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Abstract. In this paper, we consider the diagonal action of a
connected semisimple group of adjoint type on its wonderful com-
pactification. We show that the semi-stable locus is a union of the
G-stable pieces and we calculate the geometric quotient.

0.1. Introduction. Let G be a connected, semisimple algebraic group
of adjoint type over an algebraically closed field and X be its wonderful
compactification. We will give an explicit description of the semi-stable
locus of X (for the diagonal G-action) using Lusztig’s G-stable pieces
and calculate the geometric quotient X//G. We also deal with the case
where the G-action is twisted by a diagram automorphism.

The results will be used by the first author [He] to study character
sheaves on the wonderful compactification.

During the time the article was writing, we learned that De Concini,
Kanna and Maffei [CKM] described the semi-stable locus and geometric
quotient for complete symmetric varieties (which includes as a special
case the non-twisted conjugation action of G on its wonderful compact-
ification).

0.2. Geometric invariant theory. The foundations of geometric in-
variant theory are developed in [MFK94]. We quickly review that part
which we use. Let k be a field. The setup for geometric invariant
theory over k consists of (G,X, τ,L, ψ) where

(i) G is a reductive algebraic group over k,
(ii) X is a separated, finite type k-scheme,

(iii) τ : G×X → X is an algebraic action of G on X,
(iv) L is an invertible sheaf on X, and
(v) ψ : τ ∗L→ pr∗XL is a G-linearization of L (where prX : G×X →

X is the projection), i.e., an isomorphism of invertible sheaves
on G×X which defines a lifting of the action τ to an action of
G on SpecXSym•(L).

The fundamental theorem of geometric invariant theory, [MFK94,
Theorem 1.10, p. 38], associates to this datum a pair (Xss(L), φ). Here
Xss(L) is the union Xs over all positive integers n and all G-invariant
sections s of Γ(X,L⊗n), provided Xs is affine (recall, Xs is defined to be
the maximal open subscheme of X on which s is a generator of L⊗n).
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And φ is a G-invariant k-morphism

φ : Xss(L)→ X//LG

which is a uniform categorical quotient of the action of G on Xss(L).
Moreover the following hold.

(i) The morphism φ is affine and universally submersive.
(ii) For some integer n > 0, there exists an ample invertible sheaf M

on X//LG such that φ∗M is isomorphic to L⊗n as G-linearized
invertible sheaves (in particular, X//LG is quasi-projective).

(iii) There exists a unique open subscheme U of X//LG such that
φ−1(U) is the stable locus. And the induced morphism φ :
φ−1(U)→ U is a uniform geometric quotient of φ−1(U).

Since we do not make use of them, we will not make precise the
definitions of uniform categorical quotient, stable locus and uniform
geometric quotient. But we will use a few other known facts about
geometric invariant theory.

Fact 1. When X is projective and L is ample, every open Xs is affine.
Thus X//LG is canonically isomorphic to

X//LG = Proj⊕n≥0 Γ(X,L⊗n)G

and Xss(L) is the maximal open subscheme of X on which the natural
rational map from X to X//LG is defined, [Ses77].

Fact 2. Again when X is proper, every G-orbit O in Xss(L) contains
a unique closed G-orbit in its closure (in Xss(L)). And two G-orbits
O1 and O2 in Xss(L) are in the same fiber of φ if and only if the
associated closed G-orbits are equals. In particular, φ establishes a
natural bijection between the points of X//LG and the closed G-orbits
in Xss(L), [Ses77].

Fact 3.(Matsushima’s criterion) A G-orbit O is affine if and only if the
stabilizer group of one (and hence every) closed point is itself reductive,
[Ric77]. In particular, since the fibers of φ are affine, every closed G-
orbit in Xss(L) is affine, and hence has reductive stabilizer group.

Fact 4. If X is normal (or if Xss(L) is normal), then φ factors through
the normalization of the target. Thus by the universal property , the
target X//LG is normal.

