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Abstract. We prove divisor class relations for families of genus 0 curves and
used them to compute the divisor class of the “virtual” canonical bundle of the
Kontsevich space of genus 0 maps to a smooth target. This agrees with the
canonical bundle in good cases. This work generalizes Pandharipande’s results
in the special case that the target is projective space, [7], [8]. Our method is
completely different from Pandharipande’s.

1. Statement of results

Much geometry of a higher-dimensional complex variety X is captured by the ra-
tional curves in X. For uniruled and rationally connected varieties the parameter
spaces for rational curves in X are also interesting. These parameter spaces are
rarely compact, but there are natural compacitifications: the Chow variety, the
Hilbert scheme and the Kontsevich moduli space. Of these, the most manageable
is the Kontsevich space. Briefly M0,r(X,β) parametrizes data (C, p1, . . . , pr, f)
of a proper, connected, at-worst-nodal, arithmetic genus 0 curve C, a collection
p1, . . . , pr of distinct, smooth points of C, and a morphism f : C → X with
f∗[C] = β and satisfying a natural stability condition.

When M0,r(X,β) is irreducible and reduced and when the dimension equals the
expected, or virtual, dimension, one can ask more refined questions about the ge-
ometry of M0,r(X,β). For instance, what is its Kodaira dimension? The first step
in answering this and other questions is understanding the canonical bundle.

In this article we give a formula for the virtual canonical bundle of M0,r(X,β). The
virtual canonical bundle is a naturally defined line bundle which equals the actual
canonical bundle if M0,r(X,β) is irreducible and reduced and its dimension equals
the virtual dimension.

Theorem 1.1. Assume that e := 〈C1(TX), β〉 6= 0. For M0,0(X,β), the virtual
canonical bundle equals

1
2e

[2eπ∗f∗C2(TX)− (e+ 1)π∗f∗C1(TX)2+∑
{β′,β′′},β′+β′′=β

(〈f∗C1(TX), β′〉〈f∗C1(TX), β′′〉 − 4e)∆β′,β′′ ].

For M0,1(X,β), the virtual canonical bundle equals

1
2e

[2eπ∗f∗C2(TX)− (e+ 1)π∗f∗C1(TX)2+
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∑
{β′,β′′},β′+β′′=β

(〈f∗C1(TX), β′〉〈f∗C1(TX), β′′〉 − 4e)∆β′,β′′ ] + ψ1.

Finally, for r ≥ 2, the virtual canonical bundle of M0,r(X,β) equals

1
2e

[2eπ∗f∗C2(TX)− (e+ 1)π∗f∗C1(TX)2+∑
{β′,β′′},β′+β′′=β

(〈f∗C1(TX), β′〉〈f∗C1(TX), β′′〉 − 4e)∆β′,β′′ ]+

1
r − 1

∑
(A,B),1∈A

#B(r −#B)∆(A,B).

In order to prove these formulas, we need to prove some divisor class relations for
families of genus 0 curves. These relations are of some independent interest.

Proposition 1.2. Let π : C → M be a proper, flat family of connected, at-
worst-nodal, arithmetic genus 0 curves over a quasi-projective variety M or over
a Deligne-Mumford stack M with quasi-projective coarse moduli space. Let D be a
Q-Cartier divisor class on C.

(i) There is an equality of Q-divisor classes on M

π∗(D ·D) + 〈D,β〉π∗(D · C1(ωπ)) =
∑

{β′,β′′},β′+β′′=β

〈D,β′〉〈D,β′′〉∆β′,β′′ .

(ii) Also, there is an equality of Q-divisor classes on C

2〈D,β〉D − π∗π∗(D ·D) + 〈D,β〉2C1(ωπ) =
∑

(β′,β′′)

〈D,β′′〉2∆̃β′,β′′ .

The notation ∆ indicates a boundary divisor. The precise meaning of each term
is given in Section 2. Roughly, ∆(A,B) is the divisor in M parametrizing reducible
curves where the marked points indexed by A lie in one component, and the
marked points indexed by B lie in the other component. The divisor ∆β′,β′′ in
M parametrizes reducible curves with one component of class β′ and one compo-
nent of class β′′. And the divisor ∆̃β′,β′′ in C is the closed subset of π−1(∆β′,β′′)
which is the union of all components of fibers with class β′. The bundle ωπ on C is
the relative dualizing sheaf of π. Finally the bundle ψi on M is the pullback of ωπ

by the “ith marked point” section.

The virtual canonical bundle is the determinant of the Behrend-Fantechi perfect
obstruction theory for M0,r(X,β), cf. [2]. This is a complex E• of O-modules
on M0,r(X,β) which is perfect of amplitude [−1, 0], together with a map to the
cotangent complex

φ : E• → L•M0,r(X,β)

such that h0(φ) is an isomorphism and h−1(φ) is surjective. The determinant of
a perfect complex is an invertible sheaf that, roughly, is the alternating tensor
product of the determinants of the terms of the complex, cf. [5].

If the dimension of M0,r(X,β) equals the virtual dimension

〈c1(TX), β〉+ dim(X) + r − 3
2



and if M0,r(X,β) is reduced at all codimension 1 points, then the virtual canonical
bundle equals the canonical bundle. Even when they differ, the virtual canonical
bundle can be quite useful. For instance, there is a lower bound for the dimension
of the space of maps from a curve C into a smooth projective variety Y mapping
an effective divisor B ⊂ C to specified points of Y

dim[f ]Hom(C, Y ; f |B) ≥ 〈−KY , f∗[C]〉+ dim(Y )(1− pa(C)− deg(B))

cf. [6, Theorem II.1.2, Theorem II.1.7]. An analogous results holds for Y =
M0,r(X,β) when KY is replaced by the virtual canonical bundle and dim(Y ) is
replaced by the virtual dimension, cf. [4].

Proposition 1.3. [4, Lemma 2.2] Let C be a projective Cohen-Macaulay curve,
let B ⊂ C be a divisor along which C is smooth, and let f : C → M0,r(X,β) be
a 1-morphism. Assume that every generic point of C parametrizes a smooth, free
curve in X. Then for Y = M0,r(X,β)

dim[f ]Hom(C, Y ; f |B) ≥ 〈−Kvirt
Y , f∗[C]〉+ dimvirt(Y )(1− pa(C)− deg(B)).

