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Abstract. This is the second in a sequence of papers on the geometry of spaces of rational curves

of degree e on a general hypersurface X ⊂ Pn of degree d. In [11] it is proved that if d < n+1
2

then
for each e the space of rational curves is irreducible, reduced and has the expected dimension. In

this paper it is proved that if d2 + d + 1 ≤ n, then for each e the space of rational curves is a

rationally connected variety; in particular it has negative Kodaira dimension.
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1. Statement of results
This is the second in a sequence of papers on the geometry of spaces of rational curves on a

general hypersurface X ⊂ Pn. Let d = deg(X). In [11] it is proved that if d < n+1
2 then for each

e the space of rational curves of degree e is irreducible, reduced and has the expected dimension.
The main result of this paper is the following theorem.

Theorem 1.1. If X ⊂ Pn is a general hypersurface of degree d and if n ≥ d2 + d + 1 then for each
integer e ≥ 1 the stack M0,0(X, e) is rationally connected. More precisely, there exists a morphism
f : P1 → ((M0,0(X, e))fine)sm such that f∗TM0,0(X,e) is ample.

Remark 1.2. (i) The scheme M0,0(X, e) is the coarse moduli space of M0,0(X, e), the open
subset (M0,0(X, e))fine is the fine moduli locus, and the open subset ((M0,0(X, e))fine)sm is
the smooth locus of the fine moduli locus.

(ii) For the cases d = 1, 2, a related and stronger theorem is proved in [15, Thm. 3]; namely
the coarse moduli space M0,0(X, e) is rational. The proof relies on the fact that X is
a homogeneous space and does not extend to the case d ≥ 3. Moreover, it is not clear
from [15] that there exists a very free rational curve in the smooth locus of the fine moduli
locus of the coarse moduli space.
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2 J. HARRIS AND J. STARR

The space M0,0(X, e) is the Kontsevich moduli stack of stable maps, which will be recalled below;
it is a Deligne-Mumford stack containing the parameter space of smooth rational curves in X of
degree e as an open substack. A variety is rationally connected if any two closed points are contained
in the image of a morphism from P1 to the variety. Rationally connected varieties have negative
Kodaira dimension, hence the schemes M0,0(X, e) have negative Kodaira dimension.

The motivation behind Theorem 1.1 is a conjectural relationship between rational connectedness
of M0,0(X, e) and a theorem of Lang about rational points of varieties defined over the function
field of a surface.

Theorem 1.3 (Lang, [18]). Let K be the function field of a surface over C and let X ⊂ Pn
K be a

hypersurface of degree d. If d2 ≤ n, then X(K) 6= ∅.

There is a naive parameter count that suggests that if d2 ≤ n then for e � 0 the stack M0,0(X, e)
is rationally connected, and if d2 ≥ n+2 then for e � 0 the stack M0,0(X, e) is of general type; i.e.,
the Kodaira dimension of M0,0(X, e) is determined by the same inequality as in Lang’s theorem.
This suggests Lang’s theorem is related to rational connectedness of spaces of rational curves. In
a personal communication, A. J. de Jong has outlined an approach for proving that a K-variety
X has a K-point if the stacks M0,0(X ⊗K K, e) are rationally connected, and a certain Brauer
obstruction vanishes. Of course Lang’s original proof is simple and direct. But de Jong’s approach
could apply to classes of varieties where Lang’s proof does not apply, i.e., to varieties that are not
hypersurfaces in projective space.

The naive parameter count is not rigorous. As it seems impossible to make it rigorous, it is not
recalled here. In this paper a different strategy is developed for proving the stacks M0,0(X, e) are
rationally connected, and this strategy is applied to hypersurfaces in projective space. This strategy
should also apply to other varieties, hence it is formulated in greater generality than strictly needed
for the case of hypersurfaces.

1.1. The Kontsevich moduli space. The most natural parameter space for rational curves of
degree e on X is the open subscheme of the Hilbert scheme parametrizing smooth rational curves of
degree e on X, Re

X ⊂ Hilbet+1
X . For e > 1, Re

X is not proper. To study the global geometry of Re
X ,

e.g. to determine its Kodaira dimension, it is necessary to embed it as an open subset of a proper
scheme. The simplest choice is to take the closure Re

X inside Hilbet+1
X . This is a poor choice for two

reasons: First, there is no simple characterization of the closed subschemes of X that correspond to
points in Re

X . Second, the deformation theory of a closed subscheme of X is difficult to work with.

There is a better choice; one where the points of the closure have a simple geometric meaning, and
where the deformation theory is easier to work with. This choice is M0,0(X, e), or more generally
M0,r(X, e), the Kontsevich moduli space of degree e, r-pointed, genus 0 stable maps to X. This
space has one disadvantage over Re

X ; namely M0,r(X, e) is a Deligne-Mumford stack rather than a
scheme. However, the coarse moduli space M0,r(X, e) is a projective scheme, cf. [2]. For the reader
unfamiliar with stacks, most occurrences of M0,r(X, e) can safely be replaced by (M0,r(X, e))fine,
the fine moduli locus of M0,r(X, e).

To be precise, M0,r(X, e) is the stack whose objects are triples

ζ = ((p : Σ → B, σ1, . . . , σr), g : Σ → X),

consisting of a flat, proper family of curves p : Σ → B, a collection of r disjoint sections σi : B →
Σ, i = 1, . . . , r with image in the smooth locus of p, and a morphism g : Σ → X such that for each
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geometric point b ∈ B, the fiber Σb is a connected, at-worst-nodal curve of arithmetic genus 0, the
morphism gb : Σb → X ⊗C κ(b) has no infinitesimal automorphism fixing the marked points σi(b),
and the degree of (gb)∗OX(1) is e, cf. [9], [5].

A refinement of this stack used in this paper is the Behrend-Manin stack, M(X, τ), associated
to a genus 0 stable A-graph τ , cf. [5]. A genus 0 stable A-graph is a tree with tails with a degree
associated to each vertex that satisfies a certain stability condition. A tree is a graph that contains
no cycles. A tail, or a half-edge, is an edge that originates on a vertex but does not terminate on
a vertex (e.g. what one would get if one were to “cut in half” an edge of a usual graph). A degree
function is an assignment of a nonnegative integer to each vertex of the graph. And the stability
condition is that no vertex both has degree 0 and valence less than 3 (tails count toward the valence
of a vertex).

Given an at-worst-nodal curve of genus 0, Σ, a collection of marked points on Σ, σ1, . . . , σr, and a
morphism g : Σ → X, there is an associated A-graph defined as follows. The tree is the dual graph
of Σ; there is one vertex for each irreducible component of Σ and one edge for each node of Σ. For
each marked point σi of Σ there is a tail attached to the obvious vertex. And the degree of a vertex
is simply the degree of g∗O(1) on the corresponding irreducible component. The Behrend-Manin
stack M(X, τ) (essentially) parametrizes the closure of the locally closed substack of M0,r(X, e) of
stable maps whose associated A-graph equals τ . For the precise definition, cf. [5].

The boundary of the stack M(X, τ) is a union of stacks M(X, σ) where σ ranges over stable A-
graphs such that there is a contraction from σ to τ , i.e., the graph σ is “more degenerate” than the
graph τ , cf. [5]. Hence the boundary of every Behrend-Manin stack can be understood inductively
starting from the “most degenerate” graphs τ , for which M(X, τ) is a fiber product over X of
the space of pointed lines on X. So questions about M(X, τ) that can be studied by specializing
to points in the boundary eventually reduce to questions about the space of pointed lines on X.
Moreover, the deformation theory of a point in M(X, τ) is straightforward; it will be recalled in
Section 3.

1.2. Sketch of the proof. The proof of Theorem 1.1 uses a theorem of Kollár.

Theorem 1.4 (Kollár, Thm. IV.3.7 [16]). Let V be an irreducible, projective variety, and let
Vsm ⊂ V denote the smooth locus of V . If there exists a very free morphism f : P1 → Vsm, i.e. a
morphism such that f∗TV is an ample vector bundle, then V is rationally connected.

The reader is warned that “very free” is the first of a multitude of definitions with “very”
similar names: free, very free, deformation ample, very stable, unobstructed, twisting, very twisting,
twistable, very twistable, positive, very positive, inducting pair, inductable, modification, typical,
and c-generating linear system. A morphism f : P1 → V is free if f∗TV is a vector bundle
that is generated by global sections. The goal is to prove there exists a very free morphism to
M0,0(X, e) for all e. It is difficult to directly construct a very free morphism. However, existence
of a very free morphism can be studied by specializing to the boundary of M0,0(X, e), and, using
an induction argument, can ultimately be reduced to a question about pointed lines on X. The
induction argument does not produce a very free morphism to the boundary of M0,0(X, e), but
rather a reducible rational curve B in the boundary such that the restriction of TM0,0(X,e) to B is
deformation ample: for a deformation of B to an irreducible rational curve B′, the restriction of
TM0,0(X,e) to B′ is ample, cf. Section 2 (a curve B′ is called a deformation of B if both B and B′

have a common generization). The rational curve B′ is a very free rational curve which proves that
M0,0(X, e) is rationally connected.
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The induction argument constructs a reducible rational curve B which itself parametrizes stable
maps from reducible rational curves to X. Each of these stable maps is the union of a map of
degree e − 1, g : Σ → X, and a line L ⊂ X that intersect in a node σ ∈ Σ ∩ L. Since the union is
stable, the 1-pointed map (Σ, σ, g) is stable. To simplify the deformation theory, it is assumed that
(Σ, σ, g) is very stable: the unmarked map (Σ, g) is stable (this assumption must be justified!). To
guarantee that B is in the smooth locus of M0,0(X, e), it is assumed that (Σ, g) is unobstructed :
Ext1OΣ

(Lg,OΣ) = {0}.

The condition that TM0,0(X,e)|B is deformation ample can be translated into a condition on
the family of pointed lines, (L, σ), together with a condition on the family of pointed maps of
degree e − 1, (Σ, σ, g); these conditions are defined in Section 4. The condition on the family
of pointed lines is that it is very twisting. The family is twisting (resp. very twisting) if the
associated morphism ζ : B → M0,1(X, 1) pulls back the vertical tangent bundle of the projection
pr : M0,1(X, 1) →M0,0(X, 1) to a bundle which is generated by global sections, and pulls back the
vertical tangent bundle of the “evaluation at the marked point” morphism ev : M0,1(X, 1) → X to
a bundle which is generated by global sections (resp. deformation ample). Composing ζ with ev
gives a map h : B → X. Such a map which arises from a twisting (resp. very twisting) family is
called twistable (resp. very twistable). The property of being twistable (resp. very twistable) is an
open condition on the family of all maps.

The condition on the family of pointed maps of degree e − 1 is that it is very positive. The
family is positive (resp. very positive) if the associated morphism ζ : B → M0,1(X, e− 1) pulls
back the vertical tangent bundle of the projection pr : M0,1(X, 1) →M0,0(X, 1) to a bundle which
is generated by global sections (resp. ample) and the pullback by pr◦ ζ of TM0,0(X,1) is deformation
ample. The main observation is this: For a positive (resp. very positive) family over a smooth
rational curve, the morphism ζ : B →M0,1(X, e− 1) is free (resp. very free).

An inducting pair consists of a very twisting family of pointed lines over B and a very positive
family of pointed maps of degree e−1 over B which intersect along the marked points. The induction
step proves that if an inducting pair exists for degree e, then an inducting pair exists for degree e+1.
It is sometimes useful to “forget” the very twisting family of pointed lines, and only “remember”
that the family of marked points is a very twistable map. A very positive family of pointed maps of
degree e− 1 such that the family of marked points is a very twistable map is an inductable family.

The induction step begins with an inducting pair for degree e and produces an inductable family
for degree e + 1. In particular, the inductable family is very positive and there is a deformation to
a very free morphism from an irreducible curve to M0,1(X, e) whose projection to M0,0(X, e) is a
very free morphism. The family of unmarked maps over B is obtained by gluing the very twisting
family of lines and the very positive family of maps of degree e − 1 along the curve of marked
points σ. To get a family of marked maps, let σ′ be an irreducible curve in the total space Σ of the
very positive family which is linearly equivalent to σ. The curve σ′ fails to be a family of marked
points precisely at the finitely many points in B over which the curve σ′ intersects the curve σ. The
solution is to blow up each of these finitely many points on Σ; this produces a family of marked
stable maps of degree e. Unfortunately blowing up destroys the “very positivity” of the family. Very
positivity is restored by making a modification at each of the finitely many points of B over which
Σ is blown up. The modification attaches a P1 to B at the specified point and extends the family
over this P1 so that the stabilized family of unmarked maps is a constant family, but such that the
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marked points in this constant family vary. After modification, the family of marked stable maps
is inductable. Incidentally, it is the process of modification that requires using reducible curves in
M0,0(X, e) and working with the property of deformation ample bundles.

The last section establishes the base case of the induction argument: existence of a family of
pointed lines that is both very twisting and very positive. The total space of a very positive family
of lines is a scroll Σ. The whole argument reduces to producing a pair of a scroll Σ and a hypersurface
X containing Σ such that Σ corresponds to a very positive family of lines on X. This reduces to a
computation of the dimension of certain linear systems on the scroll Σ, c-generating linear systems.
This is a straightforward computation in the Cox homogeneous coordinate ring of the scroll. The
hypothesis that d2 + d + 1 ≤ n is used in this last computation.

1.3. Technical Hypotheses. In the proof of the induction step, some technical hypotheses are
used.

Hypothesis 1.5. For each contraction of genus 0 stable A-graphs, φ : σ → τ , the image of the
morphism of Behrend-Manin stacks M(X, σ) →M(X, τ) has codimension dim(X, τ) − dim(X, σ)
in M(X, τ).

By [11, Prop. 7.4], if d < n+1
2 and if X ⊂ Pn is a general hypersurface of degree d, each stack

M(X, σ) has the expected dimension; thus Hypothesis 1.5 holds for X.

Hypothesis 1.6. A general fiber of the evaluation map ev : M0,1(X, 1) → X is irreducible.

For a pair (X, p) consisting of a hypersurface X ⊂ Pn of degree d and a point p ∈ X, the associated
fiber of ev is a subvariety Z ⊂ Pn−1 which is a complete intersection of a sequence of hypersurfaces
Y1, . . . , Yd in Pn with deg(Yi) = i: the defining equation of Yi is the degree i homogeneous part of
the Taylor expansion of the defining equation of X about the point p. If the pair (X, p) is general,
the sequence of hypersurfaces Y1, . . . , Yd is general. By the Bertini theorem [14, Thms. 4.10, 6.10]
the intersection Y1 ∩ · · · ∩ Yd is smooth and connected if d ≤ n− 2.

Hypothesis 1.7. For each integer e ≥ 0, the locus in M0,1(X, e) parametrizing stable maps with
nontrivial automorphism group has codimension at least 2.

Of course any stable map with nontrivial automorphism group has an irreducible component
which is a multiple cover of its image. In light of [11, Prop. 7.4], a simple parameter count shows
that if d ≤ n+1

2 and if X ⊂ Pn is a general hypersurface of degree d, Hypothesis 1.7 is satisfied.

1.4. Conventions. Unless stated otherwise, schemes are of finite type and separated over Spec C.
Absolute fiber products of schemes will be fiber products over Spec C. Absolute fiber products of
stacks will be 2-fibered products over Spec C.

1.5. Acknowledgments. We are very grateful to A. J. de Jong and Steven Kleiman for many
useful conversations. We are also grateful to the referees for their many useful comments.

2. Deformation ample

Let T be a scheme.

Definition 2.1. A family of prestable curves of genus g over T is a proper, flat morphism π : B → T
such that every geometric fiber of π is a connected, at-worst-nodal curve of arithmetic genus g.

Notation 2.2. Let π : B → T be a morphism of schemes and let E be a quasi-coherent sheaf on
B. Denote by µE : π∗π∗E → E the morphism left adjoint to the identity morphism π∗E → π∗E.
The sheaf E is π-relatively generated by global sections if µE is surjective.
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Let π : B → T be a family of prestable curves of genus 0 and let E be a coherent sheaf on B.
Let σ : T → B be a section of π and let I ⊂ OB be the ideal sheaf of σ(T ).
Lemma 2.3.

(i) If E is π-relatively generated by global sections, then R1π∗E = {0}.
(ii) If E is π-relatively generated by global sections, then R1π∗(I · E) = {0}.
(iii) Let E′ and E′′ be coherent sheaves on B and let

0 −−−−→ E′ −−−−→ E −−−−→ E′′ −−−−→ 0

be a short exact sequence of coherent sheaves. If E′ and E′′ are π-relatively generated by
global sections, then E is π-relatively generated by global sections.

Proof. All three statements can be proved locally over T . Hence it suffices to consider the case that
T is affine.

(i): Since E is π-relatively generated by global sections and T is affine, E is generated by global
sections, i.e., there is a short exact sequence of coherent sheaves,

0 −−−−→ K −−−−→ O⊕N
B −−−−→ E −−−−→ 0.

Since π is of relative dimension 1, R2π∗K = {0}. Since the fibers of B are connected of arithmetic
genus 0, R1π∗OB = {0}. In the long exact sequence of higher direct images associated to the short
exact sequence above, R1π∗E fits between R1π∗O⊕N

B and R2π∗K; hence R1π∗E = {0}.

(ii): There is a short exact sequence of coherent sheaves,

0 −−−−→ I · E −−−−→ E −−−−→ E ⊗OB
Oσ(T ) −−−−→ 0

giving rise to a long exact sequence of cohomology groups,

π∗E −−−−→ π∗(E ⊗OB
Oσ(T )) −−−−→ R1π∗(Ib · E) −−−−→ R1π∗E.

By the last paragraph, R1π∗E = {0}. Since E is generated by global sections, π∗E → π∗(E ⊗OB

Oσ(T )) is surjective. Therefore R1π∗(I · E) = {0}.

(iii): By (i), h1(B,E′) = 0; therefore every global section of E′′ is the image of a global section
of E. So the global sections of E generate E′′. And the global sections of E′ generate E′. Therefore
E is generated by global sections. �

Let B be a prestable curve of genus 0, and let E be a locally free sheaf of positive rank on B. A
smoothing of the pair (B,E) over a discrete valuation ring R is a pair (B, E) consisting of a family
B → Spec R of prestable curves of genus 0 and a locally free sheaf E such that the generic fiber of B
is a smooth curve, such that the closed fiber of B is isomorphic to B, and such that the restriction
of E to the closed fiber is isomorphic to E. What conditions on (B,E) guarantee that for every
smoothing (B, E), the restriction of E to the generic fiber is an ample locally free sheaf? Certainly if
E is ample, this is true. But E need not be ample for this condition to hold: e.g. if E is an invertible
sheaf such that the total degree of E is positive, then for every smoothing the restriction of E to
the generic fiber is ample. Although it is not the most general criterion, the following criterion is
used in the rest of the paper.

Definition 2.4. Let B be a connected, proper, at-worst-nodal curve of arithmetic genus 0. A
locally free sheaf E on B with positive rank is deformation ample if

(i) E is generated by global sections, and
(ii) h1(B,E(KB)) = 0, where OB(KB) is the dualizing sheaf of B.

Remark 2.5.
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(i) Conditions (i) and (ii) above are independent.
(ii) If E is invertible, then E is deformation ample iff the restriction of E to every irreducible

component has nonnegative degree and the restriction to at least one irreducible component
has positive degree, cf. Lemma 2.11.

(iii) One can determine whether E is deformation ample in terms of the splitting type of the
restriction of E to each irreducible component together with the patching isomorphisms at
the nodes of B.

Let T be a scheme, let π : B → T be a family of prestable curves of genus 0, and let E be a
locally free sheaf of positive rank on B.
Definition 2.6. The sheaf E is π-relatively deformation ample (or simply deformation ample if π
is understood) if

(i) E is π-relatively generated by global sections, and
(ii) R1π∗(E(Kπ)) = {0}, where OB(Kπ) is the relative dualizing sheaf of π.

Let π : B → T be a proper, flat family of connected, at-worst-nodal curves of arithmetic genus
0, let E be a locally free sheaf on B of positive rank, and let f : T ′ → T be a morphism of schemes.
Denote the fiber product as in the diagram,

B′ g−−−−→ B

π′

y yπ

T ′
f−−−−→ T

Denote by E′ the pullback g∗E.
Lemma 2.7. If E is π-relatively deformation ample, then E′ is π′-relatively deformation ample.
If f is surjective, the converse also holds.

Proof. (⇒): For the main direction, by [10, Sec. 8.5.2, Prop. 8.9.1], it suffices to consider the case
when T and T ′ are Noetherian affine schemes.

There is a canonical map of OT ′ -modules, ν : f∗π∗E → (π′)∗g∗E, which fits into a commutative
diagram,

(π′)∗f∗π∗E
=−−−−→ g∗π∗π∗E

(π′)∗ν

y yg∗µE

(π′)∗(π′)∗E′ µE′−−−−→ E′

Since µE is surjective, g∗µE is surjective. Hence also µE′ is surjective, i.e., E′ is π′-relatively
generated by global sections.

Since π has relative dimension 1, R2π∗E(Kπ) = {0}. By [13, Thm. III.12.11(b)], for every
closed point t ∈ T , h1(Bt, E(Kπ)|Bt

) = 0. By [13, Prop. III.9.3], for every closed point t′ ∈ T ′,
h1(B′

t′ , E
′(Kπ′)|B′

t′
) = 0. So by [13, Thm. III.12.11(a)] and Nakayama’s lemma, R1π′∗(E

′(Kπ′)) =
{0}. Hence E′ is π′-relatively deformation ample.

(⇐): Now suppose that f is surjective and that E′ is π′-relatively deformation ample. As above,
it suffices to consider the case when T and T ′ are Noetherian affine schemes. As above, for every
closed point t′ ∈ T ′, h1(B′

t′ , E
′(Kπ′)|B′

t′
) = 0. Since T ′ → T is surjective, by [13, Prop. III.9.3]

for every closed point t ∈ T , h1(Bt, E(Kπ)|Bt) = 0. So by [13, Thm III.12.11(a)] and Nakayama’s
lemma, R1π∗(E(Kπ)) = {0}.
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It remains to prove that E is π-relatively generated by global sections. For every closed point
t ∈ T , there is a closed point t′ ∈ T ′ mapping to t. Since E′|B′

t′
is generated by global sections, also

E|Bt
is generated by global sections. By Lemma 2.3, h1 (Bt, E|Bt

) = 0. By [13, Thm. III.12.11(a)]
and Nakayama’s lemma, R1π∗(E) = {0}.

The claim is that for any coherent OT -module F , R1π∗(π∗F ⊗ E) = {0}. This is local on T .
Locally on T , F is the cokernel of O⊕N

T for some N , so π∗F ⊗ E is the cokernel of E⊕N . Since
π has relative dimension 1, R1π∗ is right exact on the category of coherent OB-modules. Since
R1π∗(E⊕N ) = {0}, also R1π∗(π∗F ⊗ E) = {0}, which proves the claim.

In particular, applying the long exact sequence of higher direct images to the short exact sequence,

0 −−−−→ π∗It ⊗ E −−−−→ E −−−−→ E|Bt
−−−−→ 0,

π∗(E) → H0 (Bt, E|Bt
) is surjective. Since E|Bt

is generated by global sections for every closed point
t ∈ T , E is π-relatively generated by global sections. So E is π-relatively deformation ample. �

Lemma 2.8. Let π : B → T be a proper, flat family of connected, smooth curves of genus 0 and
let E be a locally free sheaf of positive rank. Then E is π-relatively deformation ample iff E is
π-relatively ample.

Proof. Both properties are local on T and can be checked after étale, surjective base-change of T .
So it suffices to consider the case when π : B → T is isomorphic to πT : T × P1 → T .

(⇒): Denote F = (πT )∗(E ⊗ π∗P1OP1(−1)). Tensoring the map µE⊗π∗
P1
OP1 (−1) with the identity

map on π∗OP1(−1) gives a map ν : π∗T F ⊗ π∗P1OP1(1) → E. Assume that E is deformation ample.
The claim is that ν is surjective. To prove this, it suffices to prove,

(i) For every geometric point t of T , h1(P1
κ(t), E|Bt

⊗OP1(−1)) = 0,
(ii) F ⊗OT

κ(t) = H0(P1
κ(t), E|Bt

⊗OP1(−1)), and
(iii) the map H0(P1

κ(t), E|Bt ⊗OP1(−1))⊗OP1(1) → E|Bt is surjective.

By Grothendieck’s lemma [13, Exer. V.2.6], E|Bt
splits as a direct sum OP1(a1)⊕ · · · ⊕ OP1(ar)

for some integers a1 ≤ · · · ≤ ar. By Lemma 2.7, E|Bt
is deformation ample, and in particular

h1(P1, E|Bt
(−2)) = 0. Hence a1 ≥ 1, and h1(P1, E|Bt

⊗ OP1(−1)) = 0, i.e., (i) holds. By [13,
Thm. III.12.11(b)], also (ii) holds. Finally, for ai ≥ 1, H0(P1

κ,OP1(ai − 1)) ⊗OP1(1) → OP1(ai) is
surjective. Thus (iii) holds and the claim is proved.

Now π∗T F ⊗ π∗P1OP1(1) is πT -relatively ample. Since E is a quotient of π∗T F ⊗ π∗P1OP1(1), also E
is πT -relatively ample, cf. Lemma 2.10 (i).

(⇐): The converse direction follows in the same way. �
Lemma 2.9. There exists an open subscheme i : U → T with the following property: for every
morphism f : T ′ → T , f(T ′) is contained in U iff E′ is π′-relatively deformation ample.

Proof. By [10, Sec. 8.5.2, Prop. 8.9.1], it suffices to consider the case that T and T ′ are Noetherian
affine schemes.

Let Z1 ⊂ T be the closed subset,

Z1 = f [Supp(coker(π∗π∗E → E))].
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Let Z2 ⊂ T be the closed subset,

Z2 = Supp(R1π∗(E(Kπ))).

And let Z3 ⊂ T be the closed subset,

Z3 = Supp(R1π∗E).