0.3. Notations. Now we fix the notations used in the rest of this ar-
ticle. Let G be a connected semisimple algebraic group of adjoint type
over an algebraically closed field k. Let B be a Borel subgroup of G,
B− be an opposite Borel subgroup and T = B ∩ B−. Let (αi)i∈I be
the set of simple roots determined by (B, T ). We denote by W the
Weyl group N(T )/T . For w ∈ W , we choose a representative ẇ in
N(T ). For i ∈ I, we denote by ωi and si the fundamental weight and
the simple reflection corresponding to αi.
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For J ⊂ I, let PJ ⊃ B be the standard parabolic subgroup defined
by J and let P−J ⊃ B− be the parabolic subgroup opposite to PJ .
Set LJ = PJ ∩ P−J . Then LJ is a Levi subgroup of PJ and P−J . The
semisimple quotient of LJ of adjoint type will be denoted by GJ . We
denote by πPJ (resp. πP−J

) the projection of PJ (resp. P−J ) onto GJ .

Let WJ be the subgroup of W generated by {sj | j ∈ J} and W J be
the set of minimal length coset representatives of W/WJ .

0.4. Wonderful compactification of G. We consider G as a G×G-
variety by left and right translation. Then there exists a canonical
G × G-equivariant embedding X of G which is called the wonderful
compactification ([DCP83], [Str87]). The variety X is an irreducible,
smooth projective (G×G)-variety with finitely many G×G-orbits ZJ
indexed by the subsets J of I. The boundary X − G is a union of
smooth divisors ZI−{i} (for i ∈ I), with normal crossing. The G × G-
variety ZJ is isomorphic to the product (G × G) ×P−J ×PJ GJ , where

P−J × PJ acts on G × G by (q, p) · (g1, g2) = (g1q
−1, g2p

−1) and on GJ

by (q, p) · z = πP−J
(q)zπPJ (p)−1. We denote by hJ the image of (1, 1, 1)

in ZJ under this isomorphism.

0.5. Twisted actions. We follow the approach in [HT06, Section 3].
Let σ be an automorphism on G such that σ(B) = B and σ(T ) = T .
We also assume that σ is a diagram automorphism, i.e., the order of σ
coincides with the order of the associated permutation on I.

Let Gσ (resp. Xσ) be the (G × G)-variety which as a variety is
isomorphic to G (resp. X), but the G×G-action is twisted by (g, g′) 7→
(g, σ(g′)). Then Gσ is an open G×G-subvariety of Xσ and we call Xσ

the wonderful compactification of Gσ.
Under the natural bijection between X and Xσ, we may identify the

G × G-orbits on X with the G × G-orbits on Xσ. We denote by ZJ,σ
the G × G-orbit on Xσ that corresponds to Zσ(J) ⊂ X. Accordingly,
we denote by hJ,σ the base point in ZJ,σ which corresponds to the base
point hσ(J) of Zσ(J).

0.6. σ-semisimple elements in Gσ. We follow the notation of [Spr06].
An element g ∈ Gσ is called σ-semisimple if it is conjugated to an ele-
ment in T . We have the following result.

Theorem 0.1. Let g ∈ Gσ. Then the following conditions are equiva-
lent:

(1) The element g is σ-semisimple.
(2) The G-orbit of g is closed in Gσ.
(3) The isotropy subgroup of g in G is reductive.

The equivalence of (1) and (2) can be found in [Lus03, 1.4 (e)] (in
terms of disconnected groups instead of twisted conjugation action).
In the case of simply connected group, the equivalence is also proved
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in [Spr06, Proposition 3]. The equivalence of (2) and (3) follows from
Fact 3, Matsushima’s criterion.

0.7. G-stable-piece decomposition. Let G∆ be the diagonal image
of G in G×G. The classification of the G∆-orbits on X was obtained
by Lusztig [Lus04] in terms of G-stable pieces. A similar result also
occurs in [EL06]. We list some known results which will be used later.

For J ⊂ I and w ∈ W σ(J), set

ZJ,σ;w = G∆(Bẇ,B) · hJ,σ.

We call ZJ,σ;w a G-stable piece of Xσ. By [Lus04, 12.3] and [He06,
Proposition 2.6], Xσ is a disjoint union of the G-stable pieces.

