SEMI-STABLE LOCUS OF A GROUP COMPACTIFICATION

XUHUA HE AND JASON STARR

ABSTRACT. In this paper, we consider the diagonal action of a connected semisimple group of adjoint type on its wonderful compactification. We show that the semi-stable locus is a union of the G-stable pieces and we calculate the geometric quotient.

0.1. Introduction. Let G be a connected, semisimple algebraic group of adjoint type over an algebraically closed field and X be its wonderful compactification. We will give an explicit description of the semi-stable locus of X (for the diagonal G-action) using Lusztig's G-stable pieces and calculate the geometric quotient X//G. We also deal with the case where the G-action is twisted by a diagram automorphism.

The results will be used by the first author [He] to study character sheaves on the wonderful compactification.

During the time the article was writing, we learned that De Concini, Kanna and Maffei [CKM] described the semi-stable locus and geometric quotient for complete symmetric varieties (which includes as a special case the non-twisted conjugation action of G on its wonderful compactification).

0.2. Geometric invariant theory. The foundations of geometric invariant theory are developed in [MFK94]. We quickly review that part which we use. Let k be a field. The setup for geometric invariant theory over k consists of $(G, X, \tau, \mathcal{L}, \psi)$ where

- (i) G is a reductive algebraic group over k,
- (ii) X is a separated, finite type k-scheme,
- (iii) $\tau: G \times X \to X$ is an algebraic action of G on X,
- (iv) \mathcal{L} is an invertible sheaf on X, and
- (v) $\psi : \tau^* \mathcal{L} \to \operatorname{pr}_X^* \mathcal{L}$ is a *G*-linearization of \mathcal{L} (where $\operatorname{pr}_X : G \times X \to X$ is the projection), i.e., an isomorphism of invertible sheaves on $G \times X$ which defines a lifting of the action τ to an action of G on $\operatorname{Spec}_X \operatorname{Sym}^{\bullet}(\mathcal{L})$.

The fundamental theorem of geometric invariant theory, [MFK94, Theorem 1.10, p. 38], associates to this datum a pair $(X^{ss}(\mathcal{L}), \phi)$. Here $X^{ss}(\mathcal{L})$ is the union X_s over all positive integers n and all G-invariant sections s of $\Gamma(X, \mathcal{L}^{\otimes n})$, provided X_s is affine (recall, X_s is defined to be the maximal open subscheme of X on which s is a generator of $\mathcal{L}^{\otimes n}$). And ϕ is a *G*-invariant *k*-morphism

$$\phi: X^{\rm ss}(\mathcal{L}) \to X//_{\mathcal{L}}G$$

which is a *uniform categorical quotient* of the action of G on $X^{ss}(\mathcal{L})$. Moreover the following hold.

- (i) The morphism ϕ is affine and universally submersive.
- (ii) For some integer n > 0, there exists an ample invertible sheaf \mathcal{M} on $X//_{\mathcal{L}}G$ such that $\phi^*\mathcal{M}$ is isomorphic to $\mathcal{L}^{\otimes n}$ as *G*-linearized invertible sheaves (in particular, $X//_{\mathcal{L}}G$ is quasi-projective).
- (iii) There exists a unique open subscheme U of $X//_{\mathcal{L}}G$ such that $\phi^{-1}(U)$ is the stable locus. And the induced morphism $\phi : \phi^{-1}(U) \to U$ is a uniform geometric quotient of $\phi^{-1}(U)$.

Since we do not make use of them, we will not make precise the definitions of uniform categorical quotient, stable locus and uniform geometric quotient. But we will use a few other known facts about geometric invariant theory.

Fact 1. When X is projective and \mathcal{L} is ample, every open X_s is affine. Thus $X//_{\mathcal{L}}G$ is canonically isomorphic to

$$X//_{\mathcal{L}}G = \operatorname{Proj} \oplus_{n>0} \Gamma(X, \mathcal{L}^{\otimes n})^G$$

and $X^{ss}(\mathcal{L})$ is the maximal open subscheme of X on which the natural rational map from X to $X//_{\mathcal{L}}G$ is defined, [Ses77].

