d), (e), and (h) without any further assumptions, and

properties (f)and (g) f S — S isétale.

Proof. Let us begin with properties which carry over from X' to X without any
additional assumptions, say with property (b). Since the Well restriction of the
diagonal morphism X' — X' x4 X' yields the diagonal morphism X — X xg X
and since the Well restriction respects closed immersions by Proposition 2, we see
that X isseparated if X' is separated.

Next, let uslook at properties (c) and (d). That they carry over from X' to X
followsfrom the construction of Weil restrictionsin the affine case. Namely, if X'
is a closed subscheme of the affine n-space A%., and if S —- S is a finite and free
morphism of affineschemes, say of degree d, then it followsfrom Proposition 2 that
X isaclosed subscheme of R 5(A5) r AF where m= nd. So X islocally of finite
typeif the sasmeistruefor X'. Furthermore, the proof of Proposition 2 shows that
theideal defining X as a closed subscheme of A isfinitely generated if the sameis
true for X' as a closed subscheme of A%. So it followsthat X islocaly of finite
presentation if the sameis true for X’. The latter result can also be obtained by
functorial arguments using the characterization [EGA 1V;], 8.14.2, of morphisms
which are locally of finite presentation.

If X’ satisfiesproperty (€),we can view it as an S-scheme df finite presentation.
Using a limit argument, we may assume that Sis noetherian. Then X islocaly of
finite presentation, since property (d) carriesover from X' to X, and quasi-compact
over Ssince, as we will see below, also property (a) carries over from X' to X if the
base Sis noetherian. But then X is df finite presentation over S.

Finally, the characterization of smoothnessin terms of thelifting property 2.2/6
shows by functorial reasonsthat X satisfies property (h)if X' does.

Now assume that S -— Sis étale and finite. In order to show that X satisfies
properties (a),(f),or (g)if X' does, we may work locally on S, say in a neighborhood
of apoint se S. Furthermore, Well restrictionscommute with base change on S. So
we may replace S by an Ctde neighborhood of s. But then, sincelocaly up to Ctde
base change etale morphisms are open immersions, see 2.3/8, we are reduced to the
casewhere §’ consists of afinitedisjoint sum | | S; of copiessS; of S and whereS — S
is the canonical map. Then, in terms of fibred products over S,

Ry s(X') = n Reys(X’ x5 §;) = H X' xg 8,

and itistrivia that X satisfies properties (a), (f),or (g)if X' does.
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It remains to show that, under appropriate conditions, property (&) carries over
from X’ to X, afact whichisalready known if S — Sisétale. We clamthat it is
aso true for radicial morphisms. To verify this, it is enough to prove that, for S
radicial over S, the Weil restriction R s transforms any affine open covering (U;)
o X' into an affine open covering (R ,5(U;)) o X. Looking at fibres over S, we
may assume that S is the spectrum of a fiddd K. Then S consists of a finite-
dimensional local K-algebra K' whose residue field is purely inseparable over K.
Now let (U;) be an affine open covering of X'. To seethat the sets Ry x(U;) redly
cover X, consider a geometric point Spec E— X where E is a field over K.
Then the scheme Spec(E ®¢ K") consists of a single point and the corresponding
morphism Spec(E ®x K') — X' must factor through a member of the open cover-
ing (U;) d X’. Consequently, SpecE —+ X factors through a member o the family
(Ryx(U7)) whichjustifies our claim.

Now assume that the base S is locally noetherian. In order to show that X
satisfiesproperty (a)if X' does, wemay assumethat Sisnoetherian. Wewill conclude
by using a noetherian argument and a stratification of S. Let y be a generic point
o S. Restricting ourselvesto aneighborhood of y, wecan assumethat Sisirreducible
and, since quasi-compactness can be tested after killing nilpotent elements of
structure sheaves, that S is reduced. Furthermore, we can assume that S and §’
are afine, say S= SpecR and S = SpecR'. The fibre S, is the spectrum of the
finite-dimensional K-algebra K' = R' ®; K where K = k(5) = Q(R). Let L be the
maximal etale K-subalgebra between K and K'. It is obtained as follows. Decom-
pose K' into a finite direct product [[K; of local K-algebras K; and, for each
i, choose a maximal separable extension fiedd L; between K and Kj. Then the
residue field of K is purely inseparable over L; and we haveL = [[L;. Set T :=
Spec(R’ n L) so that S — Sfactors through T. Over the generic point y, the finite
morphism T — Sis étale. Thus, using the openness of the étale locus, we know
that T— SisCtdeover an open neighborhood of #. Restricting to this neighbor-
hood, wemay assumethat T —+ S isCtadeeverywhere. Furthermore,foreachace K’,
there is an integer n such that a” belongs to L. This property carries over to the
fibresof S — T sothat thelatter morphismisradicial. SinceX = Ry s(Rs (X)),
we see by what we have proved above for Ctae and for radicial morphisms that,
working over a neighborhood o #, the scheme X is quasi-compact if X' is.

The argument just given shows that the original morphism X — S is quasi-
compact over a dense open subset of Sif X' is quasi-compact over S. Looking
at the complement S, o this set and viewing it as a scheme with respect to the
canonical reduced structure, we can perform the base change S$; — S It
follows in the same way that X xgS; — S; is quasi-compact over a dense
open subset of S,. Continuing this way, the procedure will stop after finitely
many steps due to the noetherian hypothesis. Thus, finaly, it is seen that X is
quasi-compact over S. O

We want to add, again in the situation of Theorem 4, that, for any S-scheme X,
the canonical morphism X — R (X xg §') is a closed immersion, provided X
and, thus, Rs.5(X x¢ S)are separated. This follows by means of descent from the
fact that the composition of canonical morphisms
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X X5 8 — Rgs(X x5 8) x5 8 — X x5 §

istheidentity on X X, S.
Finally, let us state how Nkron models behave with respect to Weil restrictions.

Proposition 6. Let S — S be a finite and flat morphism of Dedekind schemes. Let
Spec K and SpecK' denote the schemes of generic pointsof Sand S. Furthermore,
consider a rorsor X' (under a smooth S-group scheme G') which is a Néron model
of the schemeof generic fibres X' xg Spec K'. Thenthe Weil redtriction X = Rg5(X")
exists as an Sscheme and is a Ntron model of the scheme of generic fibres
X X, SpecK.

Proof. Using the quasi-projectivity of torsorsover Dedekind schemes(cf. 6.4/1), the
existenceof X = M. 5(X’) as an S-schemefollowsfrom Theorem 4. Furthermore,
it follows from Proposition 5 that X is separated, of finite type, and smooth.
Finally, that X satisfiesthe Nkron mapping property isaformal consequence of the
definition of Weil restrictions, namely of the equation

Homs(Z, X) = HOInS'(Z XS S,X') .



Chapter 8. The Picard Functor

Following Grothendieck's treatment [FGA], weintroduce therelative Picard func-
tor Hc,, and treat the notion of the rigidified relative Picard functor. The main
purpose o this chapter isthe presentation of various results on the representability
o Fc,. Weexplain Grothendieck's theorem on the representability of Picys by
aschemeand point out improvementsdue to Mumford [2] aswéll as those due to
Altman and Kleiman [1]. In Section 8.3, we discuss the main steps of M. Artin’s
approach [5] to the representability of Fc,, by an algebraic space; for details, the
reader isreferred to his paper. At theend of the chapter, there isa collection of some
results on smoothness as well as on finiteness properties of Picys, as can be found
in[SGA 6].

8.1 Basics on the Relative Picard Functor

For any scheme X, we denote by Pic(X) = HY(X,0%) the group of isomorphism
classes of invertible sheaveson X. It iscalled the absolute Picard group of X. Fixing
a base scheme S and an S-scheme X, we can consider the contravariant functor

Py/s:(Sch/S)° .+ (Sets),  Tr—Pic(X x5 T),

from the category (Sch/S) of S-schemesto thecategory of sets, which factorsthrough
the category of commutative groups. Using the procedure of sheafification, we want
to associate a functor with Py which, under certain conditions, is representable;
namely, the so-called relative Picard functor.

To begin with, let us discussa necessary condition for afunctor F: (Sch/S)° —
(Sets)to be representable. Let M be a classdf morphismsin (Sch/S) whichisstable
under composition and under fibred products and which containsall isomorphisms.
Then Fis caled a sheaf with respect to M or an M-sheaf if, for any family of
S-schemes (T;); 5, the canonical morphism

FUR—]IFT)
isan isomorphism and if, for all morphisms T' -+ Tin 9, the sequence
F(T)— F(T")=3 F(T")

isexact (whereT” = T' x4 T'and wherethedoublearrowson theright areinduced
by the two projections from T" onto T'). For example, we can consider the class
M = M,,. of al morphismsin (Sch/S) of type [ [ T; — T, wherethemaps T; . T



200 8. The Picard Functor

are open immersionsand where {T;}, ., isan open coveringof T. If Fisa sheaf with
respect to M., it issaid that F is a sheaf with respect to the Zariski topology. To
give an equivalent condition, one can requirethat, for all open coverings {T;},.,; o
T, the canonical sequence

F(T) — [ F() S]] F(T; x¢ T)
i i,j
is exact.
There are further topologies o more general type; cf. [SGA 3], Exp. IV, 6.3.1.

We mention the fpgc-topology, the fppf-topology, and the Ctae topology. If top is
any d the abbreviations

fpgc (= faithfully flat and quasi-compact),
fppf (= faithfully flat and of finite presentation), or
ét (= Ctdesurjective),

we write MM, for the class of all morphismsin (Sch/S) which are of type top and
say that afunctor F: (Sch/S)° +(Sets) is a sheaf with respect to the top-topology
(or, smply, with respect to top), if it is a sheaf with respect to both 9t,,. and M.

Proposition 1. Let F be a representable contravariant functor from(Sch/S) to (Sets).
Then F is a sheaf with respect to fpgc and, hence, with respect to fppf, ét, and Zar.

Proof. If F is represented by an S-scheme X, we have F(T) = Homg(T, X). Since
morphismsto X can be defined locally, it follows for any open covering {T;} of T
that the canonical sequence

Homg(T, X) — [ | Homy(T;, X) = [ | Homg(T; x 1 T;, X)
i i,j
isexact. So Fis a sheaf with respect to the Zariski topology.

Furthermore, for any S-morphism T' — T which isfpqc, the canonical
sequence

Homg(T, X) — Homg(T’, X) — Homg(T”, X)
is exact; namely, it isisomorphic to the sequence
Hom (T, X ) — Hom.(T’, X.) =3 Hom4.(T", X 1)
which, by descent theory, is exact, as shown in the proof o 6.116. Thus F is a sheef
with respect to fpgc. O
Returning to the functor
Py;s:(Sch/S)° — (Sets), T+ Pic(X x5 T),

it iseasily seen that, in general, Pys is not a sheaf, even with respect to the Zariski
topology. As a consequence, we cannot expect its representability. Indeed, if Pys
were a sheaf with respect to the Zariski topology, aline bundle on X xg T would
be trivial as soon asiit trivializes over (the pull-back of) an open covering o T
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However, this is not the case. So if we want to deal with a functor from which
representability can be expected, we have to sheefify Pys; this can be done by using
standard methods from sheaf theory.

In order to explain the procedure of shedfification, let us, again, consider a
functor F: (Sch/S)° -+ (Sets)and a class M of morphismsin (Sch/S) whichisstable
under composition and under fibred products and which containsall isomorphisms.
Togiveashedfificationof F(within thecontext of sheaveswith respect to 9t) means
to construct a morphism F— FTinto a sheaf F' such that each morphism from F
into an arbitrary sheaf G (alwayswith respect to 9t} admits a unique factorization
through FT. The construction of F'isstraightforward. Let T' —s T bea morphism
in M and denote by H°(T'/T,F) the subset of F(T’) consisting of all elements ¢
which are characterized by thefollowing property: if £, and &, are the " pull-backs"
of 4 with respect to the two projections from T" = T' x, T' onto T', thereisa
morphism T — T" in M such that the images of &, and &, with respect to
F(T") — F(T) coincidein F(T). If T' variesover (Sch/S), the sets H(T"/T, F)form
an inductive system. Provided 9t is not 'too big”, the direct limit of this system
exists, and we can set

FY(T):= li_r>nI?I°(T//T, F).

It is verified without difficultiesthat F' is a sheaf with respect to 9 and that the
canonical morphism F . F' defines F' as a shedfification of F.

Thedirect limits which have been used to define the sheaf F* exist if we take for
M any o the classes My,,, M;,, or M, whereas in the case M = M, .. some
precautionary measures, like working in a fixed universe, are necessary. However,
sincethe class M., is quite big, it may happen that sheafifications with respect to
M:,,. depend on the choice of the universe. It isfor this reason that, when working
with sheafifications, we will generally use the class ;¢ instead of Mg,

Now, in order to construct a sheafification o the functor

Pyjs:(Sch/S)° — (Sets),  Tr— Pic(X x, T),

say with respect to the fppf-topology, onefirst sheefifies Py, with respect to My -
The resulting sheaf P, might not be a sheaf with respect to 9., since morphisms
in 9, are not necessarily quasi-compact and, thus, not necessarily fppf. However,
if Tisaffine any morphism []T; — Tin M., which corresponds to afinite open
covering {T;} of T by basic open subschemes T; = T isfppf. Hence P, isalready an
fppf-sheaf on affine schemes. Therefore we can shedfify P; with respect to Mz,
without destroying sheaf properties with respect to i, on affine schemes. It
followsthat the resulting functor is a sheaf with respect to the fppf-topology; it is
the fppf-sheaf associated to Py Since Pys is @ group functor, the associated
fppf-sheaf can be viewed as a group functor, too. I n the same way, one can proceed
with any other of the topologies introduced above.

Definition 2 The fppf-sheaf associated to the functor
Pys:(Sch/S)P° — (Sets), T+ Pic(X x5 T),
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is called the relative Picard functor & X over S; it is denoted by Picyjs. For any
S-scheme T, we call Picy (T} therelative Picard groupd X xg T over T.

Using the structural morphismf: X — S aswdl asthe notion of higher direct
images off, we can define the relative Picard functor also by theformula

Picys(T) = H(T, R, (G,,))

which has to be read with respect to the fppf-topology; note that G,, is the sheaf
which associates to each scheme Z the group o units I'(Z, ¢%). We will see below
that the restriction to the fppf-topology in place of the fpgc-topology is not too
serious since we are mainly interested in the case wheref : X — Sis proper and
fppf.

Sometimes it is useful to have an explicit description of elements of relative
Picard groups. So consider an element ¢ e Picy,s(S) and assume for simplicity that
Sis affine or, more generally, quasi-compact. Otherwise one has to work locally
with respect to an open affine covering of S. Then, in the quasi-compact casg, ¢ is
represented by alinebundle ¢ € Pic(X x, §') whereS isfppf over S. Furthermore,
there must be an fppf-morphism § — S' = S xS such that the pull-back o ¢
with respect to § — §” — §’ is the same for both projections from $” to S.
Conversely, each ¢ e Pic(X x4 S) satisfying the latter condition gives rise to an
element £ e Picy5(S). Two such elements & e Pic(X xg S;), i =1, 2, with S; fppf
over S represent the same element ¢ e Picy5(S) if and only if there exists an
fppf-morphism § — §7 X S5 such that, on S, the pull-back of & coincideswith the
pull-back of &;. Alsoit should be noted that, due to the sheaf property of Picys, an
element ¢ e Picy(S) is trivial if it is induced by the pull-back to X of a line
bundle on S. The converseisnot true, in general.

Proposition 3. Assume that f : X — S isproper and d finite presentation. Consider
an element £ e Picy,(S) which isinduced by a line bundle ¥ on X. Then ¢ is trivial
f and only if thereisan open covering {S;} d S such that .& trivializesover X X, S;
for eachi.

Proof. Theif-part of the assertion follows from the sheaf properties of Fc, Soit
remains to justify the only-if-part. The direct image f, (@) is a quasi-coherent
(s-algebra. Assuming S to be affine and interpreting f: X — § as a limit o
morphismsdf finitetype between noetherian schemes, we can use the Stein factoriza-
tion X -5 T8 off, where g satisfies g,.(0x) = ¢, and where h, being a limit
o finite morphisms, isintegral. Furthermore, sincethefibresof g are the connected
components of thefibres off, it followsthat thefibresof h are set-theoretically finite.
Now assume that . givesriseto thetrivial element £ e Picys(S). We claim that the
canonical homomorphism g*(g,.(9)) — % isanisomorphism. Using descent, this
fact can be tested after base change with an fppf-morphism. For example, we can
assume that, after such a base change, .# becomes trivial. Since the formation of
9.(&) commutes with flat base change, the above isomorphism has only to be
established for the trivial bundle 9 . But then the claim follows from the fact that
9.(0x) = Lo So weseethat # isthe pull-back of theline bundleg,(#)on T. The
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latter islocally trivial over T. Sinceh: T — Sisintegeral and, thus, a closed map,
and sinceitsfibres are set-theoretically finite, it follows that g,.(#) islocally trivial
also over S. Hence .# islocally trivial over S. O

We assume in the following that f: X — S is quasi-compact and quasi-
separated. Then the Leray spectral sequence associated tof and G,, (See[SGA 4],
Exp. V, § 3) gives the exact sequence

0— H'(S, £,(G,)) — H'(X,G,,) — Picy;s(S) — H(S, £,(G,,) — H*(X,G,)

where the cohomology groups are meant with respect to the fppf-topology. Since
the descent with respect to fpgc-morphisms turnsline bundles into line bundles, it
follows that the group HY(X,G,,) is the same for the fpgc-, the fppf-, the étale,
and even for the Zariski topology. So we may use the Zariski topology and see
H*(X,G,,) = Pic(X). Thus the obstruction of representing an element of Picys(S)
by an element of Pic(X) isgiven by anelementin H%(S, £,.(G,,)) which becomeszero
in H*(X,G,,). Just as in the case of H'(X,G,,), one shows that H'(S, f,(G,,)) is
independent of the topologies mentioned above if f,(¢0x) = s or, by means o the
Stein factorization, iff is proper. In particular, we have HY(S, f,(G,,)) = Pic(S) if
Ful0) = 0.

In order to determine the cohomology group H?(X, G,,), one can use the étale
topology instead of thefppf-topology; cf. Grothendieck [3], pp. 171-183. The same
is true for the cohomology group H*(S,f,(G,)) if f.(Ox) = Us or, without this
assumption, iff isproper. Namely, by meansd the Stein factorization, itis possible
to reduce to the case where £, (¢y) = Lo, So, for example, iff is proper, the above
exact sequence shows that the relative Picard functor Picy,s can be constructed by
using the etale topology in place o the fppf-topology. In particular, theformula

PiCX/S(T) = HO(T, le*(Gm))

remains valid if, on the right-hand side the fppf-topology is replaced by the étale
topology.

The cohomology group H3(X,G,) iscalled the (cohomological) Brauer group
of X. In particular, if we assume f,(0y) = U, the obstructions of representing
elementsin Picy 5(S) by line bundles on X are given by elements of the Brauer group
Br(S) which become zero in the Brauer group Br(X). All obstructions of this type
disappear if themap H*(S,G) — H3(X,G,,)isinjective;for example,iff : X — S
has a section or if the Brauer group Br(S) vanishes itself. For an affine scheme
S = SpecR, the group Br(S) is zero in each o the following situations:

(8) R isaseparably closed field.

(b) Risthefield of fractionsof a henselian discrete valuation ring with algebra-
icaly closed residuefield; cf. Grothendieck [3], Thm. 1.1, or Milne [1], Chap. I1I,
2.22.

(c) Risasdtrictly henselian valuation ring; cf. Grothendieck [3], Prop. 2.1, or
Milne[1], Chap. IV, 1.7 and 2.12.

The equation f,(0x) = O is compatible with flat base change. We say that
f+(Ox) = 05 holds universally if the equation is true after any base change over S
Using this terminology, we want to summarize the above considerations.
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Proposition4. Letf : X — S be quasi-compactand quasi-separated and assume that
f sdtisfies f,(Ox) = O (resp. that f,(Ox) = ¢ holds universally). Then, for each
Sscheme T which isflat over S(resp.for each S-scheme T), the canonical sequence

0 — Pic(T) — Pic(X x5 T) —> Picyx(T) — Br(T) — Br(X x5 T)
isexact. If, in addition, f admits a section, the sequence
0 — Pic(T) — Pic(X X, T)— Picy;s(T)—0

is exact.

In particular, in thelatter case, we can identify the relative Picard functor Picys
in the usual way with the functor

(Sch/S)° -+ (Sets), T +— Pic(X X, T)/Pic(T) .

If the existenceof a global section is replaced by the condition that f : X — Shas
local sections, one can till say that theformula

Picys(T) = HY(T,R'£,(G,,))

remains valid if one considers the Zariski topology on the right-hand side.

In order to see, in the above situation, that the relative Picard functor Picys is
ashedf even with respect to thefpgc-topology and in order to preparethediscussion
o rigidificators, we want to look at the situation from another point of view. We
assume that f,(0y) = 05 holds universally and that f admits a section ¢: S— X.
For any linebundle & on X, let uscall anisomorphism a: ¢ =% ¢*(¥) arigidifica-
tion o 9 . Furthermore, the pair (%, @) will be referred to asaline bundle whichis
rigidified along the section e. Then we can look at the functor (P, e): (Sch/$)° —
(Sets)which associates to each S-scheme T the set (P, £)(T) of isomorphism classes
o linebundleson X = X x, T whicharerigidifiedalong thesectione;: T — X,
The functor (P, ¢) has the advantage that it is automatically a sheaf with respect to
the Zariski topology. Namely, using the fact that £, (0y) = O is true universaly,
one shows easily that rigidified line bundles do not admit non-trivial automor-
phisms; hencethe terminology of rigidifications isjustified. Furthermore, it follows
from descent theory that (P,¢) is a sheaf even with respect to the fpgc-topology.
Namely, consider a sequence

(P, e)(T) — (P, e)(T") =3 (P,e)(T") ,

where T'— T is an fpgc-morphism and where T" = T' x4 T'. The map on the
left-hand side is injective by 6.1/4. To show the exactness of the sequence, fix an
element (#7,a) € (P,&)(T') whose images in (P,&)(T”) coincide. Then we have an
isomorphism p¥.¥" -= p¥ ¥’ between the two pull-backs of .’ to T” which is
compatible with rigidifications. Hence thisisomorphism is automatically a descent
datum, and the descent is effective by 6.1/4. Thus the above sequence is exact, and
(P, &) is a sheaf with respect to fpgc. For each line bundle .# on X, the bundle
& ®f *(e*(£ 1)) has arigidification. Therefore we have

(P,2)(T) = Pic(X)/Pic(T)
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for al S-schemes T. Since (P,¢) is a sheaf with respect to the fpgc-topology and,
thus, with respect to the fppf-topology, it is canonically isomorphic to the relative
Picard functor Hc,. Thereby we see once more that the second assertion of
Proposition 4 istrue.

Using theaboveargument, it can easily beshown that therel ative Picard functor
Fic, which has been defined within the framework of thefppf-topology iseven a
sheaf with respect to the fpgc-topology, provided f : X — S is fppf and satisfies
f+(0x) = Og universally. Namely, we may perform a base change with X over Sand
thereby assume that f has a section. Then, by considering rigidifications, it follows
that Picy,s isa sheaf with respect to fpgc.

If theassumptionsthat theequation f, (0x) = @5 holds universally and that there
is a section ¢: S— X are not satisfied, it is sometimes useful to introduce a
generdization of the notion of rigidifications so that, similarly as above, one can
deal with rigidified line bundles.

Definition 5. Let f : X — S be proper, flat, and d finite presentation. Then a sub-
scheme Y < X, which isfinite, flat, and d finite presentation over S, is caled a
rigidificator off or, more precisely,d therelative Picard functor Picys if

(Sch/S)° — (Sets),  Tr— (X4, 0y,),
isa subfunctor d thefunctor

(Sch/S)° — (Sets), T+ (Y, 0y,);

ie, if the map I'(Xy,0x,)— I'(Yr,0y,), which is derived from the incluson
Yr = X, isinjectivefor all Sschemes T.

If £,(Ox) = Os holds universally, it isimmediately clear that, for each section
e:S— X off, the closed subscheme ¢(S) = X is a rigidificator off. Furthermore,
let us mention without proof two non-trivial examples where rigidifications exist;
d. Raynaud [6], Prop. 2.2.3.

Propostion 6. Letf : X — Sbeasin Definition 5.

(a) If thefibres off do not have embedded components,f admits a rigidificator
locally over S with respect to the étale topology.

(b) If Sisthespectrum d adiscrete valuationring, f hasa rigidificator.

Let Y be arigidificator off : X — S. Then an invertible sheaf on X which is
rigidified along Y isdefined as a pair (9,a), where % is an invertible sheaf on X,
and where « is an isomorphism 0y =~ #y. Rigidified line bundles do not admit
non-trivial automorphisms. Therefore the functor

(Fic,, Y):(Sch/S)° — (Sets),

which associates to an arbitrary S-scheme T the set of isomorphism classes o line
bundles on X which are rigidified along Y7, is a sheaf with respect to the Zariski
topology and, by descent theory, even with respect to the fpgc-topology. Further-
more, (Ac,, Y)iscanonicaly agroup functor.
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In order to relate thefunctor (Ac,, Y) to the relative Picard functor Ag, it
is necessary to look at rigidificators from another point of view. However, before
we can do this, we have to discuss a basic result on the direct image of Oyx-modules
which are locally of finite presentation; by the latter we mean (quasi-coherent)
Oyx-modules which, locally, are isomorphic to the cokernel of a homomorphism of
type 0% — 0% Furthermore, we need the concept of cohomological flatness.
Assume that f: X — S is proper and of finite presentation, and consider an
Oyx-module & of locally finite presentation, whichisflat over S. Then & is said to
be cohomologically flat over S in dimension 0 if the formation of the direct image
f(#) commutes with base change. If the condition istruefor # = 0y, we say that
f itself is cohomologically flat in dimension 0. The latter is the caseiff isflat and
if the geometric fibres of f are reduced; cf. [EGA 1I1,], 7.8.6.

Theorem 7. Letf : X — Shea proper morphismwhichisfinitely presented. Further-
more, let # bean Oy-moduled locallyfinite presentation which is Sflat. Then there
exists an Os-module 2 d localyfinite presentation, unique up to canonical isomor-
phism, such that there is an isomorphism d functors

ST ®q M) 5 Homg (2, M)

which is functorial for all quasi-coherent @g-modules .#. In particular, there is an
isomorphism of functors

I'X,F ®p, M) Homp (2,4 ).
The 0,-module 2 islocallyfree if and only i # is cohomologicallyflat over S in

dimension 0. In the latter case, 2 and £, (%) are dual to each other and, in particular,
f+(Z) islocdlyfree.

We will not repeat the proof of the theorem from [EGA 111, ], 7.7.6. But to give
some idea, we want to show how the assertions follow from the theorem on
cohomology and base change as contained in Mumford [3], Chap. 11, § 5. We may
assume that Sisaffine say S = Spec A. Then the theorem on cohomology and base
change says there is afinite complex

K:0—K LK K25 5 K"—50
of finitely generated projective A-modules (we may assume of free A-modules, after
restriction of S) as wel as an isomorphism of functors

HP(X,F®,M)~HPK' ®,M), p=>0,

on the category of A-modules M. (Using Mumford's version of the base change,
one has remove the noetherian hypothesis by a limit argument; furthermore, the
above functors have to be considered on the category of all A-modules M and not
just on the category of all A-algebras B.) Dualizingthemap ¢ : K — K* givesan
exact sequence .
0 «— coker * «— (K%)* &—(K1)* ,
and we claim thereisafunctoria isomorphism
(%) H°(K ®4 M) = ker(¢p ® M) =~ Hom ,(coker ¢*, M)
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o functorsin M. Namely, applying the functor Hom ,(-, M), whichis |eft-exact, to
the preceding exact sequence yields the exact sequence

0 — Hom 4, (coker p*, M) — Hom,((K%)* ,M) --+ Hom, ((K*)*,M) .
Then we compare it with the exact sequence
0—ker(p®@M) — K@, M 2", kig, M.

The canonical homomorphisms K' ®, M — Hom,((K)*, M), i =1, 2, are iso-
morphisms since K° and K! arefree, and there is an isomorphism

H°(K ®, M) -~ Hom ,(coker ¢*,M),

which is functorial in M. Hence the existence of the functorial isomorphism (*) is
proved. Writing Q = coker ¢* and using the theorem on cohomology and base
change, the resulting functorial isomorphism

HYX, % ®, M) = Hom (Q, M)

implies the main assertion of our theorem. Since the tensor product is right-exact
and since Hom is|left-exact, the isomorphism (*) shows that % is cohomologically
flat over Sindimension 0 if and only if Q = coker ¢* isa projective,i.e., localy free
A-module. If thelatter isthecase, ker ¢ islocally freesinceit isthe dual of coker ¢*.

O

Iff : X — Sis proper, finitely presented, and flat, the assertion of the above
theorem holds for the Ox-module & =9, Restricting the resulting functorial
isomorphism

f*(f "|0, *ﬂ) = %07”(95(’@"/”)

to quasi-coherent ¢s-modules of type .# = O, which are obtained from morphisms
T — S, one ends up with functorial isomorphisms

(X7, 0x,) = Homg (2, Or) = Hom(T, V)

where V denotes the S-scheme corresponding to the symmetric9,-algebra Sy (2)
o 9. Dropping the middle term, we get afunctorial isomorphism between functors
on the category o al S-schemes T. The scheme V is also referred to as the total
space of the module 2. We say that V is locally free if this is true for 2 as an
0,-module. The latter isequivaent to thefact that V is smooth over S. So we can
state the following result.

Corollary 8. Let f: X — S be proper, finitely presented, and flat, and let 2 be the
Os-module associated to £, (O) in the sense of Theorem7. Then the functor
(Sch/S)° — (Sets), T+ T'(X1, Oy,)

is represented by the total space V of 2. Furthermore, Vislocally freeif and only if
f is cohomologically flat in dimension 0.

If, in addition to the above assumptions, f isfinite, it isautomatically cohomo-
logically flat in dimension 0. In particular, the functor of global sections of a
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rigidificator is always represented by the total space of a module which is locally
free. Using the assertion o the corollary, we can give a further characterization of
rigidificators.

Proposition 9. Let f : X — § be proper, finitely presented, and flat, and consider a
subscheme Y < X whichisfinite, flat, and d finite presentation over S. Let ¥, (resp.
Vy) bethe S-scheme, which, asin Corollary 8, representsthefunctor d global sections
on X (resp. Y). Then the following conditions are equivalent:

(a) Yisarigidificator off.

(b) Themorphism ¥y — ¥, whichisinduced by theincluson Y=_, X, isaclosed
immersion.

Proof. Let 2 (resp. 2') denote the Os-moduie whichisobtained by meansaf Theorem
7fromf: X —S (resp. Y—9). Then, for all S-schemes T such that ¢; is a
quasi-coherent ¢g-module, theinclusion Y<_, X givesrise to a sequence

() 0—> Homg,(2, 07) — Home,(2',0r) .

The latter isexact for al T if and only if Yisa rigidificator off. Now the sequence
(*) corresponds to a sequence

() 2 —32—0

o 8,-modules whichisexact if and only if (*) isexact for al T. On the other hand,
{+=+) yields a sequence between associated symmetric Cls-agebras

(x4 Fymol2) — Symel2)— 0

which isexact if and only if it isexact in degree 1, i.e., if and only if (xx) is exact.
This verifies the assertion of the proposition. O

As before, letf : X — S be proper, finitely presented, and flat, and let Vbe the
S-scheme representing the functor T +— I'(X7, Oy, ) of global sections on X. Then
V may be viewed as a functor to the category o rings and thusis a ring scheme.
Weclaim:

Lemma 10. The subfunctor of units T+ I'(X, 0%,) is represented by an open
subscheme V* < V. In particular, V* isa group scheme.

Proof. The assertion is clear iff is cohomologicaly flat in dimension 0. Namely,
then Vislocaly free and we can use a norm argument. In the genera case, one
views V and V* as functors and shows that the injection V* —, V is relatively
representable by openimmersions. I n order to do this, consider an S-scheme T and
a T-valued point g: T— V as wel as the associated cartesian diagram

V¥xy T — _, T
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Then g corresponds to a global section in the structure sheaf of X x, T. Let U' be
the maximal open subset of X xg T where g is invertible. Since f is proper, the
complement of U' projects onto a closed subset F of T. Therefore its complement
U:=T — Fisan open subschemedf T, and it iseasly verifiedthat V* x, T-—+ T
is represented by the open immersion U —_, T. O

The canonical map ¢ — f£,.(0x) definesamorphism G, - Vwhichisaclosed
immersion as can be seen by using arguments as in the proof of Proposition 9.
Restricting to the subschemes of units yields an immersion of group schemes
G,, —— V*whichisaclosedimmersion again. It iseasily seenthat £, (0x) = 05 holds
universaly if and only if the map G, — V or, equivaently, the map G,, — V* is
an isomorphism.

Finaly, let Y bearigidificator off : X — Sand, asin Proposition 9, let ¥, and
Vy denote the schemes representing the functors of global sectionson X and on Y.
Then the closed immersion ¥V, =, V; givesrise to an immersion ¥y —, ¥3*, and
thereisa canonical map Vy* — (Picy|g, Y) to the Picard functor (Picyg, Y) of line
bundles which are rigidified along Y. Namely, fixing an S-scheme 7, a globa
invertible section a on Yx, T is mapped to the pair (Oy,,«) where the iso-
morphisma: Oy, y, = Oy, y, isthe multiplication by a. Adding the canonical map
(Picys Y)— Picy)g, ONe obtains the sequence

0 — V¥ = V§* — (Picys, Y) — Picy;s — 0

Propostion 11. The preceding sequence is exact in terms of sheaves with respect to
the étale topology.

The proof isstraightforward; see Raynaud [6], 2.1.2and 2.4.1. Itisshown in the
same article that (Picyys, Y)isrepresentable by an algebraic space; cf. our discussion
of therepresentability of Picard functorsin 8.3. Thus, evenif Picy,s isnot represent-
able (by aschemeor by an algebraic space), but if there existsa rigidificator Y, there
is a representable object which closely dominates the relative Picard functor.

8.2 Representability by a Scheme

There aretwo types o results concerning the representability of the relative Picard
functor Picy),; namely, resultson the representability by schemesand results on the
representability by algebraic spaces. If one wantsFc,, to bea scheme, one has to
ask strong conditionsfor thestructural morphism f : X . Swhereas, if oneallows
to work more generally within the context of algebraic spaces, one can obtain the
representability of Fic, by an algebraic space under conditions which are not so
restrictive and quite natural to ask.

In the present section, we will give an outline of Grothendieck's method for
representing Picy,s by a schemeand, in the next section, we will roughly explain the
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idea of M. Artin’s approach for representing Picy,s by an algebraic space. Let us
start by stating the main results on the representability of Fc,, by a scheme.

Theorem 1 (Grothendieck [FGA], n°232, Thm. 3.1). Let f: X — S be projective
and finitely presented. Assume that f is flat, and that the geometric fibres off are
reduced and irreducible. Then Picy s is representable by a separated S-scheme which
islocally of finite presentation over S.

The proof of Theorem 1 consists mainly of methods from projective geometry.
If one replaces the condition "projective” by "proper”, these methods are not
applicable for a general base S. Furthermore, the assumption on the fibres off is
an inevitable technical condition without which the proof cannot work. It is the
very reason for getting representability by a scheme and for the fact that the
representing S-scheme is separated.

Toillustrate this point, let uslook at an example of Mumford. He considered a
projectiveflat family of geometrically reduced curves where Picy s does not exist as
a scheme. Namely let S = SpecR[[¢]], and let X be the S-subscheme of PZ given
by the equation X? + X7 = tX2. One may view X as a conic which geometrically
degenerates into two projective lines. The special fibre over the closed point of Sis
irreducible whereas, after the base change with S = SpecC[[t]], it decomposes
into two lineswhich are conjugated under the Galoisgroup 2/22 of S over S. We
claim that the Picard functor Picy.s. is a scheme. Indeed, it isa digoint union of
subschemes representing the subfunctors Picg. s, d € Z, of Picy.,s. Which are given
by line bundles of total degree d. Furthermore, each Pic§. s is obtained by gluing
copiesof S along the generic point; namely by gluing copies S, , witha, b e Z and
a* b = d where the decompositions d = a+ b correspond to the possihilities of
degenerations of a line bundle of degree d on the generic fibre into aline bundle
with partial degrees a and b on the components of the specia fibre. In particular,
Picys- IS not separated and there are orbits of the Galois action on Picy.,s. which
are not contained in an open affine subscheme. So, the descent datum given by the
Galoisaction cannot beeffective, and hence Picy s is not representable by a scheme
over S. A closer look at this example shows that the very reason for thisis the fact
that theirreducible components of thefibresoff are not geometrically irreducible.
The same can be read from the following generalization of Grothendieck's result:

Theorem 2 (Mumford, unpublished). Let f : X — Sbe flat, projective, and finitely
presented with geometrically reduced fibres. Assume that the irreducible components
of the fibres off are geometrically irreducible. Then Picy is representable by
a (not necessarily separated) Sscheme which is locally of finite presentation
over S.

If the base scheme Sisafield, one can prove the representability of Picy,s under
weaker assumptions than those mentioned in Theorem 1 This was first done by
Grothendieck for the projective case; ¢f. [FGA], n°232, Sect. 6. Later on Murre and
Oort treated the proper case.
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Theorem 3(Murref1] and Oort [1]). Let X be a proper scheme over a field k. Then
Fc,, isrepresentable by a scheme which islocally of finite type over k.

The theorem of Murre can also be deduced from the results on the represent-
ability of Picy,s by an algebraic space; cf. Section 8.3. Namely, agroup object in the
category o algebraic spaces over afied is representable by a scheme.

Finally, we want to introduce the notion of universal line bundles whichisquite
convenient towork withwhen Ac,, isrepresentable. Weassumethat the structural
morphism f : X — S has a section ¢ and that f, Ox = @5 holds universally. In this
case Fc,, isisomorphic to the functor

(P,g): (Sch/S)® — (Sets)

which associates to each S-scheme S the set of isomorphism classes of line bundles
on X' =X x4 8 which are rigidified along the induced section ¢ = ¢ ®id,,; cf.
Section 8.1. If Fc,, isascheme,it aso represents the functor (P, ). So the identity
onHc, givesrisetoalinebundleZonX x, Ac, whichiscanonicaly rigidified
along theinduced section. # is called the universal line bundle for (X/S,€). That this
terminology isjustifiedcan beseen if we writedown explicitly the condition of (P, &)
being representable;

Proposition4. Let f: X — S be finitely presented and flat, and let ¢ be a section of
f. Assume that f, Oy = O holds universally. If Picy is representable by a scheme,
the universal line bundle £ for (X/S, E) has the following property:

For any Sscheme S, and for any line bundle %" on X' = X x, § which is
rigidified along the induced section €', there exists a unique morphismg: §" — Picys
such that %, as a rigidified line bundle, is isomorphic to the pull-back of # under
the morphismid, x g.

Notethat f,lo = O holds universally under the assumptions of Theorem 1, df.
[EGA II1,], 7.86.

Next we turn to the proof of Theorem 1 Since the relative Picard functor is a
sheaf for the Zariski topology, its representability is alocal problem on S. So we
may assume that X is a closed subscheme o the projective space P§. In order to
state what the proof yieldsin this special case, we have to introduce some further
notions.