Fact 5. Xσ =
⊔
J⊂I
⊔
w∈Wσ(J) ZJ,σ;w.

Set I(J, σ;w) = max{K ⊂ J | wσ(K) = K}. Then the subvariety
LI(J,σ;w)ẇ of Gσ is stable under the action of LI(J,σ;w)×LI(J,σ;w) and in
particular, is stable under the conjugation action of LI(J,σ;w). Moreover,
by [Lus04, 12.3(a)] and [He07, Lemma 1.4],

ZJ,σ;w = G∆(LI(J,σ;w)ẇ, 1) · hJ,σ

and there exists a natural bijection between the G∆-orbits on ZJ,σ;w

and the LI(J,σ;w)-orbits on LI(J,σ;w)ẇ/Z
0(LJ) ⊂ Gσ/Z

0(LJ) (for the
conjugation action of LI(J,σ;w)).

For any point z in ZJ,σ;w, the isotropy subgroup

Gz = {g ∈ G | (g, g) · z = z}

was described explicitly in [EL06, Theorem 3.13]. We only need the
following special case in our paper.

Fact 6. Let z = (glẇ, g) · hJ,σ for g ∈ G and l ∈ LI(J,σ;w). Then Gz

is reductive if and only if w = 1 and l is a σ-semisimple element in
LI(J,σ;1).

By [He07, Theorem 4.5], the closure of each G-stable piece is a union
of G-stable pieces and the closure relation can be described explicitly.
More precisely, for J ⊂ I, w ∈ W σ(J) and w′ ∈ W , we write w′ 6J,σ w
if there exists u ∈ WJ such that w′ > uwσ(u)−1. Then

ZJ,σ;w = tJ ′⊂J tw′∈WJ′ ,w′6J,σw
ZJ ′,σ;w′ .

Notice that if 1 6J,σ w, then we must have w = 1. Therefore,

Fact 7. tJ⊂IZJ,σ;1 is open in Xσ.
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0.8. Nilpotent Cone of X. For any dominant weight λ, let H(λ) be
the dual Weyl module for Gsc with lowest weight −λ. Let σH(λ) be
the Gsc-module which as a vector space is H(λ), but the Gsc-action
is twisted by the automorphism σ on Gsc. Then there exists (up to
a nonzero constant) a unique Gsc isomorphism σH(λ) → H(σ(λ)). In
particular, if λ = σ(λ), then we have an isomorphism fλ : σH(λ) →
H(λ).

By [DCS99, 3.9], there exists a G×G-equivariant morphism

ρλ : X → P
(
End(H(λ))

)
which extends the morphism Gσ → P

(
End(H(λ))

)
defined by g 7→

g[Idλ], where [Idλ] denotes the class representing the identity map on
H(λ) and g acts by the left action. We denote by LX(λ) the Gsc×Gsc-
linearized invertible sheaf on X which is the pullback under ρλof O(1)
with its canonical linearization. This is the “usual” linearized invertible
sheaf on X associated to the weight λ, e.g., as defined in [BP00, p. 100].
For sufficiently divisible and positive n, the Gsc × Gsc-linearization of
LX(λ)⊗n = LX(n · λ) factors through a G × G-linearization. This
induces a G∆-linearization of LX(λ)⊗n. If moreover, λ is regular, then
LX(λ) is ample (see [Str87, section 2]).

The morphism ρλ induces a G × G-equivariant morphism Xσ →
P
(
Hom(σH(λ),H(λ))

)
. When λ = σ(λ), we may apply the isomor-

phism fλ : σH(λ)→ H(λ) to obtain the G×G-equivariant morphism

ρλ,σ : Xσ → P
(
End(H(λ))

)
.

As above, LXσ(λ, σ) denotes the Gsc×Gsc-linearized invertible sheaf on
Xσ which is the pullback under ρλ,σ of O(1) with its canonical lineariza-
tion. Of course Xσ equals X as varieties, and LX(λ) equals LXσ(λ, σ)
as invertible sheaves on this variety. But the G × G-actions are not
the same, and thus the G×G-linearized invertible sheaves are not the
same.

