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Abstract. In this paper we prove that the cone of effective divisors on the
Kontsevich moduli spaces of stable maps M0,0(Pr , d) stabilize when r ≥ d. We

give a complete characterization of the effective divisors on M0,0(Pd, d): They
are non-negative linear combinations of boundary divisors and the divisor of
maps with degenerate image.
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1. Introduction

The ample and effective cones of divisors play a crucial role in the birational
geometry of a variety. The study of these cones for the moduli spaces of stable
curves has been especially fruitful leading to the proof that the moduli space of
stable curves Mg is of general type when g > 23 (see [HM], [H], [EH]). Recently,
inspired by the work of G. Farkas, D. Khosla and M. Popa, there has been renewed
interest in constructing divisors of small slope on Mg in order to understand the

effective cone of M g and to determine the Kodaira dimension of M g in the remaining
cases (see [FaP], [Far]).

The aim of this paper is to describe the classes of effective divisors on a related
moduli space, the Kontsevich moduli space of stable maps M0,0(P

r, d). For d > 1,
the scheme parameterizing smooth, degree d, rational curves in Pr is not proper.
The Kontsevich moduli space gives a useful compactification. For integers n, d ≥ 0,

2000 Mathematics Subject Classification. Primary:14D20, 14E99, 14H10.
During the preparation of this article the second author was partially supported by the NSF

grant DMS-0200659. The third author was partially supported by the NSF grant DMS-0353692
and a Sloan Research Fellowship.

1



the Kontsevich moduli space M0,n(Pr, d) is a smooth, proper, Deligne-Mumford
stack parameterizing the data (C, (p1, ..., pn), f) of,

(i) C, a proper, connected, at-worst-nodal curve of arithmetic genus 0,
(ii) p1, . . . , pn, an ordered sequence of distinct, smooth points of C,
(iii) and f : C → Pr, a morphism with deg(f∗OPr(1)) = d satisfying the fol-

lowing stability condition: every irreducible component of C mapped to a
point under f contains at least 3 special points, i.e., marked points pi and
nodes of C.

In this paper we will determine the classes of all effective divisor on M0,0(P
r, d)

when r ≥ d.

In [Pa] R. Pandharipande proves that when r ≥ 2, the divisor class H, and the
classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c generate the group of

Q-Cartier divisors of M0,0(P
r, d). We recall that

(1) H is the class of the divisor of maps whose images intersect a fixed codi-
mension two linear space in Pr (provided r > 1 and d > 0).

(2) ∆k,d−k, 1 ≤ k ≤ bd/2c, is the class of the boundary divisor consisting of
maps with reducible domains, where the map has degree k on one compo-
nent and degree d − k on the other component.

The main problem we would like to address is the following:

Problem 1.1. Describe the cone of effective divisor classes on M0,0(P
r, d) in terms

of these generators of the Picard group.

Denote by Pd the Q-vector space of dimension bd/2c+ 1 with basis labeled H and
∆k,d−k for k = 1, . . . , bd/2c. For each r ≥ 2, there is a Q-linear map

ud,r : Pd → Pic(M0,0(P
r, d)) ⊗ Q

that is an isomorphism of Q-vector spaces.

Definition 1.2. For every integer r ≥ 2, denote by Effd,r ⊂ Pd the inverse image

under ud,r of the effective cone of M0,0(P
r, d).

A more precise version of Problem 1.1 is to describe Effd,r. A first result is that for a
fixed degree d, there is an inclusion between these cones as r increases. Furthermore,
the cones stabilize for r ≥ d.

Proposition 1.3. For every integer r ≥ 2, Effd,r is contained in Effd,r+1. For

every integer r ≥ d, Effd,r equals Effd,d.

In view of Proposition 1.3 it is especially interesting to understand Effd,d. Most
of our paper will concentrate on this case.

The crudest invariant one can associate to the effective cone is the slope of
distinguished rays. For example, Harris and Morrison in [HMo] define the slope of
Mg as the slope of the ray that bounds the effective cone in the subspace spanned
by the Hodge class λ and the total boundary class δ. Determining the slope of
Mg is a major open problem. In analogy with the case of M g, we define the slope

s(r, d) of the effective cone of M0,0(P
r, d) as follows.
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s(r, d) := sup
α

{ α : H− α

bd/2c
∑

k=1

k(d − k) ∆k,d−k is on the effective cone }.

