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Abstract. In this article we consider the spaces Hd,g(X) parametrizing curves of degree d and genus g on a

smooth cubic threefold X ⊂ P4, with regard in particular to the Abel-Jacobi map ud : Hd,g(X)→ J3(X) to
the intermediate Jacobian J3(X) of X. Our principle result is that for all d ≤ 5 the map ud coincides with

the maximal rationally connected fibration of Hd,g(X).

1. Introduction

In this paper we will study spaces parametrizing curves on a smooth cubic threefold X ⊂ P4. There has
been a great deal of work in recent years on the geometry of spaces parametrizing rational curves on a variety
X. Most of it has focussed on the enumerative geometry of these spaces: the description of their Chow rings
and the evaluation of certain products in their Chow rings. Here we will be concerned with a very different
sort of question: we will be concerned with the birational geometry of the spaces M .

We should start by explaining, at least in part, our motivation. The central object in curve theory—the
one that links together every aspect of the theory, and whose study yields the majority of theorems in the
subject—is the Abel-Jacobi map. This is the map from the symmetric product Cd of a curve C, parametrizing
0-cycles of a given degree d on C, to the Jacobian Picd(C) ∼= J(C), defined variously as the space of cycles
of degree d mod linear equivalence (that is, the space of line bundles of degree d on C) or, over the complex
numbers, as the complex torus H1(C,K)∗/H1(C,Z).

Under the circumstances, it’s natural to ask what sort of analogue of this we might be able to define and
study in higher dimensions. There have been numerous constructions proposed to this end; they have been
too varied to categorize easily, but the majority adopt one of two approaches, corresponding to the definitions
of Picd(C) ∼= J(C) for a curve. In the first, we look again at the space of cycles on a variety X mod some
equivalence relation (typically rational equivalence); in the second, we try to form a geometric object out of
the Hodge structure of X.

Both approaches suffer from some seemingly unavoidable difficulties. In the first, the quotients of the
spaces on cycles on a variety X by rational equivalence tends to be either too big or too small: if we mod out
by algebraic equivalence we tend to lose too much information, while if we mod out by rational equivalence
the quotient is too large (and in particular too hard to calculate even in simple concrete cases). As for the
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second, we simply don’t know how to make an algebrao-geometric object out of a Hodge structure except
in very special cases—specifically, the case of Hodge structures of odd weight with all but two of the Hodge
groups vanishing, where we can form the intermediate Jacobian and it will be an Abelian variety. In these
cases the theory has had spectacular successes (such as the proof of the irrationality of cubic threefolds), but
it’s undeniably frustrating that it has no wider application.

In this paper we’d like to suggest another approach to the problem, based on a construction of Kollár,
Miyaoka and Mori: the maximal rationally connected fibration associated to a variety X. Briefly, we say
that a smooth projective variety X is rationally connected if two general points of X can be connected by a
chain of rational curves. This condition is equivalent to rationality and unirationality for curves and surfaces;
in higher dimensions it is weaker than either. More generally, the maximal rationally connected fibration
associates to a variety X a (birational isomorphism class of) variety Z and a rational map φ : X → Z with
the properties that

• the fibers Xz of φ are rationally connected; and conversely
• almost all the rational curves in X lie in fibers of φ: for a very general point z ∈ Z any rational curve

in X meeting Xz lies in Xz.

The variety Z and morphism φ are unique up to birational isomorphism, and are called the mrc quotient and
mrc fibration of X, respectively. They measure the failure of X to be rationally connected: if X is rationally
connected, Z is a point, while if X is not uniruled we have Z = X.

The point of this is, if we start with the symmetric product Cd of a curve C and apply this construction,
we find (for d large, at any rate) that the mrc fibration of Cd is the Abel-Jacobi map φ : Cd → J(C). In
other words, we don’t have to define the Jacobian J(C) either in terms of cycles mod linear equivalence or via
Hodge theory; we can realize it simply the mrc quotient of the space Cd parametrizing 0-cycles of reasonably
large degree d on C. The obvious question is then: what happens when we take the mrc quotient of the
variety parametrizing cycles1 on a higher-dimensional variety?

To begin with, taking the mrc quotient of the varieties parametrizing 0-cycles on X doesn’t seem to yield
much: if X is rationally connected, so will be its symmetric powers; and if X possesses any holomorphic
forms the dimensions of the mrc quotients of Xd tends to ∞ with d. (** reference; and also can we say more:
for example, if X is not uniruled, can its symmetric powers be?) We turn our attention next to curves on X
and ask: what can we say about the mrc quotients of the varieties Hd,g(X) parametrizing curves of degree d
and genus g on X? For various reasons it makes sense to look primarily at the spaces parametrizing rational
curves—for one thing, we don’t want to get involved in the geometry of the moduli space Mg of curves of
genus g when we are only interested in invariants of X—but in the course of studying rational curves we will
also discover facts about the geometry of Hd,g(X) for g > 0.

For X = Pn and for X ⊂ Pn+1 a quadric hypersurface, the answer is known, at least in the case of rational
curves, and is trivial: the variety Hd,0(X) parametrizing rational curves of degree d on X is itself rationally
connected in both cases. The first real test is thus cubic hypersurfaces, and here we will focus specifically on
the case of a smooth cubic threefold X ⊂ P4.

We start by asking the most naive possible question: is the variety Hd,g(X) rationally connected? The
answer is that it can never be: we have the Abel Jacobi map

u : Hd,g(X) → J3(X)

from the Kontsevich space to the intermediate Jacobian

J3(X) = H2,1(X)∗/H3(X,Z).

Since any map of a rational curve to a complex torus/Abelian variety is constant, any rational curve on
Hd,g(X) must lie in a fiber of u. The Abel-Jacobi map thus factors through the mrc fibration φ : Hd,g(X) → Z
of Hd,g(X).

1Note that we have a choice of parameter spaces for the cycles on X: the Chow variety, the Hilbert scheme and, in the case

of 1-dimensional cycles, the Kontsevich space. But since we are concerned with the birational geometry of these spaces it really

doesn’t matter which we choose to work with, except for technical convenience.
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Given this, the second most naive question would be: is the intermediate Jacobian J3(X) the mrc quotient
of Hd,g(X)? This may seem equally naive, but it turns out to hold for small values of d. The main result of
this paper is the

Theorem 1.1. If X ⊂ P4 is any smooth cubic threefold, for any d ≤ 5 the Abel-Jacobi map

u : Hd,g(X) → J3(X)

is the maximal rationally connected fibration of Hd,g(X).

As we indicated, we view this result as simply the first test of a general hypothesis. It would be very
interesting to see if the analogous statement holds for other rationally connected threefolds. Work is being
done in this direction: Ana-Maria Castravet has proved in [C] that forX ⊂ P5 the intersection of two quadrics,
the analogous statement—that the mrc quotient of the space Hd,0(X) is the intermediate Jacobian—holds
for all d. And work of Harris and Starr ([HS]) shows that the same is true at least for components of the
variety Hd,0(X) corresponding to an open cone of curve classes β ∈ H2(Z,Z) in a blow-up X of P3.

Ultimately, though, we want to extend this research to higher-dimensional varieties X, where the Hodge
theory doesn’t seem to provide us with a candidate for the mrc quotients of the spaces of rational curves
on X. To relate this to a specific issue: for smooth cubic threefolds X, the fact that the Hodge structure
on H3(X,Z) is not isomorphic to a product of Hodge structures of curves implies that X is not rational. A
close examination of the Hodge structure of a very general cubic fourfold X ⊂ P5 suggests a similar finding:
the Hodge structure on H4(X,Z) does not appear to be a product of factors of Hodge structures of surfaces
(see [Has]), and if this is indeed the case it would imply that X is irrational. But the fact that the Hodge
structure is not conveyed in the form of a geometric object—there is no construction analogous to that of the
intermediate Jacobian of a cubic threefold—has frustrated our attempts to make this into a proof. But now
we can ask: if the intermediate Jacobian of a cubic threefold X may be realized as the mrc quotient of the
space of rational curves on X, what happens when we take the mrc quotient of the space of rational curves
on a cubic fourfold?

In this paper, though, we will be concerned exclusively with the geometry of cubic threefolds. We start
some preliminary sections on the Abel-Jacobi map for curves on threefolds in general and on the geometry
of curves of low degree on cubic threefolds in particular. We then launch into the analysis of the Abel-Jacobi
map for curves of degree 3, 4 and 5 on a smooth cubic threefold X. The basic technique here is residuation:
we associate to a curve C ⊂ X on X and a surface S ⊂ P4 containing it, a residual curve C ′ with (roughly)
C + C ′ = S ∩ X. In this way we relate the parameter space for curves C to that for curves C ′. In [6] it
is proved that for d ≤ 5, each of the spaces Hd,g(X) is irreducible of dimension 2d. Combining this with
the residuation technique, we prove that for d ≤ 5 the fibers of the Abel-Jacobi map Hd,g(X) → J3(X) are
unirational.