1.1. Outline of the article. There is a universal family of stable maps over
M0,r(X,β)

(π : C →M0,r(X,β), σ1 : M0,r(X,β) → C, . . . , σr : M0,r(X,β), f : C → X).

The Behrend-Fantechi obstruction theory is defined in terms of total derived push-
forwards under π of the relative cotangent sheaf of π and the pullback under f of
the cotangent bundle of X. Thus the Grothendieck-Riemann-Roch theorem gives
a formula for the virtual canonical bundle. Unfortunately it is not a very useful
formula. For instance, using this formula it is difficult to determine whether the
virtual canonical bundle is NEF, ample, etc. But combined with Proposition 1.2,
Grothendieck-Riemann-Roch gives the formula from Theorem 1.1. The main work
in this article is proving Proposition 1.2.

The proof reduces to local computations for the universal family over the Artin
stack of all prestable curves of genus 0, cf. Section 4. Because of this, most
results are stated for Artin stacks. This leads to one ad hoc consruction: since
there is as yet no theory of cycle class groups for Artin stacks admitting Chern
classes for all perfect complexes of bounded amplitude, a Riemann-Roch theorem
for all perfect morphisms relatively representable by proper algebraic spaces, and
arbitrary pullbacks for all cycles coming from Chern classes, a stand-in Qπ is used,
cf. Section 3. (Also by avoiding Riemann-Roch, this allows some relations to be
proved “integrally” rather than “modulo torsion”).

In the special case X = Pn
k , Pandharipande proved both Theorem 1.1 and Propo-

sition 1.2 in [8] and [7]. Pandharipande’s work was certainly our inspiration. But
our proofs are completely different, yield a more general virtual canonical bundle
formula, and hold modulo torsion (and sometimes “integrally”) rather than modulo
numerical equivalence.

2. Notation for moduli spaces and boundary divisor classes

Denote by M0,0 the category whose objects are proper, flat families π : C → M
of connected, at-worst-nodal, arithmetic genus 0 curves, and whose morphisms are
Cartesian diagrams of such families. This category is a smooth Artin stack over

3



Spec Z (with the flat topology), cf. [1]. The subcategory ∆ parametrizing families
with reducible fibers is a closed substack. With respect to the smooth topology,
the pair (M0,0,∆) is locally isomorphic to an irreducible simple normal crossings
divisor in a smooth variety. Denote by ∆′ the singular locus in ∆.

Let U1 be M0,0−∆′ and let U2 be M0,0−∆. There are smooth atlases for each of
these stacks as follows. For U2, the family π : P1

Z → Spec Z defines a 1-morphism
ζ2 : Spec Z → U2. This is a smooth surjective morphism. The 2-fibered product

Spec Z×ζ2,U2,ζ2 Spec Z = Aut(P1
Z)

is the group scheme PGL2. Thus U2 is isomorphic to the quotient stack [Spec Z/PGL2].

There is a similar atlas for U2. Let V = Z{e0, e1} be a free module of rank 2.
Choose dual coordinates y0, y1 for V ∨. Let P1

Z = P(V ) be the projective space
with homogeneous coordinates y0, y1. Let A1

Z be the affine space with coordinate
x. Denote by Z ⊂ A1

Z × P1
Z the closed subscheme V(x, y1), i.e., the image of the

section (0, [1, 0]). Let ν : C → A1
Z × P1

Z be the blowing-up along Z. Denote by
E ⊂ C the exceptional divisor. Define π : C → A1

Z to be pr
Å1
◦ ν. This family

defines a 1-morphism ζ1 : A1
Z → U1. This is a smooth surjective morphism. The

2-fibered product
A1

Z ×ζ1,U1,ζ1 A1
Z = IsomA2

Z
(pr∗1C,pr∗2C)

is equivalent to a group scheme G over A1
Z whose restriction to U = A1

Z − {0} is
U × Gm × PGL2 and whose restriction to {0} ∼= Spec Z is the wreath product
G0 := (B ×B) o S2. Here B ⊂ PGL2 is a Borel subgroup, i.e., the stabilizer of a
point in P1, and S2 acts by interchanging the two components of C0. Altogether
U1 is isomorphic to the quotient stack [A1

Z/G].

Denote by π : C → M0,0 the universal family. This is a proper, flat 1-morphism
of Artin stacks, representable by algebraic spaces. Denote by Picπ the stack
parametrizing proper, flat families of connected, at-worst-nodal, arithmetic genus
0 curves together with a section of the relative Picard functor of the family. This
is also an Artin stack, and the natural 1-morphism Picπ → M0,0 is representable
by (highly nonseparated) étale group schemes, cf. [9, Prop. 9.3.1].

In fact Picπ has a covering by open substacks, each of which maps isomorphically
to an open substack in M0,0. The combinatorics of how these open pieces are glued
to form Picπ is straightforward. In particular, the inverse image in Picπ of U2 is
canonically isomorphic to U2 × Z.

The intersection U1 ∩ ∆ parametrizes nodal, arithmetic genus 0 curves with two
components, C = C ′ ∪ C ′′. For every pair of integers e′, e′′ there is a unique
invertible sheaf L on C whose restriction to C ′, resp. C ′′, has degree e′, resp. e′′.
The rule [C] 7→ [(C,L)] defines a 1-morphism U1∩∆ → Picπ representable by open
immersions. Denote by ∆(e′,e′′) the closure in Picπ of the image of this 1-morphism.
This is a Cartier divisor in Picπ. The union over all (e′, e′′) of the Cartier divisors
∆(e′,e′′) is precisely the inverse image in Picπ of ∆.

More generally, for every integer r ≥ 0, denote by Πr(Picπ) the r-fold 2-fibered
product of Picπ with itself over M0,0. Equivalently, Πr(Picπ) is the stack of families
of genus 0 curves together with r sections of the relative Picard functor of the family.
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Let (e′1, e
′′
1 , . . . , e

′
r, e

′′
r ) be an ordered 2r-tuple of integers. Define ∆(e′1,e′′1 ,...,e′r,e′′r ) to

be the iterated 2-fiber product

∆(e′1,e′′1 ,...,e′r,e′′r ) := ∆(e′1,e′′1 ) ×∆ · · · ×∆ ∆(e′r,e′′r ).

