
THE AMPLE CONE OF THE KONTSEVICH MODULI SPACE

IZZET COSKUN, JOE HARRIS, AND JASON STARR

Abstract. We produce ample, respectively NEF, eventually free, divisors in
the Kontsevich space M0,n(Pr , d) of n-pointed, genus 0, stable maps to Pr,

given such divisors in M0,n+d. We prove this produces all ample, respectively

NEF, eventually free, divisors in M0,n(Pr, d). As a consequence, we construct

a contraction of the boundary ∪
bd/2c
k=1

∆k,d−k in M0,0(Pr, d) analogous to a

contraction of the boundary ∪
bn/2c
k=3

∆̃k,n−k in M0,n first constructed by Keel
and Mc Kernan.

1. Introduction

Positive-dimensional families of varieties specialize – non-general varieties in the
family exhibit special properties. Given a parameter space, the subset parametriz-
ing varieties with a special property is typically closed. Which special properties
occur in codimension 1, respectively for every 1-parameter family of varieties? More
precisely, when is the associated closed subset an effective divisor, respectively an
ample divisor? These questions, among others, motivate the study of effective and
ample divisors in parameter spaces of varieties.

The parameter space we study is the Kontsevich moduli space of n-pointed, genus
0, stable maps to projective space, denoted M0,n(Pr, d). Here we study the ample
cone, and more generally the NEF and eventually free cones. In a second article
[CHS], using significantly different methods and under additional hypotheses, we
study the effective cone.

Our goal is to study families of curves in a general target X . Fortunately,
this largely reduces to the study for Pr: As the Kontsevich space is functorial
in the target, for every morphism X → Pr, NEF and base-point-free divisors on
M0,n(Pr, d) give NEF and base-point-free divisors on M0,n(X, β) (this functoriality
is one of many advantages of the Kontsevich space over the Hilbert scheme and the
Chow variety).

Here is our main result.

Theorem 1.1. Let r and d be positive integers, n a nonnegative integer such that
n+ d ≥ 3. There is an injective linear map,

v : Pic(M0,n+d)
Sd

Q → Pic(M0,n(Pr, d))Q.
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The NEF cone of M0,n(Pr, d), respectively, the base-point-free cone, is the product
of the cone generated by H, T ,L1, . . . ,Ln and the image under v of the NEF cone
of M0,n+d//Sd, respectively, the base-point-free cone.

The action of Sd on M0,n+d permutes the last d marked points. The map v
generates NEF and base-point-free divisors on the Kontsevich space from NEF and
base-point-free divisors on M0,n+d//Sd. In particular, it generates contractions of

the Kontsevich space from contractions of M0,n+d//Sd.

Theorem 1.2. For every integer r ≥ 1 and d ≥ 2, there is a contraction,

cont : M0,0(P
r, d) → Y,

restricting to an open immersion on the interior M0,0(P
r, d) and whose restriction

to the boundary divisor ∆k,d−k
∼= M0,1(P

r, k) ×Pr M0,1(P
r, d − k) factors through

the projection to M0,1(P
r, d − k) for each 1 ≤ k ≤ bd/2c. The following divisor is

the pull-back of an ample divisor on Y ,

Dr,d = T +

bd/2c∑

k=2

k(k − 1)∆k,d−k.

Some connection between the ample cone of the Kontsevich space and the ample
cone of M0,n is natural, and certainly not surprising to experts. A similar connec-

tion between the Fulton-MacPherson space and M0,n was proved in [Che]. The
primary importance of Theorem 1.1 is the precise, simple description of v: with one
exception, it maps each boundary divisor of M0,n+d to the corresponding bound-
ary divisor of the Kontsevich space. This is used to construct the contraction in
Theorem 1.2, which is analogous to the “democratic” contraction of the boundary
of M0,n first constructed in an unpublished note of Keel and Mc Kernan.

Recently we were informed of different constructions of the contraction of The-
orem 1.2 in [Par] and by Anca Mustaţǎ and Andrei Mustaţǎ. One advantage of
our proof is that it uses only the existence of the map v, which is itself a formal
consequence of the definition of the Kontsevich space. The proof of Theorem 1.2
also gives a new, very short construction of Keel-Mc Kernan’s contraction of M0,n.

Acknowledgments: We would like to thank B. Hassett and A. J. de Jong for
suggesting helpful references and for useful discussions.

2. Statement of results

The Kontsevich moduli space M0,n(Pr, d) compactifies the scheme parameteriz-
ing smooth, rational curves of degree d in Pr. Precisely, it is the smooth, proper,
Deligne-Mumford stack parameterizing families of data (C, (p1, ..., pn), f) of,

(i) a proper, connected, at-worst-nodal, genus 0 curve C,
(ii) an ordered sequence p1, . . . , pn of distinct, smooth points of C,
(iii) and a degree-d morphism f : C → Pr satisfying the following stability

condition: every irreducible component of C mapped to a point under f
contains at least 3 special points, i.e., marked points pi and nodes of C.