Many of the results in this paper have also been proved in [10] and [9] by considering moduli of vector
bundles on X.

1.1. Notation. All schemes in this paper will be schemes over C. All absolute products will be understood
to be fiber products over Spec(C).

For a projective variety X and a numerical polynomial P (t), HilbP (t)(X) denotes the corresponding Hilbert
scheme. For integers d, g, Hd,g(X) ⊂ Hilbdt+1−g(X) denotes the open subscheme parametrizing smooth,
connected curves of degree d and genus g, and Hd,g(X) denotes the closure of Hd,g(X) in Hilbdt+1−g(X).

2. Review of the Abel-Jacobi Map

Our object of study are the Abel-Jacobi maps associated to families of 1-cycles on a smooth cubic hyper-
surface X ⊂ P4. The reader is referred to [1] and [5] for full definitions. Here we recall only a few facts about
Abel-Jacobi maps.

Associated to a smooth, projective threefold X there is a complex torus

J2(X) = H3
Z(X)\H3(X,C)/

(
H3,0(X)⊕H2,1(X)

)
. (1)
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In case X is a cubic hypersurface in P4 (in fact for any rationally connected threefold) then J2(X) is a
principally polarized abelian variety with theta divisor Θ. Given an algebraic 1-cycle γ ∈ A1(X) which is
homologically equivalent to zero [5, 13], one can associate a point u2(α). The construction is analogous to
the Abel-Jacobi map for a smooth, projective algebraic curve C which associates to each 0-cycle γ ∈ A0(C)
which is homologically equivalent to zero a point u1(α) ∈ J1(C), the Jacobian variety of C. In particular
u2 : A1(X)hom → J2(X) is a group homomorphism.

Suppose that B is a normal, connected variety of dimension n and Γ ∈ An+1(B×X) is an (n+1)-cycle such
that for each closed point b ∈ B the corresponding cycle Γb ∈ A1(X) [3, §10.1] is homologically equivalent
to zero. Then in this case the set map b 7→ u1(Γb) ∈ J2(X) comes from a (unique) algebraic morphism
u = uΓ : B → J2(X). We call this morphism the Abel-Jacobi map determined by Γ.

More generally, suppose B as above, Γ ∈ An+1(B ×X) is any (n + 1)-cycle, and suppose b0 ∈ B is some
base-point. Then we can form a new cycle Γ′ = Γ − π∗2Γb0 , and for all b ∈ B we have Γ′b = Γb − Γb0 is
homologically equivalent to zero. Thus we have an algebraic morphism u = uΓ′ : B → J2(X). Of course this
morphism depends on the choice of a base-point, but changing the base-point only changes the morphism by
a constant translation. Thus we shall speak of any of the morphisms uΓ′ determined by Γ and the choice of
a base-point as an Abel-Jacobi map determined by Γ.

Suppose that Γ1,Γ2 ∈ An+1(B ×X) are two (n+ 1)-cycles. Then uΓ1+Γ2 is the pointwise sum uΓ1 + uΓ2 .
This trivial observation is frequently useful.

The Residuation Trick: Another useful observation is that any Abel-Jacobi morphism αΓ contracts all
rational curves on X, since an Abelian variety contains no rational curves. Combined with the observation
in the last paragraph, this leads to the residuation trick: Suppose that B is a normal, unirational variety and
Γ ∈ An+1(B ×X) is an (n+ 1)-cycle. Then uΓ : B → J(X) is a constant map. Now suppose that B′ ⊂ B is
a normal closed subvariety and that Γ|B′×X decomposes as a sum of cycles Γ1 + Γ2. Since uΓ1 + uΓ2 equals
a constant map, we conclude that uΓ1 is the pointwise inverse of uΓ2 , up to a fixed additive constant.

3. Lines, Conics and Plane Cubics

The study of the Abel-Jacobi map associated to the space H1,0(X) of lines on X was carried out in [1]. In
this section we will summarize their results, which will also be useful to us for studying Abel-Jacobi maps of
higher degree curves. In this section we also consider the Abel-Jacobi maps associated to the spaces H2,0(X)
and H3,1(X) of plane conics and plane cubics in X. In each case the Abel-Jacobi is trivial to describe.

3.1. Lines. For brevity we refer to the Fano scheme of lines, H1,0(X), simply as F . Two general lines
L1, L2 ⊂ P4 determine a hyperplane by span(L1, L2). We generalize this as follows: Let (F × F −∆) Φ−→ P4∨

denote the following set map:

Φ ([L1, L2]) =
{

[span (L1, L2)] if L1 ∩ L2 = ∅,
[TpX] if p ∈ L1 ∩ L2

(2)

By [1, lemma 12.16], Φ is algebraic. Let X∨ ⊂ P4∨ denote the dual variety of X, i.e. the variety parametrizing
tangent hyperplanes to X. Let X∨

s ⊂ X∨ denote the subvariety parametrizing hyperplanes H which are
tangent to X and such that the singular locus of H ∩ X is not simply a single ordinary double point. Let
Us ⊂ U ⊂ F × F denote the open sets Φ−1

(
P4∨ −X∨)

⊂ Φ−1
(
P4∨ −X∨

s

)
. And let I ⊂ F × F denote

the divisor parametrizing incident lines, i.e. I is the closure of the set {([L1], [L2]) : L1 6= L2, L1 ∩ L2 6= ∅}.
In [1], Clemens and Griffiths completely describe both the total Abel-Jacobi map F × F

ψ−→ J(X) and the
Abel-Jacobi map F i−→ J(X). Here is a summary of their results

Theorem 3.1. (1) The Fano variety F is a smooth surface and the Abel-Jacobi map F
u−→ J(X) is a

closed immersion [1, theorem 7.8, theorem 12.37].
(2) The induced map Alb(F ) = J2(F ) → J(X) is an isomorphism of principally polarized Abelian

varieties [1, theorem 11.19].
(3) The class of u(F ) in J(X) is [Θ]3

3! [1, proposition 13.1].
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(4) The difference of Abel-Jacobi maps

ψ : F × F → J(X), ψ([L], [L′]) = u([L])− u([L′]) (3)

maps F × F generically 6-to-1 to the theta divisor Θ ⊂ J(X) [1, section 13].
(5) Let (Θ−{0}) G−→ PH1,2(X)∨ denote the Gauss map. If we identify PH1,2(X) with P4 via the Griffiths

residue calculus [4], then the composite map

(F ×C F −∆)
ψ−→ (Θ− {0}) G−→ P4∨ (4)

is just the map Φ defined above [1, formula 13.6].
(6) The fibers of the Abel-Jacobi map form a Schläfli double-six, i.e. the general fiber of ψ : F ×F → J

is of the form {(E1, G1), . . . , (E6, G6)} where the lines Ei, Gj lie in a smooth hyperplane section of
X, the Ei are pairwise skew, the Gj are pairwise skew, and Ei and Gj are skew iff i = j.

There is a more precise result than above. Let

R′ ⊂ (U ×P4∨ U)× F ×Grass(3, V )×Grass(3, V ) (5)

be the closed subscheme parametrizing data (([L1], [L2]) , ([L3], [L4]) , [l], [H1], [H3]) such that for each
i = 1, . . . , 4, l∩Li 6= ∅ and such that H1 ∩X = l∪L1 ∪L4, H2 ∩X = l∪L2 ∪L3. Let R ⊂ U ×P4∨ U
be the image of R′ under the projection map. Let ∆ ⊂ U ×U be the diagonal. Then the fiber product
U ×Θ U ⊂ U × U is just the union R ∪∆ [1, p. 347-348]

(7) The branch locus of Θ G−→ P4∨ equals the branch locus of F × F
Φ−→ P4∨ equals the dual variety of

X, i.e. the variety parametrizing the tangent hyperplanes to X. The ramification locus of U Φ−→ P4∨

equals the ramification locus of U
ψ−→ Θ equals the divisor I. Each such pair is a simple ramification

point of both ψ and Φ [1, lemma 13,8].

