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1. Introduction

The goal of these notes is to present some new results proved jointly with A. J.
de Jong and Xuhua He. First, an algebraic fibration over a surface has a rational
section if the fiber is “rationally simply connected” and if the elementary obstruction
vanishes. Second, this implies the split, geometric case of a conjecture of Serre,
“Conjecture II” in [Ser02, p. 137]: for a connected, simply connected, semisimple
algebraic group, every principal bundle for the group over a surface has a rational
section. Many others have worked towards the resolution of Serre’s “Conjecture II”
in the geometric case and in the general case: Merkurjev and Suslin; E. Bayer and
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R. Parimala; Chernousov; and P. Gille. These results are summarized in [CTGP04,
Theorem 1.2(v)]. Because of these many results, the full “Conjecture II” in the
geometric case reduces to the split, geometric case, so that “Conjecture II” is now
settled in the geometric case.

These notes closely follow our article [dJHS08]. But the arguments here are a
bit simpler, and the hypotheses are considerably stronger (yet still verified in the
application to Serre’s conjecture).

These notes accompany lectures delivered at the conference Variétés rationnelle-
ment connexes: aspects géométriques et arithmétiques of the Société Mathématique
de France held in Strasbourg, France in May 2008. In addition to the new results,
the lectures also presented the proof of the Kollár-Miyaoka-Mori conjecture proved
by Tom Graber, Joe Harris and the author in characteristic 0 and by A. J. de
Jong and the author in arbitrary characteristic. But as there are already several
expositions of that work, I will only review the main statement.

Overview of the proof. Given a smooth, projective surface S over an alge-
braically closed field k, there always exists a Lefschetz pencil of divisors on S. The
generic fiber C of this pencil is a smooth, projective, geometrically integral curve
over the function field κ = k(t). Given a projective, flat morphism f : X → S
whose geometric generic fiber is integral and rationally connected, the fiber prod-
uct Xκ := C×SX is a projective κ-scheme together with a projective, flat morphism
of κ-schemes π : Xκ → C whose geometric generic fiber is integral and rationally
connected. Since the generic of π equals the generic fiber of f , rational sections of
f are really the same as rational sections of π. So it suffices to prove that π has a
section.

And the morphism π has one advantage over f : the base change morphism

π ⊗ Id : Xκ ⊗κ κ→ C ⊗κ κ

does have a section by Theorem 2.1. By Grothendieck’s work on the Hilbert scheme
there exists a κ-scheme Sections(X/C/κ) parameterizing families of sections of π.
The goal is to prove Sections(X/C/κ) has a κ-point, but we at least know it has
a κ-point. As with all Hilbert schemes, this is really a countable union of quasi-
projective κ-schemes, teSectionse(X/C/κ), where Sectionse(X/C/κ) is the open
and closed subscheme parameterizing sections which have degree e with respect to
some π-relatively ample invertible sheaf L.

The basic idea is to try to prove that Sectionse(X/C/κ) has some naturally defined
closed κ-subscheme which is geometrically integral and geometrically rationally
connected. Then we can apply Theorem 2.1 to this closed subscheme to produce a
κ-point of Sectionse(X/C/κ), which is the same as a section of π.

Of course there is an obstruction to rational connectedness of Sectionse(X/C/κ):
the Abel map

α : Sectionse(X/C/κ)→ PiceC/κ
sending each section of π to the pullback of L by this section. Since there are no
rational curves in the Abelian variety PiceC/κ, every rationally connected subvariety
of Sectionse(X/C/κ) is contained in a fiber of α. So the idea is to prove that
for e sufficiently positive, some irreducible component of the generic fiber of α is
geometrically integral and geometrically rationally connected. Of course this is the
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same as proving that there exists an irreducible component Ze of Sectionse(X/C/κ)
such that

α|Ze : Ze → PiceC/κ
is dominant with integral and rationally connected geometric generic fiber. Observe
that this would be enough to conclude the existence of a section of π: there are
κ-points of PiceC/κ, e.g., coming from the basepoints of the Lefschetz pencil, and
the fiber of α|Ze over these κ-points is then a geometrically integral and rationally
connected variety defined over κ = k(t). Such a variety has a κ-point by Theorem
2.1.

There are some issues. First of all if we change L then the Abel map α changes.
For instance, if we replace L by L⊗n with n > 1, then the original Abel map is
composed with the “multiplication by n” morphism on the Picard scheme. Because
this is a finite map of degree > 1, the geometric generic fiber of the new Abel map
will not be integral. So it is crucial to work with the correct invertible sheaf L.
If the geometric generic fiber of f has Picard group isomorphic to Z (rationally
connected varieties always have discrete Picard group), then this obstruction is
equivalent to the well known elementary obstruction of Colliot-Thélène and Sansuc.
We impose vanishing of the elementary obstruction in a somewhat hidden manner
through existence properties for “lines” in the generic fiber, i.e., curves of L-degree
1. Observe that there are no curves of L⊗n-degree 1, which indicates the connection
with the elementary obstruction.

A second, weightier issue is that Sectionse(X/C/κ) typically is not proper. So it
is extremely unlikely any interesting subvarieties are rationally connected. Fortu-
nately it suffices to prove there is a component Ze as above for a compactification
Σe(X/C/κ) of Sectionse(X/C/κ). The compactification we use here comes from
Kontsevich’s moduli space of stable maps. But there is a third problem: this space
will usually have more than one irreducible component. Some of these components
have bad properties because the generic point parameterizes an obstructed section.
So we restrict attention to those irreducible components which parameterize unob-
structed sections, specifically what we call “(g)-free sections” where g is the genus
of C. Still there may be more than one irreducible component Z parameterizing
(g)-free sections.

We cannot fix this for any particular integer e: for any particular integer e = ε there
may well be more than one irreducible component Z of Σε(X/C/κ) parameterizing
(g)-free sections. However the problem gets better as e becomes more positive.
There is a standard way of producing new sections from old: attach vertical rational
curves to the section curve and deform this reducible curve to get an irreducible
curve which is again a section. If the original section curve and vertical curves are
sufficiently free, then the reducible curve does deform and the deformations are
again unobstructed. In particular the new section is parameterized by a smooth
point of Σe

′
(X/C/κ) for some e′ > e. Of course there are many ways of attaching

and deforming, so we choose the simplest possible: attach vertical “lines”, i.e.,
curves whose L-degree equals 1. We use the somewhat colorful name “porcupine”
to denote a reducible curve obtained from a (g)-free section by attaching free lines
in fiber of π. Using these porcupines, we produce a sequence (Ze)e≥ε of irreducible
components Ze of Σe(X/C/κ). Of course this presupposes the existence of many
free lines to attach to our original section, and that leads to our first technical
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hypothesis: every point of every geometric fiber Xt of π is contained in free lines in
Xt, and every line in Xt is free. Moreover, we will demand that the parameter space
for lines in Xt containing a fixed point is itself integral and rationally connected.

Now the sequence (Ze)e≥ε is still not unique. But if we assume that the param-
eter space for chains of lines in Xt containing two fixed, general points is also
nonempty, integral and rationally connected, then the sequence is “asymptotically
unique”: for every other choice of starting integer e = ε′ and for every sequence W
of Σε

′
(X/C/κ) parameterizing (g)-free sections, the sequence (Ze)e≥ε and (We)e≥ε′

become equal for all e � 0. This implies a Galois invariance property for the
sequence (Ze)e≥ε. Therefore to prove the existence of a sequence (Ze)e≥ε of com-
ponents Ze of Σe(X/C/κ) such that

α|Ze : Ze → Pice(X/C/κ)

is dominant with integral and rationally connected geometric generic fiber, it suffices
to prove the existence of a sequence of components (Ze,κ)e≥ε of components Ze,κ of
the base-change Σe(Xκ/Cκ/κ). So we are reduced to working over the algebraically
closed field k(t).

The hypotheses above imply that there exists a sequence (Ze)e≥ε such that each
α|Ze is dominant with integral geometric generic fiber. But we need an additional
hypothesis to prove that the geometric generic fiber is rationally connected: the
existence of a “2-twisting scroll” in the geometric generic fiber of f . By carefully
analyzing how the parameter spaces Σe(X/C/κ) change under the porcupine op-
eration mentioned above, we are able to show that these hypotheses do imply that
the geometric generic fiber of α|Ze is rationally connected for all e� 0.

This analysis is quite intricate. In fact there are just a small number of simple, geo-
metric ideas involved. But there is also a large amount of notation and bookkeeping.
We tried to at least choose memorable names to ease the notation: “porcupines”,
“quills” of the porcupine, “pens” to keep porcupines together, etc. Still the amount
of notation and the large number of small, technical lemmas both remain serious
obstacles to understanding the main arguments. To help I have added quite a bit
of “discussion” to Sections 6 and 7.

After the proof of the main theorem, there is still the issue of verifying the hy-
potheses for the varieties relevant to Serre’s “Conjecture II”: projective homoge-
neous spaces for semisimple algebraic groups. Some hypotheses are straightforward
to verify, and we explain these completely in Part 2. But the main hypothesis,
existence of a 2-twisting scroll, is a nontrivial result due to our coauthor Xuhua
He. He’s proof is elegant and easy to follow. But it involves a substantial fraction
of the theory of root systems, so we have chosen to leave He’s theorem as a “black
box”.

Finally in Part 3 we explain how Serre’s “Conjecture II”, as well as de Jong’s
“Period-Index Theorem”, each reduce to existence of sections of fibrations over
surfaces whose geometric generic fiber is a homogeneous space.

Index of some frequent notations.

(1) f : X → S. See Corollary 8.1. f is a projective, flat morphism to a surface
S over an algebraically closed field.
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(2) X/C/κ and L, g, K and Y . See Notation 2.4. X/C/κ denotes a projective,
flat morphism π : X → C where C is a κ-curve of genus g. L is a π-ample
invertible sheaf on X. K is the algebraic closure K = κ(C). Y is the
geometric generic fiber of π.

(3) PiceC/κ. The Picard scheme parameterizing families of degree e invertible
sheaves on C.

(4) δ; t1, . . . , tδ. See the discussion following Definition 3.2. δ is a nonnegative
integer and t1, . . . , tδ are points of C.

(5) P → Q. This is notation for a quasi-projective morphism, particularly
when describing general constructions which apply to any quasi-projective
morphism.

(6) Sece(X/C/κ) and σ. See Theorem 3.1. The universal space of sections of
π : X → C which have degree e with respect to L.

(7) α. See Section 3. α always denotes an Abel map whose target is PiceC/κ for
some integer e.

(8) γ, n, β. See Section 3. γ is the arithmetic genus of a nodal curve, n is
the number of marked points on the curve, and β is a curve class on some
quasi-projective scheme P , i.e., a homomorphism Pic(P )→ Z.

(9) Mγ,n(P, β) and Mγ,n(P, β). See Section 3;Mγ,n(P, β) is a Deligne-Mumford
stack parameterizing genus γ, n-pointed stable maps to P with curve class
β, and Mγ,n(P, β) is the coarse moduli space of Mγ,n(P, β).

(10) evγ,n,β : Mγ,n(P, β)→ Pn. See Section 3. The evaluation map associating
to a stable map from an n-pointed curve to P the n-tuple of images of the
n marked points in P .

(11) Σe(X/C/κ). See Definition 3.2. The coarse moduli space of stable porcu-
pines of X/C/κ which have degree e with respect to L; this is projective and
contains the quasi-projective scheme Sece(X/C/κ) as an open subscheme.

(12) h : C ′ → X, σ0 : C → X, D = t1 + · · · + tδ, and C ′1, . . . , C
′
δ. See the

discussion following Definition 3.2. h is a stable section, σ0 is the unique
section such that σ0(C) is contained in h(C ′), D is the divisor of nodes of
h(C ′) contained in σ0(C), and C ′i is the maximal vertical subcurve of C ′

whose image under h contains σ0(ti).
(13) Ze. See Definition 4.8 and Definition 5.6. Ze is an irreducible component

of Σe(X/C/κ).
(14) Mγ,n(P/Q, e). See Definition 3.4. The space of stable maps relative to a

morphism f : P → Q, i.e., stable maps to P whose image is contained in
a fiber of f and which have degree e with respect to an f -ample invertible
sheaf.

(15) fγ,n,β : Mγ,n(P/Q, e) → Q. See the discussion following Definition 3.4.
The map associating to a stable map into a fiber of f the point of Q which
is the image of the stable map under f .

(16) evγ,n,β : Mγ,n(P/Q, e) → P ×Q · · · ×Q P . See the discussion following
Definition 3.4. The evaluation map as in item 10.

(17) R and ρ. See Definition 3.5. R is a scroll1 for X/C/κ, i.e., a closed
subscheme R of X such that the projection π|R : R → C is smooth and
surjective with geometric fibers being lines. The morphism π|R is usually
denote by ρ.

1scroll Engl. = surface réglée Fr.
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(18) (R,L). See Definition 3.6. An m-twisting scroll for X/C/κ, i.e., a scroll R
for X/C/κ together with a Cartier divisor class L on R satisfying various
properties.

(19) Chn2(P/Q, n). See Definition 3.7. The moduli space of 2-pointed chains
(C ′, p1, qn) = ((L1, p1, q1), . . . , (Ln, pn, qn)) of n lines in fibers of P → Q.

(20) ev0,2,n : Chn2(P/Q, n)→ P ×Q P . The evaluation map, see item 16.
(21) Φ : M0,1(X/C, 1) → M0,0(X/C, 1). See Section 4. The forgetful morphism

associating to a pointed line (L, p) the line L.
(22) (g) as in “(g)-free”. See Definition 4.7. (g) is the maximum of 1 and 2g−1.
(23) (Ze)e≥ε. See Definition 4.8. A sequence for all integer e ≥ ε of an irreducible

component Ze of Σe(X/C/κ).
(24) Porce,δ(X/C/κ). See Definition 5.1 and Proposition 5.2. The parameter

space for porcupines2. A porcupine is a special stable map h : C ′ → X. The
section component C0 is the body3. The vertical components are the quills4.
The integer e denotes the total degree of the porcupine and δ denotes the
number of quills.

(25) TP/Q or Tf . The vertical tangent bundle associated to a morphism f :
P → Q, i.e., the dual of the sheaf of relative differentials of f (usually only
applied when the sheaf of relative differentials is locally free).

(26) Φbody : Porce,δ(X/C/κ) → Porce−δ,0(X/C/κ). See Lemma 5.3. The mor-
phism associating to each porcupine h : C ′ → X the body σo : C → X of
the porcupine.

(27) Φ′body : Porce,δ(X/C/κ) → Porce−δ,0(X/C/κ) ×κ Cδ. See Lemma 5.3.
The morphism associating to each porcupine h : C ′ → X the extended
body (σ0, D), i.e., the body σ0 together with the attachment divisor D =
t1 + · · ·+ tδ, see item 12.

(28) X(t1,...,tδ). See Notation 6.1. Given distinct closed points t1, . . . , tδ of C,
notation for the fiber product of the corresponding fibers of π, Xt1×κ · · ·×κ
Xtδ .

(29) Porce,δ(X/C/κ)Z . Given a sequence (Ze)e≥ε as in item 23, the intersection
of Porce,δ(X/C/κ) and Ze inside Σe(X/C/κ).

(30) Chn2(X/C, n)(t1,...,tδ). See Notation 6.1. t1, . . . , tδ is as in item 28. And
Chn2(X/C/κ, n)(t1,...,tδ) is the fiber product Chn2(Xt1/κ, n)×κ· · ·×κChn2(Xtδ/κ, n).

(31) O and ChnO2 (X/C, n)(t1,...,tδ). See Notation 6.1. O is a dense open sub-
set of X(t1,...,tδ). And ChnO2 (X/C, n)(t1,...,tδ) is the open subscheme of
Chn2(X/C, n)(t1,...,tδ) parameterizing chains such that every associated se-
quence of marked points or nodes in X(t1,...,tδ) is contained in the dense
open O.

(32) OC(Γ). An invertible sheaf on C, especially in general constructions that
apply to any invertible sheaf on C.

(33) ζ : C → M0,1(X/C, 1) or τ : C → M0,1(X/C, 1), R and σ0. See Definition
7.2 and Lemma 7.3. ζ is a section of the projection π0,1,1 : M0,1(X/C, 1)→
C, see item 15, and sometimes so is τ when more than one such section
needs to be used. A section of π0,1,1 determines a scroll R, see item 17,

2porcupine Engl. = porc-épic Fr.
3body Engl. = corps Fr.
4quill Engl. = piquant Fr.
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together with a section σ0 of ρ : R → C. The section (or more generally
a porcupine whose body equals the section) is said to be penned5 by the
scroll R, and R is called a pen6 for the section.

(34) NP/Q or Ni. The normal sheaf of a closed immersion i : P → Q.

(35) Porce,δ(X/C/κ). See Proposition 7.8. The closure in Σe(X/C/κ) of the
locally closed subscheme Porce,δ(X/C/κ).

(36) α−1(OC(Γ)). The fiber of the Abel map α over a point OC(Γ) of PicC/κ.
(37) G, P , Q and R, B, Ru(B), T , Φ, I. See Section 9. G is a semisimple

algebraic group. P , Q and R are all parabolic subgroups of G. B is a Borel
subgroup of G. Ru(B) is the unipotent radical of B. T is a maximal torus
of G. Φ is a root system and I is the set of simple roots.

(38) G/T , T /T , XT . See Section 10. T is a scheme. G is a reductive group
scheme over T . And T is a G-torsor over T . Given a T -scheme X together
with an action of G as T -schemes, XT is the corresponding twist of X .

(39) Br(K). See Section 11. Br(K) is the Brauer group of a field K.

Acknowledgments. Many people deserve thanks for their valuable contributions
to this project. The person most deserving of thanks is Philippe Gille who basically
showed us how to prove Theorem 12.1, assuming the results in Parts 1 and 2.
The editor Jean-Louis Colliot-Thélène also deserves special thanks for his many
suggestions and for his remarkable patience.

Part 1. Rationally simply connected fibrations

2. The Kollár-Miyaoka-Mori conjecture

Let k be an algebraically closed field. A smooth, connected k-scheme X is rationally
connected, resp. separably rationally connected, if there exists an integral k-scheme
M and a k-morphism

h : M ×k P1
k → X, (m, t) 7→ h(m, t)

such that the induced morphism

h0,∞ : M → X ×k X, m 7→ (h(m, 0), h(m,∞))

is dominant, resp. dominant and separable. Roughly this says that every pair of
points in X is contained in the image of a morphism with domain P1

k, i.e., every
pair is connected by a rational curve. More generally for an integral k-scheme X
which is possibly singular, we will sometimes say that X is rationally connected,
resp. separably rationally connected, if there exists a projective birational morphism
X̃ → X such that the smooth locus of X̃ is rationally connected, resp. separably
rationally connected.

Among smooth, projective varieties, every unirational variety is rationally con-
nected. The converse is unknown, but it is expected to be false. Rational connect-
edness satisfies many nice properties which are unknown for unirationality. One of
these properties, which Fano conjectured fails for unirationality, is that the total
space of an algebraic fibration of smooth, projective varieties is separably rationally
connected if the base and general fiber are both separably rationally connected

5penned Engl. = enclos Fr.
6pen Engl. = enclos Fr.
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(there are counterexamples showing one cannot replace “separably rationally con-
nected” by “rationally connected”). This follows from a stronger result, originally
conjectured by Kollár-Miyaoka-Mori [Kol96, Conjecture IV.6.1.1].

Theorem 2.1. [GHS03], [dJS03] Let k be an algebraically closed field. Let C be a
smooth, projective k-curve. Let π : X → C be a projective, flat morphism. Assume
that the geometric generic fiber Y of π is normal and that the smooth locus of Y
is separably rationally connected. Then there exists a k-morphism σ : C → X such
that π ◦ σ = IdC , i.e., σ is a section of π.

This has a number of consequences which are discussed elsewhere, cf. [Deb03].
Two of these, which Kollár-Miyaoka-Mori deduced from their conjecture, are quite
useful in what comes later.

Corollary 2.2. [KMM92] With hypotheses as above, let t1, . . . , tδ be distinct k-
points of C such that the fiber Xtj of π is smooth for j = 1, . . . , δ. For each
j = 1, . . . , δ, let pj be a k-point of Xtj . There exists a section σ : C → X of π such
that σ(tj) equals pj for every j = 1, . . . , δ.

Corollary 2.3. [KMM92] Assume that char(k) equals 0. Let f : P → Q be a
surjective morphism of integral, projective k-schemes. Assume that Q is rationally
connected and assume that the geometric generic fiber of f is integral and rationally
connected. Then also P is rationally connected.

Assume now that char(k) equals 0. By resolution of singularities we may assume
X is smooth. And by generic smoothness there are at most finitely many singular
fibers of π. Thus, by Corollary 2.2, π has many sections. In particular, except in
the trivial case that π is an isomorphism, the k-scheme parameterizing sections of π
has components whose dimensions become arbitrarily large. Under additional hy-
potheses on π we can prove that these components “eventually become as rationally
connected as possible”. The precise statement is given below.

For the applications it is important to also consider the case when the ground field
is not algebraically closed.

Notation 2.4. Let κ denote a characteristic 0 field (possibly not algebraically
closed). Let C denote a smooth, projective, geometrically connected κ-curve. De-
note the genus of C by g. Let X denote a smooth, projective κ-scheme. Let
π : X → C denote a surjective morphisms of κ-schemes whose geometric generic
fiber is irreducible. Denote by K the algebraically closed field K = κ(C), and de-
note by Y the geometric generic fiber of π which is a smooth, projective, connected
K-scheme. Finally, let L denote an invertible sheaf on X which is π-ample. And
denote by LY the base-change of L to Y .