It is possible to determine the slope for the Kontsevich moduli spaces in the stable
range.

Theorem 1.4. If r ≥ d, then the slope s(r, d) of the effective cone of M0,0(P
r, d)

is equal to

s(r, d) =
1

d + 1
.

When r = d, the effective divisor that achieves the extremal slope has a simple
description. Let Ddeg denote the locus parameterizing stable maps f : C → Pd of

degree d whose set theoretic image does not span Pd. Ddeg is a divisor in M0,0(P
d, d)

and has the desired slope.

Ddeg plays a crucial role in describing the effective cone of M0,0(P
d, d). The

following theorem, which describes the effective cone of M0,0(P
d, d) completely, is

the main theorem of our paper.

Theorem 1.5. The class of a divisor lies in the effective cone of M0,0(P
d, d) if and

only if it is a non-negative linear combination of the class of Ddeg and the classes

of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c.

Theorem 1.4 follows immediately from Theorem 1.5. However, since it is easy to
give an independent proof and since the curves that span the null-space of the
divisor Ddeg are interesting in their own right, we will give a simple proof of it in
§2. Combining Theorem 1.5 with Proposition 1.3 and Lemma 2.1 we obtain the
following corollary.

Corollary 1.6. When r ≥ d, the class of a divisor lies in the effective cone of

M0,0(P
r, d) if and only if it is a non-negative linear combination of the class

H−
1

d + 1

bd/2c
∑

k=1

k(d − k)∆k,d−k

and the classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c.

The space of curves of a given degree and genus has many distinguished subva-
rieties defined by imposing geometric conditions on the curves. Examples of such
subvarieties are given by curves that have an unexpected secant linear space or
curves with an unexpected osculating linear space or curves with a point of unex-
pected ramification sequence. An informal way of restating Theorem 1.5 is to say
that “geometric conditions” do not give new divisors on the space of rational curves
of degree d in Pd. Rational normal curves are too predictable.

We now briefly outline the proof of Theorem 1.5. Since Ddeg and the boundary
divisors are effective, any non-negative rational linear combination of these divisors
lies in the effective cone. The main content of the theorem is to show that there
are no other effective divisor classes.
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Definition 1.7. A reduced, irreducible curve C on a scheme X is a moving curve

if the deformations of C cover a Zariski open subset of X . More precisely, a curve
C is a moving curve if there exists a flat family of curves π : C → T on X such that
π−1(t0) = C for t0 ∈ T and for a Zariski open subset U ⊂ X every point x ∈ U is
contained in π−1(t) for some t ∈ T . We call the class of a moving curve a moving

curve class.

An obvious observation is that the intersection pairing between the class of an
effective divisor and a moving curve class is always positive. Intersecting divisors
with a moving curve class gives an inequality for the coefficients of an effective
divisor class. The strategy for the proof of Theorem 1.5 is to produce enough moving
curves to force the effective divisor classes to be a non-negative linear combination
of Ddeg and the boundary classes.

Moving curves in M0,0(P
d, d) are easy to recognize by the following lemma.

Lemma 1.8. If C ⊂ M0,0(P
d, d) is a reduced, irreducible curve that intersects the

complement in M0,0(P
d, d) of the boundary divisors and the divisor of maps whose

image is degenerate, then C is a moving curve.

Proof. The automorphism group of Pd acts transitively on rational normal curves.
An irreducible curve of degree d that spans Pd is a rational normal curve. Hence,
a curve C ⊂ M0,0(P

d, d) that intersects the complement in M0,0(P
d, d) of the

boundary divisors and the divisor of maps whose image is degenerate, contains a
point that represents a map that is an embedding of P1 as a rational normal curve.
The translations of C by PGL(d + 1) cover a Zariski open set of M0,0(P

d, d). �

In §3 using certain linear systems on blow-ups of P1 × P1 we will construct one-
parameter families of rational curves whose general member is a rational normal
curve. By Lemma 1.8 these will be moving curves in M0,0(P

d, d). These moving
curves will give us enough inequalities on the effective cone to deduce Theorem 1.5.

Finally, we remark that most of the discussion in this paper extends to spaces of
stable maps to homogeneous varieties such as the Grassmannians, and flag varieties.
In a forthcoming paper we will explain these generalizations [CHS].