Following Altmann and Kleiman [1], a morphism of schemes f: X — S'is
called strongly projective (resp. strongly quasi-projective)if it isfinitely presented and
if there exists a locally free sheaf & on S of constant finite rank such that X is
S-isomorphic to a closed subscheme (resp. subscheme) of P(&). Let Ox(1) be the
canonical (relatively) very ample line bundle on X. For any polynomia @ € Q[¢],
oneintroduces the subfunctor Pick,s of Ac,, whichisinduced by theline bundles
with Hilbert polynomial @ (with respect to Ox(1)) on the fibres of X over S; cf.
[EGA 111,], 25.3for the definition of Hilbert polynomials. Then one can state the
following stronger version o Theorem 1, which clearly suggests that Grothen-
dieck's result deals with a problem inside the category o (quasi-) projective
S-schemes.
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Theorem5. Let f: X — S bestrongly projective, and let S be quasi-compact. Assume
that f isflat, and that the geometric fibres of f arereduced and irreducible. Then, for
every ® € Q[1], the functor Picgs is representable by a strongly quasi-projective
S-scheme. Furthermore, Picy s is represented by the digoint union d all Picgs,
where ® ranges over Q[1].

In the following we want to sketch the main steps of the proof of Theorem5;in
particular, we want to point out where the specific assumptions of the theorem are
employed. The proof itself decomposesinto three parts:

I) The notion of relative Cartier divisors gives rise to afunctor

Divy,s 1 (Sch/S)° —> (Sets),

which associates to an S-scheme S the set of all relative Cartier divisors of the
S-scheme X' := X x4 S. Thereisa canonical morphism

Divx/s — PicX/S

whichisrelatively representable. We will show a slightly weaker version of thelatter
statement which is enough for our purposes.

IT) We will show that the functor Divy s is representable by an S-scheme. More
precisely, we introduce Hilbert polynomials with respect to the fixed very ample
line bundle ¢x(1), and welook at the subfunctor Div§,s which consistsof all relative
Cartier divisors with Hilbert polynomia ®. Then we will show that Div§ is an
open subfunctor of Divy,s and that Divgs isastrongly quasi-projective S-scheme.
Furthermore, Divy s isthedisoint union of all schemesDivg,s, where® rangesover
Q[¢]. This part is the hardest of the whole proof, since the representability of the
Hilbert functor isinvolved.

III) For suitable polynomials @, the functor Pick,s isa quotient (asa sheaf for
the fppf-topology) of an open subscheme of Divy,; With respect to a proper smooth
equivalencerelation. We will show that such a quotient isrepresentable by ascheme.
Hence, Pic% s is representable in such a special case. For general @, there exists an
integer ng such that the translate of Pic%s by the element associated to Ox(n,,) is of
the type as treated in the special case. So Picys is representable again. More
precisely, we will seethat it isrepresentable by astrongly quasi-projective S-scheme.
Furthermore, Pic‘}},s isan open and closed subfunctor of Ac,  so Picys is repre-
sented by the disioint union of all schemesPic%,; where @ ranges over Q[t].

Let us start with part 1. An effective Cartier divisor on a scheme X is a closed
subscheme D of X such that itsdefining sheaf of idealsQisaninvertible ¢-module;
i.e, for each x € X, theideal .#, isgenerated by a regular element of 0. We denote
by ¢4(D) the associated line bundle

Ox(D) = I = Homg (F,0x) ,

and by s, € T'(X, 04(D)) the global section associated to theinclusion .# =, ¢y. We
refer to s, as the canonical section of (x(D). It corresponds to the canonical
inclusion O —_; Ux(D). Thus, an effective Cartier divisor givesrise to a pair (9,5)
consisting o aline bundle . and a global section se I'(X, 9)which induces a
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regular element s, on each stalk %, X € X; ie, themap i;: 0, — &, sending the
unit element 1, of O, to s, is injective. Two pairs (&,s) and (#',s) are called
equivalent if there existsan isomorphism ¢ : £ — %’ such that ¢(s) and s’ differ
by afactor whichisaglobal section of ¢§. Associatingto apair (%, s) the subscheme
D of X which is defined by the sheaf of ideals . ~' viewed as a subsheaf of ¢y via
themorphism i, ® .#~*, we obtain a bijection betweenthe set of all effective Cartier
divisorson X and the set of al equivalence classesdf pairs (%, s), where & isaline
bundle on X, and where s is a global section of % inducing a regular element on
each stalk o %. We denote by T'(X, £)* the subset of T'(X,9 ) consisting of all
global sections of . whichinduce regular elements on each stalk %, X € X. Thus
the set of effective Cartier divisors D on X inducing the same line bundle .#
corresponds bijectively to the set I'(X, £)*/I'(X, 0F).

Now letf : X — S belocally o finite presentation. An effective relative Cartier
divisor on X over Sisan effective Cartier divisor D on X whichisflat over S. Further
characterizations of effective relative Cartier divisors are given by the following
lemma.

Lemma 6. Let .# be a quasi-coherent sheef d idealsd O which islocdly d finite
presentation, and let D be the closed subschemed X defined by .#. Let x be a point
d D, and set s = f(x). Then thefollowing conditions are equivalent:
(i) £ isinvertibleat x (i.e., .#, isgenerated by a regular dement), and D is flat

over Sat x.

(if) X and D are flat over S at X, and the restriction D, d D onto thefibre X
over s isan effective Cartier divisor on X, at X.

(iii) X is flat over Sat x, and .7, is generated by an dement £, which induces a
regular lement on X at X.

Proof. To show the assertion (i)=>(ii), let h be a local section of .# which
generates $L. Then hisaregular element of ¢, and the multiplication by h gives
riseto an exact sequence

0—0x,—0x,— 0,,—0.
After tensoring with the residuefield k(s) of s over ¢ ,, we obtain the sequence
0— (st,x - @Xs,x - @Ds,x — 0,

Dueto theflatness of D over S, thissequenceisexact. Thus, hgivesriseto a regular
element of Oy _ . and, hence, D, isan effective Cartier divisor on X,. In order to show
that X isflat over S at X, we may use a limit argument ([EGA 1V;], 85.5 and
11.5.5.2)and thereby assume that Sislocally noetherian. L ooking at the long exact
Tor-sequence, the flatness of D yields

h Torgs+(O, »» k(s)) = Tor,s(Ox, ., k(s))

for n= 1. Since Sist locally noetherian, and since X islocally of finitetype over S,
the modules Tor%«(0y. ., k(s)) are finitely generated over Oy . But then Naka-
yamas lemma implies Tor,‘?s-S((DX,x, k(s)) =0 for n = 1, because x € D. Hence X is
flat over Sat x by Bourbaki {2], Chap. I1I, § 5, n°2, Thm. 1.
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The assertion (W= (iii) follows from Nakayama's lemma, and the remain-
ingimplication (iii) (i) isa consequence of [EGA 1V,], 11.3.7. O

It isclear from condition (ii) that the notion of effective relative Cartier divisors
is stable under any base changeS — S. Thus, there isafunctor

Divys: (Sch/S)° — (Sets), S — Div(X"/S")

where Div(X’/S’) denotes the set of all effective relative Cartier divisors of X' =
X x¢ SoverS. Associating to an effectiverelative Cartier divisor D theline bundle
0x(D), we obtain the canonical morphism

Divy,s — Picys , D +— 04(D)

Asafirst step towards the representability of Pic,),, one provesthat this morphism
is relatively representable. Recall, this means that for each morphism T —+ Picys
from an S-scheme T to Picy|s, the morphism

Divys Xpieps T— T

obtained from Divy s — Picys by the base change T — Picy s is a morphism of
schemes. However, we will show the latter only under the assumption that the map
T —+ Picyg asan element of Picys(T), isgiven by alinebundleon X x, T. This
isenough for our application, becausein part III we will apply it to the case where
T = Divy;s and where the map T—+ Picys is the canonical one. On the other
hand, each map T — Picy,s corresponds to a line bundle on X x, Tif f has a
section; cf. 8.1/4. So in this case we will redly get the relative representability of
Divy,s — Picys.

Proposition7. Let f: X — Sbeasin Theorem 5, and let T bean Sscheme. Let &
be a line bundle on X, = X x5 7, and denote by T — Picy,s the morphism cor-
responding to 9 . Then there exists an 0-module &, which is locdly d finite
presentation, such that Divys Xpi,, T is represented by the projective T-scheme
P(%).

Furthermore, thereisa canonical way to choose #. If ¥ iscohomologicallyflat
in dimension zero, then £, (%) and # are locallyfree, and # isisomorphic to the dual

Proof. We may assume T = S The fibred product Divys Xp;, , Sisisomorphic to
thefunctor D : (Sch/S)° — (Sets)which associates to an S-scheme S the set of all
relative Cartier divisors D' on X’/S’ such that @y.(D’) and 9" give rise to the same
element in Picy5(S), where #’ denotes the pull-back of ¥ to X'. By Proposition
8.1/3 thelatter conditionisequivalent to thefact that ¢y.(D') and £’ areisomorphic
locally over S. Hence, as we have shown during our general discussion of Cartier
divisors, there isa hijection

LS (L )*/f:(0F)) — Dg(S)

wheref " isobtained fromf by the basechange S — S and where( f,.¢’)* denotes
the subsheaf of (f,, ) consisting of all sections which induce regular elements on
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every fibre X, of f. Thus, we have a bijection
LGS, (f4 £)*/0F) — Dy(S)

which is compatible with base change. Since f is proper and flat, there exists an
Os-module & o locally finite presentation such that there is an isomorphism

(*) f*g—)%Om(Os(g;a(gs)

whichiscompatiblewith any basechangeS — S; see Theorem 8.1/7. Furthermore,
Z iscanonically determined by .. Sincethe geometric fibresoff are reduced and
irreducible, the local sections of (f, ¢)* coincide with the local sections of f,.¥
which do not induce the zero section on any fibre X,. Interpreting them as local
homomorphisms # — @ via (+) and applying Nakayama's lemma, they cor-
respond to those local homomorphisms # — @ which are surjective. Thus, the
sections o (f, £)*/¢& correspond bijectively to the set of quasi-coherent quotients
o & which areinvertible, and hence to the sections of the projective bundle P(£);
cf. [EGA 1I], 4.2.3. Since all maps under consideration are compatible with base
change, # is as required. The last statement of the proposition has already been
mentioned in 8.1/7. O

Thereby we have finished part I. Next, we discuss part II. The representabil-
ity of Divy,s will be derived from the representability of the Hilbert functor. The
latter is defined as follows. For any S-scheme X denote by Hilb(X/S) the set of
al closed subschemes D of X which are proper, finitely presented, and flat over S.
Then

Hilby s : (Sch/S)° — (Sets), S — Hilb(X x5 §/S")

is afunctor, the so-called Hilbert functor of X over S. We see from Lemma 6 that
Divy,s is an open subfunctor of Hilby if X is proper, finitely presented, and flat
over S. Thus the representability of Divy, follows from the representability of
Hilby,s. We want to mention that, for the representability of Hilby s by a scheme, it
is essential that X is quasi-projective over S. Namely, there is an example by
Hironaka of a proper and smooth manifold of dimension 3 over a field on which
the group 2/22 acts freely. But the quotient with respect to this action does not
existin the category of schemes; cf. Hironaka [1]. One showsthat, in this situation,
the Hilbert functor cannot be represented by a scheme; namely, the equivalence
relation given by the group action constitutes a closed subscheme R of X x X
which is proper and flat with respect to the second projection. Thus R givesrise to
an element g € Hilby,s(X) and, if Hilby,s were representable as a scheme, the image
o the morphism X — Hilb, 4 given by g would serveas a quotient of X under the
group action.

For showing the representability of Hilb,,, it isconvenient to look at a more
general situation. Given an Ox-module # whichislocally o finite presentation, one
introduces the functor

Quotzxs) : (Sch/8)° — (Sets)
which associates to an S-schemeS theset of quotients ¢’ of the pull-back %’ of #
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to X' = X x4 S where &' isrequired to be locally of finite presentation over 0y,
to be flat over S, and to have proper support over S. The key result on the
representability of thefunctor Quot g x5, isthefollowing theorem of Grothendieck
(cf.[FGA], n°221, Thm. 3.1); the strengthening from the projective to the strongly
projective caseisdue to Altman and Kleiman [1], Thm. 2.6.

Theorem 8. Letf : X — S be strongly quasi-projective,and let # be an 0,-module
which islocally d finite presentation. Fix a (relatively) very ample line bundle ¢ (1)
associated to an embedding d X into a projective bundle over S. Assume that % is
isomorphic to a quotient d an O,-module d theform f *# ® Oy (v) for somev e Z,
where % is a locally free Og-module with a constantfinite rank. Then Quot g x/s, is
represented by a separated S-scheme which is a digoint union d strongly quasi-
projectiveS-schemes.

If, inaddition, f isproper, then Quot s x5, isadigoint union of strongly projective
S-schemes.

Note that, for # = 0Oy, the functors Quot s x5, and Hilby,s coincide. Further-
more, Divys isa quasi-compact open subfunctor of Hilbys if X is proper, finitely
presented, and flat over S. Thus, if Hilby is represented by a digoint union
of strongly quasi-projective S-schemes, so is Divys.

When a very ample line bundle 0x(1) is fixed, Quot z,xs, Can be covered in a
canonical way by open subfunctors which will correspond to quasi-compact open
subschemes of Quotz x5, (resp. of Hilby,s). Namely, for any Ox-module ¢ which
islocally of finite presentation and has proper support, and for any point s € S, one
has the Hilbert polynomial x(%,)(t); its value at any ne Z is given by the Euler-
Poincaré characteristic

200 = 3. (= 1)dimy H(X,, %)

of %(n) over thefibre X, where we have written ¥,(n) for the restriction of ¥ ® Ox(n)
to X,. The Hilbert polynomia has rational coefficients; cf. [EGA III,], 25.3.
Furthermore, when % isflat over S, it islocally constant as a function of se S; cf.
[EGA 111, ], 7.9.11. So, for a polynomial ® € Q[¢], let Quots x5, be the subfunctor
o Quotz x5 consisting of all quotients with a fixed Hilbert polynomia O. In
the same way, one introduces the subfunctor Hilbg,s of Hilbys. It is clear that
Quotds s, constitutes an open and closed subfunctor of Quot s 4,5, and that the
subfunctors Quot{y x5, cover Quot, g x5 if @ rangesover Q[t]. Thus, it sufficesto
prove thefollowing theorem.

Theorem 8. Let X be S-isomorphic to afinitely presented subschemed P(&) where
& is a localy free @g-module d constant finite rank. Denote by f: X — S the
structural morphism and by @(1) the canonical (relatively) very ample line bundle on
X.Let # beisomorphicto a quotient d (f *%#) ® 0(v) wherev e Z and where 4 is
alocalyfree shef onSd constant finite rank, and assumethat & islocaly d finite
presentation. Furthermore, fix a polynomial @ e Q[¢]. Then, there exists an integer
m, saisfying thefollowing property:
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For each m= m,, the map
QuOt?)ﬂ"—/X/S) - Grassq)(m)(gé’ ® Ly sy im(€))

which associates to an element 9 € Quotz x,5(S’) the direct image f,.(¥'(m)), con-
dtitutes afunctor which is relatively representable by a quasi-compact immersion. In
particular, Quot{z ;s is representable by a strongly quasi-projectiveS-scheme.

If, in addition, X isa closed subschemed P(&), theimmersond aboveisclosed
and Quotds s, is strongly projective over S.

For a locally free Os-module ¥ and a non-negative integer r, we denote by
Grass, (&) the contravariant functor from (Sch/S) to (Sets) which associates to an
S-scheme §’ the set of locally free quotients of ¥ ® 0. of rank r. Then Grass,(.£)
is representable by a closed subscheme o P(2), where Z is the r-th exterior power
o Z;d. Grothendieck [2], § 2. Sincewehave not restricted ourselvesto polynomials
@ ¢ Q[t] which take values ®(m) in the non-negative integers for large integers m
we define Grass, (%) by the empty functor if r € @ — N. Note that Quot{z x5, isthe
empty functor if the polynomia ® does not take values ®(m) in the non-negative
integersfor largeintegers m

For # = (4, one has Quot, x5, = Hilbys. If X is proper and flat over S, we
know that Divy,g is an open subfunctor of Hilby,s. So we denote by Divgs the
induced subfunctor of Hilb%,s. Thus, Theorem 8 implies the following corollary.

Corollary 9. Let f : X — S be strongly projective (resp. strongly quasi-projective),
and let ® € Q[¢]. Then Hilb§s isrepresentableby astrongly projective (resp.strongly
quasi-projective)S-scheme.

If, in addition, X isproper and flat over S, then Divy,s isrepresentableby astrongly
quasi-projective S-scheme.

Now let usgivean outlined theproof d Theorem 8. First one reduces to the
case where X is the projective space P(€) associated to a locally free sheaf & of
constant rank e + 1 on S, and where # isisomorphic tof *#(v) := (f *%) ® Ux(v)
for some locally free sheef 4 on S which has constant rank b over S. Namely,
Quotz x5 is alocally closed (resp. closed) subfunctor of Quot{«g,psys) of finite
presentation. In the latter case, there is a canonical isomorphism

B O Lyt sm( &) = [ F ()

for me 7Z; cf. [EGA 1II,], 2.1.15. We assume this situation from now on. Then a
key point is the following observation of Mumford which simplifies the original
proof of Grothendieck; cf. Mumford [2], Lecture 14.

Proposition 10. There exists a constant m,, depending on the integerse, b, v and on
the coefficients & @, such that thefollowing property is satisfied:

Let ' bean Sscheme, and let @’ € Quotdy 4 5,(S'). Denote by #” thekernel d the
canonical megp #' —%'. Then,for al m= m,, the Oy-module #'(m) is generated
by the local sectionsd £ (#(m)), and R'f, (" (m) vanishesfor i = 1. The same is
truefor #'(m) and &' (m).
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A detailed proof of this proposition can befound in[SGA 6], Exp. XIII, §1, for
the case where S defines a geometric point of S. The general casefollows then by
the theory of cohomology and base change; cf. Mumford [3], $5.

Going back to the proof of Theorem &', keep the notation of Proposition 10.
Then, for m= m, and for each S-scheme S, the canonical map

Jo(F (m) — f (&' (m))

is surjective. Since Rf,%'(m) vanishes for m=m, and i = 1, the direct image
f+(% (m) isalocaly free Lo,-modulecf rank ®(m), due to [EGA 1I1,], 7.9.9. Thus,
we get the canonical morphism

QuOt%"/X/S) —> Grassg ([ (F (m))

associating to aflat quotient 3 of % on X' the direct image £, (¥'(m)). Moreover,
one can reconstruct the subsheaf #” of #* from the canonical surjective map

JF' (M) — [ (& (m)) .

Thus, one can view Quot{ s as a subfunctor of the GraBmannian functor
Grassg(# @ Lym, ., (€)) which associates to an S-schemeS the set of all locally
freequotients of f.(#'(m)) of rank ®(m). It remains to seethat the monomorphism

Quotly x5y — Grassom)(# ® Lymyim(é))

is representable by a quasi-compact immersion. So denote by G the S-scheme
Grassgm(# ® Lym,.,(€)) and by 2 the universal quotient of Z ® Fywt,,.(&).
The latter is a quotient (asan 0,-module) o the pull-back (Z @ Fymey,m(6))g
B Q FLym, n(€) 10 G, which islocally free of rank d(m). Let Z; be the pull-back
o F onX;=X x5 G, and let f;: Xz — G be the map obtained from 1 by the
base change G — S. By using the canonical isomorphism

(B ® Lymtyrm())e — (f6)(F(m)) ,

we obtain a canonical map

(f6)u(Fs(m) — 2.

The kernel of this map generates a subsheaf #(m) o %;(m). Denote by s, the
Oy,-module #;(m) ® O (—m) and by ¥, the quotient .%;/3#;. By reducing to a
noetherian base schemeS, one shows that there existsa (unique) subscheme Z of G
such that a morphism T — G factors through Z if and only if the pull-back ;. of
%, on X xg Tisflat over Tand has Hilbert polynomia & on thefibresover T; cf.
[FGA], n°221, Sect. 3. Furthermore, the inclusion Z —, G is finitely presented.
Hence, Quots x5, is represented by Z which is strongly quasi-projective over S.
Finally, Z isstrongly projective becausethe valuative criterion issatisfied by [EGA
Iv,], 28.1 O

Thereby we have finished part II. Finally we come to part II1. We begin by
recalling some definitions on equivalencerelationsin categories. Let C beacategory
such that direct products X; x X, and fibred products X; xy X, existin C. A
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C-equivalencerelation on an object X of Cisarepresentablesubfunctor Rof X x X
such that, for each object T of C, the subset

R(T) < X(T) x X(T)

isthe graph of an equivalence relation on X(T). Denote by p;: R — X the projec-
tion onto the i-th factor, i = 1, 2. A categorical quotient of X with respect to the
equivalencerelation Risa pair (Z, u) consisting of an object Z of C and a morphism
u: X — Z satisfying up, = up, such that, for any morphism v: X — Y satisfying
vp, = vp,, thereexistsa unique morphismv: Z — Y such that v = pu. If it exists,
it is uniquely determined, and we will usualy denoteit by X/R. Furthermore, due
to the definition of afibred product, thereisa canonical morphism

iiR— X xyg X .

Riscalled an effectiveequivalencerelation on X if the categorical quotient X/R exists
and if the canonical morphism i isan isomorphism. In this case, X/R is caled an
effectivequotient. Quite often, the canonical morphism i isnot anisomorphism; this
means that the equivalence relation given by the fibred product X xx,z X over the
categorical quotient X/R, is usually larger than the given relation R.

In the following, we consider the category of S-schemes. Then one can look at
quotients also from the sheaf-theoretical point of view. Due to Proposition 8.1/1,
any S-scheme X isa sheaf with respect to the fppf-topology (or the fpgc-topology).
So, one can ask for the quotient of X with respect to R in the category of sheaves
for the fppf-topology. Using the procedure of sheafification, one easily shows that
such a quotient existsand that it iseffective. L et usdenoteit by (X/R). Furthermore
let usassumethat the categorical quotient (inthe category of S-schemes) X/R exists.
So, viewing X and X/R as sheaves for the fppf-topology, one obtains canonical
morphisms

X — (X/R)— X/R.

If (X/R) isrepresented by a scheme, (X/R) isthe effectivequotient of X with respect
to R (for the category of S-schemes), and the canonical morphism (X/R) — X/R
is an isomorphism.

Example 11. Let f: X — Y be an fppf-morphism of S-schemes. Denote by R(f)
thesubscheme X x, X d X xg X. Then R(f) is an effective equivalence relation on
X and (Y, f) is the effective quotient of X with respect to R(f) in the category of
S-schemesas wdl asin the category of sheaves for the fppf-topology.

Proof. Since f is an fppf-morphism, Y is the quotient (in the category of sheaves
for the fppf-topology) of X with respect to R(f). Hence the assertion followsfrom
what has been said before. O

For any property P applicable to morphisms, an equivalence relation R on an
S-schemeX issaidto satisfy the property Pif Pholdsfor the projectionsp; : R — X.
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We need thefollowing general theorem on the existence of effective quotients with
respect to proper flat equivalence relations.

Theorem 12. Let f: X — S be strongly quasi-projective, and let R be a proper flat
equivalence relation on X which is finitely presented. Assume that the fibres of the
projection p, : R — X have only a finite number of Hilbert polynomialswith respect
toanembedding of X into P(&), where & isalocally free ¢s-module of constant finite
rank. Then R is effective, the quotient map q: X — X/R is strongly projective and
faithfully flat, and X/R is strongly quasi-projective over S.

In particular, X/R isthe effective quotient of X with respect to R in the category
of sheaves for the fppf-topology.

The proof iseasily done by using the existence of the Hilbert scheme; cf. Altman
and Kleiman [1], § 2. Namely, set H = | [ Hilb%,; where @ ranges over the finitely
many Hilbert polynomials of p,; then H exists as a scheme and is strongly quasi-
projective over S; cf. Corollary 9. Let D be the universal subscheme of X x¢ H. The
projection p: D — H is proper, flat, and finitely presented, and the equivalence
relation R is a subscheme of X xg¢ X which is proper, flat, and finitely presented
with respect to the second projection p,. So, using the universal property of the
Hilbert scheme, there is a unique morphism g: X — H such that

R =(id, x g)*D

Now theideaisto realize the quotient as theimage of g.
For an S-scheme T and for points x,, x, € X(T), write x, ~ x, whenever
(x4,x,) € R(T). Then one shows

(*) X1~ Xy gxy = gxX, < (xy,9%,) € D(T) ,

Namely, set R; = (idy, x;)*R for i = 1, 2. Due to the definition of Hilby s, we have
gx, = gx, if and only if for all T-schemes T', the set R,(T") coincides with R,(T’)
viewing both as subsets of (X xg THT’). Since R is an equivalence relation, the
latter isequivalent to (x,,id;) € R,(T) and henceto x, ~ x,. Thus, thefirst equiv-
alence is clear. Due to the definition of g, the condition (x,,gx,) € D(T) is equiv-
alent to (x,,x,) € R(T). Then the second equivalenceis also clear.

Now, denote by T, the graph of g: X — H. Since H is separated over S, the
graph T isclosed in X x4 H. Furthermore, because I', isisomorphic to X, it is of
finite presentation over S Since I, is contained in D due to (x), it is a closed
subscheme of D. Moreover, T, is of finite presentation over D, since D is of finite
presentation over S. We want to show that I, descends to a closed subscheme Z of
H whichisdof finite presentation over H. So look at the projection p: D — H. Due
to the definition of Hilby,g, the map pisfaithfullyflat, proper, and finitely presented.
Consider the canonical descent datum on D. In order to show T, descends to a
closed subscheme Z of H which is of finite presentation over H, it sufficesto show
that the closed subschemes I, x; D and D x I, of D xj D coincide. The latter is
easily checked by looking at T-valued points and by using the equivalence (x). The
map g: X — H factors through Z and, identifying X with I';, themap g: X — H
is obtained from p: D — H by the base change Z — H. Hence, g: X — Z is
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faithfully flat, and strongly projective over Z, since D, being proper and strongly
quasi-projective over H, is strongly projective over H. Because of (x), we have a
canonical isomorphism

R—Xx;X.

Then (Z,g)isan effective quotient of X with respect to R as explained in Example
11. Finally, Z — S isstrongly quasi-projective because Z isa closed subscheme of
the strongly quasi-projective S-scheme H. O

Now we want to explain how the proof of Theorem5 can be derived from the
results we have discussed up to now. Let @ be a polynomial with rational coeffi-
cients. Since the Hilbert polynomial o any Oy-module, which is locally o finite
presentation over X and flat over S, islocally constant, Pic%,s isan openand closed
subfunctor of Picys. Thus, it remains to show that Pic%s is representable by a
strongly quasi-projective S-scheme.

In order to do this, we need the notion of bounded families of coherent sheaves
on the fibres of X over S. So, let S be a quasi-compact scheme and let X be an
S-schemedf finite presentation. Let A beafamily of isomorphism classesof coherent
sheaves on thefibres of X over S; i.e., for each s € S and for each extension fiedd K
o k(s), we are given a family of coherent sheaves #x on X. Two sheaves %, and
F¢ belong to the same classif there exist k(s)-embeddings of K and K’ into afield
L such that #; ®x L and % ® L areisomorphic on X;. The family A is called
bounded if there exists an S-scheme T of finite presentation and a sheaf # on
X; =X x5 T whichislocally o finite presentation such that A is contained in the
family (%,; t € T) . Thereisthefollowing proposition, cf.[SGA 6], Exp. X111, Thm.
1.13.

Proposition 13. Let S be quasi-compact, and let X — S be strongly projective. Let A
bea family of coherent sheavesonthe fibresof X over S. Then the followig conditions
are equivalent:

(i) A is bounded.

(ii) The set of Hilbert polynomials y(%)(t) is finite where %, ranges over the
elements of the family A, and there exist integersne Z and N € N such that A is
contained in the family of all classes of quotients of Oy (n)".

Furthermore we need the following result; cf. [SGA 6], Exp. X1II, Lemma 2.11.

Proposition 14. Under the assumption of Theorem 5, a family A of line bundles Zx
on the fibres of X over S is bounded if and only if the set of Hilbert polynomials
(&) is finite.

Now consider the morphism
Divys — Picys .

Fix the polynomial @, and denote by D(®) theinverseimage of Pic%;s in Divys. It
is clear that D(®) is a digioint union of connected components of Divys. Then it
followsfrom Proposition 14 that thereare only finitely many connected components
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o Divy,s which areinvolved. Thus, due to Corollary 9, we seethat D(®) isstrongly
quasi-projective over S.

Let us assume for a moment that the following condition on Pic® g is satisfied:
for any S-scheme S and for any line bundle %’ on X' = X x4 S which induces an
element of Picgs, we have

RfULM)=0 for i>0 and n=0, and
fi&@m)#0 forn=0,

Note that such line bundles are cohomologically flat in dimension zero. Further-
more, in this case, the map D(®) -+ Rd, isan epimorphism (in terms of sheaves
for the fppf-topology). Let # be the line bundle on X xg D(®) which corre-
sponds to the universal (relative) Cartier divisor on X xg D(®). Then the map
D(®) — Pic% s isinduced by .#. Iff(@)is the base change off by D(®) — S, the
direct image o % under f(®) is locally free of rank ®(0). Due to Proposition 7,
the morphism

D(®) Xpie0 D(@) — D(D)
is representable by the flat (even smooth) strongly projective morphism
P(F) — D),

where # is thedual of thedirect image of . under f (®), since.# iscohomologically
flat in dimension zero. Now in order to show the representability of Pic%,s, consider
the following diagram

D(®) XPicy/sD((D) — D(®)

|

D(®) — > Pic%.

It says that Pic§,s isisomorphic to the quotient (assheaf for the fppf-topology) of
D(®) by a proper and flat equivalence relation. Thus Pic% is representable by a
strongly quasi-projective S-scheme; cf. Theorem 12.

Now it remains to remove the special assumption on Picg,s which has been
made above. If nisaninteger, wedenote by Pic%;s + né thefunctor which associates
to an S-scheme S the subset

{ZL'(n); &' e Pick5(S")}

of Picys(S"). Note that this functor is of the form Picy s for a suitable polynomial
¥ e Q[¢]. It suffices to show that there exists an integer n such that Picys +ne
fulfillsthe above assumptions. However, since Pic%, s isbounded due to Proposition
14, the latter follows from Propositions 13 and 10 by base change theory.

Thus we have finished part III, and thereby we conclude our discussion of
Theorem 5.
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8.3 Representability by an Algebraic Space

The most restrictiveassumption in Grothendieck's theorem 8.2/1 on the represent-
ability of Picys is that the geometric fibres off : X —+— S have to be reduced and
irreducible. As we have seen in the preceding section by looking at Mumford's
example, even if X is projective and flat over S, there is an obstruction to Picys
being a scheme, which islocated in thefibres off. However, in Mumford's example,
there exists a surjective etale extension S — Ssuch that the functor Picy;s x5 S
is representable by a scheme over S. Working within the category of algebraic
spaces (the definition is given below), we can say that Picyg is representable, since
this category is stable under quotients by ttal e equivalence relations. This example
suggests that, in comparison with Grothendieck’s theorem, the assumptions on the
S-scheme X can be weakened if one wants to represent Fic,, by an algebraic space.

Theorem 1(M . Artin [5], Thm. 7.3).Letf : X — Sheamorphismd algebraic spaces
which is proper, flat, andfinitely presented. Then, iff is cohomologicalyflat in
dimension zero, the relative Picard functor Picy,s isrepresented by an algebraic space
over S

A proper and flat morphism f is cohomologically flat in dimension zero if,
for example, the geometric fibres off are reduced; cf. [EGA 111,], 7.8.6. Further-
more, let us mention that there is a converse of Theorem 1 when the base S is
reduced.

Remark 2 Let f: X —> Sbeamorphismd schemeswhichisproper, flat, andfinitely
presented. Assume that Sis reduced. Then Picy,g is an algebraic space if and only If
f iscohornologicdly flat in dimension zero.

Namely, in order to show the cohomological flatness off when Picy is an
algebraic space, one has only to verify that the dimension of H°(X, ¢k ) islocally
constant on S; cf. [EGA 1II,], 7.8.4. Then one can assume that Sis a discrete
valuation ring. Hence, the assertion followsfrom Raynaud [6], Prop. 5.2.

As we will see below, the method for the proof of Theorem 1 is completely
differentfrom the one used in thelast section. It does not involve projective methods
nor does it make use of the representability of the Hilbert functor or of thefunctor
of relative Cartier divisors. Also we want to mention that the theorem does not
contain 8211. Only for the case where the base scheme Sisa fidd, 8.2/1 and 8.2/3
arecorollaries of Theorem 1, sinceagroup object in the category of algebraic spaces
over afield is represented by a scheme.

If,in thesituation of Theorem 1,f isnot cohomologically flat in dimension zero,
the only option which is left is to work with rigidificators (cf. 8.1/5), and one can
look for the representability of rigidified relative Picard functors; cf. Section 8.1.

Theorem 3 (Raynaud [1], Thm. 2.3.1).Let f : X — S be a proper, flat, and finitely
presented morphismd algebraic spaces, and let Y be a rigidificator for Picy,s. Then
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therigidified Picard functor (Fc,,, Y)isrepresentable by an algebraic space over S,
and there exists a universal rigidified line bundle on (Picy s, Y).

The proofs of thesetheorems make use of agenera principlefor the construction
of algebraic spaces which is due to M. Artin; cf. [5], Thm. 34. Namely, thereisa
criterion describing a necessary and sufficient condition for the representability of
contravariant functors from (Sch/S) to (Sets) by algebraic spaces. It is for this
criterion that the category of algebraic spaces yields a natural environment for
guestions on the representability of contravariant functors from (Sch/S) to (Sets).
Within the category of algebraic spaces one can carry out many of the fundamental
constructions, as contained in [FGA], under more general conditions, and one
achieves results on the representability of certain functors under quite general
assumptions.

Before we explain the criterion, let us briefly mention the basic definitions
concerning algebraic spaces. As an introduction to the theory of algebraic spaces,
werefer to M. Artin [3]. A detailed treatment can befound in Knutson [17.

In the following, let S be a scheme. Sometimes, for technical reasons, when
we want to apply the approximation theorem 3.6116, we have to assume that the
base scheme Sis locally o finite type over a field or over an excellent Dedekind
ring.

Definition 4. A (locally separated) algebraic space X over Sisa functor
X : (Sch/8)° — (Sets)

with the following properties:

(i) X isa sheaf with respect to the étale topology.

(ii) There exists a morphism+<: U — X of an S-scheme U, which islocally of
finite presentation, to X such that t is relatively representable by étale surjective
mor phisms of schemes.

(iii) The product U xy U isrepresented by a subscheme of U x U suchthat the
immersion U xy U — U xg U is quasi-compact.

Condition (ii) means that, for every S-scheme V and every morphism V — X,
the product U x, Visrepresented by aschemeand that the projection U x5 V —
Visetale and surjective. Furthermore, it followsfrom (iii)that U x4y V— U x, V
is a quasi-compact immersion. The algebraic space X is called separated over S if
U xy U isrepresentable by a closed subscheme of U x, U.

Keeping the notations of Definition 4, the algebraic space X is the quotient of
U by the equivalence relation R = U x4 U (in terms of sheaves with respect to the
étale topology). Conversely, given an S-scheme U of locally finite presentation and
a finitely presented subscheme R of U x, U which defines an étale equivalence
relation, one can show that the quotient of U by R (in terms of sheaves with respect
to the étale topology) is an algebraic space. Thus we also could have defined
algebraic spaces over S as quotients of S-schemes by etale equivalence relations.

A morphism of algebraic spaces over S isa morphism of functors. Viewing an
algebraic space as a quotient of a scheme with respect to an étale equivalence
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relation, one can describe morphisms between algebraic spaces in terms of mor-
phisms between schemes.

Propostion 5. Let f': X; — X, be a morphismof algebraic spaces over S. Then, for
each i, there exists a representation of X; as a quotient of an S-scheme U, by an étale
equivalence relation (asabove), and there is an Smorphism g : U; — U, such that
one has the following commutative diagram

(U xx, Uy) U, Xy
lgxg Jg Jf
U, Xx, U,) U, X;.

Furthermore, any morphism g : U, — U, inducing a commutative square as on the
left-hand side givesrise to a morphism f: X, — X,.

Associating to an S-schemeitsfunctor of points, one getsa canonical map from
the category of S-schemesto the category of algebraic spacesover S. This map gives
rise to a fully faithful left exact embedding of categories. In the following, we will
usually identify an S-scheme with its associated algebraic space over S.

Clearly, any property of S-schemeswhichislocal for the étale topology, carries
over to the context of algebraic spaces. One just requires that the property under
consideration holdsfor the scheme U in Definition 4. This applies to the properties
o being reduced, normal, regular, locally noetherian, etc.. Similarly, any property
o morphisms of schemeswhich islocal for the étale topology (on the source and
on the target) carries over to the category of algebraic spaces. Thus, the properties
o beingflat, étale, locally of finitetype, locally of finite presentation, etc. are defined.
In particular, an algebraic space is provided with an etale topology in a natural
way; a basisfor this topology isgiven by thefamily of S-schemesU which are etale
over X. The structure sheaves ¢, where U isa scheme mapping étale to X, induce
a sheaf (with respect to the etale topology) ¢ on the algebraic space X. This shesf
is called the structure sheaf of X.

A morphism Y--+ X of algebraic spaces over S is called an immersion (resp.
open immersion, resp. closed immersion) if Y — X is relatively representable by
an immersion (resp. open immersion, resp. closed immersion). Thus, the notions of
open and o closed subspaces of X are defined in the obvious way as equivalence
classesdf immersions. In particular, X carries a Zariski topology.

An algebraic space X over Sis called quasi-compact if there existsa surjective
etale morphism U — X where U isaquasi-compact scheme. A morphism X — Y
o algebraic spacesis called quasi-compact if for any quasi-compact scheme Vover
Y, thefibre product X x, Visquasi-compact. Then we defineamorphism X — Y
of algebraic spacesto be df finitetypeif it isquasi-compact and locally dof finitetype;
and to be o finite presentation if it is quasi-compact, quasi-separated, and locally
o finite presentation.

A morphism X — Y of agebraic spacesis called proper if it is separated, o
finite type, and universally closed. The latter has to be tested on the scheme level.
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We mention that there is a valuative criterion for properness; cf. Deligne and
Mumford [1], Thm. 4.19.
Now let usintroduce the notion of points of an algebraic space.

Definition 6. A point x of an algebraic space X over Sisa morphism x: SpecK — X
of algebraic spaces over S, where K isa field and where x is a categorical monomor-
phism. The field K iscalled the residue field of x, usually denoted by k(x).

Two points x;: SpecK;— X, i =1, 2, are cdled equivdent if there is an
isomorphism o : Spec K, — Spec K, such that x, = x,¢. We identify equivalent
points. Since, in Definition 6, we have required x to be a monomorphism, it iseasily
seen that this notion of points isequivalent to the usual one when X is a scheme.
Furthermore, if U — X isamorphism where U is a scheme, then each point of U
induces a point of X. So every non-empty algebraic space X over S has a point
whose residuefield is o finite type over S. One can even show that, for each point
x o X, there exists an Ctde map U — X from a scheme U and a point u of U
mapping to x such that the induced extension of the residue fields k(x) — k(u) is
trivial. Such a pair (U,u)is caled an étale neighborhood of ( X,x) without residue
field extension. By using Lemma 2.3/7, one easily sees that the family o all such
Ctde neighborhoods is a directed inductive system. So we get the notion of alocal
ring at a point of an algebraic space.

Definition 7. The local ring for the étale topology of an algebraic space X at a point
x of X isdefined by the inductive limit

(OX,x = 11_n)1 (QU.M

where the limit is taken over the family of all érale neighborhoods (U, u) of (X, x)
without residue field extension.