3. Sections, stable sections and Abel maps

The proof of the main theorem uses several different kinds of curves in X, some
of which are reducible. This section introduces these different types of curves and
reviews the basics of the parameter spaces for these curves. Of course the most
important curves are section curves: images of sections of π. But the parameter
spaces for such curves are not proper. They are open subsets of proper moduli
spaces, the moduli spaces of “stable sections”. The main result of this section is
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that the Abel map extends to the moduli space of stable sections and that the image
of a stable section under the Abel map can be understood by a simple analysis of
the components of the stable section.

The notations here are as in Notation 2.4. Let S be a κ-scheme. A family of
sections of π : X → C parameterized by S is a morphism of C-schemes

τ : S ×κ C → X.

For an integer e, the family of sections has degree e if the invertible sheaf τ∗L on
S ×κ C has relative degree e over S, i.e., for every geometric point s of S the base-
change of τ∗L to Cs has degree e. A pair (S, τ) as above is universal if for every
κ-scheme S′ and for every family of degree e sections of π parameterized by S,

τ ′ : S′ ×κ C → X,

there exists a unique κ-morphism f : S′ → S such that τ ′ equals τ ◦ (f, IdC).

Theorem 3.1 (Grothendieck). [Gro62, Part IV.4.c, p. 221-19] For every integer e
there exists a universal pair (Sece(X/C/κ), σ) of a κ-scheme and a family of degree
e sections of π parameterized by Sece(X/C/κ),

σ : Sece(X/C/κ)×κ C → X.

Moreover Sece(X/C/κ) is a quasi-projective κ-scheme.

Invertible sheaves on C of degree e are parameterized by the Picard scheme PiceC/κ.
Thus, associated to the invertible sheaf σ∗L there is a morphism of κ-schemes

α : Sece(X/C/κ)→ PiceC/κ.

This morphism is the Abel map associated to L.

Stable maps, stabilization and evaluation morphisms. The κ-scheme Sece(X/C/κ)
is quasi-projective. It is rarely projective. It is convenient to work with a projec-
tive scheme. Fortunately there exists a projective scheme Σe(X/C/κ) containing
Sece(X/C/κ) as an open subscheme: the coarse moduli (algebraic) space for “sta-
ble sections”. This comes from a more fundamental scheme: the coarse moduli
space for “stable maps”. An excellent reference for stable maps is the article of
Fulton and Pandharipande, cf. [FP97]. Here is a very brief summary. For every
quasi-projective κ-scheme P , for nonnegative integers γ, n, and for a group homo-
morphism

β : Pic(P )→ Z, L 7→ 〈L, β〉,
hereafter known as a “curve class”, a family of n-pointed, genus γ, stable maps to
P of class β parameterized by a κ-scheme S is a datum

(ρ : C → S, (τi : S → C)i=1,...,n, h : C → P )

of a proper, flat morphism ρ : C → S, n section morphisms τi : S → C of ρ : C → S,
and a κ-morphism h : C → P such that for every geometric point s of S,

(i) the fiber Cs of ρ over s is a connected, at-worst-nodal curve of genus γ,
(ii) the images τi(s) are pairwise distinct and all contained in the smooth locus

of Cs,
(iii) the induced homomorphism

Pic(P )→ Z, L 7→ degCs(h
∗L|Cs)

equals β, and
9



(iv) the group of automorphisms of Cs fixing each point τi(s) and commuting
with h|Cs is finite.

Such families are the objects of a categoryMγ,n(P, β) which is fibered in groupoids
over the category of κ-schemes S: the morphisms in Mγ,n(P, β) as well as the
clivage (i.e., the “pullbacks”) are the evident ones, cf. [Kon95]. The category
Mγ,n(P, β) is a separated, finite type Deligne-Mumford stack over κ which is proper
if P is proper, cf. [Kon95]. The coarse moduli (algebraic) space, Mγ,n(P, β), of the
Deligne-Mumford stack Mγ,n(P, β) is a quasi-projective κ-scheme which is proper
if P is proper, cf. [FP97].

“Stabilization” is another useful feature of stable maps. Assume that the triple
(γ, n, β) is “stable” in the sense that either β is nonzero on some ample invertible
sheaf or else (γ, n) is different from (0, 0), (0, 1), (0, 2), and (1, 0). For every family
of maps satisfying (i), (ii) and (iii) but not necessarily (iv) (such families are called
“prestable”), there exists a stable family

(ρstab : Cstab → S, (τi,stab : S → Cstab)i=1,...,n, hstab : Cstab → P )

and a proper, surjective morphism u : C → Cstab compatible with h and the maps
τi (i.e., h equals hstab ◦ u and each τi,stab equals u ◦ τi) and such that for every
geometric point s of S and every connected, closed subcurve B of Cs both of the
following hold.

(i) The subcurve B is contracted (to a point) by u if and only if it is an
unstable tree: the arithmetic genus of B equals 0, B is contracted by h, and
B contains < 3 special points, i.e., marked points τi(s) and intersections
points of D with Cs −D.

(ii) If B contains no subcurve which is an unstable tree then u|B : B → u(B) is
a birational, unramified morphism which identifies a pair of distinct points
of B if and only if the points are contained in a common unstable tree of
Cs.

The stable family together with the proper morphism u is a stabilization of the
original prestable family. The stabilization is unique up to unique isomorphism,
and every stable family is its own stabilization. Stabilization is compatible with
pullbacks. The main application of stabilization is the following. Let f : P → Q be
a κ-morphism of quasi-projective κ-schemes. For each family of stable maps to P

(ρ : C → S, (τi : S → C)i=1,...,n, h : C → P )

there is an induced family of prestable maps to Q,

(ρ : C → S, (τi : S → C)i=1,...,n, f ◦ h : C → Q).

So if f∗β := β ◦ f∗ is nonzero on some ample invertible OQ-module or if (γ, n)
is different from (0, 0), (0, 1) ,(0, 2) and (1, 0) then stabilization determines a 1-
morphism of Deligne-Mumford stacks

f∗ :Mγ,n(P, β)→Mγ,n(Q, f∗β)

which in turn determines a morphism of coarse moduli spaces

f∗ : Mγ,n(P, β)→ Mγ,n(Q, f∗β).

It is sometimes also useful that the morphism u is rational, i.e., OCstab → u∗OC is
an isomorphism and Rqu∗OC is zero for all q > 0.

10



Also useful are the associated “evaluation morphisms” of Kontsevich stacks. Asso-
ciated to every family of stable maps there is an induced morphism

(h ◦ τ1, . . . , h ◦ τn) : S → P ×κ · · · ×κ P.

This is compatible with pullbacks, hence determines a 1-morphism of stacks over κ

evγ,n,β :Mγ,n(P, β)→ Pn,

and also a κ-morphism
evγ,n,β : Mγ,n(P, β)→ Pn.

These morphisms are called evaluation morphisms. The convention is to drop the
subscript and denote the morphism by ev whenever confusion is unlikely.

Definition 3.2. The space of degree e stable sections of π, Σe(X/C/κ), is the fiber
of the stabilization morphism

π∗ : Mg,0(X, e)→ Mg,0(C, [C])

over the κ-point corresponding to the identity stable map IdC : C → C.

Here [C] denotes the fundamental curve class,

Pic(C)→ Z, L 7→ 〈L, [C]〉 := degC(L).

And Mg,0(X, e) denotes the disjoint union

Mg,0(X, e) =
⊔
β

Mg,0(X,β)

where β ranges over all curve classes in X such that π∗β equals [C], i.e., 〈π∗L, β〉 =
〈L, [C]〉, and such that 〈L, β〉 equals e. In fact there are at most finitely many such
β for which Mg,0(X, e) is nonempty: finiteness follows from boundedness of the
Hilbert scheme Hilb(e+f)t+1−g

X/κ , where the Hilbert polynomial is with respect to any
ample invertible sheaf of the form L⊗ π∗N and where f is the degree of N . Since
Mg,0(X, e) is a disjoint union of finitely many projective κ-schemes, Mg,0(X, e) is a
projective κ-scheme.

Stated simply Σe(X/C/κ) is a scheme which is a coarse moduli space parameterizing
stable maps of degree e with respect to L, h : C ′ → X, such that the stabilization of
π ◦ h : C ′ → C is an isomorphism to C. SinceMg,0(X, e) is a projective κ-scheme,
also the fiber Σe(X/C/κ) is a projective κ-scheme. The universal section

σ : Sece(X/C/κ)×κ C → X

is a family of stable sections parameterized by Sece(X/C/κ). Thus there is an
associated κ-morphism

Sece(X/C/κ)→ Σe(X/C/κ).

It is straightforward to check that this is an open immersion.

In fact every stable section parameterized by Σe(X/C/κ) can be understood in
terms of an “honest” section. Let k be an algebraically closed extension of κ and
let h : C ′ → X be a stable map corresponding to a k-point of Σe(X/C/κ). There
exists a unique irreducible component C ′0 of C ′ such that

π ◦ h : C ′0 → C ⊗κ k
11



is an isomorphism, i0. Thus there exists a unique section σ0 : C ⊗κ k → X such
that

h|C′0 : C ′0 → X

equals σ0 ◦ i0. Denote deg(σ∗0L) by e0. The irreducible component C ′0 meets the
rest of C ′ in finitely many k-points p1, . . . , pδ. Denote the image points in C ⊗κ k
by tj = i0(pj). For each j = 1, . . . , δ, there exists a maximal connected subcurve
C ′j of C ′ intersecting C ′0 precisely in pj . These subcurves give a decomposition

C ′ = C ′0 ∪ C ′1 ∪ · · · ∪ C ′δ.
And for every j = 1, . . . , δ, the datum

(C ′j , pj , u|C′j : C ′j → Xtj )

is a genus 0, 1-pointed, stable map toXtj of some positive degree ej = degC′j (h
∗L|C′j ).

The sum e0 +e1 + · · ·+eδ equals e. Thus Σe(X/C/κ) can be understood as parame-
terizing degree-e sections of π together with reducible curves obtained by attaching
to a section σ0 of lower degree e0 a collection of genus 0 curves in fibers of π to
bring the total degree up to e.

Extension of the Abel map. The Abel map extends to Σe(X/C/κ). For a
family of stable maps parameterized by a κ-scheme S,

(ρ : C → S, h : C → X)

the det construction of [KM76] defines an invertible sheaf on S ×κ C,

det(R(ρ, π ◦ h∗(h∗L)).

If the family of stable maps is

(prS : S ×κ C → S, τ : S ×κ C → X)

this invertible sheaf is precisely τ∗L. Thus the det sheaf on Σe(X/C/κ) ×κ C
extends σ∗L on Sece(X/C/κ)×κ C. In other words, the Abel map α extends to a
morphism

α : Σe(X/C/κ)→ PiceC/κ.
And for a stable map h : C ′ → X as described in the last paragraph, the div
construction of [KM76] implies that the det sheaf on C ⊗κ k equals

det(R(π ◦ h)∗(h∗L)) ∼= σ∗0L(e1 · t1 + · · ·+ eδ · tδ),
where t1, . . . , tδ are the effective Cartier divisors on C associated to the closed points
t1, . . . , tδ.

Definition 3.3. Two points of Σe(X/C/κ) are Abel equivalent if they are contained
in the same fiber of the Abel map α. Since there are no rational curves in an Abelian
variety, every pair of points of Σe(X/C/κ) which are rationally chain connected are
also Abel equivalent.

From the discussion above it is clear that as soon as δ ≥ g, varying the attachment
points of the stable section over all (t1, . . . , tδ) ∈ Cδ varies the invertible sheaf
σ∗0L(e1 · t1 + · · ·+ eδ · tδ) over a dense open subset of PiceC/κ. See [HT08, Theorem
20] for a variation on this theme. Since there are no rational curves in PiceC/κ, an
irreducible component of Σe(X/C/κ) will not be rationally connected so long as the
Abel map is nonconstant on the component (and the Abel map will be nonconstant
for all “interesting” irreducible components).
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What we might hope, and what often holds, is that a general fiber of α is rationally
connected, i.e., for an “interesting” irreducible component Ze of Σe(X/C/κ) the
fiber of

α|Ze : Ze → PiceC/κ
over the geometric generic point of PiceC/κ is rationally connected. In other words,
every general pair of Abel equivalent points are rationally connected. In the next
section we state the main theorem in this direction.

Kontsevich stacks relative to a morphism. Of course all of these notions have
analogues relative to a morphism. Let f : P → Q be a morphism of quasi-projective
κ-schemes and let L be an f -relatively ample invertible sheaf.

Definition 3.4. For integers γ, n and e, the Kontsevich stack relative to the mor-
phism f Mγ,n(P/Q, e) is the disjoint union

Mγ,n(P/Q, e) :=
⊔
β

Mγ,n(P, β)

where β ranges over all curve classes such that f∗β equals 0 and such that 〈L, β〉
equals e.

Using boundedness of the Hilbert scheme once more there are only finitely many
classes β as above for which Mγ,n(P, β) is nonempty. Hence Mγ,n(P/Q, e) is a
finite type, separated Deligne-Mumford stack with a quasi-projective coarse mod-
uli space Mγ,n(P/Q, e). And if P and Q are proper, then Mγ,n(P/Q, e) and
Mγ,n(P/Q, e) are also proper.

For every family of stable maps in Mγ,n(P/Q, e),

(ρ : C → S, (σi : S → C)i=1,...,n, h : C → P ),

the morphism f ◦ h : C → Q is constant on fibers Cs of ρ since f(h(Cs)) has class
0 in the quasi-projective variety Q. Thus f ◦ h factors as hC ◦ ρ for a unique κ-
morphism hC : S → Q. Moreover hC is compatible with pullbacks and thus defines
a 1-morphism

fγ,n,e :Mγ,n(P/Q, e)→ Q

which induces a morphism of κ-schemes,

fγ,n,e : Mγ,n(X/C, e)→ C.

This construction is compatible with base-change: for a morphism Q′ → Q of quasi-
projective κ-schemes,Mγ,n(P/Q, e)×QQ′ is canonically equivalent toMγ,n(P ′/Q′, e)
where P ′ is the fiber product P ×Q Q′. Similarly Mγ,n(P/Q, e) ×Q Q′ equals
Mγ,n(P ′/Q′, e). In particular, the fiber of fγ,n,e over a point t of Q is simply
the Kontsevich stack of the fiber, Mγ,n(Pt/κ(t), e). This is the sense in which
Mγ,n(P/Q, e) is “relative” to the morphism f .

The evaluation morphism to Pn = X ×κ · · · ×κ X factors as a morphism of Q-
schemes

evγ,n,e : Mγ,n(P/Q, e)→ P ×Q · · · ×Q P.
As usual, this evaluation morphism will be denoted by ev whenever confusion is
unlikely.
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There are two quite important example of this. When L is f -relatively very ample,
then M0,0(P/Q, 1) is nothing other than the parameter space for lines in fibers of
p. Similarly M0,1(P/Q, 1) is the parameter space for pointed lines in fibers of p.

Definition 3.5. Let κ, C and X be as in Notation 2.4 and assume that L is π-
relatively very ample. A scroll 7 for X/C/κ is a closed subscheme R of X such
that

π|R : R→ C

is smooth and the geometric fibers are rational curves whose L-degree equals 1.
Equivalently a scroll is a section of the morphism

π0,0,1 :M0,0(X/C, 1)→ C.

There is a special type of scroll which will be particularly important in Section 7.

Definition 3.6. Let X/C/κ and L be as in Notation 2.4. Assume that L is π-
relatively very ample. Let m be a positive integer. An m-twisting scroll for X/C/κ
is a pair (R,L) where R is a scroll for X/C/κ and L is a Cartier divisor class on R
satisfying all of the following.

(1) The invertible sheaf OR(L) has degree 1 on all geometric fibers Rt, it is
globally generated, and it is non-special, i.e., h1(R,OR(L)) equals 0.

(2) The normal bundle NR/X is globally generated and h1(R,NR/X) equals 0.
(3) For every invertible sheaf OC(Γ) on C of degree ≤ m, h1(R,NR/X(−L)⊗OR

π∗OC(−Γ)) equals 0.

There is a second important example of this. Again for the morphism f : P → Q
assume that L is f -relatively very ample. Then the fiber product of the forgetful
morphisms

M0,1(P/Q, 1)×M0,0(P/Q,1)M0,1(P/Q, 1)

is a parameter space for 2-pointed lines (L, p, q) in fibers of f .

Definition 3.7. For each integer n ≥ 1, the space of chains of n lines Chn2(P/Q, n)
is the n-fold fiber product(

M0,1(P/Q, 1)×M0,0(P/Q,1)M0,1(P/Q, 1)
)
×ev0,1,1◦pr2,P,ev0,1,1◦pr1 . . .

×ev0,1,1◦pr2,P,ev0,1,1◦pr1

(
M0,1(P/Q, 1)×M0,0(P/Q,1)M0,1(P/Q, 1)

)
.

This parameterizes chains (C ′, p1, qn) in fibers of f ,

(C ′, p1, qn) = ((L1, p1, q1), (L2, p2, q2), . . . , (Ln, pn, qn))

where each (Li, pi, qi) is a 2-pointed line in a fiber of f and satisfying the “matching
condition” that qi equals pi+1 for each i = 1, . . . , n − 1. The points p1 and qn are
boundary points of the chain (since there is no matching condition on these points).
The evaluation morphism is the morphism of Q-schemes,

ev0,2,n : Chn2(P/Q, n)→ P ×Q P, (C ′, p1, qn) 7→ (p1, qn).

Of course the main case is when f : P → Q is a morphism π : X → C as in
Notation 2.4. Note also that this construction is compatible with base-change by
Q′ → Q in the same sense that all relative Kontsevich spaces are compatible with
base-change.

7scroll Engl. = surface réglée
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4. Rational connectedness of fibers of Abel maps

As always the notations are as in Notation 2.4. The main theorem has several strong
hypotheses on X, L, the morphism π and the geometric generic fiber Y defined over
K = κ(C). One can prove a version of the theorem with weaker hypotheses. This
is done in [dJHS08]. But then the proof is even more technical. In the application
to Serre’s conjecture the strong forms of these hypotheses are all valid.

Hypothesis 4.1. The morphism π is smooth and projective.

Hypothesis 4.2. The invertible sheaf L is π-very ample.

The remaining hypotheses are insensitive to replacing L by L ⊗OX π∗OC(Γ) for
an invertible sheaf OC(Γ) on C. Thus in what follows we will assume that L is
very ample. We consider X as an embedded subscheme of projective space via the
complete linear system of L. In particular, the relative Kontsevich stack

M0,0(X/C, 1)→ C

is canonically equivalent to the relative Hilbert scheme whose fiber over a point t
of C parameterizes lines L contained in the fiber Xt. And

M0,1(X/C, 1)→ C

is canonically equivalent to the relative flag Hilbert scheme whose fiber over a point
t of C parameterizes pairs (L, p) of a line L contained in the fiber Xt and a point p
contained in L. In particular, M0,0(X/C, 1), resp. M0,1(X/C, 1) equals the coarse
moduli space M0,0(X/C, 1), resp. M0,1(X/C, 1).

There is a forgetful morphism (over C)

ρ : M0,1(X/C, 1)→ M0,0(X/C, 1), (L, p) 7→ L.

And, as discussed at the end of the previous section, there is an evaluation morphism
(over C)

ev0,1,1 : M0,1(X/C, 1)→ X, (L, p) 7→ p.

The standard convention is to drop the subscript and denote the evaluation mor-
phism by ev.

Hypothesis 4.3. The morphism ev = ev0,1,1 above is smooth and surjective with
rationally connected geometric generic fiber.

Hypothesis 4.3, in fact just smoothness of ev, implies that every line L in every
fiber Xt of π is a free line in Xt, i.e., the normal bundle of L in Xt is globally
generated, cf. [Kol96, Corollary IV.3.5.4, Proposition IV.3.10].

The remaining hypotheses involve the geometric generic fiber Y of π over the field
K = κ(C), as well as the pullback LY of L to Y .

Hypothesis 4.4. For some positive integer n0 the evaluation morphism for chains
of n0 lines

ev0,2,n0 : Chn2(Y/K, n0)→ Y ×K Y

is surjective and the geometric generic fiber is integral and rationally connected.
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Under Hypotheses 4.2 and 4.3 ev0,2,n is dominant for all n� 0 if and only if Y is
irreducible and LY is a generator of Pic(Y ). If the Picard number equals 1, the ar-
gument proving ev is dominant appears, for instance, in [Kol96, Corollary IV.4.14].
We essentially repeat this argument in the first half of the proof of Lemma 9.7.
And the opposite direction follows from [Kol96, Proposition IV.3.13.3].

The hypothesis that the fibers of ev0,1,1 and ev0,2,n are rationally connected is
strong. The fiber of ev0,1,1 is analogous to the space of continuous paths in a path
connected CW complex with one basepoint fixed. Rational connectedness of this
fiber is analogous to path connectedness of the space of such paths. Of course
path connectedness of this space of paths is obvious by retracting the path to the
fixed basepoint. But rational connectedness of the fiber of ev0,1,1 is nonetheless a
strong condition. Similarly, the fiber of ev0,2,e is analogous to the space of contin-
uous paths in a path connected CW complex with both endpoints fixed. Rational
connectedness of this fiber is analogous to path connectedness of the space of such
paths. Path connectedness of this space of paths is exactly simple connectedness of
the CW complex. In this way we consider Hypotheses 4.3 and 4.4 to be a version
of “rational simple connectedness”.