In [Pa] R. Pandharipande gives generators of the Kontsevich space:

(1) the class H of the divisor of maps whose images intersect a fixed codimen-
sion two linear space in Pr (provided r > 1 and d > 0),
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(2) the class Li of the pull-back ev∗
i (OPr(1)), for 1 ≤ i ≤ n, associated to the

ith evaluation morphism, evi(C, (p1, . . . , pn), f) := f(pi),
(3) and the classes ∆(A,dA),(B,dB) of the boundary divisors consisting of maps

with reducible domains. Here AtB is any ordered partition of the marked
points, and dA and dB are non-negative integers satisfying d = dA + dB . If
dA = 0 (respectively, if dB = 0), we demand #A ≥ 2 (resp. #B ≥ 2).

The divisor classes H and Li on M0,n(Pr, d) are NEF and base-point-free. For
d ≥ 2, there is another NEF and base-point-free divisor class T , the tangency
divisor : Fixing a hyperplane Π ⊂ Pr, T is the class of the divisor parametrizing
stable maps (C, p1, . . . , pi, f) for which f−1(Π) is not simply d reduced, smooth
points of C. In terms of Pandharipande’s generators, the class of T equals,

T =
d− 1

d
H +

bd/2c∑

k=0

k(d− k)

d




∑

A,B

∆(A,k),(B,d−k)


 .

Finally, the map v from Theorem 1.1 is described in Section 3. Together, all
nonnegative-linear combinations of these divisors give a cone in Pic(M0,n(Pr, d))Q.
We use the method of test families to prove this is the entire cone of NEF divisors,
respectively, eventually free divisors. In other words, we find morphisms from test
varieties to M0,n(Pr, d)Q. Since every NEF divisor, resp. eventually free divisor,
pulls back to such a NEF divisor, resp. eventually free divisor, this constrains
the NEF and eventually free divisors among all divisors. By producing sufficiently
many test families, we prove every NEF, resp. eventually free divisor, is in our
cone.

Hypothesis 2.1. For the rest of the paper assume that the triple (n, r, d) in
M0,n(Pr, d) satisfies r ≥ 1, d ≥ 1 and n+ d ≥ 3.

*C

L L L

f

Pr

L

p

Figure 1. The morphism α.

The morphism α. There is a 1-morphism α : M0,n+d × Pr−1 → M0,n(Pr, d)
defined as follows. Fix a point p ∈ Pr and a line L ⊂ Pr containing p. To every
curve C in M0,n+d attach a copy of L at each of the last d marked points and denote
the resulting curve by C ′. Consider the morphism f : C ′ → Pr that contracts C
to p and maps the d rational tails isomorphically to L (see Figure 1). Since the
space of lines in Pr passing through the point p is parameterized by Pr−1, there is
an induced 1-morphism α : M0,n+d × Pr−1 → M0,n(Pr, d).

Since α is invariant for the action of Sd permuting the last d marked points, the
pull-back map determines a homomorphism

α∗ = (α∗
1, α

∗
2) : Pic(M0,n(Pr, d)) → Pic(M0,n+d)

Sd × Pic(Pr−1).
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We will denote the two projections of α∗ by α∗
1 and α∗

2.

L*

C

pi

slide pi along L

Figure 2. The morphism βi.

The morphisms βi. For each 1 ≤ i ≤ n, there is a 1-morphism βi : P1 →
M0,n(Pr, d) defined as follows. Fix a degree-(d − 1), (n − 1)-pointed curve C
containing all except the ith marked point. At a general point of C, attach a line L.
The resulting degree-d, reducible curve will be the domain of our map. The final,
ith marked point is in L. Varying pi in L gives a 1-morphism βi : P1 → M0,n(Pr, d)
(see Figure 2). This definition has to be slightly modified in the cases (n, d) = (1, 1)
or (2, 1). When (n, d) = (1, 1), we assume that the line L with the varying marked
point pi constitutes the entire stable map. When (n, d) = (2, 1), we assume that
the map has L as the only component. One marked point is allowed to vary on L
and the remaining marked point is held fixed at a point p ∈ L.

C L

Pr

C

L L

f

slide attachment point

Figure 3. The morphism γ.

The morphism γ. If d ≥ 2, there is a 1-morphism γ : P1 → M0,n(Pr, d)
defined as follows. Take two copies of a fixed line L attached to each other at a
variable point. Fix a point p in the second copy of L. Let C be a smooth, degree-
(d − 2), genus 0, (n + 1)-pointed stable map to Pr whose (n + 1)-st point maps
to p. Attach this to the second copy of L at p. Altogether, this gives a degree-d,
n-pointed, genus 0 stable maps with three irreducible components. The n marked
points are the first n marked points of C. The only varying aspect of this family of
stable maps is the attachment point of the two copies of L. Varying the attachment
point in L ∼= P1 gives a stable map parameterized by P1, hence there is an induced
1-morphism γ : P1 → M0,n(Pr, d) (see Figure 3). When (n, d) = (1, 2), we modify
the definition by assuming that the map consists only of the two copies of the line
L and the marked point is held fixed at the point p on the second copy of L.

Notation 2.2. If d ≥ 2, denote by Pr,n,d the Abelian group

Pr,n,d := Pic(M0,n+d)
Sd × Pic(Pr−1) × Pic(P1)n × Pic(P1).

Denote by u = ur,n,d : Pic(M0,n(Pr, d)) → Pr,n,d the pull-back map

ur,n,d = (α∗, (β∗
1 , . . . , β

∗
n), γ∗).
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If d = 1, denote by Pr,n,1 the Abelian group

Pr,n,1 := Pic(M0,n+d)
Sd × Pic(Pr−1) × Pic(P1)n

and denote by u = ur,n,1 : Pic(M0,n(Pr, 1)) → Pr,n,1 the pull-back map

ur,n,1 = (α∗, (β1,
∗ , . . . , β∗

n))

Theorem 1.1 is equivalent to the following.