Asexplained in Section 2.3, this ring is henselian. If x isa point of a scheme X,
the henselization of thelocal ring of X at x (interms of schemeswith respect to the
Zariski topology) servesas the local ring o X at x if X is viewed as an algebraic
space.

Let us mention some conditions under which an algebraic space is already a
scheme. So let us start with an S-scheme U and an etale equivalence relation R on
U. If Risfinite, then the quotient U/R (in terms of sheaves with respect to the etale
topology) is represented by a schemeif and only if, for each point » of U, the set of
points which, under R, are equivalent to u iscontained in an affine open subscheme;
of. [FGA], n°212, Thm. 5.3. For example, if U is affine, then U/R is represented by
the affine scheme defined by the kernel of the maps

0y(U) =3 Ox(R)

In general, such a quotient isjust an algebraic space and not necessarily a scheme,
evenif R isfinite. But it can be shown that, for any algebraic space X over S, there
exists a dense open subspace which is a scheme. If the base scheme S is a field,
separated algebraic spaces over S o dimension 1 are schemes. Furthermore, group
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objects in the category of algebraic spaces over afield are schemes, as one easily
shows by using the results of Section 6.6.

Next we want to describe M. Artin’s criterion for a functor to be an algebraic
space. We begin by reviewing some notions which are needed to state the general
theorem. In thefollowing, let S be a base schemewhichislocaly d finite type over
afield or over an excellent Dedekind ring, and let

F: (Sch/S)° —> (Sets)

be a contravariant functor. If T= SpecB is an affine scheme over S, we will aso
write F(B) instead of F(T).

Thefunctor Fissaid to belocaly d finite presentation over Sif, for everyfiltered
inverse system of affine S-schemes{ Spec B;}, the canonical morphism

lim F(B;) — F(lim By)

is an isomorphism. Note that, if F is an S-scheme, then F is locally o finite
presentation as afunctor if and only if it islocally of finite presentation as a scheme
over S; cf. [EGA 1V,], 8.14.2.

Furthermore, we need some definitions concerning deformations. Let s be a
point in S whose residue field is of finite type over S, let k' be afinite extension of
k(s), and let {, be an element of F(k’). An infinitesmul deformation of {, is a pair
(A, &) where A isan artinian local S-scheme with residuefield k', and where ¢ isan
element o F(A) inducing {, € F(k’) by functoriality. A formal deformetion d {, is
apair (4,{¢,},en), Where 4 isa complete noetherian local ¢s-algebra with residue
field k’, where the elements ¢, € F(4/m**!) are compatible in the sense that &,
inducesé,_, by functoriality, and where &, coincideswith {,. Heremisthe maximal
ideal of A. If the sequence {&,},.w isinduced by an element & e F(A) via func-
toriality, then (4, {£,},.n) OF (A,¢) is caled an effective forma deformation of .
A formal deformation (A, {&,},.n) Of {, is said to be versal (resp. universal)if it has
the following property:

Let (B',y") be an infinitesimal deformation o {, and, for an integer n, let the
(n+ 1)-st power of the maximal ideal of B' be zero. Let B be a quotient of B', and
denote by y € F(B) the element induced by #'. Then every map

(A/m"*1,&,) — (B,n)

sending &, to n can befactored (resp. uniquely factored) through (B', y') in the sense
o morphisms of ¢s-algebras.
We mention that, in general, the canonical map

(%) F(4) — lim F(A/m"**)

is not injective. Hence, if (4, &) is an effectiveformal deformation o {,, the element
¢ e F(A) does not need to be uniquely determined by the sequence {¢,},.n even if
(4, &) isuniversal. Nevertheless, thering 4 is uniquely determined (up to canonical
isomorphism)if (A, &) isa universal.deformation of {,. But, for most of the functors
we are interested in, the map (*) is bijective for any noetherian complete local
Os-algebra A. For example, this is the case for the Hilbert functor Hilby,s or for
the relative Picard functor Fc,, if X is proper over S, as one can show by using
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Grothendieck's existence theorem on formal sheaves; cf. [EGA 111, ], §5. In par-
ticular, in these casesany formal deformation is effective.

Now let X be an algebraic space over S, and let x be a point of X whichis o
finite type over S. Denote by k(x) the residuefield of x and by {3 theinclusion of x
into X. Let 4* be the completion of the local ring of X at x with respect to the
maximal ideal, and let

& :Spec A — X

be the canonical morphism. The pair (A","") will serve as an effective formal
deformation of {& which is universal. Thus, in order to show that a contravariant
functor Ffrom (Sch/S) to (Sets)is an algebraic space, one should first look for the
existence o universal deformationsat all points of F which are of finite type over
S. Therefore, one introduces the following notion.

A contravariant functor F: (Sch/S)° — (Sets)is said to be pro-representable if
the following data are given:

(@) anindex set 1,

(b) for each x € |, an Os-field o finitetype k* and an element {§ € F(k),

(c) for each x e I, aformal deformation (A",{&:},cn) of (Z € F(KX),
satisfying the condition that, for each artinian local S-scheme T of finite type and
for each 7 € F(T), thereisa unique x e | and a unique map T — Spec A* sending
{&i) o

Note that (A",{¢7},.n) isa universal formal deformation of ¢Z. Furthermore,
F is caled effectively pro-representable if each sequence {£;} is induced by an
element & e F(A¥). If Fis effectively pro-representable, then theelementsx e | are
called the points of finite type of F. In the case where F is an algebraic space, the
notion o points o finite type coincides with the one given in Definition 6; one
associatesto x e | the point of F given by the map {3 : Speck* — F. The universal
deformations (A",&*) of (&, x |, are called the formal moduli of F.

A morphism ¢: X — F from an S-scheme X to the functor F is said to be
formally smooth (resp. formally ézale) at a point x e X if & fulfillsthe followinglifting
property: For every commutative diagram of morphisms

X — 7,

|

F «— 7

where Z isan artinian S-scheme, where Z, isa closed subscheme of Z defined by a
nilpotent ideal, and where Z, — X is a map sending Z, to x, there exists a
factorization (resp. a unique factorization) Z — X making the diagram commuta-
tive. One easily shows that, if £: X —s Fisrelatively representable by morphisms
which are locally of finite presentation, ¢ isformally étale at a point x of X if and
only if, after any basechange Y — F by an S-scheme Y, the projection X x, Y-— Y
isetale at every point of X x Y above x; use[EGA 1V,], 17.14.2.

Theorem 8 (M. Artin [5], Thm. 3.4). Let S be a schemewhichislocally of finite type
over a field or over an excellent Dedekind ring. Let F be a functor from(Sch/S)° to
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(Sets). Then Fis an algebraic space (resp. a separated algebraic space) over Sif and
only if the following conditions hold:

[0] (sheaf axiom) Fis a sheaf for the étale topology.

[1] (finiteness)F islocally of finite presentation.

[2] (pro-representability) F is effectively pro-representable.

[3] (relative representability) Let T be an S-scheme of finite type, and let 5,
n € F(T). Then the condition & = # is representable by a subscheme (resp. a closed
subscheme)of T xg T

[4] (opennessd versality) Let X bean S-schemeof finitetype,andlet & : X — F
be a morphism. If ¢ is formally étale at a point X € X, then it is formally étale in a
neighborhood of Xx.

The necessity is not difficult to show and has aready been discussed when
introducing the above notions. For the sufficiency which is the more interesting
part, one needs an approximation argument for algebraic structures over complete
local rings; cf. M. Artin [ 5], Thm. 1.6. The rough ideafor the proof of the sufficiency
is the following.

Onehasto find a morphism U — Ffrom an S-schemewhichislocally o finite
presentation to F such that U — F isrelatively representable by etale surjective
morphisms. Wewill first construct an ttale neighborhood for each poirt of Fwhich
is of finite type over S. Consider such a point x of F, and let (4%, £*) be the formal
deformation pro-representing F at x. Then one constructs an algebraization of
(A",&%); ie, an S-scheme X o finite type, a closed point x € X with residue field
k(x) = k*, and an element ¢ e F(X), such that thetriple (X, x, £) givesriseto a versal
formal deformation of . More precisely, there is an isomorphism @y, = A* such
that ¢ induces &7 in F(A4*/m"**) for each n € N. Theexistenceof such an algebraiza-
tion follows easily from the approximation theorem 36116 if the ring 4* of the
formal modulus is isomorphic to a formal power series ring s [ [t;,...,t, 1],
where 0 , is the completion of alocal ring of S.—For example, this holds for the
Picard functor of arelativecurve.—Inthiscase, 4*isthecompletion of an S-scheme
X of finite type at a point x o finite type. Namely, write A" as a union o s
subalgebras B o finite type. Since F is assumed to be locally of finite presentation,
the element &£~ is represented by an element ¢ e F(B) for some Clg-subalgebra B of
finitetype. Theinclusion B =, A" yieldsamap F(B) — F(4*) sending ¢ to ¢*. Due
to the approximation theorem, there is an ttale neighborhood (X', x") o (X,x)
without residuefied extension such that thereisa commutative diagram

Spec A¥ «——— Spec A¥/m2A*

SpecB «— X’

sending the closed point of Spec A¥/m24* to x'. The completion Oy. .. is still
isomorphic to thering A". Denote by &' e F(X') theimage of ¢ under thefunctorial
map F(B)—> F(X'). Due to the versality of (4,&*), there is an automorphism
¢ A*— A", whichisthe identity modulo m24*, and which sends &7 to &, for each
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ne N where &, isinduced by & via functoriaity. Thus (X', x’, ') is the required
algebraization.

Now, let | betheset of points of Fwhich are of finitetype over Sand, for x € 1,
denote by (U*,u*, &%) an algebraization of the formal modulus (A",£*). One easily
showsthat £*: U* — F isformally ttale at u*. Dueto condition [4], after shrinking
U* we may assume that £* isttale at every point. Hence, since U* — Fisrelatively
representable by condition [3], it is representable by etale maps. If we denote by U
the digoint union o the U*, x eI, the map

U= ][] U*—F
xel
is representable by étale surjective maps. Furthermore, due to condition [3], the
equivalencerelationU x, U — U x, Uisrdatively representable by a subscheme
(resp. by aclosed subscheme) of U x, U. Thereby weseethat F isan algebraic space
as asserted in Theorem 8. U

Conditions [0] and [1] are natural, and they are satisfied quite often. For
conditions[2] and [3],itisconvenient to supposethat thereisadeformation theory
for the functor F so that one can rewrite the conditions in terms of deformation
theory. Then it is often possible to decide whether afunctor is pro-representable or
relatively representable. Condition [4] isthe one which is most difficult to verify,
but it can also beinterpreted by infinitesimal methods. We mention that thereisa
general theorem by M. Artin which relates the representability of a functor admit-
ting a deformation theory to alist of conditions which can be checked in specific
situations; for instance for the Hilbert functor or the relative Picard functor; df.
M. Artin [5], Thm. 5.4. Since many technical details are involved, we omit precise
statements here.

To end our discussion, we want to indicate the procedure of proof for Theorem
1 Details can befoundin M. Artin [5], Section 7; see also the appendix of M. Artin
[7]. Since X is assumed to be dof finite presentation over S, one can reduce to the
case where the base scheme Sis o finite type over the integers Z. Then one applies
the general criterion for afunctor to be an algebraic space. The deformation theory
for HAc,, isgiven by the exponential map. [ff : X — Sis cohomologicaly flat in
dimension zero, the deformation theory for Picys fulfills all conditions which are
required in thelist of the general statement. Thus Fc,, is pro-representable. Due
to Grothendieck's existencetheorem onformal sheaves,[EGA 111, ],§ 5, oneobtains
forma moduli for Picy, i., Ac,, is€ffectively pro-representable. Then, due to
M. Artin’s approximation theorem, the formal moduli are algebraizable, and hence
one gets local models for the space which will represent Hc,, Since these local
models are unique up to etale morphism, they can be glued together to form an
algebraic space over S

Finally let us mention that the definition of algebraic spacesis not generalized
by alowing flat equivalence relations o finite type in place of etale ones. This
isdueto thefollowingfact; cf. M. Artin [7], Cor. 6.3.
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If U isan S-scheme d finite type over a noetherian base scheme S, and if Risa
flat equivalence relation of finite type on U, then the quotient U/R in terms of
sheavesfor the fppf-topology is represented by an algebraic space.

As acorollary, one obtains thefollowing useful assertion.

Proposition 9. Let H and G be group objects in the category of algebraic spaces
over Sand let H— G be an immersion. Assume that H is flat over S. Then the
quotient G/H in terms of sheaves for the fppf-topology is represented by an alge-
braic space.

8.4 Properties

In this section we want to collect some results concerning the smoothness and
certainfinitenesspropertiesof Pic,. Let usstart witha theorem whichiscontained
in[FGA], n°236, Thm. 2.10, for the case where Picy,s isa scheme; but it isimmedi-
ately clear that it remains true if Picys isan algebraic space.

Theorem 1. Let f: X — S be a proper and flat morphism which is locally of finite
presentation. Assume that f is cohomologically flat in dimension zero so that Picys
isan algebraic space. Then the following assertions hold.

(a) Thereisa canonical isomorphism

Lie(Picy,s) =5 R'f, Ox

where Lie(Picys) isthe Lie algebra of Picys.

(b) If Sisthe spectrumof a field K, then

dimg Picyx < dimgH'(X,0y) ,

and equality holdsif and only if Fic,, issmooth over K. In particular, the latter is
the case if the characteristic of K is zero.

Proof. (a) Write ¢[¢] for the Og-algebra of the dual numbers over s, and set
S[e] = Spec(Og[]). Then one can interpret Lie(Picys) as the subfunctor of
Homg(S[e]), Pic,,) consisting of all morphismswhich, modulo g, reduceto the unit
section of Picy),. Setting X[&] = X xg S[¢], one obtains the exact sequence

0— Oy — Of;— 0 —0
h —1+he

Since T is cohomologically flat in dimension zero, the canonical map f, Ox; —
£+ 0Ox 1s surjective. Therefore the sequence of sheaves with respect to the étale-
topology

0— le*(gX i le*(o;'{‘[s] - le*(o;(k - sz*(QX
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is exact. Since Lie(Picy,s) corresponds to the kernel of the map R'f, 0%, —
R'f, 0%, it can beidentified with R' £, 0,
(b) followsfrom (a) and 2.2115. O

Proposition 2. Letf : X — S bea proper andflat morphismwhich islocaly d finite
presentation. Let s be a point d Ssuch that H3(X,, 0y ) = 0. Then there exists an
open neighborhood U d ssuch that Picy sl IS formally smooth over U.

In particular, in thecase d arelative curve X over S, both Picy,s and (Fc,,, Y),
where Y is arigidificator for Pic;,, areformally smooth over S,

Proof. Due to the semicontinuity theorem [EGA 1II,], 7.7.5, there exists an open
neighborhood U of s such that H(Xs,0x_) = Ofor al s e U. Wemay assume U = S.
In order to prove that Picys is formally smooth over S, we have to establish the
lifting property for Picys. So consider an affine S-scheme Z and a subscheme Z,, of
Z whichis defined by anideal A" of ¢, satisfying .42 = 0. Then we have to show
that the map

RY(f x5 2)4 O iz — R'(f X5 Z0)3 Ok x 2,

is surjective. The cokernel of this map is a subsheaf of the ¢@,-module
R*(f x5 Z) (N ®g, Ux). The latter vanishes, since H*(X,,0x ) =0 for al s S;
use [EGA III,], 7.7.10 and 7.7.5 (IT). Thus we see that Fc,, satisfies the lifting
property and, hence, isformally smooth over S.

In the case of a relative curve X over S, the assumption H%(X,, Ox)=01Is
satisfied at all s € S, so Picys isformally smooth over S. Furthermore, since there
isno obstruction tolifting a rigidification, we see that (Pic,, Y)isformally smooth
over S, too. O]

Now we will concentrate on finiteness assertions for Fc,. When proving
Grothendieck's theorem 8.2/1, we had seenin 8.2/5 that Pic§ s is quasi-projective
over S. But if weimpose stronger conditions on thefibresof X, we can expect better
results.

Theorem 3 ([FGA], n°236, Thm. 2.1). Letf : X — S be a proper (resp. projective)
morphism which islocaly d finite presentation. Assume that the geometricfibres d
X are reduced and irreducible. Then Picy,s is a separated algebraic space (resp.
separated scheme) over S.

If, in addition, f : X — S issmooth, then each closed subspace Z d Hc,, which
isoffinite type over Sis proper (resp. projective)over S. In particular, if S consists d
afield K, theidentity component Picy x d Picyx isa proper schemeover K.

Proof. Picy s isan algebraic space over S, dueto 8.3/1. If X is projective over S, we
know from 8.2/1 that Picys is a scheme over S and from 8.2/5 that each closed
subspace Z which is of finitetype over Sis quasi-projective over S. The remaining
assertions follow by using the valuative criteriafor separatedness and properness.
Indeed, we may assume that S is the spectrum of a discrete valuation ring R,
and that X admits a section over S. For showing the separatedness, we have to
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verify that aline bundle # on X whichistrivial on the genericfibreistrivial. There
existsa global section f € T'(X, %) which generates .# on the generic fibre. Since
thelocal ring @y, of X at thegeneric point n of thespecial fibreisadiscrete val uation
ring such that the extension R — @y , is of ramification index 1, we may assume
that f generates .# at 4. Then it is clear that f generates .# on X and that £ is
trivial. Next assume that X is smooth over S. For the properness, we have to show
that each line bundle on the genericfibre of X extendsto aline bundle on X. Since
the local rings of X are regular, the notions of Cartier divisor and Weil divisor
coincide. Obviously, Weil divisors on the genericfibre of X extend to Weil divisors
on X. So, each line bundle on the genericfibre extendsto aline bundle on X.

If Sconsists of afield K, then Picyx is a scheme by 8.2/3. Since any connected
K-group scheme is o finite type as soon asit islocally of finite type, we see that
Pic% x is o finite type and, thus, proper over K. O

Next we want to discuss finiteness assertions for Picy,s under more general
assumptions. Since, in general, Picy,s Will have infinitely many connected com-
ponents, it cannot be of finite type over S. So the best one can expect is that there
exists an open and closed subgroup Pic,s of Picy;s whichis of finite type over S
and which hasthe property that the quotient of Picy,s by Pick,s hasgeometricfibres
which arefinitely generated asabstract groups. Wewant to introduce the subgroup
Picys.

If Sconsistsof afield, we know that the relative Picard functor Picysisagroup
scheme. Let Picy s beitsidentity component. Then we set

Picy s = |J n71(Picy;s)
n>0
where n : Picy,s — Picys isthe multiplication by n. Due to continuity, Picy,s isan
open subscheme of Picy;s.

For ageneral baseS weintroduce Fic$, (resp. Pick s) asthe subfunctor of Ac,
which consists of al elements whose restrictions to al fibres X, s € S, belong to
Pic§ s (resp. Pick ). If Picks isan algebraic space (resp. a scheme),and if it is
smooth over Salong the unit section, then Pic} s isrepresented by an open subspace
(resp. an open subscheme) of Ac,, cf.[EGA IV;], 15.6.5.

Theorem 4 ([SGA 6], Exp. XIII, Thm. 4.7). Let f: X — S be a proper morphism
which islocally of finite presentation, and let S be quasi-compact. Then

(@ Thecanonical inclusion Picy;s = Picys isrelatively representable by an open
and guasi-compact immersion.

(b) If X — Sis projectiveand if its geometric fibresare reduced and irreducible,
the immersion Pic,s — Picys iSopen and closed.

(c) Pick,sisof finitetypeover Sin the sensethat the family of isomorphism classes
of line bundles on the fibres of X which belong to AC”,, is bounded.

The hardest part of the theorem is assertion (c). One can reduce it to the case
where X isa closed subscheme of a projective space Pg. I n this case, one shows that
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al elementsdf Ac,, havethesame Hilbert polynomial (with respect to theS-ample
line bundle belonging to the embedding of X into P§), and then the assertion can
be deduced from 8.2/5.

Next, we want to look at the special case where X is an abelian S-scheme, i.¢.,
a smooth and proper S-group scheme with connected fibres.

Theorem 5. Let A be a projective abelian S-scheme.

(a) Then Pici;5isa projective abelian S-scheme. It is denoted by A* and is called
the dual abelian scheme of A. In particular, A* coincides with the identity component
of Hg,

(b) The Poincaré bundle on A X, A* gives rise to a canonical isomorphism
11 A-—— A** where A** isthe dual abelian scheme of A*.

A proof of (a) can befound in Mumford [1], Corollary 6.8. For (b),since A and
A** areflat over S, it sufficesto treat the case where S consists of an agebraically
closedfield. In this case, the assertion followsfrom Mumford [3], Section 13, p. 132.

In 1.2/8 we have seen that an abelian scheme over a Dedekind scheme is the
Néron model dof its generic fibre. Now, using the above theorem, one can show a
much stronger mapping property for abelian schemes than the one required for
Neron models.

Corollary 6. Let A bean abelian S-scheme. Then any rational Smorphisme : T -—-> A
froman S-scheme T to A is defined everywhere if T isregular.

Proof. We may assume T = S. Then A is projective over S; cf. Murre [2], p. 16.
Dueto Theorem 5, we can identify A and A**. So the map ¢ correspondsto aline
bundleon A xS’ where S isadense open subschemeof S. SinceS= T isregular
and since A* — Sissmooth, the scheme A* isregular. So the line bundle extends
to aline bundle on A* and, thus, givesriseto an extension S— A** of ¢ys.. O

Now let us return to the general situation of a proper morphism X — S o
schemes. We want to discuss the group of connected components of Hc, over a
geometric point of S. Let s bea point of Sand let 5 be a geometric point of S such
that k(s) isan algebraic closure of the residuefield k(s) at s. The group of connected
components o Picy_, IS called the Ndron-Severi group of the geometric fibre
X;= X X, k(5)of Xover s Itisdenoted by NSy s(5) so that

NSy s(5) = PiCXg/k(E)(k(E))/ P iC?(g/k(E)(k(E)) .

Theorem 7. ([SGA 6], Exp. XIII, Thm. 5.1). Let f: X — S be a proper morphism
which is locally of finite presentation, and assume that S is quasi-compact. Then
the Ndron-Severi groups NSy (s) of the geometric fibres of X are finitely
generated. Their ranks as well as the orders of their torsion subgroups are bounded
simultaneously.

Remark 8. The Neron-Severi group is o arithmetical nature; i.c., the set of points
where the Néron-Severi group is of afixed typeisnot necessarily constructible.
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For example, let E— S be an dlliptic curve with a non-constant j-invariant
over anirreduciblebase Swhichisdf finitetype over afield. Then thereareinfinitely
many geometric points 5 of Ssuch that the geometric fibre E; has complex multi-
plication, and there are infinitely many geometric points such that the geometric
fibre E5 has no complex multiplication. Now consider the product X = E xg E. If
E, has no complex multiplication, the rank of the Ntron-Severi group of X; is 3.
If E, has complex multiplication, the rank of the Neron-Severi group of X is at
least 4.



Chapter 9. Jacobians of Relative Curves

The chapter consists of two parts. In thefirst four sections we study the represent-
ability and structure of Hc,, for arelativecurve X over abaseS. Then, inthelast
three sections, we work over a base Sconsisting of adiscrete valuation ring R with
field of fractions K and, applying these results, we investigate the relationship
between Picy,s and the Neron model of the Jacobian Ji of the genericfibre X,

The chapter beginswith a discussion of the degree of divisorson relative curves.
Then we give a detailed analysis of the Jacobian J; of a proper curve X, over a
field, showing that the structure of Ji is closely related to geometric properties o
X. The next two sections deal with the representability of Jacobians over a more
general base. First, imposing strong conditions on the fibres of the curve and
working over a strictly henselian base, we prove the representability by a scheme,
using a method which was originally employed by Weil [2] and Rosenlicht [1]; see
also Serre [1]. Then we explain results due to Deligne [1] and Raynaud [6], which
are valid under far weaker conditions.

In the second haf o the chapter, wefollow Raynaud [6] and consider a proper
and flat curve X over adiscrete valuation ring R, assuming in most casesthat X is
regular at each of its pointsand that thegenericfibre X isgeometrically irreducible.
Let P be the open subfunctor of Picy,x consisting of all line bundles of total degree
0 and let Q be the biggest separated quotient o P. We show that Q is a smooth
R-group scheme whose generic fibre coincides with the Jacobian J,, of the generic
fibre Xx. Thusif J isa Neron model of Ji, thereisacanonical R-morphism Q — J.
Without assuming the existence of J, we can prove under quite general conditions
that, for example, if theresiduefield of R is perfect,then Qisaready a Néron model
of J¢. Thereby it isseenthat the relative Picard functor leads to a second possibility
of constructing Néron models. Also there are important situations where the
identity component of Aich, isalready a separated schemeand wherethecanonical
morphism Picy,z — J° is an isomorphism. More precisely, we will see that the
coincidence of Pics, and J° isrelated to thefact that X hasrational singularities.

In the above cases where Q is already a Néron model of J, it is possible to
computeexplicitly thegroup of components (of the special fibre) of thismodel, using
the intersection form on X. In Section 9.6, we explain the general approach and
carry out some computationsin particular cases.

9.1 The Degree of Divisors

Let X beaproper curveover afiddd K. If x isa closed point of X and iff isaregular
element of @y ,, we define the vanishing order off at x by
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ord,(f) = lo, (Ox, /(1))

wherel, _denotes thelength of Oy,,-modules. If, for example, x is a regular point
of X, thelocal ring Oy . isadiscrete valuation ring and ord,(f ) correspondsto the
order off in @, (with respect to the canonical valuation on ¢y ). Since we have

ord,(f" g) = ord,(f) + ord,(g)
for a product of regular elements f, g € Oy, we can define

ord,(f/g) = ord,(f) — ord.(g)

for any element f/g of the total ring of fractionsof @y .
Now let D be a Cartier divisor on X. For a closed point x € X, we set

ord, (D) = ord.(f./g:)
where f,. /g, isaloca representation of D in a neighborhood of x. We can associate
to D the Well divisor
> ord (D) x

xeX

The degreed a Cartier divisor D is defined by
deg(D) = ) ord, (D) [k(x): K] .

xeX

The degreefunction isadditive, i.e.,
deg(D, T D,) = deg(D,) t deg(D,) .
If Diseffective, we can write
deg(D) = dim, H°(X,0,)

where ¢, denotesthe structure sheaf of the subscheme associated to D. Thus we see
that the degree of a Cartier divisor on X isnot altered by a base change with afied
extension K'/K.
Assuming for a moment that X is reduced, we can consider the normalization
X — X o X.Then one can pull back Cartier divisors D on X to Cartier divisors
D on X. Weclaim that
deg(D) = deg(D) .

Indeed, it suffices to judtify the following assertion. Let U = Spec(A) be an affine
open subscheme of X and let 4 be the normalization of A. Then, for each regular
elementf of A, one has

dimg(A4/(f)) = dimg(A/(f)) .

In order to prove this, look at the commutative diagram

0 A A4 C 0
Ll
0 A > A C 0
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with exact rows, where the vertical maps are given by the multiplication with f.
Since f isa regular element of both A and A", thereis along exact seouence

0 — ker(f,) — A/(f)— A/f) — C/f-C—0.

Using dimg(C) < oo, itfollowsthat dimg(ker( f-)) = dimg(C/f - C). Hence, the asser-
tion isevident.

A Cartier divisor D on an arbitrary proper curve X is called principal if there
existsa meromorphic function f on X such that D = div(f). For aprincipa divisor
D, we have deg(D) = 0. Two Cartier divisors D, and D, are said to be linearly
equivalent if thedifferenceD; — D, isprincipal. Soweseethat thedegree of aCartier
divisor D is not altered if we replace D by a divisor whichislinearly equivalent to
D. Sinceeachlinebundle & on X correspondsto a Cartier divisor D whichisunique
up to linear equivalence, one can define the degree of a line bundle ¥ by setting
deg(.#) := deg(D). The degree plays an important role in the Riemann-Roch
formula.

Theorem 1. Let X be a proper curve over a field K, and let % be a line bundle on X.
Then the Euler-Poincaré characteristic
72(&) = dim, H°(X,9)- dim, H(X,9)
of # isrelated tothe Euler-Poincard characteristic of ¢y by the formula
1(Z) = deg(&L) + x(O) .
Proof. One proceeds asin thecase of asmooth curve by looking at an exact sequence
0— Y — F Ry, Ox(D)—> Op—0

where D is an effective Cartier divisor on X such that % ®g, Ox(D) is isomorphic
to 0x(E) with an effective Cartier divisor E on X. Furthermore, one has the exact

sequence
00— Oy —> Ox(E) — 0y — 0.

Calculating the Euler-Poincare characteristic of both sequences, the assertion
followsimmediately from & ®gy, 0x(D) = Ox(E) and deg ¥ = degE — degD. [

If HO(X,0x) = K, for example, if X is geometrically reduced and connected,
the Euler-Poincaré characteristic of 0y is given by y(0y) =1 — p,, where p, =
dimHY(X, L9 isthe arithmetic genus of the curve X.

If X —+ Sisareativecurve and if & isalinebundle on X, one can restrict .
to thefibresdof X over S. So, for each s € S, we get aline bundle %, on thefibre X,
and the degree deg(%,) of %, on thefibre X, givesriseto a Z-valued function on S.

Propostion 2. Let X -——+ S be a flat proper S-curve of finite presentation and let ¥
be a line bundle on X. For s € S, denote by %, the restriction of £ to the curve X,.
Then the degree function

deg:S— 7, s+ deg(%)
islocally constant on S.
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Proof. The Euler-Poincare characteristic of a flat family o coherent sheaves is
locally constant on the base; cf. [EGA 111,], 7.9.4. Thus, using the Riemann-Roch
formula, one sees that the degreefunction must belocally constant on S. Il

Now let usreturn to the situation we started with. Let X be a proper curve over
afied with (reduced) irreducible components X, ..., X,. If #Z isalinebundle on
X, We can restrict & to each component X,, i =1, ..., r, and we define the partial
degree of ¥ on X, by

degy,(Z) = deg(¥1y,) .

In order to explain the rel ationship between the total degree and the partial degrees,
we need the notion o multiplicities of irreducible components.

Definition 3. Let X be a scheme of finite type over a field K, let |? be an algebraic
closure of K, and set X = X ®, K. Denote by X, ..., X, the (reduced)irreducible
components of X and, for i =1,...,r, let n; € X be the generic point corresponding
to X;. The multiplicity of X; in X is the length of the artinian local ring O ,. We
denote it by d;; so

di = [(@X,r’,-) .

The geometric multiplicity of X;in X isthe length of the artinian local ring Ox ;.
where7; isa point of X lying above y,. We denote it by &; so

51‘ = 1(0)?,7,,-)

If X isirreducible, we talk about the multiplicity (resp. the geometric multipicity)
of X, thereby meaning the multiplicity (resp. the geometric multiplicity) of X in X.
Furthermore, we denote by

the geometric multiplicity of X.

Note that the definition isindependent of the choice of 7;, since all points of X
above ; are conjugated under the action of the Galois group o 1? over K. There
are some elementary relations between the different notions of multiplicities which
are easy to verify.

Lemma 4. Keeping the notations of Definition 3, one has

(@) 6, =e;.d;fori=1,...,r.

(b) 6; = ¢; if and only if X isreduced at the paint ;.

(©) ¢; = tif thecharacteristicof K iszero;otherwiseitisa power of the character-
istic of K.

Using the notion of multiplicity of components, one can state a relationship
between the (total) degree and the partial degreesof aline bundle.

Propodtion 5. Let X be a proper curve over a field K with (reduced) irreducible
components X, ..., X,. Denote by d; the multiplicity of X;in X,i=1,...,r. Then
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deg(¥) = Zl d;-deg(Zly,)
for each line bundle % on X.

Proof. It sufficesto establish theformulafor Cartier divisors D whose support does
not contain any intersection point of the different components. Since both sides o
the formula are additive for divisors, we have only to consider effective Cartier
divisors. Then the assertion followsfrom the lemma below. ]

Lemma6. Let A be a one-dimensional noetherian local ring and let p, ..., p, be the
minimal primeideals of A. Let M be a finitely generated A-module, and let a be an
element of A which is not contained in any p;. Denote by a, the multiplication by a
on M and define

e (a,M) =l (coker(a,)) — 1 (ker(ay)) .

Then
e a, M) = Zi Ly, (M) e4(a, Afp,) .

Proof. Note that both sides are additive for exact sequences of A-modules. So we
may assume M = A/p for aprimeidea p of A; cf. Bourbaki [2], Chap. 1V, §1, n°4,
Thm. 1. If p is maximal, both sidesare zero. If p is minimal, then I, (M,) = 1and
the localizations of M at the other minimal primes are zero. Thus, the formulais
also clear in this case. |

Theresults about the degree of line bundles which are presented in thefollowing
will be used in Section 9.4 to establish the representability of Picy, if X isarelative
curve over adiscrete valuation ring. Furthermore, they will be of interest in Section
9.5 where we will discuss the relationship between the Picard functor and Néron
models of Jacobians.

Lemma 7. Let K be a separably closed field. Let X be an irreducible K-scheme of
finite type of dimensionr and let 6 be the geometric multiplicity of X. Then, for each
closed point x € X and for each systemof parameters f' = (f;,..., f.) of thelocal ring
0Oy, the following assertions hold:

(@) dimg0y ./(f) > 0.

(b) I ff isaregular sequence, dimg Oy ,/(f)isa multiple of 6.

() Ifdimg0Oy . /(f)=6,then fisaregular sequence.

Furthermore, there exist x and f such that dimg Oy /()= 6.

Proof. After shrinking X, wemay assume that f givesriseto aquasi-finite morphism
p: X —Y:=AL.

Denote by K the algebraic closure of K and by ¢ the morphism ¢ O, K. Since K
is assumed to be separably closed, there exists a unique point x of X = X ® K
above x. Consider now the henselization Y' of Y := A% at the origin. Let X' be the
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local component of X x5 Y' above x. Then the map
¢ X —Y

obtained from ¢ via base change isfinite. Furthermore, ¢’ isflat if and only iff is
a regular sequence; cf. [EGA 0y], 15.1.14 and 15.1.21. The local rings of X' at
generic points are artinian of length 6 and the generic points of X' lie above the
generic point of Y'. Hence, the degree of X' over Y' isa non-zero multiple of 6. So,
by Nakayama's lemma, the degree of the closed fibre of ¢’ is greater or equal to 6.
Since the degree of the closed fibreis equal to dimy 0y /AT ), we see that assertion
(a)istrue.

Iff isaregular sequence, X' isflat over Y. Then the degree of the special fibre
o ¢’ isequal to the degree of X' over Y'. Thus, assertion (b)is clear.

If the degree of the special fibreis 6, itisequal to thedegree df X' over Y'; then
Oy (X")isfree over 0,(Y’) and, hence, flat. This showsthat f isa regular sequence;
SO assertion (c)istrue.

Next we want to show that the value 6 can be attained. After replacing X by a
dense open subset, we may assumethat X, .4 issmooth over K. So themodule Q3 _
islocaly free. Furthermore, since Q%md,f isaquotient of Q% %, we may assume that
there exist elements a,, ..., a, € I'(X, 0y) such that the images of the differentials
da, ...,dain Q-}zmd/i giveriseto a basisd thismodule. Consider now the morphism

a:=(as,...,a,): X — Y:= A}

given by thefunctions a,, ..., a,. Therestriction of theinduced map a: X — Y to
X ,.q 1S étale. After replacing X and Y by dense open subsets, we may assume that
aisfiniteand flat. Let x bea point of X such that a(x)isa rational point of Y. We
may assume that a(x) is the origin. Then f :=(a,, ..., q,) is as required. Namely,
using notations as above, we have to show that the degree of the finite and flat

morphism ¢’ : X' — Y' is6. Since the induced morphism
Qroa Xpea =Y’

isan isomorphism, the degree of ¢’ coincides with the length o thelocal ring Oy,
at the generic point #” of X', whichisequal to 6. O

Asacorollary of Lemma 7, we get a relation between the geometric multiplicity
o acomponent X; of X and the partial degree degy () of aline bundle & on X.

Corollary8. Let X bea proper curveover afidld K and let X, ,..., X, beits(reduced)
irreducible components. Let % be a line bundle on X. Denote by e; the geometric
multiplicity d X;, i =1, ..., r. Then the partial degreedegy (£) d & on X, isa
multipled e;for i=1,...,r.

Proof. We may assume that X = X isreduced and irreducible, and we may assume
that & = 04(D) is associated to an effective Cartier divisor D on X which is
concentrated at asingle point x. Letf bearegular element of ¢, which represents
D at x, so we have
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dimg Oy /(f) = deg(ZL) = degy (&) .

Due to Lemma 7, if K is separably closed, the geometric multiplicity ; = e; of
X = X; divides dimg Oy ,/(f ) = deg(#). In the general case, consider a separable
closureK' of K. Theirreducible component X = X; decomposesinto theirreducible
components Xj; of X' = X ®x K’, but the geometric multiplicitiese;; of X}; coincide
with e;. Thus we see that e; divides degy; (£ ®x K'), for al j. Now |t follows
from Proposition 5 that ¢; divides deg(¥) = degX (&), since the degree function is
compatible with extensions of the basefield. ]

If X isascheme o finite presentation over a strictly henselian base S, Lemma 7
can be used to show theexistence of subschemesdf X which arefiniteand flat over
Sand which have small degrees over S.

Corollary 9. Let S be a strictly henselian local scheme, let s be its closed point, and
let X bea flat S'schemewhichislocallyof finite presentation. Let X, beanirreducible
component of the special fibre X, of X and let § be the geometric multiplicity of X,
in X;. Then there exists an Simmersion a: Z — X, where Z is finite and flat over
S of rank 6 and where a,(Z,) is a point of X, not lying on any other irreducible
component of X,.

Proof. Let U be an open subscheme of X such that U; = U xg k(s) is non-empty
and contained in X,. Due to Lemma 7, there exist a closed point x of Us and a
regular system of parameters f o Oy_, = Oy . ®q,, k(s) such that

dimy, Oy, ./ (=90

After restricting U, one can lift f to asequence f of elementsd T'(U,Lo) Then fis
a regular sequence of @y ,; cf. [EGA O], 15.1.16. After restricting U, a local
component Z of ¥(f) which contains x is finite and flat over S, so Z fulfills the
assertion; cf.[EGA 0,y], 15.1.16. O

Corollary 10. Let Sbe a strictly henselian local scheme with closed point s, and let X
be a flat curve over Swhichislocally of finite presentation. Let X, be an irreducible
component of the special fibre X, with geometric multiplicity é in X;. Thenthereexists
an effective Cartier divisor Z of degree 6 on X such that Z meets X,, but no other
irreducible component of X,. Furthermore, degy (Z) = e where e is the geometric
multiplicity of X,.

Corollary 9 implies the following criterion for the representability of elements
o Ac, by linebundles.

Proposition 11. Let f: X — S be a quasi-separated morphismof finite presentation
suchthat f, Oy = Og. Consider Smorphisms Z;, — X,i =1,...,r, where Z; is finite
and flat over Sof degree n;. Set n= ged(n,,...,n,). Then, for each flat Sscheme T
and for each element & e Picy,5(T), the multiple n-5isinduced by a line bundle on
X=X x5 T.
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Proof. Sincenisalinear combination of n,, ..., n, withinteger coefficients, it suffices
to provethat each ;- £ isinduced by aline bundle. Dueto[EGA 111,], 1.4.15,and
[EGA 1V.], 1.7.21, the assumption f, Oy = 05 remains true after flat base change.
So we may assume S= T. The morphism Z; — X gives rise to a Z;-section of
X x5 Z;. Sothepull-back of £inPicy,5(Z;) isinduced by alinebundle £ on X x5 Z;;
cf. 8.1/4. Then thenorm of . with respect to thefiniteflat morphism X x¢ Z, — X
gives rise to the element ;- & in Picy5(S); of. [EGA 1V, ], 21.5.6. O

As an application of Corollary 9 and Proposition 11, one obtainsthefollowing
result.