Acknowledgments: We would like to thank A. J. de Jong, B. Hassett and R.
Miranda for useful discussions.

2. Preliminaries

In this section we prove Proposition 1.3 and collect the basic facts that we will
need about the divisor Ddeg.

2.1. The stability of the effective cone. In this subsection we prove that Effd,r

is contained in Effd,r+1 and that Effd,r = Effd,d for r ≥ d. Recall that Effd,r is

the image of the effective cone of M0,0(P
r, d) when the rational Picard group of

M0,0(P
r, d) is identified with the vector space that has a basis labeled by H and

∆k,d−k for 1 ≤ k ≤ bd/2c.

Proof of Proposition 1.3. Let p ∈ Pr+1 be a point, denote U = Pr+1 − {p}, and let
π : U → Pr be a linear projection from p. This induces a smooth 1-morphism

M0,0(π, d) : M0,0(U, d) → M0,0(P
r, d).
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Let i : U → Pr+1 be the open immersion. This induces a 1-morphism

M0,0(i, d) : M0,0(U, d) → M0,0(P
r+1, d)

relatively representable by open immersions. The complement of the image of
M0,0(i, d) has codimension r, which is greater than 2. Therefore, the pull-back
morphism

M0,0(i, d)∗ : Pic(M0,0(P
r+1, d)) → Pic(M0,0(U, d))

is an isomorphism. So there is a unique homomorphism

h : Pic(M0,0(P
r, d)) → Pic(M0,0(P

r+1, d))

such that
M0,0(π, d)∗ = M0,0(i, d)∗ ◦ h.

Recalling from the introduction that u(r, d) is the map that identifies the Picard
group of M0,0(P

r, d)) with the vector space spanned by H and the boundary divisors
∆k,d−k, we see that h◦ud,r equals ud,r+1. So to prove Effd,r is contained in Effd,r+1,

it suffices to prove that M0,0(π, d) pulls back effective divisors to effective divisors

classes, which follows since M0,0(π, d) is smooth.

Next assume r ≥ d. Let D be any effective divisor in M0,0(P
r, d). A general point

in the complement of D parameterizes a stable map f : C → Pr such that f(C)
spans a d-plane. Denote by j : Pd → Pr a linear embedding whose image is this
d-plane. There is an induced 1-morphism

M0,0(j, d) : M0,0(P
d, d) → M0,0(P

r, d).

The map M0,0(j, d)∗◦ud,r equals ud,d. By construction, M0,0(j, d)∗([D]) is the class

of the effective divisor M0,0(j, d)−1(D), i.e., [D] is in Effd,d. Thus Effd,d contains
Effd,r, which in turn contains Effd,d by the last paragraph. Therefore Effd,r equals
Effd,d. �

2.2. The divisor class Ddeg. In this subsection we determine the class of the

divisor of degenerate maps in M0,0(P
r, d). We then give a basis of moving curves

that span the null-space of Ddeg in the cone of curves. This completes the proof of
Theorem 1.4.

Lemma 2.1. The class Ddeg equals

Ddeg =
1

2d



(d + 1)H−

bd/2c
∑

k=1

k(d − k)∆k,d−k



 . (1)

Proof. We will prove the equality (1) by intersecting Ddeg by test curves. Fix a
general rational normal scroll of degree i and a general rational normal curve of
degree d − i − 1 intersecting the scroll in one point p. Consider the one-parameter
family Ci of degree d curves consisting of the fixed degree d− i− 1 rational normal
curve union curves in a general pencil (that has p as a base-point) of degree i + 1
rational normal curves on the scroll. When 2 ≤ i ≤ bd/2c, Ci has the following
intersection numbers with H and Ddeg.

Ci · H = i, Ci · Ddeg = 0.

The curve Ci is contained in the boundary divisor ∆i+1,d−i−1 and has intersection
number

Ci · ∆i+1,d−i−1 = −1
5



with it. The intersection number of Ci with the boundary divisors ∆i,d−i and
∆1,d−1 is non-zero and given as follows:

Ci · ∆i,d−i = 1, Ci · ∆1,d−1 = i + 1.