Let i : U → T be the open complement of Z1 ∪ Z2 ∪ Z3.

Let f : T ′ → T be a morphism of Noetherian affine schemes. By [13, Thm. III.12.11,
Prop. III.9.3] and Nakayama’s lemma, R1π′∗(E

′(Kπ′)) = {0} iff for each closed point t′ ∈ T ′,
h1(B′

t′ , E
′(Kπ′)|B′

t′
) = 0. Denoting t = f(t′), h1(B′

t′ , E
′(Kπ′)|B′

t′
) = 0 iff h1(Bt, E(Kπ)|Bt) = 0,

i.e., iff t is contained in the complement of Z2. Hence R1π′∗(E
′(Kπ′)) = {0} iff f(T ) is contained in

the complement of Z2.

By the same argument as in the converse direction of the proof of Lemma 2.7, E′ is π′-relatively
generated by global sections iff for every closed point t′ ∈ T ′, E′|B′

t′
is generated by global sections.

Denoting t = f(t′), E′|B′
t′

is generated by global sections iff E|Bt
is generated by global sections. If

E|Bt is generated by global sections, then h1(Bt, E|Bt) = 0. By [13, Thm. III.12.11], t is not in Z3

and t is not in Z1. Conversely, if t is not in Z3, then E|Bt is generated by global sections iff t is not
in Z1. Thus E′ is π′-relatively generated by global sections iff f(T ′) is contained in the complement
of Z1 ∪ Z3. So E′ is π′-relatively deformation ample iff f(T ′) is contained in U . �
Lemma 2.10.

(i) If χ : E → E′′ is a morphism of locally free sheaves on B whose cokernel is torsion in every
fiber (in particular, if χ is surjective), if E′′ is nonzero, and if E is π-relatively deformation
ample, then also E′′ is π-relatively deformation ample.

(ii) If E′ and E′′ are π-relatively deformation ample, then for every short exact sequence of
coherent OB-modules,

0 −−−−→ E′ υ−−−−→ E
χ−−−−→ E′′ −−−−→ 0,

E is π-relatively deformation ample.
(iii) If E is π-relatively deformation ample, then for every integer n ≥ 1, also E⊗n is π-relatively

deformation ample.

Proof. (i): Let Q denote the cokernel of χ and let I ⊂ E′′ denote the image of χ. There is a short
exact sequence of coherent OB-modules:

0 −−−−→ I −−−−→ E′′ −−−−→ Q −−−−→ 0.

When we “twist” this exact sequence byOB(Kπ), it remains exact. Because π has relative dimension
1, R1π∗ is right exact on the category of coherent OB-modules. In particular, since R1π∗E(Kπ) =
{0}, also R1π∗I(Kπ) = {0}. Since Q is torsion in every fiber, R1π∗Q(Kπ) = {0}. Thus, by
the long exact sequence of higher direct images associated to the twisted exact sequence above,
R1π∗E

′′(Kπ) = {0}.

The surjective composition map

π∗π∗E1
µE−−−−→ E1 −−−−→ I

factors through the natural map µI : π∗π∗I → I. Hence µI is surjective, i.e., I is π-relatively
generated by global sections. Since Q is torsion in every fiber, the support of Q is finite over T and
it follows that Q is π-relatively generated by global sections. By Lemma 2.3 (iii), E′′ is π-relatively
generated by global sections. So E′′ is π-relatively deformation ample.
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(ii): By hypothesis, R1π∗E
′(Kπ) = R1π∗E

′′(Kπ) = {0}. By the long exact sequence of higher
direct images, also R1π∗E(Kπ) = {0}. By Lemma 2.3 (iii), E is π-relatively generated by global
sections. So E is π-relatively deformation ample.

(iii): This is proved by induction on n, the case n = 1 being tautological. It suffices to consider
the case when T is affine. Suppose n > 1 and suppose the result is known for n− 1. In particular,
E⊗(n−1) is generated by global sections. There is a natural surjection

π∗π∗

(
E⊗(n−1)

)
⊗OB

E → E⊗n.

And there is a surjective map O⊕N
T → π∗(E⊗(n−1)). Hence there is a surjection E⊕N → E⊗n. By

(ii) and induction, E⊕N is π-relatively deformation ample. By (i), the quotient E⊗n is π-relatively
deformation ample. Thus (iii) is proved by induction. �
Lemma 2.11. Let B be a proper, connected, at-worst-nodal curve of arithmetic genus 0 over an
algebraically closed field k. Let E be a locally free sheaf of positive rank such that,

(i) for every irreducible component Bi ⊂ B, E|Bi is generated by global sections, and
(ii) there exists a nonempty, connected, closed subcurve B′ ⊂ B such that E|B′ is deformation

ample.
Then E is deformation ample.

Proof. Let δ be the number of irreducible components of B which are not contained in B′. The
result is proved by induction on δ. The base case δ = 0 is tautological, for then B = B′. Assume
that δ > 0 and that the result is true for all smaller values of δ.

Let B1 ⊂ B be an irreducible component of B. Let B2 ⊂ B denote the union of all irreducible
components other than B1. There exists an irreducible component B1 not contained in B′ such
that B2 is connected: if the dual graph of B′ contains every leaf (= vertex of valence 1) of the dual
graph of B, then the two graphs are equal. The intersection B1 ∩ B2 is a single node, denoted b.
By the induction hypothesis, E|B2 is deformation ample.

The claim is that E is generated by global sections. Denote by F ⊂ E the image of H0(B,E)⊗k

OB → E. There is a short exact sequence of coherent sheaves:

0 −−−−→ E ⊗OB
OB1(−b) −−−−→ E −−−−→ E ⊗OB

OB2 −−−−→ 0.

Since E|B1 is a locally free sheaf on P1 generated by global sections, Grothendieck’s lemma and
the cohomology of line bundles on P1 imply that h1(B,E ⊗OB

OB1(−b)) = 0 (h1(P1,OP1(a)) = 0
for a ≥ −1). Hence all the global sections of E|B2 lift to global sections of E, i.e., F → E|B2 is
surjective. So E/F is supported on B1. Hence E/F is a quotient of E|B1 . Since E|B1 is generated
by global sections, also E/F is generated by global sections. There is a short exact sequence

0 −−−−→ F −−−−→ E −−−−→ E/F −−−−→ 0.

By Lemma 2.3 (iii), E is generated by global sections.

There is a short exact sequence of coherent sheaves,

0 → E(KB)⊗OB
OB2(−b) → E(KB) → E(KB)⊗OB

OB1 → 0.

This gives a long exact sequence in cohomology, part of which is,

H1(B,E(KB)⊗OB
OB2(−b)) → H1(B,E(KB)) → H1(B,E(KB)⊗OB

OB1) → 0.
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The inclusion map B2 → B is finite, therefore there is a canonical isomorphism of OB-modules
(cf. [12, Sec. III.6], [17, Cor. 5.68]),

OB2(KB2) ∼= HomOB
(OB2 ,OB(KB)) ∼= OB(KB)⊗OB

OB2(−b).

Hence h1(B,E(KB) ⊗OB
OB2(−b)) = h1(B2, E ⊗OB

OB2(KB2)), which is zero by the induction
assumption. Similarly, E(KB)⊗OB

OB1 is isomorphic to E⊗OB
OB1(−1) (identifying B1 with P1).

Since E|B1 is generated by global sections, it follows by Grothendieck’s lemma and the cohomology
of line bundles on P1 that h1(B1, E|B1(−1)) = 0. Hence h1(B,E(KB)) = 0, and E is deformation
ample. Therefore the lemma is proved by induction on δ. �

Remark 2.12. A particular case of Lemma 2.11 is when B′ is one irreducible component of B, in
which case the lemma says that a locally free sheaf on B which is generically ample in the sense of
Lazarsfeld [8] is deformation ample.

3. Deformation theory of stable maps

The Kontsevich moduli space of genus 0 stable maps, M0,r(X, e), and the Behrend-Manin moduli
spaces, M(X, τ), are described in Subsection 1.1. The deformation theory of stable maps has been
worked out in [4] and [3]. Many specific deformation-theoretic results follow easily from these papers
and are known to the experts, but have not been written down. Some of these specific results are
proved in this section. Although these results will only be applied to genus 0 stable maps in this
paper, the same arguments work for stable maps of arbitrary genus; in this section only, stable maps
and stable A-graphs are not necessarily assumed to be of genus 0.

Let X and T be schemes.

Definition 3.1. A family of r-pointed, genus g prestable maps to X over B is a triple

ζ = ((p : Σ → B, σ1, . . . , σr), g : Σ → X)

consisting of a family p : Σ → B of prestable curves of genus g over B, a sequence of r disjoint
sections σi : B → Σ with image contained in the smooth locus of p (if r = 0, the sections are
omitted), and a morphism g : Σ → X.

Let ((Σ, σ1, . . . , σr), g) be a prestable map over an algebraically closed field. An irreducible
component Σi ⊂ Σ is stable if the restriction of the log-dualizing sheaf, OΣ(KΣ +σ1 + · · ·+σr)⊗OΣ

OΣi , is g-relatively ample, i.e., one of the following hold,
(i) g : Σi → X is nonconstant,
(ii) pa(Σi) > 1,
(iii) pa(Σi) = 1 and Σi contains at least one marked point or external node of Σ, or
(iv) pa(Σi) = 0 and Σi contains at least three marked points and nodes of B.

The curve Σ is stable if OΣ(KΣ+σ1+· · ·+σr) is g-relatively ample, i.e., every irreducible component
of Σ is stable. The family ζ is stable if for each geometric point t ∈ T , the curve Σt is stable.

Now assume that X is smooth.

Notation 3.2. Denote by Lζ the complex of coherent sheaves on Σ
−1 0

g∗ΩX
(dg)†−−−−→ Ωp(σ1(T ) + · · ·+ σr(T ))

(1)

For a scheme T and a bounded above complex of coherent sheaves C on T , C∨ denotes the object
in the derived category of coherent sheaves on T ,

C∨ := RHomOT
(C,OT ).
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In particular, L∨ζ is the object
L∨ζ = RHomOΣ(Lζ ,OΣ)

in the derived category of coherent sheaves on Σ.

The relevance of the complex L∨ζ is the following.

Lemma 3.3. Let X be a smooth quasi-projective scheme. Let Mg,r(X, β) denote the Deligne-
Mumford stack of r-pointed stable maps to X of arithmetic genus g and degree β. Let p : Σ →
Mg,r(X, β) denote the universal curve, let σi : Mg,r(X, β) → Σ denote the universal sections, and
let g : Σ → X denote the universal map, i.e.

ζ =
((

p : Σ →Mg,r(X, β), σ1, . . . , σr

)
, g : Σ → X

)
is the universal family of stable maps. There is an obstruction theory for Mg,r(X, β) in the sense
of [4, Def. 4.4] of the form (

Rp∗(L∨ζ )[1]
)∨ → LMg,r(X,β).

A similar result holds for prestable maps, cf. Remark 3.4.

Proof. Essentially this follows from [4] and [3]. �

Remark 3.4. Explicitly, if ζ = ((Σ, σ1, . . . , σr), g : Σ → X) is a stable map or a prestable map, the
space of first order deformations of ζ is Ext1OΣ

(Lζ ,OΣ) and the obstruction group is a subgroup of
Ext2OΣ

(Lζ ,OΣ). In the case of a prestable map, the space of infinitesimal automorphisms of the map
is Ext0OΣ

(Lζ ,OΣ) (for stable maps this group is zero). In particular, if Ext2OΣ
(Lζ ,OΣ) vanishes,

then Mg,r(X, β) is smooth at the point [ζ].

Lemma 3.5. Let ((Σ, σ1, . . . , σr), g) be a prestable map. Let ΘΣ denote the tangent sheaf of Σ,
i.e. the dual of ΩΣ. The space of infinitesimal automorphisms of ζ, Ext0OΣ

(Lζ ,OΣ), is canon-
ically isomorphic to a subspace of the space of infinitesimal automorphisms of (Σ, σ1, . . . , σr),
H0(Σ,ΘΣ(−(σ1 + · · ·+ σr))).

An irreducible component Σi ⊂ Σ is stable iff the restriction of every infinitesimal automorphism
of ζ to ΘΣ(−(σ1 + · · ·+ σr))⊗OΣ OΣi

is zero. Moreover, if Σi is unstable, then every infinitesimal
automorphism of the nodal curve Σi that fixes all marked points and nodes of Σ is the image of an
infinitesimal automorphism of ζ.

Proof. Analyzing the spectral sequence for hypercohomology, Ext0OΣ
(Lζ ,OΣ) is canonically isomor-

phic to the kernel of

Ext0OΣ
(ΩΣ(σ1 + · · ·+ σr),OΣ) → Ext0OΣ

(g∗ΩX ,OΣ).

And Ext0OΣ
(ΩΣ(σ1 + · · ·+ σr),OΣ) equals H0(Σ,ΘΣ(−(σ1 + · · ·+ σr))).

Assume that Σi is stable, i.e., Σi satisfies one of the Cases (i)–(iv) in Definition 3.1. In Cases
(ii)–(iv), the image of

H0(Σ,ΘΣ(−(σ1 + · · ·+ σr))) → H0(Σi,ΘΣ(−(σ1 + · · ·+ σr))⊗OΣ OΣi
)

is zero, hence the restriction of every infinitesimal automorphism of ζ is zero. In Case (i), chasing
through diagrams, the image of H0(Σ,ΘΣ(−(σ1 + · · ·+ σr))) is contained in the subsheaf which is
the kernel of d(g|Σi

) : ΘΣi
→ g∗TX ⊗OΣ OΣi

. Since g is non-constant, this map is nonzero. And
ΘΣi

is a torsion-free sheaf, so the kernel of d(g|Σi
) is zero. Hence, also in Case (i), the restriction

of every infinitesimal automorphism of ζ is zero.
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Assume that Σi is not stable. Then g contracts Σi to a point, and either Σ = Σi is a curve of
arithmetic genus 1 and there are no marked points, or Σi is a smooth rational curve which contains
at most two marked points and nodes of Σ. In both cases there is a positive dimensional group of
automorphisms of Σi which fix all marked points and nodes of Σ: Picτ (Σi) acting by translation if
Σi has arithmetic genus 1, and the group of automorphisms of P1 fixing (at most) two points if Σi

is a smooth rational curve. The Lie algebra of this positive dimensional group is the Lie algebra of
infinitesimal automorphisms of the marked curve Σi. This group of automorphisms of Σi extends to
a group of automorphisms of the map ζ. Therefore every infinitesimal automorphism of the marked
curve Σi extends to an infinitesimal automorphism of ζ. In particular there exists an infinitesimal
automorphism of ζ whose restriction to Σi is nonzero. �

Let f : X → Y be a smooth morphism of smooth quasi-projective varieties. Let ζ = ((Σ, σ1, . . . , σr), g :
Σ → X) be a prestable map. Denote by h : Σ → Y the composition h = f ◦ g, and denote by ξ the
prestable map ((Σ, σ1, . . . , σr), h : Σ → Y ). There is a short exact sequence of complexes

0 −−−−→ Lξ −−−−→ Lζ −−−−→ g∗Ωf [1] −−−−→ 0,

defined by the following commutative diagram,
−1 0

Lξ : g∗f∗ΩY
dh†−−−−→ ΩΣ(σ1 + · · ·+ σr)y g∗(df)†

y y=

Lζ : g∗ΩX
df†−−−−→ ΩΣ(σ1 + · · ·+ σr)y y y

g∗Ωf [1] : g∗Ωf −−−−→ 0

Lemma 3.6. (i) If ξ is stable, then ζ is stable.
(ii) If the dimension of the obstruction group of ζ is 0, then the dimension of the obstruction

group of ξ is 0.
(iii) If h1(Σ, g∗Ω∨f ) = 0 and if the dimension of the obstruction group of ξ is 0, then the dimension

of the obstruction group of ζ is 0, and the map from the space of first order deformations
of ζ to the space of first order deformations of ξ is surjective.

Proof. (i): If the log dualizing sheaf of (Σ, σ1, . . . , σr) is h-ample, then it is g-ample.

(ii): Associated to the short exact sequence of complexes above, there is a long exact sequence
of hyperExt, part of which is

Ext2OΣ
(Lζ ,OΣ) −−−−→ Ext2OΣ

(Lξ,OΣ) −−−−→ Ext3OΣ
(g ∗ Ωf [1],OΣ).

Of course Extk
OΣ

(g∗Ωf [1],OΣ) = Hk−1(Σ, g∗Ω∨f ). In particular dimExt3OΣ
(g∗Ωf [1],OΣ) = h2(Σ, g∗Ω∨f ) =

0. Therefore if dimExt2OΣ
(Lζ ,OΣ) = 0, then dimExt2OΣ

(Lξ,OΣ) = 0.

(iii): If h1(Σ, g∗Ω∨f ) = 0, then Ext2OΣ
(Lζ ,OΣ) → Ext2OΣ

(Lξ,OΣ) is an isomorphism. Hence if
the dimension of the obstruction group of ζ is 0, then the dimension of the obstruction group of ξ
is 0. Moreover the preceding two terms in the long exact sequence of hyperExts give a surjection
Ext1OΣ

(Lζ ,OΣ) → Ext1OΣ
(Lξ,OΣ). �

Let q : S → B be a smooth morphism and let i : Σ → S be an unramified morphism of B-
schemes. Then (g, i) : Σ → X × S is an unramified morphism of B-schemes, hence the map of



14 J. HARRIS AND J. STARR

coherent sheaves
d(g, i)† : (g, i)∗Ω(X × S/B) → Ωp

is surjective. Because p is flat of relative dimension 1 and the geometric fibers are reduced, local
complete intersection schemes, the kernel of d(g, i)† is a locally free sheaf N∨

(g,i). Similarly the kernel
of di† : i∗Ωq → Ωp is a locally free sheaf N∨

i .

There is a short exact sequence of coherent sheaves

0 −−−−→ N∨
i −−−−→ N∨

(g,i) −−−−→ g∗ΩX −−−−→ 0.

Denote by N∨
(ζ,i) the subsheaf of N∨

(g,i)(σ1(B)+ · · ·+σr(B)) that contains N∨
i (σ1(B)+ · · ·+σr(B))

and such that N∨
(ζ,i)/N

∨
i (σ1(B)+ · · ·+σr(B)) is identified with g∗ΩX ⊂ g∗ΩX(σ1(B)+ · · ·+σr(B)).

Observe that N∨
(ζ,i) is a locally free sheaf.

Notation 3.7. There is a canonical map N∨
(g,i)(σ1(B) + · · · + σr(B)) → (g, i)∗ΩX×S/B . The two

projections give a canonical isomorphism of ΩX×S/B with π∗XΩX⊕π∗SΩq. Denote by γ(ζ,i) : N∨
(ζ,i) →

g∗ΩX(σ1(B) + · · ·+ σr(B))⊕ i∗Ωq(σ1(B) + · · ·+ σr(B)) the induced morphism. Observe that the
composition of γ(ζ,i) with projection on the first summand factors through g∗ΩX ⊂ g∗ΩX(σ1(B) +
· · · + σr(B)). Denote by α(ζ,i) : N∨

(ζ,i) → g∗ΩX and β(ζ,i) : N∨
(ζ,i) → i∗Ωq(σ1(B) + · · · + σr(B))

the composition of γ(ζ,i) with the two projections. Denote by L(ζ,i) the complex of locally free
OΣ-modules concentrated in degrees [−1, 0],

−1 0

N∨
(ζ,i)

β(ζ,i)−−−−→ i∗Ωq(σ1(B) + · · ·+ σr(B)).

Denote by λ(ζ,i) : L(ζ,i) → Lζ the quasi-isomorphism of complexes of coherent OΣ-modules,

N∨
(ζ,i)

β(ζ,i)−−−−→ i∗Ωq(σ1(B) + · · ·+ σr(B))

α(ζ,i)

y y(di)† .

g∗ΩX
(dg)†−−−−→ Ωp(σ1(B) + · · ·+ σr(B))

The relevance of λ(ζ,i) : L(ζ,i) → Lζ is that the complex L∨(ζ,i) is easy to compute since L(ζ,i) is
a complex of locally free sheaves; it is simply

0 1

i∗Tq(−(σ1(B) + · · ·+ σr(B)))
β†(ζ,i)−−−−→ N(ζ,i).

In most applications, B will be the spectrum of a field and S will be a surface.

3.1. Contracting unstable components. In this subsection, the base B will always be the spec-
trum of an algebraically closed field. The changes necessary to get relative versions of the lemmas
over a more general base are straightforward.

Let
ζ = ((Σ, σ1, . . . , σr), g : Σ → X)

be a prestable map, let
(Σ′, σ′1, . . . , σ

′
r, σ

′′
1 , . . . , σ′′s )

be a proper, connected, at-worst-nodal curve, and let

u : (Σ′, σ′1, . . . , σ
′
r) → (Σ, σ1, . . . , σr)
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be a map which contracts some of the unstable components of (Σ′, σ′1, . . . , σ
′
r) (i.e., u contracts some

of the irreducible components of Σ′ which have arithmetic genus 0 and contain fewer than three
nodes and marked points). Denote g′ = g ◦ u and denote by ζ ′ the prestable map

ζ ′ = ((Σ′, σ′1, . . . , σ
′
r, σ

′′
1 , . . . , σ′′s ), g′ : Σ′ → X).

What is the relationship of ExtOΣ(Lζ ,OΣ) and ExtOΣ′ (Lζ′ ,OΣ′)?

Any morphism u : Σ′ → Σ as above can be factored as a sequence of elementary morphisms,
defined below.

Definition 3.8. (i) The morphism u is a Type I elementary morphism if ζ = (Σ, g : Σ → X) is
a prestable map without marked points, u : Σ′ → Σ contracts a single unstable component
to a smooth point of Σ, and ζ ′ = (Σ′, g′ = g ◦ u : Σ′ → X).

(ii) The morphism u is a Type II elementary morphism if ζ = (Σ, g : Σ → X) is a prestable
map without marked points, u : Σ′ → Σ contracts a single unstable component to a node
of Σ, and ζ ′ = (Σ′, g′ = g ◦ u : Σ′ → X).

(iii) The morphism u is a Type III elementary morphism if ζ = (Σ, (σ1, . . . , σr), g : Σ → X) is a
marked prestable map, ζ ′ is the same prestable map but with one extra marked point, and
u : Σ′ → Σ is the identity map.

Let S be a smooth surface and let i : Σ → S be a closed immersion. Let s ∈ Σ ⊂ S be a closed
point.

Notation 3.9. Denote by v : S′ → S the blowing up of S at s. Denote by E ⊂ S the exceptional
divisor. Denote by i′ : Σ′ → S′ the reduced total transform of B; i.e., the reduced scheme of v−1(Σ).
Denote by v also the morphism of pairs v : (S′,Σ′) → (S, Σ). Denote by u : Σ′ → Σ the restriction
of v to Σ′. Denote by g′ : Σ′ → X the composition g′ = g ◦ u. Denote by ζ ′ the prestable map
(Σ′, g′ : Σ′ → X). Denote by Γ ⊂ Σ′ the closed (not necessarily connected) subcurve which is the
union of all irreducible components other than E, and denote D = E ∩ Γ.

Definition 3.10. (i) The morphism of pairs is Type Ia if s ∈ Σ is a smooth point that lies on
a stable component.

(ii) The morphism of pairs is Type Ib if s ∈ Σ is a smooth point that lies on an unstable
component.

(iii) The morphism of pairs is Type I if it is Type Ia or Type Ib.
(iv) The morphism of pairs is Type IIa if s ∈ Σ is a node, and there exists a first order defor-

mation of ζ that smoothes the node s (to first order).
(v) The morphism of pairs is Type IIb if s ∈ Σ is a node, and there is no first order deformation

of ζ that smoothes the node s (to first order).
(vi) The morphism of pairs is Type II if it is Type IIa or Type IIb.

If v is Type I, then v∗Σ = Σ′ as Cartier divisors. If v is Type II, then v∗Σ = Σ′ + E as Cartier
divisors.

Lemma 3.11. For every integer k the pullback morphism of sheaf hypercohomology groups, Hk(Σ, L∨ζ ) →
Hk(Σ′, Lu∗L∨ζ ), is an isomorphism.

Proof. Of course v∗OS′ = OS and Rkv∗OS′ = {0} if k > 0. Also v∗(OS′(E)) = OS and
Rkv∗(OS′(E)) = {0} for k > 0. If v is Type I then OS′(−Σ′) = v∗OS(−Σ), and if v is Type
II then OS′(−Σ′) = v∗OS(−Σ) ⊗OS′ OS′(E). For both types, the projection formula implies that
v∗(OS′(−Σ′)) = OS(−Σ) and Rkv∗(OS′(−Σ′)) = {0} for k > 0.
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Associated to the short exact sequence of coherent OS′ -modules,

0 −−−−→ OS′(−Σ′) −−−−→ OS′ −−−−→ OΣ′ −−−−→ 0,

there is a long exact sequence of higher direct images Rkv∗, and the higher direct images of OS′

and OS′(−Σ′) have just been computed. The conclusion is that u∗OΣ′ = OΣ and Rku∗OΣ′ = {0}
for k > 0. In other words, the canonical morphism of complexes of coherent OΣ-modules, OΣ[0] →
Ru∗OΣ′ , is a quasi-isomorphism. From this and the projection formula, it follows that the canonical
morphism

L∨(ζ,i) → Ru∗Lu∗(L∨(ζ,i))
is a quasi-isomorphism. Therefore the pullback morphisms

Hk(Σ, L∨ζ ) → Hk(Σ′, Lu∗L∨ζ )

are isomorphisms. �

There is a canonical map of coherent sheaves OS′(Σ′) → v∗OS(Σ). It is an isomorphism if v
is Type I, and is injective with cokernel v∗OS(Σ) ⊗OS′ OE if v is Type II. If v is Type II, then
v∗OX(Σ)⊗OS′ OE

∼= M ⊗COE where M = OS(Σ)|s is a one-dimensional vector space. If v is Type
I, the canonical morphism N(ζ′,i′) → u∗N(ζ,i) is an isomorphism. If v is Type II, there is an exact
sequence:

0 → M ⊗C TorOS′
1 (OΣ′ ,OE) → N(ζ′,i′) → u∗N(ζ,i) → M ⊗C OE → 0

Lemma 3.12. Let N∨
E/S′ denote the conormal sheaf of E ⊂ S′. There is a canonical isomorphism

TorOS′
1 (OΣ′ ,OE) ∼= N∨

E/S′ ⊗OE
OE(−D).