The final hypothesis, Hypothesis 4.5, is technical but essential.

Hypothesis 4.5. There exists a morphism ζ : P1
K → M0,1(Y/K, 1) such that the

pullbacks of the vertical tangent bundles ζ∗TΦ, ζ∗Tev0,1,1 and ζ∗ev∗0,1,1TY/K are
ample, where the vertical tangent bundle is the dual of the locally free sheaf of
relative differentials and where Φ and ev0,1,1 are the morphisms

Φ : M0,1(Y/K, 1)→ M0,0(Y/K, 1), (L, p) 7→ L,

ev0,1,1 : M0,1(Y/K, 1)→ Y, (L, p) 7→ p.

Here is an explanation of why Hypothesis 4.5 is essential for Theorem 4.9. For a
general hypersurface Y in Pn of degree d Hypothesis 4.4 hold if and only if n ≥ d2−1.
And Hypothesis 4.5 holds if and only if n ≥ d2. So for n = d2 − 1 Hypothesis 4.4
holds yet Hypothesis 4.5 fails. Moreover when X/C/κ is a one-parameter family
of degree d hypersurfaces in Pn coming from any sufficiently general rational curve
of degree ≥ d in the linear system PH0(Pn,OPn(d)), we claim that Theorem 4.9
holds if and only if n ≥ d2. Thus Hypothesis 4.5 is essential. The “if” direction
of the claim is discussed in [dJHS08] and uses joint work with de Jong and with
Harris on rational simple connectedness of hypersurfaces. Via Corollary 8.1 this
gives a new proof of the Tsen-Lang theorem, cf. [Lan52], [Tse36]. On the other
hand, the Tsen-Lang theorem is sharp: for n < d2 there are explicit families for
which Corollary 8.1 fails. Thus also Theorem 4.9 fails for these families. This gives
the “only if” direction of the claim.

Assuming Hypotheses4.1 – 4.4, one can conclude something close to Hypothesis 4.5.
There exists a morphism ζev : P1

K → M0,1(Y, 1) such that ζ∗evTev and ζ∗evev∗TY/K
are both ample, and there also exists a morphism ζρ : P1

K → M0,1(Y, 1) such that
ζ∗ρTρ and ζ∗ρev∗TY/K are both ample. But it is essential to have a single morphism
ζ such that ζ∗Tev and ζ∗Tρ are simultaneously ample. As just discussed, there is
no such morphism when Y is a general degree d hypersurface in PnK with n < d2,
even though Hypothesis 4.4 does hold.
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As will be proved in Corollary 7.5, Hypothesis 4.5 is essentially equivalent to the
existence of a 2-twisting scroll for the constant rationally connected fibration P1

K×k
Y over the curve P1

K : a pair (R,D) consisting of a scroll R for P1
K ×K Y/P1

K and
a Cartier divisor class D on R such that

(1) OR(D) is globally generated and D has relative degree 1 over P1,
(2) the normal sheaf NR/P1×Y is globally generated, and
(3) h1(R,NR/P1×Y (−D)⊗OP1

OP1(−2)) equals 0.
Existence of a 2-twisting scroll in Y is basically an “infinitesimal homotopy” con-
dition. Consider the reducible curve D′ which is the union of a section curve in R
of divisor class D and two fibers of the projection. Since the scroll is free, D′ is
unobstructed, in fact a porcupine8 as will be defined in Definition 5.1. (Moreover,
a 2-twisting scroll in Y is free if and only if every such D′ is a porcupine.) The
porcupine D′ is a “horn” in R analogous to the horn in [0, 1] × [0, 1] coming from
the union ({0}× [0, 1])∪([0, 1]×{0})∪({1}× [0, 1]). Of course for a path connected
CW complex, every continuous map from the horn in [0, 1] × [0, 1] extends to a
continuous map from all of [0, 1] × [0, 1], i.e., every horn can be filled. The closed
immersion of the scroll R ↪→ P1

K ×K Y “fills” the horn D′ ↪→ P1
K ×K Y . Moreover,

the conditions (1), (2) and (3) guarantee that for every infinitesimal deformation
of the horn D′ in P1

K ×K Y over an arbitrary Artin ring, there exists a deformation
of R in P1

K ×K Y over that same Artin ring such that the deformation of D′ is a
Cartier divisor on the deformation of R, i.e., every infinitesimal deformation of the
horn can still be filled. Essentially the conditions (1), (2) and (3) are exactly the
conditions necessary to deduce that all deformations of the horn are unobstructed
and every deformation of the horn is filled. Again, the analogous topological result
is trivial for path connected CW complexes. Nonetheless this is a quite nontrivial
hypothesis in the algebraic category, and it is independent of Hypothesis 4.4.

These are all the hypotheses. However, before stating the theorem there are some
definitions. The first two definitions quantify the positivity of the normal sheaf of
a section. This is important for understanding the deformation theory of sections
and stable sections.

Definition 4.6. Let d ≥ 0 be an integer. For an algebraically closed extension field
k of κ, a d-free section of π defined over k is a section σ : Ck → Xk defined over k
such that for one (and hence every sufficiently general) effective Cartier divisor D
of Ck of degree d,

h1(Ck, σ∗Nσ(Ck)/Xk(−D)) equals 0.

Here Ck equals C ⊗κ k and Xk equals X ⊗κ k.

In particular, when d ≥ max(2g, 1) the first cohomology vanishes if and only if the
map on global sections

H0(Ck, σ∗Nσ(Ck)/Xk)→ H0(Ck, σ∗Nσ(Ck)/Xk ⊗OCk OD)

is surjective. So we make a special definition for this case.

Definition 4.7. A section is (g)-free if it is d-free for some d ≥ max(2g, 1), i.e.,
for g ≥ 1 it is 2g-free and for g = 0 it is 1-free.

8porcupine Engl. = porc-épic Fr.

17



The main theorem has to do with the existence of a special sequence of irreducible
components of Σe(X/C/κ). Since there will be some intermediate lemmas it is
convenient to make this a definition.

Definition 4.8. Let X/C/κ and L be as in Notation 2.4. And assume that Hy-
potheses 4.1, 4.2, and 4.3 hold. Let ε be an integer. An Abel sequence for X/C/κ
starting at ε is a sequence (Ze)e≥ε for each integer e ≥ ε of an irreducible component
Ze of Σe(X/C/κ) which is geometrically irreducible (sometimes called absolutely ir-
reducible) and satisfying all of the following.

(i) For every e ≥ ε a general point of Ze parameterizes a (g)-free section of π.
(ii) For every e ≥ ε the Abel map

α|Ze : Ze → PiceC/κ
is surjective and the geometric generic fiber is integral and rationally con-
nected, i.e., a general pair of Abel equivalent points in Ze is rationally
connected.

(iii) For every algebraically closed field extension k of κ, for every (g)-free section
σ0 : C ⊗κ k → X of π defined over k and having some degree e0, there
exists an integer δ0 ≥ ε − e0 such that for all integers δ ≥ δ0, every stable
section obtained by attaching δ lines in fibers of π to σ0(C) gives a k-
point of Σe0+δ(X/C/κ) lying in Ze0+δ (and lying in no other irreducible
component).

A pseudo Abel sequence is a sequence (Ze)e≥ε as above where (ii) is replaced by the
weaker condition that α|Ze is surjective and the geometric generic fiber is integral
(but not necessarily rationally connected).

Theorem 4.9. Notations are as in Notation 2.4; in particular κ is characteristic
0 but not necessarily algebraically closed. If Hypotheses 4.1 – 4.5 hold then there
exists an Abel sequence for X/C/κ. If only Hypotheses 4.1 – 4.4 hold then there
exists a pseudo Abel sequence for X/C/κ.

Galois invariance. The main goal of Part 1 is to prove that there exists an Abel
sequence for X/C/κ. This is proved at the end of Section 7. There are several
intermediate steps and reductions. The first reduction is to the case that κ is al-
gebraically closed. This uses a Galois invariance result coming from condition (iii)
of Definition 4.8. But first there is a trivial result: given a sequence of irreducible
components (Ze)e≥ε which are geometrically irreducible, one can check whether this
is an Abel sequence (or pseudo Abel sequence) after base-change to any extension
field, in particular after base-change to an algebraic closure. In this sense the prop-
erty of being an Abel sequence is geometric. Let κ′/κ be a field extension. Denote
by Xκ′/Cκ′/κ

′ the base-change of X/C/κ over κ′. In particular, Σe(Xκ′/Cκ′/κ
′)

is canonically isomorphic to Σe(X/C/κ) ⊗κ κ′ as κ′-schemes. The proof of the
following result is an exercise in base-change, which is left to the reader.

Lemma 4.10. Notations are as in Notation 2.4. Let κ′/κ be a field extension. Let
(Ze)e≥ε be a sequence of irreducible components of Σe(X/C/κ) which are geomet-
rically irreducible. Then the base-change Ze ⊗κ κ′ is an irreducible component of
Σe(Xκ′/Cκ′/κ

′) which is geometrically irreducible. Moreover (Ze ⊗κ κ′)e≥ε is an
Abel sequence for Xκ′/Cκ′/κ

′, resp. a pseudo Abel sequence for Xκ′/Cκ′/κ
′, if and

only if (Ze)e≥ε is an Abel sequence for X/C/κ, resp. a pseudo Abel sequence for
X/C/κ.
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Denote by k the algebraic closure of κ and denote by Gal(κ) the Galois group.
Let T be a finite type κ-scheme. There is an induced action of Gal(κ) on T ⊗κ k
covering the action of Gal(κ) on Spec k. This is an action by isomorphisms of
schemes, hence by homeomorphisms. In particular, there is an induced action of
Gal(κ) on the set of irreducible components of T ⊗κ k. An elementary result is that
every irreducible component of T ⊗κ k dominates an irreducible component of T .
And the induced map from the set of irreducible components of T ⊗κ k to the set
of irreducible components of T is a surjective set map whose fibers are exactly the
Galois orbits. Moreover since T is finite type over κ also T ⊗κk is finite type over k,
and hence both sets of irreducible components are finite. In particular the stabilizer
group of each irreducible component of T ⊗κ k has finite index in Gal(κ). So there
is a bijection between the set of irreducible components of T and the set of (finite)
Galois orbits of irreducible components of T ⊗κ k, and this restricts to a bijection
between the subset of irreducible components of T which are geometrically integral
and the subset of Galois invariant irreducible components of T ⊗κ k. The relevant
case here is T = Σe(X/C/κ) and T ⊗κ k = Σe(Xk/Ck/k).

Lemma 4.11. Notations are as in Notation 2.4. Denote by k the algebraic closure
of κ. Assume that there exists a pseudo Abel sequence (Ze,k)e≥ε for Xk/Ck/k.

(i) The pseudo Abel sequence is “asymptotically unique”: for every pseudo Abel
sequence (Z ′e,k)e≥ε′ for Xk/Ck/k there exists an integer e′′ ≥ max(e, e′)
such that Ze,k equals Z ′e,k for every e ≥ ε′′. More generally, for every finite
collection of pseudo Abel sequences for Xk/Ck/k, there exists an integer ε′′

such that the all the sequences agree for every integer e ≥ ε′′.
(ii) There exists a finite index subgroup of Gal(κ) preserving all the components

Ze,k, e ≥ ε. There exists an integer ε′′ ≥ ε such that for every e ≥ ε′′, Ze,k
is Galois invariant.

(iii) There exists a pseudo Abel sequence for X/C/κ and the pseudo Abel se-
quence is “asymptotically unique” in the sense of (i).

(iv) If there exists an Abel sequence for Xk/Ck/k, then there exists an Abel
sequence for X/C/κ.

Proof. (i). Let σ0 be a (g)-free closed point of Zε,k. By (iii) applied to the sequence
(Ze,k)e and to the sequence (Z ′e,k)e, there exists an integer δ0 such that for every
δ ≥ δ0, ε+ δ ≥ max(ε, ε′) and both Zε+δ,k and Z ′ε+δ satisfy (iii) for σ0 and δ. But
the component satisfying (iii) is unique. Thus Zε+δ,k equals Z ′ε+δ,k for all δ ≥ δ0.
So the result holds for ε′′ = ε+δ0. And by induction on the number of pseudo Abel
sequences, the same holds for every finite collection of pseudo Abel sequences.

(ii). Now let σ0 be a closed point of Σe(X/C/κ) whose base change σ0,k in
Σe(Xk/Ck/k) is a (g)-free closed point of Zε,k. Since Σe(X/C/κ) is finite type
over κ, the residue field of σ0 is a finite extension of κ. Hence there is a finite index
subgroup H of Gal(κ) fixing σ0,k. Thus H is a finite index subgroup of Gal(κ)
fixing Zε,k. Iterating this argument, for every integer ε′ ≥ ε there exists a finite
index subgroup H ′ ≤ H fixing Ze,k for every e = ε, . . . , ε′.

Let δ0 be an integer as in (iii) such that for every integer δ ≥ δ0, Zε+δ,k is the unique
component containing every curve coming from σ0,k by attaching δ free lines. Then
H preserves Zε+δ. Thus choosing H ′ ≤ H to be a finite subgroup as in the previous
paragraph fixing Ze for each e = ε, . . . , ε+ δ0 − 1, then H ′ fixes Ze for every e ≥ ε.
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For each φ in Gal(κ), the conjugate sequence (φ Ze,k)e≥ε is also a pseudo Abel
sequence. Since H ′ has finite index in Gal(κ), this gives only finitely many pseudo
Abel sequences. Thus by (i) there exists an integer ε′′ ≥ ε such that for every
e ≥ ε′′ and for every φ in Gal(κ), φ Ze,k equals Ze,k. Therefore (Ze,k)e≥ε′′ is Galois
invariant.

(iii) and (iv). For every integer e ≥ ε′′, let Ze denote the image of Ze,k in
Σe(X/C/κ). This is an irreducible component of Σe(X/C/κ). Since Ze,k is Galois
invariant, Ze is geometrically irreducible and Ze,k equals Ze⊗κ k. By Lemma 4.10,
(Ze)e≥ε′′ is an Abel sequence for X/C/κ, resp. a pseudo Abel sequence for X/C/κ,
if and only if (Ze,k)e≥ε′′ is an Abel sequence for Xk/Ck/k, resp. a pseudo Abel
sequence for Xk/Ck/k. �

Because of the lemma it suffices to prove Theorem 4.9 for algebraically closed, char-
acteristic 0 fields κ. Moreover, for an extension of algebraically closed fields k/κ,
by a similar argument to that above, Theorem 4.9 for Xk/Ck/k is equivalent to
Theorem 4.9 for X/C/κ: there is a natural bijection between the set of irreducible
components of Σe(X/C/κ) and the set of irreducible components of Σe(Xk/Ck/k).
Thus it suffices to pass to “sufficiently large” algebraically closed fields, e.g., un-
countable fields. This will be technically convenient later although, of course, the
interested reader can easily formulate all of our arguments over any characteris-
tic 0 field. From this point on we will assume that κ is an uncountable and
algebraically closed field of characteristic 0.

5. The sequence of components

As always, notations are as in Notation 2.4. And from here on we will assume
that κ is uncountable and algebraically closed. Throughout this section we
assume Hypotheses 4.1 and 4.2 hold. In each result we will specify any additional
hypotheses which are needed.

Because of Lemma 4.11, when a pseudo Abel sequence exists for X/C/κ it is asymp-
totically unique. Moreover condition (iii) in Definition 4.8 is a prescription for con-
structing this sequence. First we need to prove that there exists at least one (g)-free
section, which we do in Lemma 5.4. Then we will attach lines in fibers to get stable
sections as in (iii). These stable sections will be points of the components Ze we
are trying to construct.

Because the stable sections in (iii) come up so often, we give them a special name,
“porcupines”, which is meant to capture some aspect of the curve: many lines
pointing vertically out of the body like the quills of a porcupines. But also it should
remind us that although these curves are better behaved than some of their spinier
cousins (more complicated vertical “spines” are difficult to work with, particularly
because of stack-theoretic issues they entail), nonetheless even porcupines should
be treated with some delicacy. Because we are trying to avoid some technicalities,
the definition of porcupine here is stronger than the definition in [dJHS08]. But
the basic idea is the same. We trust this will cause no confusion.

20



Definition 5.1. A porcupine9 in X is a stable section h : C ′ → X of π whose
associated section σ0 : C → X – called the body10 of the porcupine – is (g)-free and
whose vertical components h|C′j : C ′j → Xtj – called the quills11 of the porcupine
– are each isomorphisms to a line in Xtj . The attachment divisor of the porcupine
is the divisor D = t1 + · · ·+ tδ of points in C mapping under σ0 to nodes of h(C ′).
The pair (σ0, D) is the extended body of the porcupine.

It is quite convenient that the vertical components are all lines: the extended Abel
map is easier to understand and specializations of families of porcupines are easier
to bound. But the main point is that both the body and quills have positive
normal bundle. By standard deformation theory this implies nice “transversality”
properties of the Kontsevich space in the neighborhood of each porcupine.

Proposition 5.2. (i) There is a unique open subscheme Porce(X/C/κ) of
Σe(X/C/κ) whose κ-points parameterize porcupines, this open subscheme
is smooth, and this open subscheme is contained in the “fine moduli locus”
of Σe(X/C/κ), i.e., the open set where the 1-morphism from the stack to
the coarse moduli space is an equivalence.

(ii) The closed subscheme Porce,≥1(X/C/κ) of Porce(X/C/κ) parameterizing
porcupines with at least 1 quill is a simple normal crossings divisor (if it is
nonempty).

(iii) For every integer δ ≥ 1, the stratum Porce,≥δ(X/C/κ) of the simple normal
crossing divisor Porce,≥1(X/C/κ) having codimension δ in Porce(X/C/κ)
equals the reduced closed subscheme whose κ-points parameterize porcupines
with at least δ quills.

(iv) Thus the open subscheme Porce,δ(X/C/κ) of Porce,≥δ(X/C/κ) parameter-
izing porcupines with precisely δ nodes is a smooth, locally closed subscheme
of Porce(X/C/κ) of pure codimension δ (if it is nonempty). In particular,
Porce,0(X/C/κ) is a dense, open subscheme of Porce(X/C/κ) which equals
the open subscheme of Sece(X/C/κ) parameterizing (g)-free sections.

Proof. This follows by standard deformation theory, so we will only give a few
indications of the proof. A porcupine is a special case of the more general notion
of a comb, cf. [Kol96, Definition II.7.7]. The basic deformation theory of combs
is worked out in [Kol96, Section II.7] and other references, e.g., [Sta09, Section
3.2]. The key ideas in the proof of the proposition are [Kol96, Theorem II.7.9] and
[Sta09, Proposition 3.14, Lemma 3.17]. For a porcupine h′ : C ′ → X with body
σ0 : C → X, attachment points t1, . . . , tδ and quills C ′1, . . . , C

′
δ, there are exact

sequence of coherent sheaves

0 −−−−→ N −−−−→ NC′/X −−−−→
⊕δ

i=1 Tpiσ0(C)⊗κ TpiC ′i −−−−→ 0,

0 −−−−→
⊕δ

i=1NC′i/X(−pi) −−−−→ N −−−−→ Nσ0(C)/X −−−−→ 0.

Since the body is (g)-free, the last term of the second sequence has vanishing h1.
Since the quills are free curves, the first term of the second exact sequence has
vanishing h1. Thus by the long exact sequence of cohomology, the middle terms of
the second exact sequence has vanishing h1. Since this is also the first term of the

9porcupine Engl. = porc-épic Fr.
10body Engl. = corps Fr.
11quill Engl. = piquant Fr.
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first exact sequence, it follows that h1(C ′, NC′/X) is zero and the map of Zariski
tangent spaces

H0(C ′, NC′/X)→
δ⊕
i=1

Tpiσ0(C ′)⊗κ TpiC ′i

is surjective. Thus the Kontsevich space is smooth at (C ′, h : C ′ → X) and the map
from the formal neighborhood of the Kontsevich space to the versal deformation
space of the nodes of C ′ is smooth. Thus the boundary stratification is a simple
normal crossings variety near (C ′, h : C ′ → X). �

There is a morphism

Φbody : Porce,δ(X/C/κ)→ Porce−δ,0(X/C/κ)

associating to each porcupine (h : C ′ → X) with precisely δ quills the (g)-free
section (σ0 : C → X). Denoting by Cδ the δ-fold symmetric power of C over κ,
there is a refined version of this morphism

Φ′body : Porce,δ(X/C/κ)→ Porce−δ,0(X/C/κ)×κ Cδ
associating to each porcupine (h : C ′ → X) the extended body: σ0 together with
the attachment divisor D = t1 + · · ·+ tδ in C. Of course the image of prCδ ◦Φ′body

in Cδ is contained in the dense open subset C0
δ parameterizing reduced divisors,

i.e., unordered δ-tuples {t1, . . . , tδ} of distinct points of C.

Lemma 5.3. Let X/C/κ and L be as in Notation 2.4. Assume that Hypotheses
4.1, 4.2 and 4.3 hold. Let e be an integer and let δ be a nonnegative integer. The
morphism

Φ′body : Porce,δ(X/C/κ)→ Porce−δ,0(X/C/κ)×κ Coδ
is smooth, surjective and projective. And the geometric fibers are integral and ra-
tionally connected.