Finally, the intersection number of Ci with all the other boundary divisors is zero.
When i = 1, we have to modify the intersection number of C1 with ∆1,d−1 to
read C1 · ∆1,d−1 = 3. Next consider the one-parameter family B1 of rational
curves of degree d that contain d + 2 general points and intersect a general line.
The intersection number of B1 with all the boundary divisors but ∆1,d−1 is zero.
Clearly B1 · Ddeg = 0. By the algorithm for counting rational curves in projective
space given in [V] it follows that

B1 · H =
d2 + d − 2

2
, B1 · ∆1,d−1 =

(d + 2)(d + 1)

2
.

This determines the class of Ddeg up to a constant multiple. In order to determine
the multiple, consider the curve C that consists of a fixed degree d − 1 curve and
a pencil of lines in a general plane intersecting the curve in one point. The curve
C has intersection number zero with all the boundary divisors but ∆1,d−1 and has
the following intersection numbers:

C · H = 1, C · Ddeg = 1, C · ∆1,d−1 = −1.

The lemma follows from these intersection numbers. �

Consider the one-parameter family Bk of rational curves of degree d in Pd that
contain d + 2 general fixed points and intersect a general linear space Pk and a
general linear space Pd−k for 1 ≤ k ≤ bd/2c. When k = 1, we omit the linear
space Pd−1. A general member of Bk is a rational normal curve. This follows, for
example, from Lemma 14 of [FP]. By Lemma 1.8 it follows that Ck is a moving
curve for every k. The only reducible elements of C1 are unions of curves of degree
1 and d − 1. For k > 1, the only reducible curves contained in Ck have degrees
(1, d − 1) or (k, d − k). Since the d + 2 points always span Pd, Bk · Ddeg = 0 for
every k. It follows that the moving curves Ck span the null-space of Ddeg in the
cone of curves. Observe that these curves give a proof of Theorem 1.4.

Proof of Theorem 1.4. Since Ddeg is an effective divisor class with slope 1
d+1 , the

slope of Effd,d is at least 1
d+1 . On the other hand, there are moving curves that

have intersection number zero with Ddeg. It follows that the slope of Effd,d is at
most 1

d+1 . �

2.3. Open problem about the slope of M g. Recall that the slope s(g) of M g

is defined by

s(g) := inf
α
{ αλ − δ is on the effective cone },

where λ is the Hodge class and δ is the total boundary class. The slope of the
moduli space of stable curves Mg is non-negative (see [HMo]). Currently, all known

effective divisors on M g have slope greater than 6. As the genus tends to infinity the
slopes of the Brill-Noether divisors tend to 6 from above. Determining the slope,
even giving a positive lower bound for it, is an important problem with applications
to problems such as the Schottky problem and the Kodaira dimension of M g. One

can give lower bounds on the slope by producing moving curves on M g . To the
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best of our knowledge, currently known moving curves give bounds on the slope
that tend to zero with the genus.

The proof of Theorem 1.4 suggests a family of moving curves that might improve
known bounds. Let Cg be the one-parameter family of canonical curves in Pg−1 that
contain the maximum possible number of general points and intersect general linear
spaces such that the sum of the codimensions of all these linear spaces (including
the points) add up to g2 + 3g − 5 plus the number of linear spaces. When g ≥ 8,
this amounts to considering canonical curves that contain g + 5 general points and
intersect a general Pg−7.

For example, C3 is the one-parameter family of genus 3 canonical curves that
contain 13 general points in P2. It has intersection number zero with the divisor
of hyperelliptic curves. C4 is the one-parameter family of genus 4 canonical curves
that contain 9 general points and intersect 5 general lines in P3. It has intersection
number zero with the Petri divisor of curves whose canonical image lies on a singular
quadric. C5 is the one-parameter family of genus 5 canonical curves in P4 that
contain 11 general points and intersect a general line. It has intersection number
zero with the Brill-Noether divisor of trigonal curves. C6 is the one-parameter
family of genus 6 canonical curves in P5 that contain 11 general points and intersect
a general line and a general plane. It has intersection number zero with the Petri
divisor of curves that lie on a singular quintic Del Pezzo surface. When g ≤ 6, the
curves Cg give the sharp slope bound. The analogy with rational curves and these
small-genus examples suggest that this family is well-worth studying. Unfortunately
we do not know the intersection of Cg with the classes λ and δ in general. It would
be interesting to determine these intersections.