Proof. There is an OS′ -flat resolution of OE ,

0 −−−−→ OS′(−E) −−−−→ OS −−−−→ OE −−−−→ 0.

Tensoring this resolution with OΣ′ over OS′ gives a canonical isomorphism,

TorOS′
1 (OΣ′ ,OE) ∼= IΓ ⊗OS′ OS′(−E) ∼= N∨

E/S′ ⊗OE
OE(−D).

where IΓ ⊂ OΣ′ is the ideal sheaf of Γ ⊂ Σ′. �

In particular, if v is Type II there is an exact sequence:

0 → M ⊗C N∨
E/S′ ⊗OE

OE(−D) → N(ζ′,i′) → u∗N(ζ,i) → M ⊗C OE → 0.

Lemma 3.13. There is a long exact sequence,

0 → TE(−D) → (i′)∗TS′
dv−→ u∗i∗TS → TE ⊗OE

NE/S′ → 0.

(Both if v is Type I and if v is Type II.)

Proof. For both types, there is a short exact sequence of coherent OS′ -modules

0 −−−−→ v∗ΩS
(dv)†−−−−→ ΩS′ −−−−→ ΩE −−−−→ 0.

There is an associated long exact sequence of higher derived functors of HomOS′ (·,OS′), part of
which is the short exact sequence,

0 −−−−→ TS′ −−−−→ v∗TS −−−−→ Ext1OS′
(ΩE ,OS′) −−−−→ 0.

The resolution of OE from the proof of Lemma 3.12 gives a canonical isomorphism,

Ext1OS′
(OE ,OS′) ∼= NE/S′ ,

where NE/S′ is the dual of N∨
E/S′ . So the previous exact sequence is,

0 −−−−→ TS′ −−−−→ v∗TS −−−−→ TE ⊗OE
NE/S′ −−−−→ 0
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Of course TE⊗OE
NE/S′ is a locally free OE-module; in particular, we have a canonical isomorphism,

TorOS′
1 (OΣ′ , TE ⊗OE

NE/S′) ∼= TorOS′
1 (OΣ′ ,OE)⊗OE

TE ⊗OE
NE/S′ .

Tensoring the short exact sequence above with OΣ′ over OS′ and using Lemma 3.12, produces the
exact sequence,

0 → TE(−D) → (i′)∗TS′
dv−→ u∗i∗TS → TE ⊗OE

NE/S′ → 0.

�

The maps N(ζ′,i′) → u∗N(ζ,i) and (i′)∗TS′ → u∗i∗TS are compatible with α†(ζ′,i′) and u∗α†(ζ,i). So
there is an induced map of complexes L∨(ζ′,i′) → u∗L∨(ζ,i).

Notation 3.14. (i) Denote by du : L∨(ζ′,i′) → h∗L∨(ζ,i) the induced map of complexes.
(ii) Denote by Image(du) ↪→ u∗L∨(ζ,i) the image of du in the Abelian category of complexes of

coherent OΣ′ -modules.
(iii) If v is Type I, denote KI = TE(−D)[0] and QI =

(
TE ⊗OE

NE/S′
)
[0].

(iv) If v is Type II, denote

KII = TE(−D)[0]⊕
(
M ⊗C N∨

E/S′(−D)
)

[−1]
QII =

(
TE ⊗OE

NE/S′
)
[0]⊕ (M ⊗C OE) [−1]

Lemma 3.15. Both if v is Type I and if v is Type II, there are short exact sequences of complexes
of coherent OΣ′-modules,

0 −−−−→ K −−−−→ L∨(ζ′,i′)
du−−−−→ Image(du) −−−−→ 0

0 −−−−→ Image(du) −−−−→ u∗L∨ζ −−−−→ Q −−−−→ 0

Proof. If v is Type I, there is a commutative diagram with exact rows,

L∨(ζ′,i′)
du−→ u∗L∨(ζ,i)

0 → TE(−D) → (i′)∗TS′
(i′)∗dv−−−−→ u∗i∗TS → TE ⊗OE

NE/S′ → 0
↓ ↓

N(ζ′,i′)
∼= h∗N(ζ,i)

The middle two columns of this diagram give du : L∨(ζ′,i′) −→ u∗L∨(ζ,i). By inspection the kernel of
du is KI and the cokernel of du is QI .

If v is Type II, there is a commutative diagram with exact rows,

L∨(ζ′,i′)
du−→ u∗L∨(ζ,i)

0 → TE(−D) → (i′)∗TS′
(i′)∗dv−−−−→ u∗i∗TS → TE ⊗OE

NE/S′ → 0
↓ ↓

0 → M ⊗C N∨
E/S′(−D) → N(ζ′,i′) −→ u∗N(ζ,i) → M ⊗C OE → 0

The middle two columns of this diagram give du : L∨(ζ′,i′) → u∗L∨(ζ,i).

The claim is that the induced map of kernels, TE(−D) → M ⊗C N∨
E/S′(−D), is zero, and the

induced map of cokernels, TE ⊗OE
NE/S′ → M ⊗C OE is zero. To see this, observe that in each
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map, the domain and target are locally free sheaves on E. So each map is really a section of a
HomOE

(·, ·) sheaf. Up to canonical isomorphisms, the sheaf in both cases is simply

HomOE
(TE ,M ⊗C N∨

E/S′) ∼= M ⊗C Ω2
S′ ⊗OS

OE .

Identifying E with P1, there are isomorphisms NE/S′
∼= OE(−1) and OE(KE) ∼= OE(−2). By

the adjunction formula for divisors on surfaces Ω2
S′ ⊗OS

OE = OS′(KS′) ⊗OS
OE is isomorphic to

OE(KE) ⊗OE
N∨

E/S′ , i.e., Ω2
S′ ⊗OS

OE
∼= OE(−2 + 1) = OE(−1). Since this sheaf has no nonzero

global sections, both the induced maps are zero. Therefore the kernel of du is KII and cokernel of
du is QII . �

Assume first that v is Type I. Since TE(−D) ∼= OE(1), H0(Σ′,KI) = H0(E, TE(−D)) is 2-
dimensional, and dimHi(Σ′,KI) = 0 for i 6= 0. Similarly H0(Σ′, QI) = H0(E, TE(E)) is 2-
dimensional and dimHi(Σ′, QI) = 0 for i > 0. Therefore there is a long exact sequence of hy-
percohomology groups:

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → . . .

· · · → H0(E, TE ⊗OE
NE/S′) → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → 0

0 → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0

Lemma 3.16. If v is Type Ia then there are exact sequences,

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → 0,

0 → H0(E, TE ⊗OE
NE/S′) → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → 0,

0 → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0.

In other words, the canonical map from the space of infinitesimal automorphisms of ζ ′ to the space
of infinitesimal automorphisms of ζ is surjective with 2-dimensional kernel, the canonical map from
the space of first order deformations of ζ ′ to the space of first order deformations of ζ is surjective
with 2-dimensional kernel, and the obstruction space of ζ ′ equals the obstruction space of ζ.

Proof. The only claim that doesn’t follow from the long exact sequence of cohomology is that
H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) is surjective. Since the irreducible component Σj ⊂ Σ containing
s is stable, Lemma 3.5 states that every infinitesimal automorphism of ζ vanishes on Σj . The
infinitesimal automorphisms of ζ that vanish at s are the same as the infinitesimal automorphisms of
ζ ′ that vanish on E. Therefore every infinitesimal automorphism of ζ is the image of an infinitesimal
automorphism of ζ ′ that vanishes on E. �

Let v be a morphism of Type Ib. Let Σj ⊂ Σ denote the unstable component containing s. Let
N denote the 1-dimensional vector space ΘΣj ⊗OΣj

Os.

Lemma 3.17. If v is Type Ib then there are exact sequences,

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → N → 0

0 → H0(E, TE ⊗OE
NE/S′)/N → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → 0

0 → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0

In other words, the canonical map from the space of infinitesimal automorphisms of ζ ′ to the space
of infinitesimal automorphisms of ζ has a 2-dimensional kernel and a 1-dimensional cokernel, the
canonical map from the space of first order deformations of ζ ′ to the space of first order deformations
of ζ is surjective with 1-dimensional kernel, and the obstruction space of ζ ′ equals the obstruction
space of ζ.
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Proof. As in Lemma 3.16, the only claim that doesn’t follow from the long exact sequence of
cohomology is that the cokernel of du : H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) is N . Let Σ′j ⊂ Σ′ denote
the strict transform of Σj ; Σ′j is canonically isomorphic to Σj . Composing du with the restriction
map H0(Σ, L∨(ζ,i)) → H0(Σj ,ΘΣj

) gives a map which is canonically isomorphic to the restriction
map H0(Σ′, L∨(ζ′,i′)) → H0(Σ′j ,ΘΣ′

j
). By Lemma 3.5, every infinitesimal automorphism of ζ ′ restricts

to an infinitesimal automorphism of Σ′j that vanishes at s. On the other hand, the infinitesimal
automorphisms of ζ that vanish at s are the same as the infinitesimal automorphisms of ζ ′ that
vanish on E. Hence the image of du is precisely the subspace of infinitesimal automorphisms of ζ
that vanish at s.

Since Σj is unstable, either Σ = Σj is a curve of arithmetic genus 1 with no markings and g is
constant, or Σj is a smooth curve of genus 0 containing at most 2 marked points and nodes of Σ
and g|Σj is constant. In each case, it is easy to see that there is an infinitesimal automorphism of
Σj that vanishes at all marked points and nodes of Σ and that does not vanish at s. By Lemma 3.5,
this infinitesimal automorphism of Σj is the image of an infinitesimal automorphism of ζ, i.e., there
exists an infinitesimal automorphism of ζ that does not vanish at s. Therefore the cokernel of du is
N . �

Assume next that v is Type II. Because the divisor D ⊂ E has degree 2, the OE-module
N∨

E/S′(−D) is isomorphic to OE(−1). Since h0(E,OE(−1)) = h1(E,OE(−1)) = 0, the term
M ⊗C N∨

E/S′(−D)[−1] in KII does not contribute to the hypercohomology; i.e., the hypercoho-
mology of KII is the sheaf cohomology of TE(−D). The OE-module TE(−D) is isomorphic to OE ;
hence h0(E, TE(−D)) = 1 and h1(E, TE(−D)) = 0. Therefore dimH0(Σ′,KII) = H0(E, TE(−D))
is 1-dimensional, and dimHi(Σ′,KII) = 0 for k 6= 1.

For QII both TE ⊗OE
NE/S′ [0] and M ⊗C OE [−1] contribute to the hypercohomology. The OE-

module TE⊗OE
NE/S′ is isomorphic toOE(1). Hence H0(Σ′, QII) = H0(E, TE(E)) is 2-dimensional,

H1(Σ′, QII) = M is 1-dimensional (recall M = OS(Σ)|s), and dimHk(Σ′, QII) = 0 for k 6= 0, 1.
Therefore there is a long exact sequence in hypercohomology:

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → . . .

· · · → H0(E, TE ⊗OE
NE/S′) → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → . . .

· · · → M → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0

Every infinitesimal automorphism of ζ vanishes at s. So the infinitesimal automorphisms of ζ are
the same as the infinitesimal automorphisms of ζ ′ that vanish on E. In particular, H0(Σ′, L∨(ζ′,i′)) →
H0(Σ, L∨(ζ,i)) is surjective. The map H1(Σ, L∨(ζ,i)) → OS(Σ)|s is nonzero iff there are deformations
of ζ that smooth the node s to first order. This proves the following two lemmas, which are stated
separately for notational convenience.

Lemma 3.18. If v is Type IIa then there are exact sequences,

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → 0 (2)

0 → H0(E, TE ⊗OE
NE/S′) → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → OS(Σ)|s → 0 (3)

0 → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0 (4)

In other words, the canonical map from the space of infinitesimal automorphisms of ζ ′ to the space
of infinitesimal automorphisms of ζ is surjective with a 1-dimensional kernel, the canonical map
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from the space of first order deformations of ζ ′ to the space of first order deformations of ζ has
a 2-dimensional kernel and a 1-dimensional cokernel, and the obstruction space to ζ ′ equals the
obstruction space to ζ.

Lemma 3.19. If v is Type IIb then there are exact sequences,

0 → H0(E, TE(−D)) → H0(Σ′, L∨(ζ′,i′)) → H0(Σ, L∨(ζ,i)) → 0 (5)

0 → H0(E, TE ⊗OE
NE/S′) → H1(Σ′, L∨(ζ′,i′)) → H1(Σ, L∨(ζ,i)) → 0 (6)

0 → OS(Σ)|s → H2(Σ′, L∨(ζ′,i′)) → H2(Σ, L∨(ζ,i)) → 0. (7)

In other words, the canonical map from the space of infinitesimal automorphisms of ζ ′ to the space of
infinitesimal automorphisms of ζ is surjective with a 1-dimensional kernel, the canonical map from
the space of first order deformations of ζ ′ to the space of first order deformations of ζ is surjective
with 1-dimensional kernel, and the map from the obstruction space of ζ ′ to the obstruction space of
ζ is surjective and has a 1-dimensional kernel.

Finally, assume that u : Σ′ → Σ is a Type III elementary morphism, i.e., u is the identity map,
but there is one marked point σ′ ∈ Σ′ that is not in Σ.

Definition 3.20. Let u : Σ′ → Σ be a Type III elementary morphism.
(i) The morphism u is Type IIIa if σ′ ∈ Σ lies on an unstable component.
(ii) The morphism u is Type IIIb if σ′ ∈ Σ lies on a stable component.

In both cases, there is a canonical short exact sequence of complexes:

0 −−−−→ Lζ −−−−→ Lζ′ −−−−→ ΩΣ(σ′)⊗OΣ Oσ′ [0] −−−−→ 0

Of course Ext1OΣ
(ΩΣ(σ′)⊗OΣOσ′ ,OΣ) is canonically isomorphic to TΣ⊗OΣOσ′ , and dimExtk

OΣ
(ΩΣ(σ′)⊗OΣ

Oσ′ ,OΣ) = 0 for k 6= 1. In particular, there is an induced map

Ext0OΣ
(Lζ ,OΣ) → TΣ ⊗OΣ Oσ′ .

This map is zero iff σ′ lies on a stable component of ζ. Combined with the long exact sequence
of hypercohomology associated to the short exact sequences, this proves the following two lemmas,
which are stated separately for notational convenience.

Lemma 3.21. If u : Σ′ → Σ is Type IIIa then there are exact sequences,

0 → Ext0OΣ′
(Lζ′ ,OΣ′) → Ext0OΣ

(Lζ ,OΣ) → TΣ ⊗OΣ Oσ′ → 0

0 → Ext1OΣ′
(Lζ′ ,OΣ′) → Ext1OΣ

(Lζ ,OΣ) → 0

0 → Ext2OΣ′
(Lζ′ ,OΣ′) → Ext2OΣ

(Lζ ,OΣ) → 0

In other words, the space of infinitesimal automorphisms of ζ ′ maps isomorphically to a codimen-
sion 1 linear subspace of the space of infinitesimal automorphisms of ζ, the space of first order
deformations of ζ ′ equals the space of first order deformations of ζ, and the obstruction space of ζ ′

equals the obstruction space of ζ.

Lemma 3.22. If u : Σ′ → Σ is Type IIIb then there are exact sequences,

0 → Ext0OΣ′
(Lζ′ ,OΣ′) → Ext0OΣ

(Lζ ,OΣ) → 0

0 → TΣ ⊗OΣ Oσ′ → Ext1OΣ′
(Lζ′ ,OΣ′) → Ext1OΣ

(Lζ ,OΣ) → 0

0 → Ext2OΣ′
(Lζ′ ,OΣ′) → Ext2OΣ

(Lζ ,OΣ) → 0
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In other words, the space of infinitesimal automorphisms of ζ ′ equals the space of infinitesimal
automorphisms of ζ, the canonical map from the space of first order deformations of ζ ′ to the space
of first order deformations of ζ is surjective with 1-dimensional kernel, and the obstruction space of
ζ ′ equals the obstruction space of ζ ′.

Taken together, Lemma 3.16 through Lemma 3.22, describe the canonical maps Extk
OΣ′

(Lζ′ ,OΣ′) →
Extk

OΣ
(Lζ ,OΣ) for any morphism u : Σ′ → Σ that removes a subset of marked points from Σ′ and

then contracts a subset of the unstable components.

3.2. Gluing stable maps. Let τ be a stable A-graph, not necessarily of genus 0. To describe the
analogue of Lemma 3.3, a more precise description of the stack M(X, τ) is needed. Let B be a
scheme. A 1-morphism ζ̃ : B → M(X, τ) is equivalent to a pair (ζ, φ) consisting of a family of
r-pointed stable maps,

ζ = ((p : Σ → B, σ1, . . . , σr), g : Σ → X),

along with a natural assignment to each geometric point b ∈ B of a contraction of stable A-graphs
φb : τ(ζb) → τ . The graph τ(ζb) is the stable A-graph of ((Σb, σ1(b), . . . , σr(b)), gb). A contraction
of stable A-graphs, φ : τ ′ → τ is a map that contracts subgraphs of τ ′ to vertices of τ , cf. [5,
Def. 1.8]. Geometrically the vertices of τ give a decomposition of Σb into connected subcurves.
The main example of a contraction of stable A-graphs comes from a family of stable maps over a
discrete valuation ring, ζ : Spec R →Mg,r(X, e). Let ζ0 denote the fiber over the geometric closed
point of R and let ζη denote the fiber over the geometric generic point of R. There is a canonical
contraction φ(ζ,R) : τ(ζ0) → τ(ζη); a vertex of τ(ζ0) corresponding to an irreducible component
Σ0,j ⊂ Σ0 maps to a vertex of τ(ζη) corresponding to an irreducible component of Ση,k ⊂ Ση iff
Σ0,j is in the closure of Ση,k. The assignment φ from above is called natural if it is compatible
with the action of the Galois group of κ(b) and for each map from a discrete valuation ring to B,
ρ : Spec R → B, the contractions φρ(0) and φρ(η) commute with the contraction φρ∗ζ,R.

Notation 3.23. Associated to each edge ε = {f1, f2} of τ , there is a section σε : B → Σ such that for
each geometric point b ∈ B, σε(b) ∈ Σb is a node. Denote by Nε the pullback σ∗ε Ext1OΣ

(Ωp(σ1(B) +
· · ·+ σr(B)),OΣ). Denote by Nτ the direct sum ⊕εNε where ε ranges over all edges of τ .

Definition 3.24. Let T be a scheme. Let C be a complex of coherent sheaves on T and let n be
an integer. The good (≤ r)-truncation, C≤r, is the complex of coherent sheaves on T ,

(C≤r)k =

 Ck k < r,
Ker(dr : Cr → Cr+1) k = r,
{0} k > r

The differentials on C≤r are the obvious ones. The association C 7→ C≤r defines a functor on the
category of complexes of coherent sheaves on T . This functor takes quasi-isomorphisms to quasi-
isomorphisms and sends null-homotopic maps to null-homotopic maps, thus it induces a well-defined
functor on the derived category of coherent sheaves on T . There is a natural transformation to the
identity functor, C≤r → C.

The OB-module Nε is invertible and the localization of Ext1OΣ
(Ωp(σ1(B)+· · ·+σr(B)),OΣ) along

σε(B) is canonically isomorphic to (σε)∗Nε. By construction there is a map of complexes of coherent
OΣ-modules, L∨ζ → RHomOΣ(Ωp(σ1(B)+ · · ·+σr(B)),OΣ). For all k > 1, ExtkOB

(ΩB(σ1(B)+ · · ·+
σr(B)),OB) = {0}. So the complex is quasi-isomorphic to its (≤ 1)-good truncation,

R≤1HomOΣ(Ωp(σ1(B) + · · ·+ σr(B)),OΣ)
qism−−−→ RHomOΣ(Ωp(σ1(B) + · · ·+ σr(B)),OΣ).
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Notation 3.25. After replacing L∨ζ by a quasi-isomorphic complex, there is a morphism of com-
plexes denoted a(ζ,τ) : L∨ζ → R≤1HomOΣ(Ωp(σ1(B) + · · · + σr(B)),OΣ) factoring the original
morphism. There is a map of complexes of OΣ-modules denoted

b(ζ,τ) : R≤1HomOΣ(Ωp(σ1(B) + · · ·+ σr(B)),OΣ) → Ext1OΣ
(Ωp(σ1(B) + · · ·+ σr(B)),OΣ)[−1].

Denote by,

c(ζ,τ) : Ext1OΣ
(Ωp(σ1(B) + · · ·+ σr(B),OΣ)τ → Ext1OΣ

(Ωp(σ1(B) + · · ·+ σr(B)),OΣ),

the kernel of,
Ext1OΣ

(Ωp(σ1(B) + · · ·+ σr(B)),OΣ) → ⊕ε(σε)∗Nε.

Denote by

d(ζ,τ) : R≤1HomOΣ(Ωp(σ1(B) + · · ·+ σr(B)),OΣ)τ → R≤1HomOΣ(Ωp(σ1(B) + · · ·+ σr(B)),OΣ),

the fiber product of b(ζ,τ) and c(ζ,τ). Denote by,

e(ζ,τ) : L∨(ζ,τ) → L∨ζ ,

the fiber product of a(ζ,τ) and d(ζ,τ).

Let |τ | denote the underlying modular graph of τ , i.e., the graph of τ along with the genus
function on vertices, but without the degree functon on vertices, cf. [5]. There is a (highly non-
separated) Artin stack of |τ |-prestable curves, M(|τ |), and a 1-morphism M(X, τ) → M(|τ |). The
relative obstruction theory for this 1-morphism is described in [3]. From this the absolute obstruction
theory of M(X, τ) readily follows.

Lemma 3.26. Let X be a smooth quasi-projective scheme. Let τ be a stable A-graph. Let

ζ = ((p : Σ →M(X, τ), σ1, . . . , σr), g : Σ → X)

denote the universal family of stable maps over M(X, τ). There exists an obstruction theory for
M(X, τ) in the sense of [4, Def. 4.4] of the form(

Rp∗(L∨(ζ,τ))[1]
)∨

→ LM(X,τ).

This obstruction theory is perfect, and there is a distinguished triangle in the derived category of
complexes of coherent OM(X,τ)-modules,

Rp∗(L∨(ζ,τ))[1] −−−−→ Rp∗(L∨ζ )[1] −−−−→ Nτ −−−−→ Rp∗(L∨ζ,τ )[2].

Remark 3.27. The definition of L∨(ζ,τ) seems very complicated, but in fact it is quite simple. Let
((Σ, σ1, . . . , σr), g) be a stable τ -map. Let i : Σ → S be a closed immersion from Σ to a smooth
surface S. Let Ni denote the normal sheaf of i. The complex L∨ζ is quasi-isomorphic to the complex
L∨(ζ,i). There is a surjective map N(ζ,i) → Ni(σ1(B) + · · · + σr(B)). Define N(ζ,i,τ) ⊂ N(ζ,i) to be
the subsheaf which is the inverse image of I ·Ni(σ1(B) + · · ·+ σr(B)) ⊂ Ni(σ1(B) + · · ·+ σr(B)),
where I is the ideal sheaf of ∪εσε. Then e(ζ,τ) : L∨(ζ,τ) → L∨ζ is quasi-isomorphic to the following
map of complexes.

0 1

L∨(ζ,i,τ) :i∗TS(σ1(B) + · · ·+ σr(B)) −−−−→ N(ζ,i,τ)

e(ζ,i,τ)

y =

y y
L∨(ζ,i) : i∗TS(σ1(B) + · · ·+ σr(B)) −−−−→ N(ζ,i)
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Let ε = {f1, f2} is a disconnecting edge of τ . Let τ1 ⊂ τ be the maximal connected subgraph
which contains f1 and not f2, and let τ2 ⊂ τ be the maximal connected subgraph which contains f2

and not f1. There are “forgetful” 1-morphisms Fi : M(X, τ) →M(X, τi) for i = 1, 2. Let ζ̃ = (ζ, φ)
be a map in M(X, τi), where ζ = ((Σ, σ1, . . . , σr), g). Let σε ∈ Σ be the node corresponding to ε.
Let ζ̃i = (ζi, φi) ∈ M(X, τi) be the image Fi(ζ̃). Denote ζi = ((Σi, σi,0, . . . , σi,ri

), gi) for i = 1, 2
where σi,0 ∈ Σi is the point corresponding to the flag fi of τi, i.e., σi,0 = σε.

Lemma 3.28. If

(i) the dimension of the obstruction group of M(X, τi) at ζ̃i is 0, i = 1, 2, and
(ii) the evaluation morphism evf1 : M(X, τ1) → X is smooth at ζ̃1,

then the dimension of the obstruction group of M(X, τ) at ζ̃ is 0, and there is a short exact sequence,

0 −−−−→ ζ∗1Tevf1
−−−−→ ζ∗TM(X,τ) −−−−→ ζ∗2TM(X,τ2)

−−−−→ 0,

where Tevf1
is the dual of the sheaf of relative differentials of evf1 .

Proof. The proof follows from the fact that M(X, τ) is an open substack of the 2-fibered product:

M(X, τ1)×evf1 ,X,evf2
M(X, τ2).

�

Let φ : τ → τ ′ be the minimal contraction of stable A-graphs that contracts the edge {f1, f2}.
The induced 1-morphism,

M(X, φ) : M(X, τ) →M(X, τ ′),

is unramified and the image has codimension at most 1. In some circumstances, this morphism is
the normalization of a Cartier divisor.