This is a Cartier divisor in Πr(Picπ).

Let π : C →M be a flat 1-morphism representable by proper algebraic spaces whose
geometric fibers are connected, at-worst-nodal curves of arithmetic genus 0. This
defines a 1-morphism ξ0 : M → M0,0. Let D1, . . . , Dr be Cartier divisor classes on
C. This defines a 1-morphism ξ : M → Πr(Picπ) lifting ξ0. Let f(e′1, e

′′
1 , . . . , e

′
r, e

′′
r )

be a function on Z2r with values in Z, resp. Q, etc.

Notation 2.1. Denote by∑
(β′,β′′)

f(〈D1, β
′〉, 〈D1, β

′′〉, . . . , 〈Dr, β
′〉, 〈Dr, β

′′〉)∆β′,β′′

the Cartier divisor class, resp. Q-Cartier divisor class, etc., that is the pullback by
ξ of the Cartier divisor class, etc.,∑

(e′1,e′′1 ,...,e′r,e′′r )

f(e′1, e
′′
1 , . . . , e

′
r, e

′′
r )∆(e′1,e′′1 ,...,e′r,e′′r ),

the summation over all sequences (e′1, e
′′
1 , . . . , e

′
r, e

′′
r ). If f(e′1, e

′′
1 , . . . , e

′
r, e

′′
r ) = f(e′′1 , e

′
1, . . . , e

′′
r , e

′
r),

denote by, ∑
(β′,β′′)

′
f(〈D1, β

′〉, 〈D1, β
′′〉, . . . , 〈Dr, β

′〉, 〈Dr, β
′′〉)∆β′,β′′

the pullback by ξ of, ∑
(e′1,e′′1 ,...,e′r,e′′r )

′
f(e′1, e

′′
1 , . . . , e

′
r, e

′′
r )∆(e′1,e′′1 ,...,e′r,e′′r ),

where the summation is over equivalence classes of sequences (e′1, e
′′
1 , . . . , e

′
r, e

′′
r ) such

that e′i+e
′′
i = ei under the equivalence relation (e′1, e

′′
1 , . . . , e

′
r, e

′′
r ) ∼ (e′′1 , e

′
1, . . . , e

′′
r , e

′
r).

Of course these are all infinite sums, and so appear not to give well-defined Cartier
divisors. However, every quasi-compact open subset of Πr(Picπ) intersects only
finitely many of the divisors. On this subset, this is a finite sum and thus well-
defined. Since Πr(Picπ) has a covering by quasi-compact open subsets, the Cartier
divisor is defined by gluing.

Example 2.2. Let n ≥ 0 be an integer and let (A,B) be a partition of {1, . . . , n}.
For the universal family over M0,n, denote by s1, . . . , sn the universal sections.
Then ∑

β′,β′′

∏
i∈A

〈Image(si), β′〉 ·
∏
j∈B

〈Image(sj), β′′〉∆β′,β′′

is the Cartier divisor class of the boundary divisor ∆(A,B).
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3. The functor Qπ

Let M be an Artin stack, and let π : C → M be a flat 1-morphism, relatively
representable by proper algebraic spaces whose geometric fibers are connected, at-
worst-nodal curves of arithmetic genus 0. There exists an invertible dualizing sheaf
ωπ, and the relative trace map, Trπ : Rπ∗ωπ[1] → OM , is a quasi-isomorphism.
In particular, Ext1OC

(ωπ,OC) is canonically isomorphic to H0(M,OM ). Therefore
1 ∈ H0(M,OM ) determines an extension class, i.e., a short exact sequence,

0 −−−−→ ωπ −−−−→ Eπ −−−−→ OC −−−−→ 0.

The morphism π is perfect, so for every complex F • perfect of bounded amplitude on
C, Rπ∗F • is a perfect complex of bounded amplitude onM . By [5], the determinant
of a perfect complex of bounded amplitude is defined.

Definition 3.1. For every complex F • perfect of bounded amplitude on C, define
Qπ(F •) = det(Rπ∗Eπ ⊗ F •).

There is another interpretation of Qπ(F •).

Lemma 3.2. For every complex F • perfect of bounded amplitude on C,

Qπ(F •) ∼= det(Rπ∗(F •))⊗ det(Rπ∗((F •)∨))∨.

Proof. By the short exact sequence for Eπ, Qπ(F •) ∼= det(Rπ∗(F •))⊗det(Rπ∗(ωπ⊗
F •)). The lemma follows by duality. �

It is straightforward to compute F • whenever there exist cycle class groups for C
and M such that Chern classes are defined for all perfect complexes of bounded
amplitude and such that Grothendieck-Riemann-Roch holds for π.

Lemma 3.3. If there exist cycle class groups for C and M such that Chern classes
exist for all perfect complexes of bounded amplitude and such that Grothendieck-
Riemann-Roch holds for π, then modulo 2-power torsion, the first Chern class of
Qπ(F •) is π∗(C1(F •)2 − 2C2(F •)).

Proof. Denote the Todd class of π by τ = 1+τ1+τ2+ . . . . Of course τ1 = −C1(ωπ).
By GRR, ch(Rπ∗OC) = π∗(τ). The canonical map OM → Rπ∗OC is a quasi-
isomorphism. Therefore π∗(τ2) = 0, modulo 2-power torsion. By additivity of the
Chern character, ch(Eπ) = 2 + C1(ωπ) + 1

2C1(ωπ)2 + . . . . Therefore,

ch(Eπ) · τ = 2 + 2τ2 + . . .

So for any complex F • perfect of bounded amplitude,

ch(Eπ ⊗ F •) · τ = ch(F •) · ch(Eπ) · τ =
(rk(F •) + C1(F •) + 1

2 (C1(F •)2 − 2C2(F •)) + . . . )(2 + 2τ2 + . . . ).

Applying π∗ gives,

2π∗(C1(F •)) + π∗(C1(F •)2 − 2C2(F •)) + . . .