Fact 2. Again when X is proper, every G-orbit O in $X^{ss}(\mathcal{L})$ contains a unique closed G-orbit in its closure (in $X^{ss}(\mathcal{L})$). And two G-orbits O_1 and O_2 in $X^{ss}(\mathcal{L})$ are in the same fiber of ϕ if and only if the associated closed G-orbits are equals. In particular, ϕ establishes a natural bijection between the points of $X//_{\mathcal{L}}G$ and the closed G-orbits in $X^{ss}(\mathcal{L})$, [Ses77].

Fact 3. (Matsushima's criterion) A *G*-orbit *O* is affine if and only if the stabilizer group of one (and hence every) closed point is itself reductive, [Ric77]. In particular, since the fibers of ϕ are affine, every closed *G*-orbit in $X^{ss}(\mathcal{L})$ is affine, and hence has reductive stabilizer group.

Fact 4. If X is normal (or if $X^{ss}(\mathcal{L})$ is normal), then ϕ factors through the normalization of the target. Thus by the universal property, the target $X//_{\mathcal{L}}G$ is normal.

0.3. Notations. Now we fix the notations used in the rest of this article. Let G be a connected semisimple algebraic group of adjoint type over an algebraically closed field k. Let B be a Borel subgroup of G, B^- be an opposite Borel subgroup and $T = B \cap B^-$. Let $(\alpha_i)_{i \in I}$ be the set of simple roots determined by (B,T). We denote by W the Weyl group N(T)/T. For $w \in W$, we choose a representative \dot{w} in N(T). For $i \in I$, we denote by ω_i and s_i the fundamental weight and the simple reflection corresponding to α_i . For $J \subset I$, let $P_J \supset B$ be the standard parabolic subgroup defined by J and let $P_J^- \supset B^-$ be the parabolic subgroup opposite to P_J . Set $L_J = P_J \cap P_J^-$. Then L_J is a Levi subgroup of P_J and P_J^- . The semisimple quotient of L_J of adjoint type will be denoted by G_J . We denote by π_{P_J} (resp. $\pi_{P_J^-}$) the projection of P_J (resp. P_J^-) onto G_J . Let W_J be the subgroup of W generated by $\{s_j \mid j \in J\}$ and W^J be the set of minimal length coset representatives of W/W_J .

0.4. Wonderful compactification of G. We consider G as a $G \times G$ -variety by left and right translation. Then there exists a canonical $G \times G$ -equivariant embedding X of G which is called the *wonderful* compactification ([DCP83], [Str87]). The variety X is an irreducible, smooth projective $(G \times G)$ -variety with finitely many $G \times G$ -orbits Z_J indexed by the subsets J of I. The boundary X - G is a union of smooth divisors $\overline{Z_{I-\{i\}}}$ (for $i \in I$), with normal crossing. The $G \times G$ -variety Z_J is isomorphic to the product $(G \times G) \times_{P_J^- \times P_J} G_J$, where $P_J^- \times P_J$ acts on $G \times G$ by $(q, p) \cdot (g_1, g_2) = (g_1q^{-1}, g_2p^{-1})$ and on G_J by $(q, p) \cdot z = \pi_{P_J^-}(q)z\pi_{P_J}(p)^{-1}$. We denote by h_J the image of (1, 1, 1) in Z_J under this isomorphism.

0.5. Twisted actions. We follow the approach in [HT06, Section 3]. Let σ be an automorphism on G such that $\sigma(B) = B$ and $\sigma(T) = T$. We also assume that σ is a diagram automorphism, i.e., the order of σ coincides with the order of the associated permutation on I.

Let G_{σ} (resp. X_{σ}) be the $(G \times G)$ -variety which as a variety is isomorphic to G (resp. X), but the $G \times G$ -action is twisted by $(g, g') \mapsto$ $(g, \sigma(g'))$. Then G_{σ} is an open $G \times G$ -subvariety of X_{σ} and we call X_{σ} the wonderful compactification of G_{σ} .

Under the natural bijection between X and X_{σ} , we may identify the $G \times G$ -orbits on X with the $G \times G$ -orbits on X_{σ} . We denote by $Z_{J,\sigma}$ the $G \times G$ -orbit on X_{σ} that corresponds to $Z_{\sigma(J)} \subset X$. Accordingly, we denote by $h_{J,\sigma}$ the base point in $Z_{J,\sigma}$ which corresponds to the base point $h_{\sigma(J)}$ of $Z_{\sigma(J)}$.