Corollary 12. Let She a strictly henselian local scheme, let s be its closed point, and
let f: X — Shbea flat morphismof finite presentation such that f, 0y = ¢s. Denote
by 6 the greatest common divisor of the geometric multiplicitiesin X, of theirreducible
components X, ..., X, of X,. Then, for each flat S.scheme T, and each element 4 of
Picy,s(T), the multiple 6+ & isinduced by a kine bundle on X xg T.

9.2 The Structure of Jacobians

Inthefollowinglet X bea proper curve over afidd K. Then, dueto 8.2/3 and 8.4/2,
Pic}, ¢ is @ smooth scheme; we will also refer to it as the Jacobian of X. In the
present section, we want to discuss the structure of Pic% , as an algebraic group
depending on data furnished by the given curve X. To start with, let us mention
some general results on the structure of commutative algebraic groups.

Theorem 1 (Chevalley [1] or Rosenlicht [2]). Let K be a field and let G be a
smooth and connected algebraic K-group. Then there exists a smallest (not necessarily
smooth) connected linear subgroup L of G such that the quotient G/L is an abelian
variety.

If K is perfect, L is smooth and its formation is compatible with extension of the
base field.

Chevalley has treated the case where K is algebraically closed and has shown
that there existsa smooth connected linear subgroup L of G such that the quotient
G/Lisan abelianvariety. If thebasefidd is perfect, the existenced such a subgroup
follows by Galois descent from the case of algebraically closedfields. It isclear that
such a group is the smallest connected linear subgroup of G with abelian cokernel,
and that itsformation is compatible with extension of the basefield.

If the basefield isnot perfect, there exist afiniteradicial extension K' of K and
aconnected smooth linear K’-subgroup H' of G = G ®, K’ such that the quotient
G'/H’ is an abelian variety. Let us first show that there exists a connected linear
subgroupH of Gsuchthat H ®, K' contains H'. Let nbetheexponent of theradicial
extension K'/K. Then consider the n-fold Frobenius
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F,:G — G'®) = G x K7

n

(cf. [SGA 3:], Exp. VII,, 4.1); the second projection is induced by the inclusion
K'— K'¥P_Now let H, be the pull-back of the subgroup H'®” of G'®". If 4'is
the sheaf of ideals o (O associated to H', the sheaf of ideals associated to Hj, is
generated by the p"™-th powers of thelocal sections of .#'. Since K’'/K is of exponent
n, we see that 4" is generated by local sections of @; and, hence, that H;, is defined
over K. Now it remains to show that there exists a smallest connected linear
subgroup L of G having abelian cokernel. This followsimmediately from the fact
that an intersection of two linear subgroups of G islinear again and has abelian
cokernel if each of them has abelian cokernel. O

For an arbitrary base field K, the connected linear subgroup L does not
need to be compatible with field extensions. If the base fidd K is perfect and
the group G is commutative, one has further information on the structure o the
group L.

Theorem 2 ([SGA 3,1, Exp. XVII, Thm.7.2.1). Let K bea field and let G be a smooth
and connected algebraic K-group of finite type. Assume that G is commutative and
linear. Then G is canonically an extension of a unipotent algebraic group by a torus.

If,in addition, the base field K is perfect, this extension splits canonically; i.e., G
isisomorphic to a product of a unipotent group and a torus.

Now we come to thediscussion of thestructureof Pics. Westart with aresult
which isa direct consequence of 8.4/2 and 8.4/3.

Proposition 3. Let X be a proper and smooth curve over a field K. Thenthe Jacobian
Pic% x is an abelian variety.

If the basefidd K is perfect, the curve X is smooth over K if and only if it is
normal. The two notions are not equivalent over arbitrary fields, so it may happen
that Pic% x is not proper although X is normal.

Propodtion 4. Let X be a proper curve over a field K. Assume that X is normal,
geometrically reduced, and geometrically irreducible. Then Pic%  contains neither a
subgroup of type G, nor a subgroup of type G,,.

Proof. Since, for any separablefield extension K'/K, the K'-curve X ®, K'isnormal,
we may assume that K is separably closed. Then there existsa rational point on X
because X is geometrically reduced. So, for any K-scheme T, elements of Picy (T)
can be represented by line bundleson X x T; cf. 8.1/4. Now, let us assume that
thereisasubgroup G of Picyx Whichisdf type G, or G. TheinclusionG —; Picy ¢
corresponds to aline bundle ¥ on X x G. Since X isnormal, theline bundle &
isisomorphic to the pull-back of aline bundle on X; cf. Bourbaki [2], Chap. VII,
§1,n’10, Prop. 17 and 18. Hence, themap G — Picy,, Whichisinduced by % must
be constant. So we get a contradiction and the assertion is proved. O
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Now we turn to more general cases. Let us denote by X,.4 the largest reduced
subscheme of X. By functoriality, we get a canonical map
Picy x — Picy k-

So we can look at the kernel and at the image of this map. The algebraic group
corresponding to the kernel can easily be described by the nilradical of 0.

Proposition 5. Let X be a proper curve over a field K. Then the canonical map
PiCX/K —> PiCde/K

is an epimorphismof sheaves for the étale topology. Its kernel isa smooth and con-

nected unipotent group which isa successive extension of additive groups of type G,.

Proof. Let X' — X be a closed subscheme which isdefined by a sheaf of ideals A"
o Oy satisfying .42 = Q. It sufficesto show that the canonical map

Picy;x — Picy

is an epimorphism of sheavesfor the étale topology and that its kernel is of the
type described above. Let f: X — SpecK be the structural morphism. The exact
sequence given by the exponential map

0— N —0F—0F—0
n —14+n
gives rise to the exact sequence
RY N — RY, 0% — Rf, 0% — R*f N

which has to be read as a sequence of sheavesfor the étale topology. Because X is
acurve, we have R?f, 4" = 0. Hence the canonical map

Ac, =RY,0f — Picy,x = Rf, 0%
isan epimorphism. Since, for any K-scheme T, there is a canonical isomorphism
Hl(X,M) ®K (QT(T) = RIJ{*JV(T) >

the group functor Rf, .4 is represented by the vector group H*(X,N).Then it
followsfrom the exact sequence above that the kernel of the map we are interested
inisa quotient of the vector group H*(X,N) .The latter is a successive extension
o groups o type G,. So, as can easily be deduced from [SGA 3,1, Exp. XVII,
Lemme 2.3, the kernel isas required. O

It remains to study Pic  for reduced curves. Therefore, let us assume now that
the curves under consideration are reduced. Before starting the discussion of the
general case, we want to have a closer look at an example.

Definition 6. Let She any scheme, and let gbe an integer. A semi-stable curve of genus
gover Sisa proper and flat morphism f: X — S whose fibres X; over geometric
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points 5 of S are reduced, connected, one-dimensional, and satisfy the following
conditions:

(i) X5 hasonly ordinary double points as singularities,

(i) dm, H'(Xs, Ox.) = 0.

A point x of acurve X over an algebraically closedfield K isan ordinary double
point if the completion 0y, of thelocal ring Oy , of X at x isisomorphic to the
quotient K[ [, €17 AL¢) of theformal power seriesring K[[(, £]] in two variables.
For acurve X over afidd K, onecanformulatethecondition o X beingsemi-stable,
without performing the base extension by an agebraic closure K o K. Namely, a
geometrically connected curve X over afied K issemi-stableif and only if for each
non-smooth point of X there existsan etale neighborhood which is étale over the
union of the coordinate axesin AZ.

Theinterest in semi-stabl e curves comesfromthe semi-stable reduction theorem,
see Deligne and Mumford [1] or Artin and Winters [1], which we want to mention
without proof.

Theorem 7 (Semi-Stable Reduction Theorem). Let R be a discrete valuation ring with
fraction field K. Let Xy be a proper, smooth, and geometrically connected curve over
K. Then there exist a finite separable field extension K' of K and a semi-stable curve
X' over the integral closure R of R in K' with generic fibre Xg = X ®x K"
Furthermore, X' can be chosen to be regular.

If X isa semi-stable curve over an algebraically closedfield K, one can associate
agraph I' = I'(X) to it: the verticesof I are the irreducible components of X, say
X,,...,X,,and theedgesaregiven by thesingular pointsaf X ; namely, each singular
point lying on X; and on X; defines an edge joining the vertices X; and X;. Note
that X; = X; isallowed.

Example8. Let X be a semi-stable curve over a field K. Then Pic%x is canonically
an extension of an abelian variety by a torus T.

More precisely, let X,, ..., X, be the irreducible components of X, and let X; be
thenormalizationof X;,i = 1,...,r. Thenthe canonical extensionassociated to Pic?r,x
is given by the exact sequence

r
-0 n* . 0
1— T oo Picgx — | 1| Picg x —1
=

where 7* isinduced via functoriality by the morphisms z,: X, — X,i = 1,..., r.The
rank of thetorus part T isequal totherank of the cohomology group H(I'(X ® K), Z).

Proof. Let 7 : 8~ X bethe normalization of X. The connected components of ¥
are the normalizations X; of the irreducible components X;. They are proper and
smooth over K, hence Pic%i x Isan abelian variety over K. Furthermore, the map
7* is compatible with field extensions. So we may assume that K is algebraically
closed. Now look at the exact sequence

(%) 1— 0f — 1,05 — 7,050 — 1.
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The quotient 2 = =, 0%/0% is concentrated at the singular points x,, ..., Xy of X.
The associated |ong exact sequence

1—>H°(X,@§)—»HO(X,n*(D;f)—ﬂHO(X,,@)
— HYX,0%) — H'(X,n,0%) — 1
can be written in the following way
(+%) 1—K*— q Kf — [N]J K¥ — Pic(X) — Pic(%) — 1
= =

where
K¥ = HO()?i,(Q;{) ~ K* and K} = (K(%;;) x K(&;;)*)/K* = K*

if £, and %,, are the points of 8 lying above the double point x;. Using the long
exact sequence of sheaves with respect to the étale topology whichis associated to
(*), one sees that n* is an epimorphism, since R'f, 2 = 0 wheref: X — SpecK is
the structural morphism. Furthermore, the kernel of z* isgiven by the quotient of
the map R%, (n,,0%) — R°,(2). The latter is a quotient of a torus and, hence a
torus. Theassertion concerning therank of thetorusfollowsfrom theexact sequence
(). 7

Now let us return to the general situation of a reduced curve over afield K. As
in the theorem of Chevalley, one can expect to describe the torus part and the
unipotent part of Pic&, in geometric terms, at least if the base field is perfect.
So, in the following, let K be a perfect field and let X be a proper curve over K
which is reduced and geometrically connected. Denote by 8— X the normal-
izatig o X. We want to introduce an intermediate curve X' lying between X
and o.

Sincethereis a dense open part o X which is smooth, there exist only finitely
many non-smooth points of X. We will define X' by identifying all the points of 8
lying above such a non-smooth point of X. In order to explain this procedure, we
can work locally. So consider a non-smooth point x of X, and let U = SpecA be
an affine open neighborhood of X such that X is the only non-smooth point of U.
Let %4, ..., %, be the points o 8lying above x, and let U = Spec A" be the inverse
image of U in 8.Then we definethe open affinesubscheme U’ = Spec A of X' lying
over U by taking for A' the amalgamated sum of the maps

A H k(%) and  k(x)— ]j k(x,)

So A consists of al elements f € A which take the same valuer € k(x) at al points
X,..., %, Theselocal constructionsfit together to build a proper curve X', and we
get canonical morphisms

fLx %X,
The map f maps the points X,, ..., X, to asingle point X' o X" with residue field

k(x). So g does not change the residuefield. Let fi; = 4 be theideal of the point %;,
i =1,...,n Then we obtain the exact sequences
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0 —— [[my —— I 0z: —— [Tkx) —— 0
i=1 i=1 i=1

]

Oy y —— k(x) — 0

M

0O —— m

where m’ is the maximal ideal dof @. .. The first vertica map is bijective, and
the last one corresponds to the embedding of k(x') = k(x) into the product of the
residue fields k(x;), i =1, ..., n. Due to the construction, it is clear that the map
X — Xisauniversa homeomorphism. Moreover, X isthelargest curve between
8 and X which is universally homeomorphic to X. One shows easily that the
construction of X is compatible with field extensions, since K is perfect. The
singularities of X are as mild as possible. Namely, after base extension by an
algebraic closure K of K, the singularities of X' ®y K are transversal crossings of
a set of smooth branches(i.e., analytically isomorphic to the crossing of the coordi-
nate axesin A" for some n).

Proposition9. Let X be a proper reduced curve over a perfect field K. Letg: X — X
be the largest curve between the normalization 8 of X and X which is universally
homeomorphic to X. Then the canonical map

Y : Picy;x — Picy

is an epimorphism of sheaves for the étale topology. The kernel of i is a connected
unipotent algebraic group which istrivial if and only if the canonical map X' — X
is an isomorphism.

Proof. Let # = @y (resp. 2 = Oy.) be the sheaf of (reduced) ideals defining the
non-smooth locus of X (resp. of X ).There exists an integer ee N such that
g.2° = 8.Consider the exact sequence

0—0f — 9,08 — (1 +9,9/(1+2)—0,

and set % := (11 ¢,2)/(1 T 8). It is a sheaf which is concentrated on the finitely
many points of X which are not smooth; more precisaly, its support consists of the
points of X which are not ordinary multiple points. Let f: X — SpecK be the
structural morphism. Since RYf,.¢ = 0 and f, 0% = f, g, 0%, the exact sequence of
above gives rise to an exact sequence

1 — R%, % — RY,0f — R, (9,0%) — 1
of sheavesfor the étale topology. Thus, we see that
. o,
PICX/K = le*(9§ - PlcA('/K =R'(fo 9 0% = le*(g*@§')

isan epimorphism. Due to Serre [1], Chap. V, n°15, Lemma 20, the group R°f, ¢
and, hence, the kernel of i is represented by a unipotent group. For a further
description o thisgroupseeSerre[1], Chap. V, n°16 and n°17. Moreover, thekernel
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of y istrivia if and only if the group H°(X, %) vanishes; i.c., if and only if g, 2 = 2
or, equivalently, if and only if X' -—— X isan isomorphism. O

Proposition 10. Let X be a proper reduced curve over a perfect field K, and let K be
analgebraicclosureof K. Let X’ — X bethelargest curve between the normalization
8of X and X whichis universally homeomorphic to X. Then the canonical map

@ : Picy,x — Picgx

is an epimorphism of sheaves for the étale topology. The kernel of ¢ isa torus. The
latter istrivial if and only if each irreducible component of X @, K is homeomorphic
to its normalization and the configuration d the irreducible components of X ®, K
istree-like; i.e.,, HY(X ®¢ K,Z) = 0.

Proof. The proof can be done similarly asin Example 8. We may assume X = X'.
Let 7w : 8— X bethenormalization of X. The connected components o f 8 are the
normalizations X; of the irreducible components X,. Let x,, i =1, ..., N, be the
singular points of X, and let %, j =1, ..., n;, be the points of 8 lying above %;.
Consider the exact sequence

1 — 0f > n,0f — 1,050 —1

The quotient 2 = =, 0%/0% is concentrated at the points x;, i =1, ..., N. The
associated long exact sequence

1— H(X, (9}")——>HO(X, 7'5*(9,1;)—>H0(X,,@)
— HY(X,0%) — HY (X, n, 0%) — 1

can be written in the following way
r N n; ~
l—-I* ][ IF—T] (H K:’;)/K:" — Pic(X) — Pic(X) — 1
i=1 i=1 \j=1

where I'* = HO(X, 0%), Ti* = H°(X,, 0%), K¥ = k(x;), and K% = k(%;). Asin Ex-
ample 8, one showsthat ¢ isan epimorphism for the Ctae topology and, moreover,
that the kernel of ¢ is the quotient of the map R%,(n,0%) —+ R°/,(2) where
f : X — SpecK isthe structural morphism. The latter isa quotient of a torus and,
hence, a torus.

It remains to show the last assertion. We may assume that K is algebraically
closed. The kernel o ¢ istrivia if and only if the canonical map

r N n;
[ —1I (r[l K;;)/K;"
i= i= Jj=

is surjective. If the map issurjective, it is clear that, for any singular point x; of X,
the points %;, j =1, ..., n; lie on pairwise different components of X. Hence,
each irreducible component o X is homeomorphic to its normalization. Further-
more, the surjectivity implies HY(X,K*) = 0 which is equivalent to H1(X,Z) = 0.
The converse implication follows by similar arguments. O
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Now we can deduce from Propositions 9 and 10 the structure of the linear part
of He,

Corollary 11. Let X be a proper curve over a perfect field K and denote by X the
normalization of the largest reduced subscheme X, ., of X. Then the canonical map

Picyx — Picg

is an epimorphism of sheaves for the étale topology. Its kernel consists of a smooth
connected linear algebraic group L. Thequotient of Picg x by L isisomorphicto Pic%/K
which is an abelian variety.

Next we want to look at a reduced curve X over a perfectfield K. As before, let
X' denote the largest curve between X and its normalization 8. Viafunctoriality,
we get thefollowing sequence of algebraic groups

Picy;x — Picy,x — Picgx ,

whereeach map isan epimorphism of sheavesfor the etale toplogy. Dueto continu-
ity, we obtain epimorphisms between the identity components

Pic} x — Pick x — Picg

Furthermore, if Pic% x does not contain a torus, Pic%.;x does not either; for example,
this can be deduced from Theorem 2. So, we obtain the following corollary.

Corallary 12. Let X be areduced proper curve over a perfect field K and let K be an
algebraic closure of K.

(@) If Pic% k contains no unipotent connected subgroup, the singularities of X ®x K
are analytically isomorphic to the crossing of the coordinate axesin A".

(b) If Pic% contains no torus, each irreducible component of X ® K is homeo-
morphic to its normalization and the configuration of the irreducible components of
X ®x K istree-like.

(o) If Ac, isanabelianvariety, theirreducible components of X are smooth and
the configuration of the irreducible components of X ®y K is tree-like.

Finally we want to discuss the degree of line bundles belonging to Ac,,  For
example, if X isa connected proper and smooth curve over an algebraically closed
fidd K, the elements of Pic% x(K) correspond to the line bundles of degree zero.
Indeed, consider the universal line bundle .# on X xg Ac,. Dueto 9.1/2, the
degree of the restriction %, of £ to the fibre over a point £ e Hc, is zero.
Conversely, aline bundle of degree zero isisomorphic to aline bundle ¢, (D) where
D isa Cartier divisor which can be written as

D=(x; = x0) T ... ¥ (x, = x0),
wherex,, ..., x, areclosed points of X. Since X is connected, the image of the map

X — PiCX/K , x> [Ox(x — x¢)] ,
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is contained in Pic . Thus we see that each line bundle of degree zero gives rise
to an element o Pic} . For arbitrary curves over fields, one has to look at the
partial degreeson the irreducible components.

Corollary 13. Let X be a proper curveover a field K and let K be an algebraic closure
of K. Then Picg  consists of all elements of Picy,, whose partial degree on each
irreducible component of X ®; K is zero.

Proof. Wemay assumethat K isalgebraically closed. Let X, ..., X, bethe (reduced)
irreducible components of X. Fori=1,...,r, let X; be the normalization of X;.
Then consider the canonical morphism

Ho, — Picgx

which is defined by functoriality. Due to continuity, the identity components are
mapped into each other, so we have morphisms

Picy x — Pic§ -

Since the degree of a Cartier divisor on X; and the degree of its pull-back on X;
coincide, we see that the partial degrees of elements of Pic} (K) are zero. Due to
Corollary 11, the canonical morphism

r
Picyx — | | Picgx
i=1

is an epimorphism and its kernel is a connected subgroup of Pic, k. So the kernel
is contained in Picg . Since the canonical map induces an epimorphism on the
identity components, we see that line bundles on X whose partial degrees are zero
belong to Ac,, O

Corollary 14. Let X be a proper curve over an algebraically closed field K with r
irreducible components X, ..., X,. Thenthe Néron-Severi group of X isa free group
of rank r.

More precisely, the map given by the partial degrees

Picyx/ PiC?{/K — 7", L +— (degy (&), ..., degxr(g’ )]
isinjective and has finite index.

9.3 Construction via Birational Group Laws

Wewant to explain how the proof of Grothendieck's theorem 8.2/1 can be modified
inthe case of relative curvesin order to recover the Jacobian variety as constructed
by Serre [1] and Weil [2]. We begin by repeating what Grothendieck's approach
to the representability of Hc  yieldsin the case of a relative curve X over a
scheme S.
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Theorem 1. Let X — S be a projective and flat curve which is locdly d finite
presentation. If the geometricfibres d X over S are reduced and irreducible, Picy
is a smooth and separated S-scheme.
More precisaly, there isa decomposition
Picys = Uz (Picys)"

where (Pic,|5)" denotes the open and closed subschemed Picy s consisting d all line
bundlesd degreen; thescheme(Picys)° coincideswith theidentity component Pic% s
d Picys Moreover, (Picy )" is quasi-projectiveover S and is a torsor under Pic%;s
for dlneZ.

Proof. The representability of Picy,s isdueto 8.2/1; see also 8.2/5. The smoothness
follows from 8412. Due to 9.112, the degree of line bundles belonging to a fixed
connected component of Picys is constant, thus Picy s breaks up into the disjoint
union o the (Fc,)" ne E.Inorder to show that (Picy¢)"isatorsor under Ac$,

it remains to show that (Picy )" and Picg,s becomeisomorphic after faithfully flat
baseextension. So wemay assumethat X hasa section over S. Thenit suffices to see
that (Picy,s)® is isomorphic to Fc$,. Since the geometric fibres of X over S are
irreducible and reduced, the latter followsimmediately from 9.2113. ul

Let us mention some conditions under which X is projective over S.

Remark 2. Let X bea proper flat curve over Swhichislocally of finite presentation
and whose geometric fibres are reduced and irreducible curves of genus g. Assume
that X is a relative complete intersection over S. Then the relative dualizing sheaf
isaline bundle. If g = 2, it is Ssample and, hence, X — Sis projective. Likewise,
if g=0, the dual o the relative dualizing sheef is S-ample and, hence, X — Siis
projective; moreover it is smooth. If g =1, it follows that X — S is projective
locally for the etale topology on S, since X — S admits a section through the
smooth locus after etale surjective base change, and since the line bundle o all
meromor phicfunctions having only simplepolesalong the given sectionisrelatively
ample.

Now we turn to a more general situation where we can construct Hg, via
birational laws. In thefollowingletf: X — S be a quasi-projective morphism of
schemeswhichis of finite presentation. We want to explain some basic facts on the
rel ationship between the n-fold symmetric product (X/$)™ and the Hilbert functor
Hilby,s, where Hilb% s isthe Hilbert functor associated to the constant polynomial
n. Wecan say that, for any S-scheme 7, the set Hilb (T') consists of all subschemes
D o X xg T whicharefiniteand locally freeaof rank n over T. The n-fold symmetric
product (X/S)™ is defined as the quotient of the n-fold product of X over S
by the canonical action of the symmetric group. Let us start by discussing the
representability of (X/S)™.

For any commutative ring A and for any A-module M, define the symmetric
n-fold tensor product of M by

TS} (M) := (M®")®n = M®"
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where M®" isthe n-fold tensor product of M over A and where S, isthe symmetric
group acting on M®" by permuting factors. If M isafree A-module, TS%(M) isalso
free and thereis a canonical way to choose a basis of TS, (M) after fixing a basisd
M. Thus, we see that TS%(M) is compatible with any base change if M is a free
A-module. Since any flat A-moduleis alimit of finitely generated free A-modules,
TS% (M) isaflat A-module and compatible with any base changeif M isflat over
A. If B is an A-algebra, TS%(B) is a subalgebra of B®". If X and S are affine,
say S = SpecA and X = SpecB, the symmetric product (X/S)® is represented by
Spec(TS"(B)). If X isquasi-projective over S, one can establish the representability
of the symmetric product (X/S)* as an S-scheme by gluing such local pieces, since
any finite set of pointslying on a single fibre of X/S iscontained in an open affine
subscheme of X. Furthermore, as we have seen above, the symmetric product
(X/S)™ of aflat S-scheme X isflat over S and compatible with any base change.

A polynomial law f from an A-module M to an A-module N consists of the
following data: for any commutative A-algebra A', thereisa map

fo M@ A —>N®,A
such that, for any morphismu: A' —+ A" of commutative A-algebras, the diagram

M®, A /N N®, A

M®u N®u

Me, 4 — 5 Ne, 4"

iscommutative. A polynomial law from M to N iscalled homogeneousd degreenif,
in addition, for any & € A" and forany m' e M ®, A, the equation

Ll m) = (a)" fa(m')
holds. For example, the map
p":M — TS%(M) , m—MmME...Q0m (ntimes)

givesrise to a homogeneous polynomial law of degreen. Furthermore, if M isafree
A-module of finiterank, the map y” is universal; i.e., any homogeneous polynomial
law ffromM to N o degreenisinduced by a unique A-linearmap ¢ : TS (M) — N.
The latter means

Ja=(le®A)o("®A4);
d. [SGA 4,1, Exp. XVII, 55.2. Sinceaflat A-module is a limit of free A-modules,
the map y" isuniversal if M isaflat A-module.

Let usfix S= SpecA, X = SpecB and f: X — S For any B-module L which
isfree of rank nover A, thereisa canonical morphism

det, : TS"(B) — A

whichiscompatible with any basechange A — A'. Indeed, viewing the multiplica-
tion on L by an element be B as an A-linear map, the determinant yields a
homogeneous polynomial law of degree nfrom B to A and, hence, a map of TS(B)
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to A. Furthermore, one can show that det, isa morphism of A-algebras; cf. [SGA
41, Exp. XVII, 6.3.1.

[ff: X + Sisaffine and if £ isan @x-module such that f,..Z islocally free over
S o rank n, one can construct a morphism

Gg: S —s (X/S)®

by gluing the local morphisms constructed above.

Now letf: X — S be quasi-projective and consider an element D € Hilbk s(T)
for an S-scheme 7, i.e., a subscheme D o X xg T whichisfinite and locally free of
rank nover T. Then {f7),Op is a localy free O,-module o rank n. So the above
construction gives rise to a section

og,: T — (D/T)™ — (X/S)™ .
Thus we get a canonical morphism

On the other hand, if f: X — Sisa separated smooth curve, each section s of
f givesrise to a relative Cartier divisor s(S) of X over S of degree 1. Namely, due
to 2.2/7 the vanishing ideal of a(S) islocally principal. So we get a morphism

x" - Hﬂb')’(/s ’ (Slr CERE ] sn) — Z Si(S) ’

from the n-fold product of X over S to the Hilbert functor which is symmetric.
Henceit factors through (X/S)™. Note that, in this case, Hilb%,s coincides with the
subfunctor of Divy,s consisting of all divisors with proper support. So it induces a
morphism

a: (XI19)")— Hilbys .

Proposition 3 ([SGA 4], Exp. XVII, 6.3.9). f X — S is a smooth and quasi-
projective morphism of relative dimension 1, then, for each ne N, the canonical
morphisms

0:Hilbys— (X/Y®  and  a:(X/S)™ — Hilb,s

are isomorphismsand inverse to each other

Now let usconsider the casewheref: X — Sisa faithfully flat projective curve
of genus g whose geometric fibres are reduced and connected. Denote by X' the
smooth locus of X. Note that X' isS-densein X and that, moreover, the canonical
map

(X'/S)(g) SN (X/S)(g)

isan open immersion with S-dense image, as one can easily verify by using thefact
that (X/S)¥ commutes with any base change. Since X is proper over S, thefunctor
Hilb% s isan open subfunctor of Hilb% s, and since X” issmooth over S, it isalready
an open subfunctor of Divgs; cf. 8.216. Furthermore, since X is proper and flat over
S, the functor Divs is a subfunctor of Hilb%,s. Hence, we have a commutative
diagram of canonical maps
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Hilbg s —~ — (X'/S)®

|

Divys —— (X/S)® .

The S-scheme(X'/S)¥ is smooth. Indeed, by étale localization it is enough to treat
thecase X' = A{. But then the smoothness of (X'/S)® followsfrom the theorem on
symmetric functions. Now, let D = X x (X'/S) be the effective relative Cartier
divisor of degree g which isinduced by the map (X'/$)¥ — Div%,s. We will refer
to D asthe universal Cartier divisor of degreeg. Let W < (X'/S)® be the subscheme
o all points w e (X'/S) such that H(X,, Ox_(D,,)) vanishes; so

W= {we (X'/S)?; H'(X,,, Oy, (D,)) = 0}

Then, dueto thesemicontinuity theorem[EGA 111, ], 7.7.5, Wisan open subscheme
o (X'/8)¥, and the following lemma shows that W — Sis surjective.

Lemmad4. Let X be a proper curve over a separably closed field K. Assume that X
is geometrically reduced and connected. Then there exists an effective Cartier divisor
D, of degree g = dimH' (X, 04) on X whose support iscontained in the smooth locus
of X and which satisfies H(X, 0x(D,)) = K and H*(X, Ox(D,)) = O.

In particular, keeping the notations of above, the map W — Sis surjective.

Proof. The Riemann-Roch theorem impliesHO(X, 0x(Dg)) = K if HL(X,0x(Dg)) =
0. So it suffices to show the existence of an effective Cartier divisor D, of degree g
satisfying H(X,0x(Dg)) = 0. Let w be a dualizing sheaf on X; cf. [FGA], n°149,
Sect. 6, Thm. 3 bis. Then, for any Cartier divisor E of X, there is a canonical
isomorphism

Hl(Xa(QX(E))l’ HO(X:(U(_E)) »

where w(—E) is the 0,module o ® Ox(—E). In particular, dim H°(X,®) = g.

Proceeding by induction, we will show that there exist points x,, ..., X, o the
smooth locus of X such that
dim H(X,w(—x; — ...— X]))=9g—i, fori=1...,9

Since the Oy-module w has no embedded components, the support of a non-
zero section of @ cannot consist o finitely many points. So one can choose a
rational point x;,; o the smooth locus of X such that there is an element o
HY(X,w(—x; — ... — x;)) which does not vanish at x;,,. Then,

DO = Xl + s + xg
is an effective Cartier divisor as required. O
Dueto[EGA 11, ], 7.9.9, the direct image (fi ). Ox « w(D) islocally free of rank

1, and the canonical morphism
((fW)* Oy XSW(D))W ®0W‘w k(w) = HO(XW7 (OXW(DW))
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is bijective; cf. Mumford [3], Sect. 5, Cor. 3.
The universal Cartier divisor D gives rise to a canonical map

p: W—> Pic)s

where Pic{)s is the open subfunctor of Ac, consisting of line bundles of (total)
degree g; cf. Section. 9.1. Next we want to prove that p isan open immersion.

Lemma 5. Keeping the notationsd above, the canonical map
p: W— Pic{)s
isan open immersion.

Proof. First of all let us show that p is a monomorphism. So, let L, and L, be
elements of W(T) for an S-scheme T giving rise to the same element in Pic{)s(T).
Let usdenote by L, (resp.L,) the associated divisors of X xg 7, too. Dueto 8.1/3,
we may assume that theassociated line bundles ¢, (L, )and 0y (L,)areisomorphic.
Since the direct images (f7), O, (L;) are localy free of rank 1, it follows that L,
and L, are equa and, hence, that p is a monomorphism. Now we prove
that p is relatively representable by an open immersion. It has to be shown
that, for any S-scheme T and for any morphism 1: T — Pic{)s, the induced
morphism

pr- W XPiC(xgr’s T—T

isan open immersion. Sinceit sufficesto check thisafter étale surjective basechange,
we may assume that the morphism 1 isinduced by alinebundle & on X x4 T. The
image of priscontained in thesubset T' of T consisting of al pointst e T satisfying
HY(X,,%,) =0.Since T' isopenin T by [EGA IIl,], 7.7.5 we may replace T by
T Inthiscase, H°(X,,.%,) is a k(z)-vector space of rank 1 for each t e 7. Moreover
(fr).Z islocally free of rank 1 and a local generator of (f7),# gives rise to a
generator of H(X,, %) on any fibre X,. Therefore, alocal generator of (f;), & is
uniquely determined up to a unit of the base. Hence, thelocal generators of (), &
giverisetoaclosed subschemelL of X x¢ T whosedefiningideal islocally generated
by one element. Due to 8.2/6, there exists a largest open subscheme T" of T such
that therestriction of L to X xg T" isan effectiverelative Cartier divisor. Itisclear
that p, factorsthrough T". So we may replace T by T" and we may assume that L
isan effective relative Cartier divisor. Thuswe can view 4 asasection of Div%,s and,
hence, of (X/S)¥. Since W is an open subscheme of (X/S)¥, the map p, can be
represented by the open immersion of theinverseimage A~1(W)into T. ]

Lemma 6. Keeping the notations d above, there exist a surjective étale extension
S — §, an open subscheme W' d W x, S with geometrically connectedfibres, and
asection¢’ : 8"~ W' such that

W' — PicYisis s W — p(w') = p o op'(w)

isan open immersion, where p' : W' — S is the structural morphism.
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Proof. If thereisa section e: S— W, wecan assume that the geometricfibres of W
are connected after replacing W by an open subscheme; cf. [EGA 1V;], 15.6.5. Then
we can transform the morphism

p: W — Pic)s
by a translation into an open immersion
W — Picys, wr—pWw)—pogopw),

where p: W— S is the structural morphism. Since the fibres of W over S are
geometrically connected, the image of the above mapis contained in Ac$,. Inthe
general case, one can perform a surjective etale extension S’ — Sin order to get a
section S — W, because W — S is smooth and surjective. Since the g-fold sym-
metric product (X/S)® commutes with the extension S ~— S, one is reduced to
the case discussed before. U

In the following, keep the notations of Lemma 6. AssumeS=S and W= W'
and that there is a section e: S— W. The group law of Picy, induces an
S-birational group law on W. We want to describe this S-birational group law on
Win terms of divisors. So consider the projections

pii W xs W— W

fori = 1,2,andlet pbethestructural morphism p: W — S. Since a morphism from
an S-scheme T to W corresponds to an effective relative Cartier divisor of degree g
on X x, T, namely, to the pull-back of the universal divisor D on X x, W, the
projectionsp, and p, giverisetodivisors D; and D,on X x, W xg W. Furthermore,
let D, bethedivisor on X x, W x, Winduced by e Then consider the locally free
sheaf

&£ = @XxSWsz(D1 — Do+ D).
on X X, W x, W.The pull-back of & via
(idy,eop): W— W xg W

isisomorphic to O . (D). Since thefibres of Ware geometrically irreducible, there
isa p,-dense open subscheme W, of W x, W such that, for each point t of W,, the
restriction %, of % to the fibre X xgt satisfies H'(X,, %) = 0. As before, we
conclude that (fy ), < islocally free of rank 1 over W; and that, for any te W, a
generator of H°(X,, &) liftsto alocal generator of (fy, ), at t. A local generator
of (fw )< is uniquely determined up to a unit of the base. Hence, the local
generators of (fy,),- diverise to a subscheme D,, of X x, W; whose defining
ideal can localy be generated by one element. Since the pull-back of D,, by
(id,, Eo p)coincides with D which is an effective relative Cartier divisor, we see by
Lemma 8216 that there exists a p,-dense open subscheme V; of W, such that Dy, |, .
is an effectiverelative Cartier divisor of degree g. Since W isan open subfunctor of
Div§ s, We see, after replacing V; by a smaller p;-dense open subscheme of V3, that
Dy,ly, givesrise to a ¥;-valued point of W. Proceeding similarly with the other
projection, it iseasy to show that the mapping
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WxsW-—-—W, (Dy,D,}— D,

givesriseto a strict S-birational group law; cf. 5.211.

In analogy to the classical case where the base S consists of afield, we call the
S-group scheme associated to this S-birational group law the Jacobian of X over S
if it exists. In the case where S consists of afield, it can easily be shown that the
existencedf the Jacobian impliesthe representability of Picy|g namely the latter is
a digoint sum of "trandates" o the Jacobian. Furthermore, it is clear that the
Jacobian coincides with Picg/s. So, even for a general base, the Jacobian represents
the subfunctor Picj s as defined in Section 8.4. For example, if Sisalocal scheme
whichisnormal and strictly henselian, the results of Section 5.3 can be used to show
that the Jacobian isrepresented by a separated and smooth S-scheme. Summarizing
our discussion, we can state the following result.

Theorem 7. Let S be a normal strictly henselianlocal scheme and letf: X — Shea
flat projective morphism whose geometric fibres are reduced and connected curves.
Then the Jacobian of X isasmooth and separated S-scheme. | t coincideswith PicY g
asdefined in Section 8.4.

If one admits Theorem 8.3/1, namely that Picy, is an algebraic space over S,
one can drop the assumption of Sbeing normal in Theorem 7. Indeed, dueto 8.4/2,
Picys is smooth over S, since X is a relative curve. Hence, Pic%;s is represented by
an open subspace of Picy|s. Soin order to prove that Pic%s isa scheme, it suffices
to show that Pic%,s can be covered by the translates AW’, where W' is the open
subscheme of Pic% s constructed in Lemma 6, and where Aranges over W'(S). Since
W' is smooth and faithfully flat over S, we have enough sections A to cover Picj,g
by translates AW'; cf. 5.3/7. So every point of PicY,s hasascheme-likeneighborhood.
Hence Pic} s isa scheme.

If the geometric fibresof X over S areirreducible and reduced, and if thereisa
section ¢ : S— X contained in the smooth locus of X, one can construct the whole
Picard scheme Picy s from Picg s by translations. Namely,

Picys = HZ (Png)’/s +n-[o(S)]),

where [¢(S)] is the element of Picy,s associated to the Cartier divisor ¢(S); due to
2.2/7 the vanishing ideal of o(S) is an effective relative Cartier divisor of degree 1.
Itisnot hard to show directly that the right-hand side represents the relative Picard
functor in this case. So, for a normal and strictly henselian base, one obtains a
different approach to the representability of Picy,s in the case of aflat projective
curve X over Swhose geometric fibresare reduced and irreducible.

In the case where the base S consists of a field, one has to perform a finite
separablefiedextension S — Sin order to get enough sections. Then the preceding
construction yields the representability of Pic%,s xS over the base S and the
representability over the given baseis reduced to a problem of descent. If S consists
o afield, this problem is not a serious one and can be overcome easily as was
demonstrated by Serre and Weil. In Section 9.4, we will dicuss the representability
of Picys by a separated S-schemein the case of a more general base.
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9.4 Construction via Algebraic Spaces

In thefollowing, let f: X — S be a proper and flat curve whichislocally of finite
presentation over the scheme S. So far we have discussed the case where the
geometric fibres of X are reduced and connected. Now we want to study more
general cases. Due to the general result 8.3/1, we know that Hc, isan algebraic
space iff is cohomologicaly flat in dimension zero. Recall that f is said to be
cohomologicaly flat in dimension zero if, for every S-scheme S, the canonical
morphism
(f:0x) ® Os = f Oy

is an isomorphism, where X' = X x S. For example, the condition is satisfied if
the geometric fibres of X/S are reduced; cf. [EGA 111,], 7.8.6. The cohomological
flatnessoff isclosely related to the condition that the arithmetic genus of thefibres
o X islocaly constant on S.

Indeed, iff is cohomologicaly flat in dimension zero, 1,0y is a locally free
Os-module by 8.1/7 and dim,, H°(Xj, ¢y ) islocally constant on S. Moreover, since
the Euler-Poincaré characteristic of the fibres o X is locally constant on S by
[EGA 111,], 7.9.4, the dimension dim,, H* (X, Ox ) must be locally constant on S.
Conversely, if the arithmetic genus of the fibres of X islocally constant on S, the
samearguments asabove show that dim,, H°(X,, 0 )islocally constant on S. Then
it followsfrom [EGA 1I1,], 7.8.4 that f is cohomologically flat in dimension zero
at least if Sis reduced.