Therefore the first Chern class of det(Rπ∗(Eπ ⊗ F •)) is π∗(C1(F •)2 − 2C2(F •)),
modulo 2-power torsion. �
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Remark 3.4. The point is this. In every reasonable case, Qπ is just π∗(C2
1 −2C2).

Moreover Qπ is compatible with base-change by arbitrary 1-morphisms. This allows
to reduce certain computations to the Artin stack of all genus 0 curves. As far as
we are aware, no one has written a definition of cycle class groups for all locally
finitely presented Artin stacks that has Chern classes for all perfect complexes of
bounded amplitude, has pushforward maps and Grothendieck-Riemann-Roch for
perfect 1-morphisms representable by proper algebraic spaces, and has pullback
maps by arbitrary 1-morphisms for cycles coming from Chern classes. Doubtless
such a theory exists; whatever it is, Qπ = π∗(C2

1 − 2C2).

Let the following diagram be 2-Cartesian,

C ′ ζC−−−−→ C

π′

y yπ

M ′ ζM−−−−→ M

together with a 2-equivalence θ : π ◦ ζC ⇒ ζM ◦ π′.

Lemma 3.5. For every complex F • perfect of bounded amplitude on C, ζ∗MQπ(F •)
is isomorphic to Qπ′(ζ∗CF

•).

Proof. Of course ζ∗CEπ = Eπ′ . And ζ∗MRπ∗ is canonically equivalent to R(π′)∗ζ∗C for
perfect complexes of bounded amplitude. Therefore ζ∗MQπ(F •) equals det(ζ∗MRπ∗(Eπ⊗
F •)) equals det(R(π′)∗ζ∗C(Eπ⊗F •)) equals det(R(π′)∗Eπ′⊗ζ∗CF •) equalsQπ′(ζ∗CF

•).
�

Lemma 3.6. Let L be an invertible sheaf on C of relative degree e over M . For
every invertible sheaf L′ on M , Qπ(L ⊗ π∗L′) ∼= Qπ(L) ⊗ (L′)2e. In particular, if
e = 0, Qπ(L⊗ π∗L′) ∼= Qπ(L).

Proof. To compute the rank of Rπ∗(Eπ⊗F •) over any connected component of M ,
it suffices to base-change to the spectrum of a field mapping to that component.
Then, by Grothendieck-Riemann-Roch, the rank is 2deg(C1(F •)). In particular,
Rπ∗(Eπ ⊗ L) has rank 2e.

By the projection formula, Rπ∗(Eπ ⊗ L ⊗ π∗L′) ∼= Rπ∗(Eπ ⊗ L) ⊗ L′. Of course
det(Rπ∗(Eπ⊗L)⊗L′) = Qπ(L)⊗(L′)rank. This follows from the uniqueness of det:
for any invertible sheaf L′ the association F • 7→ det(F • ⊗ L′) ⊗ (L′)−rank(F•) also
satisfies the axioms for a determinant function and is hence canonically isomorphic
to det(F •). Therefore Qπ(L⊗ π∗L′) = Qπ(L)⊗ (L′)2e. �

4. Local computations

This section contains 2 computations: Qπ(ωπ) and Qπ(L) for every invertible sheaf
on C of relative degree 0. Because of Lemma 3.5 the first computation reduces to
the universal case over M0,0. Because of Lemma 3.5 and Lemma 3.6, the second
compuation reduces to the universal case over Pic0

π.
7



4.1. Computation of Qπ(ωπ). Associated to πC : C →M , there is a 1-morphism
ζM : M → M0,0, a 1-morphism ζC : C → C, and a 2-equivalence θ : πC ◦ ζC ⇒
ζM ◦ πC such that the following diagram is 2-Cartesian,

C
ζC−−−−→ C

πC

y yπC

M
ζM−−−−→ M0,0

Of course ωπC
is isomorphic to ζ∗CωπC . By Lemma 3.5, QπC

(ωπC
) ∼= ζ∗MQπC (ωπC ).

So the computation of QπC
(ωπC

) is reduced to the universal family π : C → M0,0.

Proposition 4.1. (i) Over the open substack U1, ω∨π is π-relatively ample.
(ii) Over U1, R1π∗ω

∨
π |U1 = (0) and π∗ω∨π |U1 is locally free of rank 3.

(iii) Over U2, there is a canonical isomorphism i : det(π∗ω∨π |U2) → OU2 .
(iv) The image of det(π∗ω∨π |U1) → det(π∗ω∨π |U2)

i−→ OU2 is OU1(−∆) ⊂ OU2 .
(v) Over U1, Qπ(ωπ)|U1

∼= OU1(−∆). Therefore on all of M0,0, Qπ(ωπ) ∼=
OM0,0(−∆).

Proof. Recall the 1-morphism ζ1 : A1
Z → U1 from Section 2. Because ζ1 is smooth

and surjective, (i) and (ii) can be checked after base-change by ζ1. Also (iv) will
reduce to a computation over A1

Z after base-change by ζ1.

(i) and (ii): Denote by P2
Z the projective space with coordinates u0, u1, u2. There

is a rational transformation f : A1
Z × P1

Z 99K A1
Z × P2

Z by

f∗x = x,
f∗u0 = xy2

0 ,
f∗u1 = y0y1,
f∗u2 = y2

1

By local computation, this extends to a morphism f : C → A1
Z × P2

Z that is a
closed immersion and whose image is V(u0u2 − xu2

1). By the adjunction formula,
ωπ is the pullback of OP2(−1). In particular, ω∨π is very ample. Moreover, because
H1(P2

Z,OP2(−1)) = (0), also H1(C,ω∨π ) = (0). By cohomology and base-change
results, R1π∗(ω∨π ) = (0) and π∗(ω∨π ) is locally free of rank 3.

(iii): The curve P1
Z = P(V ) determines a morphism η : Spec (Z) → U2. This is

smooth and surjective on geometric points. Moreover it gives a realization of U2 as
the classifying stack of the group scheme Aut(P(V )) = PGL(V ). Taking the exte-
rior power of the Euler exact sequence, ωP(V )/Z =

∧2(V ∨)⊗OP(V )(−2). Therefore
H0(P(V ), ω∨P(V )/Z) equals

∧2(V ) ⊗ Sym2(V ∨) as a representation of GL(V ). The
determinant of this representation is the trivial character of GL(V ). Therefore it is
the trivial character of PGL(V ). This gives an isomorphism of det(π∗ωπ|U2) with
OU2 .