Proof. As a morphism of schemes over Cδ, we can understand Φ′body in terms of a
fiber product diagram. The evaluation morphism of κ-schemes

ev0,1,1 : M0,1(X/C, 1)→ X

induces a morphism of the associated δ-fold symmetric powers of these κ-schemes,

(ev0,1,1)δ : (M0,1(X/C, 1))δ → Xδ.

Similarly there is a morphism

(π)δ : Xδ → Cδ.

None of these symmetric powers nor morphisms of symmetric powers need be
smooth, but they become smooth when restricted to certain open subsets. Denote
by Xo

δ the inverse image (π)−1
δ (Coδ ), and denote by (M0,1(X/C, 1))oδ the inverse im-

age (ev0,1,1)−1
δ (Xo

δ ). Assuming Hypotheses 4.1 – 4.3 hold so that ev0,1,1 is smooth,
surjective and projective with integral and rationally connected generic fibers, then
also

(ev0,1,1)oδ : (M0,1(X/C, 1))oδ → Xo
δ

is a smooth, surjective, projective morphism of smooth, quasi-projective Coδ -schemes.
And each geometric fiber is a fiber product of δ base-changes of geometric fibers of
ev0,1,1. Thus the geometric generic fiber of (ev0,1,1)oδ is also integral and rationally
connected.
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There is another relevant evaluation morphism,

evog,{δ},e−δ : Porce−δ,0(X/C/κ)×κCoδ → Xo
δ , (σ0, {t1, . . . , tδ}) 7→ {σ0(t1), . . . , σ0(tδ)}.

Again assuming Hypotheses 4.1 – 4.3 hold then the fiber product of (ev0,1,1)oδ and
evog,{δ},e−δ,

(M0,1(X/C, 1))oδ ×Xoδ (Porce−δ,0(X/C/κ)×κ Coδ )
pr2−−→ Porce−δ,0(X/C/κ)×κ Coδ

is equivalent to Φ′body as morphisms to Porce−δ,0(X/C/κ) ×κ Coδ . Thus since
(ev0,1,1)oδ is smooth, surjective and projective with integral and rationally connected
generic fibers, the same is true of Φ′body. �

Geometrically the way we construct (g)-free sections is to find a family of sections
which is “sufficiently moving”, and then take the general member. The next lemma
explains why this works.

Lemma 5.4. Let X/C/κ and L be as in Notation 2.4. Let δ denote the integer
max(1, 2g). Let t1, . . . , tδ be distinct κ-points of C. Let S be an irreducible, finite
type κ-scheme. And let

τ : S ×κ C → X, (s, t) 7→ τ(s, t)

be a family of sections of π parameterized by S. If the associated κ-morphism

τt1,...,tδ : S → Xt1 ×κ · · · ×κ Xtδ , s 7→ (τ(s, t1), . . . , τ(s, tδ))

is dominant, then a general point of S parameterizes a (g)-free section.

Conversely, if σ0 : C → X is a (g)-free section, then for a general point collection
t1, . . . , tδ of κ-points of C and for the universal section

σ : Sec(X/C/κ)×κ C → X

the associated κ-morphism

σt1,...,tδ : Sec(X/C/κ)→ Xt1 ×κ · · · ×κ Xtδ

is smooth at [σ0].

Proof. There is a dense open subscheme of S which is smooth. After replacing S
by this open subscheme, assume S is smooth. Then by generic smoothness, τt1,...,td
is smooth at a general point s of S. By the Jacobian criterion this implies that

H0(C, τ∗s Tπ)→ H0(C, τ∗s Tπ ⊗OC OD)

is surjective, where D = t1 + · · ·+ tδ. Since δ = max(1, 2g), this implies that

h1(C, τ∗s Tπ(−D)) equals 0.

Thus τs is (g)-free.

Conversely, if σ0 is (g)-free, then Sec(X/C/κ) is smooth at [σ0] and the derivative
of σt1,...,td at [σ0] is precisely

H0(C, σ∗0Tπ)→ H0(C, σ∗0Tπ ⊗OC OD)

which is surjective. Thus σt1,...,td is smooth at [σ0]. �

Because of Lemma 5.4, there exists at least one (g)-free section. This is the “seed”
from which our Abel sequence will grow.
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Corollary 5.5. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses
4.1 – 4.4 hold. There exists an integer e0 such that for every integer e ≥ e0,
Porce,0(X/C/κ) is nonempty, i.e., there exists a (g)-free section of degree e.

Proof. By Hypothesis 4.4, the geometric generic fiber Y is rationally chain con-
nected. By Hypothesis 4.1 it is also smooth and projective. Thus Y is rationally
connected, cf. [Kol96, Theorem IV.3.10.3]. Denote by δ the integer max(2g, 1). By
Corollary 2.2, for every κ-point (p1, . . . , pδ) of

X(t1,...,tδ) := Xt1 ×κ · · · ×κ Xtδ

there exists a section σ : C → X with σ(tj) = pj for each j = 1, . . . , δ. Every
such σ is a κ-point of one of the countably many irreducible components (Si)i∈Z of
Σ(X/C/κ). Denote by Ci the closed image of Si in X(t1,...,tδ). Then X(t1,...,tδ)(k)
equals ∪i∈ZCi(k). Since κ is uncountable and since X(t1,...,tδ) is an irreducible κ-
scheme, there exists i ∈ Z such that Ci equals X(t1,...,tδ). By Lemma 5.4 a general
κ-point of Si parameterizes a (g)-free section of π.

Let e0 be the degree of the section above. By Proposition 5.2 Porce0,0(X/C/κ)
is nonempty since it parameterizes that section. By Lemma 5.3 for every integer
e > e0,

Φ′body : Porce,e−e0(X/C/κ)→ Porce0,0(X/C/κ)×κ Ce−e0
is dominant. In particular Porce(X/C/κ) is nonempty. Hence by Proposition 5.2
also Porce,0(X/C/κ) is nonempty. �

Let e0 be as in Corollary 5.5. And let Z = Ze0 be the closure in Σe0(X/C/κ) of one
of the components of the nonempty, dense open subset Porce0,0(X/C/κ). Denote
this component of Porce0,0(X/C/κ) by Porce0,0(X/C/κ)Z .

For every integer e ≥ e0, by Lemma 5.3 the morphism

Φ′body : Porce,e−e0(X/C/κ)→ Porce0,0(X/C/κ)×κ Coe−e0
is smooth, surjective and projective with integral geometric fibers. So for the in-
tegral, open and closed subscheme Porce0,0(X/C/κ)Z ×κ Coe−e0 of the target, the
inverse image Ze,e−e0 in Porce,e−e0(X/C/κ) is an integral, open and closed sub-
scheme of Porce,e−e0(X/C/κ). Since Porce(X/C/κ) is smooth, there is a unique
connected component Zoe of Porce(X/C/κ) containing Ze,e−e0 .

Definition 5.6. Let X/C/κ and L be as in Notation 2.4. Let e0 be an integer
and let Z be an irreducible component of Σe0(X/C/κ) which parameterizes at
least one (g)-free section. For every integer e ≥ e0, the distinguished irreducible
component Ze of Σe(X/C/κ) associated to Z is the closure in Σe(X/C/κ) of the
connected component Zoe of Porce(X/C/κ) as constructed above. For every integer
e ≥ e0 and for every integer δ ≥ 0, Porce,δ(X/C/κ)Z denotes the intersection
of Porce,δ(X/C/κ) and Ze in Σe(X/C/κ) (this intersection is a smooth, quasi-
projective κ-scheme).

This is the sequence of irreducible components we work with. By Proposition
5.2, this sequence satisfies (i) from Definition 4.8. Next we prove this sequence
satisfies the “integrality” part of (ii). In Section 6 we will verify (iii), which implies
the existence of pseudo Abel sequences in Corollary 6.8. But the hardest step is
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proving the “rational connectedness” part of (iii), which is completed in Section 7
using Hypothesis 4.5.

Lemma 5.7. Let X/C/κ and L be as in Notation 2.4. Assume that Hypotheses 4.1
– 4.4 hold and let e0 and Z be as in Definition 5.6. For every integer e ≥ e0+2g−1,
the restriction of the Abel map

α|Porce,e−e0 (X/C/κ)Z : Porce,e−e0(X/C/κ)Z → PiceC/κ
is smooth and dominant with integral geometric generic fiber.

Proof. A composition of smooth, dominant morphisms having integral geometric
generic fibers is also a smooth, dominant morphism have integral geometric generic
fiber. Thus it suffices to decompose α|Porce,e−e0 (X/C/κ)Z as a composition of such
morphisms.

For ease of notation denote e−e0 by δ so that e equals e0+δ. Since e is ≥ e0+2g−1,
also δ is ≥ 2g − 1. And when δ is ≥ 2g − 1, the usual Abel map

γ : Cδ → PicδC/κ
is smooth, surjective and projective with integral geometric fibers: it is a projective
Pδ−g-bundle bundle by Abel’s theorem and Jacobi inversion. The restricted Abel
map α|Porce,δ(X/C/κ)Z factors as the composition of

Φ′body : Porce0+δ,δ(X/C/κ)Z → Porce0,0(X/C/κ)Z ×κ Cδ
and the morphism

β : Porce0,0(X/C/κ)Z ×κ Cδ → Pice0+δ
C/κ

where β([σ0], [D]) equals σ∗0L(D). By Lemma 5.3, the first morphism is smooth and
dominant with integral geometric generic fiber. Thus to prove that α|Porce,δ(X/C/κ)Z
is smooth and dominant with integral geometric generic fiber, it suffices to prove
the same of β.

The morphism β factors as the composition of a projective bundle,

(pr1, γ ◦ pr2) : Porce0,0(X/C/κ)Z ×κ Cδ → Porce0,0(X/C/κ)Z ×κ PicδC/κ,

an isomorphism

(pr1,pr2 + α ◦ pr1) : Porce0,0(X/C/κ)Z ×κ PicδC/κ → Porce0,0(X/C/κ)Z ×κ PicδC/κ
and the smooth, surjective projection

pr2 : Porce0,0(X/C/κ)Z ×κ PicδC/κ → PicδC/κ

whose geometric generic fiber is the base change of the integral scheme Porce0,0(X/C/κ)Z .
Since each of the factors is a smooth, dominant morphism whose geometric generic
fiber is integral, the same is true of β. �

Lemma 5.8. Let X/C/κ and L be as in Notation 2.4. Assume that Hypotheses 4.1
– 4.4 hold and let e0 and Z be as in Definition 5.6. For every integer e ≥ e0+2g−1,
the restriction of the Abel map

α|Z : Ze → PiceC/κ

is surjective and the fiber over the geometric generic point of Pice0C/κ is irreducible.
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Proof. By Lemma 5.7 the morphism

α|Porce,e−e0 (X/C/κ)Z : Porce,e−e0(X/C/κ)Z → PiceC/κ
is dominant and that the geometric generic fiber is irreducible. Also Ze is irreducible
and Porce,e−e0(X/C/κ)Z is contained in the smooth locus of Ze. Thus also α|Ze is
dominant and the geometric generic fiber is irreducible. Since Ze is projective, the
morphism α|Ze is projective. Every projective, dominant morphism is surjective.

�

6. Rational connectedness of the boundary modulo the interior

The boundary of a Kontsevich (algebraic) space is the closed subspace parameter-
izing stable maps with singular domain. The open complement of the boundary is
the interior. The boundary has a stratification where the deeper strata correspond
to maps with many nodes. This stratification is studied in detail in an article
of Behrend and Manin, [BM96]. The intersection of the boundary stratification
with Porce(X/C/κ) is simply the stratification from Proposition 5.2. The interior
of Porce(X/C/κ) is the open subscheme Porce,0(X/C/κ) parameterizing (g)-free
sections.

In the last section we constructed the sequence (Ze)e≥e0 . (Of course the “starting
integer” ε will have to be chosen larger than e0, as is already clear from Lemma 5.7.)
If there exists an Abel sequence, resp. a pseudo Abel sequence, then eventually it
equals (Ze)e≥e0 . So the goal is to prove that (Ze)e≥e0 eventually becomes an Abel
sequence, i.e., it satisfies (i), (ii) and (iii) of Definition 4.8.

The sequence (Ze)e≥e0 satisfies (i) of Definition 4.8 since each Ze is the closure of the
nonempty open Porce,0(X/C/κ)Z parameterizing (g)-free sections. And Lemma 5.8
proves that (Ze)e≥e0 satisfies the “integrality” part of (ii). To complete (ii) we must
prove that the geometric generic fiber of the Abel map is rationally connected. Of
course the arguments of the previous section do not prove this since they do not
use Hypothesis 4.5, and they do not use the “rational connectedness” in Hypothesis
4.4. But Lemma 5.7 does prove something noteworthy, which we explain below.
This uses the notion of the maximally rationally connected fibration of a variety and
its corresponding MRC quotient, cf. [Kol96, Section IV.5]. The MRC quotient is a
measure of the failure of rational connectedness for a variety; a variety is rationally
connected if and only if the MRC quotient is a point. To prove (ii), we need to
prove that the MRC quotients of the geometric generic fibers of α|Ze eventually
stabilize to a point.

By the factorization in Lemma 5.7, for all e ≥ e0 + 2g− 1 the MRC quotient of the
geometric generic fiber of the morphism

α|Porce,e−e0 (X/C/κ)∩Ze : Porce,e−e0(X/C/κ)Z → PiceC/κ
is a quotient of the MRC quotient of Ze0 . Using this, one can show that the MRC
quotients eventually stabilize. But if g > 0 then they do not stabilize to a point;
in fact they stabilize to a variety which dominates Pic0(C). This same argument
would hold if we chose e0 to be a larger integer. So the conclusion applies to the
δ-boundary stratum Porce,≥δ(X/C/κ)Z for each δ ≥ 2g − 1: we cannot connect
two general Abel equivalent points of the δ-boundary stratum by a rational curve
which is entirely contained in that stratum. To rationally connect Abel equivalent
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points in the δ-boundary stratum we must use rational curves that pass out of that
stratum, e.g., rational curves which intersect the interior. In this section, using the
rational connectedness of fibers of ev0,{δ},e−δ as in Hypothesis4.4, we prove that
we can connect Abel equivalent points of Pice,δ(X/C/κ) if δ is sufficiently large
relative to e. Speaking loosely, “the boundary is rationally connected modulo the
interior”.

This section also proves that (Ze)e≥e0 satisfies (iii) of Definition 4.8. It is worth
noting that Hypothesis 4.5 is never used in this section. Of course for this reason
there must be something more in the proof of Theorem 4.9: as discussed there are
counterexamples to Theorem 4.9 which satisfy Hypothesis 4.4 but not Hypothesis
4.5. In the next section we will use Hypothesis 4.5 to show that “the interior is
rationally connected modulo the boundary”, i.e., for a general pair of a point in
the interior and an Abel equivalent point in the δ-boundary stratum, there exists
a rational curve connecting the two points. This will prove (ii) and hence also
Theorem 4.9.

Let δ be a positive integer. Let t1, . . . , tδ be distinct κ-points of C. The following
notation and proposition are useful for showing that certain families of sections
introduced later always parameterize some (g)-free sections. In one crucial step,
Claim 6.6, in the proof of Proposition 6.5 an open set O will appear about which
we a priori know nothing except that it is dense (in fact the point of the claim is
that there does not exist an open set O as in that proof, but the contradiction proof
of the claim requires working with such an O to conclude it cannot exist). Because
of this, we have to introduce variants of all of our notations which are adapted to
some variable open set O.

Notation 6.1. Denote by X(t1,...,tδ) the product Xt1 ×k · · · ×k Xtδ . And denote
by Chn2(X/C, n)(t1,...,tδ) the product

Chn2(X/C, n)(t1,...,tδ) := Chn2(Xt1/κ, n)×κ · · · ×κ Chn2(Xtδ/κ, n).

Finally, for every dense open subsetO ofX(t1,...,tδ), denote by ChnO2 (X/C, n)(t1,...,tδ)

the open subscheme of Chn2(X/C, n)(t1,...,tδ) parameterizing sequences ((C ′j , p1,j , qn,j))j=1,...,δ

of chains of n lines

(C ′j , p1,j , qn,j) = ((L1,j , p1,j , q1,j), . . . , (Ln,j , pn,j , qn,j)) ∈ Chn2(Xtj/κ, n)

such that for every i = 1, . . . , n, (pi,1, . . . , pi,δ) and (qi,1, . . . , qi,δ) are each contained
in the open subset O of X(t1,...,td): all sequences of marked points and all sequence
of nodes of the chain (i.e., all sequences of “special points”) are contained in the
open set O.

Hypothesis 4.4 involves chains of lines of some fixed length n0. The next proposition
shows that the same property holds for chains of lines of length n for all n ≥ n0.
The “O variant” will be useful in Claim 6.6

Proposition 6.2. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses
4.1 – 4.4 hold. Let n0 be as in Hypothesis 4.4. For every n ≥ n0, Chn2(Y/K, n) is
smooth and irreducible. And the morphism

ev : Chn2(Y/K, n)→ Y ×K Y

is surjective with integral and rationally connected geometric generic fiber. More-
over for every n ≥ 2n0, for every positive integer δ, for every sequence t1, . . . , tδ of
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distinct κ-points of C, and for every dense open subset O of X(t1,...,tδ), the evalua-
tion morphism

ev : ChnO2 (X/C, n)(t1,...,tδ) → O ×κ O,
((C1, p1,1, qn,1), . . . , (Cδ, p1,δ, qn,δ)) 7→ ((p1,1, . . . , p1,δ), (qn,1, . . . , qn,δ))

is surjective.

Proof. The first statement is proved by induction on n. The base case n = n0

follows from Hypothesis 4.4 Thus, by way of induction, assume n > n0 and assume
the result is known for n− 1. The forgetful morphism

Chn2(Y/K, n)→ Chn2(Y/K, n− 1),

((L1, p1, q1), . . . , (Ln−1, pn−1, qn−1), (Ln, pn, qn)) 7→ ((L1, p1, q1), . . . , (Ln−1, pn−1, qn−1))
is a smooth, surjective, projective morphism with integral and rationally connected
geometric fibers; it is a base-change of the evaluation morphism ev0,1,1 composed
with projection from a P1-bundle. Since Chn2(Y/K, n−1) is smooth and irreducible
by the induction hypothesis, also Chn2(Y/K, n) is smooth and irreducible.

Next let x and y be general K-points of Y . Denote by Fx,y the variety parameter-
izing chains of n lines

(C ′, p1, qn) = ((L1, p1, q1), . . . , (Ln−1, pn−1, qn−1), (Ln, pn, qn))

with p1 = x and qn = y. To give such a chain, it is equivalent to give a line Ln in
Y containing qn = y, to give a point pn in Ln, and then to give a chain of (n− 1)
free lines

(C ′′, p1, qn−1) = ((L1, p1, q1), . . . , (Ln−1, pn−1, qn−1))
with p1 = x and qn−1 = pn. By Hypothesis 4.3 the variety A parameterizing free
lines Ln containing qn = y is integral and rationally connected. The variety B
parameterizing pairs (Ln, pn, qn) is a P1-bundle over A, i.e., the P1 is simply Ln.
Thus B is rationally connected. Moreover, since y is general, a general point pn
in Ln is also general (it is left to the reader to make a meaningful statement from
this sentence). Thus, by the induction hypothesis, the variety parameterizing free
chains (C ′′, p1, qn−1) with p1 = x and qn−1 = pn is rationally connected. Thus
Fx,y is a rationally connected fibration over the rationally connected variety B. By
Corollary 2.3, a rationally connected fibration over a rationally connected base has
rationally connected total space. Thus Fx,y is rationally connected. So the first
part of the proposition is proved by induction on n.

The second part of the proposition is proved in a similar way. Let nx and ny be
integers with nx, ny ≥ 0. Let x = (x1, . . . , xδ) and y = (y1, . . . , yδ) be κ-points of
O, i.e., (x, y) is a κ-point of O ×κ O. Denote by Fx(nx), resp. Fy(ny), the subset
of Chn2(X/C, nx)(t1,...,tδ), resp. of Chn2(X/C, ny)(t1,...,tδ), parameterizing chains

((C ′x,1, p1,1, qnx,1), . . . , (C ′x,δ, p1,δ, qnx,δ))

with (p1,1, . . . , p1,δ) = (x1, . . . , xδ), resp. parameterizing chains

((C ′y,1, pnx+1,1, qn,1), . . . , (C ′y,δ, pnx+1,δ, qn,δ))

with (qn,1, . . . , qn,δ) = (y1, . . . , yδ). And denote by FOx (nx), resp. FOy (ny), the
intersection of Fx(nx) with ChnO2 (X/C, nx), resp. the intersection of Fy(ny) with
ChnO2 (X/C, ny).
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Since ChnO2 (X/C, nX) is an open subset of Chn2(X/C, nx), also FOx (nx) is an open
subset of Fx(nx). Similarly FOy (ny) is an open subset of Fy(ny). Next we prove by
induction on nx, resp. ny, that FOx (nx) is dense in Fx(nx), resp. FOy (ny) is dense
in Fy(nY ). Here is the induction argument for FOx (nx), the argument for FOy (nY )
is the same. For the base case, nx = 1 we must prove that FOx (1) is dense in Fx(1).
Let (L1,1, . . . , L1,δ) be a sequence of lines such that each L1,j contains p1,j = xj .
Then the following subscheme of of X(t1,...,tδ),

L1 := L1,1 × · · · × L1,δ

is an irreducible subvariety and parameterizes the choices for the points (q1,1, . . . , q1,δ)
making up a chain

((L1,1, p1,1, q1,1), . . . , (L1,δ, p1,δ, q1,δ)

in Fx(1). The intersection of L1 with O is an open subset which contains the
point (p1,1, . . . , p1,d). Since L1 is irreducible, this open subset is dense in L1. Thus
FOx (1) is dense in Fx(1), establishing the base case. For nx > 1, there is a forgetful
morphism

Φ : Fx(nx)→ Fx(1)

which is smooth and surjective with integral geometric fibers. Since FOx (1) is dense
in Fx(1), also Φ−1(FOx (1)) is dense in Fx(nx). And for a point

(L, p, q) := ((L1,1, p1,1, q1,1), . . . , (L1,δ, p1,δ, q1,δ)

in Fx(1), setting x′ := (q1,1, . . . , q1,δ), the fiber Φ−1(L, p, q) is canonically isomor-
phic to Fx′(nx). Assuming (L, p, q) is in FOx (1), the intersection of Φ−1(L, p, q)
with FOx (nx) is canonically isomorphic to FOx′ (nx−1). By the induction hypothesis
FOx′ (nx − 1) is dense in Fx′(nx − 1). Hence also FOx (nx) is dense in Fx(nx).