For λ = σ(λ), let N(λ)σ be the subvariety of Xσ consisting of ele-
ments that may be represented by a nilpotent endomorphism of H(λ).
We call N(λ)σ the nilpotent cone of Xλ associated to the dominant
weight λ. We have an explicit description of N(λ) which was obtained
in [HT06, Proposition 4.4]

N(λ)σ =
⊔
J⊂I

⊔
w∈Wσ(J)

I(λ)∩supp(w)6=∅

ZJ,σ;w,

where I(λ) = {i ∈ I | ai 6= 0} of I for λ =
∑

i∈I aiωi and supp(w) ⊂ I
is the set of simple roots whose associated simple reflections occur in
some (or equivalently, any) reduced decomposition of w.
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Two subvarieties of X related to the nilpotent cones of X are of
special interest. One is

∩λ is dominantN(λ)σ = tJ⊂I tw∈Wσ(J),supp(w)=I ZJ,σ;w.

This subvariety is actually the boudary of the closure inXσ of unipotent
subvariety of Gσ in the case where G is simple (See [He06, Theorem
4.3] and [HT06, Theorem 7.3]).

The other one is Xσ − ∪λ is dominantN(λ)σ = tJ⊂IZJ,σ;1, which is the
complement of N(λ)σ for any σ-stable dominant regular weight. By
the next theorem, this subvariety is actually the semi-stable locus of
Xσ for the G∆-action.

Theorem 0.2. For λ as above, i.e., σ-stable, dominant and regular,
the semistable locus (Xσ)ss(LX(λ)⊗n) equals tJ⊂IZJ,σ;1. In particular,
the semistable locus is independent of the choice of weight λ.

Proof. We simply write the semistable locus (Xσ)ss(LX(λ)⊗n) as Xss
σ .

On End(H(λ)) the characteristic polynomial map

χ : End(H(λ))→ k[t], (f : H(λ)→ H(λ)) 7→ χf (t)

is a morphism which is invariant under the conjugation action. The co-
efficients of the characteristic polynomial define homogeneous polyno-
mials on End(H(λ)) which are invariant under the conjugation action.
Also the degree is positive except for the leading coefficient (which is
1). Thus each non-leading coefficient defines a G∆-invariant sections
of positive power O(n) on P(End(H(λ))). The pullbacks of these sec-
tions are G∆-invariant sections of positive powers L⊗n. By Fact 1,
the nonvanishing locus of each of these sections is in the semistable lo-
cus. Equivalently, the non-semistable locus is contained in the common
zero locus of all of these sections. But the common zero locus of these
pullback sections on Xσ equals the inverse image of the common zero
locus of the original sections on P(End(H(λ))). And this common zero
locus is precisely the nilpotent cone in P(End(H(λ))). Thus the non-
semistable locus is contained in N(λ)σ. So Xss

σ contains Xσ − N(λ)σ,
i.e., Xss

σ contains tJ⊂IZJ,σ;1.
Also, by Fact 7, Xss

σ − tJ⊂IZJ,σ;1 is closed in Xss
σ . If Xss

σ strictly
contains tJ⊂IZJ,σ;1, then there exists a closed G∆-orbit in Xss

σ that is
not contained in tJ⊂IZJ,σ;1. Let z be an element in that orbit. By
Fact 3 above, the isotropy subgroup of z, {g ∈ G | (g, g) · z = z}, is
reductive. By Fact 5 above, z is in ZJ,σ;w for some J ⊂ I and w ∈ W σ(J)

with w 6= 1. But this contradicts Fact 6 above. Therefore Xss
σ equals

tJ⊂IZJ,σ;1. �

0.9. Set T̄ 0 = tJ⊂I · (T, 1)hJ,σ and T̄ ′ = (Nσ)∆ · T̄ 0, where Nσ is the
inverse image of W σ under the map NG(T )→ NG(T )/T = W . In the
case where σ acts trivially on W , T̄ ′ is the closure of T in X and it
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is just the toric variety associated with the fan of Weyl chambers (see
[BK05, Lemma 6.1.6 (ii)]).

Lemma 0.3. A G∆-orbit O in Xss is closed in Xss if and only if it
intersects T̄ 0.

