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A. J. DE JONG AND JASON STARR

Abstract. Let X be a Fano manifold of pseudo-index ≥ 3 such that c1(X)2−
2c2(X) is nef. Irreducibility of some spaces of rational curves on X implies a
general point of X is contained in a rational surface.

1. Introduction

One consequence of the bend-and-break lemma is uniruledness of Fano mani-
folds, [MM86]. In characteristic 0, Fano manifolds are even rationally connected,
[KMM92], [Cam92]. We prove an analogous theorem with rational curves replaced
by rational surfaces for Fano manifolds satisfying positivity of the second graded
piece of the Chern character.

Definition 1.1. A Fano manifold is 2-Fano if ch2(TX) is nef, where ch2(TX) is the
second graded piece of the Chern character 1

2 (c1(TX)2 − 2c2(TX)). In other words,
deg(ch2(TX)|S) is nonnegative for every surface S in X.

There is a space M0,0(X) parametrizing genus 0 stable maps to X. These are
isomorphism classes of pairs (C, f) of a proper, at-worst-nodal, arithmetic genus
0 curve C and a morphism f : C → X such that every irreducible component
of C on which f is constant intersects at least three other components. To be
precise, M0,0(X) is an algebraic stack with finite diagonal (it is Deligne-Mumford
in characteristic 0). It is proper and contains an open substack that is isomorphic
to the Hilbert scheme of smooth, embedded rational curves in X, cf. [FP97].

Let M be a positive-dimensional, irreducible component of M0,0(X) whose gen-
eral point parametrizes a stable map with irreducible domain, i.e., a morphism from
P1 to X. Denote by M the coarse moduli space of M. Denote by ∆ the locally
principal closed substack of M0,0(X) parametrizing stable maps with reducible do-
main. The closed substack M∩∆ is a Cartier divisor. The question we consider
is uniruledness of M .

Theorem 1.2. If X is 2-Fano, every point of M parametrizing a free curve and
contained in a proper curve in M −M ∩∆ is contained in a rational curve in M .

If a general point of M parametrizes a birational, free curve and is contained in
a proper curve in M −M ∩∆, then a general point of X is contained in a rational
surface.

For a proper, smooth curve C in M−M∩∆ the deformation theory of Hom(C,M)
is fairly simple and gives a lower bound on the dimension of Hom(C,M), cf.
Lemma 2.2. Using the hypothesis that X is 2-Fano, this lower bound can be
made arbitrarily large. Then the bend-and-break approach of [MM86] implies M
contains a rational curve through every point of C.
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Fortunately there are nice sufficient conditions for M −M ∩∆ to contain many
proper curves. Recall the pseudo-index of X is defined to be the minimal c1(TX)-
degree of any rational curve in X.

Proposition 1.3. If the pseudo-index of X is ≥ 3 and every irreducible component
of M∩∆ is an irreducible component of ∆, then M −M ∩∆ is a union of proper
curves.

If the pseudo-index of X is ≥ 3, then every free morphism deforms to a birational,
free morphism.

The proof uses a contraction of the locally principal closed subspace ∆ inM0,0(X)
discovered independently by several groups: Coskun, Harris and one of us, [CHS05];
Adam Parker, [Par05]; and Mustaţǎ and Mustaţǎ, unpublished (but see [MM04]).

Section 3 gives some examples where the hypotheses of Theorem 1.2 and Propo-
sition 1.3 hold. Section 4 shows Theorem 1.2 is sharp in two ways. First, there
are Fano manifolds that are not 2-Fano where the components M are not uniruled.
Second, there are 2-Fano manifolds where the components M are uniruled but not
rationally connected. Finally Section 5 speculates on sufficient conditions for the
components M to be rationally connected.

2. Proof of the theorem

For every point x, denote by Hom(P1, X, 0 7→ x)nc the open subscheme of
Hom(P1, X, 0 7→ x) parametrizing nonconstant morphisms.

Lemma 2.1. The dimension of every irreducible component of Hom(P1, X, 0 7→
x)nc is at least as large as the pseudo-index of X.

Proof. This follows from [Kol96, Theorem II.1.2, Corollary II.1.6]. �

Proof of Proposition 1.3. First of all, the statement that a general deformation
of a free morphism is birational is very similar to [Kol96, Thm. II.3.14]. Let
P1 g−→ P1 h−→ X be a factorization of a free morphism f = h ◦ g where g has degree
m ≥ 2. Since g∗h∗TX is ample, also h∗TX is ample. Thus h is free. So the dimension
ofM0,0(X) at [h] is the “expected dimension”, namely deg(h∗c1(TX))+dim(X)−3.
The dimension of the stack of m-fold covers of deformations of h is

deg(h∗c1(TX)) + dim(X)− 3 + 2(m− 1).