Now assume that nx and ny are both ≥ n0 and that nx +ny equals n. By Hypoth-
esis 4.4 the subset of X(t1,...,tδ) parameterizing those κ-points (qnx,1, . . . , qnx,δ),
resp. (pnx+1,1, . . . , pnx+1,δ), arising from chains in Fx(nx), resp. from chains
in Fy(ny), contains a nonempty open subset of X(t1,...,tδ) (the proof is similar
to the proof of the first part of the lemma). Since FOx (nx) is a dense open in
Fx(nx) the set parameterizing (qnx,1, . . . , qnx,δ) arising from chains in FOx (nx) also
contains a nonempty open subset of X(t1,...,tδ). Similarly the set parameterizing
(pnx+1,1, . . . , pnx+1,δ) arising from chains in FOy (ny) contains a nonempty open sub-
set of X(t1,...,tδ). Since X(t1,...,tδ) is irreducible, these nonempty open subsets inter-
sect. Thus there exist chains in FOx (nx) and in FOy (nY ) such that (qnx,1, . . . , qnx,δ)
equals (pnx+1,1, . . . , pnx+1,δ). By concatenating these chains, i.e., by forming the
union Ci = Cx,i ∪qnx,i∼pnx+1,i Cy,i, there is a chain in ChnO2 (X/C, n)(t1,...,tδ) with
(p1,1, . . . , p1,δ) = (x1, . . . , xδ) and with (qn,1, . . . , qn,δ) = (y1, . . . , yδ). �

To prove the “rational connectedness” part of (ii) of Definition 4.8, we need to
prove that Abel equivalent porcupines are rationally connected. Working with one
porcupine already requires care. Getting two porcupines to “connect” is difficult;
usually porcupines run wild having nothing to do with one another. But we can
encourage porcupines to connect by putting them both in a common “pen”. Here
a “pen” is a scroll which contains a porcupine. The crucial point is that porcupines
of the same degree which are penned in a common scroll are connected by a chain
of rational curves if and only if they are Abel equivalent.
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Definition 6.3. A porcupine h : C ′ → X is penned12 by a scroll R for X/C/κ
(recall Definition 3.5) if h(C ′) is contained in R. And then R is called a pen13 for
h.

Let e be an integer, and let δa, δb be nonnegative integers. Let ha : C ′a → X, resp.
hb : C ′b → X, be a porcupine in Porce,δa(X/C/κ), resp. in Porce,δb(X/C/κ), with
extended body (σ0,a, Da), resp. (σ0,b, Db). Assume that σ0,a and σ0,b are penned
in a common scroll

ρ = π|R : R→ C

for X/C/κ.

Lemma 6.4. Let X/C/κ and L be as in Notation 2.4. Let e be an integer and let
ha and hb be porcupines whose bodies are penned in a common scroll R as above.
The Abel images α(ha) and α(hb) in PiceC/κ are equal if and only if the Cartier
divisors σ0,a(C) + ρ∗Da and σ0,b(C) + ρ∗Db are linearly equivalent in R. In this
case, assuming Hypotheses 4.1 – 4.4 hold, there exists a connected chain of rational
curves in Σe(X/C/κ) containing [ha] and [hb] and whose nodes all parameterize
porcupines in Porce(X/C/κ) – in particular, smooth points of Σe(X/C/κ).

Proof. The Abel images are equal if and only if σ∗0,aL(Da) is isomorphic to σ∗0,bL(Db).
Since R is a P1-bundle over C and L is a relative O(1)-sheaf, these invertible sheaves
are isomorphic if and only if the divisors σ0,a(C) + ρ∗Da and σ0,b(C) + ρ∗Db are
linearly equivalent in R.

Assume these divisors are linearly equivalent and assume Hypotheses 4.1 – 4.4 hold.
For every κ-point t in Da, resp. in Db, the variety parameterizing lines containing
σ0,a(t), resp. σ0,b(t), is smooth, projective and rationally connected. Therefore
there exists a morphism from P1 to Porce,δa(X/C/κ), resp. to Porce,δb(X/C/κ),
sending 0 to ha, resp. to hb, sending every point of P1 to a porcupine with extended
body (σ0,a, Da), resp. (σ0,b, Db), and mapping∞ to a porcupine whose quill at each
attachment point t is the line Rt = ρ−1(t). Speaking loosely, such a morphism from
P1 is a “pivot” holding the body of the porcupine fixed and pivoting each quill into
the pen.

The image under ∞ of each of these pivots is a Cartier divisor in R which equals
σ0,a(C) + ρ∗Da, resp. σ0,b(C) + ρ∗Db. Since these divisors in R are linearly equiv-
alent, there is a pencil of divisors in R containing these two divisors. The general
member of this pencil is a stable section in Σe(X/C/κ). Thus the pencil determines
a rational map from the base P1 of the pencil to Σe(X/C/κ). Since Σe(X/C/κ)
is a projective scheme (recall we work with the coarse moduli space rather than
the Deligne-Mumford stack), this rational map extends to give a rational curve
in Σe(X/C/κ) containing the two new stable sections. The union of this rational
curve with the rational curves from the previous paragraph is a rational curve as
in the statement of the lemma. �

Please note from this proof that some of the rational curves in the chain may
intersect the interior of Ze. That is why these arguments only prove rational con-
nectedness “modulo the interior”. Of course this lemma cannot be applied directly

12penned Engl. = enclos Fr.
13pen Engl. = enclos Fr.
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to prove rational connectedness modulo the interior, since a typical pair of porcu-
pines are not penned by a common scroll. However Hypothesis 4.4 implies that
any pair of porcupines is penned by a sequence of scrolls. In order to apply the
lemma, we must first attach quills to each porcupine. Thus the formulation is quite
technical.

Let ea, eb be integers and let δa, δb be integers ≥ 2g − 1. By Lemma 5.7, the Abel
morphisms

αa : Porcea+δa,δa(X/C/κ)→ Picea+δa
C/κ ,

αb : Porceb+δb,δb(X/C/κ)→ Piceb+δbC/κ

are both smooth. Let Ia, resp. Ib, be a connected component of a nonempty fiber
of αa, resp. αb, over a κ-point of Picea+δa

C/κ , resp. of Piceb+δbC/κ .

Proposition 6.5. Let X/C/κ and L be as in Notation 2.4. Assume that Hypothe-
ses 4.1 – 4.4 hold. Let ea, eb be integers, let δa, δb be integers ≥ 2g − 1. And let Ia
and Ib be as above. Let n0 be as in Hypothesis 4.4 and let n be an integer ≥ 2n0.
There exists an integer e1 ≥ max(ea + δa, eb + δb) and a dense open subset U of
Ia ×κ Ib with the following property. For every e ≥ e1, for every pair of porcupines
([ha, hb]) in U with bodies σ0,a and σ0,b, and for every degree e Cartier divisor class
Γ on C, there exists a sequence of porcupines h1, . . . , hn−1 in Porce(X/C/κ) with
bodies σ0,1, . . . , σ0,n and there exists a sequence of scrolls R1, . . . , Rn satisfying all
of the following properties.

(i) The Abel image α([hi]) equals OC(Γ) for every i = 1, . . . , n− 1.
(ii) The sections σ0,a and σ0,1 are both penned in R1.
(iii) For i = 2, . . . , n− 1, the sections σ0,i−1 and σ0,i are both penned in Ri.
(iv) And σ0,n−1 and σ0,b are both penned in Rn.

Proof. We will also need to use the attaching divisors of these porcupines. Thus
denote the extended bodies of ha, resp. hb, hi by (σ0,a, Da), resp. (σ0,b, Db),
(σ0,i, Di). For a general element ([ha], [hb]) in Ia ×κ Ib, for a general κ-point t of
C, the fiber of

ev : Chn2(X/C, n)→ X ×C X
over (σ0,a(t), σ0,b(t)) is smooth, projective and rationally connected by Hypothesis
4.4. Thus by Theorem 2.1 there exists a section

τ : C → Chn2(X/C, n)

such that ev◦τ equals (σ0,a, σ0,b). And by Corollary 2.2 the section τ can be chosen
so that τ(tj) is a specified general point in the fiber of

ev : Chn2(Xtj/κ, n)→ Xtj ×κ Xtj

over (σ0,a(tj), σ0,b(tj)) for every j = 1, . . . , d.

It is convenient to make that last sentence precise. There exists a smooth, connected
κ-scheme T and a C-morphism

τ : T ×κ C → Chn2(X/C, n)

such that the induced morphism

ev0,2,n ◦ τ : T ×κ C → X ×C X
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is equivalent to a morphism

T → Sec(X/C/κ)×κ Sec(X/C/κ)

mapping the geometric generic point of T to the pair of bodies ([σ0,a], [σ0,b]) of the
geometric generic point ([ha], [hb]) of Ia×κ Ib and such that the induced morphism

τ(t1,...,tδ) : T → Chn2(Xt1/κ, n)×κ · · · ×κ Chn2(Xtδ/κ, n)

is dominant.

For every i = 1, . . . , n denote by

Pi, Qi : Chn2(X/C, n)→ X

the morphism which sends each chain

((L1, p1, q1), . . . , (Ln, pn, qn))

to the point pi, resp. qi. By construction Qi equals Pi+1 for i = 1, . . . , n− 1.

Claim 6.6. For every i = 1, . . . , n, the induced morphisms

Pi ◦ τ,Qi ◦ τ : T ×κ C → X

are equivalent to morphisms

Pi ◦ τ,Qi ◦ τ : T → Sec(X/C/κ)

each mapping the geometric generic point of T to a (g)-free section.

By Lemma 5.4, to prove Claim 6.6, it suffices to prove for a general choice of ∆
that the induced morphism

(Pi ◦ τ)t1,...,tδ : T → X(t1,...,tδ) := Xt1 ×κ · · · ×κ Xtδ

has dense image, and similarly for (Qi ◦ τ)t1,...,tδ . If the image were not dense, the
complement of the closure would be a dense open subset O of X(t1,...,tδ). Thus to
prove Claim 6.6, it suffices to prove that for ∆ general, for every dense open subset
O of X(t1,...,tδ), the image of each morphism

(Pi ◦ τ)t1,...,tδ : T → X(t1,...,tδ)

intersects O, and similarly for (Qi ◦ τ)t1,...,tδ .

If ∆ is general, then for the pair of bodies ([σ0,a], [σ0,b]) of a general point ([ha], [hb])
of Ia ×κ Ib, both

σ0,a(t) := (σ0,a(t1), . . . , σ0,a(tδ)) and σ0,b(t) := (σ0,b(t1), . . . , σ0,b(tδ))

are contained in O. By Proposition 6.2 the fiber ChnO2 (X/C, n)σ0,a(t),σ0,b(t) of

ev0,2,n : ChnO2 (X/C, n)(t1,...,tδ) → O ×κ O,
over (σ0,a(t), σ0,a(t)) is nonempty and hence dense in the corresponding fiber of

ev0,2,n : Chn2(X/C, n)(t1,...,tδ) → X(t1,...,tδ) ×κ X(t1,...,tδ).

Since the morphism

τ(t1,...,tδ) : T → Chn2(Xt1/κ, n)×κ · · · ×κ Chn2(Xtδ/κ, n)

is dominant, the image intersects the dense open subset ChnO2 (X/C, n)σ0,a(t),σ0,b(t).
So a general point u of T parameterizes a section

τu : C → Chn2(X/C, n)
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such that (τu(t1), . . . , τu(tδ)) is in ChnO2 (X/C, n)σ0,a(t),σ0,b(t). By the definition of
ChnO2 (X/C, n), for every i = 1, . . . , n, the associated point (Pi ◦ τu(t1), . . . , Pi ◦
τu(tδ)) is in O and similarly for Qi. This completes the proof of Claim 6.6.

Let e1 be an integer which is at least as large as ea+δa, eb+δb, degL(pi◦τu)+2g−1
and degL(qi ◦ τu) + 2g− 1 for every i = 1, . . . , n− 1. For every Cartier divisor class
Γ of degree e, for every i = 1, . . . , n− 1, there exists an effective divisor DPi , resp.
DQi , on C such that

(Pi ◦ τu)∗L(DPi) ∼= OC(Γ), resp.

(Qi ◦ τu)∗L(DQi) ∼= OC(Γ).

Moreover, for general choices, DPi and DQi are reduced. Thus any choice of quills
attached to (Pi◦τu)(C), resp. (Qi◦τu)(C), at (Pi◦τu)(DPi), resp. at (Qi◦τu)(DQi),
gives a degree e porcupine. This defines the porcupines h1, . . . , hn−1.

Finally, for every i = 1, . . . , n, the projection

Li : Chn2(X/C, n)→ M0,0(X/C, 1)

sending each comb to the ith line in the comb defines a section

Li ◦ τu : C → M0,0(X/C, 1),

or equivalently a scroll Ri. The conditions that pi, qi are contained in Li and that
qi equals pi+1 translate into conditions (i)–(iv) of the proposition for this choice of
h1, . . . , hn−1 and R1, . . . , Rn. �

This proposition is useful because of the next corollary.

Corollary 6.7. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses 4.1
– 4.4 hold. For every integer e there exists a positive integer δ0(e) ≥ 2g − 1 such
that for every integer δ ≥ δ0(e) and for every κ-point [OC(Γ)] in Pice+δC/κ, there is a
dense open subset U of the 2-fold self product(

Porce+δ,δ(X/C/κ) ∩ α−1([OC(Γ)])
)
×κ
(

Porce+δ,δ(X/C/κ) ∩ α−1([OC(Γ)])
)

with the following property. For every κ-point ([ha], [hb]) in U , there exists a chain
of rational curves in Σe+δ(X/C/κ) containing [ha] and [hb] and whose nodes all lie
in Porce+δ(X/C/κ). In particular, the nodes are all smooth points of Σe+δ(X/C/κ).
So the scheme Porce+δ,δ(X/C/κ)∩α−1([OC(Γ)]) is contained in a single irreducible
component of Σe+δ(X/C/κ).

Proof. This follows from Proposition 6.5 and Lemma 6.4. �

Corollary 6.8. As always the notation is as in Notation 2.4. Assume that Hypothe-
ses 4.1 – 4.4 hold. Let e0 and Z be as in Definition 5.6, which exists by Corollary
5.5. And let (Ze)e≥e0 be the associated sequence of irreducible components Ze of
Σe(X/C/κ). Then (Ze)e≥e0+2g−1 is a pseudo Abel sequence for X/C/κ; in particu-
lar condition (iii) of Definition 4.8 holds. Thus there exists a pseudo Abel sequence
for X/C/κ.
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Proof. First of all, by Lemma 5.4, there exists e0 and Z as in Definition 5.6.
By construction (Ze)e≥e0 satisfies condition (i) of Definition 4.8. By Lemma 5.7,
(Ze)e≥e0+2g−1 satisfies the modified condition (ii) for a pseudo Abel sequence. So
it only remains to prove that (Ze)e≥e0+2g−1 satisfies condition (iii).

Let e1 be any integer such that Porce2(X/C/κ) is nonempty, and let W be an
irreducible component of Σe1(X/C/κ) which intersects Porce1(X/C/κ). By the
same construction as in Definition 5.6, for every integer e ≥ e1, there is a unique
irreducible component We of Σe(X/C/κ) containing Porce,e−e1(X/C/κ) ∩We. By
Proposition 6.5, for e � 0, there is a single irreducible component of Σe(X/C/κ)
containing both Porce,e−e0(X/C/κ)Z and Porce,e−e1(X/C/κ)W . But the unique
irreducible component of Σe(X/C/κ) containing Porce,e−e0(X/C/κ)Z is Ze and
the unique irreducible component of Σe(X/C/κ) containing Porce,e−e1(X/C/κ)W
is We. Therefore, for all e� 0, Ze equals We. �

7. Rational connectedness of the interior modulo the boundary

Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses 4.1 – 4.4 hold.
By Corollary 6.8 there exists a pseudo Abel sequence (Ze)e≥e0 for X/C/κ. To
finish proving Theorem 4.9 we need to prove that under the additional Hypothesis
4.5, there exists an integer ε ≥ e0 such that for every integer e ≥ ε and for every
general point [OC(Γ)] of PiceC/κ, the integral scheme Ze∩α−1([OC(Γ)]) is rationally
connected, i.e., every strong desingularization is rationally connected. Recall that
a strong desingularization of a quasi-projective variety X is a projective, birational
morphism ν : X̃ → X such that X̃ is smooth and ν is an isomorphisms over
the smooth locus Xsmooth of X. In characteristic 0 Hironaka proved that every
quasi-projective variety has a strong desingularization.

Because of Corollary 6.7 in the last section, the “boundary is rationally connected
modulo the interior”: for every integer e ≥ e0 there exists an integer δ0(e) ≥ 2g− 1
such that for every integer δ ≥ δ0(e), for every [OC(Γ)] in Pice+δC/κ, every general

pair of points in the same fiber Porce+δ,δ(X/C/κ)Z ∩ α−1([OC(Γ)]) are connected
by a chain of rational curves whose nodes are all smooth points of Ze+δ. This
shows that the fibers of the Abel map on Porce+δ,δ(X/C/κ)Z are rationally chain
connected modulo the interior, and the same holds after replacing the fiber by a
strong desingularization.

We would be done if we could also show that the “interior is rationally connected
modulo the boundary”: for all integers e ≥ e1 and δ ≥ δ1, every sufficiently general
point of Ze+δ ∩ α−1([OC(Γ)]) is contained in a chain of rational curves which also
contains a general point of Porce+δ,δ(X/C/κ)Z ∩ α−1([OC(Γ)]) and whose nodes
are all smooth points of Ze+δ ∩ α−1([OC(Γ)]). For then by concatenating chains,
a general pair of points in Ze+δ ∩ α−1([OC(Γ)]) would be contained in a chain of
rational curves whose nodes are all smooth points of Ze+δ ∩ α−1([OC(Γ)]). Thus
the chain would lift to every strong desingularization of Ze+δ ∩α−1([OC(Γ)]). And
a smooth, projective variety is rationally connected if every sufficiently general pair
of points is connected by a chain of rational curves, cf. [Kol96, Theorem IV.3.10.3].
Thus Ze+δ ∩ α−1([OC(Γ)]) would be rationally connected.

This is how we will conclude the proof. In order to construct the rational chains
connecting general points of the “interior” of Ze+δ to Porce+δ,δ(X/C/κ)∩Ze+δ we
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will first construct special “m-twisting” scrolls R in X. These are constructed by
attaching to any scroll R0 for X/C at finitely many fibers Xt of π a 2-twisting scroll
for the constant family P1

κ ×κ Xt/P1
κ, considered as a surface in Xt via projection.

These 2-twisting scrolls exist by Hypothesis 4.5. After attaching such 2-twisting
scrolls to R0 at sufficiently many fibers and in sufficiently general normal directions,
the reducible surface will deform to an m-twisting scroll. These m-twisting scrolls
are relevant since pencils of divisors on m-twisting scrolls will give the rational
curves needed to connect the interior of Ze+δ to Porce+δ,δ(X/C/κ)Z . The following
lemma proves that R0 exists.

Lemma 7.1. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses 4.1 –
4.3 hold. For every integer e, every κ-point [σ0] of Porce,0(X/C/κ) is penned by a
scroll R0 for X/C/κ.

Proof. By Hypothesis 4.3, the evaluation morphism

ev0,1,1 : M0,1(X/C, 1)→ X

is smooth, projective and surjective with integral and rationally connected geomet-
ric fibers. Thus the same holds for the base-change morphism

pr2 : M0,1(X/C, 1)×ev0,1,1,X,σ0 C → C.

So this morphism is a rationally connected fibration over the curve C. By Theorem
2.1, this morphism has a section. As discussed in Definition 3.5, this section is
equivalent to a scroll R0 for X/C/κ. By construction, this scroll contains σ0(C). �

Let (R,L) be an m-twisting scroll for X/C/κ, cf. Definition 3.6. By Bertini’s
theorem, a general member of the linear system |L| on R is a smooth curve. By
(1), this curve is of the form σ0(C) for a section σ0 : C → R or π|R.