If X iscohomologically flat over Sin dimension zero, Picy 5 isan algebraic space
over S, but, in general, we cannot expect Picy,s to be a scheme, as Mumford's
example shows; cf. Section 8.2. Since Picy,s is smooth over S by 8.4/2, Pic%s is
represented by an open subspace of Picy,s which may be a scheme, evenif Ac,, is
not. The main task of this section will be to present conditions under which Pic% s
isascheme. We remind the reader that by Theorem 9.317 thisisthe caseif the fibres
d X are not too bad and if X admits many sections over S. Now let usfirst state
the main results on the representability of Picy,s and of Ac,, inthecased relative
curves, afterwards we will sketch their proofs.

Theorem 1 (Deligne[1], Prop. 4.3).Let X — S beasemi-stablecurvewhichislocally
d finite presentation. Then Picys is a smooth algebraic space over S. The identity
component Pic% s is a smooth separated S-scheme and there is a canonical S-ample
line bundle #(X/S) on Pic%,s. Furthermore, Pic%,s is semi-abelian.

If the base scheme Sis the spectrum of a discrete valuation ring, one can prove
the representability of Picy,s by an algebraic space and the representability of Picy,s
by a separated S-scheme under far weaker assumptions on the fibresdf X thanin
Theorem 1.

Theorem 2 (Raynaud [6], Thm. 8.2.1). Let S be the spectrum of a discrete valuation
ring. Let f: X — S be a proper flat curve such that f,0x =0, and let X be
normal. If thegreatest common divisor of thegeometric multiplicitiesd theirreducible
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components of X, in X;is1 wheres isthe closed point of S, then
(a) Picy,s isan algebraic space over S,
(b) Pic%,s isrepresented by a separated S-scheme.

Corollary 3. Let S be the spectrum of a discrete valuation ring. Let f: X — Shea
proper flat curve with connected generic fibre. Assumethat X isregular and that there
isarational point on the generic fibre of X. Then Picy,g isan algebraic space over S
and Hc,, isaseparated Sscheme.

Corollary 3 is easily deduced from Theorem 2. Indeed, due to the valuative
criterion of properness, the given rational point on the generic fibre extends to a
section o of X over S. Dueto 3.112, theimage of ¢ iscontained in the smooth locus
o X. So there exists an irreducible component of the special fibre X, of X having
geometric multiplicity 1 in X,. Therefore Theorem 2 applies and the assertion is
clear. L]

Now let us turn to the proofs. For the proof of Theorem 1, we need further
information on Pic}s in the case of smooth relative curves.

Proposition 4. Let f: X — S be a proper smooth morphism of schemes whose geo-
metric fibres are connected curves. Then Pic%s is an abelian S-scheme and thereisa
canonical Sample rigidified line bundle #(X/S) on Pics.

Theconstruction of #(X/S)iscanonical in such away that, for any base change
S — S, thereisa canonical isomorphism dof rigidified line bundles

ZL(X/S) ®o, Os = L(X'/S'),

where X' denotestheS’-scheme X x ¢ S. Onewill usethisfact to show the represent-
ability of Ad, by an S-schemein the more general case of semi-stable curves.

Proof of Proposition4. In order to keep notations simple, let us write P instead of
Pic§,s in the following. Due to 6.117, it suffices to prove the assertion after étale
surjective base change S — S. So we may assume that X — S is projective; cf.
9.3/2. Then Picy,s isa separated smooth S-scheme by 9.311 and theidentity compo-
nent P is quasi-projective over S. Since P is proper over S by 8413, it is even
projectiveover S. Soit remains to explain the construction o the canonical S-ample
sheaf £ (X/S)on P.

It is enough to look at the universal case. So, since the base of the versal
deformations of a smooth curve is smooth over Z (cf. Deligne and Mumford [1],
Cor. 1.7), we may assume that S consists of aregular noetherian ring. Due to 8211,
the Picard functor Pic, is a separated S-scheme and, due to 8.4/5, the identity
component Hc, isrepresented by an abelian S-scheme. Denote it by P* and call
it thedual of P. Thereisauniversal linebundle# on P xg P*, the Poincar¢ bundle,
which is rigidified along the unit sections of P and P* over S; cf. 8.2/4. For the
construction of the canonical S-ample sheaf .#(X/S) on PIS, we need the existence
o the canonical isomorphism
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QP = P*

which is given by the @-divisor. T o define the @-divisor,assume first that X — S
has a section ¢ : S— X. Then one has a morphism

(X/8)¢™D — P = Picys , Dy — [Dr] — (g — o1,

where, for any S-scheme T and for any T-valued point Dy of (X/S)¢~V (i.e., for any
effective Cartier divisor on X x, T of degreeg — 1), wedenote by [ D; ] the element
of Picy,s(T') corresponding to Dy and where o, denotes the relative Cartier divisor
o X xg T associated to the section o = a X, T. Let W' be the schematic image
o this morphism; note that it depends on the section o. It is not hard to see that
the induced map

(X/S)(g_l) — W9t

is S-birational; of. Lemma 9.3/5. Furthermore, W4~ is an effective relative Cartier
divisor on P, usually denoted by @,. If one replaces ¢ by a second section, ®, has
to be replaced by a translate. Now let us consider the morphism

Po,: P—P*, 110, (1%(8,) ® (05,(0,)

where, for an S-scheme 7, we denote by P, the T-scheme P x, T and where
1,: Pp — Pristhetrandation by the T-valued point t ¢ P(T). This map isindepen-
dent of the choice of ¢; so we can drop the o. If we do not have a section, we may
perform an étale surjective base change in order to get a section and, hence, to
obtain ¢g. Because ¢g is independent o the chosen section, it is already defined
over the given base S by descent theory.

In order to check that the above map is an isomorphism, one can assume that
the base scheme S consists of an algebraically closed field. I n this case, the assertion
is classical; cf. Well [2], n°62, Cor. 2. Now we set

Z(0) = m*0p(0) ® pi(Up(®))"" @ p3(0p(@)) "

wherem: P X, P— Pis the group law of P and where p,: P x4 P— P are the
projections for i = 1, 2. Note that, a priori, this definition depends on the chosen
section o, but that in fact, due to the theorem of the square, £ (©) is independent
o o. Again, by descent theory, it is already defined over S. The morphism ¢g gives
riseto an isomorphism

id, Xg@q:P xgP 5P xgP*

such that there is an isomorphism o rigidified line bundles
Z(0) = (id, x5 pe)? .
Consider now the pull-back of 2 by the map
(id,, ¢g): P— P x4 P*

and denote thisline bundle on P by
ZL(X/S) = (id, 9¢)*? = (id, idp)*£(©)

which isisomorphic to ¢p(® + (= 1)*®). Then L(X/8) isrigidified along the unit
section and one can show that #(X/S) is S-ample on P. O
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For the proof d Theorem 1, we will use the canonical S-ample sheaf #(X/S)
which was constructed in Proposition 4 for smooth curves X over S. Namely, due
to Theorem 9.3/7 and the explanation followingit, we know already that Pic$, is
aschemelocallyfor theetale topology on S. Thus, we are concerned with a problem
of descent. It suffices to verify the assertion concerning the canonical S-ample
invertible sheaf .#(X/S). Dueto 6.117, it isenough to give the definition of £ (X/S)
after ttale surjective base extension. Moreover, it suffices to look at the universal
case. Since the base of the versal deformations of a fibre of X issmooth over Z (cf.
Deligne and Mumford [1], Cor. 1.7), we may assume that S is regular. In this
situation, we have to construct #(X/S). Denote by S, the open subscheme of S
where X issmooth over S; note that S, isdensein S. Due to Proposition 4, there
isacanonica line bundle #(X,/S,) on Picy .. Since S is regular, we can extend
P(X,/S,) to aline bundle #(X/S) on Fic$, such that the pull-back of £(X/S)
under the unit section is trivial on S. Since the geometric fibres of Pic%,s are
connected, theextension isunique. Thenit followsfrom Raynaud [4], Thm. X1.1.13,
page 170, that #(X/S) is S-ample, sincethe restriction of £ (X/S) to S, is Sp-ample
and since, for all pointss € Sdf codimension 1, the restriction of Picg s to Spec(Us ;)
istheidentity component of the Néron model of its genericfibre; cf. 7.4/3 and 9.218.

O

Finally we want to sketch the proof d Theorem 2. Denote the generic point of
Shy n andtheclosed point of S by s Let P betheopen subfunctor of Picy s consisting
o all line bundles of total degree zero.

Let Y = X bearigidificator for Picy/s; cf. 8.116. Then, due to 8313, thefunctor
(Picy;s, Y) is an algebraic space over S. Denote by (P, Y) the open subfunctor o
(Fic,,, Y)consisting o all line bundles of total degree zero. Due to 8412, (P, Y)is
smodth over S. Let

r:(P,Y)— P
be the canonical morphism. Thereisalargest separated quotient Qd P (inthesense
o sheavesfor the fppf-topology), and one knowsthat Q isa smooth and separated
S-group scheme; cf. 9513. Let
q:P—Q
be the canonical morphism. It is clear that r and q are epimorphisms of sheaves
with respect to the fppf-topology.

We want to show that q induces an isomorphism of P° to Q°. Note that g, is
an isomorphism. First we want to seethat q x, S admits a section over 0° where
Sisadtrict hensdlization of S. We may assume § = S. Due to 9.1112, there exists
a universd line bundle %, on (X X, Picy),. Lét (.#,«) be the universal line
bundle o (P, Y). Since .%, induces the universal line bundle of P, the line bundles
(id, x qor*Z, and .4, define the same homomorphism to P,. So, due to 8114,
there existsaline bundle .4, on (P, Y), such that

(id, X qor*%, = AT *(AN,)
Since (P, Y) issmooth over Sand since S is regular, .4, extends to aline bundle .4

on (P,Y). After replacing .# by Al® f*4, we may assume that .# extends
(id, x gor)*.%,. By computing the associated divisor, one can show that, over the
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identity component (P,Y)°, thelinebundle .# |y  p. vy descends to aline bundle &
on X xg Q° Namely, as X is normal, A is determined by a Weil divisor D on
X x (P, Y)°. Since ., descends to .%,, we may assume that D, descends, too. So it
sufficesto look at "vertical” Weil divisors on X x (P, Y)° with support contained
inthespecial fibre. To treat thelatter weremark that the setsof vertical Weil divisors
(with support contained in special fibres)on X, on X x (P, Y)°, or,on X x Q° are
in one-to-one correspondence under the pull-back maps. Then & givesrise to a
morphism A: Q° — P°. Since Q is separated and since (qo A), = idge, it follows
that g o 4 = idy. Moreover, one shows easily that A is a group homomorphism.

Next we claim that Pis an algebraic space over S. Due to 8.3/1, it remains to
see that f is cohomologically flat in dimension zero. By what we have said at the
beginning of this section, it sufficesto show that

dimyy H'(X,, Oy) = dimy H(X,,, Ox,)

Dueto 8.4/1, we know that dim,, H' (X, Oy )isequal to thedimension of Picy ) =
(Picyis),- Moreover we have dim P, = dim Q = dim Q,. Thelatter holds, since Qis
flat over S. So it remains to see that the canonical map g, : P,— Q, is locally
quasi-finite or, that the kernel of gl is finitely generated as an abstract group.
Indeed, a group scheme of finite type over afidd whose group of geometric points
isfinitely generated isfinite; so the morphism g, is quasi-finite, since P? is of finite
type over k(s). The kernel of g,|po is sSmooth over k(s) since, due to the existence of
thesection A, itisaquotient of the smooth group P?. So, assuming that Sisstrictly
henselian, it remains to see that the set of k(s)-rational pointsof the kernel isfinitely
generated. Since the map (P, Y), — P, is smooth, the rational points of P, are
induced by rational points o (P, Y),. Since (P,Y) is smooth over S, the rational
points o (P,Y), are induced by Svalued points of (P,Y); in particular, by line
bundles on X. Dueto theexistenced thesection A whichisdefined by alinebundle,
we see that the k(s)-rational pointsof the kernel of g,/ areinduced by line bundles
on X which aretrivial on thegenericfibre. Dueto the assumption on X, such aline
bundle .# is associated to a Cartier divisor D having support on the special fibre
only; hence .Z =~ 04(D). Thuswe seethat the kernel of the morphism g,|pe isfinitely
generated asan abstract group; namely, thegroup of Cartier divisors having support
only on the special fibreisa subgroup of thefreegroup generated by theirreducible
components of the special fibre of X.

Now it is easy to complete the proof. In order to show that : P° — Q°isan
isomorphism, we may assume that Sisstrictly henselian. Recall that qis unramified
and an isomorphism on generic fibres. Now look at the commutative diagram

QO A PO

W

It follows from 2.2/9 that A is étale. Then it is clear that A and, hence, q are
isomorphisms. O
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Finally we want to mention that, in the case where X isregular, thereisa direct
proof of the cohomological flatness in Artin and Winters [1] which uses the
intersection form.

9.5 Picard Functor and NCron Models of Jacobians

Let S == SpecR be a base scheme consisting of a discrete valuation ring R. As usual
we denote by K the field of fractions of R and by k the residue field of R. In the
followingwe will fix a proper and flat curve X over S;itsgenericfibre X isassumed
to be normal as well as geometrically irreducible. Let J, = Pic} x be the Jacobian
o Xg. Itisasmooth and connected K-group scheme o finite type and we can ask
if thereisa NCron model J of J.. The purpose of the present section isto describe
J, if it exists, in terms of the relative Picard functor Picys. Thereby we will obtain
a second method to construct NCron models, which is largely independent of the
original method involving the smoothening process.

The key point o the whole construction is the fact that the relative Picard
functor Picy,s satisfies a mapping property which is similar to the one enjoyed
by Néron models. To explain this point, assume that X is regular and that X
admits a section. Furthermore, consider a smooth S-scheme T and a K-morphism
ug: Te+  Picy. Then, using 8.1/4, uy corresponds to alinebundle £, on X x i Ty,
andthelatter extendstoalinebundle& on X xg TsinceX xg T isregular; see2.3/9.
Thusit followsthat u, extends to an S-morphismu : T — Picy,s, Wherex is unique
if Picy,s isseparated. The same mapping property holdsfor Picy s if thespecial fibre
X, is geometrically irreducible; use 9.1/2 and 9.2/13. So if, in addition, we know
that Fic$, isasmooth and separated S-group scheme, for example if we arein the
situation of Grothendieck's theorem 9.3/1, it follows that Pic%,s isa Neron model of
Jx = Pic%, k. In the latter case the assumption on X to have a section is not realy
necessary. Namely, if thespecial fibreof X isgeometrically reduced (asisrequired in
9.3/1), then the smooth locus of X isfaithfully flat over S by 2.2116. Working over a
strict henselization R of R, it followsfrom 2315that X ®, R** admitsa section. So,
due to thefact that NCron models descend from R** to R by 6.5/3, we can state the
following result.

Theorem 1. Let X beaflat projective curve over S which is regular and which has
geometricaly reduced and irreducible fibres. Then Pic$,s is @ NCron mode d its
genericfibre; ie, d the Jacobian Jy d Xg. In particular, the special fibre d the
Néron modd d Jy is connected.

Before we construct NCron models of Jacobians J, of a more general type,
let us state the mapping property of the relative Picard functor Pic,, in the
form we will need it later. The curve X is as mentioned at the beginning of this
section.
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Lemma 2. Assume either that X, admitsa sectionor that X isthefield d fractions
d a hensdiandiscrete valuation ring R with algebraically closed residuefield k. Then
each dement d Picy,(K) is represented by a line bundle on Xy. In particular, i X
is regular, the canonical map Picys(R) — Picy5(K) issurjective.

Proof. Let K' be the direct image o @, with respect to the structural morphism
Xy — SpecK. Since X isgeometrically irreducible, K’ isafield and the extension
K'/K isfinite and purely inseparable. If X admits a section, K' coincides with K
and the first assertion o the lemma follows from 8.114. On the other hand, if R is
hensdlian and k isalgebraicaly closed, thereisaclassical result of Lang saying that
the cohomological Brauer group Br(K) vanishes (see Grothendieck {3], 1.1, or
Milne (1], Chap. III, 2.22). In the same way we can show that Br(K') vanishes.
Namely, K' can be viewed as the field of fractions of theintegral closureR' of R in
K’ and R' is a discrete henselian valuation ring with algebraically closed residue
fidd k; use 2311 or 2.3/4 (d) to show that R' is henselian. Thereby we seethat there
are no obstructions to representing elements of Picy5(K) by line bundleson X; df.

8.1/4.
If X isregular, each line bundle on X, extendsto aline bundle on X and the
second assertion isclear also. 0

If X is more general than in Theorem 1, but say, still regular, Pic%,s might not
be representable by a scheme or by an algebraic space. Moreover, even if Picg
existsas a schemeand, thus, is a smooth scheme by 8.4/2 (for example, if X admits
a section), the canonical map Picy,s — J to a possible Néron model J of J is not
necessarily surjective. To remedy this, we replace Picy,s by the open and closed
subsheaf P = Picy 5 consisting o all line bundles o total degree 0 and pass to the
biggest separated quotient Q o P. Aswe will see, the latter is a good candidatefor
aNtron model o Jg.

Thesubfunctor P = Picy,s may beviewed asthe kernel of the degree morphism
deg: Hc,, — 7 and isformally smooth sincethe sameistruefor Hg, cf. 8412
Furthermore, the fibres of Pover S are representable by smooth schemes(8.213and
8.4/2) and, on the genericfibre, P coincides with Pic} s so that Py = Jg.

In order to passto the biggest separated quotient of P, we extend the notion of
separatednessfrom S-schemesto contravariant functors(Sch/S)° — (Sets) by using
the valuative criterion as a definition; thus a contravariant functor F : (Sch/$)° —
(Sets) is called separated if, for any discrete valuation ring R over R with field
of fractions K’, the canonical map F(Spec R) — F(SpecK') is injective. If F is
representable by a scheme or by an algebraic space and if the latter are locally of
finite type over S (which, for algebraic spaces, is automatically the case by our
definition), then the separatedness in terms d functors coincides with the usual
notion o separatedness for schemesor agebraic spaces.

Now consider the quotient Q = P/E (say,in the sense o fppf-sheaves) where E
is the schematic closurein P of the unit section Sy —> Picy, x; then E isasubgroup
functor o P. To define E if Fc,, is not necessarily representable by a scheme (or
by an algebraic space), consider the sub-fppf-sheaf o Picy,s which is generated
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by al morphisms Z —+ Picys in Picys(Z) where Z is flat over S and where
Zyx — (Picy5)x = Picy, ¢ factors through the unit section of Picy . Since the
latter is a closed immersion, one recovers the usual notion of schematic closure if
Fc, existsas a scheme or as an algebraic space. Likewise, one can extend the
notion of schematic closure in Picy s to any closed subscheme of the generic fibre
o Picy s For example, we can view P as the schematic closure in Ac, of the
Jacobian Pic% x = Ji.

Proposition 3. As before, let X be a flat proper curve over S such that Xy is normal
and geometrically irreducible. Thenthequotient Q = P/E isrepresentableby asmooth
and separated S-group scheme; it is the biggest separated quotientd P. Furthermore,
the projection P— Q isan isomorphismon genericfibres and, thus, the genericfibre
d Q coincideswith the Jacobian Jy & X.

Proof. Instead o just dealing with the most general case, we will explain how to
proceed depending on what isknown about Picy,s. That P — Qisanisomorphism
on genericfibresis due to the fact that, by the definition of E, the genericfibre E,
coincideswith the genericfibre of the unit section S— P since the genericfibre of
Pis separated. Furthermore, it is clear that Q is the biggest separated quotient of
Pif Q isrepresentable by a separated scheme.

1st case: Picy s isascheme. In this situation Pisa smooth group scheme whose
identity component P° isseparated by [SGA 3,1, Exp. VI,, 5.5. So theintersection
o E with P?istrivial and it follows that E is Ctde over S. More precisely, E— S
isalocal isomorphism with respect to the Zariski topology. Then it is easily seen
that the quotient Q = P/E is representable by a smooth scheme and that the
projection P— Qisaloca isomorphism with respect to the Zariski topology.

2nd case: Picy, 5 isan agebraic space. Sincethe unit section of Pislocally closed,
Eisstill Ctdeover S, andit isclear that the quotient Q = P/E existsas an algebraic
S-group space which is smooth and separated. Furthermore, it followsfrom 6.6/3
that Q isan S-group scheme.

3rd case: Picy,s is not necessarily representable by a scheme or by an algebraic
space. Then we can apply 8.1/6 and choose a rigidificator Y = X of the structural
morphismf: X — S Associated to it is a sequence

0 — V¢ = V¥ — (Picys, Y) — Picys — 0

which is exact with respect to the Ctde topology; cf. 8.1/11. Considering only line
bundles of total degree 0, this sequence restricts to a sequence

O—1VFce, WFfF— (P, Y)—P—0

which, again, isexact with respect to the Ctaetopology. One knows from 8.3/3 and
8.4/2 that (Fc,, Y)and, hence, (P, Y)isan agebraic space whichissmooth over S.
Consider the exact sequence

Vi — (P,Y)— P —0,

and let H be the schematic closure of the kernel of ri. Then H is an algebraic
subgroup space of (P, Y); it contains the kernel of r, asis easily seen by using the
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fact that V;* is flat over S Furthermore, the quotient (P, Y)/H existsas an algebraic
space by 8.3/9 since H isflat over S; it is separated due to the definition of H. We
claim that (P, Y)/H is canonically isomorphic to Q = P/E. To see this, we mention
that, by continuity, r mapsH into E. So r induces a morphism7: (P, Y)/H — P/E.
On the other hand, one concludes from ker(r) = H that the projection (P,Y) —
(P,Y)/H splitsinto morphisms

(P, Y)— P—> (P,Y)/H .

Since (P, Y)/H is separated and, thus, E <= ker g, we thereby obtain a morphism
q:P/E— (P,Y)/H which isan inverse of ¥. So Q is isomorphic to (P,Y)/H and
therefore is an algebraic group space. But then Q is a separated group scheme by
6.6/3, which is smooth by the analogue of [SGA 3,1, Exp. VI,, 9.2, for algebraic
group spaces. U

In order to show that the smooth and separated S-group scheme Q o
Proposition 3is, in fact, a Néron model of Ji, we have to work under conditions
like the ones given in Lemma 2 assuring that each K-valued point of Q extends
to an R-valued point of Q@ (assuming R to be strictly henselian). Also we have to
show that Q is df finitetype over S.

Theorem 4. Let X be a proper and flat curve over S = SpecR whose generic fibreis
geometrically irreducible. Assume that, in addition, X is regular and either that the
residue field k of Ris perfect or that X admits an étale quasi-section. Then:

(a) If P denotes the open subfunctor of Picy s givenby linebundlesof total degree
0 and if E isthe schematic closure in P of the unit section Sy — P, then Q = P/E
isa Néron mode of the Jacobian Ji of Xg.

(b) Let X4, ..., X, be theirreducible components of the special fibre X, and let
6; be the geometric multiplicity of X; in X; ¢f. 9.1/3. Assume that the greatest
common divisor of the §; is 1. Then Pic%s is a separated scheme and, consequently,
the projection P— Q givesrise to an isomorphism Pic%,s —> Q°. Thus, in this case,
Picg,s coincides with the identity component of the Néron model of J.

Remark 5. In the situation o the theorem, the assumption that X admits an
ttale quasi-section is automatically satisfied if the special fibre X, is geometrically
reduced or, more generdly, if X, contains an irreducible component which has
geometric multiplicity 1in X,. Namely, then the smooth part of X must meet such
acomponent and, passing to a strict henselization of S, we have a section by 2.3/5.
On the other hand, if X admits an ttal e quasi-section over S, say a true section after
we have replaced S by an ttal e extension, then, X being regular, this section factors
through the smooth locus of X; see 3.1/2. In particular, there are irreducible
components which have geometric multiplicity 1 in X, so that the condition in
Theorem 4 (b)is automatically satisfied.

Now let us start with the proof of Theorem4. The main part will be to show
that Q is of finite type over S. We will use the remainder of the present section to
establish thisfact; see Lemmata 7 and 11 below. But let usfirst explain how to obtain
assertions (@) and (b)if we know that Q is of finite type.
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The formation of the schematic closure E is compatible with flat extensions of
valuation rings. Likewise, the regularity of X remains invariant under Ctae base
change by 2.3/9. Thus, in order to show that Q is a NCron model of Jg, we may
assume that Risstrictly henselian.

Itisalready knownfrom Proposition 3that Qisasmooth and separated S-group
scheme with genericfibre Ji.. Furthermore, it followsfrom Lemma 2 and 9.1/2 that
the canonical map P(R) — P(K) is surjective. So we see that the canonical map
Q(R) — Q(K) is surjective and, hence, bijective since Q is separated. Thus, if Q is
o finite type, it isa NCron model of Ji by the criterion 7.111. This verifies assertion
(8). Using the representability result 9.4/2 for Pic% s, assertion (b)is a consequence
o assertion (a).

It remains to show that the quotient Q = PIE is of finite type over S. We will
present two methods to obtain this result. The first one is based on the existence
theorem for Neron models 10.2/1 and uses thefact that the Néron-Severi group of
thespecial fibredf Picy s isfinitely generated. But it works only under the additional
assumption that the generic fibre X is geometrically reduced (whichis the case if
X admits an étale quasi-section; see 3.112). Relying on the existence o a NCron
model J of Jg, there is a canonical morphism Q — J and it is to show that the
latter is an isomorphism. The second method is independent of the theory of
NCron models and uses the intersection form which is associated to theirreducible
components o the special fibre X,. It worksin the general situation of Theorem 4
and, as we will see in Section 9.6, provides a means of computing the group of
connected components (of the special fibre) of the Néron model J of Jg.

Qisof finitetype, a first proof via the existence of a Néron model J of J. We
start by translating the existencetheorem for NCron models 10.2/1 to our situation,
a result which we will prove in Chapter 10 and which isindependent of Chapter 9.

Proposition 6. Let X, be a proper curve over K which is geometrically reduced and
irreducible. Let J be its Jacobian. Then J; admits a Néron model J of finite type
over S if any of the following conditionsis satisfied:

(a) Xk is smooth,

(b) Xx x5 K isnormal, where K isthe completion of K,

(c) Xxisnormal and Ris excellent.

Proof. If Xy issmooth, J isan abelian variety by 9.2/3. So Jx has a NCron model
J o finite type.

If only condition (b)is known, J, isnot necessarily an abelian variety. However,
condition (b) is compatible with separable extensions o the fidd |?. So, for any
separable fidd extension L over |?, we know from 9.2/4 that J, does not contain
subgroups o type G, or G,,. Therefore we can conclude from 10.211 that J; has a
NCron model J of finite type.

Finally, condition (c) implies condition (b) since K is separable over K in this
case. O

Let us apply Proposition 6 in order to show that, in the situation of Theorem
4 and under the additional assumption d X, being geometrically reduced, the
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Jacobian J; of X admits a Néron model of finite type. Since X is proper over S,
al closed points of X belong to the special fibre X,. Therefore, if Risthe completion
o R, theloca ringsat closed points o Xz may be viewed as completions of local
ringsof X and, thus, the hypothesis on the regularity of X remains unchanged if we
replace R by its completion R. So, in particular, X is regular and, thus, Ji admits
aNeron model J o finite type by Proposition 6. Now it is quite easy to prove that
Qisd finitetype.

Lemma7. In the situation of Theorem 4, assume that X is geometrically reduced.
Then Q= PIEisof finite type over S.

Proof. As we have just seen, Jx admits a Neron model J. Since the formation o
Q and o Jis compatible with étale base change, we may assume that the base
ring R is strictly henselian. Furthermore, recall that Q is a smooth and separated
S-group scheme such that the canonical map Q(R) — Q(K) is bijective. It is
enough to show that the canonical morphismv: Q — Jrestrictstoanisomorphism
0° ~ J° Namely, using the bijectivity o Q(R)— J(R), this implies that the
groups Q(R)/Q°(R) and J(R)/J°(R), which by 2315 can beinterpreted as the groups
o connected components of the special fibres o Q and J, coincide and thus are
finite. Consequently, Q will be of finite type.

Solet usshow that vinduces an isomorphism Q° —» J°. Thegroup o connected
components Q(R)/Q°(R) = Q(k)/Q°(k) may be viewed as a quotient of a subgroup
o theNéron-Severi group of the special fibredf Fc,, and, thus, isfinitely generated
(inthe sense of abstract groups); see 9.2114. Since the map v: Q — Jis surjective
on R-valued points and, hence, on k-valued points, it follows that the quotient
J2/v(Q?) is a connected smooth algebraic group over k whose group of k-valued
pointsisfinitely generated. However, then J?2/v(Q7) must be of dimension zero and,
thus, is trivial asiseasily seen by considering the multiplication with an integer n
not divisible by char k. Therefore Q° — J° is surjective and quasi-finite. But then,
being an isomorphism on generic fibres, it must be an isomorphism by Zariski's
Main Theorem 2312 so that the desired assertion on Qfollows. [

Qisof finitetype, a second proof via theintersection formassociated tothe special
fibre X,. This approach requires a detailed analysis of divisors on X which have
support on the special fibre X, only.

Lemma8. Let X be a proper flat curve over S = SpecR such that X is normal and
such that X isgeometrically irreducible. Assumethat Risa strictly henselian discrete
valuation ring. Let D be the group of Cartier divisorson X which have support on the
special fibre X,, let D, be the subgroup of all divisorsin D which are principal, and
let E be asin Theorem4. Then the canonical map D/D, — E(R) is bijective.

Proof. The injectivity of the map follows from 8.113. To show the surjectivity, we
consider the Stein factorization

x4y s
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o the structural morphism f: X — S, where g, (0x) = 9, and whereh: Y — S'is
finite. Then Y is the spectrum of anormal ring R' which isfinite over R. Since X,
is geometrically irreducible and since X is normal, it followsthat K’ = R ®; K is
afinite purely inseparable field extension of K and that R' isthe integral closure of
R in K'. So, similarly asin the proof of Lemma 2, it is seen that R' is a strictly
henselian discrete valuation ring and that each ae E(R) is represented by a line
bundle # on X.

Now fix a point ac E(R) and a representing line bundle .# on X. Since the
restriction of £ to the genericfibre Xy istrivial, & isdf theform Ox(A) where A is
aCartier divisor on X having support on the special fibre of X. Thusaisrepresented
by AeD. O

Let (X,);<; be the family of reduced irreducible components of the special fibre
X,. Asin 9.1/3, we write d; for the multiplicity of X;in X, and e, for the geometric
multiplicity of X,. Then e; is a power of the characteristic of k and 6, = d,e; is the
geometric multiplicity of X; in X,; cf. 9.1/4.

For any line bundle ¥ on X, one can consider its degree deg;(.#} on the
component X;; it is a multiple of the geometric multiplicity e¢; of X;; cf. 9.1/8. In
particular, we can consider the map

p:Pic(X)—7Z", L+ (et deg(L))ics

which, composed with the canonical map D — Pic(X) yieldsa map a:D — Z7,
whereD isasin Lemma 8.

Lemma 9. Let R, X, D, D,, and E be as in Lemma 8. Then there is a canonical
complex

0— D, L,D—%Z’——&Z——»O
where  isgiven by f(a,,...,a) =) a;0;. Thelatter givesrise to asurjection
a: ker g/ima— Q(S)/Q°(S)
which is bijectiveif P— Q = P/E inducesa surjection
Pics(S) — 0°(S)

between S-valued pointsd the identity components of Hc,, and Q. Furthermore, if
imahasrank card(I) — 1, then ker §/im a and, thus, also Q(S)/Q°(S) is finite.

Proof. To begin with, recall that divisorsin D have total degree0 and that therefore
foa=0by9.1/4and 9.1/5. So the sequencein question isa complex. Furthermore,
the map p : Pic(X) — Z! is surjective by 9.1110. Since R is strictly henselian and
sincePic,, can bedefined by using the ttal e topology in place of the fppf-topology,
we can interpret Pic(X) as Picy,(S). So P(S) is mapped surjectively onto ker  and,
dueto 9.2/13, we have the exact sequence

0 —> Pic2,4(S) —> P(S) —> ker f — 0
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Using Lemma 8 we can interpret ima as the image of E(S) under the map p:
Pic(X) — Z'. Therefore we have a canonical isomorphism

P(S)/(Picy,s(S) T E(S)) = ker f/ima
Taking the aboveisomorphism asan identification, we define s as the canonical
map
(*) P(8)/(Picys(S) + E(S)) — Q(5)/Q°(S)
To show that it is surjective, it is enough to show that the canonical map

(x) P(S)/P°(S) — Q(8)/Q°(S)

is surjective. We will prove the latter fact by relating («+) to the canonical map

(%) P (k)/PY (k) — Qu(k)/ QR (k) .

The map (==x) is surjective. Namely, Kk is separably closed, and P, is smooth, as
followsfrom theformal smoothness of P. Thus, (%) may beinterpreted as mapping
connected components of P, to connected componentsof Q,. Soit issurjective, due
to the surjectivity of P, — Q,.

Since we know already from Proposition 3 that Q is a smooth group scheme
and sincethe baseSisstrictly henselian, it followsfrom 2315 that the restriction map

0(9)/Q°(S) — Qulk)/QR (k)
is bijective. The sameis true for
P(S)/P°(S) —> P (k)/P) (k)

if Pisascheme or an algebraic space whichislocally of finitetype over S. Namely,
then the formal smoothness of P says that P is, in fact, smooth. So (xx) will be
surjectivein this case.

In the general case, we must work with a rigidificator Y and consider the
associated exact sequence

O— V¢ VF—(PY)—P—0
of 8.1/11. It isenough to show that
P(S)/P(S) — Py(k)/P¢ (k)
is surjective, or, that the composition
(P, Y)(S) — (P, Y)u(k) — P (k)

issurjective. The first map (P, Y)(S) — (P, Y),(k) is surjective by 2.3/5 since (P, Y)
issmooth (8412). Furthermore, (P, Y), isan extension of the smooth group scheme
P, by the quotient (V*),/(V¥¥).. The latter is smooth since V¢ is smooth; cf. [SGA
3,1, Exp. VI,, 9.2. Thus, by the same reference, we see that the morphism (P, Y), —
P, is smooth and it follows, again from 2.3/5, that (P, Y),(k) — P,(k) is surjective.
This shows that the map (x+) is surjective.

The injectivity of o under the assumption that Pic%s(S) — Qo(S)is surjective
iseasily derived from the exact sequence
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0— E(S)— P(S)— Q(S) .
Finally, the submodule ker § = Z' has rank card(l) — 1. If the same s true for
ima, it follows that ker f/im a and, thus, also Q(S)/Q°(S)sfinite. O

Let us assume now that X is regular. Under this assumption we can give an
explicit description of the Z-submodule ima = Z' considered in the preceding
lemma. To do so we introduce the intersection matrix ((X;-X})); ;.; Where the
intersection number (X;- X;) isdefined as the degree on X of the line bundle which
isassociated to X; asa Cartier divisor on X. Thereby weobtain asymmetric bilinear
intersection pairing D x D — Z on thegroup D ~ 7' of divisors on X which have
support on the special fibre X,; seealso [ SGAT7, ], Exp. X, 1.6. The map aisclosdly
related to theintersection pairing; namely, a: D ~ 7! — 7!, as a Z-linear map, is
described by the matrix (e;*(X;- X;)); j; which is called the modified intersection
matrix.

Lemma 10. Let R, X, and D be asin Lemmata 8 and 9 and assume that, in addition,
X isregular. Let d; be the multiplicity of X; in X,, i.e., the multiplicity of X; in the
divisor (7) = "special fibre of X , and let d be the greatest common divisor of the d;,
i € 1. Then, for any divisor } »,X; € D, we have

QnXy) = — Z ﬁ(nidj — md*(X;- X)) .
i<j Wiy

Therefore the intersection formD x D — Z is negative semi-definite and its kernel

is generated by the divisor A=) d;d"'X; = D. Furthermore, the Z-module im « of

Lemma 9 isisomorphic to D/ZA and thus has rank card(I) — 1.

Proof. Tensoring with Q, we can extend the bilinear pairing DxD-—Z to a
bilinear pairing D®Q x D ® Q — Q. Therefore we may work with rational
coefficients. Set Y; =d,X; and m; = n;d;'. Since (n) =) d;X; =) Y; and since
(Y;.(n)) = (X; (m)) = Ofor al i, we can write

() = (gmn) =33 m)

= Z m;<Y; Z (mj - mz)‘G)
7 Zi
= Z mi(mj —m)(Y;- 1;)
iZj
= Z, (m; — mj)(mj —m)(Y; 1;)

- Z (m; — mj)Z(Yi' Y)

i<j

1
- Z ﬁ("idj - njdi)z(Xi ’ Xj)

i<j @iltj
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All assertions o the lemma follow easily from this computation since the specia
fibreof X isconnected. Thelatter isdueto thefact that X i sproper over Sand that
the genericfibre of X is connected. [

Now it iseasy to complete the proof of Theorem 4 and to show that the group
scheme Qis o finite type over R.

Lemma 11. Assume that X is a flat proper curve over R which is regular and
which has geometrically irreducible generic fibre X. Then the smooth and separated
S-group scheme Q = P/E is of finite type.

Proof. We may assume that R isstrictly henselian. Then it followsfrom Lemmata
9 and 10 that ker 8/im o and thus Q(S)/Q°(S) arefinite. The latter impliesthat Q is
o finitetype sinceit islocally o finitetype; cf. [SGA 3,1, Exp. VI,, 3.6. O

Remark 12. In the assertion of Theorem 4, we may replace the condition that X be
regular by the condition that all local rings of X x Spec(R*") are factorial (R™"
being a strict henselization of R); only thisis needed for the proof of Lemma 2. In
particular, it is enough to require the strict hensdlizations of all local rings of X to
be factorial.

Remark 13. The above approach to the proof of Theorem 4 viathe relative Picard
functor and via the intersection form provides a second method of constructing
Neron models, which isfairly independent of the one presented in earlier chapters.
However, if one starts with a proper and smooth curve X over K, say under the
assumption that Risexcellent and that its residuefidd k is perfect, then in order to
apply Theorem 4 to the Jacobian J; of Xk, one first has to construct a proper
R-model X of X whichisregular;i.e., onehasto usetheprocessd desingularization
for curves over R; see Abhyankar [1] or Lipman [1]. Alternatively, for a smooth
curve X, one can apply the semi-stable reduction theorem and thereby construct
asemi-abelian Néron model o Ji, after replacing R by itsintegral closurein afinite
extension o K. Then the technique of Weil restriction leads to a Ntron model of
Jx over R; cf. 7.2/4. Proceeding either way, one constructs Neron models for
Jacobians of smooth curves and eventually for general abelian varieties. But it
should be kept in mind that the original construction of Neron models which we
have given in Chapters 3 and 4 is more elementary in the sense that it usesjust the
smoothening process and not the theory of Picard functors as well as the existence
o desingularizations or semi-stable reductions.

9.6 The Group of Connected Components of a Neron Model

In the following we assume that the base scheme S= SpecR consists of a strictly
henselian discrete valuation ring R. Then, if Jisan R-group schemewhichisaNéron
mode! of its generic fibre J;, we can talk about the group J(R)/J°(R) of connected
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components of J or, more precisely, of the special fibre of J. The purpose of the
present section is to give explicit computations for this group in the situation of
Theorem 9.5/4, where we deal with Néron models J of Jacobians and where J can
be described in terms of the relative Picard functor of a proper and flat S-curve X.
As a key ingredient, we will use Lemma 9519 of the previous section.