Theorem 2.3. The map ur,n,d⊗Q : Pic(M0,n(Pr, d))Q → Pr,n,d⊗Q is an isomor-
phism. The image under ur,n,d ⊗ Q of the ample cone, resp. NEF, eventually free

cone of M0,n(Pr, d) equals the product of the ample cones, resp. NEF, eventually

free cones of Pic(M0,n+d)
Sd , Pic(Pr−1), and the factors Pic(P1).

This is equivalent to Theorem 1.1 because the linear map ur,n,d is simply the

inverse of the product of the linear map v and the maps Q → Pic(M0,n(Pr, d))Q

associated to each generator H, T and L1, . . . ,Ln.

Notation 2.4. Denote by n the set {1, . . . , n}. Denote by 4 = 4n,d the set of
4-tuples ((A, dA), (B, dB)) of an ordered partition A t B of n and an ordered pair
of nonnegative integers (dA, dB) such that dA + dB = d and #A ≥ 2 (#B ≥ 2) if
dA = 0 (dB = 0, respectively). Denote by 4′ the subset of 4 of data such that
#A+ dA ≥ 2 and #B + dB ≥ 2.

Recall that the group Pic(M0,n) is generated by boundary divisors ∆̃A,B , where

A t B is an ordered partition of n with #A ≥ 2 and #B ≥ 2. Let ∆̃k,n−k denote

the sum of the boundary divisors
∑

(A,B) ∆̃A,B , where the sum runs over pairs

(A,B) such that #A = k and #B = n− k. The group Pic(M0,n+d)
Sd is generated

by boundary divisors ∆̃(A,dA),(B,dB), where ((A, dA), (B, dB)) ∈ ∆′. The divisor

∆̃(A,dA),(B,dB) denotes the Sd-invariant sum of boundary divisors
∑

(A′,B′) ∆̃(A,A′),(B,B′),

where the sum runs over pairs (A′, B′) such that A′ t B′ is a partition of the last
d points and #A′ = dA and #B′ = dB .

To apply Theorem 2.3, we need to express the images of the standard gener-
ators of Pic(M0,n(Pr, d)) in terms of the standard generators for Pic(M0,n+d)

Sd ,
Pic(Pr−1) and Pic(P1) factors.

Proposition 2.5. (i) Assume d ≥ 2 so that γ is defined. Then

γ∗T = OP1(2), γ∗H = 0, γ∗Li = 0, for 1 ≤ i ≤ n.

The pull-back γ∗∆(A,dA),(B,dB) = 0 unless (#A, dA) or (#B, dB) is equal to (0, 1)
or (0, 2). Moreover, if (n, d) 6= (0, 3),

γ∗∆(∅,1),(n,d−1) = OP1(4) and γ∗∆(∅,2),(n,d−2) = OP1(−1).

If (n, d) = (0, 3), then γ∗∆(∅,1),(n,d−1) = OP1(3).

(ii) Assume n ≥ 1 so that β1, . . . , βn are defined. Then

β∗
i H = 0, β∗

i Li = OP1(1), β∗
i Lj = 0 if j 6= i, and β∗

i T = 0.

For every 1 ≤ i ≤ n, the pull-back β∗
i ∆(∅,1),(n,d−1) equals OP1(1) if (n, d) 6= (1, 2),

and equals OP1(2) if (n, d) = (1, 2). If (n, d) 6= (1, 2), then β∗
i ∆({i},1),({i}c,d−1)

equals OP1(−1). And β∗
i ∆(A,dA),(B,dB) equals 0 if neither (A, dA) nor (B, dB) equal

(∅, 1) or ({i}, 1).
(iii) α∗H = (0,OPr−1(d)), α∗Li = 0, for 1 ≤ i ≤ n, α∗T = 0.
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Divisors in M0,n(Pr, d) α∗
1 α∗

2 β∗
i γ∗

T 0 0 0 OP1(2)

H 0 OPr−1(d) 0 0

Li 0 0 OP1(1) 0

Lj 6=i 0 0 0 0

∆(∅,1),(n,d−1) c OPr−1(−d) OP1(−1) OP1(4)

∆(∅,2),(n,d−2) ∆̃(∅,2),(n,d−2) 0 0 OP1(−1)

∆({i},1),({i}c,d−1) ∆̃({i},1),({i}c,d−1) 0 OP1(−1) 0

∆(A,dA),(B,dB) ∆̃(A,dA),(B,dB) 0 0 0
all others

Figure 4. The pull-backs of the standard generators

If #A + dA,#B + dB ≥ 2, then α∗∆(A,dA),(B,dB) equals ∆̃(A,dA),(B,dB). The pull-
back α∗∆(∅,1),(n,d−1) equals (c,OPr−1(−d)), where c is the class

c =
−1

(n+ d− 1)(n+ d− 2)

∑

((A,dA),(B,dB ))

∈∆′

dA(dB +#B)(dB +#B−1)∆̃(A,dA),(B,dB).