Definition 7.2. Let X/C/κ and L be as in Notation 2.4. Let h : C ′ → X be a
porcupine with m quills and with body σ0. A scroll R perfectly pens the porcupine
h if (R, [σ0(C)]) is an m-twisting scroll for X/C/κ.

A scroll R together with a section σ0 penned by R determines a section

ζ : C → M0,1(X/C, 1)

of the projection π0,1,1 : M0,1(X/C, 1) → C as in Definition 3.5. In some other
articles an m-twisting scroll is defined to be this associated section ζ of π0,1,1, but
in this article the definition above is more convenient. We can study the pullback
under ζ of the vertical tangent bundles of the morphisms

Φ : M0,1(X/C, 1)→ M0,0(X/C, 1)

and
ev0,1,1 : M0,1(X/C, 1)→ X,

i.e., the duals of the locally free sheaves of relative differentials for these morphisms.
Both in the construction of an m-twisting scroll starting from the scroll in Lemma
7.1 and in verifying Hypothesis 4.5 in Part 2, it is useful to characterize m-twisting
scrolls in terms of the pullbacks ζ∗TΦ and ζ∗Tev0,1,1 .
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Lemma 7.3. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses 4.1 and
4.2 hold and assume that every line in every fiber Xt of π is a free line. Let σ0 :
C → X be a section of π and let R be a scroll penning σ0. Let ζ : C → M0,1(X/C, 1)
be the associated section of π0,1,1. For each integer m > 0, (R, [σ0(C)]) is an m-
twisting scroll if and only if the following hold.

(1) The sheaves ζ∗TΦ and π∗OR(σ0(C)) are both globally generated and non-
special.

(2) The sheaf ζ∗ev∗0,1,1TX/C is globally generated and non-special.
(3) And the sheaf ζ∗Tev0,1,1⊗OCOC(−Γ) is non-special for every invertible sheaf
OC(Γ) of degree ≤ m.

In the special case that g equals 0, if ζ∗TΦ is globally generated and non-special then
so is π∗OR(σ0(C)).

Proof. Denote by ρ : R → S the restriction of π. As is discussed in [HS05,
Remark 4.4] for instance, ζ∗TΦ is isomorphic to σ∗0OR(L), and ζ∗Tev0,1,1 is iso-
morphic to ρ∗NR/X(−L). Of course ζ∗ev∗0,1,1TX/C is the same as Nσ0(C)/X . For
every geometric point t of C, Rt is a free line in Xt, hence hq(Rt, NRt/Xt) and
hq(Rt, NRt/Xt(−σ0(t))) both equal 0 for q > 0. Thus by the Leray spectral se-
quence, h2(R,NR/X(−L) ⊗OR ρ∗OC(−Γ)) equals 0 and H1(R,NR/X(−L) ⊗OR
ρ∗OC(−Γ)) equals H1(C, ζ∗Tev0,1,1 ⊗OC OC(−Γ)). Thus (3) above is equivalent to
(3) of Definition 3.6. Similarly, (1) of Definition 3.6 holds if and only if ρ∗OR(σ0(C))
is globally generated and non-special. So (1) above implies (1) of Definition 3.6.
And (2) of Definition 3.6 holds if and only if ρ∗NR/X is globally generated and
non-special.

There is a short exact sequence of OR-modules

0 −−−−→ OR −−−−→ OR(σ0(C)) −−−−→ σ0,∗σ
∗
0OR(σ0(C)) −−−−→ 0

giving rise to a short exact sequence of OC-modules,

0 −−−−→ OC −−−−→ ρ∗OR(σ0(C)) −−−−→ ζ∗TΦ −−−−→ 0.

Thus if ρ∗OR(σ0(C)) is globally generated and non-special, then so is ζ∗TΦ. In
particular, (1) of Definition 3.6 implies (1) of the lemma. In the special case that
g = 0, OC is non-special. Hence ρ∗OR(σ0(C)) is globally generated and non-special
if and only if ζ∗TΦ is globally generated and non-special.

Similarly there is a short exact sequence of OC-modules,

0 −−−−→ ζ∗Tev0,1,1 −−−−→ ρ∗NR/X −−−−→ σ∗0NR/X −−−−→ 0.

Assuming (3), the first term is globally generated and non-special. Thus the second
term is globally generated and non-special if and only if the the third term is. There
is also a short exact sequence

0 −−−−→ ζ∗TΦ −−−−→ ζ∗ev∗0,1,1TX/C −−−−→ σ∗0NR/X .

Assuming (1), ζ∗TΦ is globally generated and non-special. Thus the second term
is globally generated and non-special if and only if the the third term is. But
the third term of this sequence equals the third term of the previous sequence.
Hence, assuming (1) and (3), (2) of Definition 3.6 is equivalent to (2) of the lemma.
Therefore (1), (2) and (3) of Definition 3.6 are equivalent to (1), (2) and (3) above.
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We are interested in m-twisting scrolls because a porcupine with m quills which
is perfectly penned in an m-twisting scroll is contained in a rational curve in
Σ(X/C/κ) intersecting the interior; this is the aim of the rest of this section. And
then, by the next lemma, the same holds for all sufficiently general deformations of
this m-quill porcupine.

Lemma 7.4. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses 4.1
and 4.3 hold. For every integer e and for every integer m ≥ 0 there is an open
subscheme of Porce,m(X/C/κ) (possibly empty) whose κ-points are precisely those
degree e porcupines h : C ′ → X with m quills and body σ0 : C → X which are
perfectly penned in a scroll R, i.e., such that (R, [σ0(C)]) is m-twisting.

Proof. Let h : C ′ → X be a porcupine with extended body (σ0, D) where D =
t1 + · · ·+ tm is an effective, reduced divisor of degree m. Let R be an scroll penning
h such that (R, [σ0(C)]) ism-twisting. There is a flag Hilbert scheme parameterizing
pairs (R, h) of a scroll R in X and a porcupine h penned by R. This projects to the
Hilbert scheme parameterizing scrolls R in X. Our first step is to prove that both
the Hilbert schemes of scrolls in X is smooth at R, and the projection morphism
from the flag Hilbert scheme is smooth at (R, h), so that the flag Hilbert scheme
itself is smooth at (R, h).

First we show that h1(R,NR/X) equals 0, so that the Hilbert scheme of scrolls in
X is smooth at R. There is a short exact sequence of OR-modules,

0 −−−−→ NR/X(−σ0(C)) −−−−→ NR/X −−−−→ σ0,∗σ
∗
0NR/X −−−−→ 0.

By the associated long exact sequence of cohomology, it suffices to prove that both
h1(R,NR/X(−σ0(C))) and h1(C, σ∗0NR/X) equal 0. By Definition 3.6 withOC(Γ) =
OC , h1(R,NR/X(−σ0(C))) equals 0. And σ∗0NR/X is a quotient of Nσ0(C)/X , thus
h1(C, σ∗0NR/X) equals 0 if h1(C,Nσ0(C)/X) equals 0. By hypothesis σ0 is (g)-free,
hence free. Therefore h1(C,Nσ0(C)/X) equals 0. Thus the Hilbert scheme of scrolls
is smooth at R.

To prove smoothness of the projection morphism from the flag Hilbert scheme to
the Hilbert scheme of scrolls at (R, h), it suffices to prove that h1(R,OR(h(C ′)))
equals 0. Associated to the short exact sequence

0 −−−−→ OR(σ0(C)) −−−−→ OR(h(C ′)) −−−−→
⊕n

i=1ORti (1) −−−−→ 0

there is a long exact sequence of cohomology giving

H1(R,OR(σ0(C))) −−−−→ H1(R,OR(h(C ′))) −−−−→
⊕n

i=1H
1(Rti ,ORti (1)) = 0.

Since (R, [σ0(C)]) is an m-twisting surface, h1(R,OR(sigma0(C))) equals 0. There-
fore also h1(R,OR(h(C ′))) equals 0.

So the morphism from the flag Hilbert scheme to the Hilbert scheme of porcupines
is a morphism between smooth schemes at (R, h). By the Jacobian criterion, to
prove the morphism is smooth at (R, h) it suffices to prove the derivative map is
surjective, cf. [Har77, Proposition III.10.4]. Chasing diagrams, the cokernel of the
derivative map is a subspace of

H1(R,NR/X(−h(C ′))) = H1(R,NR/X(−σ0(C))⊗OC π∗OC(−D)).

Since (R, [σ0(C)]) is m-twisting and since D is a degree m divisor, this cohomology
group is zero. Thus the morphism from the flag Hilbert scheme to the Hilbert
scheme of porcupines is smooth at (R, h).
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Each condition on (R, h) to be m-twisting is either a condition about the vanishing
of cohomology of a locally free sheaf, or a condition about vanishing of cohomology
together with global generation of the sheaf. But each of these is an open condition
on the flag Hilbert scheme, cf. [Har77, Theorem III.12.11]. Thus there is a Zariski
open neighborhood of (R, h) in the flag Hilbert scheme parameterizing those pairs
such that (R, [σ0]) is m-twisting. Because a smooth morphism of quasi-projective
schemes is open, the image of this open neighborhood is an open neighborhood of
h in the Hilbert scheme of porcupines. Therefore the set of porcupines which are
penned by an m-twisting scroll contains a Zariski open neighborhood of h. Since
this holds for every such porcupine h, the locus of porcupines which are penned by
an m-twisting scroll is open in the Hilbert scheme of all porcupines. �

By Lemma 7.3 and by the proof of Lemma 7.4, we can finally prove the connection
between Hypothesis 4.5 and existence of 2-twisting scrolls.

Corollary 7.5. Let X/C/κ and L be as in Notation 2.4. Assume Hypotheses
4.5 holds. Then there are finitely many closed points of C such that for every
geometric point t of C whose image is not one of these, denoting the residue field
by κ(t), the following holds. There exists a scroll S for P1

κ(t) ×Xt/P1
κ(t)/κ(t) and

a section σS with σS(P1
κ(t)) ⊂ S such that σS is free, in fact σ∗STXt/κ(t) is ample,

and (S, [σS(P1
κ(t))]) is 2-twisting, in fact ζ∗TΦ and ζ∗Tev0,1,1 are both ample.

Proof. Hypothesis 4.5 asserts that for the geometric generic point t = η of C, there
exists a morphism

ζ : P1
K → M0,1(Y/K, 1)

such that ζ∗TΦ, ζ∗Tev0,1,1 and ζ∗ev∗0,1,1TY/K are all ample. This morphism is equiv-
alent to a scroll S and a section σS with image in S. By Lemma 7.3, this is a
2-twisting scroll. By the same sort arguments as in the proof of Lemma 7.4, the
existence of such a morphism ζ for the fiber Xt is an open condition on points of
C. And since this open set contains the geometric generic point, it is a dense open
set. Thus the complement of this open set is a set of finitely many closed points of
C. �

Assume now that Hypotheses 4.1 – 4.5 hold. The next proposition and its corollary
prove that the “interior is rationally connected modulo the bondary”. First there
is some more notation.

Let t be a general κ-point of C and let S and σS be as in Corollary 7.5. Let
hS : C ′S → P1

κ ×κXt be a porcupine with body σS and with 2 quills being fibers of
S → P1

κ. Since S is free, also σS is free and hence (0)-free. Thus hS is a porcupine
with 2 quills. Since (S, [σS(P1

κ)]) is 2-twisting, hS is perfectly penned by S. Denote
by bS the degree of σS with respect to L.

By Corollary 6.7 there exists an integer aS such that for every a ≥ aS , the porcupine
obtained by attaching general quills to σS(P1

κ) at a general points is contained in a
chain of rational curves in ΣbS+a(P1

κ ×κXt/P1
κ/κ) which also contains a porcupine

with constant body and such that all nodes of the chain are porcupines hence
smooth points of ΣbS+a(P1

κ ×κ Xt/P1
κ/κ).

Proposition 7.6. Let X/C/κ and L be as in Notation 2.4. Assume that Hypothe-
ses 4.1 – 4.5 all hold. Let (Ze)e≥e0 be a pseudo Abel sequence as in Corollary 6.8,
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and denote Ze0 by Z. Let aS and bS be as above. For every integer m ≥ 1 and
for every integer a ≥ aS there exists an integer c∆ ≥ 0 such that for every c ≥ c∆,
denoting e0 + a + c · bS by e, there is a dense open subset Ve of Porce,0(X/C/κ)Z
such that for every κ-point [σ0] of Ve there exists a scroll R for X/C/κ penning
σ0 and such that (R, [σ0(C)]) is an m-twisting scroll. Hence every m-quill porcu-
pine obtained from σ0 by attaching m fibers in R is perfectly penned by R. And by
Lemma 7.4, there is a nonempty open subset of Porce+m,m(X/C/κ)Z parameteriz-
ing m-quill porcupines which are perfectly penned.

Proof. Let σ be a general section parameterized by Z. By Lemma 7.1, σ is penned
by a scroll R. Denote by ρ the projection

ρ : R→ C.

Let a ≥ aS be a positive integer such that for a general divisor ∆ of degree a on
C, the divisor class [σ(C)] + ρ∗∆ on R is basepoint free and non-special, i.e., such
that (ρ∗OR(σ(C)))⊗OC OC(∆ is globally generated and non-special. Let σ∆ be a
general section of ρ such that [σ∆(C)] is linearly equivalent to [σ(C)] + ρ∗∆ on R.
Recall from Definition 3.4 that there are morphisms

π0,1,1 : M0,1(X/C, 1)→ C

and
ev0,1,1 : M0,1(X/C, 1)→ X.

By Hypotheses 4.3, for every point t of C every line in the fiber Xt = π−1(t) is a
free line. Thus both π0,1,1 and ev0,1,1 are smooth morphisms. Denote by Tπ0,1,1 and
Tev0,1,1 the corresponding vertical tangent sheaves – the duals of the corresponding
locally free sheaves of relative differentials. The pair (R, σ∆) determines a section

τ∆ : C → M0,1(X/C, 1)

of π0,1,1.

By the proof of Corollary 7.5 (really the argument from the proof of Lemma 7.4) for
every general t′ in C there exists a deformation into P1

κ×κXt′ of hS : C ′S → P1
κ×κXt

as a 2-quill porcupine, say hS,t′ : C ′S,t′ → P1
κ ×κXt′ and such that one of the quills

is ρ−1(t′). And the deformation is penned in P1
κ×κXt′ by a 2-twisting deformation

of S, say St′ . The deformation St′ of S together with the body of hS,t′ define a
morphism

τt′ : P1
κ → M0,1(Xt′/κ, 1) = π−1

0,1,1(t′)

such that τt′(0) equals τ∆(t′). The condition that (S, [σS(P1
κ)]) is 2-twisting is

equivalent to the condition that both τ∗t Tπ0,1,1 and τ∗t Tev0,1,1 are ample sheaves on
P1
κ.

Fix an invertible sheaf OC(Γ0) on C of degree N ≤ −m− g. Of course τ∗∆(Tπ0,1,1 ⊗
π∗0,1,1OC(Γ0)), resp. τ∗∆(Tev0,1,1⊗π∗0,1,1OC(Γ0)), is isomorphic to τ∗∆Tπ0,1,1⊗OC(Γ0),
resp. τ∗∆Tev0,1,1⊗OC(Γ0). By [Kol96, Theorem II.7.9, Lemma II.7.10.1], there exists
an integer c∆ such that for all c ≥ c∆, after attaching teeth τt(P1) to the handle
τ∆(C) at c general points τ∆(t), this comb in M0,1(X/C, 1) deforms to the image
of a section of π0,1,1, say

τ∆,c : C → M0,1(X/C, 1),

such that
h1(C, τ∗∆,c(Tπ0,1,1 ⊗ π∗0,1,1OC(Γ0))) equals 0
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and
h1(C, τ∗∆,c(Tev0,1,1 ⊗ π∗0,1,1OC(Γ0))) equals 0.

Denote by R∆,c the ruled surface and by σ∆,c the section of R∆,c corresponding to
τ∆,c.

Let OC(Γ) be any invertible sheaf on C of degree ≤ m. Then OC(−Γ − Γ0) has
degree −N −m, which is ≥ g(C). Thus it is effective, i.e., there exists an injective
sheaf homomorphism

OC(Γ0)→ OC(−Γ)
with torsion cokernel. Thus there exist injective sheaf homomorphisms with torsion
cokernel

τ∗∆,c(Tπ0,1,1 ⊗ π∗0,1,1OC(Γ0))→ τ∗∆,c(Tπ0,1,1 ⊗ π∗0,1,1OC(−Γ))

and
τ∗∆,c(Tev ⊗ π∗0,1,1OC(Γ0))→ τ∗∆,c(Tev ⊗ π∗0,1,1OC(−Γ)).

Thus
h1(C, τ∗∆,c(Tπ0,1,1 ⊗ π∗0,1,1OC(−Γ)) equals 0

and
h1(C, τ∗∆,c(Tev ⊗ π∗0,1,1OC(−Γ)) equals 0.

Chasing diagrams, this implies that the normal bundle N of R∆,c in X is globally
generated, that h1(R∆,c, N) equals 0, and that

h1(R∆,c, N(−[σ∆,c(C)])⊗ ρ∗∆,cOC(−Γ)) equals 0

for every invertible sheaf OC(Γ) of degree ≤ m. In other words, R∆,c together with
[σ∆,c] is an m-twisting scroll. Therefore every porcupine penned by R∆,c with m
quills and with body in the linear system |σ∆,c| is penned by an m-twisting scroll.

There is one issue: it is not immediately obvious that the section σ∆,c is parameter-
ized by one of the components in our pseudo Abel sequence (Ze)e≥e0 . In fact σ∆,c is
a smoothing of the comb obtained from σ∆(C) by attaching c general deformations
of σS(P1). And σ∆(C) is itself a deformation of a porcupine with body σ(C) and
a quills. By the choice of aS , and since a ≥ aS , σ∆(C) is parameterized by a point
in our pseudo Abel sequence. And σ∆,c is a deformation of a stable section hinitial

whose associated section equals σ(C) and having a vertical components being free
lines – the “line components” – and having c vertical components being deforma-
tions of σS(P1) – the “σS(P1)-components”. Since σ(C) is (g)-free, any sub-stable
section of hinitial is unobstructed and so is a smooth point of Σe(X/C/k), where
e = e0 + a+ c · bS .

Since a is ≥ aS , we may specialize aS of the line components of hinitial to lie on one
of the σS(P1) components in a fiber Xt. This stable section is still unobstructed.
And then we may deform the aS line components on σS(P1) to be general lines
attached to σS(P1), i.e., the vertical curve in Xt is now a porcupine with aS quills
and with body a deformation of σS(P1). As explained at the beginning of the proof,
a porcupine with body σS(P1) and with aS general quills is contained in a chain of
rational curves which also contains a porcupine with aS + bS quills and whose body
is a constant section of P1

κ ×κ Xt. And all of the nodes of this chain of rational
curves are smooth points of the space of porcupines.

Thus σ∆,c is in the same irreducible component of Σe(X/C/B) as the stable sec-
tion obtained by removing aS line components from hinitial and replacing one of
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the σS(P1) components by a vertical curve which is itself a porcupine in Xt with
constant body and with aS + bS quills. Again everything is unobstructed, so we
may deform the aS + bS lines off of the constant body in Xt and back onto the
original body σ(C) of hinitial. Thus hinitial is in the same component as a new stable
section, hsuccessor which is the same as hinitial except that we have removed one of
the σS(P1) components and we have attached bS additional line components (the
constant body that remains in Xt is “contracted away” under the stabilization of
this pre-stable curve).

Clearly we may repeat this with each σS(P1) component. So, in the end, σ∆,c is in
the same irreducible component as the porcupine with body σ(C) and with a+c ·bS
quills. In other words σ∆,c is in Ze after all. �

Corollary 7.7. Let X/C/κ and L be as in Notation 2.4. Assume that Hypotheses
4.1 – 4.5 all hold. Let (Ze)e≥e0 be a pseudo Abel sequence as in Corollary 6.8, and
denote Ze0 by Z. For every integer m ≥ 0 there exists an integer e1(m) ≥ e0 such
that for every integer e ≥ e1(m) there is a dense open subset Ve of Porce,0(X/C/κ)Z
such that for every κ-point [σ0] of Ve there exists a scroll R for X/C/κ penning σ0

and such that (R, [σ0(C)]) is an m-twisting scroll.

Proof. Let a vary among aS + i for i = 0, . . . , bS − 1. For each i = 0, . . . , bS − 1, by
Proposition 7.6 applied to a = aS + i, there exists an integer c∆,i ≥ 0 such that the
corollary holds for every integer of the form e = e0 + aS + i+ c . . . bS with c ≥ c∆,i.
Define c0 to be the maximum of the integers c∆,i for i = 0, . . . , bS − 1. Then every
integer e ≥ e0+aS+c0 ·bS is of the form ≥ e0+aS+i+c·bS for some i = 0, . . . , bS−1
and some c ≥ c∆,i. Thus the corollary holds with e1(m) = e0 + aS + c0 · bS . �

These m-twisting scrolls produce chains of rational curves which connect the bound-
ary stratum Porce+m,m(X/C/κ)Z to the interior of Ze+m.