In [12], Tjurin also analyzed cubic threefolds and the associated intermediate Jacobians. We summarize
his results:

Theorem 3.2. [12] Let J̃(X) be the variety obtained by blowing up 0 ∈ J(X) and let Θ̃ be the proper
transform of Θ. Let F̃ × F be the variety obtained by blowing up the diagonal in F × F . The exceptional
divisor E ⊂ J̃(X) is isomorphic to P4 and this isomorphism identifies the intersection Θ̃ ∩ E with our
original cubic threefold X. The exceptional divisor E′ ⊂ F̃ × F is the projective bundle PTF . In fact there
is an isomorphism of sheaves of the tautological rank 2 sheaf S = S(2, V ) and the tangent bundle TF so that

E′ ∼= PFS. The induced morphism PFS
ψ̃−→ P4 is just the usual morphism induced by the map of sheaves

S ↪→ V ⊗C OF . In particular, this morphism is generically 6-to-1 onto X with ramification locus Σ1 ⊂ F
consisting of the lines of ”second type”, i.e. lines L ⊂ X such that NL/X ∼= OL(−1)⊕OL(1). Let D ⊂ F ×F
denote the divisor of intersecting lines and let D̃ be the proper transform of D. Then D̃∩E′ = Σ1 so that we
finally have the result: The morphism F̃ × F → Θ̃ is finite of degree 6 with ramification locus D̃.

3.2. Conics. Next we consider the space H2,0(X) parametrizing smooth plane conics on X. Given a plane
conic C ⊂ X, consider the plane cubic curve which is the intersection span(C) ∩X. This curve contains C
is an irreducible component, and the residual component is a line L ⊂ X. In this way we have a morphism
H2,0(X) → F by [C] 7→ [L]. Conversely, given a line L ⊂ X and a 2-plane P ⊂ P4 which contains L, then the
residual to L in P ∩X is a plane conic. In this way one sees that H2,0(X) is isomorphic to an open subset
of the P2-bundle

PQ = {([L], [P ]) ∈ F ×G(2, 4)|L ⊂ P}. (6)
In [6, prop 3.4] we prove the stronger result:
Proposition 3.3. The morphism H2,0(X) → F is isomorphic to an open subset of a P2-bundle PQ →
F . In particular, H2,0(X) is smooth and connected of dimension 4. Moreover PQ is the normalization of
Hilb2t+1(X).

Next we describe the Abel-Jacobi map for conics. By the residuation trick, the Abel-Jacobi map uD2 :
PQ → J(X) is, up to a fixed translation, the pointwise inverse of the composite PQ π−→ F

u−→ J(X). Thus
the fibers of uD2 : PQ → J(X) are just the fibers of π, i.e. P2’s.
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3.3. Plane Cubics. Every curve C ⊂ P4 with Hilbert polynomial 3t is a plane cubic, and the 2-plane
P = span(C) is unique; we have that C = X ∩ P . Therefore the Hilbert scheme Hilb3t(X) is just the
Grassmannian G(2,P4) of 2-planes in P4 and H3,1(X) is just an open subset of G(2,P4). Since G(2,P4)
is rational, it follows that both the total Abel-Jacobi map ψ : Hilb3t(X) × Hilb3t(X) → J(X) and the
Abel-Jacobi map i : Hilb3t(X) → J(X) are constant maps.

3.4. Two Useful Results. Recall that ψ : F×F → J(X) is defined as the difference map ψ = u◦π1−u◦π2.
Now we consider the sum map ψ′ = u ◦π1 +u ◦π2. Alternatively one may define ψ′ to be the (Weil extension
of the) morphism (F × F ) − ∆ → J(X) which is the Abel-Jacobi map corresponding to the flat family
Z

π−→ (F ×F −∆) defined as follows. For L1 and L2 skew lines, we define Z([L1],[L2]) to be the disjoint union
of L1 and L2. If p ∈ L1∩L2, we define Z([L1],[L2]) to be the subscheme whose reduced scheme is just the union
L1∪L2 and which has an embedded point at p corresponding to the normal direction of span(L1, L2) ⊂ TpX.

Clearly ψ′ commutes with the involution

ι : F × F → F × F, ([L1], [L2]) 7→ ([L2], [L1]). (7)

So ψ′ factors through the quotient F × F → Sym2F . We will denote by Sym2F
ψ′′−−→ J(X) the induced

morphism. Let us define Θ′ to be the scheme-theoretic image of ψ′.

First we prove an easy lemma about cohomology of complex tori. Given a g-dimensional complex torus
A and a sequence of nonzero integers (n1, . . . , nr), consider the holomorphic map f = f(n1,...,nr) : Ar → A
defined by f(a1, . . . , ar) = n1a1 + · · · + nrar. There is an induced Gysin image map on cohomology f∗ :
Hp+2(r−1)g(Ar) → Hp(A). Now by the Künneth formula, the cohomology Hq(Ar) is a direct sum of
Künneth components Hq1(A)⊗ · · · ⊗Hqr (A) with q = q1 + · · ·+ qr.

Lemma 3.4. For each integer r ≥ 1, for each integer 0 ≤ p ≤ 2g, and for each decomposition (q1, . . . , qr)
with q1 + · · ·+ qr = p+ 2(r − 1)g, there is a homomorphism

g = g(q1,...,qr) : Hq1(A)⊗ · · · ⊗Hqr (A) → Hp(A) (8)

such that for each sequence of nonzero integers (n1, . . . , nr), with f defined as above, the restriction of the
Gysin image map

f∗ : Hq1(A)⊗ · · · ⊗Hqr (A) → Hp(A) (9)

satisfies f∗ =
(
n2g−q1

1 · · · · · n2g−qr
r

)
g.

Proof. This is just a computation. By Poincaré duality, to give the homomorphism g, it is equivalent to give
a bilinear pairing

(Hq1(A)⊗ · · · ⊗Hqr (A))×H2g−p(A) → Z. (10)

Moreover, since H2g−p(A) =
∧2g−p

H1(A), it suffices to define the pairing for pure wedge powers α =
α1 ∧ · · · ∧ α2g−p ∈ Hg−p(A). Define S to be the set of functions σ : {1, 2, . . . , 2g − p} → 1, 2, . . . , r such
that for each i = 1, . . . , r, we have qi + #σ−1(i) = 2g. We define the pairing by taking the wedge product in
H∗(Ar) and then taking the degree as follows:

〈β = β1 ⊗ · · · ⊗ βr, α1 ∧ · · · ∧ α2g−p〉 = deg
∑
σ∈S

π∗1β1 ∧ · · · ∧ π∗rβr ∧ π∗σ(1)α1 ∧ · · · ∧ π∗σ(2g−p)α2g−p. (11)

The fact that f∗ =
(
n2g−q1

1 · · · · · n2g−qr
r

)
g follows from the projection formula

f∗(β) ∧ α = f∗(β ∧ f∗α) (12)

together with the formula

f∗(α1 ∧ · · · ∧ αr) = f∗(α1) ∧ · · · ∧ f∗(αr) = (13) r∑
σ(1)=1

nσ(1)π
∗
σ(1)(α1)

 ∧ · · · ∧

 r∑
σ(2g−p)=1

nσ(2g−p)π
∗
σ(2g−p)(α2g−p)

 .

�
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Theorem 3.5. The image Θ′ is a divisor in J(X) which is algebraically equivalent to 3Θ and ψ′ : Sym2(F ) →
Θ′ is birational. The singular locus of Θ′ has codimension 2. For general a ∈ J(X), we have that Θ′∩ (a+Θ)
is irreducible.

Proof. For divisors on J(X), algebraic equivalence is equivalent to homological equivalence, so we shall
establish that Θ′ is homologically equivalent to 3Θ.

Using the notation of the previous lemma, both Θ and Θ′ are images of the subvariety u(F ) × u(F ) ⊂
J × J under the morphism f(1,−1) and f(1,1) respectively. By lemma 3.4 we know there is a linear map
g : H4(J)⊗H4(J) → H2(J) such that

f(1,−1)∗(P.D.[u(F )× u(F )]) = (1)6(−1)6g(P.D.[u(F )× u(F )]), (14)

f(1,1)∗(P.D.[u(F )× u(F )]) = (1)6(1)6g(P.D.[u(F )× u(f)])

where P.D.[u(F )× u(F )] is the Poincaré dual of the homology class of u(F )× u(F ). We know the mapping
ψ : F × F → Θ has degree 6. So if ψ′ : F × F → Θ′ has degree d, then it follows that

dP.D.[Θ′] = f(1,1)∗(P.D.[u(F )× u(F )]) = f(1,−1)∗(P.D.[u(F )× u(F )]) = 6P.D.[Θ]. (15)

In other words, the cohomology class of Θ′ is equal to 6
d times the cohomology class of Θ. Of course d is

divisible by 2 because ψ′ factors through F × F → Sym2(F ). It remains to prove that d is precisely 2.

