Solutions for Midterm I

Problem 1. Solve the system using the Gauss-Jordan elimination and verify your answer

\[
\begin{align*}
\begin{cases}
 x_1 + 2x_3 - x_4 &= 1 \\
 x_2 + 2x_4 &= -1 \\
 x_1 - x_2 + 2x_3 - 3x_4 &= 2
\end{cases}
\end{align*}
\]

Solution. Elementary row transformations of the augmented matrix of the system give rise to the reduced row-echelon form:

\[
\begin{pmatrix}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
1 & -1 & 2 & -3 & 2
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
0 & -1 & 0 & -2 & 1
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

Obviously, the rank of the matrix is 2. The number of free variables is \(4 - 2 = 2\) (the number of unknowns minus the rank). We write down the solution starting from the back:

- \(x_4 = t\) (choose \(x_4\) as a free variable),
- \(x_3 = s\) (choose \(x_3\) as a free variable),
- \(x_2 = -1 - 2t\) (from the second row in the rref),
- \(x_1 = 1 + t - 2s\) (from the first row in the rref).

So the solution is

\[(x_1, x_2, x_3, x_4) = (1 + t - 2s, -1 - 2t, s, t) = (1, -1, 0, 0) + t(1, -2, 0, 1) + s(-2, 0, 1, 0),\]

where \(t\) and \(s\) are arbitrary real numbers. Geometrically, the solution is a plane in \(\mathbb{R}^4\).

To verify the solution, we substitute it into the three equations of the system:

\[
\begin{align*}
1 + t - 2s + 2s - t &= 1 \\
-1 - 2t + 2t &= -1 \\
1 + t - 2s + 1 + 2t + 2s - 3t &= 2
\end{align*}
\]

Since all the equations are satisfied, our solution is correct.

Answer: \((x_1, x_2, x_3, x_4) = (1 + t - 2s, -1 - 2t, s, t), \ t, s \in \mathbb{R}\).
Problem 2. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal projection onto the line $x - 2y = 0$ followed by a counterclockwise rotation by 45°. Find a matrix of T (with respect to the standard basis). Describe geometrically and show on a picture the kernel and the image of T. Is T invertible? Explain!

Solution. Denote by P the orthogonal projection onto the line $x - 2y = 0$ and by R the counterclockwise rotation by 45°. Then $T = R \circ P$. Let A and B be standard matrices of P and R respectively. Then the standard matrix of T is BA. Let us evaluate matrices A and B.

Matrix A consists of two columns representing the coordinates of the images of the standard basis vectors $\overline{e}_1, \overline{e}_2$ under the transformation P:

$$ A = \begin{pmatrix} | & | \hline P\overline{e}_1 & P\overline{e}_2 \end{pmatrix}. $$

To evaluate the images we use a formula defining the orthogonal projection P:

$$ P\overline{x} = \frac{\overline{x} \cdot \overline{u}}{\|\overline{u}\|^2} \overline{u}, $$

where \overline{x} is an arbitrary vector in \mathbb{R}^2, \overline{u} is a vector along the line of projection, $\|\overline{u}\|$ is its length and \cdot is a dot product. Take $\overline{u} = (2, 1)$. (Note that one can take any vector $\overline{u} = (x, y)$ whose coordinate satisfy the equation of the line $x - 2y = 0$.) Its length is $\|\overline{u}\| = \sqrt{2^2 + 1^2} = \sqrt{5}$.

Calculate the images of $\overline{e}_1 = (1, 0)$ and $\overline{e}_2 = (0, 1)$ under projection P:

$$ P\overline{e}_1 = \frac{(1, 0) \cdot (2, 1)}{5} (2, 1) = \frac{2}{5} (2, 1) = \left(\frac{4}{5}, \frac{2}{5} \right), $$

$$ P\overline{e}_2 = \frac{(0, 1) \cdot (2, 1)}{5} (2, 1) = \frac{1}{5} (2, 1) = \left(\frac{2}{5}, \frac{1}{5} \right). $$

It gives us the matrix A:

$$ A = \begin{pmatrix} 4/5 & 2/5 \\ 2/5 & 1/5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}. $$

The standard matrix of a counterclockwise rotation by 45° is

$$ B = \begin{pmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}. $$

The standard matrix of T is

$$ BA = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = \frac{\sqrt{2}}{10} \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}. $$

The kernel of T is a subspace which is annihilated by T. This is a line passing through the origin which is orthogonal to the line $x - 2y = 0$. The equation of this line is $2x + y = 0$. Note that $\text{Ker} T$ is spanned by vector $(1, -2)$ which is annihilated by T.

The image of T is the line $x - 2y = 0$ rotated counterclockwise by 45° around the origin. The equation of this line is $3x - y = 0$. Note that $\text{Im} T$ is spanned by a column vector $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ of the matrix of T.

Transformation T is not invertible. It can be explained in many different ways. For example, $\text{Ker } T \neq \mathbb{0}$ or $\text{Im } T \neq \mathbb{R}^2$ or the determinant of the matrix of T is 0.

The picture makes all calculations crystal clear:

\[
\begin{align*}
&\text{Ker } T \\
&\text{Im } T \\
x - 2y = 0 \\
3x - y = 0 \\
2x + y = 0
\end{align*}
\]

Answer:

the standard matrix of T is $\frac{\sqrt{2}}{10} \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}$,

$\text{Ker } T = \text{span } \{(1, -2)\}$,

$\text{Im } T = \text{span } \{(1, 3)\}$,

T is **not** invertible.
Problem 3.