(iv): This can be checked after pulling back by ζ1. The pullback of U2 is Gm,Z ⊂ A1
Z.

The pullback of i comes from the determinant of H0(Gm,Z × P1
Z, ω

∨
π ) =

∧2(V ) ⊗
Sym2(V ∨) ⊗ OGm . By the adjunction formula, ωC/A1 = ν∗ωA1×P1/A1(E). Hence
ν∗ω

∨
C/A1 = IZωA1×P1/A1 . Therefore the canonical map,

H0(C,ω∨C/A1) → H0(A1
Z × P1

Z, ω
∨
A1×P1/A1),
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is given by,
OA1{f0, f1, f2} →

∧2(V )⊗ Sym2(V ∨)⊗OA1 ,
f0 7→ x · (e0 ∧ e1)⊗ y2

0 ,
f1 7→ (e0 ∧ e1)⊗ y0y1,
f2 7→ (e0 ∧ e1)⊗ y2

1

It follows that det(π∗ω∨π ) → OGm has image 〈x〉OA1 , i.e., ζ∗1OU1(−∆).

(v): By the short exact sequence for Eπ, Qπ(ωπ) = det(Rπ∗ωπ) ⊗ deg(Rπ∗ω2
π).

Because the trace map is a quasi-isomorphism, det(Rπ∗ωπ) = OU1 . By (ii) and
duality,

det(Rπ∗ω2
π) ∼= det(R1π∗ω

2
π)vee ∼= det(π∗ω∨π ).

By (iv), this is OU1(−∆). Therefore Qπ(ωπ) ∼= OU1(−∆) on U1. Because M0,0 is
regular, and because the complement of U1 has codimension 2, this isomorphism of
invertible sheaves extends to all of M0,0. �

The sheaf of relative differentials Ωπ is a pure coherent sheaf on C of rank 1, flat
over M0,0 and is quasi-isomorphic to a perfect complex of amplitude [−1, 0].

Lemma 4.2. The perfect complex Rπ∗Ωπ has rank −1 and determinant ∼= OM0,0(−∆).
The perfect complex Rπ∗RHomOC (Ωπ,OC) has rank 3 and determinant ∼= OM0,0(−2∆).

Proof. There is a canonical injective sheaf homomorphism Ωπ → ωπ and the sup-
port of the cokernel, Z ⊂ C, is a closed substack that is smooth and such that
π : Z → M0,0 is unramified and is the normalization of ∆. Over U1, the lemma
immediately follows from this and the arguments in the proof of Proposition 4.1.
As in that case, it suffices to establish the lemma over U1. �

4.2. Computation of Qπ(L) for invertible sheaves of degree 0. Let M be
an Artin stack, let π : C → M be a flat 1-morphism, relatively representable by
proper algebraic spaces whose geometric fibers are connected, at-worst-nodal curves
of arithmetic genus 0. Let L be an invertible sheaf on C of relative degree 0 over
M . This determines a 1-morphism to the relative Picard of the universal family
over M0,0,

ζM : M → Pic0
π.

The pullback of the universal family C is equivalent to C and the pullback of the
universal bundle OC(D) differs from L by π∗L′ for an invertible sheaf L′ on M . By
Lemma 3.5 and Lemma 3.6, Qπ(L) ∼= ζ∗MQπ(OC(D)).

Proposition 4.3. Over Pic0
π, π∗Eπ(D) = (0) and R1π∗Eπ(D) is a sheaf supported

on the inverse image of ∆. The stalk of R1π∗Eπ(D) at the generic point of ∆(a,−a)

is a torsion sheaf of length a2. The filtration by order of vanishing at the generic
point has associated graded pieces of length 2a− 1, 2a− 3, . . . , 3, 1.

Proof. Over the open complement of ∆, the divisor D is 0. So the first part of
the proposition reduces to the statement that Rπ∗Eπ is quasi-isomorphic to 0. By
definition of Eπ, there is an exact triangle,

Rπ∗Eπ −−−−→ Rπ∗OC
δ−−−−→ Rπ∗ωπ[1] −−−−→ Rπ∗Eπ[1].

Of course the bundle Eπ and the canonical isomorphism Rπ∗OC ∼= OM were defined
so that the composition of δ with the trace map, which is a quasi-isomorphism in
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this case, would be the identity. Therefore δ is a quasi-isomorphism, so Rπ∗Eπ is
quasi-isomorphic to 0.

The second part can be proved (and perhaps only makes sense) after smooth base-
change to a scheme. Let P1

s be a copy of P1 with homogeneous coordinates S0, S1.
Let P1

x be a copy of P1 with homogeneous coordinates X0, X1. Let P1
y be a copy of

P1 with homogeneous coordinates Y0, Y1. Denote by C ⊂ P1
s × P1

x × P1
y the divisor

with defining equation F = S0X0Y0 − S1X1Y1. The projection prs : C → P1
s is a

proper, flat morphism whose geometric fibers are connected, at-worst-nodal curves
of arithmetic genus 0. Denote by L the invertible sheaf on C that is the restriction of
pr∗xOP1

x
(a)⊗pr∗yOP1

y
(−a). This is an invertible sheaf of relative degree 0. Therefore

there is an induced 1-morphism ζ : P1
s → MZ(τ0,0(0)).

It is straightforward that ζ is smooth, and the image intersects ∆b,−b iff b = a.
Moreover, ζ∗∆a,−a is the reduced Cartier divisor V(S0S1) ⊂ P1

s. There is an
obvious involution i : P1

s → P1
s by i(S0, S1) = (S1, S0), and ζ ◦ i is 2-equivalent to

ζ. Therefore the length of the R1prs,∗Eprs
⊗L is 2 times the length of the stalk of

R1π∗Eπ(D) at the generic point of ∆a; more precisely, the length of the stalk at
each of (1, 0), (0, 1) ∈ P1

s is the length of the stalk at ∆a. Similarly for the lengths
of the associated graded pieces of the filtration.