Now let G′ : (Θ′)ns → P4∨ be the Gauss map defined on the nonsingular locus of Θ′. Of course the
differentials dψ and dψ′ are simply given by du ◦ dπ1 − du ◦ dπ2 and by du ◦ dπ1 + du ◦ dπ2 respectively. In
particular for each point (L,M) ∈ F × F , the subspace image(dψ) ⊂ T0J and image(dψ) ⊂ T0J are equal,
i.e. the composites

(F × F −∆)
ψ−→ Θ G−→ P4∨ (16)

F × F
ψ′−→ Θ′ G′−→ P4∨ (17)

are equal as rational maps; so both are equal to the rational map Φ. Therefore, for each point ([L1], [L2])
whose image under ψ′ lies in the nonsingular locus of Θ′, we see that the fiber of ψ′ containing ([L1], [L2]) is
contained in the fiber of Φ containing ([L1], [L2]). So, we are reduced to showing that, for generic ([L1], [L2]),
if ψ′ ([L1], [L2]) = ψ′ ([L3], [L4]) with L1, L2, L3 and L4 contained in a smooth hyperplane section of X, then
either ([L1], [L2]) = ([L3], [L4]) or ([L2], [L1]) = ([L4], [L3]).

A bit more generally, suppose that ([L1], [L2]) ∈ U is a pair of skew lines. We will show that the fiber of
ψ
′,−1 ([L1], [L2]) = {([L1], [L2]) , ([L2], [L1])}. Indeed, suppose that ψ′ ([L1], [L2]) = ψ′ ([L3], [L4]) and sup-

pose that ([L3], [L4]) 6= ([L2], [L1]). Then ψ ([L1], [L4]) = ψ ([L3], [L2]). Therefore Φ ([L1], [L4]) = Φ ([L3], [L2]).
Let us call this common hyperplane H. Then L1 ⊂ H and L2 ⊂ H. Therefore H = Φ ([L1], [L2]). Since
we have L4 6= L1 and L3 6= L2, we conclude that ([L1], [L4]) , ([L3], [L2]) ∈ U . Therefore, by 3.1 (7), we have
either ([L1], [L4]) = ([L3], [L2]), or else there exists a line l ∈ H such that l ∪ L1 ∪ L2 is the intersection of
X with a P2. But L1 and L2 cannot lie in a common P2 since they are skew. Therefore we conclude that
([L1], [L4]) = ([L3], [L2]), i.e. ([L3], [L4]) = ([L1], [L2]).

So we deduce that d = 2 and thus Θ′ is algebraically equivalent to 3Θ. But we deduce even more. The
image of U − I ∩ U in Sym2F is smooth, let’s call it U ′. Since the map ψ′ : U ′ → ψ′(U ′) is bijective and
since rank(dψ′) = rank(dψ) = 4 on U − I ∩ U , it follows from Zariski’s main theorem [11, p. 288-289] that

ψ′(U ′) is smooth and U ′ ψ′−→ ψ′U ′ is an isomorphism. Now the complement of U in F × F has codimension
2. Therefore ψ′(F × F − U) has codimension at least 2 inside of Θ′. But in fact ψ′(I) also has codimension
2. Consider the rational map I

ρ−→ F defined by sending a pair of incident lines ([L1], [L2]) to the residual
line l such that span(L1, L2) ∩X = l ∪ L1 ∪ L2. By the residuation trick we have that the restriction of ψ′

to I equals the composition of ρ with the pointwise negative Abel-Jacobi map −i. In particular ψ′(I) is just
−u(F ) up to translation. So ψ′(I) has codimension 2 inside of Θ′. Therefore ψ′(U ′) ⊂ Θ′ has complement of
codimension 2. So the singular locus of Θ′, has codimension 2.

Since Θ′ ∩ (a + Θ) is a positive dimensional intersection of ample divisors, Θ′ ∩ (a + Θ) is connected.
Since Θ′ ∩ (a + Θ) is a complete intersection of Cartier divisors, it follows from Hartshorne’s connectedness
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theorem [2, thereom 18.12] that Θ′ ∩ (a+ Θ) is connected in codimension 2. Thus to prove that Θ′ ∩ (a+ Θ)
is irreducible, it suffices to prove that the singular locus of Θ′ ∩ (a + Θ) has codimension at least 2. By the
Bertini-Kleiman theorem [8, theorem III.10.8], we have that for general a ∈ J(X), the intersection Θ′∩(a+Θ)
is smooth away from the intersection of each divisor with the singular locus of the other divisor. But by the
last paragraph and by theorem 3.2, we see that the singular loci of Θ and Θ′ both have codimension at least
2 (in Θ or Θ′ respectively). So it follows that for a general, the singular locus of Θ′∩ (a+Θ) has codimension
at least 2. Thus we conclude that for general a ∈ J(X), the intersection Θ′ ∩ (a+ Θ) is irreducible.

�

We also use the following enumerative lemma, which is proved in [6, lemma 4.2].

Lemma 3.6. Suppose that C ⊂ X is a smooth curve of genus g and degree d. Let BC ⊂ F denote the scheme
parametrizing lines in X which intersect C in a scheme of degree 2 or more. Define b(C) = 5d(d−3)

2 + 6− 6g.
If BC is not positive dimensional and if b(C) ≥ 0, then the degree of BC is b(C).

4. Twisted cubics

We now begin in earnest the analysis of the geometry of cubic, quartic and quintic curves on our cubic
threefold X ⊂ P4. In each case our goal is the proof of the Main Theorem 1.1 for the variety Hd,g(X)
parametrizing curves of this degree and genus. We start with the variety H3,0(X) parametrizing rational
curves of degree 3—that is twisted cubics.

In [6, theorem 4.4] we prove the following result

Theorem 4.1. The space H3,0(X) is a smooth, irreducible 6-dimensional variety.

We have a morphism

H3,0(P4) σ3,0

−−→ P4∨ (18)

defined by sending [C] to span(C). This morphism makes H3,0(P4) into a locally trivial bundle over P4∨ with
fiberH3,0(P3) . Recall from section 3 that we definedX∨ ⊂ P4∨ to be the dual variety ofX which parametrizes
tangent hyperplanes to X and we defined U to be the complement of X∨ in P4∨. Then we define H3,0

U (X)
to be the open subscheme of H3,0(X) which parametrizes twisted cubics, C, in X such that σ3,0([C]) ∈ U .
By the graph construction we may consider H3,0

U (X) as a locally closed subvariety of Hilb3t+1(X) × U . Let
H ⊂ Hilb3t+1(X)× U denote the closure of H3,0

U (X) with the reduced induced scheme structure. Denote by

H f−→ U(X) the projection map.

Theorem 4.2. Let H f ′′−−→ U ′ f ′−→ U(X) be the Stein factorization of H f−→ U(X). Then H f ′′−−→ U ′ is

isomorphic to a P2-bundle PU ′(E) π−→ U ′ with E a locally free sheaf of rank 3. And U ′ f ′−→ U is an unramified

finite morphism of degree 72. Moreover, the Abel-Jacobi map H i−→ J(X) factors as H f ′′−−→ U ′ i′−→ J(X) where

U ′ i′−→ J(X) is a birational morphism of U ′ to a translate of Θ.

Proof. This theorem is [6, theorem 4.5], and is proved there. For brevity’s sake, we recall just the sketch of
the proof.

One can form the subvariety X ⊂ U ×X as the universal smooth hyperplane section of X. Each fiber of
X → U is a smooth cubic surface. We associate to this family of cubic surfaces the finite étale morphism

ρ : Pic3,0(X/U) → U (19)

whose fiber over a point [H] ∈ U is simply the set of divisor classes D on the smooth cubic surface H ∩ U
such that D.D = 1 and D.h = 3 with h the hyperplane class. Now the Weyl group W(E6) acts transitively
on the set of such divisor classes D. It follows that with respect to the model of a cubic surface as P2 blown
up at 6 points, each divisor class D above corresponds to the class of a line on P2. From this it follows that
the induced morphism

g : H3,0(X) → Pic3,0(X/U)) (20)
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is surjective and isomorphic to an open subset of a P2-bundle on Pic3,0(X/U). In particular, since u :
H3,0(X) → J(X) contracts all rational curves, there is an induced morphism u′ : Pic3,0(X/U) → J(X) such
that u = u′ ◦ g.

It only remains to show that u′ maps Pic3,0(X/U) birationally to its image. This is proved by analyzing
“Z”s of lines, i.e. configurations of lines on a cubic surface H ∩ X whose dual graph is just the connected
graph with 3 vertices and no loops. Using 3.1, part 5, we conclude that two “Z”s have the same image in
J(X) iff they are in the same linear equivalence class on H ∩X. �

Corollary 4.3. The Abel-Jacobi map u3,0 : H3,0(X) → J(X) dominates a translate of Θ and is birational
to a P2-bundle over its image.