Proof. Items (i) and (ii) follow from Lemma 3.5 and Lemma 4.1. Item (iii), except

for the computation of c, is straightforward. The class c equals −
∑d

i=1 ψn+i. To
rewrite this as above, use [Pa, Lemma 2.2.1] (cf. also [dJS, Lemma 6.10]). �

With the exceptions of (n, d) = (0, 3), (1, 2), and (1, 3), Proposition 2.5 is sum-
marized by Figure 4. The phrase “all others” means, all pairs ((A, dA), (B, dB))
such that neither ((A, dA), (B, dB)) nor ((B, dB), (A, dA)) already occur in the ta-
ble. The lines γ∗ and ∆(∅,2),(n,d−2) apply only if d ≥ 2. The lines Li, Lj and
∆({i},1),({i}c,d−1) only apply if n ≥ 1.

In [Kaw], Kawamata associated an effective, NEF Q-Cartier divisor L on M0,n

to every n-tuple of rational numbers, (d1, . . . , dn) satisfying 0 < di ≤ 1 and d1 +
· · · + dn = 2. In an unpublished note Keel and Mc Kernan proved the following.

Theorem 2.6 (Keel-Mc Kernan). The Q-Cartier divisor L is eventually free.

In particular, when d1 = · · · = dn = 2/n, the divisor class of L equals (1/n(n−
1))Dn, where

Dn =

bn/2c∑

k=2

k(k − 1)∆̃k,n−k .
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This is the divisor class giving the “democratic” contraction of the boundary of
M0,n, cf. [Has, §2.1.2]. One application of Theorem 2.3 is the construction of the
analogous contraction in Theorem 1.2 as well as a new, short construction of the
democratic contraction.

Theorem 2.7. For every integer n ≥ 4, there is a contraction

cont : M0,n → Y

restricting to an open immersion on the interior M0,n and whose restriction to
the boundary divisor ∆k,n−k = M0,k+1 × M0,n+1−k factors through projection to
M0,n+1−k for each 3 ≤ k ≤ bn/2c. The divisor Dn is the pull-back of an ample
divisor on Y .

It follows easily that for every rational number b satisfying

2

(n− 1)
< b <

2

bn/2c
resp. b =

2

bn/2c
,

setting B = b (cont)∗(∆̃2,n−2), KY +B is an ample Q-Cartier divisor, and (Y,B) is
Kawamata log terminal, resp. log canonical (for this one only needs the existence
of the contraction and the formula for L).

3. The splitting homomorphism

In this section we define a map v : Pic(M0,n+d)
Sd → Pic(M0,n(Pr, d)) ⊗ Q that

maps the NEF divisors in Pic(M0,n+d)
Sd to NEF divisors in M0,n(Pr, d). The map

v gives a splitting of the map α∗
1 defined in the introduction and is essential for the

proof of Theorem 2.3.

Let Π ⊂ Pr be a hyperplane not containing the point p used to define the mor-
phisms α and γ. Assume that the degree d− 1 curve used to define the morphisms
βi is not tangent to Π, and none of the marked points on this curve are contained
in Π. Finally, assume that the degree d− 2 curve used to define the morphism γ is
not tangent to Π and none of the marked points are contained in Π.

Denote by M0,n+d(P
r, d) the open substack of M0,n+d(P

r, d) parameterizing
stable maps with irreducible domain. Let

evn+1,...,n+d : M0,n+d(P
r, d) → (Pr)d

be the evaluation morphism associated to the last d marked point. Denote by
M0,n+d(P

r, d)Π the inverse image of Πd and by M0,n+d(P
r, d)Π the closure of

M0,n+d(P
r, d)Π in M0,n+d(P

r, d).

M0,n+d(P
r, d)Π is Sd-invariant under the action of Sd on M0,n+d(P

r, d) per-
muting the last d marked points. Denote by

π : M0,n+d(P
r, d) → M0,n(Pr, d)

the forgetful 1-morphism that forgets the last d marked points and stabilizes the
resulting family of prestable maps. This is Sd-invariant. Denote by

ρ : M0,n+d(P
r, d) → M0,n+d

the 1-morphism that stabilizes the universal family of marked prestable curves over
M0,n+d(P

r, d). This is Sd-equivariant.
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Lemma 3.1. The 1-morphism π : M0,n+d(P
r, d)Π → M0,n(Pr, d) is étale. Denot-

ing the image by OΠ, the morphism π : M0,n+d(P
r, d)Π → OΠ is an Sd-torsor.

Proof. Let (C, (p1, . . . , pn, q1, . . . , qd), f) be a stable map in M0,n+d(P
r, d)Π. Then

(C, (p1, . . . , pn), f) satisfies,

(i) C is irreducible,
(ii) f−1(Π) is a reduced Cartier divisor, and
(iii) none of the marked points pi is contained in f−1(Π).

Conversely, for every stable map (C, (p1, . . . , pn), f) satisfying (i)–(iii), for every
labeling of f−1(Π) as q1, . . . , qd, (C, (p1, . . . , pn, q1, . . . , qd), f) is a stable map in
M0,n+d(P

r, d)Π. Thus OΠ is the open substack of stable maps satisfying (i)–(iii)
and M0,n+d(P

r, d)Π is the Sd-torsor over OΠ parameterizing labelings of the fibers
of f−1(Π). �

Denote by q : M0,n+d → M0,n+d/Sd the geometric quotient. The composition

q ◦ρ : M0,n+d(P
r, d)Π → M0,n+d/Sd is Sd-equivariant. Because M0,n+d(P

r, d)Π is

an Sd-torsor over OΠ, there is a unique 1-morphism φ′Π : OΠ → M0,n+d/Sd such
that φ′ ◦ π = q ◦ ρ.