The notations will be asin 9.5/4. So X isaflat proper curve over S which is
regular and whosegenericfibreisgeometrically irreducible. Furthermore, let (X,), .,
be the family of reduced irreducible components of the special fibre X, and let d;
(resp. e;, resp. §; = die;) be the multiplicity of X, in X, (resp. the geometric multi-
plicity of X;, resp. the geometric multiplicity of X; in X,); cf. 9.1/3. Usually we will
setl = (1,...,r}. Also recall that the intersection number (X;- X;) between irredu-
ciblecomponents of X, has been defined asthe degree on X; of theline bundlegiven
by X; asa Cartier divisor on X; it isdivisible by the multiplicity e;.

Theorem 1. Let Sbethe spectrumof a strictly henselian discrete valuation ring R and,
asin9.5/4, let X bea flat proper curveover Swhichisregular and whose generic fibre
is geometrically irreducible. Furthermore, assume either that the residue field k of R
is perfect (and,thus, algebraically closed)or that X admits an étale quasi-section (and,
thus, a true section).

Let Ji be the Jacobian of X, and let (X;),.; bethe family of (reduced)irreducible
components of X,. Then, considering the maps

p~71-%71 57

of 9.5/9, where a is given by the modified intersection matrix (e; *(X; X,)); ;, and
where B(ay,...,a,) = Y. a;6;, the group of connected components J(R)/J°(R) of the
Néron model J of Jy is canonically isomorphic to the quotient ker /im a.

Proof. It followsfrom 9.5/4 that the Néron model J of J, exists and coincides
with the quotient Q = P/E, where P is the kernel of the degree morphism deg:
Picy,s — 7 and where E is the schematic closure of the generic fibre of the unit
section S— Picys. Furthermore, Lemma9.5/9 provides a canonical surjection

ker B/ima—s Q(S)/QYS)= J(S)/J°(S)

which we have to show is bijective. As stated in 9.5/9, the bijectivity will follow if
the canonical map

(*) Pick,s(S) — 0°(5)

issurjective. So let us prove the latter fact.

The easiest case is the one where X admits a section or, more generally (see
9.5/5), where the ged of the geometric multiplicities §; of the components X; in X,
is 1. Then it follows from 9514 (b) that Pic% s is a separated scheme and that the
canonical morphism Pic%,s — Q° is an isomorphism. So the bijectivity of (*) is
trivial in this case.

It remains to treat the case where the residue fidd k is algebraically closed. To
do this, we may assume that, in addition to our assumptions, the base ring R is
complete. Namely, the assumptions of the theorem are not changed if R is replaced
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by its completion; for the regularity of X this has been explained after 9.5/6.
Furthermore, note that the special fibre X, remains the sameif R is replaced by its
completionand that theformation of Qiscompatiblewith such a base change since
it commutes with flat extensions of discrete valuation rings.

The canonical morphism P — Qisan isomorphism on genericfibres. Further-
more, the map P(S) —+— P(K) is surjective by 9.5/2 and Q(S) —+ Q(K) is bijective
since Qisa Neron model of its genericfibre. So the canonical map

P(S) — Q(9)

is seen to be surjective. In order to derive the surjectivity o (+) from this fact,
we will use the Greenberg functor; see Greenberg [1]. Having no information on
the representability of P at hand, it is necessary to work within the context o
rigidificators.

Therefore, choose a rigidificator Y< X, and let (P, Y) be the open and closed
subfunctor of the Picard functor o rigidified line bundles (Pc,,, Y) which equals
the kernel o the degree morphism. We claim that the canonical map (P, Y)(S) —
P(S) is surjective. Namely, each element of P(S) isgiven by aline bundle ¥ on X
and the pull-back of . to Yistrivia. The latter is true because Y isfinite over S
and because S is a local scheme. Hence, the composite map (P,Y)(S) — Q(S) is
surjective. For our purposes, it is enough to show that it restricts to a surjection
(P, Y)°(S) — QY%S). Then, afortiori, P°(S)— Q°(S) will be surjective. Therefore,
using thefact that (P, Y) is a smooth algebraic space (see8.3/3 and 8.4/2) and that
(P, Y)(S)/(P, Y)°(S) can be viewed as a quotient of a subgroup o the Néron-Severi
group of the special fibreof X and, thus, is o finite type by 9.2/14, we have reduced
the problem to showing the following assertion:

Lemma 2. Let R beacomplete discrete valuation ring with algebraically closed residue
field k. Let G— H be an R-morphism of smooth commutative algebraic R-group
spaces with the property that G(R)/G°(R)is finitely generated (inthe sense of abstract
groups). Then, if G(R) — H(R) is surjective, the same is true for G°(R) - H°(R).

By means o the Greenberg functor, we will be able to reduce the assertion to
the corresponding one where R is replaced by the algebraically closed field k and
wherewe consider ak-morphism G — H of smooth commutative k-group schemes
of finite type such that G(k)/G°(k)is finitely generated. Then, if G(k)— H(k) is
surjective, it is easy to see that the map G°(k)— HO(k) is surjective. Namely,
proceedingindirectly, assume that G°(k) — H°(k)isnot surjective. Then G° — H°
cannot be an epimorphism since we are working over an algebraically closed field
k. So theimage of G° in H° isa closed subgroup M such that H%/M is of positive
dimension. Its group of k-valued points may be viewed as a quotient of a subgroup
o G(k)/G°(k) and thus, by our assumption on G(k)/G°(k),is finitely generated.
However, then H%/M cannot have positive dimension asis easily seen by consider-
ing the multiplication on H°/M by aninteger whichisnot divisibleby char k. Hence
we have derived a contradiction and it follows that G°(k) — H°(k) is surjective as
claimed.
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Next let us recall some basic facts on the Greenberg functor from Greenberg
[1]; seealso Serre[3],§ 1. Let = beauniformizing element of Rand set R, := R/(n").
Then the Greenberg functor Gr, of level nassociates to each R,-scheme Y, of locally
finite type a k-scheme (), = Gr,(Y,) of locally finite type in such a way that,
functoridly in Y,, we have Y,(R,) = 9.(k). For example, in the equal characteristic
case, R, may be viewed asafinite-dimensional k-algebraand the Greenberg functor
Gr, associated to R, isjust the Weil restriction functor (see7.6) with respect to the
morphism Spec R, — Speck. Well restrictions are alwaysrepresentable by schemes
in this case, due to thefact that R, isan artinian local ring with residuefield k.

In the unequal characteristic case, R, cannot be viewed as a k-algebra and the
notion of Welil restriction has to be generalized. Then, k being perfect, R is canon-
ically an algebra of module-finite type over thering of Witt vectors W(k) and W(k)
is a complete discrete valuation ring of mixed characteristic, just as R is, see
Bourbaki [2], Chap. 9, §§1 and 2, in particular, §1, n°7, Prop. 8, and §2, n°5,
Thm. 3. So, in terms of W(k)-modules, R, isa direct sum o rings of Witt vectors
of finitelength over k. Using the definition of Witt vectors, we can identify the set o
R, with a product k™ in such a way that the ring structure of R, corresponds
to aring structure on k™ whichisgiven by polynomia maps. Thereby it isimmedi-
ately clear that we may interpret R, asthe set of k-valued points of a ring scheme
4, over k where, as a k-scheme, £, isisomorphic to A7

Similarly as in the case o Waell restrictions, one defines Gr,(Y,) for any
R,-scheme Y, on afunctorial level beforeone tries to proveits representability by a
k-scheme. Namely, consider thefunctor h* which associates to any k-scheme T the
locally ringed space i*(T) consisting of T asatopological space and of # e, (T, Z#,,)
as structure sheaf. Then

h*(Spec A) = Spec(R, ®pqy W(A))

for any k-algebra A. In particular, taking A = k, weseethat #*(T') isalocally ringed
space over SpecR,. Itisshown in Greenberg [1] that, for R,-schemes Y, of locally
finite type, the contravariant functor

Gr,(Y,):(Sch/k) — (Sets), T+ Homyg (h(T), Y,)

is representable by a k-scheme (), which, again, islocally of finite type. So (), =
Gr,(Y,) ischaracterized by the equation

Homy(T,9,) = Homg (h*(T), Y,)

and, in particular, setting T := Speck, we obtain 9,(k) = Y,(R,), the property of the
Greenberg functor Gr, we have mentioned at the beginning.

The canonical projection R,.; — R, givesrise to a functorial transition mor-
phism Gr,.; — Gr,. Furthermore, the Greenberg functor Gr, respects closed
immersions, open immersions, and fibred products. In fact, by establishing the first
two of thesecompatibility properties, therepresentability of ), = Gr,(¥,)isreduced
to the trivial case where Y, = A} and where (), = (#,)". Furthermore, it can be
shown that the Greenberg functor respects smooth and Ctae morphisms. So this
functor extends in a natural way from schemesto algebraic spaces. Working with
group objects in the sense of algebraic spaces, we see that (), will be an algebraic
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group spaceand, thus, by 8.3, agroup schemeover kif Y isan agebraicgroup space
over R. Moreover, for smooth group objects, the Greenberg functor respects
identity components.

After thisdigression,let usturn to the proof of Lemma 2. Let R, = R/(n"} beas
above. Applying the base change R -+ R, and then the Greenberg functor o level
n, we can associateto G — H amorphism of k-group schemesdf locally finite type
6,— %, such that the maps

G(R,)— H(R,), 6,k — 9,k

can be identified. Since G(R) — H(R) is surjective by our assumption and since
H(R) — H(R,)issurjectiveby thelifting property 2.2/6 characterizing smoothness,
we seethat G(R,) — H(R,) and, thus, ®,(k) — $,(k) issurjective. Furthermore, it
followsthat 6,(k)/®2(k), asaquotient of G(R)/Go(R)isfinitely generated. Thus, as
we have explained before, G2(k) — $2(k) and therefore also Go(R,) — H°(R,)
must be surjective.

The map Go(R}— Ho(R)can be interpreted as the projective limit of the
surjectivemaps G2(k) — $2(k), ne N. In order to show the surjectivity of

lim G, (k) — lim $;(k) ,

it isenough to show that the system (9t,,), where i%,, is the kernel o the morphism
62 — 9, satisfies the Mittag-Leffler condition. However, this is clear since each
®? is a k-scheme d finite type and, thus, satisfies the noetherian chain condition.
So we havefinished the proof of LemmaZ2 and thereby also the proof of Theorem 1.

O

The assertion o Theorem 1 reducesthe computation of the group of connected
components J(R)/Jo(RXo a problem o linear algebra. In the remainder o the
present section, we want to give some formulas for the order of J(R)/J°(R) as well
asdetermine this group explicitly in some special cases. Let usstart with some easy
consequences of Theorem 1.

Corollary 3. Assume that the conditions of Theorem 1 are satisfied. Set | = {1,...,r}
and let ny,...,n,;, 0 be the elementary divisors of the modified intersection matrix
A= (e;1(X;- X)), ;jer- Then the group of connected components J(R)/J°(R)of the
Néron modd J of Jgisisomorphicto Z/n,Z ® ... ® Z/n,_, Z. Itsorder isthe greatest
common divisor of all (r—1) X (r—1)-minorsof A.

Proof. Sincetheimage of f: 7" — Z has no torsion and, thus, isfree o rank 1, it
follows that ker g isadirect factor in Z", free of rank r — 1L We know from 9.5/10
that the submoduleimea < ker g is o rank r — 1 aso and, thus, can be described
by non-zero elementary divisorsn,,...,n,_;. But thenn,...,n,..;, 0 arethe elemen-
tary divisorsd imaviewed asa submodule d Z" and the assertions o the corollary
areclear. U

If, in the above situation, all geometric multiplicitiese; are trivial,ie., if ¢, =1
for al i, then the modified intersection matrix A coincides with the intersection
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matrix ((X;: X;));. ;.- Considering the associated intersection pairing on the group
D =~ 7’ of all Cartier divisors on X which have support on the special fibre X,, we
know from 9.5/10 that the pairing is negative semi-definite and has a kernel A-Z
of rank 1, where A = Y d;d "X, as a divisor in D; the element d is the gcd of the
multiplicities d;. Dividing out the kernel, we get a quadratic form on D/AZ ~
7! /ker awhose discriminant yieldsthe order of the group of connected components
J(R)/J°(R).

Corollary 4 (Lorenzini [1], 2.1.2). Assume that the conditions & Theorem 1 are
satisfied and that, in addition, all geometric multplicitiese;, i € |, are equal to 1. Let
I ={1,...,r). Then,for all indicesi, j € I, the absolute value d

aj (ged(dy, ..., d,))dd

where af is the (r—1)x(r—1)-minor d index (i,j) d the intersection matrix
A = ((X;- X})), isindependent d i andj. It equals theorder d thegroup d connected
componentsJ(R)/J°(R).

The proof is by establishing alemmafrom linear algebra (see Lemma 5 below)
which allows to compute the gcd of the (r—1) x (r—21)-minors of the intersec-
tion matrix A. To apply it, set d; := d;d . Then the assertion of Corollary 4 follows
from Corollary 3. For the purposes of the lemma, we will use an exponent "'t" to
denote transposition of matrices.

Lemmab. Let A = (&) e Z"*" define a semi-definite quadratic form d rank r — 1.
Letitskernel begenerated over Z by thevectord' = (d;,...,d;)' € Z" and let A* = (a})
be the adjoint matrix d A. Then there exists a positiveinteger v such that

A* = +v-d'-d".
Furthermore, vistheged d all (r—1)X (r—21)-minorsd A.

Proof. Sinceged(d,...,d;) = 1, the assertion on the greatest common divisor of
the (r—1) x (r—21)-minors of A follows from the formula for A*. So it is enough
to establish this formula. To do this, note that the kernel of A as a semi-definite
guadratic form on 7" coincides with the kernel of A asa Z-linear map Z"— L".
Then, using the equation

A-A* = det(A)- unit matrix =0,

we see that al columns of A* belong to the kernel of A. So there is a vector
C=1(cqy---,¢,) € Z" satisfying A* = d.c". Since A* is symmetric, we have c.d" =
d’.c"and, thus, 4-c.d” = 0. Thisimplies 4-c = 0 sinced’ # 0 so that c belongsto
the kernel of A. Hence thereisan element v € Z satisfying c = v- d'. Replacing v by
its absolute value if it is negative, we have A* = +v.d' .d" asrequired. U

If one wants to prove more specific assertions on the group of connected
components J(R)/J°(R), it isimportant to have information on the configuration
of the components X; o the specia fibre X,. The latter can be described using
graphs. There are several possibilities to associate a graph to X, depending on how
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multiple intersections of components as well as multiplicities of intersection points
are treated. We will deal with two cases, the one where the graph of X, in the
weakest possible sense, is a tree and the one where X is a semi-stable curve. As a
general assumption, we require that we arein the situation of Theorem 1 and that,
in addition, the multiplicities e;, i e |, areequal to 1. For example, the latter is the
case if kisalgebraically closed. Theindex set | will aways betheset (1,...,r).

The case where the graph d X, is a tree (cf. Lorenzini [1]). The graph T" we
want to associate to X, isconstructed in thefollowing way: the vertices of " are the
components X; of X, and a vertex X; isjoined to a vertex X; different from X; if
the intersection number (X;- X;) is non-zero. In particular, the precise number of
intersection pointsin X; n X is not reflected in the graph I'. We define the multi-
plicity s; of X;, asavertex of I, asthe number of edgesjoining X;; so

s;=card{jel;i#j and (X, X;)+#0}.

Furthermore, weneed themultiplicity d; of X;inthespecial fibre X, (which coincides
with the geometric multiplicity §; of X; in X, since ¢; = 1), the number d =
ged(dy,...,d), and the quotients d; = d;d~* which are relatively prime.

Propostion 6. In the situation & Theorem 1, assume that the graph I' is a tree and
that thegeometricmultiplicitiese; areequal to 1. Then, writinga; = (X, - X;), thegroup
d connected components J(R)/J°(R) has order

r

a4 H @)=

a;;70,i<j i=1
Furthermore, if all d; are equal to 1, we have
JRYWOR ~ [] Zfayz.
a;;#0,i<j

The assertion will be reduced to Corollary 3 by means of the following result:

Lemma7. Let A = (a;) € Z"*" be asymmetric matrix, which is negative semi-definite
d rank r — 1, and let the vector (d},...,d,) e Z" with positiveentries d; generate the
kernel d A. Furthermore, let I' be the graph associated to A in the manner we have
described for intersection matrices above. Then, if T is a tree, the greatest common
divisord al (r — 1) x (r — 1)-minorsd A isgiven by the product

a;;70,i<j J i=1
Furthermore, if d; = 1for all i, the elementsa,; occurring in the first factor constitute
the non-zero elementary divisorsd A.

Proof. Let usfirst assumed; = 1for al i. Then, since the vector (d3,...,d;) belongs
to the kernel of the intersectioi: matrix A = (a;;), it follows that the sum of all
columns of A is zero. The same is true for the sum of all rows of A since A is
symmetric. Consider a terminal edge C of I'; i.e., an edge with attached vertices, say
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X, and X,, such that s; = 1 and s, = 2. Then the intersection matrix A has the
followingform where a;; = a; and where empty space indicates zeros:

ayy 4y
dpy Qyp * ° ° %

Now add thefirst column to the second column and, likewise, the first row to the
second row. Using the fact that the sum of the columns or rowsin A vanishes, we
havea,, = —a,, = —a,;. Thus, weseethat this operation killstheentriesa,, and
a,, sothat the resulting matrix is of the form

r_au
’
as,, % - - %

where a3, =a, T a,,. Let I" be the graph obtained from I by removing the
terminal edge C we are considering as well asthe vertex X,. Then I'" isatree again
and it can be viewed as a graph which corresponds to the lower bloc, call it A, of
the above matrix, where A' has again the property that the sum of its columns or
rows vanishes. Thus we can proceed with A and I'" in the same way as we have
done before with A and I". Since T is a tree, the procedure of removing terminal
edges and verticesstops after finitely many steps with a graph which is reduced to
asingle vertex and with an associated (1 x 1)-matrix which iszero. At thesametime
we have converted A by means of elementary column and row operations into a
diagonal matrix; the diagonal elements, except for the last entry which is zero,
consist of all elements —ay;, i < j,such that X; isjoined to X; by an edge of I'. This
verifies the assertion of the proposition in the case whereall d; are equal to 1.

In order to verify the remaining assertion on the greatest common divisor of
al (r—1)x(r—1)-minors of A in the general case, we consider the matrix
B = (a;d;d;). It is negative semi-definiteof rank r — 1 again and has the property
that the sum df its columnsor rowsiszero. So, using the graph I', we can determine
itselementary divisors as before. In particular, the ged of al (r— 1) X (r — 1)-minors
o B eguals the product

r

pe= I a; - [] @y

a5 £0,i<j i=1
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Let v be theged of all (r—1)x (r—21)-minors o A. Writing A,, and By, for the
matrices obtained from A and B by removing thefirst column and thefirst row, we
seefrom Lemma 5 that

detd,; = +v(d})?, detB,, = tpu.
Thus
u= +detB, = +(d...d))*detA,, = +(d}...d))?*v,

and the desired assertion followsfrom the above equation for p. [

Remark 8. The graph I" associated to the special fibre X, of a curve X asaboveis
atreeif the Neron model J of the Jacobian J of X has potential abelian reduction
or, moregenerally, if thespecial fibre J, doesnot contain anon-trivial torus. Namely,
using the notation of 9.514, we have J, = P,/E,, where E? is a unipotent group by
Raynaud [6], 6.318. So if J, does not contain a non-trivial torus, the sameis true
for P, and, thus, for Picy, . Then the configuration of the components X; of X, is
"tree-like" by 9.2112. However, it should be noted that the graph I' as we have
definedit can beatree alsoin some caseswhere the configuration of the components
of X, isnot "tree-like". For example, X, can be a semi-stable curve consisting of
two components which intersect each other in several points. In thiscasg, it follows
from 9.2/10 again that J, contains a non-trivial torus.

We want to apply Proposition 6 in order to show that the order of the group
o connected components J(R)/J°(R)s bounded if J has potential good reduction.
See Lorenzini [1] for more precise bounds and McCallum [1] for a generalization
to abelian varieties.

Theorem 9. Let R be a strictly henselian discrete valuation ring with algebraically
closed residue field k and with field of fractions K. Furthermore, let Xy be a proper
smooth curve over K, which is geometrically connected, has a Jacobian Jx with
potential good reduction, and admitsa regular minimal model X over R.

Then, for each integer g > 0, there exists a bound M (g) such that, for each choice
of R,K,and k, and for each curve Xy of genus g as above, the order of the group of
connected components J(R)/J°(R)of the Néron model J of Ji is bounded by M(g).

Proof. We will usethe methods of Artin and Winters[1]; the notation is as before.
The connected components o X, aredenoted by X;, and d; isthe multiplicity of X;
in X,. Furthermore, let d betheged of thed; and setd} = d;d~*. Let X; bethescheme
given by > d; X, thelatter being viewed as a Cartier divisor on X. Then

(*) HO(X,,l9 =k
by Artin and Winters[1], Lemma 2.6, since the gcd of thed; is 1.

We want to compute the arithmetic genus of X;,. Let | be a relative canonical
divisor on X. Then we can compute the Euler-Poincaré characteristic of 0y, as

—2(Ox;) = (X (X + R)/2 = (X4 8)2 = (X, R)2d = (g — 1)/d ;
the last equality is due to thefact that the degree of & isthe same on the generic
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and on the specia fibre of X. So, using the equality (x), the arithmetic genus g' of
X isgiven by

g =1-x0x) =11 (X R)2=1F( - 1)d.
In particular, g' coincideswith the abstract genusintroduced by Artin and Winters
[1],1.3, and wehaveg' < g.If HO(Xk,(OXk) # k, whichmay bethe caseif d > 1, and
if we compute the arithmetic genus of X,, it can happen that the latter is greater
than g. Thisisthe reason why one has to introduce the curve X;.

Now, in order to determine the order o the group o connected components
J(R)/J°(R),one applies Corollary 3 and determinesthe greatest common divisor of
al (r— 1) x (r — 1)-minorsd theintersection matrix ((X;- X;)); let us denoteit by
v. Theintersection matrix is the samefor X, and for X;. Thus, alsothegraph I is
the same for both curves, and it followsfrom our explanations given in Remark 8
that T" is a tree since J¢ has potential good reduction. We want to show that the
integer v remainsinvariant if we contract an exceptional curve C of the second kind
in thesense o Artin and Winters[1], 1.4, in X,. Such a curve C corresponds to the
middle edge of achain

Xa X X
o © y

inT such that d, = d; = d. and (X,,- X,) = (X;.X,) = 1 and such that s, = 2; i.e.,
there is no ramification at the vertex X,. Contracting X, modifiesI" to the extent
that we have to replace the above chain by

Xa’ Xc’
o————©

where now d,. = d,, d, =d;, and (X,.-X.) =1, dl other intersection numbers
remaining untouched. It follows from the formulain Lemma 7 that the integer v
remains unchanged under such a contraction process. In asimilar way one shows
that contractions of exceptional curves of thefirst kind, as consideredin Artin and
Winters{1], Lemma1.18, cannot cause Vv to increase.

We now use the fact proved in Artin and Winters [1], Thm. 1.6, that, up to
contraction o exceptional curvesof thefirst and second kind, thereare only finitely
many possible types o graphs and intersection matricesfor a given genus g' and,
thus, for the finitely many generag’ < g. So there are only finitely many possible
valuesfor the integer v and, hence, for the order o the group o connected compo-
nents J(R)/P(R). O

Thecased semi-stablecurves. In thefollowing we will assumethat all geometric
multiplicitiesd; = d;e; are equal to 1. So, in addition to ¢; = 1, we have d, = 1 for
al i e I.Wedo not requirefrom the beginning that the special fibre X, of the curve
X issemi-stable; we will restrict ourselvesto this caselater. The graph we want to
consider hereis the so-caled intersection graph I o X,. Its vertices are given by
the irreducible components X; of the specia fibre X, as before, whereas, different
from the graph used above, its edges correspond to the intersection points of such
components;i.e., X; and X, i # j,arejoined by asmany edgesasthereareirreducible
components in the intersection X; n X;.
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We want to compute the group J(R)/J°(R) o connected components of the
Néron model o the Jacobian Jy of X, by describing the group ker §/ima of
Theorem 1 in terms of the graph I'. To do this, choose an orientation on I" and
consider the (augmented) smplicial homology complex

0— (L2 -5 2

o T with coefficients in Z. Then imd; = kerd, since I' is connected. |dentifying
Co(T,Z) with 7', the map ¢, coincides with B:7' — 7. Thus, if M is any
Z-submodule o C, (T, Z) lifting ima, i.e., whose image under ¢, coincides with
imac 7! ~ Cy(l, Z), we see that

J(R)/P(R)= ker pfima =~ C,(I, Z)(M + H,(T,2)),

where the first cohomology group H, (T, Z) is the kernel of the map d,.

A canonical lifting M of ima can be obtained by choosing canonical liftings {;
o thegenerators &; = ((X;* X;))jc 1, i €1, of ima Namely, define{;asasum}_, c;,7;,
where the ¢;, are integers which will be specified below and where the#;, vary over
all edgesjoiningthevertex X; with asecond vertex X;. Up toitssign, themultiplicity
¢;, Is the local intersection number o X; and X; at the irreducible component x
o X, X; which corresponds to #;,. The sign o ¢;, is “+” or “—” depending on
the orientation o #,,. We use “+7 if #;, originates at X; and ends at X; and
“—> otherwise. Then, since X,, as a Cartier divisor on X, is principal, we have
Y jer(X;-X;) =0for adl ieland we seethat M := Y ierliZ is alifting of ima so
that

(*) J(R)/J°(R) = C,(T, Z)/(M + H,(T,Z))

We want to give an explicit example.

Proposition 10. Let X be a proper and flat curve over S, which isregular and has a
geometrically irreducible generic fibre Xy as well as a geometrically reduced special
fibre X,. Assume that X, consists of the irreducible components X,,..., X, and that
the local intersection numbers of the X; are 0 or 1 (thelatter is the case if different
components intersect at ordinary double points). Furthermore, assume that the inter-
section graph I is of the type

X X,

1.e,T consistsof [ arcsof edgesstarting at X, and ending at X,. For each 4 = 1,...,5
let the A-tharc consist of the edges#;y,..., 7, Wherem, isitslength. Then the group
J(R)/J°(R)has order
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Oy (my,...,m) =3 m,
=

®
o

More precisaly, J(R)/JP°(R)is trivial if 1= 1. For 1> 2 it isisomorphic to the group
(2/9,2) ® (Z/9:91") © --- D (Z/g1-29=32) @ (Z0,—y (my ..., m)g;", Z)

where g, isthe greatest common divisor of all summands occurring in the i-th elemen-
tary symmetric polynomial

O-i(mla'-"ml)a l=1,,l—2

Proof. We use theformula (). A basisd C, (T, Z) isgiven by the elements

11 5 <oy Ny
Hiz2 = Hi11» ooy N — Mt
Hime — Mimi—15 -0 Wiy — Himp—1

Next we write down generators for the canonical lifting M of ima:

1
z fa1 s
i=1
Mi2 — Y11 cees Mz — M
771m1 - 771m1—1 5t ’7sz - rllm,*l
1
- Z nlml »
A=1

and for H, (T, Z):
Yoy X My A=2
j=1 j=1

Using the above generators for C,(I',Z), M, and H,(I',Z), as wdl as the fact
that

Mg =M + a2 —Ma1) + oo+ (15— Maj-1)
if follows that J(R)/J°(R) =~ C,(T,Z)(M + H,(T", Z)) isisomorphic to the quotient
o thefree Z-module generated by #,+,...,#,;, divided by the submodule generated
by the relations
1
}.Zl a1 > M — Mg A=2,...,1l.

The relations are described by the matrix
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1 —-m; —-my - —my

1 m, 0 0

1 0 my e 0
A=

1 0 0 ey |

Computing the determinant o A by developingit via thefirst column, we get
detA = Jl_j(m1,...,m,)-

Thus, by the theory of elementary divisors, this is already the group order of
J(R)/J°(R) T o determinetheelementary divisorsof A explicitly, we usethecriterion
involving the ged o minors; f. Bourbaki [1], Chap. 7, §4, n°5, Prop. 4.

The ged o al coefficients of A is 1; so thisis the first elementary divisor. For
1< A< the gcd o al (Ax A)-minors is the ged of al products occurring as
summands in the (A — 1)-st elementary symmetric polynomia o;_;(m;,...,m,);
henceit isg,_,. Thereforethe elementary divisorsd A are

1,9, gzgfl, cees gz~zgt_33a o1 (my, ... >ml)gl_—12

and, consequently, J(R)/J°(R) is as claimed. O

Corollary 11. Let X be a flat proper curve over S. Assume that the generic fibre X
is smooth and that the special fibre Xy is geometrically reduced and consists of two
irreducible components X, and X, which intersect transversally at 1 rational points
X,,...,%;. Thus, for each A = 1,...,1, the curve X is, up to étale localization at Xx,,

described by an equation of type uv = =™ If X has no other singularities, then, just
asin the situation of Proposition 9, the group of connected components of the Ntron
model J of the Jacobian J of X isisomorphic to the group

(Z/g.Z) ® (Z/gzgfl H)®...® (Z/g,_zgl__l3Z) @ (Z/o_1(my,... 9m1)gl_—122)

where g; isthe greatest common divisor of all summands occurring in the i-th elemen-
tary symmetric polynomial

o(my,...,m), i=1,...,1-2.
The assertion is a direct consequence of the preceding proposition since the
minimal desingularization of X is of the type consideredin Proposition 10. Curves

o thistype occur within the context of modular curves; seethe appendix by Mazur
and Rapoport to the article Mazur [1].

Remark 12. If in the situation o Proposition 10 the graph I" of the special fibre of
Xisd type
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i.e., consistsof lloopsof lengthm,,...,m, startingat X, each, thegroup of connected
components of J can be computed as exercisedin the proof of Proposition 10. One
shows

JR)/J'R) = Z/m,Z®...® Z/mZ

Thereby one obtains an analogue of Corollary 11 for curves X whose special fibre
isirreducible and has at most ordinary double points as singul arities.

9.7 Rational Singularities

Let S = SpecR be a base scheme consisting of a discrete valuation ring R. Asusual,
K isthefidd o fractionsand k is the residuefield of R. Starting with a proper and
flat S-curve X whichis normal and has geometrically irreducible generic fibre, we
want to relate the fact that a Neron model J of the Jacobian J of Xy exists and
that the canonical morphism Pic%,s — J® isan isomorphism to thefact that X has
singularities of a certain type, namely rational singularities. To explain the latter
terminology, assume that X admits a desingularization f:X'— X (which, by
Abhyankar [1] or Lipman [ 1] existsat least in the casewhereR isexcellent). There
are only finitely many points where X is not regular. X is said to have rational
singularitiesif R'f,(0x.) = 0. It can be shown that the latter condition is indepen-
dent o the chosen desingularization.

Theorem 1. Let X be a flat proper curve over S which is normal and which has
geometrically irreducible generic fibre Xx. Let X, ..., X, be the irreducible compo-
nents of the special fibre X,. Assume that X admits a desingularization f: X' — X
and, furthermore, that the following conditions are satisfied:

(i) Theresidue field k of R is perfect or X admits an dtale quasi-section.

(ii) The greatest common divisor of the geometric multiplicities 6, of X; in
X, (cf.9.1/3)is 1.

Then, by (i), the Jacobian Jx of X admitsa Ndron model J of finite type and, by
(i), the identity component Pic, of the relative Picard functor is a scheme. Further-
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more, the canonical morphism Pic%,s — J° is an isomorphism if and only if X has
rational singularities.

Proof. It is easily seen that conditions (i) and (ii) carry over from X to X'. For
example, if X admits an étale quasi-section over S, the same is truefor X' by the
valuative criterion of properness since f: X' — X is proper. Thusit followsfrom
condition (i) and from 9.5/4 that J, which is also the Jacobian of X, hasa Néron
model J of finite type. Furthermore, the canonical morphism 7: P'/E' — Jisan
isomorphism where P is the subfunctor of Picy.,s given by line bundles of total
degree 0 and where E’ isthe schematic closure of the genericfibre of the unit section
of Picy.s.

On the other hand, using 9412, condition (ii)implies that Pic%;s and Picy. s are
represented by separated schemes. So we get canonical maps between S-group
schemes

. 0 -0~ 70
Picy,s — Picy,;s = J°,

the latter map being an isomorphism by 9.5/4. So Pic%,; — J° is an isomorphism
if and only if Pic}, — Pic} s is an isomorphism and the latter is the case if
and only if Lie(Pic%,s) — Lie(Picys) is an isomorphism. Writing R[¢] for the
algebra of dual numbers over R, we can interpret Lie(Pic,s) as the subfunctor of
Homyg(Spec R[¢], Picy,s) consisting of all morphisms which modulo ¢ reduce to the
unit section of Pic%,s. Then, as we have seen in the proof of 8.4/1, it follows that
Lie(Picg,s) can beidentified with the cohomology group H*(X,@x). Proceeding in
the same way with X', we see that Lie(Pic},5) — Lie(Pic%s) isan isomorphism if
and only if the canonical map H(X, 0x) — H'(X’, O.) isan isomorphism.

Now let us look at the Leray sequence associated to f: X' — X. It starts as
follows:

0— H'(X,0y) — H' (X', Ox) — H(X,R'f,(04)) — H*(X,0)

Since X isa curve, we have, in fact, a short exact sequence
0 — HY(X, 0x) — HY(X', Ox) — HO(X, R, (Ox)) — O.

So HY(X, Ox) — HY (X', 0y.)isanisomorphism if and only if H°(X, R'f,.(0x)) = 0.
Since R'f, (Oy) is concentrated at a finite number of closed points of X, the latter
isequivalent to R'f, (0y) = 0; i.c., to thefact that X hasrational singularities. This
establishes the desired equivalence. U

For semi-stable curves over S (cf. 9.2/6), assumptions (i) and (ii) of Theorem 1
are automatically satisfied. So, using 9.2/8, we see:

Corollary 2. Let X be a semi-stable curve over S which is proper, flat, and norma,
and which has a geometrically irreduciblegeneric fibre Xy. Then the Jacobian J of
Xy hasa N¢ron modd Jand the canonical morphism Picg s — J° isan isomorphism.
In particular, J has semi-abelian reduction.
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In thesituation of thetheorem we can say that Pic$ g isindependent of the choice
o the S'model X of X aslong as we limit ourselves to proper, normal, and flat
S-curves which have rational singularities. Namely, then Pic},s coincides with the
identity component of the Néron model J of the Jacobian Jx of X.

We want to give an application to the modular curve X,(N). To recal the
description o this curve, let N be a positive integer and write Uy for the open
subscheme of Spec Z where N isinvertible. Then X(N)|y, isa proper and smooth
curve over Uy; it isthe compactified coarse moduli space associated to the stack of
couples (E,C) o the following type: E is an €lliptic curve over some Uy-scheme S
and C is a subgroup scheme o E which isfinite, étale, and cyclic of order N. For
N = 1oneobtainstheprojectivelinePover Z, to beinterpreted asthecompactifica-
tion of the affineline where thej-invariant of elliptic curves servesas a parameter.

Writing X, (N) for the normalization of Pin X,(N)|y, , thecurve X, (N)is proper
over Z and extends the curve we had already over Uy. For example, if pisa prime
gtrictly dividing N, the curve X,(N) has semi-stable reduction at p. More precisely,
the fibre of X,(N) over p consists of two smooth components which intersect
transversally at the supersingular points; cf. Deligne and Rapoport [1], Chap. VI,
Thm. 6.9, or the appendix by Mazur and Rapoport to Mazur [1], Thm. 1.1.

If p divides N, the geometry of fibresis more complicated and certain compo-
nentshave non-trivial multiplicities. I n thiscaseone can usethemodul ar interpreta-
tion ala Drinfeld which yields information on X,(N), particularly at bad places.
Namely, X,(N) is the coarse moduli space associated to a certain modular stack
which isrelatively representable and regular over Z; of. Katz and Mazur 1], 5.1.1.
Then, if x isa closed point of X,(N), the henselization at X isa quotient of aregular
local ring by afinitegroup whoseorder divides12. From this one deduces by means
o a norm argument that the singularities of the fibres of X,(N) over any prime
p> 3 are rational. Furthermore, over each prime p, there are irreducible compo-
nents which have geometric multiplicity 1 in the fibre over p; cf. Katz and Mazur
[1],13.4.7. So, using 9.4/2, and Theorem 1, as well as a globalization argument of
the type provided in 1.2/4, we obtain:

Proposition 3. The modular curve X(N) iscohomologically flat over Z and Pic%, y)z
isrepresentable by a group scheme. Furthermore, outside p= 2and 3, it isthe identity
component of the Néron model of the Jacobian of Xy(N) ®; Q.



Chapter 10. Néron Models of Not Necessarily
Proper Algebraic Groups

For this last chapter we introduce a new type of Ntron models, so-called Neron
Ift-models. T o define them, we modify the definition of Neron models by dropping
the condition that they are o finite type. Then, due to the smoothness, Ntron
Ift-models are locally of finite type. Thisisthe reason why we use the abbreviation
“Ift”. For example, tori do admit Neron Ift-models whereas, for non-zero split tori,
Neron models (in the original sense) do not exist.

We begin by collecting basic properties of Ntron Ift-modelsand by explaining
some examples. Then, for thelocal case, we prove a necessary and sufficient condi-
tion for a smooth algebraic K-group G to admit a Nkron model (resp. a Neron
Ift-model). In the special case where the valuation ring is strictly henselian and
excellent, it states that Gx admits a Ntron model (resp. a Néron Ift-model) if and
only if Gy does not contain a subgroup o type G, or G,, (resp. of type G,). In the
last section, we attempt to globalize our resultsfor excellent Dedekind schemes. An
example o Oesterlé shows that one cannot expect a local-global-principle for the
existence of Néron models. However, in the case of Neron Ift-models, we fed that
such aprincipleistrue and formulateit asaconjecture: Gy admitsa Ntron |ft-model
if G does not contain a subgroup of type G,. Findly, admitting the existence of
desingularizations, we are able to show that the existence o Ntron models (in the
original sense)isrelated to thefact that Gy doesnot containanon-trivial unirational
subvariety.

10.1 Generadlities

If Risadiscrete valuation ring with field of fractions K, the set of K-valued points
d the multiplicative group G,, ¢ isnot bounded in G,, k. Thus G,, x does not have
aNtronmodel o finitetype over R. We will see, however, that there existsa unique
R-model o G,, x which is a smooth R-group scheme and satisfies the Néron
mapping property, but whichisnot of finitetype. Thisisone of the reasonswhy we
want to generalize the notion of Neron models.

Definition 1. Let S be a Dedekind scheme with ring of rational functions K. Let X
be a smooth K-scheme. A smooth and separated S'model X iscalled a NdronIft-model
of Xy if X satisfies the Ndron mapping property; cf. 1.2/1.

Sincewedo not require X to be of finitetype over S, such modelsare just locally
o finite type (Ift) over S. Asin the case o Nkron models, it followsfrom the Néron
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mapping property that Néron Ift-models are unique and that their formation is
compatible with localization and etale base change. In particular, the analogue of
1.2/4 remainsvalid: an S-scheme X whichislocally of finitetypeisa NCron Ift-model
o X over Sif and only if X ®g Lo,, isa NCron Ift-model of X over Spec s , for
each closed point s € S. The Neron Ift-model X of a group scheme X isa group
scheme again. In this case the identity component X° is of finite type. Namely,
locally on S, there exists an S-dense open affine subscheme U of X° and the map
U x5 U — X°induced by the grouplaw issurjective. Furthermore, it followsfrom
6.4/1 that any finite set of points of a fibre of X is contained in an affine open
subscheme of X.