Proof. Since H3,0(X) is irreducible, H3,0
U (X) is dense in H3,0(X). �

4.1. Quartic Elliptic Curves. Recall that the normalization of Hilb2t+1(X) is isomorphic to the P2-bundle
PQ → F which parametrizes pairs (L,P ) which L ⊂ X a line and P ⊂ P4 a 2-plane containing L. Let
A

g−→ PQ denote the P1-bundle which parametrizes triples (L,P,H) with H a hyperplane containing P .
Let I4,1

h−→ A denote the P4-bundle parametrizing 4-tuples (L,P,H,Q) where Q ⊂ H is a quadric surface
containing the conic C ⊂ X ∩ P . Notice that I4,1 is smooth and connected of dimension 4 + 1 + 4 = 9.

Let D ⊂ I4,1×X denote the intersection of the universal quadric surface over I4,1 with I4,1×X ⊂ I4,1×P4.
Then D is a local complete intersection scheme. By the Lefschetz hyperplane theorem, X contains no quadric
surfaces; therefore D → I4,1 has constant fiber dimension 1 and so is flat. Let D1 ⊂ I4,1 × X denote the
pullback from PQ×X = Hilb2t+1(X)×X of the universal family of conics. Since I4,1 ×X → PQ×X is
smooth and the universal family of conics is a local complete intersection which is flat over PQ, we conclude
that also D1 is a local complete intersection which is flat over I4,1. Clearly D1 ⊂ D. Thus by corollary [6,
corollary 2.7], we see that the residual D2 of D1 ⊂ D is Cohen-Macaulay and flat over I4,1.

By the base-change property in corollary [6, corollary 2.7], we see that the fiber of D1 → I4,1 over a point
(L,P,H,Q) is simply the residual of C ⊂ Q ∩X. If we choose Q to be a smooth quadric, i.e. Q ∼= P1 × P1,
then C ⊂ Q is a divisor of type (1, 1) and X ∩Q ⊂ Q is a divisor of type (3, 3). Thus the residual curve E is a
divisor of type (2, 2), i.e. a quartic curve of arithmetic genus 1. Thus D2 ⊂ I4,1×X is a family of connected,
closed subschemes of X with Hilbert polynomial 4t. So we have an induced map f : I4,1 → Hilb4t(X).

Proposition 4.4. The image of the morphism above f : I4,1 → Hilb4t(X) is the closure H4,1(X) of
H4,1(X). Moreover the open set f−1H4,1(X) ⊂ I4,1 is a P1-bundle over H4,1(X). Thus H4,1(X) is smooth
and connected of dimension 8.

Proof. This is [6, proposition 5.1]. �

If (L,P,H,Q) is a point in the fiber over [E], then H = span(E). And since there is no rational curve in
F , we also have that L is constant in the fiber. So we have a well-defined morphism m : H4,1(X) → PQ∨,
where PQ∨ is the P2-bundle over F parametrizing pairs ([L], [H]), L ⊂ H. For a general H, the intersection
Y = H ∩ X is a smooth cubic surface. And the fiber m−1([L], [H]) is an open subset of the complete
linear series |OY L+ h|, where h is the hyperplane class on Y . Thus m : H4,1(X) → PQ∨ is a morphism of
smooth connected varieties which is birational to a P4-bundle. Composing m with the projection PQ∨ yields
a morphism n : H4,1(X) → F which is birational to a P4-bundle over a P2-bundle.
Corollary 4.5. By the residuation trick, we conclude the Abel-Jacobi map u4,1 : H4,1(X) → J(X) is equal,
up to a fixed translation, to the composite:

H4,1(X) n−−−−→ F
u1,0−−−−→ J(X). (21)

Thus the general fiber of u4,1 equals the general fiber of n, and so is isomorphic to an open subset of a
P4-bundle over P2.

5. Cubic scrolls and applications
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5.1. Preliminaries on cubic scrolls.
In the next few sections we will use residuation in a cubic surface scroll. We start by collecting some basic

facts about these surfaces.

There are several equivalent descriptions of cubic scrolls.
(1) A cubic scroll Σ ⊂ P4 is a connected, smooth surface with Hilbert polynomial P (t) = 3

2 t
2 + 5

2 t+ 1.
(2) A cubic scroll Σ ⊂ P4 is the determinantal variety defined by the 2 × 2 minors of a matrix of linear

forms: [
L1 L2 L3

M1 M2 M3

]
(22)

such that for each row or column, the linear forms in that row or column are linearly independent
(3) A cubic scroll Σ ⊂ P4 is the join of an isomorphism φ : L → C. Here L ⊂ P4 is a line and

C ⊂ P4 such that L ∩ span(C) = ∅. The join of φ is defined as the union over all p ∈ L of the line
span(p, φ(p)).

(4) A cubic scroll Σ ⊂ P4 is the image of a morphism f : PE → P4 where E is the rank 2 vector bundle
on P1, E = OP1(−1)⊕OP1(−2), and the morphism f : PE → P4 is such that f∗OP4(1) = OPE(1)
and the pullback map H0(P4,OP4(1)) → H0(PE,OPE(1) is an isomorphism.

(5) A cubic scroll Σ ⊂ P4 is as a minimal variety, i.e. Σ ⊂ P4 is any smooth connected surface with
span(Σ) = P4 which has the minimal possible degree for such a surface, namely deg(Σ) = 3.

(6) A cubic scroll Σ ⊂ P4 is a smooth surface residual to a 2-plane Π in the base locus of a pencil of
quadric hypersurfaces which contain Π.

From the fourth description Σ = f(PE) we see that Pic(Σ) = Pic(PE) ∼= Z2. Let π : PE → P1 denote
the projection morphism and let σ : P1 → PE denote the unique section whose image D = σ(P1) has
self-intersection D.D = −1. Then f(D) is a line on Σ called the directrix. And for each t ∈ P1, f(π−1(t)) is
a line called a line of the ruling of Σ. Denote by F the divisor class of any π−1(t). Then Pic(Σ) = Z{D,F}
and the intersection pairing on Σ is determined by D.D = −1, D.F = 1, F.F = 0. The hyperplane class
is H = D + 2F and the canonical class is K = −2D − 3F .

Using the fourth description of a cubic scroll, we see that any two cubic scrolls differ only by the choice
of the isomorphism H0(P4,OP4(1)) → H0(PE,OPE(1)). Therefore any two cubic scrolls are conjugate under
the action of PGL(5). So the open set U ⊂ HilbP (t)(P4) parametrizing cubic scrolls is a homogeneous space
for PGL(5), in particular it is smooth, connected and rational. So the Abel-Jacobi map U → J(X) associated
to the family of intersections Σ ∩X ⊂ X is a constant map.
5.2. Cubic Scrolls and Quartic Rational Curves.

Recall that Pic(Σ) = Z{D,F} whereD is the directrix and F is the class of a line of ruling. The intersection
product is given by D2 = −1, D.F = 1, F 2 = 0. The canonical class is given by KΣ = −2D − 3F and the
hyperplane class is given by H = D + 2F . The linear system |F | is nef because it is the pullback of OP1(1)
under the projection π : Σ → P1. Similarly, |D + F | is nef because it contains all the conics obtained as the
residuals to lines of the ruling in |H|. Thus for any effective curve class aD+ bF we have the two inequalities
a = (aD + bF ).F ≥ 0, b = (aD + bF ).(D + F ) ≥ 0.

Suppose that C ⊂ Σ is an effective divisor of degree 4 and arithmetic genus 0. By the adjunction formula

KΣ.[C] + [C].[C] = 2pa − 2 = −2. (23)

So if [C] = aD + bF , then we have the conditions

a ≥ 0, b ≥ 0, a+ b = 4, a2 − 2ab+ a+ 2b = 2. (24)

It is easy to check that there are precisely two solutions [C] = 2D+ 2F, [C] = D+ 3F . We will see that both
possibilities occur and describe some constructions related to each possibility.

Lemma 5.1. Let C ⊂ P4 be a smooth quartic rational curve and let V ⊂ |OC(2)| be a pencil of degree
2-divisors on C without basepoints. There exists a unique map of a Hirzebruch surface F1, f : Σ → P4 such
that (f∗H)2 = 3 and a factorization i : C → Σ of C → P4 such that i(C) ∼ 2D + 2F and the pencil of
degree 2 divisors F ∩ C is the pencil V .