3. The effective cone of M0,0(P
d, d)

In this section we prove that every effective divisor class in M0,0(P
d, d) is a pos-

itive linear combination of Ddeg and the boundary divisors. This proves Theorem
1.5.

Since Ddeg and the boundary divisors are effective, any positive linear combina-
tion also is a class in the effective cone. In order to prove Theorem 1.5 we have to
show that we can write the class of every effective divisor as

αDdeg +

bd/2c
∑

k=1

βk,d−k ∆k,d−k,

where α and βk,d−k are non-negative.

First, observe that if D is an effective divisor on M0,0(P
d, d) and D has the class

aH +

bd/2c
∑

k=1

bk,d−k∆k,d−k,

then a ≥ 0. Furthermore, if a = 0, then bk,d−k ≥ 0. Consider a general projection
of the d-th Veronese embedding of P2 to Pd. Consider the image of a pencil of lines
in P2. By Lemma 1.8 this is a moving one-parameter family C of degree d rational
curves that has intersection number zero with the boundary divisors. It follows
from the inequality C · D ≥ 0 that a ≥ 0.
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Furthermore, suppose that a = 0. Consider a general pencil of (1, 1) curves on
P1 ×P1. Take a general projection to Pd of the embedding of P1 ×P1 by the linear
system OP1×P1(i, d − i). By Lemma 1.8 the image of the pencil gives a moving
one-parameter family C of degree d curves whose intersection with ∆k,d−k is zero
unless k = i. The relation C · D ≥ 0 implies that if a = 0, then bi,d−i ≥ 0. We
conclude that Theorem 1.5 is true if a = 0. We can, therefore, assume that a > 0.

Suppose that for every 1 ≤ i ≤ bd/2c, we could construct a moving curve Ci in
M0,0(P

d, d) with the property that Ci · ∆k,d−k = 0 for k 6= i and that the ratio of
Ci · ∆i,d−i to Ci · H is given by

Ci · ∆i,d−i

Ci · H
=

d + 1

i(d − i)
. (2)

Observe that given these intersection numbers, Lemma 2.1 implies that Ci ·Ddeg =
0. Theorem 1.5 follows from the inequalities Ci · D ≥ 0.

In the rest of this section we will first give a construction of one-parameter
families of Ci with these properties. However, our construction will depend on the
Harbourne-Hirschowitz conjecture. We will then modify the construction to get a
sequence of curves (not depending on any conjectures) that “approximate” these
intersection numbers. These curves will suffice to conclude Theorem 1.5.

3.1. Construction 1, depending on the Harbourne-Hirschowitz conjec-

ture. Let F1 and F2 denote the two fiber classes on P1 × P1. We will abuse
notation and denote the proper transform of the fibers in any blow-up of P1 × P1

also by F1 and F2. Let d, j and k be positive integers subject to the condition that
2k ≤ d. Consider S the blow-up of P1×P1 in j(d+1) general points p1, . . . , pj(d+1).
Let Ei denote the i-th exceptional divisor lying over pi. Let L(j) be the following
linear system on S:

L(j) = d F1 +
jk(k + 1)

2
F2 −

j(d+1)
∑

i=1

k Ei.

Suppose M is a linear system on S and that M − F2 is non-special, that is

h1(S,OS(M − F2)) = 0.

Consider the exact sequence

0 → OS(M − F2) → OS(M) → OF2(M) → 0.

The long exact sequence of cohomology implies that taking the one-parameter fam-
ily of proper transforms of the fiber class F2 under the image of the linear system
|M | gives a one-parameter family of rational curves of degree M ·F2 spanning PM ·F2 .

In particular, suppose that L(j) − F2 is non-special. Then by the discussion in
the previous paragraph, the linear system L(j) embeds the general curve in the
linear system |F2| on S as a rational normal curve of degree d in Pd. We thus
obtain a one-parameter family Ck(j) that has intersection number zero with all the
boundary classes except for ∆k,d−k. Moreover, Ck(j) · Ddeg = 0. Hence, Theorem
1.5 would immediately follow if L(j)−F2 were non-special for at least one value of
j.

We recall that the celebrated conjecture due to Harbourne and Hirschowitz char-
acterizes the linear systems that are special on a general blow-up of P2 as those
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linear systems that have a multiple (−1)-curve in their base locus. Here we will
need a weaker form of the conjecture (see [CM]).