In the following we want to generalize certain results on NCron models to the
case of NCron Ift-models. Let us start with the criterion 7.1/1.

Proposition 2. Let R be a discrete valuation ring and let G be a smooth and separated
R-group scheme. Then the following conditions are equivalent:

(@) Gisa Néron Ift-model of its generic fibre.

(b) Let R— R' be a local extension of discrete valuation rings where R' is
essentially smooth over R. Then, if K’ isthe field offractionsof R',the canonical map
G(R') — G(K") is surjective. (Recall that R is said to be essentially smooth over R
if it isthe local ring of a smooth R-scheme).

Proof. The implication (a)=>(b) is a consequence of the Neron mapping
property. For the implication (b)=Hg, consider a smooth R-scheme Z and a
K-morphism Z; — Gy of the generic fibres. Due to the assumption, this map
extends to an R-rational map Z ---» G and, hence, to an R-morphism Z — G by
Well's extension theorem 4.411. Thus we see that G satisfies the NCron mapping
property. O

Note that, in Proposition 2, it isnot sufficient to ask the extension property for
étale integral points, asitisin 7.1/1 in the case of Neron models. Next we want to
formulate 7.2/1 (ii)for Néron Ift-models; the second proof we have givenin Section
7.2 carries over without changes.

Proposition 3. Let R be a discrete valuation ring and let R — R' be an extension of
ramification index 1 with fields of fractions K and K’'. Assume that G is a smooth
K-group scheme. If G is a Ndron Ift-model of G, over R, then G®; R’ isa Néron
Ift-model of Gy ®x K' over R.

Moreover, thereis an analogue of 7.214.

Proposition4. Let S — Sbe a finite flat extension of Dedekind schemes with rings
of rational functions K' and K. Let G, be a smooth K-group scheme and denote by
Gy the K’-group scheme obtained by base change. Let Hy be a closed subgroup of Gg
which is smooth. Assume that G. admits a NCronift-model G over S. Then the NCron
Ift-model of Hy over Sexists and can be constructed as a group smoothening of the
schematic closure of Hy inthe Weil restriction Ry 5(G').
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Proof. Sinceany finite set of points of G' iscontained in an affine open subscheme
of G’, the Well restriction Ry, 5(G') isrepresented by an S-scheme whichis separated
and smooth; cf. 7.6/4 and 7.6/5. By functoriality it isclear that Ry, 5(G') isthe Néron
Ift-model of Ry, x(Gx.) over S; cf. 7.6/6. Thereisa canonical closed immersion

1: HK — mKl/K(Gkr) .

Denote by H the schematic closure of Hy in R 5(G'). Then Hisflat over S. Similarly
as exercised in Section 7.1 by applying the smoothening process to the closed
fibres of H, we get a morphism H — H from a smooth R-group scheme H to
H by successively blowing up subgroup schemes in the closed fibres. Indeed,
H A Ry 5(G)° is of finite type over S, since the identity component Ry, 5(G’)° of
Rs5(G') is of finite type over S. So H N Ry 5(G')° has at most finitely many
non-smooth fibres over S. Using tranglations, one sees that the sameis truefor H
and, furthermore, that the non-smooth locus of H isinvariant under translations.
Then it is clear that the process of group smoothenings will work as in the finite
type case, sinceit sufficesto control the defect of smoothness over H N Ry 5(G)°.
Asin 7.1/6, one verifies that H isthe Ntron Ift-model of Hy over R. O

Example 5. Let S be a Dedekind scheme with ring of rational functions K. The
multiplicative group G,, x over K admits a Néron lft-model G over S. Its identity
component isisomorphic to G,, s.

Proof. In order to give a precisedescription of G, one proceeds asfollows.. Let s be
aclosed point of Sand let n, be agenerator of theideal corresponding to the closed
point s € Sover an open neighborhood U(s) of s So, for each v e Z, we can view ©r}
asa(U(s) — {s})-valued point of G,, 5. Then, let n} - G,, s beacopy of G, s x, Uf(s),
viewed as the translate of G,, 5 by =; in the Néron Ift-model we want to construct.
The translations by the sections =}, v € Z, define gluing data between G,, s and the
e G, s over U(s) — {s} in acanonical way. So we can define

G= ) U (mG,ys)

selSlveZ

as the result of the gluing o G, s with the copies (n; - G,, s) where |S| is the set of
closed points of S.

In order to show that G isa Néron |ft-model of G,, x over S, notefirst that G is
a smooth and separated S-group scheme with genericfibre G,, . So we have only
to verify the Neron mapping property for G. Since the construction of G is com-
patible with localization of S we may assume that S consists of a discrete val uation
ring R; cf. the analogue of 1.2/4. Due to Proposition 2, it suffices to show for any
extension R — R’ o ramification index 1 that each K'-valued point extendsto an
R'-valued point o G. Since the construction of G is compatible with such ring
extensions, we may assume R = R'. But then it is clear that the canonical map
G(R) — G(K) is bijective, so that we are done. O

The example we have just given can be generalized to tori over K.
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Proposition 6. Let S be a Dedekind scheme with ring of rational functions K. Any
torus Ty over K admits a Néron |ft-model over S.

Proof. We may assume that S is affine and that it consists of a Dedekind ring R. If
thetorusis split, the assertion follows from the above example. I n the general case,
there existsafinite separablefield extension K'/K such that Ty, = Ty ®¢ K" issplit.
If R"istheintegral closure of R in K', then Ty. admits a Néron Ift-model over R'.
Now the assertion followsfrom Proposition 4. O

Also we can handle the case of extensions of certain algebraic K-groups by tori.
For technical reasonswe will restrict ourselvesto split tori, although thisrestriction
IS unnecessary as can be seen by using 10.212.

Propogtion 7. Let S be a Dedekind scheme with ring of rational functions K. Let G
be a smooth connected algebraic K-group whichisan extension of a smooth algebraic
K-group H, by a split torus Ty. Assume that Hom(Hg, G, ) = 0; for example, the
latter is the case if Hg is an extension of an abelian veriety by a unipotent group.
Then, if H, admitsa Ntron Ift-model over S, the sameistrue for Gg.

Proof. Since Ty isa split torus, say o rank r, the extension Gy of Hg by T isgiven
by primitiveline bundles %, ..., %, on Hy; cf. Serre [1], Chap. VII, n°15, Thm. 5.
Although Serre considers only the case where H, is an abelian variety, the result
extends to our situation, since each homomorphism of H, to G,,  is constant. A
line bundle # on a group scheme Giscalled primitiveif thereisan isomorphism

m*L > pr L Qpi Y

wheremis the group law of G and wherep,: G X G— Gare the projections, i =
1,2. Sincethelocal ringsof the Ntron model H of H arefactorial, theline bundles
%, p=1,...,r extend to primitive line bundles on the identity component H® o
H. Thus, they giverise to an extension

1 —-T°——-G'—H"—1

whose generic fibre is the extension we started with. Then G° will be the identity
component of the Ntron Ift-model G of G, whereas G itself has to be constructed
by gluing "translates" of G°.

In order to do this, let usstart with the construction of thelocal Neron Ift-model
at aclosed point s of S. Let R be a strict henselization of thelocal ring R, and let
K" beitsfidd of fractions. Then set

As = GKP/GO(RY) = I, = T(K)/ TR,

where |, is isomorphic to Z". Due to Hilbert's Theorem 90, the quotient A./I is
canonically isomorphic to the group H(K*)/H°(R:"). In the case where A, can be
represented by a set {4,} of K-valued points of G, wecan, similarly asin Example
5, define a smooth and separated R-group scheme

G = | (4,-G%

AseAg
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asthe result of a gluing where the gluing data are concentrated on the generic fibre
and are given by the translations with the sections 4,. Then each K-valued point of
Gy extends to an R-valued point of G. Since this construction is compatible with
any extension R — R' of ramification index 1, each K’-valued point of G, extends
to an R’-valued point of G where K’ is the ring of fractions of R. Then, using
Proposition 2, one shows that G(s) satisfiesthe Neron mapping property. Hence, it
is the Neron Ift-model of Gg over R,. If the sections{A) are not defiued over R,
one shows by means of descent that the group G(s) which can be defined over a
strict henselization R# of R, is already defined over the givenring R, and, hence, is
a Néron Ift-model of G over R,. In the global case, the Néron Ift-model G of Gg is
given by gluing thelocal models G(s), s & |S|, where|S| isthe set of all closed points
of S; hence

G= ) G(s).
selS|
In order to explain the gluing procedure, consider a "component™ G(s)’ of G(s);
thereby wemean an open subscheme consisting of G, and of aconnected component
o G(s). Then G(s) is of finite type over R, and, hence, it extends over an open
neighborhood U (s} of s. Since Gy is connected, we may assume that G(s)' coincides
with G° over U(s) — {s).So this way we obtain gluing data between G° and each
component G(s) of G(s) and, hence, between G° and G(s). It isclear that these data
give rise to gluing data for the family (G(s); s € |S|). In particular, the pull-back of
G to thelocal scheme Spec s ; isisomorphic to G(s). Thus, it isclear that G satisfies
the Neron mapping property and, hence, isa Néron Ift-model of G, over S. O

Unipotent K-groups may contain a subgroup o type G,. So they do not
necessarily admit Neron Ift-modelsas we will see by the following proposition. But
we mention that, if K is not perfect, there are smooth connected unipotent groups,
so-called K-wound unipotent groups, which do not contain the additive group G, k.
I'n Section 10.2 we will discuss the existence of Ntron modelsfor such groups.

Proposition 8. Let S be a Dedekind scheme with ring of rational functions K. If Gg
admits a Néron Ift-model, then G does not contain a subgroup of type G,.

Proof. SinceNtronIft-models are compatible with localizationsand étale extensions
of the base scheme, we may assume that S consists of a strictly henselian discrete
valuation ring R with uniformizing parameter . Proceeding indirectly, we may
assume by Proposition 4 that Gy = G,  and that G, admits a Néron Ift-model G.
Let us fix a coordinate function &, for G¢, say Gy = SpecK[¢&,]. Then set G" =
SpecR[&,]1for ne N, wherethe &, areindeterminates, and consider the morphisms

G" = SpecR[¢,] — G"*' = SpecR[, 4]

induced by sending &,.; to z-¢&,. These morphisms induce the zero map on the
specid fibres. We regard each G" asa smooth R-model of G viatheisomorphism

G" ®z K — Gy
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induced by themap K[¢,] — K[¢&,1sending &, to z7"¢,. Thus, we get commuta-

tivediagrams
n n+1

Due to the Neron mapping property, these diagrams extend to communtative
diagrams

n Gn+1

\/

The morphismsinduce the zero map on special fibres. So we see that each S-valued
point of G speciaizes into the zero section, since such a point can be regarded as
an S-valued point of some G'. Hence, we arrive at a contradiction. O

Next we will discussacriterion relating the existencedf global Néron Ift-models
to the existence dof local Neron Ift-models.

Proposition 9. Let S be a Dedekind scheme with ringd rational functions K. Let G
be a smooth connected algebraic K-group. Assume that, for each closed point s of S,
the local Néron Ift-modd d Gy over g, exists. Then thefollowing conditions are
equivalent:

(a) Gx admitsa global Néron Ift-model over S,

(b) There exists a dense open subscheme U d S and, over U, a smooth group
scheme with connectedfibres which coincideswith the identity component d thelocal
Néron Ift-modd G for each closed points d U.

(c) Thereexistsa coherent (localy free) Clsmodule.# which, over each local ring
d S, coincideswith theLieagebrad thelocal Nkron Ift-modd d Gy.

Proof. The implication (a)==(c) is trivial. To show the implication (c)=>
(b), let G(s)°, for any closed point s of S, be the identity component of the local
Néron Ift-model of G over 0 . Since G(s)° is quasi-compact, there exist an open
neighborhood U(s) of s and asmooth U (s)-group scheme Gp,,, with connected fibres
such that Gy, induces G(s)° over the local ring ¢ ,. Furthermore, due to the
assumption (c),we may assume that the Lie algebraof GJ, coincides with the Lie
algebra dof thelocal Neron Ift-model at each point t of U(s). Then, for each t e U(s),
the canonical map

Gg(s) Xy Spec Us , — G(t)°

is étale and, hence, an isomorphism, since it is an isomorphism on generic fibres.
So condition (b)isclear.

For the implication (b)=>(a) we will first construct the identity component
o the Néron Ift-model. So let G be the U-group schemegiven by condition (b).If s
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isa closed point of Snot contained in U, theidentity component G(s)° of the Ntron
Ift-model of G over g , is o finite type over Lo,, and, hence, extends to a smooth
group scheme G, with connected fibresover an open neighborhood U (s) of s Since
GY and G, coincide on the genericfibre, they coincide over an open neighborhood
o sin U n U(s). So we get gluing data and, hence, a smooth S-group scheme G°
with connected fibres which coincides with the identity components o the local
Neron Ift-modelsat closed points of S. Now, a Ntron Ift-model G of G isobtained
by gluing the local Néron Ift-models G(s), s € |S], where |S] is the set of all closed
pointsd S;ie.,

G= ) G@s).
sel|S|
The procedureis the same asin Proposition 7. Also the Ntron mapping property
is verified as exercised in the proof of Proposition 7. O

Since a smooth group schemewith connected fibres over a Dedekind schemeis
quasi-compact, the proof of the implication (b)=>(a) of the above proposition
shows the followingfact:

Corollary 10. Let S be a Dedekind scheme with ring of rational functions K. Let Gg
be a smooth connected algebraic K-group. Assume that there exists a global Néron
Ift-model of G over S. Then G admitsa Néron model over Sif and only if the groups
of connected components of the local Néron Ift-models are finite and, for almost all
closed points of S, aretrivial.

Finally, we want to give an example showing that the existence of local Ntron
models does not imply the existence d a global Néron model.

Examplel11 (Oesterlé [1]). Let R bean excellent Dedekind ring withfield of fractions
K of positive characteristic p,let K’/K bearadicia fieldextension of order p", and
let R be the integral closure o R in K'. Let G¢ be the Well restriction o the
multiplicative group G,, - with respect to K'/K. Consider the quotient Uy =
Gk/G,, x where G, x is viewed as a subgroup of G, via the canonical closed
immersion

Gm,K — Gg = ERK'/K((Gm,lc')

For each closed point s of Spec R, we will seethat thelocal Ntron model existsand
that its group of connected componentsisa cyclicgroup of order e, where e isthe
index of ramification of the extension R}/R,. Moreover, U, admitsa global Ntron
Ift-model over R which,in general, will not be of finitetype over R if R hasinfinitely
many maximal ideals.

Asatypica case, one may takefor R thering of an affine normal curve over a
perfectfield. In this case, the ramification index at each closed point coincideswith
thedegree d theradicial extension[K" : KJ. In particular, Ux does not admit aglobal
Ntron model if the extension K'/K isnot trivial.
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Solet usjustify thefact on U, we have claimed above. Dueto Hilbert's Theorem
90, we have

Ug(K) = (K')*/K* .

If Risadiscretevaluation ringand R — R' is of ramificationindex e the group
Ui (K) can be writtenin theform

(K')*/K* = (R)*/R* x (Z]eZ) .
Similarly asfor the generic fibre, we have a canonical map
Gp,r — Gr = Rp g(Gm,r) >
which isa closed immersion. Thus, we can define the quotient
U® = Gr/Gp.g -

which is a smooth separated algebraic space; cf. 8319. Due to 6613, it even is a
smooth R-group scheme. Moreover, we have

U°(R) = (RV¥/R* .

For each closed point s o Spec(R), thelocal Néron model U (s) is obtained by gluing
U° ®; R, with g copiesd it along the genericfibre where the gluing data are given
via the translation on the generic fibre by representativesof U(K)/U°(R,). Then, as
in Example 5, it is easy to see that U; satisfies the Néron mapping property. By
Proposition 9, we seethat there existsa global Neron Ift-model of Uy over R.

One can show that the global Néron Ift-model of Uy is isomorphic to the
quotient o the Well restriction o the Neron model of G,, x- by the Néron model
of G, - |

10.2 The Local Case

In thefollowing, let R be a discrete valuation ring with field of fractions K and let
G, be asmooth commutativeal gebraic K-group. So, in particular, Gy is o finitetype
over K. We want to discuss criteriafor the existence of a Néron model (resp. of a
Néron Ift-model)of G over R depending on itsstructure as algebraic group. To fix
the notations, let R** be the strict henselization of R with field of fractions K**, let
R*" be the strict henselization d the completion R o R, and let K be the fidld of
fractions of R**. Since certain parts of our considerations will require an excellent
base ring, recal that the strict henselization of an excellent discrete valuation ring
is excellent again by 3612. So R*™ is excellent. In particular, the extension K*/K is
separable. Furthermore, if R isexcellent, R is excellent and the extension K*/K is
separable.

We will first concentrate on Neron models. We know already that G, admitsa
Neron model if and only if the set of its KS-valued points is bounded in G,. Now
we want to formulate a necessary and sufficient condition for the existence o a
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Neéron model for G in terms o the group structure of G. Let us begin with some
definitions. If X isaseparated K-scheme of finite type, a cornpactification of X isan
openimmersion X —, X o X into a proper K-scheme X such that X is schemati-
caly densein X. The subscheme X — X will be referred to as the infinity of the
compactification. Due to Nagata [17, 2], compactifications always exist. If, in
addition, X and X are regular, we will call X aregular cornpactification of X. For
aregular K-scheme X, there existsa regular compactification if the characteristic
o K iszero or if thedimensiondf X is <2; d. Hironaka[2] and Abhyankar {1].

Theorem 1. Let R be a discrete valuation ring with field of fractions K, and let Gy
he a smooth commutative algebraic K-group. Then the following conditions are
equivalent:

(a) Gk hasa Néron model over R.

(b) G ®x K** contains no subgroup of type G, or G,,.

(€) Gx ®x K*" admits a cornpactification without a rational point at infinity.

(d) G(R*") isbounded in G.

(€) Gx(K™)isbounded in Gg.
If,in addition, Ris excellent, the above conditions are equivalent to

(b) Gx ®« K" contains no subgroup of type G, or G,

(') Gx ®x K" admits a compactification without a rational point af infinity

For example, a K-wound commutative unipotent algebraic K-group admits a
Néron model over R if R is excellent. Namely, such a group does not contain
subgroups o type G, or G,, and this property remainstrue after any separablefied
extension; cf. Tits[1], Chap. IV, Prop. 4.14.

If Gy is the Jacobian Jx of a normal proper curve X over K assumed to be
geometrically reduced and irreducible, then, due to 9.2/4, there is no subgroup of
type G, or G, in Jx ®¢ L, for any separable fiedd extension L o K. So, if K isthe
field of fractions of an excellent discretevaluation ring R, our theorem implies that
Jx admits aNéron mode over R; df. 9.5/6. Furthermore, thereisa natural compacti-
fication of Jg without a rational point at infinity; cf. Example9.

Before starting with the proof of Theorem 1, we want to deduce a criterion for
the existence o Néron Ift-models.

Theorem 2. Let R be a discrete valuation ring with field of fractions K and let Gy
be a smooth commutative algebraic K-group. Then the following conditions are
equivalent:

(a) Gk admits a Néron Ift-model over R.

(b) G ®x K** contains no subgroup of type G,.
If, in addition, R is excellent, these conditions are equivalent to

(b" Gy contains no subgroup of type G,.

Let usfirst deduce Theorem 2 from Theorem 1. Theimplications(a)==(b: az.c
(&) = (b") follow from 10.1/3 and 10.1/8. Next let usshow theimplication it 1 =
(a) under the assumption that R isexcdlent. Let T, bethe maximal torusdof G,
[SGA 3,1, Exp. XIV, Thm. 1.1. Then we have an exact sequence of algsbra:c
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K-groups
1l —>Ty— Gy— Hy— 1,

where H, is an extension of an abelian variety by a linear group and where the
latter is an extension of a unipotent group Uy by a finite multiplicative group; cf.
9.2/1 and [SGA 3], Exp. XVII, Thm. 7.21. Dueto [SGA 3], Exp. XVII, Thm.
6.1.1(A)(i1), the K-groups Hy and, hence, Uy do not contain a subgroup o type G,,
since the sameistrue for Gg. Then it follows from Tits [1], Chap. 1V, Prop. 4.1.4,
that Uy ®x K' and, henceby [SGA 3,], Exp. XVII, Lemme2.3,that H, ® K' does
not contain a subgroup of type G, for any separable field extension K’ o K.
However, there exists afinite separable field extension K' of K such that Ty ®x K'
issplit. So, if R" istheintegral closure of R in K', the K'-group Hy ®x K' admits a
Neron model over R' by Theorem 1, since R' isexcellent. Hence, Gy ®, K' admits
a Néron Ift-model over R' by 10.117. Then it follows from 10.114 that G; admitsa
Néron Ift-model over R. For the proof of (b)==+(a), we may assume R = R** by
10.114. In particular, R is excellent now and, hence, the assertion follows from the
implication (b")+(a) which hasjust been proved. O

Now we come to the proof of Theorem 1. Some parts of it have already been
proved:

() == (b) Néron models are compatiblewith basechange dof ramification index
1; df. 7.2/2. Hence G, ®, K** admits a Néron model of finite type over R*". So the
set of K*-valued points of Gy is bounded in G and, hence, Gx ®x K** cannot
contain a subgroup isomorphic to G, or G,,.

(b) = (b") istrivial.

(©) =>(d) followsfrom 1.1110, since R*" is excellent.

(c)==(e) followsfrom 1.1/10, since R*" is excellent.

(d) = (e) istrivial.

(e) = (a); cf. Theorem 1.3/1.

The remainder of this section is devoted to the proof of the implications

(b)==+(c)and (b") = ().
Let usfirst explain the meaning of conditions (c)and (¢

Proposition 3. Let X be a smooth and separated K-scheme of finite type. Consider the
following conditions:

(a) There exists a compactification X of X such that there isno rational point in
X - X.

(b) For any affine smooth curve C over K witharational points,each K-morphism
C — {s} — X extendsto a K-morphismC — X.

(c) The canonical map X(K[[£]]) —+ X(K((£))) is bijective, where ¢ is an in-
determinate and where K((&)) is the field of fractions of K[[£]].

Then one hasthe following implications: (&) =+ (b)<=> (¢).If, inaddition, X admits
aregular compactification X, conditions(a), (b),(c)are equivalent and, moreover, they
are equivalent to

(d) (X — X)(K) is empty.
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Proof. (a)=(b) is trivial, since such a morphism C — {s)— X extends to a
morphism C ——+ X and since theimage o sgivesriseto a rational point of X.

(b)=>(c). Let R bethelocalization of K[£] at theoriginand let a e X (K((£))).
If X isacompactificationof X, onecan view aasaK[[£]]-valued point o X. Since
R isexcelent, it follows from 3.6/9 that there existsa local etale extension R' o R
with residuefield K and an R’-valued point & o X inducing the given point aon the
closed fibre. Furthermore, we may assume that the generic fibre o a is contained
in X. Rewritingthe situation in termsd curves, it meansthat there arean etale map
¢ :C—— AL d an afinecurveto the affineline, a rational point sdf Clying above
theorigin,and amorphisma: C — X suchthat thelocal ringdf Cat sisisomorphic
to R and such that ainduces the R’-valued point a'. Due to (b),the image o ais
contained in X. Thus, we see that a is a K[[¢]]-valued point of X and the
implication (b)=> (c)is clear.

(€)== (b). The completion d thelocal ring o C at sisisomorphic to aformal
power seriesring K[[£]]. Hencethe assertion followsasin 2.5/5.

(b)==(d).Let x bearational point of X — X. By taking hyperplane sections,
one can construct an irreducible subvariety C of X’ of dimension one such that C
isnot contained in X’ — X, such that the point x lieson C, and such that Cissmooth
at X. We may assumethat Cissmooth over K. Hence, theinclusion C —+ X yields
acontradiction to (b).

(d)==(a)isevident. O

In order to completethe proof of Theorem 1, it sufficesto show that acommuta-
tive algebraic K-group G which contains no subgroup of type 6, or 6, admits a
G-equivariant compactification G without a rational point at infinity. A compactifi-
cation G is called G-equivariant if G actson G and if the action is compatible with
the group law on G. Let us start with some technical definitions.

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X of finite
type. A subscheme Z of X iscalled a K-orbit under the action of G1 there exist a
finite field extension K’ of K and a K'-valued point X' of Z ®, K' suchthat Z ®; K’
istheorbit of X under G ® K'.

Definition 5 (Mumford [1], Chap. 1.3). Let Gbe an algebraic K-group with an action
aon a K-scheme X. Let #: L — X be a line bundle on X. A G-linearization is a
bundle action 4 of G on L which iscompatible with the G-actionon X ;i.e., the diagram

Gyxxl —— L
id, x « n

v
GxgX —2 5 X

IS commutative.

For example, look at the canonical action of GL ,,,, on P* and at the canonical
ample line bundle Op.(1). There is a canonical GL,.,-linearization on Opn(1), but
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K-groups
1 - Ty— Gy— Hg— 1,

where Hy is an extension of an abelian variety by alinear group and where the
latter is an extension d a unipotent group Uy by a finite multiplicative group; cf.
9.2/1 and [SGA 3], Exp. XVII, Thm. 7.21. Due to [SGA 3,], Exp. XVII, Thm.
6.1.1(A)(ii), the K-groups Hy and, hence, Ug do not contain a subgroup of type G,
since the sameistrue for Gg. Then it followsfrom Tits[1], Chap. IV, Prop. 4.1.4,
that Uy ® K*and, henceby [SGA 3,1, Exp. XVII, Lemme 2.3, that H, ®,; K' does
not contain a subgroup of type G, for any separable field extension K* of K.
However, there exists afinite separablefield extension K' of K such that Ty ®x K'
issplit. So, if R' istheintegral closure of R in K', the K'-group Hy ®; K' admits a
Néron model over R' by Theorem 1, since R' is excellent. Hence, Gy ®x K*' admits
a NCron Ift-model over R' by 10.117. Then it followsfrom 10.1/4 that G, admits a
NCron Ift-model over R. For the proof of (b)==+(a), we may assume R = R* by
10.114. In particular, R is excellent now and, hence, the assertion follows from the
implication (b') ==+(awhich has just been proved. O

Now we come to the proof of Theorem 1. Some parts of it have already been
proved:

(a)==(b) NCronmodelsare compatiblewith basechange d ramification index
1; of. 7.2/2. Hence G, ®, K** admits a NCron model o finite type over R So the
set of K*-valued points o Gy is bounded in Gi and, hence, Gy ®, K cannot
contain a subgroup isomorphic to G, or G,,.

(b) =>(b") istrivial.

() = (d) followsfrom 1.1/10, since R* is excellent.

(c)==(e) followsfrom 1.1/10, since R*" is excellent.

(d) =+(e) istrivial.

(e) =>(a); cf. Theorem 1.3/1.

The remainder of this section is devoted to the proof of the implications

(b)=>(c)and (b') = ().
Let usfirst explain the meaning of conditions (c) and (c')

Proposition3. Let X be a smooth and separated K-schemeof finite type. Consider the
following conditions:

(a) There exists a compactification X of X such that there is no rational point in
X - X.

(b) For any affine smooth curve C over K witharational point s, each K-morphism
C — {s)— X extendsto a K-morphism C — X.

(c) The canonical map X(K[[[I]) — X(K((£))) is bijective, where £ is an in-
determinate and where K ((£)) isthe field of fractionsof K[[£]].

Then one hasthe following implications; (a)=+(b)<=>(c).If,inaddition, X admits
aregular compactification X', conditions (a),(b),(c) are equivalent and, moreover, they
are equivalent to

(d) (X' — X)(K) isempty.
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Proof. (a)==(b) is trivia, since such a morphism C — {s} — X extends to a
morphism C— X and since theimage o s givesrise to arational point of X.

(b)==*(c).Let R bethelocalization o K[£] at the origin and let a € X (K({(£))).
If X isacompactificationd X, onecan view aasaK[[<]]-valued point of X. Since
R is excdlent, it followsfrom 3.619 that there exists alocal Ctde extenson R' o R
with residuefield K and an R’-valued point & o X inducing the given point a on the
closed fibre. Furthermore, we may assume that the generic fibre of & is contained
in X. Rewritingthe situationin termsdf curves, it meansthat there arean étale map
¢ : C— AL do an afinecurveto the affineline, arational point s of Clying above
theorigin,and amorphisma: C — X suchthat thelocal ringdf Cat sisisomorphic
to R and such that a induces the R’-valued point a'. Due to (b),the image of ais
contained in X. Thus, we see that a is a K[[£]]-valued point of X and the
implication (b)=> (c)isclear.

(¢)=+(b). The completion of thelocal ring d C at s isisomorphic to aformal
power seriesring K[[£]]. Hencethe assertion follows asin 2.5/5.

(b)=>(d). Let x bearational point of X' — X. By taking hyperplane sections,
one can construct an irreducible subvariety C o X’ of dimension one such that C
isnot containedin X’ — X, such that the point x lieson C, and such that Cissmooth
at x. We may assumethat Cissmooth over K. Hence, theinclusion C— X yidlds
acontradiction to (b).

(dy=+(a)is evident. (]

In order to completethe proof of Theorem 1, it sufficesto show that acommuta-
tive algebraic K-group G which contains no subgroup o type G, or G,, admits a
G-equivariant compactification G without a rational point at infinity. A compactifi-
cation G is called G-equivariant if G actson G and if the action is compatible with
the group law on G. Let us start with some technical definitions.

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X of finite
type. A subscheme Z of X is called a K-orbit under the action of G if there exist a
finite field extension K’ of K and a K'-valued point x' of Z ®, K' suchthat Z ®4 K'
isthe orbit of X' under G ® K'.

Definition 5{Mumford [1], Chap. 1.3). Let G be an algebraic K-group with an action
o on a K-scheme X. Let #: L — X be a line bundle on X. A G-linearization is a
bundle action A of G on L whichiscompatible with the G-action on X; i.e., the diagram

GxxL —— L

idenJ Jn

Gxx X ——— X

is commutative.

For example, look at the canonical action of GL ,,, on P" and at the canonical
ample line bundle @p.(1). Thereis a canonical GL,,,,-linearization on Op.(1), but
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the action of the projective linear group PGL, cannot be lifted to a PGL,-
linearization of Op.(1).

Now consider a scheme T and aflat T-group scheme G o finite presentation
which acts on a T-scheme X of finite presentation. Let P be a torsor under G over
T. Then G actsfreely on X x, P by setting

go(x,p)=(gox,gop).

Denote by (X x4 P)/G the quotient (in terms of sheavesfor the fppf-topology) o
X x r Pwith respect to the G-action. The quotient commutes with any base change
T — T. If P— T admits a section, there is an isomorphism (X x 4 P)/G — X.
So, (X x ¢ P)/G becomes isomorphic to X and, hence, is representable after a
base change with an fppf-morphism, sinceP— Tisdf thistype. If L isalinebundle
on X with a G-linearization, then M = (L x4 P)/G gives rise to a line bundle on
(X x ¢ P)/G provided that (X x4 P)/G is a scheme. Due to 6117, we have the
following lemma.

Lemma6. If L is T-ample, then (X x 4 P)/G isa T-schemeand M = (L x 4 P)/G is
T-ample.

Now let T be the affine scheme of afield K and let G be a smooth K-group
scheme. If, in addition, X is projective, the quotient (X xx P)/G isawaysa scheme.
Namely, after a finite Galois extension K'/K, there exists a K'-valued point of P.
So, thequotient isrepresentabl e after theextension K'/K. Sincefinite Gal oisdescent
iseffectivefor quasi-projective schemes, we see that (X x ¢ P)/G isrepresented by a
quasi-projective K-scheme.

The proof of the implications (b)==(c) and (b'") = (c) in Theorem 1 will be
provided by Theorem 7 below. Namely, if G is not connected, then (G° x G)/G°
yields a compactification of G as required, where G° is a compactification of the
identity component G° asin condition (d) below.

Theorem 7. Let K be a field and let G be a connected (not necessarily smooth)
commutative algebraic K-group. Then the following conditions are equivalent:

(a) G contains no subgroup of type G, or G,,.

(b) Gadmits a compactification G without a rational point at infinity.

(c) G admits a G-equivariant projective cornpactification G such that, for each
K-torsor Punder G, thereisnorational pointin(G x, P)/G — (G x, P)/G.

(d) G admitsa G-equivariant projective cornpactification G such that there isno
K-orbit of G under G contained inG — G.

If, in addition, Gislinear, these conditions are eguivalent to

(d') G admits a G-equiuariant compactification G together with a G-linearized
ample line bundle such that there is no K-orbit of G under G contained in G — G.

Remark 8. (i) For a smooth K-wound unipotent algebraic group, the existence of
an equivariant projective compactification without rational points at infinity has
also been established by Tits (unpublished).

(ii) Presumably, the commutativity of G in Theorem 7 is not necessary. In
particular, one can expect that a smooth algebraic K-group which does not contain
a subgroup o type G, or G,, admits an equivariant projective compactification
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without rational points at infinity. Thelatter is mainly a question of linear groups.
It can be answered positively if G is semi-simple; cf. Borel and Tits [1].

Beforestarting the proof d Theorem 7, let us have alook at Jacobians where, in
certain cases, canonical compactificationsexist; cf. Altman and Kleiman (1] and [2].

Example 9 (Altman and Kleiman [1], Thm. 85). Let X be a proper curve over a
field K, assumed to be geometrically reduced and irreducible, and let J = Pic§ x be
its Jacobian. Let J be the fppf-sheaf induced by the functor which associatesto a
K-scheme Sthe set of isomorphism classesof moduleson X x . § which arelocally
of finite presentation and S-flat, and which induce torsion-free modules of rank 1
and degree 0 on the fibres d X xx S over S. Then J is a projective K-scheme
containing Jas an open subscheme. If, in addition, X i snormal, thereis no rational
point contained in J — J.

Indeed, we may assume that K is separably closed, 0 X has a rational point.
Then arational point of J represents a torsion-free rank-1 module of degree0 on
X. Since X isa normal curve, such a moduleisinvertible and, hence, represents a
point of J. Moreover, since Jis smooth, any K-orbit of J under Jis smooth, too.
So, by thesame argument asabove, itisclear that thereisno K-orbit of J contained
inJ —J.

Let X belocdly planar (i.e., the sheef o differentialsislocally generated by at
most two elements); for example, thisis the case, if X isnormal and if K admits a
p-basis of length at most 1. Then J is schematically densein J and, hence, J isa
compactification d Jin our sense; cf. Rego [17]. The canonical action of Jon itself
by left translation extends to an action of Jon J and, hence, J is a J-equivariant
compactification o J. In the general case, the schematic closure d Jin J is an
equivariant compactificationin our sense.

Now let us prepare the proof of Theorem 7. The implications
(d)=(d)=>(c) = (b) =>(a)

are quite easy whereasthe proof of (a)=>(d') (resp. of (8) => (d)) will be explained
intheremainder o thissection.If Gissmooth over aperfectfieddK,itisanextension
of an abelian variety by a smooth connected linear group L which isa product of
atorus and a unipotent group, cf. 9.2/1 and 9.2/2. Furthermore, the unipotent part
is a successive extension of groups o type G,; cf. [SGA 3;], Exp. XVII, Cor. 4.1.3.
Thus, condition (a) impliesthat the unipotent part of L is trivial and, hence, that G
isan extensiond an abelian variety by a torusin this case. So, when we are given
asmooth K-group G, thelater considerations concerning unipotent groups are only
o interest in the case where the basefidd K is not perfect.

Dueto thestructure of commutative algebraicgroups, wewill reducethegeneral
situation by "devissage” to the following special cases:

— K-wound unipotent (not necessarily smooth) algebraic K-groups; i.e., con-
nected unipotent K-groups which do not contain subgroups o type G..

— anisotropic tori; i.e., tori which do not contain subgroups o type G,,.

We will begin by discussing the K-wound unipotent case. If the group under
consideration issmooth and killed by multiplicationwith p, one hasa rather explicit
description of it.
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Propostion 10(Tits[1], Chap. ITL, Section 3). Let K bea field of characteristic p> 0
with infinitely many elements. Let G be a smooth connected commutative algebraic
K-group of dimension n — 1 such that p-G = 0. Then G is K-isomorphic to a closed
subgroup of G defined by a p-polynomial

E

F(T;,....T,) :izi

If, in addition, G contains no subgroup of type G,, one can choose F(Ti,...,T,) in
such a way that the polynomials

Ocij"riijK[Tp-”’T;l] '

J

Y ¢; T € K[T]
j=0

are non-zero,i = 1,...,n, and that the principal part

n

f(Tla'--:T;z) = Z Cim,»' Tipmi
i<

of F(Ty,..., T,) has no non-trival rational zeroin A%.

Using the specific situation of Proposition 10, it is easy to find an equivariant
compactification for smooth unipotent commutative groups which are K-wound
and are killed by multiplication with p.

Proposition11. Let K be a field of characteristic p > 0. Let G be a smooth connected
commutative algebraic K-group which is killed by multiplication with p. If G is
K-wound, then G admits a G-equivariant compactification G together ‘with a
G-linearized ample line bundle such that there is no K-orbit of G under Gin G — G.

Proof. We may assume that K has infinitely many elements; otherwise G is trivial.
Keep the notations of thelast proposition and assumethat the exponents occurring
in the principle part of the p-polymonial satisfy

m <my<..<m,.
Let P be the quasi-homogeneous space over K with coordinates
Y, i=01,...,n,
having weights
w, = pmnTT i=0,....n,

where we have set m, = m,. The open subspace U, of P where Y, is not zero can
be viewed as the group G with coordinates

T, =Y/, i=1,...,n.
The action o U, on itself extendsto an action on P by setting

Ug xg P— P, ((t:) 5o, ¥:)) (Yo, ¥i + 87 ¥5) -
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We regard G as a closed subscheme o U, given by a p-polynomial F(Ti,...,T,).
Now, let X,,..., X, bethe coordinates d the projectivespace P; and let

u:P— Pg

be the morphism sending X; to (Y;)™. Denote by ¥, the open subscheme of Pk
where X, does not vanish. We can view V;, as the group G2 with coordinates

S = Xi/Xo , i=1,...,n.
The morphism u induces a morphism
u(): Uo'—) I/O

o algebraic K-groups and the morphism u isequivariant. In terms d coordinates
o rational points the equivariance means the commutativity of the following
diagram

U g P ——— P ((t:), (D0, 7)) = (Yo, Vi + t;* (¥o)™)
Uy X U u

Vo x Pg ——— Px ((s5), (%0, %)) > (xg,%; + ;" Xg)

wheres; = t#™ fori = 1,...,nand where x; = (y;)*"" for i = 0,...,n. The canonical
shedf (p:(1) has a V,-linearization. Hence, u*(Up.(1)) is an ample invertible sheaf
on P which has a U,-linearization.

The schematicclosure G o Gin Pisgiven by the polynomial

(Yo )™ F(Y,/Y5", ..., Y,/ Yg™)

which can be viewed as a weighted homogeneous polynomial in the variables
Y,,..., Y,. Due to the choice o the weights, the principa part f(Y,,..., Y} o
F(Yy,...,Y,) is a weighted homogeneous polynomial and describes the set of the
points at infinity of the compactification G. So, we have

G—~G={yeP, f(y)=0}

Due to ProBosition 10, there is no rational point in G — G. Moreover, G acts
trivially on G — G. So G cannot contain a K-orbit under G at infinity. g

In order to generalize Proposition 11 to smooth unipotent commutative
K-wound groups which are not necessarily killed by multiplication with p, we will
need the following lemma.