A secret agent has got an encoded message
\[-4, 2, -19, 0, 3, -9\]
representing the time of the beginning of a secret mission. He knows that the encoding matrix is
\[
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
2 & -3 & -3
\end{pmatrix}
\]
but nevertheless cannot decode since he is not good in Linear Algebra. Help him to decode the secret time!

Solution. Oh, boy! First, invert the matrix:

\[
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
2 & -3 & -3
\end{pmatrix}
\xrightarrow{R_3-2R_1}
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & -3 & -1
\end{pmatrix}
\xrightarrow{R_3+3R_2}
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\xrightarrow{R_1-R_3}
\begin{pmatrix}
1 & 0 & 3 & -3 & -1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & -3 & -1
\end{pmatrix}.
\]

Second, multiply the inverse matrix by the two vectors \((-4, 2, -19)\) and \((0, 3, -9)\) from the encoded message:

\[
\begin{pmatrix}
3 & -3 & -1 \\
0 & 1 & 0 \\
2 & -3 & -1
\end{pmatrix}
\begin{pmatrix}
-4 \\
2 \\
-19
\end{pmatrix}
= \begin{pmatrix}
1 \\
2 \\
5
\end{pmatrix},
\begin{pmatrix}
3 & -3 & -1 \\
0 & 1 & 0 \\
2 & -3 & -1
\end{pmatrix}
\begin{pmatrix}
0 \\
3 \\
-9
\end{pmatrix}
= \begin{pmatrix}
0 \\
3 \\
0
\end{pmatrix}.
\]

Third, read the secret time: 1, 2, 5, 0, 3, 0 or 12:50:30. (The secret mission is Midterm I : o)

Answer: \boxed{12:50:30}
Problem 4. For each value of a constant a, find the dimension of a subspace generated by vectors $(a, 1, 1)$, $(2, -3, 5)$ and $(1, 0, 1)$.

Solution. Let $V = \text{span}\{(a, 1, 1), (2, -3, 5), (1, 0, 1)\}$. The dimension of V is equal to the rank of the matrix

\[
\begin{pmatrix}
a & 2 & 1 \\
1 & -3 & 0 \\
1 & 5 & 1 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & -3 & 0 \\
1 & 5 & 1 \\
a & 2 & 1 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & -3 & 0 \\
0 & 8 & 1 \\
0 & 2 + 3a & 1 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & -3 & 0 \\
0 & 8 & 1 \\
0 & -6 + 3a & 0 \\
\end{pmatrix}.
\]

If $-6 + 3a = 0$, that is $a = 2$, then the rank is 2. If $-6 + 3a \neq 0$, that is $a \neq 2$, then the rank is 3.

Answer: If $a = 2$ then the dimension is 2. If $a \neq 2$ then the dimension is 3.
Problem 5. A linear transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) is defined by
\[
T(x, y, z) = (x + y - z, -y + z, -2x - 2y + 2z, 3y - 3z).
\]
a) Find the matrix of \(T \) with respect to the standard bases.
b) Find a basis in the kernel of \(T \) and a basis in the image of \(T \).
c) Find the dimensions of the kernel and the image.
d) Find the rank of \(T \).
e) Verify the Kernel-Image theorem for \(T \).

Solution. The matrix of \(T \) with respect to the standard bases in \(\mathbb{R}^3 \) and \(\mathbb{R}^4 \) is
\[
A = \begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{pmatrix}_{4 \times 3}
\]
We perform elementary row transformations to get the reduced row-echelon form of \(A \):
\[
A = \begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{pmatrix}
\sim \begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\sim \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \text{rref}(A).
\]
Obviously, the rank of \(A \) is 2. It is the dimension of the image of \(T \). The image of \(T \) is generated by the first and the second columns of \(A \), since the leading ones in the \(\text{rref}(A) \) stay in the first and the second columns: \(\text{Im}T = \text{span}\{(1, 0, -2, 0), (1, -1, -2, 3)\} \). Since the spanning vectors are linearly independent they comprise a basis of \(T \).

The Kernel-Image Theorem says that
\[
\dim \ker T + \dim \text{Im} T = \dim \mathbb{R}^3
\]
or
\[
\dim \ker T + 2 = 3.
\]
So \(\dim \ker T = 1 \). A basis of \(\ker T \) can be found by solving a homogenous linear system with coefficient matrix \(A \). It is easy to read the solution from the \(\text{rref}(A) \): \(x = 0, y = t, z = t \), where \(t \) is an arbitrary real number. Hence
\[
\ker T = \{(0, t, t) \mid t \in \mathbb{R} \} = \text{span}\{(0, 1, 1)\}.
\]

Answer: The standard matrix of \(T \) is \(A = \begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{pmatrix},
\]
a basis of \(\ker T \) is \(\{(0, 1, 1)\} \),
a basis of \(\text{Im} T \) is \(\{(1, 0, -2, 0), (1, -1, -2, 3)\} \),
\(\dim \ker T = 1 \),
\(\dim \text{Im} T = \text{rk} T = 2 \).