Conjecture 3.1 (Harbourne-Hirschowitz). Let M be a complete linear system on

a general blow-up S of P2. If E · M is non-negative for every (−1)-curve E on S,

then M is non-special.

Since the blow-up of P1 × P1 at a point is isomorphic to the blow-up of P2 at
three points, the Harbourne-Hirschowitz Conjecture applies to the linear systems
L(j). The class of any (−1)-curve on S may be expressed as

αF1 + βF2 −

j(d+1)
∑

i=1

γiEi,

where α, β and γi are non-negative integers. Since for a (−1)-curve E we have
E · K = −1, it follows that

−

j(d+1)
∑

i=1

γi = 1 − 2α − 2β.

The intersection of the (−1)-curve with L(j) is

dα + β

(

jk(k + 1)

2
− 1

)

− k

j(d+1)
∑

i=1

γi = (d − 2k)β + α

(

jk(k + 1)

2
− 2k − 1

)

+ k.

When k > 3 and j ≥ 1; or k = 2, 3 and j > 1; or k = 1 and j ≥ 3, the intersection
is non-negative. We conclude the following:

Proposition 3.2. Suppose Conjecture 3.1 holds for L(j) − F2 for some j ≥ 1.
Then the effective cone of M0,0(P

d, d) is spanned by the classes of Ddeg and the

boundary divisors. Furthermore, every codimension one face of the effective cone

is the null-locus of a moving curve.

Remark 3.3. It is easy to prove that L(j) − F2 is non-special for small values of
d and k and to deduce Proposition 3.2 without any conditions. However, we could
not see how to prove the non-specialty of L(j) − F2 in general.

3.2. Construction 2, completing the proof. We modify the previous construc-

tion by imposing fewer k-fold points on the linear system d F1 + jk(k+1)
2 F2 on

P1 × P1. If we do not impose too many k-fold points on the linear system, we
can prove the non-specialty of the desired linear system. The following proposition
makes this precise.

Proposition 3.4. Let k, j and d be positive integers subject to the condition that

2k ≤ d. There exists an integer n(k, d) depending only on k and d such that the

linear system

L′(j) = d F1 +

(

jk(k + 1)

2
− 1

)

F2 −

j(d+1)−n(k,d)
∑

i=1

k Ei −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i=j(d+1)−n(k,d)+1

Ei

on the blow-up of P1×P1 at j(d+1)+n(k, d) (k−1)(k+2)
2 general points is non-special

for every j >> 0. The integer n(k, d) may be taken to be

n(k, d) = d2(d + 1)/ke.

9



Proposition 3.4 implies Theorem 1.5. As in the previous subsection we consider
the blow-up of P1 × P1 in

j(d + 1) +
n(k, d)(k − 1)(k + 2)

2

general points. The proper transform of the fibers F2 under the linear system

L′(j) = d F1 +
jk(k + 1)

2
F2 −

j(d+1)−n(k,d)
∑

i=1

k Ei −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i=j(d+1)−n(k,d)+1

Ei

gives a one-parameter family Ck(j) of rational curves of degree d that has inter-
section number zero with Ddeg. Letting j tend to infinity we obtain a sequence of

moving curves Ck(j) in M0,0(P
d, d) that has intersection zero with all the bound-

ary divisors but ∆1,d−1 and ∆k,d−k. Unfortunately, the intersection of Ck(j) with
∆1,d−1 is not zero and the ratio of Ck(j) · H to Ck(j) · ∆k,d−k is not the one re-
quired by Equation (2). However, as j tends to infinity, the ratio of the intersection
numbers Ck(j) · ∆1,d−1 to Ck(j) · H tends to zero and the ratio of Ck(j) · ∆k,d−k

to Ck(j) · H tends to the desired ratio d+1
k(d−k) . Theorem 1.5 follows.

Proof of Proposition 3.4. The specialization technique developed in §2 of [Ya] yields
the proof of the proposition. We will specialize the points of multiplicity k one by
one onto a point q. At each stage the k-fold point that we specialize will be in
general position. We will first slide the point along a fiber f1 in the class F1 onto
the fiber f2 in the fiber class F2 containing the point q. We then slide the point
onto q along f2. We will record the flat limit of this degeneration.