Lemma 3.29. If

(i) τ has genus 0,
(ii) the dimension of the obstruction group of M(X, τ2) at ζ̃2 is 0, and
(iii) the OΣ1-module g∗1TX is generated by global sections,

then the dimension of the obstruction group of M(X, τ ′) at M(X, φ)(ζ̃) is 0, the irreducible compo-
nent of M(X, τ) containing ζ̃ maps to a Cartier divisor under M(X, φ), and there is a short exact
sequence,

0 −−−−→ TM(X,τ)|eζ −−−−→ TM(X,τ ′)|eζ −−−−→ ΘΣ1 |σ1,0 ⊗ΘΣ2 |σ2,0 −−−−→ 0.

Proof. There is a short exact sequence of complexes,

0 −−−−→ LΣ(σ1 + · · ·+ σr) −−−−→ Lζ −−−−→ g∗ΩX [1] −−−−→ 0,

that gives rise to a long exact sequence in hypercohomology, part of which is,

H1(Σ, L∨ζ ) → H1(Σ, L∨Σ(−(σ1 + · · ·+ σr)) → H1(Σ, g∗TX) → H2(Σ, L∨ζ ) → 0.

The goal is to prove that dimH2(Σ, L∨ζ ) = 0, i.e., that H1(Σ, L∨Σ(−(σ1 + · · ·+ σr))) → H1(Σ, g∗TX)
is surjective. After replacing LΣ and Lζ by quasi-isomorphic complexes of locally free OΣ-modules,
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there is a diagram of distinguished triangles of coherent OB-modules,

LΣ(σ1 + · · ·+ σr) → Lζ → . . .
↓ ↓

LΣ(σ1 + · · ·+ σr)⊗OΣ OΣ2 → Lζ ⊗OΣ OΣ2 → . . .

. . . → g∗ΩX [1] → LΣ(σ1 + · · ·+ σr)[−1]
↓ ↓

. . . → g∗ΩX ⊗OΣ OΣ2 [1] → LΣ(σ1 + · · ·+ σr)⊗OΣ OΣ2 [−1]
,

that gives rise to a commutative diagram of exact sequences in hypercohomology,

H1(Σ, L∨Σ(−(σ1 + · · ·+ σr))) → H1(Σ, g∗TX)
↓ ↓

H1(Σ, L∨Σ(−(σ1 + · · ·+ σr))⊗OΣ OΣ2) → H1(Σ, g∗TX ⊗OΣ OΣ2)
.

To prove the top horizontal arrow is surjective, it suffices to prove
(i) the left vertical arrow is surjective,
(ii) the right vertical arrow is an isomorphism, and
(iii) the bottom vertical arrow is surjective.

Let S be a smooth surface, and let i : Σ → S be an unramified morphism. Then L∨Σ(−(σ1 + · · ·+
σr)) is represented in the derived category of coherent sheaves by the complex

0 1

L∨i (−(σ1 + · · ·+ σr)) :i∗TS(−(σ1 + · · ·+ σr))
β†i−−−−→ Ni(−(σ1 + · · ·+ σr)).

Let K denote the kernel of β†i and let Q denote the cokernel of β†i . The sheaf K is torsion-free and
is locally free of rank 1 on a dense open subset of Σ. The sheaf Q is torsion. There is a short exact
sequence of complexes

0 −−−−→ K[0] −−−−→ L∨i (−(σ1 + · · ·+ σr)) −−−−→ Q[−1] −−−−→ 0.

This gives rise to a long exact sequence in hypercohomology, part of which is

H1(Σ,K) −−−−→ H1(Σ, L∨i (−(σ1 + · · ·+ σr)) −−−−→ H0(Σ, Q) −−−−→ 0.

Let K ′ denote the kernel of β†i ⊗OΣ OΣ2 and let Q′ denote the cokernel. There are induced maps
of coherent sheaves on Σ, K → K ′ and Q → Q′. These maps give rise to a commutative diagram
with exact rows,

H1(Σ,K) −−−−→ H1(Σ, L∨i (−(σ1 + · · ·+ σr)) −−−−→ H0(Σ, Q) −−−−→ 0y y y
H1(Σ,K ′) −−−−→ H1(Σ, L∨i (−(σ1 + · · ·+ σr)⊗OΣ OΣ2) −−−−→ H0(Σ, Q′) −−−−→ 0.

Now Q → Q′ is a surjective map of torsion sheaves, so the map on the right is surjective. And the
cokernel of K → K ′ is torsion, and hence the map on the left is surjective. Therefore the map in
the middle is surjective, i.e., (i) holds.

There is a short exact sequence of OΣ-modules,

0 −−−−→ (g1)∗TX(−σ1,0) −−−−→ g∗TX −−−−→ g∗TX ⊗OΣ OΣ2 −−−−→ 0
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By hypothesis (g1)∗TX is generated by global sections, hence h1(Σ1, (g1)∗TX(−σ1,0)) = 0 by
Lemma 2.3. Therefore H1(Σ, g∗TX) → H1(Σ, g∗TX ⊗OΣ OΣ2) is an isomorphism, i.e., (ii) is true.

Denote by j : Σ2 → Σ the canonical closed immersion. There is a morphism of complexes of
OΣ-modules,

−1 0

Lζ : g∗ΩX
(dg)†−−−−→ ΩΣ(σ1 + · · ·+ σr)y y y(dj)†

j∗Lζ2 :j∗(g2)∗ΩX
j∗(dg2)

†

−−−−−→ j∗ΩΣ(σ2,0 + · · ·+ σ2,r2)

By adjunction, there is a morphism of complexes of OΣ2-modules, Lζ ⊗OΣ OΣ2 → Lζ2 . So there is
a commutative diagram in hypercohomology

H1(Σ2, L
∨
Σ2

(−(σ1 + · · ·+ σr)) −−−−→ H1(Σ2, (g2)∗TX)y y
H1(Σ2, L

∨
Σ(−(σ2,0 + · · ·+ σ2,r2))⊗OΣ OΣ2) −−−−→ H1(Σ2, j

∗g∗TX)

Of course (g2)∗TX = j∗g∗TX , so H1(Σ2, (g2)∗TX) → H1(Σ2, j
∗g∗TX) is an isomorphism. By

hypothesis, the obstruction group of ζ2 vanishes, hence H1(Σ2, L
∨
Σ2

(−(σ2,0 + · · · + σ2,r2))) →
H1(Σ2, (g2)∗TX) is surjective. Therefore also H1(Σ2, L

∨
Σ(−(σ1+· · ·+σr))⊗OΣOΣ2) → H1(Σ2, j

∗g∗TX)
is surjective. This proves (iii). Therefore the dimension of the obstruction group of M(X, τ ′) at
M(X, φ)(ζ̃) is 0.

Because the obstruction groups of M(X, τ) and M(X, τ ′) both vanish, each stack is smooth
of the expected dimension at ζ̃. The expected dimension of M(X, τ) is 1 less than the expected
dimension of M(X, τ ′), because τ has one extra edge (before stabilization). Therefore the image of
the irreducible component of M(X, τ) containing ζ̃ is a Cartier divisor in M(X, τ ′).

Finally, the short exact sequence follows from the 2-Cartesian diagram of Artin stacks,

M(X, τ)
M(X,φ)−−−−−→ M(X, τ ′)y y

M(|τ |) M(|φ|)−−−−→ M(|τ ′|).

The image of M(|φ|) is a Cartier divisor. Because the image of M(X, φ) is a Cartier divisor, the
normal bundle of M(X, φ) is simply the pullback of the normal bundle of M(|φ|), which is the
bundle whose fiber at ζ̃ is the space of first-order deformations of the node σε ∈ Σ. It is well-known
that this space is canonically isomorphic to ΘΣ1 |σ1,0 ⊗ΘΣ2 |σ2,0 . �

Remark 3.30. There is a relative version of Lemma 3.29. Let B be a scheme and let ζ̃ = (ζ, φ) be
a family of τ -maps over B. If for every geometric point b ∈ B, the map ζ̃b satisfies the hypotheses
of Lemma 3.29, then the obstruction group of M(X, σ) at ζ̃b vanishes, the image of M(X, τ) in
M(X, τ ′) is a Cartier divisor, and there exists a short exact sequence of locally free OB-modules,

0 −−−−→ ζ̃∗TM(X,τ) −−−−→ ζ̃∗TM(X,τ ′) −−−−→ σ∗1,0ΘΣ1/B ⊗OB
σ∗2,0ΘΣ2/B −−−−→ 0.



26 J. HARRIS AND J. STARR

4. Conditions on families of stable maps

This section defines and proves basic results about the many conditions discussed in Subsec-
tion 1.2. Because of the process of modification given in the next section, it is necessary to work
with families of stable maps that are parametrized by reducible curves of genus 0. This is the setting
in which all definitions are made.

Let ζ = ((Σ, σ1, . . . , σr), g : Σ → X) be an r-pointed genus 0 stable map to X.

Definition 4.1. The stable map ζ is very stable if the prestable map (Σ, g : B → X) is stable.

Let X be a quasi-projective scheme. Let B be a scheme. Let ζ : B → Mg,r(X, e) be a 1-
morphism.

Notation 4.2. The 1-morphism ζ : B →Mg,r(X, e) consists of a datum,

ζ =
((

pζ : Σζ → B, σ(ζ,1), . . . , σ(ζ,r)

)
, gζ : Σ → X

)
,

where
(i) pζ : Σζ → B is a proper, flat family of connected prestable curves of arithmetic genus g,
(ii) σ(ζ,i) : B → Σζ , i = 1, . . . , r is a collection of everywhere disjoint sections with image in the

smooth locus of pζ , and
(iii) gζ : Σζ → X is a morphism of schemes,

that satisfies the stability condition in Definition 3.1. Denote by hζ,i : B → X the composition
gζ ◦ σ(ζ,i). When there is no risk of confusion, the subscript ζ will be omitted.

Let X be a smooth, quasi-projective variety. Let π : B → T be a proper, flat family of connected
prestable curves of arithmetic genus 0. Let ζ : B →M0,1(X, 1) be a 1-morphism ((p : Σ → B, σ), f :
Σ → X).
Definition 4.3. The 1-morphism ζ : B →M0,1(X, 1) is twisting (resp. very twisting) if,

(i) (π : B → T, h : B → X) is a family of stable maps to X, i.e., a 1-morphism ξ : T →
M0,0(X, e) for some e ≥ 0,

(ii) the dimension of the obstruction group of M0,0(X, e) at each point of ξ(T ) is 0,
(iii) the dimension of the relative obstruction group of the evaluation morphism ev : M0,1(X, 1) →

X at each point of ζ(T ) is 0,
(iv) denoting by Tev the dual of the sheaf of relative differentials Ωev, the pullback ζ∗Tev is

π-relatively generated by global sections (resp. π-relatively deformation ample), and
(v) denoting by pr : M0,1(X, 1) → M0,0(X, 1) the projection map, and denoting by Tpr the

dual of the sheaf of relative differentials Ωpr, the pullback ζ∗Tpr is π-relatively generated by
global sections, i.e., the line bundle σ∗OΣ(σ(B)) is π-relatively generated by global sections.

Remark 4.4.
(i) The sheaf ζ∗Tpr is canonically isomorphic to σ∗OΣ(σ(B)).
(ii) The product morphism (p, g) : Σ → B × X is a closed immersion whose ideal sheaf is

everywhere locally defined by a regular sequence, i.e., it is a regular embedding. Denote by
N the normal bundle of this regular embedding. Then (iii) of Definition 4.3 is equivalent
to the condition that R1p∗ (N (−σ(B))) = {0}. Under this hypothesis, ζ∗Tev is canonically
isomorphic to p∗ (N (−σ(B))).

(iii) Condition (ii) is superfluous. Since the prestable family of maps (π : B → T, ξ : B → X) is
stable, also (π : B → T, ζ : B →M0,1(X, 1)) is stable by Lemma 3.6 (i).

(iv) The conditions in Definition 4.3 impose some restrictions on the degrees of the locally free
sheaves involved. By [19, Lem. 2.2.2], the total degree of σ∗OΣ(σ(B)) is simply δ = 2e− e′
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where e is the degree of h : B → PN and e′ is the degree of f : Σ → PN . If ζ is twisting
then 2e ≥ e′.

Let B be a prestable, connected curve of arithmetic genus 0. Let B1, B2 ⊂ B be connected
subcurves of B such that B1∩B2 = {q} is a single node, and B = B1∪B2. Let ζ : B →M0,1(X, 1)
be a 1-morphism.

Lemma 4.5. If ζ|Bi
: Bi →M0,1(X, 1) is twisting for i = 1, 2, then ζ is twisting. If both ζ1, ζ2 are

twisting, and if at least one of them is very twisting, then ζ is very twisting.

Proof. This follows from Lemma 2.11. �

Let π : B → T be a proper, flat family of connected, prestable curves of arithmetic genus 0.
Let ζ : B →M0,1(X, 1) be a 1-morphism. For every morphism of schemes g : T ′ → T , denote by
πT ′ : BT ′ → T ′ the base-change of π by g, and denote by ζT ′ : BT ′ →M0,1(X, 1) the composition
of BT ′ → B with ζ.

Lemma 4.6. There is an open subscheme Utwist ⊂ T (resp. Uvtwist ⊂ T ) with the following
property: for every morphism of schemes g : T ′ → T , the pullback family πT ′ : BT ′ → T ′ and
ζT ′ : BT ′ →M0,1(X, 1) is twisting (resp. very twisting) iff g(T ′) ⊂ Utwist (resp. f(T ′) ⊂ Uvtwist).

Proof. By [3, Lemma 1] there is an open subscheme U1 ⊂ T with the property that for every
morphism g, (πT ′ : BT ′ → T ′, hT ′ : BT ′ → X) is a family of stable maps iff g(T ′) ⊂ U1. For every
morphism g such that ζT ′ is twisting, g(T ′) ⊂ U1. Hence the lemma for ζU1 implies the lemma for
ζ. After replacing T by U1, the morphism h : B → X is a family of stable maps over T , i.e., a
1-morphism ξ : T →M0,0(X, e) for some integer e.

Because π has relative dimension 1, the cohomology sheaf Hk(Rπ∗(L∨h )) = {0} for k ≥ 2. By
cohomology and base change, for every geometric point t of the support of the sheaf H1(Rπ∗(L∨h )),
dimH1(Bt, L

∨
ht

) > 0, i.e. the obstruction group of ξt does not vanish. Therefore the dimension
of the obstruction group of M0,0(X, e) at each point of ξT ′(T ′) is 0 iff g(T ′) is contained in the
complement of the support of H1(Rπ∗(L∨h )). The complement of the support of this sheaf is an
open subset of T . After replacing T by this open set, the dimension of the obstruction group of
M0,0(X, e) at each point of ξ(T ) is 0.

For similar reasons, T can be replaced by the complement of

π[Supp
(
R1p∗(N (−σ(B)))

)
],

where N is as in (ii) of Remark 4.4. After replacing T by this open subset, for every g, ζT ′ satisfies
(i), (ii), and (iii) of Definition 4.3. In order that (v) is satisfied, it is necessary and sufficient that
g(T ′) is contained in the complement of the support of the sheaf

Coker (π∗π∗σ∗OΣ(σ) → σ∗OΣ(σ)) .

After replacing T by the complement of the support of this sheaf, for every g, ζT ′ satisfies (i), (ii),
(iii) and (v) of Definition 4.3.

Define Utwist to be the complement in T of the image under π of the support of

Coker (π∗π∗ζ∗Tev → ζ∗Tev) .

For every morphism g, (ζ∗Tev)T ′ is πT ′ -relatively generated by global sections iff g(T ′) ⊂ Utwist.
Therefore, for every morphism g, ζT ′ is twisting iff g(T ′) ⊂ Utwist. By Lemma 2.9, there exists
an open subset Uvtwist ⊂ T such that for every g, (ζ∗Tev)T ′ is πT ′ -relatively deformation ample iff
g(T ′) ⊂ Uvtwist. Therefore ζT ′ is very twisting iff g(T ′) ⊂ Uvtwist. �
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Let (π : B → T, h : B → X) be a family of genus 0 stable maps, i.e., a 1-morphism ξ : T →
M0,0(X, e) for some e ≥ 0. For every morphism of schemes g : T ′ → T , denote by πT ′ : BT ′ → T ′

the base-change of π by g, and denote by ξT ′ : BT ′ →M0,1(X, 1) the composition of BT ′ → B with
ξ.

Definition 4.7. The family of stable maps ξ : T →M0,0(X, e) is twistable (resp. very twistable)
if there exists a surjective étale morphism u : T ′ → T and a morphism ζ : BT ′ →M0,1(X, 1) such
that ξζ = ξT ′ and such that ζ is twisting (resp. very twisting).

Proposition 4.8. There is an open subscheme Ut-able ⊂ T (resp Uvt-able ⊂ T ) such that for every
morphism of schemes g : T ′ → T , ξT ′ is twistable (resp. very twistable) iff g(T ′) ⊂ Ut-able (resp.
g(T ′) ⊂ Uvt-able).

Proof. It suffices to check that if t ∈ T is a geometric point such that ht : Bt → X is twistable
(resp. very twistable), then there is an étale neighborhood of t ∈ T over which ξ is twistable (resp.
very twistable). Denote by ζt : Bt →M0,1(X, 1) the twisting morphism. Consider M0,1(X, 1) as a

quasi-projective scheme via the Plücker and Segre embeddings of G(1, n) × Pn ↪→ P
n(n+1)2

2 −1. Let
β denote the degree of the stable map ζt.

Define M = T ×M0,0(M0,1(X, 1), β), i.e., M parametrizes pairs (s, ζ) consisting of a point
s ∈ T together with a genus 0 stable map ζ : B → M0,1(X, 1) of degree β. Denote the universal
stable map over M0,0(M0,1(X, 1), β) by

ρ : B →M0,0(M0,1(X, 1), β),
ζ : B →M0,1(X, 1).

As in Notation 4.2, let p : Σ → B be the pullback by ζ of the universal curve over M0,1(X, 1), let
σ : B → Σ be the pullback of the universal section, let g : Σ → X be the pullback of the universal
map, and let h = g ◦ σ. This gives a family of prestable maps,

ξ̃ =
(
ρ : B →M0,0(M0,1(X, 1), β), h : B → X

)
. (8)

By [3, Lemma 1] there is a maximal open substack Ue ⊂M0,0(M0,1(X, 1), β) over which ξ̃ is stable
of degree e. By hypothesis, (t, ζt) is in T × Ue.

Because ζt is twisting, the hypotheses of Lemma 3.6 (iii) are satisfied where f : X → Y cor-
responds to ev : M0,1(X, 1) → X and where (Σ, g : Σ → X) corresponds to (Bt, ζt : Bt →
M0,1(X, 1)). Therefore at the point (Bt, ζt : Bt → M0,1(X, 1)), the stack Ue is smooth and the
morphism ξ̃ : Ue →M0,0(X, e) is smooth by the Jacobian criterion.

Consider the 1-morphism (1T , ξ) : T → T ×M0,0(X, e). Denote by M the 2-fibered product of
the 1-morphism (1T , ξ) and the 1-morphism (1T , ξ̃) : T×Ue → T×M0,0(X, e). The 2-fibered product
M is the stack whose objects are triples (t, ζ, θ) consisting of a point t ∈ T , an object ζ : B →
M0,1(X, 1) of Ue, and an equivalence θ : ξt → ζ̃ of objects in the groupoid M0,0(X, e)(Spec κ(t)).
Because (1T , ξ̃) is smooth at (t, (Bt, ζt)), the projection pr1 : M → T is smooth at (t, (Bt, ζt)).
Hence there exists an étale 1-morphism f : M →M from a scheme M to M such that (t, (Bt, ζt))
is in the image of f and such that the composite morphism pr1 ◦ f : M → T is smooth. By [6,
Prop. 2.2.14], there exists an étale morphism u : (T ′, t′) → (T, t) and a section z : T ′ → M such
that f(z(t′)) is (t, (Bt, ζt)). Denote by ζpre : T ′ → Ue the composition pr2 ◦ f ◦ z.
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Denote by ζ : B′ → M0,1(X, 1) the pullback by ζpre : T ′ → Ue of the universal stable map.
By construction, ξ̃(ζ) : B′ → M0,0(X, e) is equivalent to u∗ξ : u∗B → M0,0(X, e). Hence, after
replacing T ′ by a surjective, étale cover, B′ = u∗B as T ′-schemes, and ξ̃(ζ) = u∗ξ. The fiber
of ζ : u∗B → M0,1(X, 1) over every preimage of (t, (Bt, ζt)) is twisting. So by Lemma 4.6, after
replacing T ′ by a Zariski open subscheme whose image contains t, ζ : u∗B →M0,1(X, 1) is twisting.
Similarly, if (t, (Bt, ζt)) is very twisting, after replacing T ′ by a Zariski open subscheme whose image
contains t, ζ is very twisting. On the Zariski open subscheme of T that is the image of u : T ′ → T ,
the family ξ : B →M0,0(X, e) is twistable (resp. very twistable). �

Let
ξi = ((πi : Bi → T, σi : T → Bi) , hi : Bi → X) , i = 1, 2,

be two families of 1-pointed stable maps such that h1 ◦ σ1 = h2 ◦ σ2. Denote by

ξ = (π : B → T, h : B → X)

the family obtained by taking B to be the union of B1 and B2 where the section σ1 is identified
with the section σ2.

Lemma 4.9. If for i = 1, 2 the family of unpointed stable maps (πi : Bi → T, hi : Bi → X) is
twistable, and if for every geometric point t ∈ T , the variety parametrizing free lines that contain
h(σ(t)) is irreducible, then ξ is twistable. If also one of ξ1, ξ2 is very twistable, then ξ is very
twistable.

Proof. This follows from Lemma 4.5. First of all, using Proposition 4.8, it suffices to prove the
result when T = Spec k for some algebraically closed field k.

For each of i = 1, 2, let Mi denote the 2-fibered product constructed in the proof of Proposi-
tion 4.8, i.e., the objectst of Mi are pairs (ζi, θi) consisting of a twisting family (resp. very twisting
family), ζi : Bi →M0,1(X, 1), such that the induced map

ζ̃i = ((Bi, σi), gi ◦ ρi : Bi → X)

is stable, and an equivalence of objects, θi : ξi → ζ̃i. Since each of ξi is twistable, each of Mi is
nonempty.

By the proof of Proposition 4.8, each of Mi is smooth. By the definition of twisting families, for
each i = 1, 2 the morphism

ei : Mi →M0,1(X, 1), ζi 7→ ζi(σi)

has image contained in the unobstructed locus of ev : M0,1(X, 1) → X. Let P ⊂M0,1(X, 1) denote
the preimage under ev of the point p = h1(σ1) = h2(σ2). The image of ei is contained in the smooth
locus of P . The claim is that ei : Mi → P is smooth. The obstruction space at a point ζi is a
quotient of the cohomology group H1 (Bi, ζ

∗
i Tev(−σi)). By Definition 4.3 (iv), ζ∗i Tev is generated

by global sections. Hence, by Lemma 2.3 (ii), this cohomology group is zero, and ei is smooth.

Since both e1 : M1 → P and e2 : M2 → P are smooth, both have nonempty, open image
contained in the locus of free lines. By hypothesis, the open subset of P parametrizing free lines
is irreducible. Therefore the image of e1 and the image of e2 intersect. Choose a family ζ1 ∈ M1

and ζ2 ∈ M2 such that e1(ζ1) = e2(ζ2). Then ζ1 and ζ2 can be glued to obtain a morphism
ζ : B →M0,1(X, 1) such that ζ|B1 = ζ1 and ζ|B2 = ζ2. By Lemma 4.5, ζ is twisting. Moreover, if
one of ζ1, ζ2 is very twisting, then ζ is very twisting. And ζ̃ = ξ. Therefore ξ is twistable, and it is
very twistable if one of ξ1, ξ2 is very twistable. �



30 J. HARRIS AND J. STARR

Hypothesis 4.10. Let U ⊂M0,1(X, 1) denote the preimage of Ut-able ⊂M0,0(X, 1) under pr. The
evaluation morphism ev : U → X has Zariski dense image, i.e., a general point of X is contained in
a twistable line.

Let π : B → T be a family of prestable curves of arithmetic genus 0.

Definition 4.11. A 1-morphism ζ : B →M0,1(X, e) is positive (resp. very positive) if

(i) (π : B → T, h : B → X) is a family of stable maps, i.e., a 1-morphism ξ : T →M0,0(X, ε)
for some ε ≥ 0,

(ii) the dimension of the obstruction group of M0,0(X, ε) is 0 at each point of ξ(T ),
(iii) the dimension of the obstruction group of M0,0(X, e) is 0 at each point of pr(ζ(T )),
(iv) the pullback (pr ◦ ζ)∗TM0,0(X,e) is π-relatively deformation ample, and
(v) the pullback σ∗OΣ(σ) is π-relatively generated by global sections (resp. π-relatively ample).

Remark 4.12. This definition is similar to Definition 4.3. It differs in that e need not equal 1
and that pr ◦ ζ has image in the unobstructed locus, instead of requiring ζ to have image in the
unobstructed locus of the morphism ev.

Lemma 4.13. Let π : B → T be a family of prestable curves of arithmetic genus 0 and let ζ : B →
M0,1(X, 1) be a 1-morphism. There is an open subscheme Upos ⊂ T (resp. Uv-pos ⊂ T ) with the
following property: for every morphism of schemes f : T ′ → T , the pullback family f∗π : f∗B → T ′

and f∗ζ : f∗B →M0,1(X, 1) is positive (resp. very positive) iff f(T ′) ⊂ Upos (resp. f(T ′) ⊂ Uv-pos).

Proof. The proof is almost identical to the proof of lemma 4.6. �

Lemma 4.14. Let B be a prestable curve of arithmetic genus 0, and let ζ : B →M0,1(X, e) be a
positive 1-morphism whose image is contained in the locus of very stable maps.

(i) If B is smooth, then ζ : B → M0,1(X, e) is free, i.e., ζ∗TM0,1(X,e) is generated by global
sections. If ζ is very positive, then ζ is very free, i.e., ζ∗TM0,1(X,e) is ample.