Definition 3.2. Define UΠ to be the maximal open substack of M0,n(Pr, d) over
which φ′Π extends to a 1-morphism, denoted

φΠ : UΠ → M0,n+d/Sd.

Define IΠ to be the normalization of the closure in M0,n(Pr, d)×M0,n+d/Sd of the
image of the graph of φ′Π, i.e., IΠ is the normalization of the image of (π, q ◦ ρ).

Define ĨΠ to be the normalization of the image of (π, ρ) in M0,n(Pr, d) × M0,n+d.

Finally, define ŨΠ to be the inverse image of UΠ in ĨΠ.

There is a pull-back map of Sd-invariant invertible sheaves,

ρ∗ : Pic(M0,n+d)
Sd → Pic(ĨΠ)Sd ,

which further restricts to Pic(ŨΠ)Sd . After étale base-change from UΠ to a scheme,

the morphism ŨΠ → UΠ is the geometric quotient of ŨΠ by the action of Sd.

Therefore the pull-back map Pic(UΠ) → Pic(ŨΠ)Sd is an isomorphism after ten-
soring with Q; in fact, both the kernel and cokernel are annihilated by d!. Because
M0,n+d/Sd is a proper scheme and because M0,n(Pr, d) is separated and normal,
by the valuative criterion of properness the complement of UΠ has codimension ≥ 2.
The smoothness of M0,n(Pr, d) and [Ha, Prop. 6.5(c)] imply that the restriction

map Pic(M0,n(Pr, d)) → Pic(UΠ) is an isomorphism.

Definition 3.3. Define v : Pic(M0,n+d)
Sd → Pic(M0,n(Pr, d))⊗Q to be the unique

homomorphism commuting with ρ∗ via the isomorphisms above.

The map v is independent of the choice of Π, hence it sends NEF divisors to
NEF divisors.

Lemma 3.4. For every base-point-free invertible sheaf L in Pic(M0,n+d)
Sd , v(L)

is base-point-free. In particular, for every ample invertible sheaf L, v(L) is NEF.
Thus, by Kleiman’s criterion, for every NEF invertible sheaf L, v(L) is NEF.
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Proof. For every [(C, (p1, . . . , pn), f)] in M0,n(Pr, d), there exists a hyperplane Π
satisfying the conditions above and such that f−1(Π) is a reduced Cartier divisor
containing none of p1, . . . , pn. By Lemma 3.1, (C, (p1, . . . , pn), f) is contained in
UΠ. Since L is base-point-free, there exists a divisor D in the linear system |L| not
containing φΠ[(C, (p1, . . . , pn), f)]. By the proof of [Ha, Prop. 6.5(c)], the closure of
φ−1

Π (D) is in the linear system |v(L)|; and it does not contain [(C, (p1, . . . , pn), f)].
�

Lemma 3.5. (i) The images of α, βi and γ are contained in UΠ.
(ii) The morphisms φΠ◦βi and φΠ◦γ are constant morphisms. Therefore β∗

i ◦v
and γ∗ ◦ v are the zero homomorphism.

(iii) The composition of α with φΠ equals q ◦ pr
M0,n+d

. Therefore

α∗ ◦ v : Pic(M0,n+d)
Sd → Pic(M0,n+d)

Sd × Pic(Pr−1)

is the homomorphism whose projection on the first factor is the identity,
and whose projection on the second factor is 0.

Proof. (i): The image of α is contained in OΠ. Denote by q the intersection point
of L and Π.

The image βi(L− {q}) is contained in OΠ. The stable map βi(q) sends the ith

marked point into Π. Up to labeling the d points of the inverse image of Π, there is
only one (n+d)-pointed stable map in M0,n+d(P

r, d)Π that stabilizes to this stable
map. It is obtained from βi(q) by removing the ith marked point from L, attaching
a contracted component C ′ to L at q, containing the ith marked point and exactly
one of the last d marked points, and labeling the d − 1 points in C ∩ Π with the
remaining d− 1 marked points.

Similarly, γ(L−{q}) is contained in OΠ. The stable map γ(q) has two copies of
L attached to each other at q. This appears to be a problem, because the inverse
image of γ(q) in M0,n+d(P

r, d)Π is 1-dimensional, isomorphic to M0,4. The stable
maps have a contracted component C ′ such that both copies of L are attached to
C ′ and 2 of the d new marked points are attached to C ′. The remaining d − 2
marked points are the points of C ∩ Π. However, the map ρ that stabilizes the
resulting prestable (n+ d)-marked curve is constant on this M0,4. Indeed, the first
copy of L has no marked points and is attached to C ′ at one point. So the first
step in stabilization will prune L reducing the number of special points on C ′ from
4 to 3.

(ii): In the family defining βi, only the ith marked point on L varies. After
adding the d new marked points, L is a 3-pointed prestable curve; marked by the
node p, the ith marked point, and the point q. For every base the only family of
genus 0, 3-pointed, stable curves is the constant family. So upon stabilization, this
family of genus 0, 3-pointed, stable curves becomes the constant family.