Proposition 7.8. Let X/C/κ and L be as in Notation 2.4. Assume that Hypothe-
ses 4.1 – 4.5 all hold. Let (Ze)e≥e0 be a pseudo Abel sequence as in Corollary 6.8,
and denote Ze0 by Z. Let e ≥ e0 be an integer, and let m be a positive integer
such that a general porcupine in Porce+m,m(X/C/κ)Z is perfectly penned by an m-
twisting scroll, i.e., (R, [σ0(C)]) is an m-twisting scroll where σ0 is the body of the
porcupine. Then for every integer 0 ≤ m′ ≤ m and for every integer δ ≥ 0, there
is a nonempty open subset U of Porce+m+δ,m′+δ(X/C/κ)Z such that every κ-point
of U is contained in a chain of rational curves in Ze+m+δ which also contains a
general point of Porce+m+δ,m+δ(X/C/κ)Z and all of whose nodes are smooth points
of Ze+m+δ.

Proof. Let h : C ′ → X be a general porcupine in Porce+m,m(X/C/κ)Z with ex-
tended body (σ0, D) where D = t1 + · · · + tm is a general, reduced divisor in C.
And let R be a scroll penning h such that (R, [σ0(C)]) is an m-twisting scroll.
The hypotheses in the definition of m-twisting imply that σ0(C) +Rt1 on R moves
in a linear system. And the general member of this linear system is the image
of a new section σ1(C). The new porcupine σ1(C) + Rt2 + · · · + Rtm is a point
of Porce+m,m−1(X/C/κ)Z . The pencil of divisors on R spanned by this porcu-
pine and h(C ′) gives a family of stable sections parameterized by the “pencil” P1,
i.e., it gives a rational curve in the closure Porce+m,m−1(X/C/κ)Z which contains
the new porcupine as well as the original porcupine in Porce+m,≥(m−1)(X/C/κ)Z .
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Now Porce+m,m(X/C/κ)Z has pure codimension 1 in Porce+m,≥(m−1)(X/C/κ)Z by
Proposition 5.2. So since the rational curves in the closure Porce+m,m−1(X/C/κ)Z
obtained from these pencils of divisors on m-twisting scrolls (R, [σ0]) contain every
sufficiently general point h(C ′) of Porce+m,m(X/C/κ)Z and yet are not contained
in Porce+m,m(X/C/κ)Z (since they also parameterize some porcupines with only
m− 1 quills), the union of these rational curves contains a nonempty open subset
U of Porce+m,m−1(X/C/κ)Z .

Because (R, [σ0(C)]) is an m-twisting scroll, also (R, [σ1(C)]) is an (m−1)-twisting
scroll. So we can repeat the argument with Porce+m,m−1(X/C/κ)Z in place of
Porce+m,m(X/C/κ)Z . Thus, by descending induction on m′, for every 0 ≤ m′ ≤ m
there exists a family of chains of rational curves in Porce+m,m

′
(X/C/κ)Z whose

nodes are all smooth points of Ze+m and whose general member contains both a
general point of Porce+m,m(X/C/κ)Z and a general point of Porce+m,m

′
(X/C/κ)Z .

Of course we can always attach more quills, say a further δ quills to h(C ′) which
need not be contained in R. And then as we vary the porcupine in a linear sys-
tem on R, since the space of quills through a general point is rationally connected,
Theorem 2.1 implies we can extend that pencil of porcupines to a pencil of por-
cupines with the δ quills attached. Thus we can also connect a general point of
Porce+m+δ,m+δ(X/C/κ)Z and a general point of Porce+m+δ,m′+δ(X/C/κ)Z by a
chain of rational curves in Ze+m+δ whose nodes are all smooth points. �

Corollary 7.9. Let X/C/κ and L be as in Notation 2.4. Assume that Hypotheses
4.1 – 4.5 all hold. Let (Ze)e≥e0 be a pseudo Abel sequence as in Corollary 6.8, and
denote Ze0 by Z. There exists an integer e1 such that for every integer e ≥ e1

and for every integer δ > 0, there exists an irreducible, quasi-projective variety
T parameterizing chains of rational curves in Ze+δ all of whose nodes are smooth
points of Ze+δ and such that the geometric generic point of T parameterizes a chain
which contains the geometric generic point of Ze+δ as well as a geometric generic
point of Porce+δ,δ(X/C/κ)Z (we don’t say “the” geometric generic point because
possibly this stratum is reducible, which in fact is irrelevant for what comes next).

Proof. Applying Proposition 7.6 with m equal to 1, there exists an integer e1(1) ≥
e0 such that for every e ≥ e1(1), a general porcupine in Porce+1,1(X/C/κ)Z is
perfectly penned by a 1-twisting scroll. The corollary is proved for e1 = e1(1) by
induction on δ.

By Proposition 7.8, for all e ≥ e1(1), a general point of Ze+1 is connected by a
chain of rational curves to a general point of Porce+1,1(X/C/κ)Z , and the nodes of
the chains are all smooth points of Ze+1. This establishes the base case δ = 1 of
the induction.

By way of induction, assume δ > 1 and assume the claim is known for δ − 1.
Since δ − 1 > 0, again Proposition 7.8 implies that for every e ≥ e1(1), a gen-
eral point of Porce+1+(δ−1),1+(δ−1)(X/C/κ)Z is connected by a chain of rational
curves to a general point of Porce+1+(δ−1),δ−1(X/C/κ)Z , and the nodes of the
chains are all smooth points of Ze+δ. By the induction hypothesis applied to e+ 1
in place of e, a general point of Z(e+1)+(δ−1) is connected to a general point of
Porc(e+1)+(δ−1),δ−1(X/C/κ) ∩ Ze+δ by a chain of rational curves whose nodes are
all smooth points of Ze+δ. Concatenating the chains gives a chain connecting a

42



general point of Ze+δ to Porce+δ,δ(X/C/κ)Z , and all the nodes are smooth points:
the one new node is inside Porce+δ,δ−1(X/C/κ)Z which is a smooth point of Ze+δ.
Thus the claim is proved by induction on δ. �

Finally we can complete the proof of the main theorem.

Proof of Theorem 4.9. By Lemma 4.11 it suffices to prove the theorem for uncount-
able, algebraically closed fields κ of characteristic 0. So we assume κ is such.

By Corollary 6.8, there exists a pseudo Abel sequence (Ze)e≥e0 for X/C/κ. To
prove this is an Abel sequence it only remains to verify (ii) of Definition 4.8, i.e.,
to prove that the geometric generic fiber of

α|Ze : Ze → PiceC/κ,

which is integral by Corollary 6.8, is also rationally connected.

By [Kol96, Theorem IV.3.10.3], it suffices to prove that two general points in a
strong desingularization of the geometric generic fiber are connected by a chain
of rational curves in the strong desingularization. Every chain in the geometric
generic fiber whose nodes are contained in the smooth locus lifts to a chain in the
strong desingularization. Thus it suffices to prove that two general points in the
geometric generic fiber are connected by a chain of rational curves in the geometric
generic fiber whose nodes are all in the smooth locus.

By Corollary 7.9, there exists an integer e1 ≥ e0 such that for all e ≥ e1 and all
δ ≥ 0, every general point of Porce+δ,δ(X/C/κ) ∩ Ze+δ is contained in a chain of
rational curves in Ze+δ which contains a general point of Ze+δ, and the nodes of the
chain are all in the smooth locus. Fix one such integer, say e = e1. Rationally chain
connected points of Σe+δ(X/C/κ) are Abel equivalent. Thus every general pair of
points in a general fiber Ze+δ ∩ α−1(OC(Γ)) is connected by a chain of rational
curves in Ze+δ ∩ α−1(OC(Γ)) to a general pair of points in Porce+δ,δ(X/C/κ)Z ∩
α−1(OC(Γ)), and the nodes are all in the smooth locus. Finally, by Corollary 6.7, for
the fixed integer e1 there exists an integer δ0(e1) ≥ 2g− 1 such that for all integers
δ ≥ δ0(e1), this general pair of points in Porce1+δ,δ(X/C/κ)Z ∩ α−1(OC(Γ)) is
connected by a chain of rational curves in Ze1+δ ∩α−1(OC(Γ)) whose nodes are all
in the smooth locus. The concatenation of these chains is again a chain of rational
curves whose nodes are all in the smooth locus, since Porce1+δ,δ(X/C/κ)Z is in
the smooth locus of Ze1+δ (we are also assuming that OC(Γ) is sufficiently general
and we are using generic smoothness for the restriction of the morphism α to the
smooth locus of Ze1+δ). This concatenated chain connects two general points of
Ze1+δ ∩ α−1(OC(Γ)). Therefore, for every integer e ≥ e1 + δ0(e1) and for every
general OC(Γ) in PiceC/κ, Ze ∩ α−1(OC(Γ)) is rationally connected. �

8. Rational simply connected fibrations over a surface

Theorem 4.9 is important because of its application to the existence of rational
sections of fibrations over surfaces.

Corollary 8.1. Let k be an algebraically closed field of characteristic 0. Let S be
a smooth, integral, projective surface over k. Let f : X → S be a proper, surjective
morphism. Assume there exists a Zariski open subset U of S and an invertible sheaf
L on f−1(U) such that
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(i) S − U is a finite collection of k-points of S,
(ii) the restriction

f |f−1(U) : f−1(U)→ U

is smooth,
(iii) L is f -very ample on f−1(U), and
(iv) the restriction of f over a general member of a Lefschetz pencil of divisors

on S satisfies Hypotheses 4.3, 4.4 and 4.5 of Section 4.
Then there exists a rational section of f .

Proof. There exists a Lefschetz pencil of ample divisors on S whose basepoints are
all contained in U . It is important to note that, since these are ample divisors
they have positive self-intersection so that there is at least one basepoint. After
replacing S by the blowing up of the base locus, replacing f and L by the pullbacks
over the blowing up, and replacing U by its inverse image in the blowing up, we
may assume in addition that there exists a surjective, projective morphism

r : S → P1
k.

Denote the function field k(P1
k) by κ (of course it is not algebraically closed). So

Spec κ→ P1
k is the generic point of P1

k. Denote by C the generic fiber of r, which
is a smooth, projective, geometrically integral κ-curve. And denote by Xκ the fiber
product,

Xκ = C ×S X
together with its projection π : Xκ → C. Then Xκ is a smooth, projective, ge-
ometrically integral κ-scheme and π is a projective, flat morphism of κ-schemes.
Moreover the function field of S equals the function field of C and the generic fiber
of f equals the generic fiber of π. Thus to prove that there exists a rational section
of f , it suffices to prove that there exists a section of π.

The hypotheses on X,L, U and Y imply Hypotheses 4.1 – 4.5 for Xκ/C/κ, and Lκ.
By Theorem 4.9, there exists an Abel sequence (Ze)e≥ε for Xκ/C/κ. In particular,
the morphism

α|Z : Ze → PiceC/κ
has integral and rationally connected geometric generic fiber. As explained in
[GHMS05] and [Sta06] (see [HX09, Theorem 1.2] for a quite different proof), the
fiber of α|Z over every κ-point of PiceC/κ contains a projective, geometrically integral
and geometrically rationally connected κ-scheme. In particular integer multiples of
the base points of the pencil of Lefschetz divisors on S give κ-points of PiceC/κ
for every integer e. Thus there exists a closed subscheme of Ze (contained in the
fiber of α over one of these κ-points of PiceC/κ) which is geometrically integral and
rationally connected. But by Theorem 2.1, for the function field κ = k(P1

k), every
projective κ-scheme which is geometrically integral and rationally connected has a
κ-point. Thus for every e ≥ ε there exists a κ-point of Ze.

There is an issue: Ze is the coarse moduli space of stable sections, it is not a fine
moduli space. Thus this κ-point of Ze may not correspond to a stable section
which is defined over κ. Instead it corresponds to a Galois field extension κ′/κ,
a stable section h : C ′ → X ⊗κ κ′ defined over κ′, and a lifting of the action of
Gal(κ′/κ) to an action on C ′ such that h is equivariant for the Galois actions.
As explained following Definition 3.2, C ′ has a unique component C ′0 such that
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the projection (π ⊗ Id) ⊗ h : C ′0 → C0 ⊗κ κ′ is an isomorphism i0. Because h
is equivariant for the Galois action, and because π ⊗ Id is the base-change of a
morphism π which is defined over κ, the isomorphism i0 is equivariant. Thus the
section h ◦ i−1

0 : C ⊗κ κ′ → X ⊗κ κ′ is equivariant for the Galois action. By Galois
descent this is the base-change of a morphism of κ-schemes, σ0 : C → X. And
since the base-change of σ0 to κ′ is a section of the base-change of π, also σ0 is a
section of π. Therefore there exists a section of π, and hence there exists a rational
section of f . �

Part 2. Homogeneous spaces

9. Rational simple connectedness of homogeneous spaces

An earlier draft of these notes contained a complete proof of the following beautiful
result of He. This proof is now incorporated in the article [dJHS08]. The technique
is a bit different that the other techniques in these notes. For this reason, and also
for reasons of length, we refer the reader to [dJHS08] for the proof.

Theorem 9.1. Let k be an algebraically closed field of characteristic 0. Let G be
a connected, reductive algebraic group over k. Let P be a parabolic subgroup of G.
There exists a k-morphism

ζ : P1 → G/P

such that for every parabolic subgroup Q of G containing P , denoting the projection
by

π : G/P → G/Q,

ζ∗Tπ is ample, where Tπ is the dual of the sheaf Ωπ of relative differentials.

When Y is a projective homogeneous space G/R of Picard number 1, then “usually”
M0,1(Y/K, 1) and M0,0(Y/K, 1) are also homogeneous spaces G/P and G/Q. Thus
Theorem 9.1 implies Hypothesis 4.5 of Section 4. Unfortunately, there are some
cases where M0,1(Y/K, 1) and M0,0(Y/K, 1) are not homogeneous under the natural
G-action. Since M0,0(Y/K, 1) is proper, there will be a projective homogeneous
space M = G/P contained in M0,0(Y/K, 1). And there is a little trick to get what
is needed. To make clear what is involved in the trick, it is presented in a bit more
generality than strictly needed, and the necessary hypotheses are stated explicitly.

Let k be an algebraically closed field. Let Y and M be smooth, connected, quasi-
projective k-schemes. Let L be an ample invertible sheaf on Y . Let

u : M → M0,0(Y, 1)free

be a 1-morphism corresponding to a diagram of k-schemes

C p−−−−→ Y

q

y
M

where q is a smooth, projective morphism whose geometric fibers are isomorphic
to P1, and where p is a morphism whose restriction to each geometric fiber of q is
a free rational curve in Y . There is an associated 1-morphism

v : C → M0,1(Y, 1)free.
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Proposition 9.2. Let
ζ : P1 → C

be a k-morphism. Let (R, s) be the pair of a scroll R ⊂ P1 ×k Y and a marked
section s : P1 → R corresponding to the composite 1-morphism

v ◦ ζ : P1 → M0,1(Y, 1)free.

If p is smooth, if u is unramified, if (p ◦ ζ)∗TY is globally generated, and if ζ∗Tp
and ζ∗Tq are both ample, then (R, [s(P1)]) is a very twisting scroll in Y .

Proof. First of all, the scroll R is simply

R := P1 ×q◦ζ,M,q C

and s : P1 → R is simply

s = (IdP1 , ζ) : P1 → P1 ×q◦ζ,M,q C.

In particular, NR/P1×kY equals the pullback of NC/M×kY . Denote the projection
to P1 by

fR : R→ P1.

Then for every coherent sheaf F on C, cohomology and base change implies the
natural map

(q ◦ ζ)∗R1q∗F → R1fR,∗(pr∗CF)
is an isomorphism, and also

(q ◦ ζ)∗q∗F → fR,∗(pr∗CF)

is an isomorphism if the R1 sheaves are zero.

Consider the commutative diagram of coherent sheaves on C,
0 −−−−→ Tq −−−−→ TC −−−−→ q∗TM −−−−→ 0

dp

y ydp
0 −−−−→ p∗TY −−−−→ p∗TY −−−−→ 0

.

Applying the Snake Lemma, there is an associated short exact sequence

0 −−−−→ Tp −−−−→ q∗TM −−−−→ NC/M×kY −−−−→ 0.

There is an associated long exact sequence

0 −−−−→ q∗Tp −−−−→ q∗q
∗TM −−−−→ q∗NC/M×kY −−−−→ R1q∗Tp −−−−→ 0,

using the fact that R1q∗q
∗TM is zero.

In fact, q∗q∗TM is canonically isomorphic to TM , q∗NC/M×kY is canonically isomor-
phic to u∗TM0,0(Y,1), and the sheaf homomorphism above is canonically isomorphic
to du. Because of the hypothesis that u is unramified, q∗Tp is zero, there is a
canonical isomorphism

R1q∗Tp ∼= NM/M0,1(Y,1),

and each of these (isomorphic) sheaves is locally free. By relative duality, the locally
free sheaf R1q∗Tp is dual to q∗(Ωp ⊗OC Ωq).

Claim 9.3. The sheaf (q◦ζ)∗q∗(Ωp⊗OCΩq) is anti-ample, and thus (q◦ζ)∗NM/M0,1(Y,1)

is ample.
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The surface R is abstractly a Hirzebruch surface. Denote the projection to P1 by

fR : R→ P1.

Denote by E the pullback of Ωp ⊗OC Ωq. The claim is equivalent to the assertion
that (fR)∗E is anti-ample.

The normal bundle s∗Ns(P1)/R is canonically isomorphic to ζ∗Tq, which is ample
by hypothesis. Therefore the divisor s(P1) on R moves in a basepoint free linear
system. In other words, s(P1) deforms to a family {st}t∈Π of sections whose images
cover a dense open subset of R. In particular, Items (0) and (1) in Definition 3.6
hold for (R, [s(P1)]).

Of course the pullback of Ωp⊗OC Ωq to R is a locally free sheaf E whose dual E∨ is
canonically isomorphic to the pullback of Tp ⊗OC Tq. And s∗E∨ equals ζ∗Tp ⊗OP1

ζ∗Tq. By hypothesis, each of ζ∗Tp and ζ∗Tq is ample on P1. Thus s∗E∨ is ample
on P1. Since ampleness is an open condition, for general t in Π also s∗tE∨ is ample.
Therefore, for general t in Π, s∗tE is anti-ample.

For every t there is an evaluation morphism

et : (fR)∗E → s∗tE .
Of course, since the curves st(P1) cover a dense open subset of R, the only local
section of (fR)∗E in the kernel of every evaluation morphism et is the zero section.
Since (fR)∗E is a coherent sheaf, in fact for N � 0 and for t1, . . . , tN a general
collection of closed points of Π, the morphism

(et1 , . . . , etn) : (fR)∗E →
N⊕
i=1

s∗tiE

is injective. Since t1, . . . , tN are general points, the last paragraph implies every
summand s∗tiE is anti-ample. Thus the direct sum is anti-ample. And a locally free
sheaf admitting an injective sheaf homomorphism to an anti-ample sheaf is itself
anti-ample. Therefore (fR)∗E is anti-ample, proving Claim 9.3.

As usual, denote by
ev : M0,1(Y, 1)→ Y

the evaluation morphism. There is a commutative diagram

C v−−−−→ M0,1(Y, 1)

p

y yev

Y
=−−−−→ Y

There is also a Cartesian diagram

C v−−−−→ M0,1(Y, 1)

q

y yforgetful

M
u−−−−→ M0,0(Y, 1)

It follows that M0,1(Y, 1) is smooth at every point of v(C), v is unramified and
NC/M0,1(Y,1) is canonically isomorphic to q∗NM/M0,0(Y,1). By the first commutative
diagram, there is a short exact sequence

0 −−−−→ Tp −−−−→ v∗Tev −−−−→ NC/M0,1(Y,1) −−−−→ 0.
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By hypothesis, ζ∗Tp is ample. And by Claim 9.3, ζ∗NC/M0,1(Y,1) is ample, i.e.,
(q ◦ ζ)∗R1q∗Tp is ample. Therefore also (v ◦ ζ)∗Tev is ample. Since every fiber of q
is a smooth, free curve in Y , (v ◦ ζ)∗Tev is canonically isomorphic to

(fR)∗NR/P1×kY (−s(P1)).

Since this is very ample, there is a vanishing

h1(P1, (fR)∗NR/P1×kY (−s(P1))⊗OP1
OP1(−2)) = 0.

Since the fibers of q are free, NR/P1×kY is fR-relatively globally generated. Thus also
R1(fR)∗NR/P1×kY (−s(P1)) vanishes. And then, by the Leray spectral sequence,

h1(R,NR/P1×kY (−s(P1))⊗OR (fR)∗L∨)

is zero for every invertible sheaf L on P1 of degree ≤ 2, i.e., it is zero for L = OP1(2).
In other words, (R, [s(P1)]) satisfies Item (3) of Definition 3.6.

Since NR/P1×kY is fR-relatively globally generated, to prove NR/P1×kY is globally
generated and to prove h1(R,NR/P1×kY ) is zero, it suffices to prove

h1(R,NR/P1×kY ⊗OR f
∗
ROP1(−1)) equals 0.

There is a short exact sequence

0→ NR/P1×kY (−s(P1))⊗ORf∗ROP1(−1)→ NR/P1×kY⊗ORf
∗
ROP1(−1)→ s∗NR/P1×kY⊗O1

P
OP1(−1)→ 0.

By Item (3), the first term has no h1(R,−). The third term is ζ∗Tq ⊗OP1
OP1(−1).

Since ζ∗Tq is ample, h1(P1, ζ∗Tq ⊗OP1
OP1(−1)) equals 0. Thus, by the long exact

sequence of cohomology associated to the short exact sequence also

h1(R,NR/P1×kY ⊗OR f
∗
ROP1(−1)) equals 0.