(ii) The dimension of the obstruction group of the 1-morphism ζ : B → M0,1(X, e) is 0. In
particular there is a discrete valuation ring, R, a family of prestable curves, π : B → Spec R,
and a positive 1-morphism ζR : B → M0,1(X, e) such that the geometric closed fiber is ζ,
such that the geometric generic fiber Bη is smooth, and such that ζR(B) is contained in the
locus of very stable maps.

Proof. (i): By hypothesis, ζ is positive (resp. very positive). By the relative version of Lemma 3.21,
the image of ζ is in the smooth locus of M0,1(X, e) and there is a short exact sequence,

0 −−−−→ σ∗OΣ(σ) −−−−→ ζ∗TM0,1(X,e) −−−−→ (pr ◦ ζ)∗TM0,0(X,e) −−−−→ 0.

By Definition 4.11 (iv) and (v), (pr ◦ ζ)∗TM0,0(X,e) is deformation ample and σ∗OΣ(σ) is generated
by global sections (resp. deformation ample). Hence ζ∗TM0,1(X,e) is generated by global sections
(resp. deformation ample by Lemma 2.10 (ii)). Since B is smooth ζ is free (resp. very free).

(ii): Let R′ be a discrete valuation ring and let π : B′ → Spec R′ be a smoothing of B, i.e.,
there is an isomorphism i : B → B′0 and the generic fiber B′η is smooth. For technical reasons it is
necessary to compactify M0,1(X, e). Let j : X ↪→ X be an open immersion of X into a projective
scheme, and let j∗ : M0,1(X, e) ↪→ M0,1(X, e) be the corresponding open immersion of moduli
stacks. By [9], M0,1(X, e) is a proper Deligne-Mumford stack with projective coarse moduli space.
Form the R′-stack, B′×M0,1(X, e). With respect to an ample invertible sheaf on the coarse moduli
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space, let ε denote the degree of the map (i, ζ) : B → B′ ×M0,1(X, e). Then (i, ζ) is an object of
the Abramovich-Vistoli stack,

K = K0,0(B′ ×M0,1(X, e), ε) → Spec R′,

that parametrizes twisted stable maps to B′ ×M0,1(X, e) over Spec R′, cf. [1]. The stack K →
Spec R′ is a Deligne-Mumford stack that is proper over Spec R′, and the coarse moduli space is
projective over Spec R′.

The deformation theory of twisted stable maps is developed in [1, Section 5], and is exactly
analogous to the deformation theory of stable maps. In particular, the obstruction space to the
morphism o : K → Spec R′ at [(i, ζ)] is a quotient of H1(B, ζ∗TM0,1(X,e)). Since ζ∗TM0,1(X,e) is
generated by global sections, by Lemma 2.3 (i), h1(B, ζ∗TM0,1(X,e)) = 0. Therefore o is smooth at
[(i, ζ)]. By [6, Prop. 2.2.14], there exists an étale morphism of discrete valuation ring’s, Spec R →
Spec R′ and a section s : Spec R → K of o. In other words, there exists a family of twisted stable
maps over Spec R whose closed fiber is isomorphic to the pullback of (i, ζ), i.e.,

(π : B → Spec R′, λ : B → Spec R×Spec R′ (B′ ×M0,1(X, e))).

Because B is a scheme, the family of curves over Spec R is a scheme, i.e., π : B → Spec R is a
morphism of schemes. Because the composition of (i, ζ) with projection onto the closed fiber of B′
is an isomorphism, the composition

B λ−→ Spec R×Spec R′ (B′ ×M0,1(X, e))
prB′−−−→ Spec R×Spec R′ B′,

is an isomorphism. Since the image of (i, ζ) is contained in the open substack B′ ×M0,1(X, e), the
image of λ is contained in the the open substack Spec R ×Spec R′ (B′ ×M0,1(X, e). Putting the
pieces together, π : B → Spec R is a smoothing of B, and λ induces a 1-morphism of R-stacks,
ζR : B →M0,1(X, e) such that the closed fiber is ζ.

By Lemma 4.13, ζR is positive. Since the locus of very stable maps in M0,1(X, e) is open, the
image of ζR is contained in this locus. �

Remark 4.15. The use of the Abramovich-Vistoli stack above is a bit contrived. The most natural
stack to use is the Hom stack parametrizing 1-morphisms between two flat, proper, tame Deligne-
Mumford stacks. Martin Olsson has proved existence and some foundational properties of the Hom
stack in the generality needed above, but the details have not yet been published.

Following is the main definition of this section.

Definition 4.16. Let π : B → T be a family of prestable curves of arithmetic genus 0. An inducting
pair of degree e is a pair of 1-morphisms(

ζ1 : B →M0,1(X, 1), ζe : B →M0,1(X, e)
)
,

such that
(i) ζ1 is very twisting,
(ii) ζe is very positive and the image of ζe is contained in the locus of very stable maps, and
(iii) the morphisms hζ1 : B → X and hζe

: B → X are equal.

Lemma 4.17. Let π : B → T be a family of prestable curves of arithmetic genus 0, and let(
ζ1 : B →M0,1(X, 1), ζe : B →M0,1(X, e)

)
,
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be a pair of 1-morphisms such that hζ1 = hζe
. Then there is an open subscheme Uinduct ⊂ T with the

following property: for every morphism of schemes f : T ′ → T , the pullback of (ζ1, ζe) is inducting
iff f(T ′) ⊂ U .

Proof. Define Uinduct to be the intersection of the open subset Uvtwist ⊂ T from Lemma 4.6 for ζ1

and the open subset Uv-pos ⊂ T from Lemma 4.13 for ζe. �

The final definition of this section is the following.

Definition 4.18. Let (π : B → T, ζe : B → M0,1(X, e)) be a very positive family whose image
is contained in the locus of very stable maps. The 1-morphism ζe is inductable if there exists a
surjective étale morphism u : T ′ → T and a morphism ζ1 : u∗B →M0,1(X, 1) such that

(i) hζ1 = u∗hζe
, and

(ii) (ζ1, ζe) is an inducting pair.

Lemma 4.19. Let (π : B → T, ζe : B → M0,1(X, e)) be a very free family. There is an open
subscheme Ui−able ⊂ T with the following property: for every morphism of schemes f : T ′ → T , the
pullback (f∗π : f∗B → T ′, f∗ζe : f∗B →M0,1(X, e)) is inductable iff f(T ′) ⊂ Ui−able.

Proof. Apply Proposition 4.8 to

ξ := (π : B → T, hζe
: B → X).

�

5. The induction argument

In this section it is proved that if X satisfies Hypotheses 1.5, 1.6, 1.7, and 4.10, and if there
exists an inductable 1-morphism ζe : B →M0,1(X, e), then there exists an inductable 1-morphism
ζe+1 : B → M0,1(X, e + 1). The basic idea is, given an inducting pair (ζ1, ζe+1), to form the
family of “connected sums”, i.e., the family of reducible curves obtained by gluing the families ζ1

and ζe+1 along the two sections. However, this is a family of unpointed curves, and an inducting
family is a family of pointed curves. By hypothesis, the section of ζe, σ : B → Σ, is such that the
Cartier divisor σ(B) ⊂ Σ moves. A general member of the linear system |σ(B)| is the image of a
section, σ′ : B → Σ. Except at finitely many points of B, the sections σ and σ′ are disjoint. Away
from these points, the section of the family of reducible curves is taken to be σ′. The stable limit
over the finitely many points of B is obtained by blowing up Σ along the zero-dimensional scheme
σ(B) ∩ σ′(B). Unfortunately, the resulting family of pointed, reducible curves is no longer very
positive.

To make the resulting family very positive, the family is altered by a modification.

5.1. Modification.

Definition 5.1. An input triple is a triple I = (ζ, L, σi) where
(i) ζ = ((Σ, σ1, . . . , σr), g : Σ → X) is an r-pointed stable map to X of arithmetic genus g,
(ii) L ⊂ Σ is an irreducible component that is smooth, and
(iii) σi ∈ L is a marked point.

Let I = (ζ, L, σi) be an input triple. Denote by M ⊂ Σ the union of all irreducible components
other than L. Denote by R = (ρ1, . . . , ρc) the intersection L ∩M , denote by S = (σj1 , . . . , σjd

) the
marked points that are contained in L other than σi, and denote by S′ = (σk1 , . . . , σke) the marked
points that are contained in M .
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Denote by ∆ : L → L × L the diagonal, and denote by u : Λ → L × L the blowing up of L × L
along ∆(R ∪ S). For each closed point λ ∈ R ∪ S, denote by Fλ ⊂ Λ the proper transform of
L× {λ} ⊂ L× L. Denote by F∆ ⊂ Λ the proper transform of ∆(L) ⊂ L× L. For each λ ∈ R ∪ S,
there exists a unique section of pr1 ◦ u : Λ → L, σI,λ : L → Λ, such that Fλ = σI,λ(L). Also there
is a section of pr1 ◦ u, σI,∆, such that σI,∆(L) = F∆.

Consider the projection pr1 : L ×M → L. For each closed point λ ∈ R ∪ S′ there is a unique
section of pr1, σ′I,λ, such that σ′I,λ(L) = L × {λ}. Let ΣI be the simple normal crossing surface
containing Λ and L×M that is obtained by identifying the divisor σI,λ(L) ⊂ Λ with σ′I,λ(L) ⊂ L×M

for each λ ∈ R. The divisors are identified by σI,λ(t) ↔ σ′I,λ(t) for each t ∈ L. There is a unique
morphism pI : ΣI → L whose restriction to Λ is pr1 ◦ u and whose restriction to L × M is pr1.
There is a unique morphism gI : ΣI → X whose restriction to Λ is g|L ◦pr2 ◦u and whose restriction
to L ×M is g|M ◦ pr2. For each integer j = 1, . . . , r such that j 6= i, there exists a section of pI ,
σI,j : L → ΣI given by

σI,j =
{

σI,λ, λ = σj ∈ S,
σ′I,λ, λ = σj ∈ S′

And there exists a section σI,i : L → ΣI given by σI,i = σI,∆. By construction, the sections σI,j

are pairwise disjoint. Hence the datum

ζI = ((pI : ΣI → L, σI,1, . . . , σI,r), gI : ΣI → X)

is a family of r-pointed stable maps to X of arithmetic genus g. And the fiber over σi ∈ L is
canonically isomorphic to ζ.

Definition 5.2. The family of stable maps, ζI , is the modification associated to I.

The relevance of this construction is the following. Let B be a prestable curve and let

ζ = ((p : Σ → B, σ1, . . . , σr), g : Σ → X)

be a family of r-pointed stable maps to X of arithmetic genus g. Let b ∈ B be a smooth point, let
L ⊂ Σb be an irreducible component that is smooth, and let σi(b) ∈ L be a marked point. Then
I = (ζb, L, σi(b)) is an input triple. Let ζI be the modification associated to I. The fiber ζI,σi(b) is
canonically isomorphic to the fiber ζb. Let B̃ be the prestable curve containing B and L obtained
by identifying b ∈ B with σi(b) ∈ L. There is a unique family of r-pointed stable maps to X of
arithmetic genus g,

ζ̃ = ((p̃ : Σ̃ → B̃, σ̃1, . . . , σ̃r), g̃ : Σ̃ → X),

whose restriction to B is ζ and whose restriction to L is ζI .

Definition 5.3. The family of stable maps, ζ̃, is the modification of ζ associated to (b, L, σi(b)).

Let I = (ζ, L, σi) be an input triple. Denote by ζ bσi
the (r − 1)-pointed stable map obtained by

forgetting the marked point σi.

Lemma 5.4. Let I = (ζ, L, σi) be an input triple.
(i) The dimension of the obstruction space of ζ bσi

is 0 and for each closed point λ ∈ R, there
exists a first-order deformation of ζ bσi

that smoothes the node λ iff the same is true for ζ.
(ii) For every closed point λ ∈ L, the dimension of the obstruction space of ζI,λ is 0 iff both the

dimension of the obstruction space of ζ bσi
is 0 and for each closed point λ ∈ R there exists

a first-order deformation of ζ bσi
that smoothes the node λ.
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(iii) If the equivalent conditions of (ii) are satisfied then there is an exact sequence,

0 → TL → ζ∗I TMg,r(X,e) → . . .

. . . → TMg,r−1(X,e),ζcσi
⊗C OL →

⊕
λ∈R TL,λ ⊗Oλ

TM,λ → 0.

(iv) If the equivalent conditions of (iii) are satisfied, if L has genus 0, and if the map,

TMg,r−1(X,e),ζcσi
→ ⊕λ∈RTL,λ ⊗ TM,λ,

is surjective, then h1(L, ζ∗I TMg,r(X,e)) = 0.

Proof. The item (i) follows by Lemma 3.22. The items (ii) and (iii) follow by Lemmas 3.18, 3.19, 3.21
and 3.22. If L has genus 0, then TL is generated by global sections. So (iv) follows from the long
exact sequences in cohomology associated to the exact sequence in (ii) and by Lemma 2.3 (i). �

Let ζ be a stable map of arithmetic genus 0 and let I = (ζ, L, σi) be an input pair.

Lemma 5.5. If the dimension of the obstruction group of g|L : L → X is 0, and if the pullback
of TX by g|M : M → X is generated by global sections, then for every closed point λ ∈ L, the
dimension of the obstruction space of ζI,λ is 0, and h1(L, ζ∗I TM0,r(X,e)) = 0.

Proof. By Lemma 3.17, Lemma 3.21 and Lemma 3.22, the family of pointed stable curves,

((pr1 ◦ u : Λ → L, σλ, σ∆), g|L ◦ pr2 ◦ u : Λ → X),

is such that for each point of L the dimension of the obstruction space is 0. Consider the families
obtained by successively gluing on the connected components of L×M . Applying Lemma 3.29 to
each of these families, the hypotheses of Lemma 5.4 (iv) are satisfied for ζI . �

Let B be a prestable curve of arithmetic genus 0, and let

ζ = ((p : Σ → B, σ1, . . . , σr), g : Σ → X),

be a family of r-pointed stable maps of arithmetic genus 0. Let b ∈ B be a smooth point, let L ⊂ Σb

be an irreducible component that is not contracted by g, and let σi(b) ∈ L be a marked point. Let
M be the union of all irreducible components of Σb other than L.

Lemma 5.6. If for every point b′ ∈ B the dimension of the obstruction group of ζb′ is 0, if
ζ∗TM0,r(X,e) is generated by global sections, if the dimension of the obstruction group of g|L : L → X

is 0, and if the pullback of TX by g|M : M → X is generated by global sections, then for every point
b′ ∈ B̃ the dimension of the obstruction group of ζ̃b′ is 0 and h1(B̃, ζ̃∗TM0,r(X,e)) = 0.

Therefore the dimension of the obstruction group of ζ̃ : B̃ →M0,r(X, e) is 0. In particular there
is a discrete valuation ring, R, a family of prestable curves, π : B → Spec R, and a 1-morphism
ζR : B → M0,r(X, e) such that the geometric closed fiber is ζ̃ and such that the geometric generic
fiber Bη is smooth.

Proof. The hypotheses of Lemma 5.5 are satisfied for the modification associated to I = (ζb, L, σi(b)),
ζ̃L : L →M0,r(X, e). Hence the dimension of the obstruction group of ζ̃ at each closed point of L

is 0 and h1(L, ζ̃∗LTM0,r(X,e)) = 0. There is a short exact sequence of coherent sheaves on B̃,

0 −−−−→ ζ∗TM0,r(X,e)(−b) −−−−→ ζ̃∗TM0,r(X,e) −−−−→ ζ̃∗LTM0,r(X,e) −−−−→ 0.

By Lemma 2.3 (ii), h1(B, ζ∗TM0,r(X,e)(−b)) = 0. Hence by the long exact sequence of cohomology

associated to the short exact sequence above, h1(B̃, ζ̃∗TM0,r(X,e)) = 0.

The second part of the lemma follows by the same proof as in Lemma 4.14 (ii). �
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5.2. The induction argument.

Notation 5.7. The notation for the generators of the group of Q-Cartier divisor classes onM0,1(Pn, e)
is taken from [19].

(i) For each integer 0 ≤ i ≤ bec denote by ∆i, or sometimes ∆i,e−i, the class of the Q-
Cartier divisor that is the closure of the locus parametrizing embedded curves that have
one irreducible component of degree i, one irreducible component of degree e− i and where
the marked point is on the irreducible component of degree i.

(ii) Denote by L the first Chern class of ev∗OPn(1).
(iii) Denote by H the class of the Q-Cartier divisor parametrizing stable maps g : Σ → Pn such

that g(Σ) ∩ Λ 6= ∅, where Λ ⊂ Pn is a fixed linear Pn−2.

Let B be a prestable curve of genus 0. Let ζ = ((p : Σ → B, σ), g : Σ → X) be a family of stable
maps of genus 0 and degree e > 1. Denote by h : B → X the composition g ◦ σ.

Definition 5.8. The 1-morphism ζ : B →M0,1(X, e) is typical if,
(i) the curve B is smooth,
(ii) for every closed point b ∈ B, the obstruction group of ζb has dimension 0,
(iii) for every point b ∈ B, the stable map ζb has only the trivial automorphism,
(iv) for every integer j = 1, . . . , e − 1, the preimage ζ−1(∆j) consists of finitely many points,

and for each b ∈ ζ−1(∆j), the curve Σb has only two irreducible components,
(v) for every point b ∈ ζ−1(∆1), Σb is a union of 2 irreducible components L∪M with σ(b) ∈ L

such that g|L : L → X is an isomorphism to a twistable line.

Lemma 5.9. Let π : B → T be a family of prestable curves of arithmetic genus 0 and let ζ :
B → M0,1(X, e) be a 1-morphism. There is an open subscheme Utyp ⊂ T with the following
property: for every morphism of schemes f : T ′ → T , the pullback family f∗π : f∗B → T ′ and
f∗ζ : f∗B →M0,1(X, e) is typical iff f(T ′) ⊂ Utyp.

Proof. Each of the conditions in Definition 5.8 is clearly an open condition. �

Lemma 5.10. If X satisfies Hypotheses 1.5, 1.6, 1.7, and 4.10, if for every closed point b ∈ B
the obstruction group of ζb has dimension 0, and if ζ∗TM0,1(X,e) is generated by global sections,
then there exists a discrete valuation ring, R, a family of prestable curves, π : B → Spec R, and a
1-morphism ζR : B →M0,1(X, e) such that the geometric closed fiber is ζ, such that the geometric
generic fiber Bη is smooth, and such that (ζR)η is typical.

Proof. By the same argument as in the proof of Lemma 4.13, there exists a family ζR : B →
M0,1(X, e) such that Bη is smooth. The condition that for every point the obstruction group has
dimension 0 is stable under generization, so it also holds for (ζR)η. Similarly, (ζR)∗ηTM0,1(X,e) is
generated by global sections. By [16, Prop. 3.7], the family ζR may be chosen so that (ζR)(Bη) is
disjoint from any given finite collection of closed substacks of codimension at least 2. By Hypothe-
sis 1.5, the locus of stable maps such that the domain curve has 3 or more irreducible components
has codimension at least 2. Let Z ⊂ ∆i be a closed substack whose image in the coarse moduli
space of ∆i is an ample divisor. Again by Hypothesis 1.5, Z has codimension 2 in M0,1(X, e).
So (ζR)(Bη) does not intersect Z, and therefore it is not contained in ∆i. By Hypothesis 1.7, the
locus of stable maps that have a nontrivial automorphism has codimension at least 2. Finally, by
Hypothesis 1.6 and Hypothesis 4.10, the locus in ∆1 parametrizing stable maps g : L ∪ M → X
such that g|L : L → X is an isomorphism to a twistable line is a dense open in ∆1. In particular
the complement in ∆1 is a closed substack that has codimension 2 in M0,1(X, e). Therefore (ζR)η

is typical. �
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By Hypothesis 4.10, a general line L ⊂ X is twistable. Denote by,

ζL = ((pL : ΣL → L, σL), gL : ΣL → X),

a twisting family such that hL : L → X is the inclusion. By Remark 4.4 (iv), the degree of gL is
either 1 or 2, i.e., either gL : ΣL → X is a birational map to a linear P2 in X (obtained by blowing
up a point on the P2), or gL is an isomorphism of ΣL to a nonsingular quadric surface in X.

Definition 5.11. Let X be a variety that satisfies Hypotheses 1.6 and 4.10. The variety X is
planar type if for a general line L there exists a twisting family such that the degree of gL is 1. The
variety is quadric type if it is not planar type.

Remark 5.12. It is not hard to prove that if X is planar type, then there exists an integer r ≥ 2
such that for a general point x ∈ X, the set of lines in X that contain x sweep out a linear Pr.
Let Q denote the irreducible component of the Hilbert scheme of Pr’s in X that contains the Pr’s
constructed in this way. Then X is birationally a Pr-bundle over Q and, with its natural Plücker
embedding, Q is not uniruled by lines. If X satisfies Hypothesis 1.5, then Q is not uniruled by
rational curves of any degree. If also X contains a very twistable curve, then Q is a point and X is
isomorphic to Pr (not merely birational to Pr). Thus, in what follows, X will usually be of quadric
type.

Let (ζ1, ζe) be an inducting pair denoted by,

ζ1 = ((p : Σ → B, σ), g : Σ → X),

ζe = ((p : Σ → B, σ), g : Σ → X).

Denote
δ = deg(ζ∗1 (2L −H)),
δ = deg(ζ

∗
e(

2
eL −

1
e2H−

∑e−1
i=1

(e−i)2

e2 ∆i)).

By [19, Lem. 2.2.2], deg(σ∗OΣ(σ(B))) = δ and deg(σ∗OΣ(σ(B))) = δ. In particular, both δ and δ

are nonnegative integers, and δ is positive by Definition 4.11.

Theorem 5.13. For each integer d = 1, . . . , δ, there exists an inducting pair (ξd,1, ξd,e+1) such that
ξd,e+1 is typical and such that the following conditions are satisfied,

deg(ξ
∗
d,e+1H) = deg(ζ

∗
eH) + deg(ζ∗1H),

deg(ξ∗d,1H) = deg(ζ∗1H) + d, if X is planar type,
deg(ξ∗d,1H) = deg(ζ∗1H) + 2d, if X is quadric type,
deg(ξ∗d,1L) = deg(ζ∗1L) + d,

deg(ξ
∗
d,e+1L) = deg(ζ

∗
eL) + d,

deg(ξ
∗
d,e+1∆i) = deg(ζ

∗
e∆i−1), i = 2, . . . , e− 1,

deg(ξ
∗
d,e+1∆e) = deg(ζ

∗
e∆e−1) + δ + d, if i > 1,

deg(ξ
∗
d,e+1∆1) = δ − d, if i > 1,

deg(ξ
∗
d,2∆1) = δ + δ, if i = 1.

(9)

The families are denoted,

ξd,e+1 = ((pd,e+1 : Σd,e+1 → B, σd,e+1), gd,e+1 : Σd,e+1 → X),

ξd,1 = ((pd,1 : Σd,1 → B, σd,1), gd,1 : Σd,1 → X).

Also hd,e+1 denotes gd,e+1 ◦ σd,e+1 and hd,1 denotes gd,1 ◦ σd,1.
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Proof. By Lemma 4.14 (ii) and Lemma 4.19, it suffices to consider the case that B is smooth.
By Lemma 4.14(i) ζe : B →M0,1(X, e) is very free. Hence, the same argument as in the proof of
Lemma 4.14 (ii) and [16, Prop. 3.7], it suffices to consider the case that ζe(Be) is in general position,
i.e., for any finite collection of codimension 2 subvarieties (Zα|α = 1, . . . ,M) and any finite collection
of divisors (Dβ |β = 1, . . . , N), ζe(Be) is disjoint from each Zα and has 0-dimensional intersection
with each Dβ .

The family ζ(1): Denote by Σ(1) the surface containing Σ and Σ obtained by identifying the
divisor σ(B) ⊂ Σ and σ(B) ⊂ Σ via σ(b) ↔ σ(b). Denote by p(1) : Σ(1) → B the unique morphism
whose restriction to Σ is p and whose restriction to Σ is p. Denote by g(1) : Σ(1) → X the unique
morphism whose restriction to Σ is g and whose restriction to Σ is g. Then ζ(1) = (p(1) : Σ(1) →
B, g(1) : Σ(1) → X) is a family of stable maps in the boundary divisor ∆1 ⊂M0,0(X, e + 1). Denote
by τ the stable A-graph with two vertices v and v of degree 1 and e respectively, with no tails,
and with one edge connecting v and v. Then ζ(1) factors through the canonical 1-morphism of
Behrend-Manin stacks M(X, τ) →M0,0(X, e + 1).

Claim 5.14. The pullback (ζ(1))∗TM0,0(X,e) is ample.

By Lemma 3.28, there is a short exact sequence,

0 −−−−→ ζ∗1Tev −−−−→ (ζ(1))∗TM(X,τ) −−−−→ ζ
∗
eTM0,1(X,e) −−−−→ 0. (10)

Since ζ1 is very twisting, by Definition 4.3 ζ∗1Tev is ample. Since ζe is very positive, by Lemma 4.14,
ζ
∗
eTM0,1(X,e) is ample. Hence (ζ(1))∗TM(X,τ) is ample. By Lemma 3.29, there is a short exact

sequence,

0 → (ζ(1))∗TM(X,τ) → (ζ(1))∗TM0,0(X,e+1) → σ∗OΣ(σ)⊗ σ∗OΣ(σ) → 0. (11)

By Definition 4.3 and Definition 4.11, both σ∗OΣ(σ) and σ∗OΣ(σ) are ample. Therefore the tensor
product is ample, and (ζ(1))∗TM0,0(X,e+1) is ample.

The family ζ(2): The family ζ(1) cannot be an inductable family, because it is a family of
unpointed curves rather than 1-pointed curves. The next approximation to ξd,e+1 “adds” a marked
section to ζ(1). The self-intersection of σ(B) ⊂ Σ is the degree of the invertible sheaf σ∗OΣ(σ(B)),
which is also

δ = deg
(
2ζ
∗
eL − ζ

∗
eH
)

.