0.6. σ -semisimple elements in G_{σ} . We follow the notation of [Spr06]. An element $g \in G_{\sigma}$ is called σ -semisimple if it is conjugated to an element in T. We have the following result.

Theorem 0.1. Let $g \in G_{\sigma}$. Then the following conditions are equivalent:

- (1) The element g is σ -semisimple.
- (2) The G-orbit of g is closed in G_{σ} .
- (3) The isotropy subgroup of g in G is reductive.

The equivalence of (1) and (2) can be found in [Lus03, 1.4 (e)] (in terms of disconnected groups instead of twisted conjugation action). In the case of simply connected group, the equivalence is also proved

in [Spr06, Proposition 3]. The equivalence of (2) and (3) follows from Fact 3, Matsushima's criterion.

0.7. *G*-stable-piece decomposition. Let G_{Δ} be the diagonal image of *G* in $G \times G$. The classification of the G_{Δ} -orbits on *X* was obtained by Lusztig [Lus04] in terms of *G*-stable pieces. A similar result also occurs in [EL06]. We list some known results which will be used later.

For $J \subset I$ and $w \in W^{\sigma(J)}$, set

$$Z_{J,\sigma;w} = G_{\Delta}(B\dot{w}, B) \cdot h_{J,\sigma}.$$

We call $Z_{J,\sigma;w}$ a *G*-stable piece of X_{σ} . By [Lus04, 12.3] and [He06, Proposition 2.6], X_{σ} is a disjoint union of the *G*-stable pieces.

Fact 5. $X_{\sigma} = \bigsqcup_{J \subset I} \bigsqcup_{w \in W^{\sigma(J)}} Z_{J,\sigma;w}$.

Set $I(J,\sigma;w) = \max\{K \subset J \mid w\sigma(K) = K\}$. Then the subvariety $L_{I(J,\sigma;w)}\dot{w}$ of G_{σ} is stable under the action of $L_{I(J,\sigma;w)} \times L_{I(J,\sigma;w)}$ and in particular, is stable under the conjugation action of $L_{I(J,\sigma;w)}$. Moreover, by [Lus04, 12.3(a)] and [He07, Lemma 1.4],

$$Z_{J,\sigma;w} = G_{\Delta}(L_{I(J,\sigma;w)}\dot{w}, 1) \cdot h_{J,\sigma}$$

and there exists a natural bijection between the G_{Δ} -orbits on $Z_{J,\sigma;w}$ and the $L_{I(J,\sigma;w)}$ -orbits on $L_{I(J,\sigma;w)}\dot{w}/Z^0(L_J) \subset G_{\sigma}/Z^0(L_J)$ (for the conjugation action of $L_{I(J,\sigma;w)}$).

For any point z in $Z_{J,\sigma;w}$, the isotropy subgroup

$$G_z = \{g \in G \mid (g,g) \cdot z = z\}$$

was described explicitly in [EL06, Theorem 3.13]. We only need the following special case in our paper.

Fact 6. Let $z = (gl\dot{w}, g) \cdot h_{J,\sigma}$ for $g \in G$ and $l \in L_{I(J,\sigma;w)}$. Then G_z is reductive if and only if w = 1 and l is a σ -semisimple element in $L_{I(J,\sigma;1)}$.

By [He07, Theorem 4.5], the closure of each *G*-stable piece is a union of *G*-stable pieces and the closure relation can be described explicitly. More precisely, for $J \subset I$, $w \in W^{\sigma(J)}$ and $w' \in W$, we write $w' \leq_{J,\sigma} w$ if there exists $u \in W_J$ such that $w' \geq uw\sigma(u)^{-1}$. Then

$$Z_{J,\sigma;w} = \bigsqcup_{J' \subset J} \bigsqcup_{w' \in W^{J'}, w' \leq J,\sigma w} Z_{J',\sigma;w'}.$$

Notice that if $1 \leq_{J,\sigma} w$, then we must have w = 1. Therefore,

Fact 7. $\sqcup_{J \subset I} Z_{J,\sigma;1}$ is open in X_{σ} .