Proof. This is [6, lemma 6.7]. �
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Remark While we are at it, let’s mention a specialization of the construction above, namely what happens
if V is not basepoint free. Then V = p + |OC(1)| where p ∈ C is some basepoint. Consider the projection
morphism f : P4 → P3 obtained by projection from p (this is a rational map undefined at p). The image
of C is a rational cubic curve B (possibly a singular plane cubic). Consider the cone Σ′ in P4 over B with
vertex p. This surface contains C. If we blowup P4 at p, then the proper transform of Σ′ in P̃4 is a surface
whose normalization Σ is a Hirzebruch surface F3 (normalization is only necessary if B is a plane curve). The
directrix D of Σ is the pullback of the exceptional divisor of P̃4. The inclusion C ⊂ Σ′ induces a factorization
i : C → Σ of C → P4, and [i(C)] = D+ 4F . The intersection of D and i(C) is precisely the point p. And the
linear system i∗|F | is exactly |OC(1)|.

Next we consider the case of a rational curve C ⊂ Σ such that [C] = D + 3F .
Lemma 5.2. Let C ⊂ P4 be a smooth quartic rational curve and let L ⊂ P4 be a line such that L∩C = Z is
a degree 2 divisor. Let φ : C → L be an isomorphism such that φ(Z) = Z and φ|Z is the identity map. Then
there exists a unique triple (h, i, j) where h : Σ → P4 is a finite map of a Hirzebruch surface Σ ≡ F1, and
i : C → P4, j : L → P4 are factorizations of C → P4, L → P4 such that j(L) = D is the directrix, such
that [i(C)] = D + 3F and such that the composition of i : C → Σ with the projection π : Σ → D equals j ◦ φ.

Proof. This is [6, lemma 6.8]. �
5.3. Cubic Scrolls and Quintic Elliptics.

Recall that our fourth description of a cubic scroll was the image of a morphism f : Σ → P4 where Σ is
the Hirzebruch surface F1, f∗O(1) ∼ OΣ(1) = OPE(D + 2F ), and f : Σ → P4 is given by the complete
linear series of OΣ(D + 2F ). In the next sections it will be useful to weaken this last condition.

Definition 5.3. A cubic scroll in Pn is a finite morphism f : Σ → Pn where Σ is isomorphic to the
Hirzebruch surface F1 and such that f∗OPn(1) is isomorphic to OΣ(D + 2F ).

Let H = D + 2F denote the pullback of the hyperplane class. Now suppose that E ⊂ Σ is an effective
Cartier divisor with pa(E) = 1 and E.H = 5. Since F and D + F are effective and move, we have
E.F,E.(D + F ) ≥ 0. Writing E = aD + bF we see (a, b) satisfies the relations a, b ≥ 0, a + b = 5 and
a(b − 3) + b(a − 2) − a(a − 2) = 0. These relations give the unique solution E = 2D + 3F = −K. In
particular, if E is smooth then π : E → P1 is a finite morphism of degree 2, i.e. a g1

2 on E. Thus a pair
(f : Σ → Pn, E ⊂ Σ) of a cubic scroll and a quintic elliptic determines a pair (g : E → Pn, π : E → P1)
where g : E → Pn is a quintic elliptic and π : E → P1 is a degree 2 morphism.

Suppose we start with a pair (g : E → Pn, π : E → P1) where g : E → Pn is an embedding of a quintic
elliptic curve and π : E → P1 is a degree 2 morphism. Consider the rank 2 vector bundle π∗g∗OPn(1).

Lemma 5.4. Suppose E is an elliptic curve and π : E → P1 is a degree 2 morphism. Suppose L is an
invertible sheaf on E of degree d. Then we have

π∗L ∼=

 OP1(e)⊕OP1(e− 1) d = 2e+ 1,
OP1(e)⊕OP1(e− 2) d = 2e, L ∼= π∗OP1(e),
OP1(e− 1)⊕OP1(e− 1) d = 2e, L 6∼= π∗OP1(e)

(25)

Proof. This is [6, lemma 6.10]. �

By the lemma we see that the vector bundle G : = π∗g
∗OPn(1) is isomorphic to OP1(1) ⊕ OP1(2).

Associated to the linear series On+1
E → g∗OPn(1) defining the embedding g, we have the push-forward linear

series On+1
P1 → G. Since g is an embedding, for each pair of points {p, q} ⊂ E (possibly infinitely near), we

have that On+1
E → g∗OPn(1)|{p,q} is surjective. In particular taking {p, q} = π−1(t) for t ∈ P1, we conclude

that On+1
P1 → F |t is surjective. Thus we have an induced morphism PG∨ → Pn which pulls back OPn(1)

to OPG∨(1). Let us denote Σ : = PG∨ and let us denote the morphism by f : Σ → Pn. Abstractly Σ is
isomorphic to F1 and f : Σ → Pn is a cubic scroll.

The tautological map π∗π∗g∗OPn(1) → g∗OPn(1) is clearly surjective. Thus there is an induced morphism
h : E → Σ. Chasing definitions, we see that g = f ◦ h. So we conclude that given a pair (g : E → Pn, π :
E → P1) as above, we obtain a pair (f : Σ → Pn, h : E → Σ). Thus we have prove the following:
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Lemma 5.5. There is an equivalence between the collection of pairs (f : Σ → Pn, h : E → Σ) with
f : Σ → Pn a cubic scroll and f ◦h : E → Pn an embedded quintic elliptic curve and the collection of pairs
(g : E → Pn, π : E → P1) where g : E → Pn is an embedded quintic elliptic curve and π : E → P1 is a
degree 2 morphism.

Stated more precisely, this gives an isomorphism of the parameter schemes of such pairs, but we don’t need
such a precise result.
5.4. Cubic Scrolls and Quintic Rational Curves.

If one carries out the analogous computations as at the beginning of subsection 5.2 one sees that the only
effective divisor classes aD + bF on a cubic scroll Σ with degree 5 and arithmetic genus 0 are D + 4F and
3D+2F . But the divisor class 3D+2F cannot be the divisor of an irreducible curve because (3D+2F ).D = −1.
Thus if C ⊂ Σ is an irreducible curve of degree 5 and arithmetic genus 0, then [C] = D + 4F .
Lemma 5.6. Let C ⊂ P4 be a smooth quintic rational curve and let L ⊂ P4 be a line such that L ∩ C is a
degree 3 divisor Z. Let φ : C → L be an isomorphism such that φ(Z) = Z and φ|Z is the identity map. Then
there exists a unique triple (h, i, j) such that h : Σ → P4 is a finite map of a Hirzebruch surface Σ ≡ P4,
and i : C → P4, j : L → P4 are factorizations of C → P4, L → P4 such that j(L) = D is the directrix,
such that [i(C)] = D + 4F and such that the composition of i with the projection π : Σ → D equals j ◦ φ.

Proof. This is [6, lemma 6.12]. �

6. Quartic Rational Curves

In this section we will prove that the Abel-Jacobi map u4,0 : H4,0(X) → J(X) is dominant and the general
fiber is irreducible of dimension 3. In a later section we will prove that the general fiber is unirational.

The construction we use to understand quartic rational curves is as follows. For any quartic rational curve
C ⊂ X, define AC ⊂ F to be the scheme parametrizing 2-secant lines to C. By lemma 3.6, AC is either
positive-dimensional or else has length 16. Define I ⊂ H4,0(X)×Hilb2(F ) to be the space of pairs ([C], [Z])
where Z ⊂ AC is a 0-dimensional length 2 subscheme of AC . Denote by Λ ⊂ Z × P4 the flat family of lines
determined by Z ⊂ F .

Definition 6.1. We say Z is planar if there exists a 2-plane P ⊂ P4 such that Λ ⊂ Z × P . We say Z is
nonplanar if Z is not planar.

By lemma 7.1, lemma 7.2 and theorem 7.3 of [6], we have the following result
Theorem 6.2. The morphism I → H4,0(X) is generically finite, I is irreducible of dimension 8 and therefore
H4,0(X) is irreducible of dimension 8. For a general pair ([C], [Z]) ∈ I, C is nondegenerate and Z is reduced
and nonplanar.