Because Eprs
is the extension class of the trace mapping, R1prs,∗Eprs

⊗ L is the
cokernel of the OP1

s
-homomorphisms,

γ : prs,∗(L) → HomOP1s
(prs,∗(L

∨),OP1
s
),

induced via adjointness from the multiplication map,

prs,∗(L)⊗ prs,∗(L
∨) → prs,∗(OC) = OP1

s
.

On P1
s × P1

x × P1
y there is a locally free resolution of the push-forward of L, resp.

L∨,

0 → OP1
s
(−1) �OP1

x
(a− 1) �OP1

y
(−a− 1) F−→ OP1

s
(0) �OP1

x
(a) �OP1

y
(−a) → L→ 0,

0 → OP1
s
(−1) �OP1

x
(−a− 1) �OP1

y
(a− 1) F−→ OP1

s
(0) �OP1

x
(−a) �OP1

y
(a) → L∨ → 0

Hence Rprs,∗L is the complex,

OP1
s
(−1)⊗kH

0(P1
x,OP1

x
(a−1))⊗kH

1(P1
y,OP1

y
(−a−1)) F−→ OP1

s
⊗kH

0(P1
x,OP1

x
(a))⊗kH

1(P1
y,OP1

y
(−a)).

A similar result holds for Rprs,∗L
∨. It is possible to write out this map explicitly

in terms of bases for H0 and H1, but for the main statement just observe the
complex has rank 1 and degree −a2. A similar result holds for Rprs,∗L

∨. Therefore
R1π∗Eπ(L) is a torsion sheaf of length 2a2. Because it is equivariant for i, the
localization at each of (0, 1) and (1, 0) has length a2.

The lengths of the associated graded pieces of the filtration by order of vanishing
at V(S0S1) can be computed from the complexes for Rprs,∗L and Rprs,∗L

∨. This
is left to the reader. �

Corollary 4.4. In the universal case, Qπ(D) = −
∑

a≥0 a
2∆a. Therefore in the

general case of π : C →M and an invertible sheaf L of relative degree 0,

Qπ(L) =
∑

β′,β′′

′
〈C1(L), β′〉〈C1(L), β′′〉∆β′,β′′ .
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5. Proof of Proposition 1.2

As usual, letM be an Artin stack and let π : C →M be a flat 1-morphism, relatively
representable by proper algebraic spaces whose geometric fibers are connected, at-
worst-nodal curves of genus 0.

Hypothesis 5.1. There are cycle class groups for C andM admitting Chern classes
for locally free sheaves, and such that Grothendieck-Riemann-Roch holds for π. In
particular, this holds if M is a Deligne-Mumford stack whose coarse moduli space
is quasi-projective.

Proof of Proposition 1.2(i). Define D′ = 2D + 〈D,β〉C1(ωπ). This is a Cartier
divisor class of relative degree 0. By Corollary 4.4,

Qπ(D′) =
∑

β′,β′′

′
(〈2D,β′〉 − 〈D,β〉)(〈2D,β′′〉 − 〈D,β〉)∆β′,β′′ .

By Lemma 3.3 this is,

4π∗(D ·D) + 4〈D,β〉π∗(D · C1(ωπ) + (〈D,β〉)2Qπ(C1(ωπ)) =∑
β′,β′′

′(4〈D,β′〉〈D,β′′〉 − (〈D,β〉)2)∆β′,β′′ .

By Proposition 4.1, Qπ(ωπ) = −
∑

β′,β′′
′∆β′,β′′ . Substituting this into the equation,

simplifying, and dividing by 4 gives the relation. �

Lemma 5.2. For every pair of Cartier divisor classes on C, D1, D2, of relative
degrees 〈D1, β〉, resp. 〈D2, β〉, modulo 2-power torsion,

2π∗(D1 ·D2) + 〈D1, β〉π∗(D2 · C1(ωπ)) + 〈D2, β〉π∗(D1 · C1(ωπ)) =∑
β′,β′′

′(〈D1, β
′〉〈D2, β

′′〉+ 〈D2, β
′〉〈D1, β

′′〉)∆β′,β′′ .

Proof. This follows from Proposition 1.2(i) and the polarization identity for qua-
dratic forms. �

Lemma 5.3. For every section of π, s : M → C, whose image is contained in the
smooth locus of π,

s(M) · s(M) + s(M) · C1(ωπ).

Proof. This follows by adjunction since the relative dualizing sheaf of s(M) → M
is trivial. �

Lemma 5.4. For every section of π, s : M → C, whose image is contained in
the smooth locus of π and for every Cartier divisor class D on C of relative degree
〈D,β〉 over M , modulo 2-power torsion,

2〈D,β〉s∗D − π∗(D ·D)− 〈D,β〉2π∗(s(M) · s(M)) =∑
β′,β′′

′(〈D,β′〉2〈s(M), β′′〉+ 〈D,β′′〉2〈s(M), β′〉)∆β′,β′′ .

Proof. By Proposition 1.2(i),

2s∗D + π∗(D · C1(ωπ)) + 〈D,β〉π∗(s(M) · C1(ωπ)) =∑′(〈D,β′〉〈s(M), β′′〉+ 〈D,β′′〉〈s(M), β′〉)∆β′,β′′ .
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Multiplying both sides by 〈D,β〉,

2〈D,β〉s∗D + 〈D,β〉π∗(D · C1(ωπ)) + 〈D,β〉2π∗(s(M) · C1(ωπ)) =∑′(〈D,β〉〈D,β′〉〈s(M), β′′〉+ 〈D,β〉〈D,β′′〉〈s(M), β′〉)∆β′,β′′ .

First of all, by Lemma 5.4, 〈D,β〉2π∗(s(M) · C1(ωπ)) = −〈D,β〉2π∗(s(M) · s(M)).
Next, by Proposition 1.2(i),

〈D,β〉π∗(D · C1(ωπ)) = −π∗(D ·D) +
∑′

〈D,β′〉〈D,β′′∆β′,β′′ .