On the other hand, the dimension of M0,0(X) at [f ] is

deg(f∗c1(TX)) + dim(X)− 3 = mdeg(h∗c1(TX)) + dim(X)− 3.

The difference of the first dimension from the second dimension is,

(m− 1)(deg(h∗c1(TX))− 2).

Thus, if deg(h∗c1(TX)) ≥ 3 then a general deformation of f is not an m-fold cover
of a deformation of h.

Next is the existence of proper curves in M − M ∩ ∆. Let f : X ↪→ Pr be a
plurianticanonical embedding. Denote by M0,0(f) : M0,0(X) →M0,0(Pr) the as-
sociated embedding. Denote by φ : M0,0(Pr) → Y the contraction of the boundary
constructed in [CHS05]. All that we will use about φ is the following.

(i) Every connected component of Y is a projective scheme.
(ii) The restriction of φ to the open subset M0,0(Pr)−∆ is an open immersion.
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(iii) For each pair of integers i ≤ j, the composition of φ with

∆i,j : M0,1(Pr, i)×Pr M0,1(Pr, j) � ∆ ⊂M0,0(Pr)

factors through projection

πj : M0,1(Pr, i)×Pr M0,1(Pr, j) →M0,1(Pr, j).

Denote by N the image of M in Y . Since the restriction of φ to M0,0(Pr)−∆ is
an open immersion, the restriction of φ◦M0,0(f) to M −∆ is an immersion. Since
Mfree is dense in M, M has pure dimension equal to the expected dimension, and
M∩ ∆ is a Cartier divisor. Therefore dim(N) equals dim(M) and dim(M∩ ∆)
equals dim(M)− 1.

Denote ∆i,j∩M0,0(X) by ∆X,i,j . Denote the restriction of πj by πX,j : ∆X,i,j →
M0,1(PN , j). By Lemma 2.1, every irreducible component of every fiber of πX,j has
dimension ≥ 1, i.e., the difference of the pseudo-index and dim(Aut(P1, 0)). There-
fore, for every irreducible component ∆′ of ∆, the dimension of φ(M0,0(f)(∆′)) is
strictly less than the dimension of ∆′. By hypothesis, every irreducible component
∆′ of M∩∆ is an irreducible component of ∆. Since dim(∆′) equals dim(M)− 1,
the image of ∆′ in N has dimension ≤ dim(N)− 2.

Since every connected component of Y is projective, also N is projective. Be-
cause dim(Image(∆′)) ≤ dim(N)− 2, a general intersection of N with dim(N)− 1
hyperplanes containing a point of N − Image(∆′) is a complete curve that does not
intersect Image(∆′). Because there are only finitely many irreducible components of
M∩∆, a general intersection of N with dim(N)−1 hyperplanes containing a point
of N − Image(M∩∆) is a complete curve that does not intersect Image(M∩∆).
The inverse image of this curve in M−M∩ ∆ is a complete curve containing a
given point ofM−M∩∆. To be completely precise, this curve is actually a proper,
1-dimensional stack. But every such stack is the image of a finite 1-morphism whose
domain is a proper, smooth curve. �

Let C be a smooth, proper, connected curve and let ζ : C →M0,0(X)−∆ be a
nonconstant 1-morphism whose general point parametrizes a free curve of (−KX)-
degree e. This is equivalent to a pair (π : Σ → C,F : Σ → X) of a ruled surface
Σ over C and a morphism F : Σ → X mapping fibers of π to curves in X of
(−KX)-degree e.

Lemma 2.2. The dimension at [ζ] of Hom(C,M0,0(X), ζ|B) is at least,

deg(ch2(TX)|F (Σ)) +
1
2e

deg(c1(TX)2|F (Σ))− (e + dim(X)− 3)(g(C)− 1 + #(B)).

Proof. The argument will use Riemann-Roch on Σ. Before beginning, we recall one
useful fact about the Chow ring of the ruled surface Σ. Tsen’s theorem implies
existence of a section of Σ, i.e., a morphism σ : C → Σ such that π ◦ σ = IdC .
Every element in the Picard group of Σ has the form

α = e[σ(C)] + π∗D

for a unique integer e and a unique divisor class D on C. On the one hand,

−e(ωπ · α) = −e2(ωπ · [σ(C)]) + 2edeg(D).

On the other hand,

α · α = e2([σ(C)] · [σ(C)]) + 2edeg(D).
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Finally, by the adjunction formula

ωπ · [σ(C)] = −[σ(C)] · [σ(C)].

Altogether this gives the following equation for every divisor class α,

− e(ωπ · α) = α · α. (1)

The particular case α = ωπ gives,

ωπ · ωπ = 0.