In the family defining γ, only the attachment point of the two copies of L varies.
The first copy of L gives a family of 2-pointed, prestable curves; marked by q and
the attachment point of the two copies of L. This is unstable. Upon stabilization,
the first copy of L is pruned and the marked point q on the first copy is replaced by a
marked point on the second copy at the original attachment point. Now the second
copy of L gives a family of 3-pointed, prestable curves; marked by the attachment
point p of the second and third irreducible components, the attachment point of the
first and second components, and q. For the same reason as in the last paragraph,
this becomes a constant family.
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(iii): Each stable map in α(M0,n+d ×Pr−1) is obtained from a genus 0, (n+ d)-
pointed, stable curve (C0, (p1, . . . , pn, q1, . . . , qd)) and a line L in Pr containing p by
attaching for each 1 ≤ i ≤ n, a copy Ci of L to C0 where p in Ci is identified with
qi in C0. The map to Pr contracts C0 to p, and sends each curve C to L via the
identity morphism. Denoting by r the intersection point of L and Π, the inverse
image of Π consists of the d points r1, . . . , rd, where ri is the copy of r in Ci.

The component Ci is a 2-pointed, prestable curve: marked by the attachment
point p of Ci and by ri. This is unstable. So, upon stabilization, Ci is pruned
and the marked point ri is replaced by a marking on C0 at the point of attach-
ment of C0 and Ci, namely qi. Therefore, up to relabeling of the last d marked
points, the result is the genus 0, (n + d)-pointed, stable curve we started with,
(C0, (p1, . . . , pn, q1, . . . , qd)). �

4. More divisors

In the previous section we constructed a map (see Definition 3.3)

v : Pic(M0,n+d)
Sd → Pic(M0,n(Pr, d)) ⊗ Q.

In this section we prove that the image of v, the divisor classes H, T and the
tautological divisors Li, generate Pic(M0,n(Pr, d)) ⊗ Q.

The divisor class HΛ, [Pa, Prop. 1] is the class of stable maps whose image
intersects a fixed codimension 2 linear space Λ of Pr. This is defined to be the
empty divisor if r = 1. For convenience, assume Λ is contained in Π and does not
intersect L or the curves C used to define βi and γ. If n ≥ 1, the divisors Li,Π,
i = 1, . . . , n, [Pa, Prop. 1] are the pull-back by evi of the Cartier divisor Π. If d ≥ 1,
the last divisor is TΠ, [Pa, §2.3]; the divisor of stable maps (C, (p1, . . . , pn), f) such
that f−1(Π) is not a reduced, finite set of degree d. This is defined to be the empty
divisor if d = 1. In [Pa] Pandharipande proves that HΛ, Li,Π and TΠ are irreducible
Cartier divisors (when they are nonempty).

Lemma 4.1. (i) The Cartier divisors TΠ, Li,Π and HΛ are NEF.
(ii) The pull-backs α∗(TΠ) and α∗(Li,Π) are zero. The pull-back α∗(HΛ) equals

(0,OPr−1(d)) in Pic(M0,n+d)
Sd × Pic(Pr−1); if r = 1, then OPr−1(1) is the

trivial invertible sheaf.
(iii) Assume n ≥ 1 so that βi is defined for 1 ≤ i ≤ n. The pull-backs β∗

i (TΠ)
and β∗

i (HΠ) are zero. For 1 ≤ j ≤ n different from i, β∗
i (Lj,Π) is zero.

Finally, β∗
i (Li,Π) is OP1(1).

(iv) Assume d ≥ 2 so that γ is defined. The pull-backs γ∗(HΛ) and γ∗(Li,Π)
are zero, and γ∗(TΠ) is OP1(2) in Pic(P1).

Proof. (i): By an argument similar to the one in Lemma 3.4, these divisors are
base-point-free (whenever they are non-empty). The divisor HΛ is big if r ≥ 2, and
TΠ is big if d ≥ 2. The divisors Li are not big.

(ii): By the proof of Lemma 3.5, the image of α is in OΠ, which is disjoint from
TΠ. Also, evi ◦α is the constant morphism with image p, so the inverse image of Li

is empty. Finally, the pull-back of HΠ equals the pull-back under the diagonal ∆

of the Cartier divisor
∑d

j=1 pr−1
j (Λ) in (Pr−1), where Λ is considered as a divisor

in Pr−1 via projection from p.
10



(iii): Since the image of βi is disjoint from HΠ, TΠ and Lj,Π for j 6= i, the
corresponding pull-backs are zero. The map evi ◦ βi : P1 → Pr embeds P1 as the
line L in Pr, hence β∗

i (Li,Π) = OP1(1).
(iv): Since neither the image curve nor the marked points vary under γ, clearly

γ∗HΛ and γ∗Li,Π are zero. To compute γ∗TΠ, use [Pa, Lem 2.3.1]. �

The main observation of this section is the following.

Proposition 4.2. The Q-vector space Pic(M0,n(Pr, d)) ⊗ Q is generated by TΠ,
HΛ, Li,Π for 1 ≤ i ≤ n, and the image of v.