Let ς : B → Σ be a section such that ς(B) ⊂ Σ is a general member of the linear system |σ(B)|.
Because σ∗OΣ(σ(B)) is generated by global sections, there exists ς such that ς(B) has only trans-
verse intersections with σ(B). Denote the points of intersection by q1, . . . , qδ ∈ Σ. Denote by

w : Σ
(2) → Σ the blowing up of Σ at the points q1, . . . , qδ. Let p(2) : Σ

(2) → B denote the projection

p ◦ w. Let g(2) denote g ◦ w. Let σ(2) : B → Σ
(2)

and ς(2) : B → Σ
(2)

denote the proper transforms
of σ and ς respectively. Notice that σ(2)(B) and ς(2)(B) are disjoint by construction. So the data

ζ
(2)

e = ((p(2) : Σ
(2) → B, σ(2), ς(2)), g(2) : Σ

(2) → X)

is a family of stable 2-pointed maps, i.e., a 1-morphism ζ
(2)

e : B →M0,2(X, e).

Claim 5.15. The pullback (ζ
(2)

e )∗TM0,2(X,e) is generated by global sections.

By Lemmas 3.16, 3.21 and 3.22, there is a short exact sequence:

0 −−−−→ (ς(2))∗O
Σ

(2)(ς(1)(B)) −−−−→ (ζ
(2)

e )∗TM0,2(X,e) −−−−→ ζ
∗
eTM0,1(X,e) −−−−→ 0.
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By construction, the self-intersection of ς(2)(B) ⊂ Σ
(2)

is 0, i.e., (ς(2))∗O
Σ

(2)(ς(2)(B)) is the trivial
invertible sheaf OB . By hypothesis ζ

∗
eTM0,1(X,e) is generated by global sections. Therefore by

Lemma 2.3 (iii), (ζ
(2)

e )∗TM0,2(X,e) is generated by global sections.

Denote by Σ(2) the surface containing Σ
(2)

and Σ obtained by identifying the divisors σ(2)(B) ⊂
Σ

(2)
and σ(B) ⊂ Σ via σ(2)(b) ↔ σ(b). Denote by p(2) : Σ(2) → B the unique morphism whose

restriction to Σ
(2)

is p(2) and whose restriction to Σ is p. Denote by g(2) : Σ(2) → X the unique
morphism whose restriction to Σ

(2)
is g(2) and whose restriction to Σ is g. Denote by σ(2) : B → Σ(2)

the morphism obtained by composing ς(2) with the inclusion Σ
(2) ⊂ Σ(2). Then

ζ(2) = ((p(2) : Σ(2) → B, σ(2)), g(2) : Σ(2) → X)

is a family of stable maps in the boundary ∆e ⊂M0,1(X, e + 1). Denote by τ (2) the stable A-graph
with two vertices v and v of degree 1 and e respectively, a single tail attached to v, and a single
edge connecting v and v. Then ζ(2) factors through the canonical 1-morphism of Behrend-Manin
stacks M(X, τ (2)) →M0,1(X, e + 1).

Claim 5.16. The pullback (ζ(2))∗TM0,1(X,e) is generated by global sections.

By Lemma 3.28, there is a short exact sequence,

0 −−−−→ ζ∗1Tev −−−−→ (ζ(2))∗TM(X,τ(2)) −−−−→ (ζ
(2)

e )∗TM0,2(X,e) −−−−→ 0.

By Claim 5.15, the third term is generated by global sections. Since ζ1 is very twisting, by Def-
inition 4.3, ζ∗1Tev is ample. In particular it is generated by global sections. By Lemma 2.3 (iii),
(ζ(2))∗TM(X,τ(2)) is generated by global sections. By Lemma 3.29 there is a short exact sequence,

0 → (ζ(2))∗TM(X,τ(2)) → (ζ(2))∗TM0,1(X,e+1) → σ∗OΣ(σ(B))⊗OB
(σ(2))∗O

Σ
(2)(σ(2)(B)) → 0.

By construction, O
Σ

(2)(σ(2)(B)) is isomorphic to OB . Since ζ1 is very twisting, by Definition 4.3,
σ∗OΣ(σ(B)) is generated by global sections. Hence the third term in the short exact sequence is
generated by global sections. Since also the first term is generated by global sections, by Lemma 2.3
(iii), (ζ(2))∗TM0,1(X,e+1) is generated by global sections.

If e > 1, the image of ζ(2) intersects the divisor ∆1 transversely at the images of the points
q1, . . . , qδ. In particular, the degree of the Q-Cartier divisor class (ζ(2))∗OM0,1(X,e+1)(∆1) is δ,
which is positive. If e = 1, then ∆1 = ∆e. In this case M(X, τ (2)) is the normalization of ∆1,1 in
a neighborhood of ζ(2)(B). So the degree of (ζ(2))∗OM0,1(X,2)(∆1) is the sum of the degree of the
pullback of the normal sheaf of M(X, τ (2)) →M0,1(X, 2) and the degree of the divisor q1 + · · ·+qδ,
i.e. δ + δ. So also in this case the degree of (ζ(2))∗OM0,1(X,e+1)(∆1) is positive.

Similar computations give that deg((ζ(2))∗∆i) = ζ
∗
e∆i−1 for i = 2, . . . , e− 1. The curve ζ(2)(B)

is contained in the divisor ∆e, which is the image of M(X, τ (2)). As noted above, by Lemma 3.29,
the morphism M(X, τ (2)) →M0,1(X, e + 1) is unramified and the pullback by ζ(2) of the normal
sheaf has degree deg(σ∗OΣ(σ(B))) = δ. If e > 1, then the image of ζ(2)(B) is contained in the
smooth locus of ∆e so that the degree of (ζ(2))∗OM0,1(X,e+1)(∆e) is precisely δ. If e = 1, then
each point q1, . . . , qδ maps to a point of ∆1 where ∆1 intersects itself transversely. So if e = 1, the
total degree of (ζ(2))∗OM0,1(X,2)(∆1) is δ + δ (this is the same result from the last paragraph – it
is included for the sake of consistency).
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It is evident that,
deg((ζ(2))∗H) = deg(ζ

∗
eH) + deg(ζ∗1H),

and deg((ζ(2))∗L) = deg(ζ
∗
eL). As a “consistency check” for the computations of these degrees,

observe that by [19, Lem. 2.2.2],

deg((σ(2))∗OΣ(2)(σ(2)(B)) = deg

(
(ζ(2))∗

(
2

e + 1
L − 1

(e + 1)2
H−

e∑
i=1

(e + 1− i)2

(e + 1)2
∆i

))
.

Substituting the values above, using the formulas for δ and δ, and using that ζ∗1L = ζ
∗
e+1L, the

degree of the right-hand-side is 0. Of course this is correct; σ(2)(B) ⊂ Σ(2) has self-intersection 0
by construction.

The family ξ0,e+1: Before proceeding to the construction of the families ξd,e+1, the family ζ(2)

is deformed to a typical family ξ0,e+1, cf. Definition 5.8. The families ξd,e+1 will be constructed as
suitable modifications of ξ0,e+1.

Since ζ(2) : B →M0,1(X, e + 1) is free, i.e., (ζ(2))∗TM0,1(X,e+1) is generated by global sections,
it follows by the same argument as in the proof of Lemma 4.14 (ii) and [16, Prop. 3.7] that there
exists a deformation xi0,e+1 : B →M0,1(X, e + 1) of ζ̃ that is in general position. Here deformation
means that both ζ(2) and ξ0,e+1 have a common generization. Moreover, for any finite collection
of open conditions that are satisfied by ζ(2), the deformation ξ0,e+1 may be chosen to also satisfy
these conditions. Denote the family of stable maps by,

ξ0,e+1 = ((p0,e+1 : Σ0,e+1 → B, σ0,e+1), g0,e+1 : Σ0,e+1 → X).

Denote by h0,e+1 : B → X the composition g0,e+1 ◦ σ0,e+1.

Claim 5.17. There exists a deformation ξ0,e+1 of ζ(2) such that

(i) ξ0,e+1 is typical,
(ii) (pr ◦ ξ0,e+1)∗TM0,0(X,e+1) is ample,
(iii) h0,e+1 : B → X is very twistable,
(iv) and (σ0,e+1)∗OΣ0,e+1

(σ0,e+1(B)) is isomorphic to OB.

It suffices to prove that for a general deformation ξ0,e+1 of ζ(2), ξ0,e+1 satisfies the properties
in Claim 5.17, i.e., for every irreducible component of the Hom stack Hom(B,M0,1(X, e)) that
contains ζ(2), each of the conditions (i)–(iv) holds on a dense open substack.

(i): By Lemmas 5.9 and 5.10, a general deformation of ζ(2) is typical.
(ii): The pullback by pr◦ ζ(2) : B →M0,0(X, e + 1) of TM0,0(X,e+1) equals (ζ(1))∗TM0,0(X,e). By

Claim 5.14, this is ample. The condition on deformations of ζ(2) that the pullback of TM0,0(X,e) is
ample is an open condition by Lemma 2.8 and Lemma 2.9 (or more direct arguments). Therefore
the pullback (pr ◦ ξ0,e+1)∗TM0,0(X,e) is ample.

(iii): The morphism g(2) ◦ σ(2) : B → X equals g ◦ ς, and this is a deformation of g ◦ σ = g ◦ σ.
Because ζ1 is very twisting, g ◦ σ is very twistable. By Proposition 4.8, ς can be chosen so that
g(2) ◦ σ(2) is very twistable. Since h0,e+1 is a deformation of g(2) ◦ σ(2), by Proposition 4.8, ξ0,e+1

can be chosen so that h0,e+1 is very twistable.
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(iv): Since (σ(2))∗OΣ(2)(σ(2)(B)) is isomorphic to OB , also (σ0,e+1)∗OΣ0,e+1
(σ0,e+1(B)) is iso-

morphic to OB . This proves Claim 5.17. In particular, ξ0,e+1 is positive and ξ0,e+1(B) is contained
in the locus of very stable maps. Unfortunately it is not very positive!

To be a bit more precise in the proof of (iii), there exists a deformation of ζ1, ξ0,1 : B →
M0,1(X, 1) that is very twisting and such that h0,1 := g0,1 ◦ σ0,1 : B → X equals h0,e+1.

Because ξ0,e+1 is a deformation of ζ(2), the intersection number of ξ0,e+1(B) with any divisor of
M0,1(X, e + 1) is equal to the intersection number of ζ(2)(B) with that divisor. These intersection
numbers were computed above. Similarly, the intersection number of ξ0,1(B) with any divisor in
M0,1(X, 1) is equal to the intersection number of ζ1(B) with that divisor.

The families ξd,e+1: The families ξd,e+1 and ξd,1 are constructed by induction on d. The base
case d = 0 is the pair (ξ0,1, ξ0,e+1) constructed above, and the induction step consists of performing
a single modification and then deforming.

Let d be an integer 1 ≤ d ≤ δ. By way of induction, suppose that a pair (ξd−1,1, ξd−1,e+1) has been
constructed such that ξd−1,1 : B → M0,1(X, 1) is very twisting, ξd−1,e+1 : B → M0,1(X, e + 1) is
very positive and typical (in particular ξd−1,e+1(B) is contained in the locus of very stable maps), the
map hd−1,1 : B → X equals the map hd−1,e+1 : B → X, and the degree conditions of Equation (9)
hold for d− 1. In particular, because d ≤ δ, deg(ξ

∗
d−1,e+1∆1) ≥ 1.

Let b ∈ B be a closed point such that the stable map (ξd−1,e+1)b is in ∆1. By Definition 5.8,
this stable map is of the form,

(ξd−1,e+1)b = ((L ∪M,σd−1,e+1(b)), (gd−1,e+1)b : L ∪M → X),

where σd−1,e+1(b) ∈ L and g|L : L → X is an isomorphism to a twistable line.

Denote by B̃ the prestable curve of genus 0 containing B and L obtained by identifying the
divisor b ∈ B with the divisor σd−1,e+1(b) ∈ L. Denote by,

ξ̃d−1,e+1 = ((p̃d−1,e+1 : Σ̃d−1,e+1 → B̃, σ̃d−1,e+1), g̃d−1,e+1 : B̃ → X),

the modification of ξd−1,e+1 associated to (b, L, σd−1,e+1(b)), cf. Definition 5.3.

By construction, for each divisor in M0,1(X, e + 1), the difference of the intersection number
with ξ̃d−1,e+1(B̃) and the intersection number with ξd−1,e+1(B) equals the intersection number
with ξ̃d−1,e+1(L), i.e.,

ξ̃∗d−1,e+1H = ξ
∗
d−1,e+1H,

ξ̃∗d−1,e+1L = ξ
∗
d−1,e+1L+ 1,

ξ̃∗d−1,e+1∆i = ξ
∗
d−1,e+1∆i, i = 2, . . . , e− 1,

ξ̃∗d−1,e+1∆1 = ξ
∗
d−1,e+1∆1 − 1, i > 1,

ξ̃∗d−1,e+1∆e = ξ
∗
d−1,e+1∆e + 1, i > 1,

ξ̃∗d−1,2∆1 = ξ
∗
d−1,e+1∆1, i = 1.

Just a few remarks about this list: The second line arises because h̃d−1,e+1 : L → X equals
g|L : L → X, which is an isomorphism to a line. The fourth line arises by applying Lemma 3.29
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and using the fact that the pullback of OM0,1(X,e+1)(∆1) equals

σ∗I,λOΛ(σI,λ(L))⊗ (σ′I,λ)∗OL×M (σ′I,λ(L)),

in the notation of Subsection 5.1, where λ is the point in L ∩M . Of course the second factor in
the tensor product is isomorphic to OL and the first factor is OL(−λ) (because of the blowing up
of L × L at (λ, λ)); hence the net degree change is −1. Similarly, the fifth line arises because the
intersection of ξ̃d−1,e+1(L) and ∆e is exactly ξ̃d−1,e+1(λ); hence the degree increases by 1. In case
e = 1, the last two contributions exactly cancel each other, which gives the last line.

As a “consistency check”, substituting the computations above into the formula [19, Lem 2.2.2]
for the self-intersection of σ̃d−1,e+1(B̃) ⊂ Σ̃d−1,e+1 yields a net change of +1. Of course this is
correct because the change equals the self-intersection of σI,∆(L) ⊂ Λ, which is TL(−λ) (because of
the blowing up of L× L at (λ, λ)), and this has degree 2− 1 = 1.

Claim 5.18. The 1-morphism ξ̃d−1,e+1 : B̃ → M0,1(X, e + 1) is very positive, the image is
contained in the locus of stable maps with only the trivial automorphism, and the hypotheses of
Lemma 5.6 are satisfied.

First of all, the restriction of h̃d−1,e+1 : B̃ → X to B is hd−1,e+1 and the restriction to L is
g|L : L → X. By hypothesis, hd−1,e+1 is stable, and g|L is stable because it is a closed immersion.
Therefore hd−1,e+1 is stable. By hypothesis, the dimension of the obstruction group of hd−1,e+1 is
0. Moreover, possibly after deforming ξd−1,e+1, it may be assumed that the node of L∩M maps to
a very general point of X. Therefore g|L : L → X is free by [7, Prop. 4.14]. So the dimension of the
obstruction group of g|L is 0. Also, by Hypothesis 4.10 it may be assumed that ev : M0,1(X, 1) → X
is smooth at ((L, σd−1,e+1(b)), g|L : L → X). So by Lemma 3.28, the dimension of the obstruction
group of h̃d−1,e+1 is 0. Hence (i) and (ii) of Definition 4.11 are satisfied.

By hypothesis, the dimension of the obstruction group ofM0,0(X, e + 1) at each point of pr(ξ̃d−1,e+1(B)) =
pr(ξd−1,e+1(B)) is 0. And pr(ξ̃d−1,e+1(L)) is the point pr((ξ̃d−1,e+1)b), which is one of the points
above. Thus (iii) of Definition 4.11 is satisfied. Similarly, the restriction to B of the pullback,

(pr ◦ ξ̃d−1,e+1)∗TM0,0(X,e+1),

equals the pullback associated to pr ◦ ξd−1,e+1, which is deformation ample by hypothesis. And the
restriction to L is the pullback of a vector bundle by a constant map, hence it is isomorphic to a
direct sum of copies of OL. In particular the restriction to L is generated by global sections. By
Lemma 2.11, the pullback is deformation ample on all of B̃, hence (iv) of Definition 4.11 is satisfied.

Finally, the restriction to B of the pullback,

σ̃∗d−1,e+1OeΣd−1,e+1
(σ̃d−1,e+1(B̃)),

is equal to the analogous sheaf for ξd−1,e+1, and this is generated by global sections by construction.
The restriction to L is the pullback by the diagonal of TL, twisted down by σd−1,e+1(b), i.e.,
OL(2− 1) = OL(1). Thus by Lemma 2.11, the restriction to all of B̃ is deformation ample. Hence
(v) of Definition 4.11 is satisfied, therefore ξ̃d−1,e+1 is very positive.

By hypothesis ξ̃d−1,e+1(B) = ξd−1,e+1(B) is contained in the locus of stable maps that have
only the trivial automorphism. In particular, (ξd−1,e+1)b has only the trivial automorphism, from
which it easily follows that ξ̃d−1,e+1(L) is contained in the locus of stable maps with only the trivial
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automorphism. Therefore the image of all of B̃ is contained in the locus of stable maps with only
the trivial automorphism.

Because ξd−1,e+1 : B → M0,1(X, e + 1) is positive and the image is contained in the locus of
very stable curves, the hypotheses of Lemma 3.22 are satisfied and there is a short exact sequence
of locally free OB-modules,

0 → σ∗d−1,e+1OΣd−1,e+1
(σd−1,e+1(B)) → . . .

ξ
∗
d−1,e+1TM0,1(X,e+1) → (pr ◦ ξd−1,e+1)∗TM0,0(X,e+1) → 0.

By hypothesis, the third term is deformation ample, and the first term is generated by global
sections. By Lemma 2.3 (iii), the pullback of TM0,1(X,e+1) is generated by global sections. Because
the node of L∩M is mapped to a very general point of X, by [7, Prop. 4.14], the pullback of TX to
L and the pullback to M are each generated by global sections; in particular the dimension of the
obstruction group of g|L : L → X is 0. Hence the hypotheses of Lemma 5.6 are satisfied; therefore
Claim 5.18 is true.

Of course the next step will be to apply Lemma 5.6 to construct ξd,e+1. But first the family
ξ̃d−1,1 is constructed. By hypothesis, the line L is twistable. Denote by

ξL,1 = ((pL,1 : ΣL,1 → L, σL,1), gL,1 : ΣL,1 → X),

a twisting family such that hL,1 = g|L. If X is of planar type, assume that the degree of gL,1 is
1; otherwise the degree of gL,1 is 2. By Hypotheses 1.6 and 4.10, Lemma 4.9 applies to ξd−1,1 and
ξL,1, i.e., possibly after deforming the two families (without deforming h̃d−1,e+1),

(ξd−1,1)b = (ξL,1)σd−1,e+1(b).

Define ξ̃d−1,1 : B̃ →M0,1(X, 1) to be the unique 1-morphism whose restriction to B is ξd−1,1 and
whose restriction to L is ξL,1. By Lemma 4.5, ξ̃d−1,1 is very twisting. By construction, h̃d−1,1 =
h̃d−1,e+1. Also,

deg(ξ̃∗d−1,1H) = deg(ξ∗d−1,1H) + deg(gL,1).
By definition, deg(gL,1) is 1 if X is planar type, and 2 if X is quadric type. Finally,

deg(ξ̃∗d−1,1L) = deg(ξ∗d−1,1L) + 1,

because hL,1 : L → X is an isomorphism to a line.

By Lemma 5.6, there exists a 1-morphism ξd,e+1 : B →M0,1(X, e + 1), i.e., both ξ̃d−1,e+1 and
ξd,e+1 have a common generization. Since the image of ξ̃d−1,e+1 is contained in the locus of stable
maps with only the trivial automorphism, ξd,e+1 can be chosen with the same property. Because the
dimension of the obstruction group at every point of the image of ξ̃d−1,e+1 equals 0, the same is true
for ξd,e+1. Hence the image of ξd,e+1 is contained in the locus of M0,1(X, e + 1) that is a smooth
scheme. Because ξ̃d−1,e+1 can be chosen to contain a very general point of M0,1(X, e + 1) (because
ξd−1,e+1 is typical), the same is true of ξd,e+1. By [7, Prop. 4.14], the pullback ξ

∗
d,e+1TM0,1(X,e+1) is

generated by global sections. Therefore, after deforming further, ξd,e+1 can be chosen to be typical.
Because ξ̃d−1,e+1 is very positive, by Lemma 4.13, ξd,e+1 can be chosen to be very positive. Also, by
the proof of Proposition 4.8, ξd,e+1 can be chosen so that there exists a deformation ξd,1 of ξ̃d−1,1

that is very twisting and such that hd,1 = hd,e+1.
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Of course for any divisor in M0,1(X, e + 1) (resp. M0,1(X, 1)), the intersection number with
ξd,e+1 (resp. ξd,1) equals the intersection number with ξ̃d−1,e+1 (resp. ξ̃d−1,1), and these are
computed above. This finishes the proof of the induction step. Hence, by induction on d, for each
d = 1, . . . , δ, there exists an inducting pair (ξd,1, ξd,e+1) as claimed. �

6. Twistable lines on hypersurfaces

In this section it is proved that if n + 1 ≥ d2, if X ⊂ Pn is a general hypersurface of degree d,
and if L ⊂ X is a general line on X, then L is twistable.

Remark 6.1. There is one exceptional case, namely d = 1. For n = 1, 2, there is no twistable line
on a hyperplane in Pn, i.e., there is no twistable line on Pn−1. For n ≥ 3 there is a twistable line on
Pn−1. In this section it is proved there is a twistable line on Pn−1 if n ≥ 4. Let ((π : Σ → B, σ), g)
be a twisting family in Pn such that h : B → Pn is a line, and let p ∈ Pn − g(Σ). Denote by
projp : Pn 99K Pn−1 projection from p. Then ((π : Σ → B, σ),projp ◦ g) is a twisting family in Pn−1

and projp ◦ h : B → Pn−1 is a line. Therefore there is also a twistable line on P2.

Notation 6.2. Denote Nd =
(
n+d

n

)
− 1 and denote by PNd the projective space parametrizing

hypersurfaces X ⊂ Pn of degree d. Denote by X ⊂ PNd × Pn the universal family of degree
d hypersurfaces in Pn. Denote by G(1, n) the Grassmannian variety of lines in Pn. Denote by
F (X ) ⊂ PNd ×G(1, n) the parameter space of pairs ([X], [L]) consisting of a hypersurface of degree
d, X ⊂ Pn, and a line L ⊂ X. Denote by P (t) = (t + 1)2 the Hilbert polynomial of a quadric
surface in P3. Denote by U ⊂ HilbP (t)

Pn the open subscheme of the Hilbert scheme that parametrizes
subschemes of Pn projectively equivalent to a smooth quadric surface in P3 ⊂ Pn. Denote by
V ⊂ U × G(1, n) the parameter space of pairs ([Σ], [L]) consisting of a smooth quadric surface, Σ,
and a line L ⊂ Σ. Denote by V → Ũ → U the Stein factorization of the projection prU : V → U .
Denote by W ⊂ PNd × U × G(1, n) the parameter space of triples ([X], [Σ], [L]) consisting of a
hypersurface of degree d, X ⊂ Pn, a smooth quadric surface Σ ⊂ X, and a line L ⊂ Σ.

Observe that the projection F (X ) → G(1, d) is a projective bundle of relative dimension Nd −
(d + 1). Observe that Ũ → U is a finite, étale morphism of degree 2. Observe that V → Ũ is a
P1-bundle. Observe that W → V is a projective space bundle of relative dimension Nd − (d + 1)2.

Let ([X], [Σ], [L]) be a triple in W . There is a map (well-defined up to nonzero scalar) ∂X :
Cn+1 → H0(Pn,OPn(d − 1)) that evaluates the partial derivatives of a defining equation of X.
Compose this map with the restriction map H0(Pn,OPn(d − 1)) → H0(Σ,OΣ(d − 1)), and denote
the composition by,

∂X,Σ : Cn+1 → H0(Σ,OΣ(d− 1)).

Denote E = O⊕(n+1)
W . Denote by G the unique quotient of H0(Pn,OPn(d−1))⊗COU that is locally

free and whose fiber at each point Σ is the quotient,

H0(Pn,OPn(d− 1)) → H0(Σ,OΣ(d− 1)).

Denote by F the locally free OW -module,

F = pr∗PNd
OPNd (1)⊗ pr∗UG.

There is a map of OW -modules, ∂ : E → F whose fiber at each point ([X], [Σ], [L]) is the map ∂X,Σ.
Denote by W o ⊂ W the open subscheme that is the complement of the support of Coker(∂), i.e.,
W o is the maximal open subscheme on which ∂ is surjective.

Lemma 6.3. Let ([X], [Σ], [L]) be a point in W o. Then,
(i) X is smooth along Σ,
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(ii) hi(Σ, NΣ/Pn) = hi(Σ, NΣ/Pn(−L)) = hi(Σ, NΣ/Pn(−1)) = 0, for i > 0,
(iii) hi(Σ, NΣ/X) = hi(Σ, NΣ/X(−L)) = hi(Σ, NΣ/X ⊗OΣ(−1)) = 0, for i > 0,
(iv) h1(L,NL/X(−1)) = h1(L,NL/X) = 0,
(v) the projection morphism prPNd : W → PNd is smooth at ([X], [Σ], [L]),
(vi) the projection morphism prPNd : F (X ) → PNd is smooth at ([X], [L]), and
(vii) the projection morphism prF (X ) : W → F (X ) is smooth at ([X], [Σ], [L]).

Proof. (i): Since the partial derivatives of a defining equation of X generate H0(Σ,OΣ(d − 1)),
the subscheme of X where the partial derivatives all vanish is disjoint from Σ. By the Jacobian
criterion, X is smooth at each point of Σ.

(ii): Denote by P3 ⊂ Pn the span of Σ. There is a short exact sequence,

0 −−−−→ NΣ/P3 −−−−→ NΣ/Pn −−−−→ NP3/Pn |Σ −−−−→ 0.