There is a simple checker game that describes the limits of these degenerations.
This checker game for P2 is described in §2 of [Ya]. The details for P1 × P1 are
identical. The global sections of the linear system OP1×P1(a, b) are bi-homogeneous
polynomials of bi-degree a and b in the variables x, y and z, w, respectively. A basis
for the space of global sections is given by xiya−izjwb−j , where 0 ≤ i ≤ a and
0 ≤ j ≤ b. We can record these monomials in a rectangular (a+1)× (b+1) grid. In
this grid the box in the i-th row and the j-th column corresponds to the monomial
xiya−izjwb−j .

Figure 1. Imposing a triple point on OP1×P1(4, 6).

If we impose an ordinary k-fold point on the linear system at ([x : y], [z : w]) =
([0 : 1], [0 : 1]), then the coefficients of the monomials

yawb, xya−1wb, . . . , xk−1ya−k+1zk−1wb−k+1
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must vanish. We depict this by filling in a k × k triangle of checkers into the boxes
at the upper left hand corner as in Figure 1. The coefficients of the monomials
represented by boxes that have checkers in them must vanish.

We first slide the k-fold point along the fiber f1 onto the point ([x : y], [z : w]) =
([1 : 0], [0 : 1]). This correspond to the degeneration

([x : y], [z : w]) 7→ ([x : ty], [z : w]).

The flat limit of this degeneration is described by the vanishing of the coefficients
of certain monomials (assuming none of the checkers fall out of the rectangle). The
monomials whose coefficients must vanish are those that correspond to boxes with
checkers in them when we let the checkers fall according to the force of gravity.
The first two panels in Figure 2 depict the result of applying this procedure to a
4-fold point when there is an aligned ideal condition at the point ([x : y], [z : w]) =
([1 : 0], [1 : 0]).

We then follow this degeneration with a degeneration that specializes the k-fold
point to q by sliding along the fiber f2. This degeneration is explicitly given by

([x : y], [z : w]) 7→ ([x : y], [z : tw]).

The flat limit is described by the vanishing of the coefficients of the monomials that
have checkers in them when we slide all the checkers as far right as possible. The
last two panels of Figure 2 depict this degeneration.

Drop the checkers Slide the checkers to the right

Figure 2. Depicting the degenerations by checkers.

S. Yang proves that, provided none of the checkers fall out of the ambient rectan-
gle during these moves, these checker movements do correspond to the flat limits of
the linear systems under the given degenerations. If one can play this checker game
with all the multiple points that one imposes on a linear system so that during the
game none of the checkers fall out of the rectangle, one can conclude that the mul-
tiple points impose independent conditions on the linear system. The limit linear
system has the expected dimension. In particular, it is non-special. By upper semi-
continuity the original linear system must also have the expected dimension and be
non-special. Unfortunately, when one plays this game, occasionally checkers may
fall out of the rectangle. In that case we loose information on what the limits are.
This may happen even if the original linear system has the expected dimension.

In order to conclude the proposition we need to show that if we impose at most
j(d+1)−n(k, d) points of multiplicity k on the linear system OP1×P1(d, jk(k+1)/2)
where 2k ≤ d, we do not lose any checkers when we specialize all the k-fold points by
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the degeneration just described. This suffices to conclude the proposition because
general simple points always impose independent conditions.

The main observation is that if there is a safety net of empty boxes at the top
of the rectangle, then the checkers will not fall out of the box. The proof of the
proposition is completed by noting the following simple facts.

(1) At any stage of the degeneration the height of the checkers in the rectangle
is at most k larger than the highest row full of checkers.

(2) The left most checker of a row is to the lower left of the left most checker
of any row above it.

If there are at least (k + 1)(d + 1) empty boxes in our rectangle, then by the
above two observations when we specialize a k-fold point we do not lose any of the
checkers. As long as n(k, d) ≥ d2(d + 1)/ke, there is always at least (k + 1)(d + 1)
boxes empty. Hence until the stage where we specialize the last k-fold point we
cannot lose any checkers. This concludes the proof. �

Remark 3.5. While the asymptotic approach gives a proof of Theorem 1.5 inde-
pendent of the Harbourne-Hirschowitz conjecture, it does not construct a moving
curve that is dual to the codimension one faces of the effective cone of M0,0(P

d, d).
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