Proof. When r ≥ 2, Pandharipande proves that the classes of the divisors HΛ, Li,Π

for 1 ≤ i ≤ n, and the boundary divisors ∆(A,dA),(B,dB) for ((A, dA), (B, dB)) ∈ ∆

generate the Q-vector space Pic(M0,n(Pr, d))⊗Q, cf. [Pa, Prop. 1]. The tangency
divisor T can be expressed in terms of H and the boundary divisors as follows [Pa,
Lem 2.3.1]:

T =
d− 1

d
H +

b d
2 c∑

j=0

j(d− j)

d

∑

((A,dA),(B,dB)),dA=j

∆(A,dA),(B,dB).

From Lemmas 4.1 and 3.5 and by pairing with one-parameter families, we see that

v(∆̃(A,dA),(B,dB)) = ∆(A,dA),(B,dB)

unless (#A, dA) or (#B, dB) equals one of (0, 2) or (1, 1).

v(∆̃(A,dA),(B,dB)) =
1

2
T + ∆(A,dA),(B,dB)

if (#A, dA) or (#B, dB) equals (0, 2). Finally,

v(∆̃({i},1),({i}c,d−1)) = ∆({i},1),({i}c,d−1) + Li,Π.

Consequently, it follows that the classes of the divisors H, T , Li,Π and the image of
v generate the classes of all the boundary divisors in the Kontsevich moduli space.
Hence, they generate Pic(M0,n(Pr, d)) ⊗ Q.

We can reduce the case r = 1 to the case r ≥ 2. Because L is disjoint from Λ,
there is a unique linear projection

prΛ : (Pr − Λ) → L

whose restriction to L is the identity. This is a vector bundle over L whose asso-
ciated sheaf of sections is OL(1)⊕(r−1). Composing a stable map to (Pr − Λ) with
prΛ gives a stable map to L. This defines a 1-morphism,

M0,n(prΛ, d) : (M0,n(Pr, d) −HΛ) → M0,n(L, d).

This is a vector bundle over M0,n(L, d) whose associated sheaf of sections is the

sheaf whose fiber at (C, (p1, . . . , pn), f) equals H0(C, f∗OL(1)⊕(r−1)). Thus the
pull-back homomorphism,

M0,n(prΛ, d)
∗ : Pic(M0,n(L, d)) → Pic(M0,n(Pr, d) −HΛ),

is an isomorphism, cf. [Ful, Thm. 3.3(a)].
The hyperplane Π is the closure of pr−1

Λ (L ∩ Π). Thus UΠ − HΛ ∩ UΠ (see

Definition 3.2) is the inverse image of the corresponding open substack of M0,n(L, d)
for L∩Π inside L. The inverse image of TL∩Π, resp. Li,L∩Π, equals the restriction

of TΠ, resp. Li,Π. And φL∩Π ◦ M0,n(prΛ, d) equals the restriction of φΠ. Thus
11



Pic(M0,n(Pr, d) −HΛ) ⊗ Q is generated by TΠ, Li,Π for 1 ≤ i ≤ n, and the image

of v if and only if the same is true for Pic(M0,n(P1, d)) ⊗ Q.
�

5. Proof of the main theorem

In this section we complete the proof of Theorem 2.3. Recall that Theorem 2.3
asserts that the NEF cone of the Kontsevich moduli space M0,n(Pr, d) equals the
NEF cone in Pr,n,d ⊗ Q, where Pr,n,d is the Abelian group

Pr,n,d := Pic(M0,n+d)
Sd × Pic(Pr−1) × Pic(P1)n × Pic(P1).

The identification of Pic(M0,n(Pr, d)) ⊗ Q with Pr,n,d ⊗ Q is given by the map

u = ur,n,d := (α∗, (β∗
1 , . . . , β

∗
n), γ∗)

(see §1).

Denote by

ṽ : Pr,n,d ⊗ Q → Pic(M0,n(Pr, d)) ⊗ Q

the unique homomorphism whose restriction to Pic(M0,n+d)
Sd is v (see Definition

3.3) , whose restriction to Pic(Pr−1) sends OPr−1(1) to [HΛ], whose restriction to
the ith factor of Pic(P1)n sends OP1(1) to [Li] if n ≥ 1, and whose restriction to the
last factor Pic(P1) (assuming d ≥ 2) sends OP1(1) to 1/2 [TΠ]. By Lemma 3.5 (ii),
(iii) and by Lemma 4.1, u⊗ Q ◦ ṽ is the identity map. In particular, ṽ is injective.
By Proposition 4.2, ṽ is surjective. Thus ṽ and u⊗ Q are isomorphisms.

Because α, βi and γ are morphisms, for every NEF, resp. eventually free, divisor
D in Pic(M0,n(Pr, d)) ⊗ Q, α∗(D), β∗

i (D), and γ∗(D) are NEF, resp. eventually
free. Denote,

D1 = α∗
1(D), a [OPr−1(1)] = α∗

2(D), bi [OP1(1)] = β∗
i (D), c [OP1(1)] = γ∗(D),

where by convention a is defined to be 0 if r = 1 and c is defined to be 0 if d = 1. If
D is NEF, resp. eventually free, D1 is NEF, resp. eventually free, in Pic(M0,n+d)

Sd ,
and a, bi, c ≥ 0.