Lemma 12. Let G be a connected unipotent commutative algebraic K-group. Assume
that G is smooth and K-wound. Then there exists a filtration

0=Gyc G cGc...cG, =G

such that the successive quotients have the same propertiesas G, and, in addition, are
killed by multiplication with p.
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Proof. Let nbethe smallestinteger such that Gisannihilated by p". We will proceed
by induction on n. Let N (resp. 1) bethe kernel (resp. theimage) of the p-multiplica-
tion on G. Then I isa smooth connected subgroup of G and, hence, K-wound. The
group N is not necessarily smooth. So, consider the largest smooth subgroup M of
N. Then M is K-wound as a subgroup of G and, since M s the largest smooth
subgroupof N, thequotient N/M isK-wound, too. Sincetheimage of themultiplica-
tion by p*! is contained in N and is smooth, the quotient G/M is killed by
multiplication with p"~*. Moreover, G/M is K-wound, sinceit isan extension of |
by N/M both of which are K-wound. Then we can set G, = M and the induction
hypothesis is applicableto G/M. O

Proceeding by dévissage, we are now able to prove Theorem 7 for unipotent
groups which are smooth. But when treating general commutative groups, we will
also be concerned with unipotent groups which occur as unipotent radicals. Such
unipotent groups do not need to be smooth. Therefore, we need the following
lemma.

Lemma 13. Let G be a connected unipotent commutativeal gebraic K-group which is
not necessarily smoath.

(a) There exists an immerson of G into a connected unipotent commutative
algebraic K-group G' which is smoath.

(b) If GisK-wound, one can choose G' to be K-wound, too.

Proof. (a) We will first show that G can be embedded into a smooth unipotent
commutative group. Denote by F, the kernel of the n-fold Frobenius morphism on
G. Due to [SGA 3,], Exp. VII,, Prop. 8.3, there exists an integer ne N such that
the quotient G/F, issmooth. Thus, it sufficesto show the assertion for thegroup F,.
So we may assume that G is a finite connected unipotent group. Hence, it is a
successive extension of groups of type a,; cf. [SGA 341, Exp. XVII, Prop. 4.2.1.
Consider now the Cartier dual G* of G, which is a successive extension o groups
o type a, aso. Hence, the algebra A = I'(G*, @+) islocal. The algebraic group U
representing the group functor

(Sch/K)° — (Groups) , T+ I(T xx G, 0%, 6+)

is smooth. Interpreting the points of G as characters of G*, one gets a morphism
G — U whichisanimmersion and whichisclosed, since Gisfinite.Since Aislocal,
U isaproduct of the multiplicative group G,, and o asmooth connected unipotent
group G. Since G is unipotent, the morphism G — U yields an embedding of G
into G.

(b) Let usstart by collecting somefacts on extensions of commutative unipotent
algebraic groups by ttale groups.

(1) If Nisan CtdeK-group and H isan algebraic K-group, the canonical map

Ext(H, N) — Ext(H ®¢ K', N ® K')

is bijectivefor any radicia field extension K'/K; cf. [SGA 1], Exp. X, 4.10.
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(2) Let

1 — G —G,—G;—1
be an extension of smooth commutative unipotent algebraic K-groups. Then the
canonical sequence of quasi-algebraic commutative group extensions

1— Ext(Gs, Q,/Z,) — Ext(G,, Q,/Z,) — Ext(G,,Q,/Z,) — 1

is exact. If G, iskilled by multiplication with p", one can replace Q,/Z, by Z/p"Z.
Now, dueto (1), we may assume that K is perfect. I n this case, the result is provided
by Begueri [1], Prop. 1.21.

(3) If K is not perfect, there exists for each smooth connected commutative
unipotent K-group G a commutative extension

1—-N—0G—G—1

o G by afinite Ctde group N such that G is K-wound.
Namely, we may assume that Gisan extension

1—-6,—GC—G,—1

o a smooth connected unipotent K-group G, by 6,. Proceeding by induction on
the dimension of the group, we may assume, that there exists a commutative
extension G, of G, by afinite Ctaegroup such that G, is connected and K-wound.
Then, oneiseasily reduced to the case where G, isK-wound. For thegroup G, and
each element X € K — KP, consider the extension

1—Z/p7 — G (x) — G, — 1
where G ,(x) isdefined as a subgroup of G, x G, by the p-polynomial
TP +xTP— T,

and the map G,(x) — G, is the second projection. Then, due to (2), there existsan
extension G — G by afiniteétale group whichinduces G ,(x) — G, by restriction.
Thus, G is K-wound as an extension of K-wound groups.

Using these results, the proof of assertion (b)is easily done. Assume that K is
not perfect and let G be connected, unipotent, commutative, and K-wound. Dueto
(a),thereexistsanimmersion o Ginto asmooth unipotent commutative connected
group G;. Let H be the quotient of G, by G, so we have the exact sequence

1—>G—G,—H—1.

Since G; is smooth, H is smooth also. Due to (3), there exists a commutative
extension
1—-N—H—>H-—1.

of H by afinitettale group N such that A is K-wound and connected. Pulling back
thisextension to G,, one gets a commutative extension

1—-N-—G —G —1.

Note that G, issmooth and unipotent. Denote theidentity component of G, by G.
Hence, one gets an exact sequence

1—-G6G—G —>H—1.
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So the group G' is smooth, unipotent, commutative, and connected, and, as an
extension of K-wound unipotent groups, it is K-wound, too. 1

Next we want to discuss the compactification of tori. Let T be a torus, denote
by M the group of characters o T and by N the group of 1-parameter subgroups
o T. Then

M = Homg(T,G,,) and N = Homg(G,,, T)

are Gal(K/K)-modules, where K is an algebraic closure o K. There is a perfect
pairing
MxN-—Z.
Hence, N and M are canonically dual to each other. Recall that T is anisotropic if
one d thefollowing equivalent conditions is satisfied:
(i) T does not contain a subgroup o type G,

(ii) T does not admit a group o type G,, as a quotient.

(iii) M does not contain the unit representation.

(iv) N does not contain the unit representation.

Propostion 14. Let T be an anisotropic torus over K. Then T admits a T-equivariant
compactification T such that T is normal and projective, such that T — T does not
contain a K-orbit under T, and such that there is an ample line bundle on T with a
T-linearization on it.

Proof. Equivariant compactifications of tori are closaly related to rational poly-
hedral cone decompositions of Ng = N ®; Q. Over an algebraically closed field,
thistechniqueis well documented in the literature; cf. Kempf et al. [1], Chap. I,§§ 1
and 2. So, we will only give advice how to proceedin the case d an arbitrary field.

Consider afinite rational polyhedral cone decomposition {a,) o Ng, which is
invariant under Gal(K/K). The vertex of each coneistheorigin of Ng. Let T bethe
associated T-equivariant compactificationd T. The variety Tisnormal and projec-
tive. It has a finite number o orbits under T and these correspond bijectively to
thefaces of the decomposition {a,}; cf. Kempf et a. [1], Chap. I, § 2, Thm. 6. Since
{a,) isinvariant under Gal(K/K), the Galois group acts on the K-variety T and,
hence, by projective descent, T is defined over K.

Wearegoingtoshow that T — T doesnot containaK-orbit under 7. So assume
that there is a K-orbit in T — T. It corresponds to a non-zero face ¢ o the
decomposition {a,} which is stable under Gal(K/K). Consider now the set of the
extremeedges of a which consistsd afinite number o haf lines{L;,i e |}.Thisset
isinvariant under Gal(K/K). Now we can choosenon-zero pointsx; € L;, i € |, such
that the set {x;, i € |} is invariant under Gal(K/K). So the point x = Y ,.,;x; isa
non-zero point of a which isinvariant under Gal(K/K) and, hence, gives rise to a
non-zero element o N. Thus, we get a contradiction to T being anisotropic.

It remains to show that there is an ample T-linearized line bundleon T. Let %
be the ample line bundle on T. Since the Picard group o T is discrete (use Kempf
etd.[1]. Chap.|,§2, Thm.9), # isinvariant under T. Hence, it iseasy to see that a
power d £ admitsa T-linearization. M
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For the devissage, we need a technique d constructing an equivariant compact-
ification df an extension of groups with given equivariant compactifications. This
part works also for not necessarily commutative groups.

So consider an exact sequence

l1—G—E—H—1

o algebraic K-groups. In particular, E— Hisatorsor over H with respect to the
H-group scheme G; = G x¢ H. In order to avoid problems with representability
o quotients, we will work with projectiveequivariant compactificationsadmitting
ampleline bundleswith linearizations. We have to introduce some more notations:
Let X beaK-schemewith an action o Gon X on theleft and let L bean ample
line bundle on X with a G-linearization. Then Gy acts on X,; =X X, H as an
H-group scheme and Ly =L xg H is an H-ample line bundle on X, with a
Gy-linearization. Gy actsfredy on X xx E = Xy x4 E by setting

go(x,e)=(gox,ge).

Denote by (X, x5 E)/Gy the quotient (in terms of sheaves for the fppf-topology
over H)d (X x4 E)with respect to the Gg-action. Introduce similar notationsfor
L instead of X. Dueto Lemma®, (X Xy E)/Gy isan H-schemeand (L x g E)/Gy
isan H-ample line bundleon (X x g E)/Gy.

Furthermore, thereis an action o E (onthe right)

X xgE) xk E— (X xx E), ((xg).e')— (x.e€).

Thisaction iscompatible with theleft action of Gon X. SotheE-actionon (X x, E)
inducesan E-action on (X X, E)/Gg inacanonical way. The projection

(Xy %y E)/Gy — H

is E-equivariant where E actson H by right translation. Similarly, the line bundle
(Ly xg E)/Gg on (Xyg xg E)/Gy hasacanonical E-linearization with respect to the
E-action on (X x4 E)/Gyg.

Lemma 15. Consider the exact sequence

l1—-G—E—H—1

of algebraic K-groups. Let G be an equivariant compactification of G and let L be an
ample line bundle on G with a G-linearization. Set Y = (Gy xy E)/Gy and M =
(L, X, E)/Gy. Then

() Y is a projective H-scheme which contains E as an open subscheme and the
canonical action of E on itself by right translation extends to an action on Y and is
compatible with the G-action on Y. The projection p: Y — H is E-equiuariant where
E acts on H by right translation. The line bundle M has an E-linearization and is
H-ample. Y is quasi-projective over K.

If G — Gdoes not contain a K-orbit under the action of G, then Y — E does not
contain a K-orbit under the action of E.

(b) Let H be an equivariant compactification of H and let N be an ampleline bundle
on H with an H-linearization. Then there is a commutative cartesian diagram
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Y

|

Hcoc

T e—— =
)

such that the following is satisfied: Y =, ¥ isan E-equivariant compactification and
p is E-equivariant. Y isa projective K-scheme and has an ample line bundle with an
E-linearization.

If G-G and H-H do not contain K-orbits, then ¥ — Ydoes not contain a K-orbit
under the action of E.

Proof. Assertion (@) follows mainly from what has been said before. Y is quasi-
projective, since H is quasi-projective. It remains to show that there is no K-orbit
contained in Y — E. So consider a K-orbit Z of Y under the action of E. Itsimage
p(Z) isa K-orbit of H and, hence, p(Z) = H. The E-action on Y induces a right
action of G on thefibreover the unit element of H which is canonically isomorphic
to G. This action is related to the left action of G we started with by the relations
g f=f*g, §eG, feG.

Thus we see that the intersection of Z with the fibre over the unit element of H is
aK-orbit of G under the action of G. So it must be G. Then we get Z = E.

(b) After replacing L by L®" for a suitable integer n, we may assume that L is
very ampleand, hence, that M isvery H-ample. SinceH admitsan amplelinebundle
with H-linearization, it is affine. So, we may assume that M is very ample.

The K-vector space I'(Y, M) has an E-action induced by the E-linearization of
M. Now thereisafinite-dimensional subspace W o the vectorspace I'(Y, M )which
definesan embedding of Y into its associated projective space P = P(W). Sincethe
smallest subspace which is stable under E and which contains W is aso o finite
dimension, we may assume that W is stable under E. So E acts on P and thereis
an E-linearization on @p(1). Due to the choice of W, there is an E-equivariant
embedding Y — P such that the pull-back of @p(1) is isomorphic to M. Now
consider the morphism

Y —PxH

induced by Y — P and Y — H — H. Let Y be the schematic image of Y in
P xx H. Then Y is projective. Since Y is proper over H, the schematic closure Y
coincideswith Y over H. By continuity, the action of E on Y extendsto an action
onY. Let

p:Y—P, p,:Y—H

be the projections. The restriction M of p*(@y(1)) on Y has an E-linearization
extending the given E-linearization on M and is H-ample.

For ne N, the tensor product p%*(N®")® M has a canonical E-linearization
with respect to the E-action on Y and, for large integers n, it isampleon Y.
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It remains to prove the assertion concerning the orbits. So let Z bea K-orbit o
Y under the action o E. The projection p,(Z) isa K-orbit of H under the action of
H. Dueto our assumption, p,(Z) must be contained in H and, hence, isequal to H.
Now we can continue asin part (a)in order to show that Z coincideswithE. [

Proof of Theorem 7. We start with theimplication (a)=>(d’). Since Gis linear, it
isan extension of a unipotent group U by a subgroup of multiplicativetype M; cf.
[SGA 3,], Exp. XVII, Thm. 7.2.1. Dueto[SGA 3,1, Exp. XVII, Thm. 6.1.1 (A) (ii),
the unipotent group U is K-wound. The multiplicativegroup M isan extension of
afinitemultiplicativegroup N by atorus T which is necessarily anisotropic since
G does not contain a subgroup o type G,,. Hence, due to Lemma 15 (b), we are
reduced to prove the assertion for the groups N, 7, and U. It is clear for N.
Furthermore, Proposition 14 provides the assertion in the case of T. In the case o
U, we may assumethat K has characteristic p > 0 and, due to Lemma 13, that U
is smooth. Using Lemma 15 and Lemma 12, we are reduced to the case where
U iskilled by the multiplication with p. However, this case has been dealt with in
Proposition 11.

Next let us turn to the implication (a)=>(d). It followsfrom the theorem o
Chevalley (cf.9.2/1) that there exists a connected linear subgroup H of G such that
thequotient G/H isan abelian variety. Namely, thekernel F, of the n-fold Frobenius
morphism on G is an affine subgroup of G and, for large integers n, the quotient
G/F,issmooth, cf.[SGA 3], Exp. XVII, Prop. 4.2.1. Then the assertion follows by
Lemmal5 (a)from theimplication (2) => (d'). Thisconcludesthe proof, the remain-
ing assertions being trivial. O

The above verification o the implication (a)=> (d") showsthat a commutative
linear group G which does not contain a subgroup o type G, or G, admits a
G-equivariant compactification G together with a G-linearized ample line bundle
such that there is no K-orbit contained in G — G. So, due to Lemma 15 which is
valid for not necessarily commutative groups, the construction carries over to the
case of solvablegroups G; cf. Remark 8. Namely, a K-wound solvablegroup admits
afiltration

G=Gy>G, 2...2G, ={1}

suchthat G;isanormal subgroup of G,_, and G,_, /G;iscommutative and K-wound,
i=1,...,n; . Tits[1], Chap. IV, Prop. 4.1.4.

10.3 The Global Case

Let S be an excellent Dedekind scheme with infinitely many closed points and let
K beitsring o rational functions. Let Gx be a smooth commutative algebraic
K-group.
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Theexistenceof a Neron Ift-model (resp. of a Néron model) of Gx over Simplies
the existence of a Néron Ift-model (resp. of a Néron model) over each local ring of
S. But, as we have seen in Example 10.1/11, the converseis not true when dealing
with Neron models. The example was given in the case where the characteristic of
K is positive.

If K has characteristic zero, we claim that the existence of a global Néron
Ift-model (resp. of a global Neron model) isequivalent to the existence of the local
NCron Ift-models (resp. of the local Ntron models). Namely, due to 10.2/2, the
existenced Ntron Ift-models over each local ring of S isequivaent to thefact that
the unipotent radical of G istrivial. Then G isan extension of an abelian variety
by a torus T and, hence, admits a Ntron Ift-model over S; the latter follows from
10.1/7 by using 10.1/4. Moreover, when thelocal Neron Ift-modelsare of finite type
over each local ring of S, thesubtorus T of G istrivial. Indeed, T splitsover afinite
separable fidd extension K’ of K. There exists a closed point of S at which K' is
unramified. Since Ntron models are compatible with localization and étale exten-
sions, thereisaclosed point s’ of S, where S isthe spectrum of theintegral closure
o Og,inK', such that Gy ®x K'admits alocal Neron model at s”. Then, it follows
from 10.2/1 that the torus T is trivial. Thus, we see that G is an abelian variety
and, hence, that G, has a Néron model over S; cf. 1.413.

The existence o Néron lft-models or Neron models over a globa base is
dtill an open question when K has positive characteristic. We conjecture that
Gy has a NCron Ift-model over S if and only if Gy has one over each local
ring of S. Using Theorem 10.212, we can state this conjecture in the following

way.

Conjecture|. Let S be an excellent Dedekind scheme with ring of rational functions
K and let Gg be a smooth commutative algebraic K-group. Then G admits a Néron
Ift-model over Sif Gk contains no subgroup of type G,

As explained before, the conjectureis trueif the characteristic of K iszero, but
in the case of positive characteristic it is still an open question.

For the remainder of this section we want to concentrate on the existence of
Ntron models (of finite type). We can givea criterion for the case where G, admits
aregular compactification. Let us begin with some definitions.

A K-variety X (i.e., a separated K-scheme of finite type which is geometrically
reduced and irreducible) is called rational (resp. unirational) if its field of rational
functionsis purely transcendental over K (resp.contained in apurely transcendental
field extension of K). In geometric terms, the latter means that there is a rational
map from A% to X which is birational (resp. dominant). An algebraic K-group Gg
iscalled rational (resp. unirational) if its underlying schemeis rational (resp. unira-
tional). It is easy to see that unirational groups are smooth and connected. For
example, tori are unirational; also the K-group of Example 10.1/11 is unirational.
Each unirational subscheme of G, which contains theorigin generates a unirational
subgroup of Gg. In particular, G, contains a largest unirational subgroup denoted
by uni(Gy). If Gg isan abelian variety, then uni(Gg) = 0.
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Theorem 1. Let G bea smooth algebraic group over a field K, where G is connected
and commutative. Then the following conditions are eguivalent:

(a) uni(Gg) =0

(b) Each K-rational map fromthe projective line P to Gy is constant.

(c) For any smooth affine curve Cy over K and for any closed point x of Cg, each
morphismof C, — {X) to G extendsto a morphism from Cy to Gg.

(d) For any smooth K-scheme X, each K-rational map from X to G is defined
everywhere.

If, in addition, G, admits a regular compactijication G, these conditions are
equivalent to

(e) The smooth locus of G coincides with Gg.

The implications
@<= (b) =) =D =)

are quite easy to verify and we leave them to the reader. Also it is not difficult to
show the implication (€)==(c) (if G admits a regular compactification) and
(©)=>(d). Finaly the implication (a) = (c) requires more efforts.

To start the proof, let us begin with the verification of implication (€)= (c).
Let ¢:Cx — {X}— G be a K-morphism. Due to the valuation criterion of
properness, ¢ extendsto a K-morphism ¢ : Cx — G,. Now consider the Cx-scheme
GCK = Gy xx Cx Whichis regular; cf. 2.3/9. Due to assumption (€),the smooth locus
of G_CK over Cg coincideswith Gy x g Cg; of. [EGA 1V, ], 17.7.2. By base extension,
@givesisetoasection @, of G, . Now itfollowsfrom 3.1/2 that @, factorsthrough
the smooth locus of GCK and, hence,  maps to Gg.

For the implication (c)=>(d), consider a rational map ¢ : Xy ---> G, where
X issmooth andirreducible of dimension n. Sincewe consider K-schemes of finite
type, ¢k isinduced by a T-rational map ¢ : X ---» Gfrom a smooth T-schemeX to
asmooth and separated T-groupschemeG, where T is anirreducible regular scheme
of finite type over thering of integers 7. Wemay assumethat K isthefield of rational
functions on T. Due to 4411, the complement F of the domain of definition of ¢ is
d pure codimension 1 and, hence, is a relative Cartier divisor. We have to show
that Fisempty. Proceeding indirectly, let usassume that Fisnot empty. Thenlook
at thegraph I'y of ggin X X, Gg. Itisclear that theimage Qy of I’y under thefirst
projection p, cannot contain a generic point of F as seen by a similar argument as
usedin the proof of 4.3/4. SinceQ isconstructible, we may assume, after shrinking
X, that Q isdigoint from F. Now we will derive acontradiction by constructing
asmooth curve Cy contained in X, but notin Fg such that Cy meets Fy, at a closed
point. Namely, due to assumption (c), the curve Cx must be contained in Q. Since
F is not empty, there existsa closed point X in F. Let ¢ betheimage o X in T The
residue field of t isfinite and hence perfect. So k(x) is separable over k(t). Then it
follows from the Jacobi criterion 2.2/7 that there exist elements f,,...,f, in the
maximal ideal of thelocal ring of X at x which, in a neighborhood of X, define an
irreducible relative smooth T-curve C. We may assume that F induces a relative
Cartier divisor on C. In particular, Cn Fisflat over T. Hence, the generic fibre of
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Cn Fis not empty. Now, the induced morphism Cy — G yieldsa contradiction
to (c).

The proof of the implication (8)==>(c)is delicate. It will follow from Corollary
3 below which makes use dof the theory of Rosenlicht and Serre on rational maps
from curvesinto commutetive algebraic groups. 1n thefollowing we want to sketch
the mainideas of thistheory.

So let X be a proper irreducible curve over K, assumed to be geometrically
reduced. Denote by U the smooth locus o X, which is open and densein X. Let G
be a smooth commutetive algebraic K-group. We want to study rational maps

Q:X-->G.

If V isthe domain o definition of ¢, then, for any ne N, there is a canonica
morphism of the n-fold symmetric product V™ to G induced by ¢. We will denote
it by o®: V™ — G By restriction to (U n V)® we get a morphism o the set of
Cartier divsorsdf degree n with support in U n V to G; cf. Section 9.3. We denote
this map by ¢, too. A finite subscheme Y o X is called a conductor for ¢ if
@(div(f)) = 0for each rational function f o X whichisdefined on Y, which induces
the constant function with value 1 on Y, and whose associated divisor has support
mUnV.

Now let Y beafinite subschemed X. If Yisnon-empty, it isarigidificatorfor
Picy k. Asintroduced in Section 8.1, we denote by (Fic,,, Y)the rigidified Picard
functor. We sat (Fc,, Y)=FHc, Iif Yisempty. Since, for a K-scheme T, any
section of (U — Y) x, T induces an effective relative Cartier divisor on U xx T
o degree 1 whose associated invertible sheaf iscanonically rigidifiedalong Y by the
function 1, there exists a canonical map (U — Y)-— (Picy, Y) and, hence, a
rational map

1y : X -==> (Picyk, Y) .

By construction Y isa conductor for z. If Y isempty, we will writezinstead o ¢
For the proof of theimplication (a)=>(c) we will use the following result.

Theorem 2. Keeping the notations of above, the following hold:

(&) A finite subscheme Yof X isa conductor for ¢ if and only if there exists a
K-morphism of algebraic groups @ : (Picy,, Y) — G making the following diagram
commutative:

Moreover, the map @ is uniquely determined.

(b) There exists a conductor for ¢ and there evenisa smallest one. The latter is
called the conductor of ¢.

(©) Let n: 8 — X be the normalization of X and let x be a closed point of X
such that =~*(x) is contained in the smooth locus of 8.If ¢ o 7 is defined at ©~!(x),
then x is not contained in the support of the conductor of ¢.
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(d) If X issmooth at x and if x is not contained in the conductor of ¢, then ¢ is
defined at x.
(e The conductor of ¢ commutes with finite separable field extensions.

Proof. If K is algebraically closed and if X is smooth, the result is classical and is
due to Rosenlicht and Serre, cf. Serre [ 1]; for (a) and (d) see Chap. V, n°9, Thm. 2,
for (b)and (c) see Chap. I11, n°3, Thm. 1. We want to give some indications on how
to proceed in the general case. We may assume that X isgeometrically irreducible.
Namely, using assertion (€),one can easily reduce to this case.

(&) Theif-part is obvious. For the only-if-part, consider first the case where Y
is empty. Then the factorization followsfrom the construction of Picy , via sym-
metric products a la Well as explained in Section 9.3. The uniqueness of the
factorization is due to thefact that Picy  is generated by theimage of .. Now let Y
be anon-empty conductor for ¢. There existsafinitebirational morphism X — X'
which contracts Y to a rational point Y' and which is an isomorphism outside Y
and Y'. One easily checks that the canonical map

Picy x = (Picy x, Y') — (Picy, Y)

isan isomorphism. Thus, the general caseis reduced to the case discussed above.
(b) Let Y; and Y, befinite subschemes of X. Then the diagram

(PiCX/K7 YuY,) (PiCX/Ks Y,)

(PiCX/K’ Y;) E— (PiCX/Ka YinY,)

is co-cartesian. Thus, by using the characterization given in (a), we see that the
intersection of two conductorsisaconductor again. So the existenced a conductor
impliestheexistenced a unique smallest one. Furthermore, one can see by the same
argument that the smallest conductor o ¢ is compatible with finite Galois exten-
sions of the base field; thus assertion (€)isclear. So it remains to show that thereis
at least one conductor for ¢ which satisfies assertion (c); hence the smallest one will
satisfy (c), too. By what we have said above, we may assume that K is separably
closed. Denote by 7 : ¥ — X the normalization of X. Assumefor a moment that
the basefield isalgebraically closed. Then, due to Rosenlicht and Serre, there exists
a conductor ¥ for ¢ o = whose support is disjoint from the domain of definition
o ¢ om. Now let Y be the schematic image of ¥ in X. Then one shows easily
by using the very definition of conductors that Y isa conductor for ¢ satisfyingthe
assertion (c).When K is not necessarily algebraically closed, we can first work over
an algebraic closure K of K. So there isa conductor Y of ¢ ®; K. We can replace
Y by alarger conductor, say Y, without changing its support. Furthermore, we can
assumethat Y isdefined over K, sinceK isradicial over K. So Y fulfillsassertion (c).

(d) followsfrom (a). O

Corollary 3. Let X bea proper curve over a field K and assume that X isnormal and
geometrically reduced. Let G be a smooth commutative algebraic K-group. Let



314 10. Néron Modelsaf Not Necessarily Proper AlgebraicGroups

¢ X ---» G bearational map and let Y be the conductor of ¢.

(a) If G does not contain a subgroup of type G,, then Y is reduced.

(b) If uni(G) = 0, the conductor of ¢ isempty and ¢ decomposesinto a composi-
tiong = ® o 1 where® : Picy,x — Gisamorphismof algebraic groups. In particular,
¢ is defined on the smooth locus of X.

Proof. Denote by Y the largest reduced subscheme o Y. Then, we get an exact
sequence

1—U—VF—IF—1
of algebraic groups where Vy* and V# are the algebraic groups representing the
functor o global unitson Y and on Y; ¢f. 8.1/10. The kernel U isa unipotent group

which isa successiveextensiond groupsd type G,. Now look at theexact sequence
of 8.1/11

0— ¥V — VW —FHc,, Y)—FHc, —0
In the case of assertion (&), the canonical map
®:(Fc, Y)—G
induced by ¢ sendstheimage of U in (Picy, Y) to zero. Hence, ® factors through
(Picyk, Y) — (Picy, Y) .

Thus, due to Theorem 2, Y is also a conductor for ¢, hence Y = Y is reduced. In
the case of assertion (b),the kernel of the map

(PiCX/Ka Y) — Picy

isthegroup d global unitson Y modulo K* whichis unirational. Thus, we see that
@ factorsthrough Hc, and that the conductor o ¢ is empty. Then the assertion
follows by Theorem 2. d

Corallary 3 yieldsthe proof o theimplication (a)=>(c) o Theorem 1 and thus
completesthe proof of Theorem 1

Remark 4. Using the characterization (c) o Theorem 2, one seesimmediately that
the condition uni(Gx) = 0 is stable under finite separable fidd extensions.

Conjecturell. Let She an excellent Dedekind scheme with ring of rational functions
K and let Gx be a smooth commutative algebraic K-group. If uni(Gg) = 0 then Gg
admits a Néron model over S.

If one admits Conjecture 11, Conjecture | is mainly a problem of unirational
groups; use the technique of 7.5/1 (b). Conjecture IT is true if K has characteristic
zero. Indeed, if K is an agebraic closure o K, one has uni(Gx ®x K) = 0 due to
Remark 4. Then Gy ®; K cannot contain a subgroup o type G, or G,, and,
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hence, G is an abelian variety. In the case of positive characteristic, some parts
of the conjecture can be proved, provided it is known that G, admits a regular
compactification.

Theorem 5. Let S be an excellent Dedekind scheme with ring d rational functions K
and let G be a smooth commutativeal gebraic K-group.

(@) Assumethat G admitsaregular compactification Gy. If uni(Gg) = 0, then Gg
admitsa Néron modd over S

(b) If Sisanormal algebraic curveover a field and if Gx admitsa Nkron model
over S, then uni(Gg) = 0.

Proof. (a) Let usfirst show that the local Néron models exist. So, we may assume
for a moment that Sis the affine scheme of alocal ring R. Since uni(Gg) = 0, it
follows by Remark 4 that uni(Gx ®; K**) = 0 where K** is thefield of fractions of
a strict henselization of R. Then G; ®x K** cannot contain a subgroup of type G,
or of type G,,- Since Sisexcellent, it followsfrom 10.2/1 that a Néron model of Gg
existsover S. Now let usreturn to the general situation. It remainsto seethat there
exists a dense open subscheme U o S such that a Neron model o G exists over
U; df. 1.4/1. There exists a dense open subscheme U of Ssuch that @,gextmds toa
proper flat U-scheme Gy. Since S is excellent, the regular locus o Gy is open by
[EGA 1V,]. 7.8.6. So wemay assume that G isregular. Let G, be the smooth locus
of Gy. Sinceuni(Gy) = 0, wesee by Theorem 1 that the genericfibredf G coincides
with G¢. After replacing U by a dense open subset, we may assume that Gy is a
group scheme over U. Now we claim that G, isthe Néron model o G over U. Let
U(s) be the spectrum of the strict henselization of the local ring of U at a closed
point s of U.SinceGy, % U(s)isregular, the U(s)-vatued points of Gy, factor through
the smooth locus Gy, by 3.1/2. Then it followsfrom 7.1/1 that G, % Spec Uy, isthe
local Néron model of Gy over (5 ; and the assertion follows from 1.2/4.

(b) Let usassume that uni(Gy) isnon-trivial. Dueto Theorem 1, there existsan
affine smooth curve Cx with a closed point xz and a morphism

ok Cx — {xg} — Gg

such that ¢, does not extend to Cg. Since we are free to replace § by an étale
extension (cf. 1.2/2), we may assume that the residue field k(xx) is radicial over K.
Since Cx is smooth over K, the extension k(x) can be generated by one element
over K. So, after shrinking S, there exist an element f € I'(S, ¢g) and a p-power p”
such that k(xx) is generated by the p"-th root off. Now Cx —> Spec(K) isinduced
by a smooth relative curve C — S. Denote by Z the schematic closure of the point
xx in C. We may assume, after shrinking S that Z is a subscheme of A} defined by
(T —f). It is a genera fact that there exist infinitely many closed points s of S
such that the polynomial (TP" —f) has a solution over the residue fidd &(s); cf.
Lemma 6 below. If G, admitsa Neron model G o finitetype over S, the morphism
@y extends to a morphism

0 (C—2)—G.
Now look at thegraph I, =« C x; G of ¢ viewed asarational map C --->G. So [,
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is closed in Cx5G. Let Q be the image of I, under the first projection
p::C xg G— C.Since Gisof finitetype over S, the subset Q isconstructible. The
point xx iSnot contained in Q, because ¢y is not defined at x . AS x, iSthe generic
point of Z, we may assume, after shrinking S, that Qisdisjoint from Z. Now let z
be a point of Z such that the field extension k(z)/k(s) is trivial where s isthe image
o zin S. So there exist an étale extension ' — Sand an §’-valued point X' of Csuch
that zistheimage of a point s of §’ under x' and such that x; does not belong to
theimaged x'. Duetothe Néron mapping property, xx o ¢x extendstoan S-valued
point of G. By continuity, x' factors through the graph I,. Thus, we see that the
point z must belong to Q and we get a contradiction. O

In the last proof we have used thefollowing fact.

Lemma 6. Let k be a field of positive characteristic p and let A be an integral
k-algebra of finite type and of dimension d > 1. Let nbe a positive integer and let f
be an element of A. Then, for any n > 1, there exist infinitely many primeidealsp of
A of codimension 1 such that the equation 7#" — f = 0 has a solution modulo p.

Proof. It suffices to show that there is at least one such prime ideal. By standard
[imit arguments, we may assume that k is of finite type over its primefield k,. Then
thereexistsasmooth and irreducible ky-scheme R, such that kisthefield of rational
functions of R,, and there existsan R,-scheme S, of finite type such that the generic
fibre of S, isisomorphic to S, where S is the affine scheme of A. We may assume
that S, is &fine, irreducible, and reduced. Moreover we may assume that f extends
to a global section of Os,. Now let x be a closed point of S,. Then k(x) is afinite
field and, hence, perfect. So we can write

f=9g"+h
where g and h are global sections of ¢5, and where h(x) = 0. Since the relative
dimension of Sover R, isd > 1, we can choose g and h in such a way that the
subscheme k) defined by h is dominant over R,,. So there is a generic point s of
V(h) lying above the generic point of R,. Let p = I'(S,,0s,) be the prime idedl
corresponding to s. Then gisasolution of theequation T*" — f = 0 modulo p, and
p givesriseto a primeideal of A as required. O

If we want to apply Theorem 5(a} to an algebraic K-group Gy, it has to be
known that G, admits a regular compactification Gy, a question which is related
to the resolution of singularities in characteristic >0. Since it is widely accepted
that the latter problem should admit a positive answer, we get strong indications
for Conjecture II being true. Also note that, for a K-wound unipotent group Gy,
Thm. VI.3.1 o Oesterlé [1] implies uni(Gg) = 0 if K is of characteristic p and if
dimGgy<p—1
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of alocal ring 47, 48
properties of 50
Hilbert functor 215,217
and symmetric product 254
Hilbert polynomial 216

Identity component of a group scheme 154
Infinitesimal deformation 227
Intersection matrix 272
modified 272
Intersection pairing 272
Invertible sheaf. See Line bundle
Isogeny 180

Jacobian 243,258

and Néron model  264,266,267,274,286-288,
297

compactification of 301

of acurveover adiscrete valuation ring 259,
260

of asemi-stablecurve 246,259,287

torus part of 249

unipotent part of 248

viasymmetric product 258

Law of composition 95

Line bundle

ample 136-138,153, 164
degreedf  238-240
linearization of 299

partial degreeof  239-242,251
relativelyample 136,153
rigidified 204, 205, 211

Local coordinate 42

Minimal Weierstra8 equation o an elliptic curve
2
Module
faithfullyflat 51
flaa 51



324 Subject Index

Morphism rigidified. See Rigidified Picard functor
etale. See Etale morphism Picard group 199
faithfully flat 51 relative 202
flat. See Flat morphism Potential abelian reduction 181
of algebraic spaces 224,225 Potential semi-abelian reduction 181
o functors 94, 192 Property (N) 67
o group functors 98 Pro-variety 28,29
quasi-finite. See Quasi-finite morphism
smooth. See Smooth morphism Quasi-finitemorphism 45
strongly projective 211 etalelocalization of 49
strongly quasi-projective 211 Quotient
unramified. See Unramified morphism categorical 219
Multiplicity of an irreducible component 239 effective 219
Mumford's example 210 representability 220

sheaf-theoretical 219
Néron Ift-model

and basechange 290 R-model
characterization of 290 equivalenced 105
definition of 289 w-minimal 104, 105,106,111
elementary properties of 290 Ramificationindex 1 78-80,176,177,290
existence 290-294,297, 310 Rational group 310
of asubgroup 290 Rational map 55
of atorus 292 Rational singularity 286,287
Néron mapping property 12 Rational variety 310
Ntron model Regular minimal model 20, 21, 24, 26
and basechange 13, 176-178 and Néron model 21
and closed immersions 186, 187 Relativecurve 166,236
and group smoothening 175 Relativedifferential form
and regular minimal model 21 moduleof 31
and Weil restriction 198 sheaf of 33
connected componentsof  273,274,277,279, Relatively ampleline bundle 136-138, 153, 164
281,283-286 Relatively representable functor 192
criterion 15,172,173 Relative Picard functor 148,201,202
defect of exactnessdof 189 and Néron mapping property 264
definitionof 12 finitenessproperties  232-234
exactnessof 186,187 properness of 232,234
existenceof 15, 16, 18, 19, 110, 158, 184, 185, representability of 210,211,223, 224
297,314,315 separatedness of 232
identity component of 183 smoothness of 232
local and global 13,295 Relative Picard group 202
o aJacobian 264,267,268,286-288 Representable functor 95
of an abelian variety 19 Riemann-Roch formula 238
d asubgroup 175 Rigidification 204,205
outline of construction of 16-18 Rigidificator 205
weak. See Weak Neron model existencedf 205
Nkron-Severigroup 234 Rigidifiedlinebundle 204,205,211
finitenessof 234 Rigidified Picard functor 205
Néron’s symbols 22, 23 representability of 223,224
Openness of versality 229 S-birational map 55
Ordinary double point 246 S-densesubscheme 55

S-rational map 55,109
Partial degree d aline bundle. See Line bundle Schematic closure 55
Picard functor Schematic density 55, 67
relative. See Relative Picard functor Schematicimage 55



Subject Index

Schematic image(cont.)
compatibility with flat basechange 56
Scheme
geometrically normal 44
geometrically reduced 44
geometrically regular 44
o genericfibres 7
o genericpoints 6
quasi-affine 135
regular 43
smooth. See Smooth scheme
strictly henselian 45
Semi-abelian group scheme 178-180,186,187
Semi-abelianreduction  181-184
Semi-stablecurve 245,246,282
Jacobian of 259,287
Semi-stable reduction theorem 246
Shedfification 201
Shedf with respect to a topology 194,199,200
Smooth morphism 36
characterization in terms of fibres 53
etale sectionsof 43
infinitesimal lifting property of 37
Jacobi criterion 39, 40
Smooth scheme
over afidd 43,44
over ahenselianring 47
propertiesd 49
Smoothening 60
and basechange 79
and desingularization 61
Smoothening process 24, 28, 29, 61
Smoothness
defectof 65,72
Strict henselization
characterization in terms of Galoisaction 50
construction of 48
o adiscretevauation ring 50
d alocal ring 7,48
properties of 50
Strictly henselianlocal scheme 45

Strictly henselianring 45
Subgroup scheme 98
Symmetric product 252-258

Tate élipticcurve 25, 26, 189
Theorem of thesquare 148-152
Theorem on cohomology and base change 206
Torsor 152
ramified 158
trivial 152
unramified 158
Torus
anisotropic 301, 306
compactification of 306
Neron Ift-model of 291,292
Total space of asheaf of modules 207,208
Translation 99, 100

Unirational group 310
Unirational variety 310
Unit section 96
Universal linebundle 211
Universal point 95
Universal translation 100, 112
Unramified morphism 34
étale localization of 49
infinitesimal lifting property of 37

Wesak Néron model 12, 17, 74, 104-107
and basechange 75, 80

Weak Néron property 17,74

Weierstral3 division theorem 84

WeierstraB3 divisor 84

Weierstrall polynomial 84

Weil restriction  178,191-198
properties 195, 196

Weil’s extension theorem 15, 109

Wound unipotent group 174, 297, 301
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Zariski's Main Theorem 45, 46