Since NΣ/P3 ∼= OΣ(2) and since NP3/Pn |Σ ∼= OΣ(1)⊕(n−3), the short exact sequence above is,

0 −−−−→ OΣ(2) −−−−→ NΣ/Pn −−−−→ OΣ(1)⊕(n−3) −−−−→ 0.

From this it is easy to compute that,

hi(Σ, NΣ/Pn) = hi(Σ, NΣ/Pn ⊗OΣ(−1)) = hi(Σ, NΣ/Pn ⊗OΣ(−L)) = 0,

for i > 0.

(iii): There is a short exact sequence,

0 −−−−→ NΣ/X −−−−→ NΣ/Pn −−−−→ NX/Pn |Σ −−−−→ 0.

Of course NX/Pn |Σ ∼= OΣ(d). For the three cases L = OΣ, L = OΣ(−L), and L = OΣ(−1),
hi(Σ,OΣ(d)⊗L) = 0 for i > 0. By (ii), hi(Σ, NΣ/Pn ⊗L) = 0 for i > 0. By the long exact sequence
in cohomology associated to the twist by L of the short exact sequence above, hi(Σ, NΣ/X ⊗L) = 0
for i > 2. Also h1(Σ, NΣ/X ⊗ L) = 0 iff the map eL : H0(Σ, NΣ/Pn ⊗ L) → H0(Σ, NX/Pn |Σ) is
surjective.

The map eOΣ factors the map ∂X,Σ. Since ∂X,Σ is surjective, also eOΣ is surjective and h1(Σ, NΣ/X) =
0.

For the case L = OΣ(−L), observe that OΣ(1) ∼= OΣ(L+L′) where L′ ⊂ Σ is a line of the ruling
opposite to L. There is a commutative diagram,

H0(Σ, NΣ/Pn(−1))⊗C H0(Σ,OΣ(L′)) −−−−→ H0(Σ, NΣ/Pn(−L))y y
H0(Σ, NX/Pn |Σ(−1))⊗C H0(Σ,OΣ(L′)) −−−−→ H0(Σ, NX/Pn |Σ(−L))

The left vertical arrow is surjective by (ii). The bottom arrow is

H0(Σ,OΣ((d− 1)L + (d− 1)L′))⊗H0(Σ,OΣ(L′)) → H0(Σ,OΣ((d− 1)L + dL′)),

which is surjective. Therefore also the right vertical arrow is also surjective, i.e., h1(Σ, NΣ/X(−L)) =
0. The proof that h1(Σ, NΣ/X) = 0 is almost identical to the proof that h1(Σ, NΣ/X(−L) = 0.

(iv) There is a short exact sequence,

0 −−−−→ NΣ/X(−1) −−−−→ NΣ/X(−L′) −−−−→ NΣ/X |L(−1) −−−−→ 0.
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By the associated long exact sequence in cohomology and the computations above, h1
(
L,NΣ/X |L(−1)

)
=

0. There is a short exact sequence,

0 −−−−→ NL/Σ(−1) −−−−→ NL/X(−1) −−−−→ NΣ/X |L(−1) −−−−→ 0.

Of course NL/Σ
∼= OL(1), so h1(L,NL/Σ(−1)) = 0. As proved above, h1

(
L,NΣ/X |L(−1)

)
= 0.

Therefore by the long exact sequence in cohomology, h1(L,NL/X(−1)) = 0. Since NL/X is a locally
free OL-module and h1(L, NL/X(−1)) = 0, by Grothendieck’s lemma NL/X is generated by global
sections. In particular, also h1(L,NL/X) = 0.

(v): By [16, Prop. I.2.14.2], the obstruction space for the relative Hilbert scheme, HilbP (t)

X/PNd
,

at the point ([X], [Σ]) is contained in H1(Σ, NΣ/X), which has dimension 0 by (iv). Since the
obstruction space vanishes, it follows by [16, Thm. 2.10] that HilbP (t)

X/PNd
→ PNd is smooth at

([X], [Σ]). Also W → HilbP (t)

X/PNd
is smooth. Therefore the composition prPNd : W → PNd is smooth

at ([X], [Σ], [L]).

(vi): The proof is almost identical to the proof of (v).

(vii): By (v), W → PNd is smooth at ([X], [Σ], [L]). By (vi), F (X ) → PNd is smooth at ([X], [L]).
So the Jacobian criterion for the smoothness of prF (X ) at ([X], [Σ], [L]) is that the map of vertical
tangent bundles, dprF (X ) : TW/PNd → π∗TF (X )/PNd is surjective at ([X], [Σ], [L]). This reduces to the
surjectivity of H0

(
Σ, NΣ/X

)
→ H0

(
L,NΣ/X |L

)
. The cokernel is contained in H1(Σ, NΣ/X(−L)),

which is zero by (iii). Therefore prF (X ) is smooth at ([X], [Σ], [L]). �

We associate to each ([X], [Σ], [L]) ∈ W o a morphism ζ : L → M0,1(X, 1) as follows. Let
σ : L → Σ be the inclusion and let prL : Σ → L be the unique projection such that σ is a section
of prL. Let g : Σ → X be the inclusion. Then,

ζ = ((prL : Σ → L, σ), g : Σ → X),

is a family of stable maps, i.e., a morphism ζ : L →M0,1(X, 1).

Lemma 6.4. For every point ([X], [Σ], [L]) ∈ W o, the morphism ζ : L →M0,1(X, 1) is twisting.

Proof. Since g ◦ σ : L → X is an embedding, Axiom (i) of Definition 4.3 is satisfied. By Lemma 6.3
(vi), the dimension of the obstruction group of M0,0(X, 1) at [g ◦ σ : L → X] is 0, i.e., Axiom (ii)
of Definition 4.3 is satisfied.

Denote by N the normal bundle of the regular embedding (prL, g) : Σ → L×X. There is a short
exact sequence,

0 −−−−→ pr∗LTL −−−−→ N −−−−→ NΣ/X −−−−→ 0.

By Remark 4.4 (ii), Axiom (iii) holds if R1 (prL)∗N (−σ) = {0}. For each fiber L′ of prL : Σ → L,
N (−σ)|L′ ∼= NL′/X(−1). Since ([X], [Σ], [L′]) is also in W o, by Lemma 6.3 (iv), h1(L′, NL′/X(−1)) =
0. Therefore R1(prL)∗N (−σ) = {0}, i.e., Axiom (iii) holds.

By Remark 4.4 (ii), ζ∗Tev
∼= (prL)∗N (−σ). Part of the long exact sequence of higher direct

images associated to the twist by OΣ(−L) of the short exact sequence above is,

(prL)∗pr∗LTL(−σ(L)) → (prL)∗N (−σ(L)) → (prL)∗NΣ/X(−σ(L)) → R1(prL)∗pr∗LTL(−σ(L)) → 0.

For each fiber L′ of prL, TL(−σ(L))|L′ ∼= OL′(−1). Therefore (prL)∗pr∗LTL(−σ(L)) = {0} and
R1(prL)∗pr∗LTL(−σ(L)) = {0}, i.e., (prL)∗N (−σ(L)) ∼= (prL)∗NΣ/X(−σ(L)).
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Let p′ ∈ L be a closed point and denote L′ = pr−1
L {p′}. Since R1 (prL)∗ pr∗LTL(−L − L′) =

{0} and R1 (prL)∗N (−L − L′) = {0}, by the long exact sequence of higher direct images, also
R1 (prL)∗NΣ/X(−L − L′) = {0}. By the Leray spectral sequence, h1

(
Σ, NΣ/X(−L− L′)

)
=

h1
(
L, (prL)∗

(
NΣ/X(−σ(L))

)
(−p′)

)
. By Lemma 6.3 (iii), h1(Σ, NΣ/X(−L − L′)) = 0, so also

h1(L, (prL)∗(NΣ/X(−σ(L)))(−p′)) = 0. By Grothendieck’s lemma, (prL)∗NΣ/X(−σ(L)) is a di-
rect sum of line bundles of degree ≥ 0, i.e., it is generated by global sections. Therefore Axiom (iv)
is satisfied. Finally, σ∗OΣ(σ(L)) ∼= OL, so Axiom (v) is satisfied. �

Proposition 6.5. If either,
(i) d = 1 and n ≥ 4, or
(ii) d ≥ 2 and n + 1 ≥ d2,

then prF (X ) : W o → F (X ) is dominant. Therefore, for a general pair ([X], [L]) ∈ F (X ), L is a
twistable line on X.

Proof. By Lemma 6.3 (v), it suffices to prove that W o is nonempty.

(i): If d = 1 and n ≥ 4, then for any quadric surface Σ ⊂ Pn and any hyperplane X ⊂ Pn

containing span(Σ), ∂ is an isomorphism so ([X], [Σ], [L]) is in W o for any line L ⊂ Σ.

(ii): Next suppose that d ≥ 2. Denote by Id the set,

Id = {(i, j) ∈ Z× Z : 0 ≤ i, j ≤ d− 1, i + j ≥ 3},
which has d2 − 4 elements. Denote by,

(Y0, Y1, Y2, Y3) ∪ (Xi,j)(i,j)∈Id
∪ (Zm : m = 1, . . . , n + 1− d2),

a basis of H0(Pn,OPn(1)), i.e., a basis of homogeneous coordinates on Pn. Denote by Σ ⊂ Pn the
smooth quadric surface with ideal,

IΣ = 〈Y0Y3 − Y1Y2〉+ 〈Xi,j |(i, j) ∈ Id〉+ 〈Zm|m = 1, . . . , n + 1− d2〉.
This is the image of the closed immersion f : P1 × P1 → Pn,

([U0 : U1], [V0 : V1]) 7→ [U0V0 : U0V1 : U1V0 : U1V1 : 0 : · · · : 0].

For each (i, j) ∈ Id, denote k = min(i, j), denote i′ = i − k, and denote j′ = j − k. Denote by
X ⊂ Pn the hypersurface with defining equation,

F = (Y0Y3 − Y1Y2) Y d−2
3 +

∑
(i,j)∈Id

Y k
0 Y i′

1 Y j′

2 Y d+k−i−j−1
3 Xi,j .

Clearly Σ ⊂ X. The claim is that ∂F : Cn+1 → H0 (Σ,OΣ(d− 1)) is surjective. By construction,
∂F

∂Y0
7→ Ud−1

1 V d−1
1 ,

∂F

∂Y1
7→ Ud−1

1 V0V
d−2
1 ,

∂F

∂Y2
7→ U0U

d−2
1 V d−1

1 ,
∂F

∂Y3
7→ U0U

d−2
1 V0V

d−2
1 .

For each (i, j) ∈ Id,
∂F

∂Xi,j
7→ U i

0U
d−1−i
1 V j

0 V d−1−j
1 . (12)

Since the partial derivatives of the form ∂F
∂Yi

give the terms U i
0U

d−1−i
1 V j

0 V d−1−j
1 with (i, j) =

(0, 0), (0, 1), (1, 0), and (1, 1), and since these are precisely the pairs (i, j) not contained in Id, ∂F
is surjective. Therefore, for every line L ⊂ Σ, ([X], [Σ], [L]) is in W o. �

Together with Remark 6.1, Lemma 6.4 and Proposition 6.5 imply the following corollary.
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Corollary 6.6. If X ⊂ Pn is a general hypersurface of degree d and either,
(i) d = 1 and n ≥ 3, or
(ii) d ≥ 2 and n + 1 ≥ d2,

then Hypothesis 4.10 holds.

7. Base case of the induction for hypersurfaces

In this section it is proved that if n ≥ d2 + d + 1 and if X ⊂ Pn is a general hypersurface of
degree d, then there exists a morphism ζ1 : P1 → M0,1(X, 1) that is both very twisting and very
positive. This provides the base case for the induction argument of Section 5.

Remark 7.1. There is one exceptional case, d = 1. It will be proved that for n ≥ 7, there is a
morphism ζ1 : P1 →M0,1(Pn−1, 1) that is both very twisting and very positive. As in Remark 6.1,
repeatedly projecting from a point produces a morphism ζ1 : P1 → M0,1(Pn−1, 1) that is very
twisting and very positive for all n ≥ 3.

The techniques in this section are the same as those of Section 6. Proposition 6.5 is proved by
finding a single degree d polynomial F on Pn, vanishing on some quadric surface Σ, and such that

∂F,Σ : Cn+1 → H0 (Σ,OΣ(d− 1))

is surjective. In this section, the role of L ⊂ X is replaced by a rational normal curve C0 ⊂ X of
degree k ≤ n (in the end, only the case k = 2d will be needed). The role of the quadric surface is
replaced by a rational normal scroll Σ of degree 2k − 1 such that C0 ⊂ Σ ⊂ X. The cohomology
vanishing results of the last section are replaced by the vanishing of hi(Σ, NΣ/X(−C0 − 2L)) for
i > 0, where L is a line of the ruling of Σ. The computation in this section will be to find a single
degree d polynomial F on Pn, vanishing on Σ, and such that the image, W , of the map,

∂F,Σ : Cn+1 → H0(Σ,OΣ(d− 1)),

has the property that the induced map,

W ⊗H0(Σ,OΣ((k − 3)L)) → H0(Σ,OΣ(d− 1)⊗OΣ((k − 3)L)),

is surjective. A similar polynomial F to that of the last section satisfies this condition.

7.1. Generating linear systems on F1. In the last section, the relevant surface was the Hirze-
bruch surface F0 = P1 × P1 embedded as a quadric surface. In this section, the relevant surface is
the Hirzebruch surface F1 embedded as a rational normal scroll of degree 2k − 1. The projective
model of F1 used here is,

F1 =
{
([T0 : T1], [T0U : T1U : V ]) ∈ P1 × P2|T0(T1U) = T1(T0U)

}
.

In the equation above, “T0U” and “T1U” are just names of homogeneous coordinates on P2 (although
the term U does have a meaning described below). Denote by prP1 : F1 → P1 and prP2 : F1 → P2

the projection morphisms. Denote by OF1(F ) the invertible sheaf pr∗P1OP1 and by OF1(E + F ) the
invertible sheaf pr∗P2OP2 . The invertible sheaf OF1(E) is associated to the directrix E ⊂ F1. (This
explains the terminology T0U and T1U ; U is a nonzero element of H0 (F1,OF1(E)), and T0U and
T1U are the products of U with the two global sections T0 and T1 of H0 (F1,OF1(F )).)

The invertible sheaves OF1(E +F ) and OF1(F ) generate the Picard group of F1; thus motivating
the notation,

O(a, b) := OF1 (a(E + F ) + bF ) .

The divisors E + F and F are each nef, but not ample. Therefore they generate the nef cone; an
invertible sheaf O(a, b) is nef iff 0 ≤ a, b, and it is ample iff 0 < a, b.
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Let O(a, b) be a nef invertible sheaf, and let W ⊂ H0 (F1,O(a, b)) be a linear system. Let c ≥ 0
be an integer.

Definition 7.2. The linear system W is a c-generating linear system if the associated map,

µW,c : W ⊗H0 (F1,O(0, c)) → H0 (F1,O(a, b + c)) ,

is surjective.

When is W a c-generating linear system?

Notation 7.3. For each integer i, denote r(i) =
⌊

b+i−1
c+1

⌋
. Denote by βd, βr, αd and αr the unique

integers such that 0 ≤ αr, βr < c + 1 and b− 1 = βd(c + 1) + βr, a + b− 1 = αd(c + 1) + αr. Denote
by N(a, b, c) the integer,

N(a, b, c) =
a∑

i=0

(r(i)+2) = 2a+2+
{

βd(c + 1− βr) + αd(1 + αr) + (αd − βd − 1)(c + 1) αd > βd,
βd(αr − βr + 1) αd = βd.

Denote by W0(a, b, c) ⊂ H0(F1,O(a, b)) the linear system,

W0(a, b, c) = span{U iV a−iT
(b+i)−j(c+1)
0 T

j(c+1)
1 |i = 0, . . . , a, j = 0, . . . , r(i)}
+span

{
U iV a−iT b+i

1

∣∣ i = 0, . . . , a}.

Lemma 7.4. The linear system W0(a, b, c) is a c-generating linear system of dimension N(a, b, c).

Proof. For each pair of nonnegative integers a′, b′ there is a decreasing filtration on H0(F1,O(a′, b′)),

F iH0(F1,O(a′, b′)) = H0(F1,O(a′, b′)(−iE)) ∼= H0(F1,O(a′ − i, b′)).

For any linear system W ⊂ H0(F1,O(a, b)), there is an induced filtration F iW = F i ∩ W . The
multiplication map µW,c respects the filtrations on W and on H0(F1,O(a, b + c)). Hence µW,c is
surjective if every associated graded map,

griµW,c : griW ⊗H0(F1,O(0, c)) → griH0(F1,O(a, b + c)),

is surjective. Now dim(W ) is the sum of all terms dim(griW ). For each i, what is the minimum
possible dimension of a vector subspace W i ⊂ griH0(F1,O(a, b)) such that the associated map,

griµW i,c : W i ⊗H0(F1,O(0, c)) → griH0(F1,O(a, b + c)),

is surjective?

The associated graded pieces of O(a′, b′) are,

griH0(F1,O(a′, b′)) ∼=
{

H0(E,OE(b′ + i)), 0 ≤ i ≤ a′

{0}, i > a′
.

Let W i ⊂ H0 (E,OE(b + i)) be a linear system such that the multiplication map,

griµW i,c : W i ⊗H0(E,OE(c)) → H0(E,OE(b + c + i)),

is surjective. Counting dimensions on the left and right side of the equation, dim(W i) · (c + 1) ≥
(b + c + i + 1), i.e.,

dim(W i) ≥
⌊

b + i− 1
c + 1

⌋
+ 2 = r(i) + 2.
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The linear system W i = griW0(a, b, c), which is generated by the set of monomials

{U iV a−iT
(b+i)−j(c+1)
0 T

j(c+1)
1 |j = 0, . . . , r(i)} ∪ {U iV a−iT b+i

1 },
has the property that W i ⊗H0(E,OE(c)) → H0(E,OE(b + c + i)) is surjective. And dim(W i) =
r(i) + 2. So W0(a, b, c) is a c-generating linear system of dimension,

2a + 2 +
a∑

i=0

⌊
b + i− 1

c + 1

⌋
= N(a, b, c).

Moreover, this is the minimum dimension among c-generating linear systems for which each map
griµW i,c is surjective. �

Notation 7.5. Denote by S the Cox homogeneous coordinate ring of F1, i.e.,

S := ⊕(a,b)∈Z2H0 (F1,O(a, b)) = C[T0, T1, U, V ].

This is a Z2-graded ring, where deg(T0) = deg(T1) = (0, 1), deg(V ) = (1, 0) and deg(U) = (1,−1).
For every (a, b) ∈ Z2, S(a,b) = H0 (F1,O(a, b)). Denote by deg : S → Z ∪ {−∞} the total degree
defined by deg(M) = a + b for all elements M ∈ S(a,b). Denote by ≺ the graded lexicographical
monomial order on S that refines the grading by total degree by U > V > T0 > T1. For every linear
system W ⊂ H0(F1,O(a, b)) denote by IN(W ) the linear system generated by the initial terms of
W .

Lemma 7.6. If the linear system IN(W ) contains W0(a, b, c), then W is a c-generating linear
system.

Proof. The linear system of initial terms of Image(µW,c) satisfies

IN(W ) · S(0,c) ⊂ IN (Image(µW,c)) .

Since IN(W ) contains W0(a, b, c),

W0(a, b, c) · S(0,c) ⊂ IN (Image(µW,c)) .

By Lemma 7.4, W0(a, b, c) · S(0,c) = S(a,b+c). Hence IN (Image(µW,c)) = S(a,b+c), and therefore
Image(µW,c) = S(a,b+c). �

Remark 7.7. The most important case is a = d − 1, b = (d − 1)(k − 1) and c = k − 3 for positive
integers d ≥ 1 and k ≥ 3 (d will be the degree of the hypersurface X ⊂ Pn, and k will be the degree
of the curve C0 ⊂ X). In particular, if d ≥ 2 and k ≥ 2d, then b − 1 = (d − 1)(k − 2) + d − 2,
a+ b− 1 = (d− 1)(k− 2)+2d− 3 and 0 ≤ d− 2, 2d− 3 ≤ k− 3. Hence r(i) = d− 1 for i = 0, . . . , a
and N(a, b, c) = d(d + 1) = d2 + d. Moreover, mink≥3 N(d − 1, (d − 1)(k − 1), (k − 3)) = d2 + d.
This is the origin of the term “d2 + d” in Theorem 1.1.

7.2. Cohomology Results.

Notation 7.8. Let Nd, PNd , and X ⊂ PNd × Pn be as in Notation 6.2. Let k be any integer with
3 ≤ k ≤ n

2 (only the case k = 2d will be used later). Let Rk(Pn) ⊂ Hilbkt+1
Pn denote the open

subscheme parametrizing curves C0 ⊂ Pn that are projectively equivalent to a degree k rational
normal curve C0 ⊂ Pk ⊂ Pn. Let Rk(X ) ⊂ PNd × Rk(Pn) denote the parameter space for pairs
([X], [C0]) such that C0 ⊂ X. Let Q(t) = 1

2 (t + 1)((2k − 1)t + 2) denote the Hilbert polynomial
of a rational normal scroll of degree 2k − 1 in P2k. Let U ⊂ HilbQ(t)

Pn denote the open subscheme
parametrizing closed subschemes Σ ⊂ Pn that are projectively equivalent to a rational normal scroll
of degree 2k− 1 in P2k ⊂ Pn and that are abstractly isomorphic to F1. Let V ⊂ U ×Rk(Pn) denote
the parameter space of pairs ([Σ], [C0]) such that C0 ⊂ Σ and such that, via the isomorphism of
Σ ∼= F1, the invertible sheaf of C0 is O(1, 0). Let W ⊂ PNd × U × Rk(Pn) denote the parameter
space for triples ([X], [Σ], [C0]) where ([Σ], [C0]) is in V and where Σ ⊂ X.
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Observe thatRk (Pn) is a homogeneous space of PGLn+1, and therefore is smooth and connected.
Observe that the projection Rk(X ) → Rk(Pn) is a projective bundle of relative dimension Nd −
(kd+1). Observe that the projection map V → U factors as an open subset (with nonempty fibers)
of a projective bundle over U of relative dimension 2 (more precisely, every fiber is isomorphic to the
A2 of irreducible curves in the linear system |O(1, 0)|). Observe that the projection map W → V is
a projective bundle of relative dimension Nd −Q(d).

For each triple ([X], [Σ], [C0]) ∈ W, define ∂X,Σ : Cn+1 → H0 (Σ,OΣ(d− 1)) as in Section 6.
More precisely, denote E = O⊕(n+1)

W . Denote by G the unique quotient of H0(Pn,OPn(d−1))⊗COU
that is locally free and whose fiber at each point Σ is the quotient,

H0(Pn,OPn(d− 1)) → H0 (Σ,OΣ(d− 1)) .

Denote by F the locally free OW -modules

pr∗PNd
(OPNd (1))⊗ pr∗UG.

Then there is a map of OW -modules ∂ : E → F whose fiber at each point ([X], [Σ], [C0]) is the map
∂X,Σ. Denote by Wo ⊂ W the open subscheme parametrizing points ([X], [Σ], [C0]) such that,

Image(∂X,Σ) ⊂ H0(Σ,OPn(d− 3)|Σ),

is a (k − 3)-generating linear system.

Let Σ ⊂ P2k ⊂ Pn be a rational normal surface scroll of degree 2k − 1, and let f : F1 → Σ
be an isomorphism. For each pair of nonnegative integers (a, b), denote by N(a, b) the locally free
OF1-module,

N(a, b) = f∗
(
NΣ/Pn ⊗OPn(−1)|Σ

)
⊗O(a, b),

and denote by N ′(a, b) ⊂ N(a, b) the subsheaf,

N ′(a, b) = f∗
(
NΣ/P2k ⊗OPn(−1)|Σ

)
⊗O(a, b).

Lemma 7.9. (i) N ′(0, 0) is generated by global sections and hi(F1, N
′(0, 0)) = 0 for i > 0,

(ii) N(0, 0) is generated by global sections and hi(F1, N(0, 0)) = 0 for i > 0,
(iii) for every pair of nonnegative integers (a, b) and for every coherent sheaf F on F1 that is

generated by global sections and such that hi(F1,F) = 0 for i > 0, F(a, b) := F ⊗O(a, b) is
generated by global sections and hi(F1,F(a, b)) = 0 for i > 0.

In particular, for every pair of nonnegative integers (a, b), N(a, b) (resp. N ′(a, b)) is generated
by global sections and hi(F1, N(a, b)) = 0 for i > 0 (resp. hi(F1, N

′(a, b)) = 0 for i > 0).

Proof. (i): The morphism prP1 : F1 → P1 is isomorphic over P1 to projection from the projective
bundle,

F1
∼= P (OP1(−(k − 1))⊕OP1(−k)) .

Under this isomorphism the invertible sheaf O(1, k−1) on Σ corresponds to the invertible sheaf O(1)
on P(OP1(−(k−1))⊕OP1(−k)) where O(1) is the universal invertible quotient of pr∗P1(OP1(k−1)⊕
OP1(k)). Up to projective equivalence, the morphism f : F1 → P2k is the closed immersion given
by the complete linear system of O(1); in particular, f∗OP2k(1) ∼= O(1). Using this isomorphism,
there is a short exact sequence of OF1-modules,

0 → pr∗P1TP1 → pr∗P1(OP1(1)⊕(2k−1))⊗ f∗OP2k(1) → f∗NΣ/P2k → 0.

Twisting by f∗OP2k(−1), N ′(0, 0) is a quotient of pr∗P1(OP1(1)⊕(2k−1)). Hence N ′(0, 0) is generated
by global sections. Also,

(prP1)∗(pr∗P1TP1 ⊗ f∗OP2k(−1)) = {0}, R1(prP1)∗(pr∗P1TP1 ⊗ f∗OP2k(−1)) = {0}.
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Twisting the short exact sequence by f∗OP2k(−1) and forming the associated long exact sequence of
higher direct images, R1(prP1)∗(f∗NΣ/P2k(−1)) = {0}, and (prP1)∗(f∗NΣ/P2k(−1)) ∼= OP1(1)⊕(2k−1).
Computing the cohomology of N ′(0, 0) via the Leray spectral sequence associated to prP1 : F1 → P1,
hi(F1, N

′(0, 0)) = 0 for i > 0.