Conversely, by Lemma 3.4, for every NEF, resp. eventually free, divisor D1

in Pic(M0,n+d)
Sd , v(D1) is NEF, resp. eventually free. By Lemma 4.1(i), for

a, bi, c ≥ 0, a[HΛ], bi[Li,Π] and c/2 [TΠ] are NEF and eventually free. Since a
sum of NEF, resp. eventually free, divisors is NEF, resp. eventually free, D =
v(D1) + a [HΛ] + bi [Li] + c/2 [TΠ] is NEF, resp. eventually free. Therefore D is
NEF if and only if u⊗Q(D) is in the product of the NEF cones of the factors. This
argument needs to be modified in the obvious way when (n, d) = (0, 3) and (1, 2)
to account for the slight variations in the formulae.

Because the interior of a product of cones equals the product of the interiors
of the cones, by Kleiman’s criterion, D is ample iff u ⊗ Q(D) is contained in the
product of the ample cones of the factors. 2

Remark 5.1. Since the analogue of the F-conjecture is known for M0,d/Sd when
d ≤ 11 by [KM], Theorem 2.3 provides an explicit description of the NEF cone of
M0,0(P

r, d) for r ≥ 2 and d ≤ 11. For example, when d = 2, 3, the NEF cone is
bounded by the rays H and T . When d = 4, 5, the NEF cone is generated by the
rays H, T and H + ∆1,d−1 + 4 ∆2,d−2.
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6. The contractions

Theorem 2.7(i)–(v) and Theorem 1.2 are proved simultaneously by induction on

n, resp. d, in the following 2 lemmas. Since the divisorDn =
∑bn/2c

k=2 k(k−1)∆̃k,n−k

is ample on M0,n for n = 4, 5, the base cases n = 4, 5 for Theorem 2.7 are immediate.
The base cases d = 2, 3 for Theorem 1.2 are also straightforward.

Lemma 6.1. Let d ≥ 4 be an integer. The existence of a contraction as in The-
orem 2.7 for n = d implies the existence of a contraction as in Theorem 1.2 for
d.

Proof. The divisor Dr,d = T +
∑bd/2c

k=2 k(k−1)∆k,d−k equals v(Dd). By hypothesis,
v(Dd) is eventually free, thus Dr,d is eventually free by Lemma 3.4. Define contr,d :

M0,0(P
r, d) → Yr,d to be the associated morphism with connected fibers and normal

target.
Denote by Or,d the maximal open subscheme of Yr,d over which contr,d is fi-

nite. The claim is that cont−1
r,d(Or,d) contains M0,0(P

r, d). Every proper, irre-

ducible curve B in M0,0(P
r, d) contracted by contr,d has intersection number 0

with Dr,d. If B intersects M0,0(P
r, d), the intersection number with every ∆k,d−k,

k = 1, . . . , bd/2c is nonnegative. Since T is NEF, the intersection number of B
with T is nonnegative. Since Dr,d · B = 0, B has intersection number zero with
T and ∆k,d−k, k = 2, . . . , bd/2c. From the expression of T and the fact that H
and ∆1,d−1 have nonnegative intersection with B, it follows that B has intersection
number zero with H and ∆1,d−1, as well. Since there exists an ample linear com-
bination of these divisors, we obtain a contradiction. Thus B is contained in the
complement of M0,0(P

r, d), proving the claim.

By Zariski’s Main Theorem, contr,d : cont−1
r,d(Or,d) → Or,d is an isomorphism.

In particular, contr,d : M0,0(P
r, d) → Or,d is an open immersion.

The 1-morphism φΠ from Definition 3.2 maps ∆k,d−k to ∆̃k,d−k compatible with
the boundary maps. Thus contr,d satisfies the conclusion of Theorem 1.2. �

Lemma 6.2. Let n ≥ 6 be an integer. The existence of a contraction as in Theo-
rem 1.2 for d = n− 2 implies the existence of a contraction as in Theorem 2.7 for
n.

Proof. Denote by ev : M0,n(Pn−2, n − 2) → (Pn−2)n the evaluation 1-morphism.

Denote by Φ : M0,n(Pn−2, n − 2) → M0,n the forgetful 1-morphism. Denote by
U ⊂ (Pn−2)n the open subset parameterizing n-tuples of points in linear general
position, i.e., the span of every (n − 1)-tuple equals Pn−2. Kapranov proves that
the 1-morphism,

(ev,Φ) : M0,n(Pn−2, n− 2) → (Pn−2)n × M0,n,

is an isomorphism over U × M0,n, [Kap]. Fix a general point q in U , and identify

M0,n with the fiber over {q} × M0,n.

The forgetful 1-morphism π : M0,n(Pn−2, n− 2) → M0,0(P
n−2, n− 2) restricts

to a 1-morphism p : M0,n → M0,0(P
n−2, n − 2). Denote by cont : M0,n → Y the

Stein factorization of,

contn−2,n−2 ◦ p : M0,n → contn−2,n−2(p(M0,n)).
13



It is straightforward that p−1(∆k−1,n−1−k) = ∆̃k,n−k for every 2 ≤ k ≤ bn/2c
compatibly with the boundary maps. Thus cont satisfies the conclusion of Theo-
rem 2.7. �

Remark 6.3. Pairing with test curves gives that

v

(
1

n− 1
Dn

)
=

1

n− 1
Dr,n and p∗

(
1

n− 3
Dn−2,n−2

)
=

1

n− 1
Dn.

The image of the ample cone of M0,0(P
n, n) under p∗ is not all of the ample cone

of M0,n+2, already for n = 6.
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