To resume the proof, the deformation theory of Hom(C,M0,0(X), ζB) at [ζ] is
the same as the theory of deformations of the finite morphism

(π, F ) : Σ → C ×X

holding C, X and (π, F )|π−1B fixed. The deformation theory of such morphisms is
controlled by the normal sheaf N of (π, F ),

N := Coker(TΣ
d(π,F )−−−−→ π∗TC ⊕ F ∗TX).

To be precise, the Zariski tangent space to Hom(C,M0,0(X), ζ|B) at [ζ] is isomor-
phic to

H0(C,N (−π−1B))
and

dim[ζ]Hom(C,M0,0(X), ζB) ≥ h0(C,N (−π−1B))− h1(C,N (−π−1B)).

For an excellent description of the infinitesimal theory of Hilbert schemes leading
to this formula we recommend [Kol96, Chapter I].

By the Leray spectral sequence

h2(Σ,N (−π−1B)) = h1(C,R1π∗N (−B)).

Because a general point of C parametrizes a free curve, the restriction of N to a
general fiber of π is generated by global sections; thus it has no higher cohomology.
Therefore R1π∗N is a torsion sheaf on the curve C, which also has no higher
cohomology:

h1(C,R1π∗N (−B)) = 0.

Because h2(Σ,N (−π−1B)) = 0,

h0(N (−π−1B))− h1(N (−π−1B)) = χ(Σ,N (−π−1B)).

Riemann-Roch gives

χ(Σ,N (−π−1B)) = deg(ch(N ) · π∗ch(OC(−B)) · Todd(Σ)).

There are a couple of observations. First,

ch(N ) = ch(F ∗TX)− ch(Tπ) = F ∗ch(TX)− (1− ωπ + ω2
π/2).

Second, since the Todd class is multiplicative,

Todd(Σ) = Todd(π)π∗Todd(C) = (1− ωπ/2 + ω2
π/12)(1− π∗ωC/2).

Combined with the contribution from −π−1B, this gives,

π∗ch(OC(−B))Todd(Σ) = (1− ωπ/2 + ω2
π/12)(1− π∗ωC/2− π∗B)

which reduces to

π∗ch(OC(−B))Todd(Σ) = 1− (ωπ + π∗ωC + 2π∗B)/2− (g(C)− 1 + #B)[point]
4



because ω2
π = 0. Therefore χ(Σ,N (−π−1B)) equals

deg(ch2(TX)|F (Σ))− deg(ωπ · g∗c1(TX))− (g(C)− 1 + #B)(e + dim(X)− 3).

Finally, applying Equation 1 to α = F ∗c1(TX) gives

−ωπ · F ∗c1(TX) =
1
2e

F ∗c1(TX)2.

�

Proof of Theorem 1.2. Every proper curve in M −M ∩ ∆ is the image of a non-
constant 1-morphism ζ : C → M −M ∩ ∆ from a smooth curve C. The in-
duced morphism Hom(C,M−M ∩ ∆) → Hom(C,M) is finite. By Lemma 2.2,
dim(Hom(C,M ; ζ|B)) behaves as if M is smooth along the image of ζ and the
anticanonical degree of ζ(C) equals

deg(ch2(TX)|F (Σ)) +
1
2e

deg(c1(TX)2|F (Σ)).

Because X is 2-Fano, this degree is positive. Therefore the usual bend-and-break
argument applies, cf. [Kol96, Theorem II.5.8]. �

3. Examples

We list below a number of Fano manifolds satisfying the hypotheses of Theo-
rem 1.2 and Proposition 1.3. For further work towards classifying such manifolds,
please see the note [dJS05]. But first there are a couple of observations about the
conclusion of Theorem 1.2, i.e., existence of rational surfaces containing a general
point. First of all, this is a birational property. Therefore it is reasonable to focus
on minimal Fano manifolds, for instance those with Picard number 1.

The second observation has to do with specialization for flat families. Let R be a
DVR whose residue field is algebraically closed of characteristic 0. Let X → Spec R
be a projective smooth morphism. Denote the closed fiber by X0 and the geometric
generic fiber by Xη. Even assuming a general point of Xη is contained in a rational
surface, it is not obvious that a general point of X0 is contained in a rational
surface. After all rational surfaces can specialize to non-rational surfaces. As we
will explain, a general point of X0 is contained in a rational surface if Theorem 1.2
applies to Xη, even if X0 itself does not satisfy the hypotheses of Theorem 1.2. This
is one advantage of our approach to studying rational surfaces on Fano manifolds.

Here is the argument. Form the relative Kontsevich space

M0,0(X/Spec R) → Spec R.