0.8. Nilpotent Cone of X. For any dominant weight λ , let $H(\lambda)$ be the dual Weyl module for G_{sc} with lowest weight $-\lambda$. Let ${}^{\sigma}H(\lambda)$ be the G_{sc} -module which as a vector space is $H(\lambda)$, but the G_{sc} -action is twisted by the automorphism σ on G_{sc} . Then there exists (up to a nonzero constant) a unique G_{sc} isomorphism ${}^{\sigma}H(\lambda) \to H(\sigma(\lambda))$. In particular, if $\lambda = \sigma(\lambda)$, then we have an isomorphism $f_{\lambda} : {}^{\sigma}H(\lambda) \to H(\lambda)$.

By [DCS99, 3.9], there exists a $G \times G$ -equivariant morphism

$$\rho_{\lambda}: X \to \mathbb{P}(\operatorname{End}(\operatorname{H}(\lambda)))$$

which extends the morphism $G_{\sigma} \to \mathbb{P}(\text{End}(\mathrm{H}(\lambda)))$ defined by $g \mapsto g[\mathrm{Id}_{\lambda}]$, where $[\mathrm{Id}_{\lambda}]$ denotes the class representing the identity map on $\mathrm{H}(\lambda)$ and g acts by the left action. We denote by $\mathcal{L}_{X}(\lambda)$ the $G_{\mathrm{sc}} \times G_{\mathrm{sc}}$ -linearized invertible sheaf on X which is the pullback under ρ_{λ} of $\mathcal{O}(1)$ with its canonical linearization. This is the "usual" linearized invertible sheaf on X associated to the weight λ , e.g., as defined in [BP00, p. 100]. For sufficiently divisible and positive n, the $G_{\mathrm{sc}} \times G_{\mathrm{sc}}$ -linearization of $\mathcal{L}_{X}(\lambda)^{\otimes n} = \mathcal{L}_{X}(n \cdot \lambda)$ factors through a $G \times G$ -linearization. This induces a G_{Δ} -linearization of $\mathcal{L}_{X}(\lambda)^{\otimes n}$. If moreover, λ is regular, then $\mathcal{L}_{X}(\lambda)$ is ample (see [Str87, section 2]).

The morphism ρ_{λ} induces a $G \times G$ -equivariant morphism $X_{\sigma} \to \mathbb{P}(\operatorname{Hom}({}^{\sigma}\operatorname{H}(\lambda), \operatorname{H}(\lambda)))$. When $\lambda = \sigma(\lambda)$, we may apply the isomorphism $f_{\lambda} : {}^{\sigma}\operatorname{H}(\lambda) \to \operatorname{H}(\lambda)$ to obtain the $G \times G$ -equivariant morphism

$$\rho_{\lambda,\sigma}: X_{\sigma} \to \mathbb{P}(\operatorname{End}(\operatorname{H}(\lambda))).$$

As above, $\mathcal{L}_{X_{\sigma}}(\lambda, \sigma)$ denotes the $G_{\mathrm{sc}} \times G_{\mathrm{sc}}$ -linearized invertible sheaf on X_{σ} which is the pullback under $\rho_{\lambda,\sigma}$ of $\mathcal{O}(1)$ with its canonical linearization. Of course X_{σ} equals X as varieties, and $\mathcal{L}_{X}(\lambda)$ equals $\mathcal{L}_{X_{\sigma}}(\lambda, \sigma)$ as invertible sheaves on this variety. But the $G \times G$ -actions are not the same, and thus the $G \times G$ -linearized invertible sheaves are not the same.

For $\lambda = \sigma(\lambda)$, let $\mathcal{N}(\lambda)_{\sigma}$ be the subvariety of X_{σ} consisting of elements that may be represented by a nilpotent endomorphism of $\mathcal{H}(\lambda)$. We call $\mathcal{N}(\lambda)_{\sigma}$ the *nilpotent cone* of X_{λ} associated to the dominant weight λ . We have an explicit description of $\mathcal{N}(\lambda)$ which was obtained in [HT06, Proposition 4.4]

$$\mathcal{N}(\lambda)_{\sigma} = \bigsqcup_{J \subset I} \bigsqcup_{\substack{w \in W^{\sigma(J)} \\ I(\lambda) \cap \operatorname{supp}(w) \neq \varnothing}} Z_{J,\sigma;w},$$

where $I(\lambda) = \{i \in I \mid a_i \neq 0\}$ of I for $\lambda = \sum_{i \in I} a_i \omega_i$ and $\operatorname{supp}(w) \subset I$ is the set of simple roots whose associated simple reflections occur in some (or equivalently, any) reduced decomposition of w.