(ii): There is a short exact sequence,

0 −−−−→ N ′(0, 0) −−−−→ N(0, 0) −−−−→ O(0, 0)⊕(n−2k) −−−−→ 0.

By (i), hi(F1,OF1) = 0 for i > 0. Therefore N(0, 0) is generated by global sections and hi(F1, N(0, 0)) =
0 for i > 0.

(iii): Let F be a coherent sheaf on F1 such that F is generated by global sections and such
that hi(F1,F) = 0 for i > 0. It will be proved by double induction on (a, b) that for every pair of
nonnegative integers (a, b), F(a, b) is generated by global sections and hi(F1,F(a, b)) = 0 for i > 0.

The base case is b = 0 and is established by induction on a. For a = 0, the result follows by
hypothesis. Let a > 0 and, by way of induction, suppose the result is proved for a− 1. Let D ⊂ F1

be a general member of the linear system |O(1, 0)|. Then D is a smooth curve isomorphic to P1.
Since D is general, there is a short exact sequence,

0 −−−−→ F(a− 1, 0) −−−−→ F(a, 0) −−−−→ F(a, 0)|D −−−−→ 0.

The sheaf F|D is generated by global sections, and OF1(a(e+f))|D ∼= OP1(a). Hence also F(a, 0)|D
is generated by global sections. By the induction assumption, h1(F1,F(a − 1, 0)) = 0. By the
long exact sequence of cohomology associated to the short exact sequence, every global section of
F(a, 0)|D is the image of a global section of F(a, 0). Hence F(a, 0) is generated by global sections.
A coherent sheaf on P1 that is generated by global sections has no higher cohomology. Combined
with the induction assumption and the long exact sequence in cohomology associated to the short
exact sequence above, hi(F1,F(a, 0)) = 0 for i > 0. Therefore, for every a > 0, F(a, 0) is generated
by global sections and hi(F1,F(a, 0)) = 0 for i > 0.

Suppose that b > 0 and suppose the result is proved for b− 1. Let L ⊂ F1 be a general fiber of
pr1. Then L is smooth and isomorphic to P1. Since L is general, there is a short exact sequence,

0 −−−−→ F(a, b− 1) −−−−→ F(a, b) −−−−→ F(a, b)|L −−−−→ 0.

Via the isomorphism L ∼= P1, OF1(a(e + f) + bf)|L ∼= OP1(a). By almost identical arguments to
those above, F(a, b) is generated by global sections and hi(F1,F(a, b)) = 0 for i > 0. �

Let ([X], [Σ], [C0]) be a point in Wo and let f : F1 → Σ be an isomorphism. For each pair of
nonnegative integers (a, b), denote NX(a, b) = f∗(NΣ/X ⊗OPn(−1)|Σ)⊗O(a, b).

Lemma 7.10. (i) The hypersurface X is smooth along Σ.
(ii) For each pair of nonnegative integers (a, b), hi(F1, NX(a, b + k − 3)) = 0 for i > 0.
(iii) For every line of ruling L ⊂ Σ and every nonnegative integer a, h1(L,NL/X(a− 1)) = 0.
(iv) For every nonnegative integer a, h1(C0, NC0/X(a− 2)) = 0.
(v) The projection morphism prPNd : W → PNd is smooth at ([X], [Σ], [C0]).
(vi) For every line of ruling L ⊂ Σ, the projection morphism prPNd : F (X ) → PNd is smooth at

([X], [L]).
(vii) The projection morphism prPNd : Rk(X ) → PNd is smooth at ([X], [C0]).
(viii) The projection morphism π : W → Rk(X ) is smooth at ([X], [Σ], [C0]).
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Proof. (i): Since the partial derivatives of a defining equation of X span a c-generating linear series,
in particular they generate the sheaf OΣ(d−1). Hence, there is no point of Σ at which all the partial
derivatives vanish. By the Jacobian criterion, X is smooth along Σ.

(ii): There is a short exact sequence,

0 −−−−→ NΣ/X −−−−→ NΣ/Pn −−−−→ NX/Pn |Σ −−−−→ 0.

Denote α = a + (d − 1) and β = b + (d − 1)(k − 1) (these are different than αd, αr, βd and βr).
There is a short exact sequence,

0 −−−−→ NX(a, b) −−−−→ N(a, b) −−−−→ O(α, β) −−−−→ 0.

Since a, b ≥ 0, by Lemma 7.9, hi(F1, N(a, b)) = 0 for i ≥ 0. By direct computation, hi(F1,O(α, β)) =
0 for i ≥ 0. Hence h2(F1, NX(a, b)) = 0, and h1(F1, NX(a, b)) = 0 iff the following map is surjective,

H0(F1, N(a, b)) → H0(F1,O(α, β)).

There is a commutative diagram,

H0(F1, N(a, b))⊗H0(F1,O(a′, b′)) −−−−→ H0(F1, N(a + a′, b + b′))y y
H0(F1,O(α, β))⊗H0(F1,O(a′, b′)) −−−−→ H0(F1,O(α + a′, β + b′))

.

By direct computation the bottom horizontal arrow is surjective if a′, b′ ≥ 0. Hence, if the left
vertical arrow is surjective, then also the right vertical arrow is surjective; i.e., if h1(F1, NX(a, b)) = 0
then also h1(F1, NX(a + a′, b + b′)) = 0. Thus (ii), is reduced to the case a = 0, b = k − 3. In this
case the commutative diagram above factors the following commutative diagram,

H0(F1, TPn)⊗H0(F1,O(0, k − 3)) −−−−→ H0(F1, N(0, k − 3))y y
H0(F1,O(d− 1, (d− 1)(k − 1)))⊗H0(F1,O(0, k − 3)) −−−−→ H0(F1,O(α, β))

.

By definition, the composition,

H0(F1TPn)⊗H0(F1,O(0, k − 3)) → H0(F1,O(α, β)),

is surjective iff the triple ([X], [Σ], [C0]) is in Wo. Since ([X], [Σ], [C0]) is in Wo, the right vertical
arrow is surjective, i.e., h1(F1, NX(0, k − 3)) = 0.

(iii): There is a short exact sequence,

0 −−−−→ NL/Σ(a− 1) −−−−→ NL/X(a− 1) −−−−→ NΣ/X |L(a− 1) −−−−→ 0.

Since NL/Σ
∼= OL, for all a ≥ 0, h1(L,NL/Σ(a−1)) = 0. Therefore it suffices to prove h1(L,NΣ/X |L(a−

1)) = 0. Since O(a− 1, b)|L ∼= OL(a− 1), there is a short exact sequence,

0 −−−−→ NX(a, k − 3) −−−−→ NX(a, k − 2) −−−−→ NΣ/X |L(a− 1) −−−−→ 0.

By (ii), for a ≥ 0 the higher cohomology of the first two terms vanishes. By the long exact sequence
in cohomology associated to this short exact sequence, h1(L,NΣ/X |L(a− 1)) = 0 for a ≥ 0.

(iv): The proof is almost identical to the proof of (iii).

(v): By [16, Prop. 2.14.2], the obstruction space for the relative Hilbert scheme HilbQ(t)

X/PNd
at the

point ([X], [Σ]) is contained in H1(Σ, NΣ/X). If ([X], [Σ], [C0]) is inWo, then by (ii), h1(Σ, NΣ/X) =
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h1(F1, NX(1, k − 1)) = 0. By [16, Thm. 2.10], HilbQ(t)

X/PNd
→ PNd is smooth at ([X], [Σ]). The

projection Wo → HilbQ(t)(X/PNd) is an open subset of a projective bundle, and so is smooth.
Therefore the composite morphism Wo → PNd is smooth at ([X], [Σ], [C0]).

(vi): The proof is very similar to the proof of (v) and uses the vanishing, h1(L,NL/X) = 0,
which was proved in (iii).

(vii): The proof is very similar to the proof of (v) and uses the vanishing, h1(C0, NC0/X) = 0,
which was proved in (iv).

(viii): SinceWo → PNd is smooth at ([X], [Σ], [C0]) and sinceRk → PNd is smooth at ([X], [C0]),
to prove that π : W0 → Rk(X ) is smooth at ([X], [Σ], [C0]), it suffices to check that the derivative
map dπ : TW0/PNd → π∗TRk(X )/PNd is surjective at ([X], [Σ], [C0]). This reduces to the statement
that H0(Σ, NΣ/X) → H0(C0, NΣ/X |C0) is surjective. The cokernel is contained in H1(F1, NX(0, k−
1)). By (iii), h1(C0, NΣ/X |C0) = 0, therefore the derivative dπ is surjective at ([X], [Σ], [C0]). �

Let ([X], [Σ], [C0]) be a point of W. Denote by σ : C0 → Σ the inclusion and denote by
prC0

: Σ → C0 the unique projection morphism such that σ is a section of prC0
(via the isomorphism

Σ ∼= F1, prC0
corresponds to prP1). Denote by g : Σ → X the inclusion. There is a family of stable

maps ζ : C0 →M0,1(X, 1),

ζ = ((prC0
: Σ → C0, σ), g : Σ → X).

Lemma 7.11. If ([X], [Σ], [C0]) is in Wo, then ζ : C0 → M0,1(X, 1) is very twisting and very
positive.

Proof. Very twisting: First the axioms of Definition 4.3 are verified. Since g ◦ σ : C0 → X is
an embedding, Axiom (i) of Definition 4.3 is satisfied. By Lemma 7.10 (vii), the dimension of the
obstruction group of M0,0(X, k) at [g ◦ σ : C0 → X] is 0, i.e., Axiom (ii) is satisfied.

The proof that Axiom (iii) holds is identical to the argument for Axiom (iii) in the proof of
Lemma 6.4, with Lemma 6.3 (iv) replaced by Lemma 7.10 (iii).

As in the proof of Lemma 6.4, ζ∗Tev
∼= (prC0

)∗NX(0, k−1). Hence ζ∗Tev is ample iff h1(C0, ζ
∗Tev(−2)) =

0. By a Leray spectral sequence argument similar to the one in the proof of Lemma 6.4, h1(C0, ζ
∗Tev(−2)) =

h1(F1, NX(0, k − 3)), which, Lemma 7.10 (ii), equals 0. Therefore ζ∗Tev is an ample bundle, i.e.,
Axiom (iv) is satisfied.

Finally, observe that σ∗OΣ(σ) ∼= OC0(1) is ample, i.e., Axiom (v) is satisfied. Thus ζ is a very
twisting family.

Very positive: Next the axioms of Definition 4.11 are verified. Axioms (i), (ii) and (iii) follow
from Axioms (i), (ii) and (iii) of Definition 4.3, as proved above. There is a short exact sequence,

0 −−−−→ ζ∗Tev −−−−→ ζ∗TM0,1(X,1) −−−−→ (g ◦ σ)∗ TX −−−−→ 0.

It is proved above that ζ∗Tev is ample. Moreover, by Lemma 7.10 (iv), NC0/X is ample. Of course
TC0 is ample. Therefore TX |C0 is ample by Lemma 2.10 (ii). Since the first and last term in the
short exact sequence are ample, by Lemma 2.10 (ii), ζ∗TM0,1(X,1) is ample. Since ζ∗pr∗TM0,0(X,1) is
a quotient of ζ∗TM0,1(X,1), by Lemma 2.10 (i), ζ∗pr∗TM0,0(X,1) is ample; i.e., Axiom (iv) is satisfied.
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Finally, σ∗OΣ(σ) ∼= OC0(1), which is ample, i.e., Axiom (v) is satisfied. Thus ζ is a very positive
family. �

Proposition 7.12. (i) If d ≥ 3 and n ≥ d2+d+1, then for k = 2d, Wo → Rk(X ) is dominant,
and Rk(X ) → PNd is dominant.

(ii) If d = 1 or 2 and if n ≥ 7, then for k = 3, Wo → R3(X ) is dominant, and R3(X ) → PNd

is dominant.

Proof. By item (8) of lemma 7.10, it suffices to prove that Wo is nonempty. We have to find a pair
([X], [Σ]) such that for a = d − 1, b = (d − 1)(k − 1) and for c = k − 3, we have that the image of
the derivative map

dX,Σ : H0 ((Pn, TPn(−1)) → H0 (F1,O(a, b)) (13)
is a c-generating linear system.

Recall that S = C[T0, T1, U, V ] is the Z2-graded Cox homogeneous coordinate ring of F1. Denote
by Ad the set of d2 + d monomials that occur in the linear system W0(a, b, c), i.e.,

Ad =
{

U iV d−1−iT
((d−1)(k−1)+i)−j(k−2)
0 T

j(k−2)
1 |i = 0, . . . , d− 1, j = 1, . . . , r(i)

}
∪
{

U iV d−1−iT
(d−1)(k−1)+i
1

∣∣∣ i = 0, . . . , d− 1}

where r(i) = d− 1 +
⌊

d−2+i
k−2

⌋
.

(i), d ≥ 4: Suppose that d ≥ 4 and n ≥ d2 + d + 1. Denote by Bd the set of 4d− 1 monomials,

Bd = { Ud−1 T
(d−1)k−(k−2)j
0 T

(k−2)j
1 |j = 0, . . . , d− 1 }

∪ { Ud−2 V T
(d−1)k−1−(k−2)j
0 T

(k−2)j
1 |j = 0, . . . , d− 1 }

∪ { Ud−3 V 2 T
(d−1)k−2−(k−2)j
0 T

(k−2)j
1 |j = 1, . . . , d− 1 }

∪ { Ud−4 V 3 T
(d−1)k−3−(k−2)j
0 T

(k−2)j
1 |j = 1, . . . , d− 1 }

∪ { V d−1 T
(d−1)(k−1)
0 }.

Denote by Cd the set of d2 − 3d + 1 monomials Cd = Ad −Bd. Denote by

{Y0, . . . , Yk} ∪ {Z0, . . . , Zk−1} ∪ {XM |M ∈ Cd} ∪
{
Vl|l = 1, . . . , n− (d2 + d + 1)

}
,

a basis of H0(Pn,OPn(1)), i.e., a basis of homogeneous coordinates on Pn.

Denote by f : F1 → P2k ⊂ Pn the morphism mapping ([T0 : T1], [T0U : T1U : V ]) ∈ F1 to the
point in Pn with coordinates XM = 0,M ∈ Cd, with Vl = 0, l = 1, . . . , n− (d2 + d + 1), and with

Y0 = UT k
0 , . . . , Yi = UT k−i

0 T i
1, . . . , Yk = UT k

1 ,

Z0 = V T k−1
0 , . . . , Zj = V T k−1−j

0 T j
1 , . . . , Zk−1 = V T k−1

1 .

This is an embedding whose image Σ = f(F1) is a rational normal scroll of degree 2k − 1.

The pullback map H0
(
(P2k,OP2k(1)

)
→ H0 (F1,O(1, k − 1)) is surjective by construction. And

the natural map,

Symd−1H0(F1,O(1, k − 1)) → H0(F1,O(d− 1, (d− 1)(k − 1))),

is surjective. Therefore the pullback map

H0
(
P2k,OP2k(d− 1)

)
→ H0 (F1,O (d− 1, (d− 1)(k − 1)))

is surjective. For each monomial M ∈ Cd, choose a polynomial GM (Y0, . . . , Y2k) such that f∗GM =
M .
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coordinate IN(∂X,Σ(coordinate)) lower order terms in ∂X,Σ(coordinate)

Zj+1, Ud−1T
(k−1)d−(k−2)j
0 T

(k−2)j
1 −Ud−1T

(k−1)d−(k−2)(j+1)−1
0 T

(k−2)(j+1)+1
1

j = 0, . . . , d− 1
Zd Ud−1T

(k−1)d−(k−2)(d−1)
0 T

(k−2)(d−1)
1 −Ud−3V 2T

(k−1)(d−2)+(d−3)
0 T k−1

1

−UV d−2T
(k−1)(d−2)+d
0 T d

1

Yj+1, −Ud−2V T
(k−1)d−1−(k−2)j
0 T

(k−2)j
1 +Ud−2V T

(k−1)d−(k−2)(j+1)−2
0 T

(k−2)(j+1)+1
1

j = 0, . . . , d− 1
Yd −Ud−2V T

(k−1)d−1−(k−2)(d−1)
0 T

(k−2)(d−1)
1 +Ud−4V 2T

(k−1)(d−2)+(d−4)
0 T k−1

1

−V d−1T
(k−1)(d−1)−d
0 T d

1

Zd+j , Ud−3V 2× −Ud−2V 2×
j = 1, . . . , d− 2 T

(k−1)(d−1)+(d−3)−(k−2)j
0 T

(k−2)j
1 T

(k−1)(d−1)+(d−4)+(k−2)(j+1)
0 T

(k−2)(j+1)
1

Zk−1 Ud−3V 2×
T

(k−1)(d−1)+(d−3)−(k−2)(d−1)
0 T

(k−2)(d−1)
1

Yd+j , −Ud−4V 3× Ud−4V 3×
j = 1, . . . , d− 2 T

(k−1)(d−1)+(d−4)−(k−2)j
0 T

(k−2)j
1 T

(k−1)(d−1)+(d−5)+(k−2)(j+1)
0 T

(k−2)(j+1)
1

Yk−1 Ud−4V 3×
T

(k−1)(d−1)+(d−4)−(k−2)(d−1)
0 T

(k−2)(d−1)
1

Yk V d−1T
(k−1)(d−1)
0

XM , M
M ∈ Cd

Z0 −Ud−1T
(k−1)(d−1)+(d−2)
0 T1 UV d−2T

(k−1)(d−2)
0 T k

1

Y0 Ud−2V T
(k−1)(d−1)+(d−3)
0 T1

Figure 1. The map ∂X,Σ

Consider the hypersurface X ⊂ Pn with defining equation

F =
∑d−2

j=0 (YjZj+1 − Yj+1Zj) Y d−2−j
0 Y i

k−3 +∑d−2
j=2 (Yd−1+jZd+j − Yd+jZd−1+j) Y j−2

k Y d−2−l
3 Z3Z4 +

(Yd−1Zd − YdZd−1) Y d−4
k−3 Y 2

k−4 +
(YdZd+1 − Yd+1Zd) Y d−4

1 Z7Z8 +
(Yk−2Zk−1 − Yk−1Zk−2) Y d−4

k Zk−1Z5 +
(YkZ0 − ZdYd) Zd−2

0 +∑
M∈Cd

GM (Y0, . . . , Y2k)XM .

Observe that F is contained in the homogeneous ideal of Σ, i.e., Σ ⊂ X. The derivative map ∂X,Σ

acts on the coordinates Yj , Zj , XM as in Figure 1. Each of the monomials in Ad occurs as the initial
term of ∂X,Σ acting on one coordinate. For every coordinate except Y0 and Z0, the initial term of
∂X,Σ is one of the monomials in Ad. By Lemma 7.6, the image of ∂X,Σ is a (k−3)-generating linear
system.
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(i), d = 3: Suppose that d = 3 and n ≥ 32 + 3 + 1 = 13. Denote by B3 the set of 4d − 1 = 11
monomials,

Bd = { U2 T
12−(k−2)j
0 T

(k−2)j
1 |j = 0, 1, 2 }

∪ { U V T
11−(k−2)j
0 T

(k−2)j
1 |j = 0, 1, 2 }

∪ { V 2 T
10−(k−2)j
0 T

(k−2)j
1 |j = 0, 1, 2 }

∪ { U V T 11
1 }

∪ { V 2 T 10
1 }.

Denote by C3 the singleton set consisting of the monomial M = U2T 12
1 . Denote by

{Y0, . . . , Y6} ∪ {Z0, . . . , Z5} ∪ {XM |M ∈ C3} ∪ {Vl|l = 1 . . . , n− 13} ,

a basis of H0(Pn,OPn(1)), i.e., a basis of homogeneous coordinates on Pn.

Denote by f : F1 → P12 ⊂ Pn the morphism mapping ([T0 : T1], [T0U : T1U : V ]) ∈ F1 to the
point in Pn with coordinates XM = 0,M ∈ Cd, with Vl = 0, l = 1, . . . , n− 13, and with

Y0 = UT 6
0 , . . . , Yi = UT 6−i

0 T i
1, . . . , Yk = UT 6

1 ,

Z0 = V T 5
0 , . . . , Zj = V T 5−j

0 T j
1 , . . . , Z5 = V T 5

1 .

This is an embedding whose image Σ = f(F1) is a rational normal scroll of degree 11.

Consider the hypersurface X ⊂ Pn with defining equation

F =
∑1

j=0 (YjZj+1 − Yj+1Zj) Y 1−j
0 Y i

3 +
(Y2Z3 − Y3Z2) Y6 +
(Y5Z5 − Y6Z4) Z5 +
(Y3Z3 − Y6Z0) Z4 +
(Y2Z2 − Y4Z0) Z0 +
Y 2

6 XM .

Observe that F is contained in the homogeneous ideal of Σ, i.e., Σ ⊂ X. It is straightforward to
compute the action of ∂X,Σ on the coordinates Yj , Zj , XM . Every monomial in A3 occurs as the
initial term of ∂X,Σ acting on one coordinate. For every coordinate except Y0 and Z0, the initial
term of ∂X,Σ is one of the monomials in A3. By Lemma 7.6, the image of ∂X,Σ is a (k−3)-generating
linear system.

(ii), d = 2: Suppose that d = 2 and n ≥ 22 + 2 + 1 = 7. Let k = 3. Denote by B2 the set of 6
monomials,

B2 = { U T 3−j
0 T j

1 |j = 0, 1, 2 }
∪ { V T 2−j

0 T j
1 |j = 0, 1, 2 }.

Denote by C2 the singleton set consisting of the monomial M = UT 3
1 . Denote by

{Y0, Y1, Y2, Y3, Z0, Z1, Z2, XM} ∪ {Vl|l = 1, . . . , n− 7} ,

a basis of H0(Pn,OPn(1)), i.e., a basis of homogeneous coordinates on Pn.

Denote by f : F1 → P6 ⊂ Pn the morphism mapping ([T0 : T1], [T0U : T1U : V ]) ∈ F1 to the
point in Pn with coordinates XM = 0,M ∈ Cd, with Vl = 0, l = 1, . . . , n− 7, and with

Y0 = UT 3
0 , Y1 = UT 2

0 T1, Y2 = UT0T
2
1 , Y3 = UT 3

1 ,

Z0 = V T 2
0 , Z1 = V T0T1, Z2 = V T 2

1 .

This is an embedding whose image Σ = f(F1) is a rational normal scroll of degree 6.
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Consider the hypersurface X ⊂ Pn with defining equation

F = (Y3Z1 − Y2Z2) + (Y0Z1 − Y1Z0) + Y3XM .

Observe that F is contained in the homogeneous ideal of Σ, i.e., Σ ⊂ X. It is straightforward to
compute the action of ∂X,Σ on the coordinates Yj , Zj , XM . Every monomial in A2 occurs as the
initial term of ∂X,Σ acting on one coordinate. For every coordinate except Y0, the initial term of
∂X,Σ is one of the monomials in A2. By Lemma 7.6, the image of ∂X,Σ is a (k−3)-generating linear
system.

(ii), d = 1. Denote by

{Y0, Y1, Y2, Y3, Z0, Z1, Z2, XM} ∪ {Vl|l = 1, . . . , n− 7} ,

a basis of H0(Pn,OPn(1)), i.e., a basis of homogeneous coordinates on Pn.

Denote by f : F1 → P6 ⊂ Pn the morphism mapping ([T0 : T1], [T0U : T1U : V ]) ∈ F1 to the
point in Pn with coordinates XM = 0,M ∈ Cd, with Vl = 0, l = 1, . . . , n− 7, and with

Y0 = UT 3
0 , Y1 = UT 2

0 T1, Y2 = UT0T
2
1 , Y3 = UT 3

1 ,

Z0 = V T 2
0 , Z1 = V T0T1, Z2 = V T 2

1 .

This is an embedding whose image Σ = f(F1) is a rational normal scroll of degree 6.

Consider the hypersurface X ⊂ Pn with defining equation F = XM . Observe that F is contained
in the homogeneous ideal of Σ, i.e., Σ ⊂ X. The image of ∂X,Σ(XM ) is a generator for S0,0; i.e.,
the image of ∂X,Σ is a (k − 3)-generating linear system. �

Together with Remark 7.1, Lemma 7.11 and Proposition 7.12 imply the following corollary.

Corollary 7.13. If X ⊂ Pn is a general hypersurface of degree d and if n ≥ d2 + d + 1, then there
exists a 1-morphism ζ : C0 →M0,1(X, 1) that is both very twisting and very positive.

8. Proof of the main theorem

As explained at the end of Section 1, if d < n+1
2 , then for a general hypersurface X ⊂ Pn of

degree d, Hypothesis 1.5, Hypothesis 1.6, and Hypothesis 1.7 are satisfied. By Corollary 6.6, if
d ≥ 2 and n + 1 ≥ d2, or if d = 1 and n ≥ 3, then for a general hypersurface X ⊂ Pn of degree d,
Hypothesis 4.10 is satisfied. Finally, if n ≥ d2 + d + 1 then by Corollary 7.13 there exists a very
twisting, very positive family ζ : C0 →M0,1(X, 1). Therefore (ζ, ζ) is an inducting pair.

By Theorem 5.13, for every e ≥ 1 there exists an inducting pair (ζ1, ζe). In particular, there
exists a very positive 1-morphism ζe : C →M0,1(X, e). As shown in the proof of Theorem 5.13, it
may be assumed that C is smooth and that the image of C is contained in the smooth locus of the
fine moduli locus. By Lemma 4.14 (i), ζe is a very free morphism. By [11, Prop. 7.4], M0,0(X, e)
is an irreducible variety. Therefore, by [16, Thm. IV.3.7], M0,0(X, e) is rationally connected.
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