The closed fiber isM0,0(X0) and the geometric generic fiber isM0,0(Xη). Consider
those irreducible components M of M0,0(X/Spec R) dominating Spec R, i.e., such
that M→ Spec R is flat. In particular, the moduli point of each free curve C in X0

is contained in a unique irreducible component M dominating Spec R (in fact M
is smooth over Spec R at [C]). If the geometric generic fiber of M is uniruled then
also the closed fiber is uniruled. Therefore, if Theorem 1.2 applies to the geometric
generic fiber Xη, then C is contained in a rational surface in X0 (assuming C is a
free, embedded curve). Since this also applies to deformations of C, a general point
of X0 is contained in a rational surface. Therefore it is reasonable to focus on Fano
manifolds Xη which are general in moduli.
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We know of two infinite sets of families of 2-Fano manifolds of Picard number
1. For each of these, the hypotheses of Theorem 1.2 and Proposition 1.3 hold for
every member of the family which is general in moduli (in the sense above). First,
the Grassmannian Grass(k, n) of k-dimensional subspaces of a fixed n-dimensional
vector space is always Fano, and it is 2-Fano if and only if k = 1, n = 2k or
n = 2k + 1 (normalizing so that 2k ≤ n). Second, a smooth complete intersection
of type (d1, . . . , dc) in an n-dimensional weighted projective space is Fano if and
only if d1 + · · ·+ dc ≤ n. And it is 2-Fano if and only if d2

1 + · · ·+ d2
c ≤ n + 1.

For Grassmannians, and more generally for any projective homogeneous space,
Kim and Pandharipande have proved that every connected component of M0,0(X)
is irreducible, [KP01]. Second, by the same technique as in [HRS04], for a complete
intersection of type (d1, . . . , dc) in Pn which is general in moduli, the connected
components of M0,0(X) are irreducible provided

c∑
i=1

di ≤
n + c + 1

2
.

This inequality is implied by the previous inequality
∑

d2
i ≤ n + 1. There do

exist complete intersections for which the connected components are reducible,
e.g., any Fano hypersurface of degree d ≥ 4 having a conical hyperplane section.
However, the argument above proves that a general point of every 2-Fano complete
intersection is contained in a rational surface.

Two operations producing new 2-Fano manifolds are worthy of comment, al-
though they do not produce minimal 2-Fano manifolds. First, every product of
2-Fano manifolds is 2-Fano. Second, let X be a smooth Fano manifold and let
L be a nef invertible sheaf. The P1-bundle P(OX ⊕ L∨) is Fano if and only if
c1(TX)− c1(L) is ample. And then it is 2-Fano if and only if ch2(TX) + 1

2c1(L)2 is
nef. Notice ch2(TX) need not be nef, i.e., X need not be 2-Fano.

Other operations on Fano manifolds produce 2-Fano manifolds only under strong
hypotheses. For instance, a projective bundle P(E) of fiber dimension ≥ 2 over a
Fano manifold is Fano if E satisfies a weak version of semistability. However, if
P(E) is 2-Fano then E satisfies a very strong version of semistability: the pullback
to every curve in X is semistable. If X is Pn this condition implies P(E) is Pm×Pn

for some m.

4. The theorem is sharp

The theorem is sharp in two ways. First, let X be a general cubic hypersurface
in P5. This is Fano, but it is not 2-Fano. By the main theorem of [dJS04], there
are infinitely many non-uniruled irreducible components M of M0,0(X) satisfying
the hypotheses of Theorem 1.2.

Second, let Y be the P1-bundle over X, Y = P(OX ⊕ OP5(−2)|X). By the
construction in the last section, Y is 2-Fano. Associated to the projection π :
Y → X, there is a 1-morphism M0,0(π) : M0,0(Y ) → M0,0(X). Let N be an
irreducible component of M0,0(Y ) containing a very free curve. It is easy to prove
the restriction to N of the contraction φ maps the Cartier divisor N ∩ ∆ to a
subvariety of codimension ≥ 2. (However it is not true that every component
of N ∩ ∆ is a component of ∆.) Thus Theorem 1.2 implies N is uniruled. In
fact, the restriction of M0,0(π) to N is birational to a projective bundle over the
image component M of M0,0(X). Choosing N appropriately, M is one of the
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infinitely many non-uniruled irreducible components of M0,0(X). Therefore N is
not rationally connected, and the MRC quotient of N is precisely M .

5. Speculation

For the counterexample Y in the previous section, ch2(TY ) is nef. But it is not
“positive”. It has intersection number 0 with the surface π−1B for every curve B
in X. If X is a Fano manifold such that ch2(TX) has positive intersection number
with every surface, is M rationally connected? We know no counterexample.
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