Let ([C], [Z]) ∈ I be a general pair. Now we may also consider Z as a subscheme of Sym2(C) ∼= P2. Since
Z is non-planar, in particular the span of Z ⊂ P2 yields a pencil of degree 2 divisors on C without basepoints.
By lemma 5.1, there is a cubic scroll f : Σ → P4 along with a factorization i : C → P4 such that the pencil
of degree 2 divisors on C is just the pencil of intersections of C with the lines of ruling of Σ. The residual
of C ∪ Λ in Σ ∩ X is a curve in Σ of degree 3 and arithmetic genus 0. As a corollary of the proof of [6,
theorem 7.3], for ([C], [Z]) a general pair, the residual curve D is a twisted cubic curve. As in theorem 4.2,
let U ′ ⊂ J(X) denote the Abel-Jacobi image of the locus of twisted cubics D ⊂ X such that span(D) ∩X is
a smooth cubic surface. And recall from theorem 3.5 that the Abel-Jacobi map Hilb2(F ) → Θ′ is birational.
Define R = Θ′ × U ′ and define a rational transformation

h : I → R, ([C], [Z]) 7→ (u[Z], u([D])). (26)

Lemma 6.3. The rational transformation h : I → R is birational.

Proof. By Zariski’s main theorem, it suffices to prove that for the general element (x, y) ∈ R, there is a unique
pair ([C], [Z]) such that h([C], [Z]) = (x, y). Now x = {L1, L2} is a general pair of disjoint lines in X. And y
is a linear equivalence class |D| of twisted cubics on a general hyperplane section H ∩X. Then Li∩H = {pi}
is a general point on H ∩ X (since every point of X lies on a line, we may assume this point is general on
H∩X). And there is a unique twisted cubic D ⊂ H∩X in the linear equivalence class |D| and which contains
the two points p1 and p2. If h([C], [Z]) = (x, y), then the residual to C ∪ L1 ∪ L2 in Σ can only be D.
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Now consider the hyperplane H ′ = span(L1, L2). The intersection H ′ ∩ D consists of three points p1, p2

and a third point q. Moreover the directrix M of Σ is contained in H. And by a divisor class calculation,
M ∩ D consists of a point other than p1, p2. The only possibility is that M ∩ D = {q}. Notice that given
two skew lines L1, L2 in a 3-plane H ′ and given a point q ∈ H ′ not lying on L1 ∪ L2, there is a unique line
M ⊂ H ′ which contains q and intersects each of L1, L2. Indeed, if we project from q then L1, L2 project to
distinct lines in H/q ∼= P2 which intersect in a unique point. And M is simply the cone over this point. So
we conclude that the directrix line M is uniquely determined by (x, y).

Finally, projection Σ → M to the directrix determines an isomorphism φ : D → M such that for each
r ∈ D, span(r, φ(r)) is a line of the ruling of Σ, in particular φ(q) = q. Conversely, given a line M which
intersects C in one point q and given an isomorphism φ : C → M such that φ(q) = q, then the union of the
lines span(r, φ(r)) is a cubic scroll Σ. Thus to uniquely specify the cubic scroll Σ, we have only to determine
φ. But notice also that we already know φ(p1), φ(p2) are the unique points of intersection of M with L1 and
L2 respectively. Thus φ is also uniquely determined by (x, y). Altogether we conclude that Σ is uniquely
determined by (x, y). But then we can recover/construct C as the residual to D ∪ L1 ∪ L2 in Σ ∩X. This
proves that h is birational. �

Theorem 6.4. The composite of I → H4,0(X) with the Abel-Jacobi map u4,0 : H4,0(X) → J(X) is
dominant and the general fiber is irreducible. Therefore u4,0 is dominant and the general fiber is irreducible.

Proof. By the residuation trick, the composite equals (as a rational map) the pointwise inverse of the com-
position

I
h−→ R = Θ′ × U ′ → J(X) (27)

where the second map is the restriction to Θ′×U ′ ⊂ J(X)×J(X) of the addition map. Clearly Θ′+U ′ = J(X)
since Θ′ is a divisor. U ′ ⊂ Θ is a Zariski-dense open set, and Θ is not contained in any translate of Θ′. Thus
I → J(X) is dominant.

Using the fact that Θ is a symmetric divisor, we see that the general fiber of the map Θ′ ×Θ → J(X) is
an intersection Θ ∩ (a+ Θ′). By theorem 3.5, for general a this intersection is irreducible. Thus we conclude
that the general fiber of I → J(X) is irreducible. This proves the theorem. �

7. Quintic Elliptics

In this section we will prove that the Abel-Jacobi map u5,1 : H5,1(X) → J(X) is dominant and the general
fiber is an irreducible 5-fold. In the next section we will see that the fibers are unirational.

The construction we use to understand quintic elliptics is as follows. Define g : H̃ → H5,1(X) to be the
relative Pic2 of the universal family of elliptic curves C → H5,1(X). By lemma 5.5 H̃ is also the parameter
space for pairs (f, h) where f : Σ → P4 is a generalized cubic scroll and h : C → Σ is a curve such that
f(h(C)) ⊂ X is a smooth quintic elliptic. The residual to C in Σ∩X is a curve C ′ of degree 4 and arithemtic
genus 0.
Theorem 7.1. The scheme H̃ is irreducible of dimension 11. For a general pair (f, h) ∈ H̃, the residual
curve D is a smooth, nondegenerate, quartic rational curve.

Proof. This follows from the proof of [6, theorem 8.1]. �

We have an induced rational transformation g′ : H̃ → H4,0(X) which sends a pair (f, h) to the residual
curve C ′. Also by lemma 5.2, we see that g′ : H̃ → H4,0(X) is (birationally) the parameter space for pairs
(f ′, h′) where f ′ : Σ → P4 is a cubic scroll and h′ : C ′ → Σ is a curve which intersects the directrix in a degree
2 divisor and lines of the ruling in a degree 1 divisor, and such that f ′(h′(C ′)) ⊂ X is a quartic rational curve.
Given such a pair, the residual to C ′ in Σ ∩X is the quintic elliptic C we started with, so both descriptions
of H̃ are equivalent.

Notice that by lemma 5.2, the fiber of g′ over a general point [C ′] is the irreducible (rational) variety
parametrizing pairs (D,φ) where D is a 2-secant line to C ′ and where φ : C ′ → D is an isomorphism such
that φ is the identity on C ′ ∩D.
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Theorem 7.2. The composite of g : H̃ → H5,1(X) and the Abel-Jacobi map u5,1 : H5,1(X) → J(X) is
dominant and the general fiber is an irreducible 6-fold. Therefore the Abel-Jacobi map u5,1 : H5,1(X) → J(X)
is dominant and the general fiber is an irreducible 5-fold.

Proof. The space of all embedded cubic scrolls f : Σ → P4 is clearly unirational, in fact it is a homogeneous
space for PGL(5) and so it is even rational. So the Abel-Jacobi map is constant on the family of com-
plete intersections f∗X. By the residuation trick, the following two birational transformations are pointwise
(additive) inverses:

H̃
g−→ H5,1(X)

u5,1−−→ J(X) (28)

H̃
g′−→ H4,0(X)

u4,0−−→ J(X).

By theorem 6.4, u4,0 is dominant and the general fiber is irreducible. We have seen that H̃ → H4,0(X) is
dominant and the general fiber is irreducible. Thus one, and hence both of the morphisms H̃1 → J(X) are
dominant and the general fiber is irreducible. Since H̃ → H5,1(X) is dominant, we conclude that u5,1 is
dominant and the general fiber is irreducible. �

8. Double Residuation and Unirationality of the Fibers

In the last section we introduced the space H̃ which parametrizes pairs (f : Σ → P4, h : E → Σ) where
f : Σ → P4 is a cubic scroll and E ⊂ Σ is an elliptic curve such that f ◦ h : E → P4 is an embedding of
E as a quintic elliptic curve in X. Equivalently H̃ parametrizes pairs (f : Σ → P4, k : C → Σ) where C
is the rational curve residual to E in f∗X and f ◦ k : C → X is a quartic rational curve. In this section we
will use H̃ to prove that the fibers of u4,0 and u5,1 are unirational.

We need a partial compactification of H̃. Let H
5,1 ⊂ Hilb5t(X) denote the open subset of the closure of

H5,1(X) which parametrizes Cohen-Macaulay curves (i.e. curves with no embedded points). Let P (t) be the
numerical polynomial P (t) = 3

2 t
2+ 5

2 t+1. Let M ⊂ HilbP (t)(P4) denote the open subscheme parametrizing
connected, reduced, local complete intersection subschemes of P4 with Hilbert polynomial P (t). The space M
contains an open subset parametrizing embedded cubic scrolls, but M also parametrizes mild degenerations
of embedded cubic scrolls. We will refer to the schemes parametrized by M as generalized cubic scrolls.
Let N ⊂ M × H

5,1
denote the locally closed subscheme parametrizing pairs (Σ, E) such that X ∩ Σ is a

reduced Weil divisor and E ⊂ X ∩ Σ. Notice that the Lefschetz hyperplane theorem shows that X contains
no generalized cubic scrolls. Thus X ∩ Σ is a Cartier divisor on Σ which contains E. By [6, corollary 2.7]
the family of residual curves to E ⊂ X ∩ Σ is a flat family of Cohen-Macaulay curves. The residual divisor
C ⊂ Σ is a connected, arithmetic genus 0 curve of degree 4 contained in X, i.e. a point of H

4,0
. So we have

2 projection morphisms p1 : N → H
5,1

and p2 : N → H
4,0

.