Finally,

〈D,β〉〈D,β′〉〈s(M), β′′〉+ 〈D,β〉〈D,β′′〉〈s(M), β′〉 =

(〈D,β′〉+ 〈D,β′′〉)〈D,β′〉〈s(M), β′′〉+ (〈D,β′〉+ 〈D,β′′〉)〈D,β′′〉〈s(M), β′〉 =

〈D,β′〉2〈s(M), β′′〉+ 〈D,β′′〉2〈s(M), β′〉+ 〈D,β′〉〈D,β′′〉(〈s(M), β′〉+ 〈s(M), β′′〉) =

〈D,β′〉2〈s(M), β′′〉+ 〈D,β′′〉2〈s(M), β′〉+ 〈D,β′〉〈D,β′′〉.

Plugging in these 3 identities and simplifying gives the relation. �

Proof of Proposition 1.2(ii). Let π : C → M0,0 denote the universal family. Let
Csmooth denote the smooth locus of π. The 2-fibered product pr1 : Csmooth×M0,0C →
Csmooth together with the diagonal ∆ : Csmooth → Csmooth ×M0,0 C determine a
1-morphism Csmooth → M1,0. This extends to a 1-morphism C → M1,0. The
pullback of the universal curve is a 1-morphism π′ : C′ → C that factors through
pr1 : C ×M0,0 C → C. Denote the pullback of the universal section by s : C → C′.
Now C is regular, and the complement of Csmooth has codimension 2. Therefore
s∗OC′(s(C)) can be computed on Csmooth. But the restriction to Csmooth is clearly
ω∨π . Therefore s∗OC′(s(C)) ∼= ω∨π on all of C.

Pulling this back by ζC : C → C gives a 1-morphism π′ : C ′ → C that factors
through pr1 : C ×M C → C. Let D be a Cartier divisor class on C and consider
the pullback to C ′ of pr∗2D on C×M C. This is a Cartier divisor class D′ on C ′. Of
course s∗D′ = D. Moreover, by the projection formula the pushforward to C×M C
of D′ ·D′ is pr∗2(D ·D). Therefore (π′)∗(D′ ·D′) is (pr1)∗pr∗2(D ·D), i.e., π∗π∗(D ·D).
Finally, denote by, ∑

β′,β′′

〈D,β′′〉2∆̃β′,β′′ ,

the divisor class on C,∑
β′,β′′

′
(〈D,β′′〉2〈s, β′〉+ 〈D,β′〉2〈s, β′′〉)∆β′,β′′ .

The point is this: if π is smooth over every generic point of M , then the divisor class
∆̃β′,β′′ is the irreducible component of π−1(∆β′,β′′) corresponding to the vertex v′,
i.e., the irreducible component with “curve class” β′. Therefore Proposition 1.2(ii)
follows from Lemma 5.4. �

Remark 5.5. If 〈D,β〉 6= 0 then, at least up to torsion, Proposition 1.2(i) follows
from Proposition 1.2(ii) by intersecting both sides of the relation by D and then
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applying π∗. This was pointed out by Pandharipande, who also proved Lemma 5.4
up to numerical equivalence in [8, Lem. 2.2.2] (by a very different method).

Lemma 5.6. Let s, s′ : M → C be sections with image in the smooth locus of π
such that s(M) and s′(M) are disjoint. Then,

π∗(s(M) · s(M)) + π∗(s′(M) · s′(M)) = −
∑

β′,β′′

〈s(M), β′〉〈s′(M), β′′〉∆β′,β′′ .

Proof. Apply Lemma 5.2 and use s(M) · s′(M) = 0 and Lemma 5.3. �

Lemma 5.7. Let r ≥ 2 and s1, . . . , sr : M → C be sections with image in the
smooth locus of π and which are pairwise disjoint. Then,

−
r∑

i=1

π∗(si(M)·si(M)) = (r−2)π∗(s1(M)·s1(M))+
∑

β′,β′′

〈s1(M), β′〉〈s2(M)+· · ·+sr(M), β′′〉∆β′,β′′ .

Proof. This follows from Lemma 5.6 by induction. �

Lemma 5.8. Let r ≥ 2 and let s1, . . . , sr : M → C be sections with image in the
smooth locus of π and which are pairwise disjoint. Then,

−
r∑

i=1

π∗(si(M)·si(M)) = r(r−2)π∗(s1(M)·s1(M))+
∑

β′,β′′

〈s1(M), β′〉〈s2(M)+· · ·+sr(M), β′′〉2∆β′,β′′ .

Combined with Lemma 5.7 this gives,

(r − 1)(r − 2)π∗(s1(M) · s1(M)) =

−
∑

β′,β′′〈s1(M), β′〉〈s2(M) + · · ·+ sr(M), β′′〉(〈s2(M) + · · ·+ sr(M), β′′〉 − 1)∆β′,β′′ ,

which in turn gives,

−(r − 1)
∑r

i=1 π∗(si(M) · si(M)) =∑
β′,β′′〈s1(M), β′〉〈s2(M) + · · ·+ sr(M), β′′〉(r − 〈s2(M) + · · ·+ sr(M), β′′〉)∆β′,β′′ .

In the notation of Example 2.2, this is,

−(r − 1)(r − 2)π∗(s1(M) · s1(M)) =
∑

(A,B), 1∈A

#B(#B − 1)∆(A,B),

and

−(r − 1)
r∑

i=1

π∗(si(M) · si(M)) =
∑

(A,B), 1∈A

#B(r −#B)∆(A,B).

Proof. Denote D =
∑r

i=2 si(M). Apply Lemma 5.4 to get,

2(r − 1) · 0−
∑r

i=2 π∗(si(M) · si(M))− (r − 1)2π∗(s1(M) · s1(M)) =∑
β′,β′′〈s1(M), β′〉〈s2(M) + · · ·+ sr(M), β′′〉2∆β′,β′′ .

Simplifying,

−
r∑

j=1

π∗(si(M)·si(M)) = r(r−2)π∗(s1(M)·s1(M))+
∑

〈s1(M), β′〉〈s2(M)+· · ·+sr(M), β′′〉2∆β′,β′′ .
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Subtracting from the relation in Lemma 5.7 gives the relation for (r − 1)(r −
2)π∗(s1(M) · s1(M)). Multiplying the first relation by (r − 1), plugging in the
second relation and simplifying gives the third relation. �

Lemma 5.9. Let r ≥ 2 and let s1, . . . , sr : M → C be everywhere disjoint sections
with image in the smooth locus. For every 1 ≤ i < j ≤ r, using the notation from
Example 2.2,∑

(A,B), i∈A

#B(r −#B)∆(A,B) =
∑

(A′,B′),j∈A

#B′(r −#B′)∆(A′,B′).