This proves Item (2) of Definition 3.6. Therefore (R, [s(P1)]) is a 2-twisting scroll.
�

There are a few easy lemmas.

Lemma 9.4. Let k be an algebraically closed field of characteristic 0. Let Y be a
smooth, connected, projective k-scheme of positive dimension which is a homoge-
neous space for a linear algebraic group scheme G over k. Assume there exists an
invertible sheaf L on Y which is an ample generator for Pic(Y ). Then L is very
ample.

Proof. It is a standard result that the homology classes of the closures of the Bruhat
cells give an additive basis for the integral homology of Y . Let U be the open Bruhat
cell in Y and denote by D the complement of U in Y . Since the Picard group of Y
is Z generated by L, L is isomorphic to OY (D). By homogeneity |D| is basepoint
free. Thus the complete linear system defines a morphism

f : X → PN .

Since L is ample, f is finite. Since char(k) equals 0, f is generically étale to its image
f(Y ). Again by homogeneity, f(Y ) is smooth and f is everywhere étale. But f(Y )
is rationally connected, and rationally connected varieties are simply connected, cf.
[Deb01, Corollary 4.18]. Therefore f is an isomorphism from Y to f(Y ), i.e., L is
very ample. �
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Corollary 9.5. Let k be an algebraically closed field of characteristic 0. Let Y be
a smooth, connected, projective k-scheme of positive dimension which is a homoge-
neous space for a linear algebraic group scheme G over k. Assume there exists an
invertible sheaf L on Y which is an ample generator for Pic(Y ). Then M0,1(Y, 1)free
equals all of M0,1(Y, 1), the evaluation morphism

ev : M0,1(Y, 1)→ Y

is smooth and projective, and there exists a very twisting scroll in Y (in particular,
ev is surjective).

Proof. Since Y is projective, and since the radical RG is solvable, the Lie-Kolchin
theorem implies RG fixes a point p of Y . Since RG is normal in G, for every g in
G, RG equals gRGg−1. Thus RG also fixes g · p. Since Y is a homogeneous space,
RG fixes every point of Y . In other words, the action of G on Y factors through
the quotient G → G/RG. Thus, without loss of generality, assume G is connected
and semisimple.

The action of G on Y determines a sheaf homomorphism

TeG⊗k OY → TY

which is surjective because the action is separable and Y is homogeneous. Thus
TY is globally generated. Therefore every smooth, rational curve in Y is free. This
implies M0,1(Y, 1)free equals M0,1(Y, 1) and

ev : M0,1(Y, 1)→ Y

is smooth (it is always projective).

Let P be the stabilizer subgroup of a point in Y , let B be a Borel subgroup of G
contained in Y , and let T be a maximal torus in B. The data (G,B, T ) determines
a root system Φ. Denoting by I the set of simple roots in this root system, the
parabolic subgroups of G containing B are in one-to-one, order-preserving corre-
spondence with subsets of I. Because Y has Picard number 1, P is a maximal
parabolic subgroup Thus P equals the parabolic subgroup PIj where Ij = I − {j}
for an element j of I. Thus Y is isomorphic as a k-scheme with G-action to G/PIj .
As proved in [Coh95, §4.20] and [CC98, Lemma 3.1], the subvariety

L := P{j} · PIj/PIj
is a line in G/PIj with respect to L, and containing the point

p := PIj/PIj .

(In fact this is a bit irrelevant. By standard theory, the classes of Schubert cycles
give an additive basis for the homology of G/P . As discussed before, L equals
OY (D) where D is the unique Schubert cycle which is a divisor. So Poincaré
duality implies there exists a Schubert cycle L which is a curve and whose L-degree
equals 1, i.e., L is a line.)

The action of G on Y induces an action of G on M0,0(Y, 1) and on M0,1(Y, 1).
The stabilizer of (L, p) in M0,1(Y, 1) contains the Borel subgroup B, and thus is of
the form PKj for a subset Kj ⊂ Ij . Since this is parabolic, the orbit C of (L, p)
is a projective (hence closed) G-orbit. The image M of C in M0,0(Y, 1) is also a
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projective G-orbit. Observe that Pj acts transitively on the subset {(L, q)|q ∈ L}
of M0,1(Y, 1). Thus the fiber of the forgetful morphism

M0,1(Y, 1)→ M0,0(Y, 1)

over [L] equals the fiber of C → Y over [L]. By homogeneity it follows that

C equals M0,1(Y, 1)×M0,0(Y,1) M.

So the diagram
C p−−−−→ Y

q

y
M

is a diagram of smooth, projective morphisms where every geometric fiber of q is a
smooth, rational curve.

By Theorem 9.1, there exists a k-morphism,

ζ : P1 → C
such that ζ∗Tp and ζ∗Tq are both ample sheaves. The morphism p is smooth by
homogeneity. By homogeneity TY is globally generated so that also (p ◦ ζ)∗TY is
globally generated. And the inclusion u : M → M0,0(Y, 1)free is unramified. Thus,
by Proposition 9.2, the composition

v ◦ ζ : P1 → M0,1(Y, 1)free

is a very twisting scroll in Y . �

Corollary 9.6. Let k be an algebraically closed field of characteristic 0. Let Y be
a smooth, connected, projective k-scheme of positive dimension which is a homo-
geneous space for a linear algebraic group scheme G over k. Assume there exists
an invertible sheaf L on Y which is an ample generator for Pic(Y ). Then every
geometric fiber of

ev : M0,1(Y, 1)→ Y

is nonempty and rationally connected.

Proof. By Corollary 9.5, ev is smooth and projective. Because Y is homogeneous
and projective, every connected, finite, étale cover of Y is an isomorphism. In
particular, using homogeneity, the finite part of the Stein factorization of ev is a
connected, finite, étale cover of Y , and thus an isomorphism. Therefore every fiber
of ev is connected.

Moreover, there exists a morphism

ζ : P1 → M0,1(Y, 1)

which is, among other things, very twisting relative to the morphism ev. Therefore
[Sta04, Proposition 3.6] implies that a general fiber of ev is rationally connected
(the proof of this proposition uses the characteristic 0 hypothesis). �

Lemma 9.7. Let k be an algebraically closed field of characteristic 0. Let Y be a
smooth, connected, projective k-scheme of positive dimension which is a homoge-
neous space for a linear algebraic group scheme G over k. Assume there exists an
invertible sheaf L on Y which is an ample generator for Pic(Y ). Then Y satisfies
Hypothesis 4.4 of Section 4.
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Proof. The first part of the argument is essentially [Kol96, Corollary IV.4.14]. To
try to be self-contained, we repeat the argument. By the techniques of Campana
and Kollár-Miyaoka-Mori, there exists a quasi-projective k-scheme Q, a dense open
subset U of Y , and a projective morphism

φ : U → Q

such that every fiber of φ is connected by chains of lines in Y , and a very general
line in Y intersecting U is contained in a fiber of φ. But then by homogeneity, the
maximal domain of definition U for such a quotient equals all of Y . Since every
point of Y is contained in a line (by Corollary 9.5), every fiber of φ is positive-
dimensional. But since Y has Picard number 1, the only morphism from Y with a
positive-dimensional fiber is the constant morphism. Thus all of Y is a fiber of φ,
i.e., every pair of points of Y is connected by a chain of lines in Y .

Let n0 be an integer such that for all n ≥ n0,

ev : Chn2(X/k, n)→ Y ×k Y

is surjective. This is a G-equivariant morphism for the evident actions of G on
the domain and target. By the Bruhat decomposition, there exists an open orbit
U = ∆(G) · (P/P, sP/P ) in Y ×k Y . Observe that the stabilizer H = P ∩ (sPs−1)
of this point is a connected, linear algebraic group. In particular it is birationally
rationally connected. Let F denote the orbit of ev over a point in U . There is a
Cartesian diagram

G×k F −−−−→ ev−1(U)

prG

y yev

G −−−−→ U = G/H

In particular, all fibers of
G×k F → ev−1(U)

are isomorphic to the birationally rationally connected variety H.

Because
ev : M0,1(Y, 1)→ Y

is smooth and projective with rationally connected fibers, a simple induction ar-
gument proves that Chn2(Y/k, n) is also rationally connected. Thus ev−1(U) is
birationally rationally connected. Because the target and fibers of the morphism

G×k F → ev−1(U)

are both birationally rationally connected, also G ×k F is birationally rationally
connected by [GHS03]. Since the image of a morphism from a birationally ratio-
nally connected variety is birationally rationally connected, also F is birationally
rationally connected. Since F is projective, in fact F is rationally connected. By
homogeneity, every fiber of

ev : ev−1(U)→ U

is rationally connected. Thus Y is rationally simply connected by chains of free
lines. �
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Corollary 9.8. Let κ be an algebraically closed field of characteristic 0. Let C
be a smooth, geometrically connected, projective curve over κ. Let π : X → C be
a proper, smooth morphism. And let L be an ample invertible sheaf on X. As-
sume that every geometric fiber of π is a connected, projective, positive-dimensional
scheme which is homogeneous under a linear algebraic group G. And assume that
the restriction of L to every fiber is an ample generator of the Picard group. The
Hypotheses 4.1 – 4.5 of Section 4 hold.

Proof. By Lemma 9.4, L is very ample. By Lemma 9.7, Y satisfies Hypothesis
4.4. By Corollary 9.5, Y satisfies Hypothesis 4.5. And by Corollary 9.6, π satisfies
Hypothesis 4.3. �

Corollary 9.9. Let κ be an algebraically closed field of characteristic 0. Let S be
a smooth, integral, projective surface over κ. Let f : X → S be a proper, surjective
morphism. Assume there exists a Zariski open subset U of S and an invertible sheaf
L on f−1(U) such that

(i) S − U is a finite collection of κ-points of S,
(ii) the restriction

f |f−1(U) : f−1(U)→ U

is smooth,
(iii) L is f -ample, and
(iv) the fiber of f over every geometric point of U is a homogeneous space for a

linear algebraic group, and the restriction of L to this fiber is a generator
of the Picard group.

Then there exists a rational section of f .

Proof. Because of Corollary 9.8, all the hypotheses of Corollary 8.1 are satisfied.
Therefore Corollary 8.1 implies there exists a rational section of f . �

10. Discriminant avoidance

There is one more technique needed to deduce the main application. The statement
is reviewed below. The proof is written up carefully in [dJS05], which has been
submitted. In fact this technique is similar to techniques used in the works of
Totaro and Edidin-Graham in their constructions of equivariant cohomology for
reductive groups.

Let G be a reductive group scheme over some base scheme T . Let X be a smooth,
projective T -scheme on which G acts. For every T -scheme S and every G-torsor T
over S, there is an associated S-scheme

XT := X ×T T /G,
the quotient by the free action of G. Let U be a dense open subscheme of T . Let
c be a nonnegative integer. Consider the following two properties of the datum
(T,G,X ) and the integer c.

Property 10.1. For every algebraically closed field over T , Spec k → T , for every
projective, integral k-scheme S of dimension c, and for every G-torsor T over S,
the projection

XT → S

admits a rational section.
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Property 10.2. For every algebraically closed field over U , Spec k → U , for every
quasi-projective, integral k-scheme S of dimension c, and for every G-torsor T over
S, the projection

XT → S

admits a rational section.

The basic technique of “discriminant avoidance” proves the following.

Proposition 10.3. [dJS05] If Property 1 holds, then Property 2 holds.

Part 3. The Period-Index Theorem and Serre’s “Conjecture II”

11. Statement of de Jong’s theorem and Serre’s conjectures

There is much to say about de Jong’s Period-Index theorem and the general “period-
index problem”; more in fact than I can cover here. One excellent source is [CT06].
I will just recall the statement of de Jong’s theorem.

Theorem 11.1. [dJ04], [dJS05] Let k be an algebraically closed field. Let K/k be
the function field of a surface. For every division algebra D with center K and
finite dimension dimK(D) = n2, the order of [D] in the Brauer group Br(K) equals
n.

I will say a little more about Serre’s conjectures. Let K be a field and let G be a
linear algebraic group defined over K. A left G-torsor is a K-variety T together
with a left action of G on T by K-morphisms,

m : G×K T → T
such that T ⊗K K is isomorphic to G ⊗K K as a K-scheme with a left action of
G ⊗K K. The trivial G-torsor is T = G with the usual left action. A G-torsor
T is isomorphic to G as a G-torsor if and only if T has a K-point. J.-P. Serre
formulated two conjectures about torsors for a semisimple algebraic K-group.

Conjecture 11.2 (Serre’s “Conjecture I”). [Ser02] If G is connected and semisim-
ple, and if K is a perfect field of cohomological dimension 1, then every G-torsor
over K is trivial, i.e., every G-torsor has a K-point.

Conjecture 11.3 (Serre’s “Conjecture II”). [Ser02, p. 137] If G is connected, sim-
ply connected and semisimple, and if K is a perfect field of cohomological dimension
2, then every G-torsor over K is trivial, i.e., every G-torsor has a K-point.

Remark 11.4. In [Ser95], Serre explains that the hypothesis that K is perfect is
too strong in these conjectures. They should also hold if the perfect hypothesis
is replaced by the hypothesis that [K : Kp] ≤ p2 and H3

p (K ′) is 0 for all finite,
separable extensions K ′ of K. In particular, this new hypothesis holds when K is
a function field of a surface over an algebraically closed field k, i.e., K is a finitely
generated k-extension and tr.deg.(K/k) equals 2.

Of course I have not defined the “cohomological dimension”. It is straightforward
to define. But instead let me point out a special case. Let k be an algebraically
closed field, let B be a finite type, integral k-scheme, and let K be k(B). Then
the cohomological dimension of K equals dim(B). Thus Serre’s “Conjecture I”
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would apply if B were a curve, and Serre’s “Conjecture II” would apply if B were
a surface.

Following work in special cases by a number of authors, Steinberg completely proved
Serre’s Conjecture I in 1965, [Ste65]. Although there are many partial results in
the direction of Serre’s Conjecture II, the general case remains open. However, the
works of many people have gradually reduced the general case for K the function
field of a surface over an algebraically closed field k to the special case, for that
same field K, where G is of type E8; confer the works of Merkurjev and Suslin; E.
Bayer and Parimala; Chernousov; and P. Gille. One nice summary of this work is
[CTGP04, Theorem 1.2(v)]. The main application of Theorem 4.9 and Corollary 8.1
settles the “split case” of Serre’s Conjecture II for function fields K.

Theorem 11.5. Let k be an algebraically closed field and let K/k be the function
field of a surface. Let G be a connected, simply connected, semisimple algebraic
group over k. Every G-torsor over K is trivial.

In particular if GK is a simple algebraic group over K of type E8 then GK is itself
split. Thus every GK-torsor over K is trivial. So Serre’s Conjecture II holds over
function fields for groups of type E8.

12. Reductions of structure group

There is a statement that implies both Theorem 11.5 and Theorem 11.1. Let k be
an algebraically closed field. Let G be a (smooth) connected, simply connected,
semisimple algebraic group over k, and let P be a (reduced) parabolic subgroup of
G. The center ZG of G is a finite group scheme which is contained in P . There
is a maximal quotient P � TP which is an algebraic torus. Denote by ZG,P the
kernel of the induced homomorphism ZG → TP . The natural action of G on G/P
lifts canonically to a linear action on every invertible sheaf over G/P . The finite
subgroup scheme ZG,P is the maximal subgroup acting trivially on G/P and on
every invertible sheaf over G/P . Thus G/ZG,P is the maximal quotient of G acting
on G/P whose action lifts to a linear action on every invertible sheaf over G/P .

Theorem 12.1. Let K/k be the function field of a surface over k. For every
torsor T for G/ZG,P over K, the associated K-variety X = T /P has a K-point.
Equivalently, the torsor T has a reduction of structure group to P/ZG,P .

Proof. Let T denote Spec of the Witt ring of k, e.g., T = Spec k if k has charac-
teristic 0 and T = Spec Zp if k equals Z/pZ. And denote by U the open subset of
T which consists of the generic point only.

Associated to the root datum for G, we can construct a smooth, linear algebraic
group scheme GT over T . And associated to the parabolic P , we can construct a
closed subgroup scheme PT over T . The definition of ZG,P extends to give a finite,
flat group scheme ZGT ,PT over T . The quotient group scheme G = GT /ZGT ,PT is a
reductive group scheme since it is T -flat and the closed fiber is reductive. And the T -
scheme X = GT /PT is smooth and quasi-projective. Since the closed fiber is proper
over k, X is projective over T . Thus G and X satisfy the hypotheses in Section 10.
The goal is to prove Property 10.2 for c = 2. Because of Proposition 10.3, it suffices
to prove Property 10.1 for c = 2. In particular, to prove the theorem it suffices to
assume that k has characteristic 0.
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Now we use an induction argument proposed by Philippe Gille. The induction is on
the corank, rank(G) − rank(P ). The base case is when P is a maximal parabolic.
Again applying Proposition 10.3, to prove the result for all G/ZG,P -torsors over
fraction fields K of surfaces over k, it suffices to prove the result for each torsor
which is the generic fiber of a G/ZG,P -torsor over a smooth, projective, connected
surface S over k. In this case the S-scheme XS = [TS × (G/P )]/(G/ZG,P ) satisfies
the hypotheses of Corollary 9.9. Thus Corollary 9.9 implies the result in this case.

By way of induction, assume the corank is > 1 and the result is known for all smaller
values of the corank. Since the corank is > 1, P is not a maximal parabolic. Let
Q be a maximal parabolic containing P . Then ZG,P is contained in ZG,Q. For
every G/ZG,P -torsor over K, by the base case, the associated G/ZG,Q-torsor has
a reduction of structure group to Q/ZG,Q. Thus the original G/ZG,P -torsor has a
reduction of structure group to Q/ZG,P (observe (G/ZG,P )/(Q/ZG,P ) is the same
as (G/ZG,Q)/(Q/ZG,Q) since both are just G/Q).

Now Q has a filtration by normal subgroup schemes,

Q = Q0 ⊃ Q1 ⊃ Q2,

where Q2 is the unipotent radical of Q and where Q0/Q1 is the maximal quotient of
Q which is of multiplicative type, i.e., isomorphic to Gm,k. By Hilbert’s Theorem
90, every Q0/Q1-torsor over K is trivial, thus there is a reduction of structure group
to Q1/ZG,P (by construction ZG,P is contained in P∩Q1). And over a characteristic
0 field, every torsor for a unipotent group is trivial. Thus this Q1/ZG,P -torsor
has a reduction of structure group to (P ∩ Q1)/ZG,P if and only if the associated
Q1/ZG,PQ2 torsor has a reduction of structure group to (P∩Q1)/ZG,P (P∩Q2). But
Q1/Q2 is again a semisimple, simply connected algebraic group, G′ (P ∩Q1)/(P ∩
Q2) is a parabolic subgroup P ′, and ZG′,P ′ equals the image of ZG,P . Since the
corank of P ′ in G′ is 1 less than the corank of P in G, by the induction hypothesis
every G′/ZG′,P ′ -torsor over the fraction field of a surface K has a reduction of
structure group to P ′/ZG′,P ′ . Thus every G/ZG,P -torsor over K has a reduction
of structure group to P/ZG,P . Therefore the result is proved by induction on the
corank. �

Proof of Theorem 11.1. Let G be SLn,k. Let m be an integer 1 < m < n and which
divides n. Let P be the maximal parabolic subgroup of SLn,k consisting of upper
block matrices with the upper right block of size m and another diagonal block of
size n −m. The center ZG of SLn,k is the group scheme µn of nth roots of unity.
And ZG,P is the subgroup scheme µm.

One can prove that a torsor for G/ZG = PGLn,k has a reduction of structure group
to G/ZG,P if and only if the order of the corresponding element in the Brauer group
H2(Gal(K), µn) divides m. And then, by Theorem 12.1, there is a reduction of
structure group to P/ZG,P .

Here is a reformulation in terms of central simple algebras. Let C be a central
simple algebra with center K and with dimK(C) = n2. Let TK be the K-scheme
whose set of A-points for each commutative K-algebra A equals the set of A-algebra
isomorphisms of C⊗KA with Matn×n,A. Since the automorphism group of Matn×n
is PGLn, TK is a PGLn,k-torsor over K. By the previous paragraph, if the order of
[C] in the Brauer group of K divides m, then there is a reduction of structure group
to P/ZG,P . But this is the same thing as an isomorphism of C with Matm×m,K⊗KB
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for some central simple algebra B. In particular, if D is a division algebra over K
with dimK(D) = n2, then D is not isomorphic to Matm×m,K ⊗K B. Thus the
order of [D] does not divide m. Since this holds for every proper divisor m of n,
the conclusion is that the order of [D] equals n. �

Proof of Theorem 11.5. By the same argument as in the proof of Theorem 12.1,
it suffices to prove the case when k has characteristic 0. Denote by B a Borel
subgroup of G. Then ZG,B is the trivial group scheme. So by Theorem 12.1,
every G-torsor over K has a reduction of structure group to a B-torsor over K.
Denote by Ru(B) the unipotent radical of B. Since B is connected and solvable,
B/Ru(B) is of multiplicative type, i.e., isomorphic to Gr

m,k where r is the rank of
G. By Hilbert’s Theorem 90, every torsor for B/Ru(B) is trivial. Thus there is
a reduction of structure group to Ru(B). But every torsor for a unipotent group
over a characteristic 0 field is trivial. Thus the B-torsor is trivial, and hence the
original G-torsor was also trivial. �
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