Two subvarieties of X related to the nilpotent cones of X are of special interest. One is

$$\bigcap_{\lambda \text{ is dominant}} \mathcal{N}(\lambda)_{\sigma} = \bigsqcup_{J \subset I} \bigsqcup_{w \in W^{\sigma(J)}, \text{supp}(w) = I} Z_{J,\sigma;w}.$$

This subvariety is actually the boudary of the closure in X_{σ} of unipotent subvariety of G_{σ} in the case where G is simple (See [He06, Theorem 4.3] and [HT06, Theorem 7.3]).

The other one is $X_{\sigma} - \bigcup_{\lambda \text{ is dominant}} \mathcal{N}(\lambda)_{\sigma} = \bigsqcup_{J \subset I} Z_{J,\sigma;1}$, which is the complement of $\mathcal{N}(\lambda)_{\sigma}$ for any σ -stable dominant regular weight. By the next theorem, this subvariety is actually the semi-stable locus of X_{σ} for the G_{Δ} -action.

Theorem 0.2. For λ as above, i.e., σ -stable, dominant and regular, the semistable locus $(X_{\sigma})^{ss}(\mathcal{L}_X(\lambda)^{\otimes n})$ equals $\sqcup_{J \subset I} Z_{J,\sigma;1}$. In particular, the semistable locus is independent of the choice of weight λ .

Proof. We simply write the semistable locus $(X_{\sigma})^{ss}(\mathcal{L}_X(\lambda)^{\otimes n})$ as X_{σ}^{ss} . On End $(H(\lambda))$ the characteristic polynomial map

$$\chi : \operatorname{End}(H(\lambda)) \to k[t], \qquad (f : H(\lambda) \to H(\lambda)) \mapsto \chi_f(t)$$

is a morphism which is invariant under the conjugation action. The coefficients of the characteristic polynomial define homogeneous polynomials on $\operatorname{End}(H(\lambda))$ which are invariant under the conjugation action. Also the degree is positive except for the leading coefficient (which is 1). Thus each non-leading coefficient defines a G_{Δ} -invariant sections of positive power $\mathcal{O}(n)$ on $\mathbb{P}(\operatorname{End}(H(\lambda)))$. The pullbacks of these sections are G_{Δ} -invariant sections of positive powers $\mathcal{L}^{\otimes n}$. By Fact 1, the nonvanishing locus of each of these sections is in the semistable locus. Equivalently, the non-semistable locus is contained in the common zero locus of all of these sections. But the common zero locus of these pullback sections on X_{σ} equals the inverse image of the common zero locus of the original sections on $\mathbb{P}(\operatorname{End}(H(\lambda)))$. And this common zero locus is precisely the nilpotent cone in $\mathbb{P}(\operatorname{End}(H(\lambda)))$. Thus the nonsemistable locus is contained in $\mathcal{N}(\lambda)_{\sigma}$. So X_{σ}^{ss} contains $X_{\sigma} - \mathcal{N}(\lambda)_{\sigma}$, i.e., X_{σ}^{ss} contains $\sqcup_{J \subset I} Z_{J,\sigma;1}$.

Also, by Fact 7, $X_{\sigma}^{ss} - \bigsqcup_{J \subset I} Z_{J,\sigma;1}$ is closed in X_{σ}^{ss} . If X_{σ}^{ss} strictly contains $\bigsqcup_{J \subset I} Z_{J,\sigma;1}$, then there exists a closed G_{Δ} -orbit in X_{σ}^{ss} that is not contained in $\bigsqcup_{J \subset I} Z_{J,\sigma;1}$. Let z be an element in that orbit. By Fact 3 above, the isotropy subgroup of z, $\{g \in G \mid (g,g) \cdot z = z\}$, is reductive. By Fact 5 above, z is in $Z_{J,\sigma;w}$ for some $J \subset I$ and $w \in W^{\sigma(J)}$ with $w \neq 1$. But this contradicts Fact 6 above. Therefore X_{σ}^{ss} equals $\bigsqcup_{J \subset I} Z_{J,\sigma;1}$.