Proof. By Fact 6, the closed G∆-orbits in Xss are of the form {(gl, g) ·
hJ | g ∈ G} for some σ-semisimple element l ∈ LJ . By Theorem 0.1, l
is σ-conjugate to an element in T . Thus a G∆-orbit O ∈ Xss is closed
if and only if O ∩ T̄ 0 6= ∅ (or equivalently, O ∩ T̄ ′ 6= ∅). �

Lemma 0.4. For every element z in T̄ ′, the intersection G∆ · z ∩ T̄ ′
of the G∆-orbit with T̄ ′ equals the (Nσ)∆-orbit (Nσ)∆ · z.

Proof. Obviously (Nσ)∆ · z is contained in G∆ · z ∩ T̄ ′. The content of
the lemma is the opposite inclusion.

Since T̄ ′ equals (Nσ)∆ · T̄ 0, we may assume without loss of generality
that z has the form z = (t, 1) · hJ,σ. Suppose that (g, g) · z equals
(t′, 1) · hJ,σ for some t′ ∈ T , i.e., (g, g) · z is a point of G∆ · z ∩ T̄ ′.

Denote ∩iσi(J) by Jσ. Let FJ,σ = (PJσ , PJσ) · hJ,σ, then by [He07,
Proposition 1.10], the action ofG onX induces an isomorphism of ZJ,1;σ

with G ×PJσ FJ,σ. Thus g is in PJσ . Also both t and t′ are contained
in the same PJσ -orbit in LJσσ/Z

0(LJ), i.e. in the same GJ -conjugacy
class. Hence there exists an element n in N ′σ such that t′ equals ntn−1

(see [Lus03, 1.14(d)]). Therefore G∆ · z ∩ T̄ 0 is a subset of (Nσ)∆ · z.
Now also

G∆ · z ∩ T̄ ′ = G∆ · z ∩ (Nσ)∆ · T̄ 0 = (Nσ)∆ · (G∆ · z ∩ T̄ 0)

⊂ (Nσ)∆ · ((Nσ)∆ · z) = (Nσ)∆ · z
proving the lemma. �

Corollary 0.5. The embedding T̄ ′ → Xσ induces a morphism

i : T̄ ′/Nσ → Xσ//G

which is bijective on points. If char(k) equals 0, i is an isomorphism.
Also, if σ is the identity map (and char(k) is arbitrary), then T̄ ′/Nσ

equals T̄ /W and the induced morphism

i : T̄ /W → X//G

is an isomorphism.

Proof. The morphism T̄ ′ → Xσ → Xσ//G is Nσ-invariant, and hence
factors through a morphism

i : T̄ ′/Nσ → Xσ//G.

By Lemma 0.3, every closed G-orbit in Xss
σ intersects T̄ ′. Thus i is

surjective. For every element z in T̄ , the G-orbit of z is closed in Xss
σ .

Thus two elements z, z′ in T̄ have the same image under i if and only
if they lie in the same G-orbit. On the other hand, by Lemma 0.4, two
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elements z, z′ in T̄ lie in the same G-orbit if and only if they lie in the
same Nσ-orbit. Hence i is a bijection on points.

Assume for the moment that char(k) is 0. By Fact 4, Xss
σ is a normal

k-variety. And i is a dominant morphism of varieties which is a bijection
on points. Since char(k) is zero, this implies that i is birational. By
Zariski’s Main Theorem, a bijective, birational morphism of varieties
is an isomorphism if the target is normal. Thus i is an isomorphism
when char(k) is 0. In positive characteristic, the possibility remains
that i may be a purely inseparable morphism.

Next assume that s is the identity map, but char(k) may be arbitrary.
Then T̄ ′/Nσ equals T̄ /W for the natural W -action on T̄ which extends
the W -action on T . By [Ste65, section 6], the restriction of i to the
open subvariety T/W of T̄ /W gives an isomorphism T/W ∼= G//G.
Hence, as above, i is a bijective, birational morphism of varieties whose
target is a normal variety. So again by Zariski’s Main Theorem, i is an
isomorphism. �
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