Proof. This follows from Lemma 5.8 by permuting the roles of 1 with i and j. �

Lemma 5.10. Let r ≥ 2 and let s1, . . . , sr : M → C be everywhere disjoint sections
with image in the smooth locus of π. For every Cartier divisor class D on C of
relative degree 〈D,β〉,

2(r−1)(r−2)〈D,β〉s∗1D = (r−1)(r−2)π∗(D ·D)+
∑

β′,β′′

〈s1(M), β′〉a(D,β′′)∆β′,β′′ ,

where,

a(D,β′′) = (r−1)(r−2)〈D,β′′〉2−〈D,β〉2〈s2(M)+· · ·+sr(M), β′′〉(〈s2(M)+· · ·+sr(M), β′′〉−1).

In particular, if r ≥ 3, then modulo torsion s∗iD is in the span of π∗(D · D) and
boundary divisors for every i = 1, . . . , r.

Proof. This follows from Lemma 5.4 and Lemma 5.8. �

Lemma 5.11. Let r ≥ 2 and let s1, . . . , sr : M → C be everywhere disjoint sections
with image in the smooth locus of π. Consider the sheaf E = Ωπ(s1(M) + · · · +
sr(M)). The perfect complex Rπ∗RHomOC

(E ,OC) has rank 3 − r and the first
Chern class of the determinant is −2∆ −

∑r
i=1(si(M) · si(M)). In particular, if

r ≥ 2, up to torsion,

C1(detRπ∗RHomOC
(Ωπ(s1(M) + · · ·+ sr(M)),OC)) =

−2∆ + 1
r−1

∑
(A,B), 1∈A #B(r −#B)∆(A,B).

Proof. There is a short exact sequence,

0 −−−−→ Ωπ −−−−→ Ωπ(s1(M) + · · ·+ sr(M)) −−−−→ ⊕r
i=1(si)∗OM −−−−→ 0.

Combining this with Lemma 4.2, Lemma 5.8, and chasing through exact sequences
gives the lemma. �

6. Proof of Theorem 1.1

Let k be a field, let X be a connected, smooth algebraic space over k of dimension n,
let M be an Artin stack over k, let π : C →M be a flat 1-morphism, representable
by proper algebraic spaces whose geometric fibers are connected, at-worst-nodal
curves of arithmetic genus 0, let s1, . . . , sr : M → C be pairwise disjoint sections
with image contained in the smooth locus of π (possibly r = 0, i.e., there are no
sections), and let f : C → X be a 1-morphism of k-stacks. In this setting, Behrend
and Fantechi introduced a perfect complex E• on M of amplitude [−1, 1] and a
morphism to the cotangent complex, φ : E• → L•M , [3]. If char(k) = 0 and M is
the Deligne-Mumford stack of stable maps to X, Behrend and Fantechi prove E•
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has amplitude [−1, 0], h0(φ) is an isomorphism and h−1(φ) is surjective. In many
interesting cases, φ is a quasi-isomorphism. Then det(E•) is an invertible dualizing
sheaf for M . Because of this, det(E•) is called the virtual canonical bundle. In this
section the relations from Section 5 are used to give a formula for the divisor class
of the virtual canonical bundle. Assume that Hypothesis 5.1 holds for π.

Denote by L(π,f) the cotangent complex of the morphism (π, f) : C → M × X.
This is a perfect complex of amplitude [−1, 0]. There is a distinguished triangle,

Lπ −−−−→ L(π,f) −−−−→ f∗ΩX [1] −−−−→ Lπ[1].

There is a slight variation L(π,f,s) taking into account the sections which fits into
a distinguished triangle,

Lπ(s1(M) + · · ·+ sr(M)) −−−−→ L(π,f,s) −−−−→ f∗ΩX [1] −−−−→ Lπ(s1(M) + · · ·+ sr(M))[1].

The complex E• is defined to be (Rπ∗(L∨(π,f,s))[1])∨, where (F •)∨ is RHom(F •,O).
In particular, det(E•) is the determinant of Rπ∗(L∨(π,f,s)). From the distinguished
triangle, det(E•) is

det(Rπ∗RHomOC
(Ωπ(s1(M) + · · ·+ sr(M)),OC))⊗ det(Rπ∗f∗TX)∨.

By Lemma 5.11, the first term is known. The second term follows easily from
Grothendieck-Riemann-Roch.

Lemma 6.1. Assume that the relative degree of f∗C1(ΩX) is nonzero. Then
Rπ∗f

∗TX [−1] has rank 〈−f∗C1(ΩX), β〉 + n, and up to torsion the first Chern
class of the determinant is,

1
2〈−f∗C1(ΩX),β〉 [2〈−f∗C1(ΩX), β〉π∗f∗C2(ΩX)

−(〈−f∗C1(ΩX), β〉+ 1)π∗f∗C1(ΩX)2+∑′〈−f∗C1(ΩX), β′〉〈−f∗C1(ΩX), β′′〉∆β′,β′′
]
.

Proof. The Todd class τπ of π is 1 − 1
2C1(ωπ) + τ2 + . . . , where π∗τ2 = 0. The

Chern character of f∗TX is,

n− f∗C1(ΩX) +
1
2
(f∗C1(ΩX)2 − 2f∗C2(ΩX)) + . . .

Therefore ch(f∗TX) · τπ equals,

n−
[
f∗C1(ΩX) +

n

2
C1(Ωπ)

]
+

1
2

[
f∗C1(ΩX)2 − 2f∗C2(ΩX) + f∗C1(ΩX) · C1(ωπ)

]
+nτ2+. . .

Applying π∗ and using that π∗τ2 = 0, the rank is n + 〈−f∗C1(ΩX), β〉, and the
determinant has first Chern class,

1
2
π∗

[
f∗C1(ΩX)2 − 2f∗C2(ΩX)

]
+

1
2
π∗(f∗C1(ΩX) · C1(ωπ)).

Applying Proposition 1.2 and simplifying gives the relation. �

Putting the two terms together gives the formulas in Theorem 1.1.
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