0.9. Set $\overline{T}^0 = \bigsqcup_{J \subset I} \cdot (T, 1) h_{J,\sigma}$ and $\overline{T}' = (N_{\sigma})_{\Delta} \cdot \overline{T}^0$, where N_{σ} is the inverse image of W^{σ} under the map $N_G(T) \to N_G(T)/T = W$. In the case where σ acts trivially on W, \overline{T}' is the closure of T in X and it

is just the toric variety associated with the fan of Weyl chambers (see [BK05, Lemma 6.1.6 (ii)]).

Lemma 0.3. A G_{Δ} -orbit O in X^{ss} is closed in X^{ss} if and only if it intersects \overline{T}^0 .

Proof. By Fact 6, the closed G_{Δ} -orbits in X^{ss} are of the form $\{(gl, g) \cdot h_J \mid g \in G\}$ for some σ -semisimple element $l \in L_J$. By Theorem 0.1, l is σ -conjugate to an element in T. Thus a G_{Δ} -orbit $\mathcal{O} \in X^{ss}$ is closed if and only if $\mathcal{O} \cap \overline{T}^0 \neq \emptyset$ (or equivalently, $\mathcal{O} \cap \overline{T}' \neq \emptyset$). \Box

Lemma 0.4. For every element z in \overline{T}' , the intersection $G_{\Delta} \cdot z \cap \overline{T}'$ of the G_{Δ} -orbit with \overline{T}' equals the $(N_{\sigma})_{\Delta}$ -orbit $(N_{\sigma})_{\Delta} \cdot z$.

Proof. Obviously $(N_{\sigma})_{\Delta} \cdot z$ is contained in $G_{\Delta} \cdot z \cap \overline{T'}$. The content of the lemma is the opposite inclusion.

Since \overline{T}' equals $(N_{\sigma})_{\Delta} \cdot \overline{T}^0$, we may assume without loss of generality that z has the form $z = (t, 1) \cdot h_{J,\sigma}$. Suppose that $(g, g) \cdot z$ equals $(t', 1) \cdot h_{J,\sigma}$ for some $t' \in T$, i.e., $(g, g) \cdot z$ is a point of $G_{\Delta} \cdot z \cap \overline{T}'$.

Denote $\cap_i \sigma^i(J)$ by J_{σ} . Let $F_{J,\sigma} = (P_{J_{\sigma}}, P_{J_{\sigma}}) \cdot h_{J,\sigma}$, then by [He07, Proposition 1.10], the action of G on X induces an isomorphism of $Z_{J,1;\sigma}$ with $G \times_{P_{J_{\sigma}}} F_{J,\sigma}$. Thus g is in $P_{J_{\sigma}}$. Also both t and t' are contained in the same $P_{J_{\sigma}}$ -orbit in $L_{J_{\sigma}}\sigma/Z^0(L_J)$, i.e. in the same G_J -conjugacy class. Hence there exists an element n in N'_{σ} such that t' equals ntn^{-1} (see [Lus03, 1.14(d)]). Therefore $G_{\Delta} \cdot z \cap T^0$ is a subset of $(N_{\sigma})_{\Delta} \cdot z$. Now also

$$G_{\Delta} \cdot z \cap \bar{T}' = G_{\Delta} \cdot z \cap (N_{\sigma})_{\Delta} \cdot \bar{T}^{0} = (N_{\sigma})_{\Delta} \cdot (G_{\Delta} \cdot z \cap \bar{T}^{0})$$

$$\subset (N_{\sigma})_{\Delta} \cdot ((N_{\sigma})_{\Delta} \cdot z) = (N_{\sigma})_{\Delta} \cdot z$$

proving the lemma.

Corollary 0.5. The embedding $\overline{T}' \to X_{\sigma}$ induces a morphism

 $i: \overline{T}'/N_{\sigma} \to X_{\sigma}//G$

which is bijective on points. If char(k) equals 0, *i* is an isomorphism. Also, if σ is the identity map (and char(k) is arbitrary), then $\overline{T'}/N_{\sigma}$ equals \overline{T}/W and the induced morphism

$$i: \bar{T}/W \to X//G$$

is an isomorphism.

Proof. The morphism $\overline{T}' \to X_{\sigma} \to X_{\sigma}//G$ is N_{σ} -invariant, and hence factors through a morphism

$$i: \overline{T}'/N_{\sigma} \to X_{\sigma}//G.$$

By Lemma 0.3, every closed *G*-orbit in X^{ss}_{σ} intersects \overline{T}' . Thus *i* is surjective. For every element *z* in \overline{T} , the *G*-orbit of *z* is closed in X^{ss}_{σ} . Thus two elements z, z' in \overline{T} have the same image under *i* if and only if they lie in the same *G*-orbit. On the other hand, by Lemma 0.4, two

elements z, z' in \overline{T} lie in the same *G*-orbit if and only if they lie in the same N_{σ} -orbit. Hence *i* is a bijection on points.

Assume for the moment that $\operatorname{char}(k)$ is 0. By Fact 4, X_{σ}^{ss} is a normal k-variety. And i is a dominant morphism of varieties which is a bijection on points. Since $\operatorname{char}(k)$ is zero, this implies that i is birational. By Zariski's Main Theorem, a bijective, birational morphism of varieties is an isomorphism if the target is normal. Thus i is an isomorphism when $\operatorname{char}(k)$ is 0. In positive characteristic, the possibility remains that i may be a purely inseparable morphism.

Next assume that s is the identity map, but $\operatorname{char}(k)$ may be arbitrary. Then \overline{T}'/N_{σ} equals \overline{T}/W for the natural W-action on \overline{T} which extends the W-action on T. By [Ste65, section 6], the restriction of i to the open subvariety T/W of \overline{T}/W gives an isomorphism $T/W \cong G//G$. Hence, as above, i is a bijective, birational morphism of varieties whose target is a normal variety. So again by Zariski's Main Theorem, i is an isomorphism.

References

- [BK05] Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005. MR MR2107324 (2005k:14104)
- [BP00] Michel Brion and Patrick Polo, Large Schubert varieties, Represent. Theory 4 (2000), 97–126 (electronic). MR MR1789463 (2001j:14066)
- [CKM] C. De Concini, S. Kannan, and A. Maffei, *The quotient of a complete* symmetric variety, arXiv:0801.0509.
- [DCP83] C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR MR718125 (85e:14070)
- [DCS99] C. De Concini and T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), no. 2-3, 273–300, Dedicated to the memory of Claude Chevalley. MR MR1712864 (2000f:14079)
- [EL06] Sam Evens and Jiang-Hua Lu, On the variety of Lagrangian subalgebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 347–379. MR MR2245536 (2007d:17031)
- [He] Xuhua He, Character sheaves on the semi-stable locus of a group compactification, Preprint.
- [He06] _____, Unipotent variety in the group compactification, Adv. Math. 203 (2006), no. 1, 109–131. MR MR2231043 (2007h:20045)
- [He07] _____, The G-stable pieces of the wonderful compactification, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3005–3024 (electronic). MR MR2299444 (2008c:14063)
- [HT06] Xuhua He and Jesper Funch Thomsen, Closures of Steinberg fibers in twisted wonderful compactifications, Transform. Groups 11 (2006), no. 3, 427–438. MR MR2264461 (2007i:14049)
- [Lus03] G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374–403 (electronic). MR MR2017063 (2006d:20090a)

- [Lus04] _____, Parabolic character sheaves. II, Mosc. Math. J. 4 (2004), no. 4, 869–896, 981. MR MR2124170 (2006d:20091b)
- [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR MR1304906 (95m:14012)
- [Ric77] R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38–41. MR MR0437549 (55 #10473)
- [Ses77] C. S. Seshadri, *Geometric reductivity over arbitrary base*, Advances in Math. **26** (1977), no. 3, 225–274. MR MR0466154 (57 #6035)
- [Spr06] T. A. Springer, Twisted conjugacy in simply connected groups, Transform. Groups 11 (2006), no. 3, 539–545. MR MR2264465 (2007f:20081)
- [Ste65] Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 49–80. MR MR0180554 (31 #4788)
- [Str87] Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165–171. MR MR884653 (88b:14035)

DEPARTMENT OF MATHEMATICS, THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, CLEAR WATER BAY, KOWLOON, HONG KONG *E-mail address*: maxhhe@ust.hk

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA

E-mail address: jstarr@math.sunysb.edu