One thing to notice is that if E is a quintic elliptic curve whose span is all of P4, then E is not contained in
any hyperplanes, any quadric surfaces, or in any cone over a twisted cubic. Thus for every point (Σ, E) ∈ N ,
we have that Σ is a smooth cubic scroll.

Now define N2 to be the fiber product N ×
H

5,1 N . We define the two maps i = 1, 2, p2,i : N2 → H
4,0

to

be the compositions of the projection pi : N2 → N with p2 : N → H
4,0

.

Lemma 8.1. For a general quartic rational curve [C] ∈ H4,0(X), the fiber of p2,i : N2 → H
4,0

is unirational
of dimension 4.

Proof. Let C ⊂ X be a general quartic rational curve. Let T ⊂ P4 be the threefold swept out by all 2-secant
lines and tangent lines to C. Then T ∩X is a surface. Let U ⊂ X denote the complement of T . We construct
a rational transformation ρ : C × U → N2 as follows. For each point p ∈ C and q ∈ U , there is a line
L = span(p, q). The quotient projective space P4/L is isomorphic to P2. Since L ∩ C = {p}, we see that
the image of C under the rational projection P4 → P2 is a singular cubic curve. Let V ⊂ C × U denote
the open set such that this singular cubic curve is a nodal cubic. Then the node corresponds to the unique
2-secant line D ⊂ P4 to C which intersects L. And there is a unique isomorphism π : C → D such that
π(r) = r for each r ∈ C ∩D and such that π(p) = s where D ∩ L = {s}. By subsection 5.2 the 4-tuple
(C,D, π,C ∩D) determines a cubic scroll f : Σ → P4 which contains C and D. Let E denote the residual
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curve to C in f∗X. Then (Σ, E) is a point of H̃. Also we know that q is on E. The linear system |2q| on E
is a g1

2 , i.e. a degree 2 morphism π : E → P1. By lemma5.5 π : E → P1 determines a second cubic scroll Σ′

containing E such that |2q| is just the linear system of intersections of E with the lines of ruling of Σ′. For
(p, q) ∈ V we define ρ(p, q) = ((Σ, E), (Σ′, E)).

Since every g1
2 on E can be expressed as |2q| for some q ∈ E, it is clear that we can obtain every cubic scroll

Σ′ containing E simply by varying the point q. Thus we conclude that the map ρ : V → N2 dominates the
fiber of p2,i : N2 → H

4,0
over [C]. Since V is an open subset of the product of unirational varieties C ×X,

we conclude that V is unirational. Since the image of a unirational variety is unirational, we conclude that
the fiber of p2,i : N2 → H

4,0
over [C] is unirational. �

Let P ⊂ N2 denote the irreducible component whose general member is a point (E,Σ1,Σ2) where E is a
smooth quintic elliptic and Σ1,Σ2 are cubic scrolls. Now consider the morphism

r : P → H
4,0 ×H

4,0
, r(E,Σ1,Σ2) = (p2(E,Σ1), p2(E,Σ2)) (29)

i.e. the pair of residual quartic curves to E in Σ1 ∩X and Σ2 ∩X.
Theorem 8.2. For a general pair (C1, C2) of smooth quartic rational curves in the image of r, the fiber is
1-dimensional. And the general fiber of the Abel-Jacobi map

u4,0 : H4,0(X) → J(X) (30)

it one of the irreducible, unirational 3-folds p2,2(p−1
2,1([C])) for some [C] ∈ H4,0(X).

Proof. Let Π ⊂ P4 be a hyperplane such that Y = Π ∩ X is a smooth cubic surface. For a general point
p ∈ Y we can find a quartic elliptic curve B ⊂ Y with p ∈ B: in the model of Y as the blow-up of P2 at 6
points, B is the proper transform of a plane cubic passing through 5 of those points and the additional point
p. Also for a general point p ∈ Y , we can find a line of type I, L ⊂ X, such that L ∩ Π = {p}. Define
E = B ∪ L, so E is a connected, nodal curve of arithmetic genus 1 and degree 5.

Claim 8.3. The curve E satisfies the conditions in [6, lemma 2.3], i.e.

H1(L,NL/X(−p)) = H1(B,NB/X) = 0. (31)

Therefore Hilb5t(X) is smooth at [E] and deformations of E smooth the node at p.

We have the following short exact sequences of coherent sheaves:

0 −−−−→ NB/X −−−−→ NE/X |B −−−−→ Op −−−−→ 0

0 −−−−→ NL/X −−−−→ NE/X |L −−−−→ Op −−−−→ 0
(32)

We also have a short exact sequence:

0 −−−−→ NB/Y −−−−→ NB/X −−−−→ NY/X |B −−−−→ 0 (33)

The self-intersection of a quartic rational curve on a smooth cubic scroll is 4. And NY/X |B = OΠ(1)|E is
also degree 4. So by Riemann-Roch we conclude that H1(B,NB/Y ) = H1(B,NY/X |B) = 0. Applying the
long exact sequence in cohomology to our last short exact sequence, we conclude that H1(B,NB/X) = 0.
Applying the long exact sequence in cohomology to our first short exact sequence above, we conclude that
H1(B,NE/X |B) = 0.

Twisting the second exact sequence above by OL(−p) yields an exact sequence:

0 −−−−→ NL/X(−p) −−−−→ NE/X |L(−p) −−−−→ Op −−−−→ 0 (34)

By assumptionNL/X ∼= OL⊕OL, thusNL/X(−p) ∼= OL(−1)⊕OL(−1). In particular, H1(L,NL/X(−p)) = 0.
Applying the long exact sequence in cohomology to this short exact sequence, we conclude thatH1(L,NE/X(−p)) = 0.
Finally, we have the short exact sequence:

0 −−−−→ NE/X |L(−p) −−−−→ NE/X −−−−→ NE/X |B −−−−→ 0 (35)

Applying the long exact sequence in cohomology to this short exact sequence, we conclude thatH1(E,NE/X) = 0.
Thus [E] ∈ Hilb5t(X) is unobstructed. This finishes the proof of claim 8.3.
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For a general line M ⊂ Π containing p, the residual to L in span(L,M)∩X is a smooth conic. Let M1,M2

be two such lines. Without loss of generality, we may also suppose that M1,M2 are 2-secant lines to B: since
we are free to choose B a general quartic elliptic, we may first choose M1,M2, and then choose B to pass
through p and one of the other two points of Mi ∩ Y for each of i = 1, 2. Let Mi ∩B = {p, qi} and let ri
denote the third point of Mi ∩ Y .

Define S′i = span(L,Mi) and let S′′1 , S
′′
2 ⊂ Π be smooth quadric surfaces containing B ∪M1 and B ∪M2

respectively. Define S1 = S′1 ∪ S′′1 , S2 = S′2 ∪ S′′2 , thus S1, S2 are each a union of a 2-plane and a
smooth quadric surface. By [6, lemma 6.2] such a surface is a specialization of a cubic scroll, thus [S1], [S2] ∈
HilbP (t)(P4).
Claim 8.4. For i = 1, 2, we have H1(Si, IE/Si

NSi/P4) = H2(Si, IE/Si
NSi/P4) = 0 where IE/Si

is the
ideal sheaf of E ⊂ Si.

By the deformation theory argument in the proof of [6, lemma 6.2], this vanishing result implies that the
morphism N2 → H

5,1
is smooth at (E,S1, S2).

We have a short exact sequence:

0 −−−−→ NSi/P4 |S′i(−Mi − L) −−−−→ IE/Si
NSi/P4 −−−−→ NSi/P4 |S′′i (−B) −−−−→ 0 (36)

And we have the two short exact sequences:
0 −−−−→ NS′i/P4(−Mi − L) −−−−→ NSi/P4 |S′(−Mi − L) −−−−→ NMi/S′′i

(−p) −−−−→ 0

0 −−−−→ NS′′i /P4(−B) −−−−→ NSi/P4 |S′′i (−B) −−−−→ NMi/S′ ⊗NMi/S′′i
(−p− q) −−−−→ 0

(37)
From the proof of lemma [6, lemma 6.3], we know that

NS′i/P4 ∼= OP2(1)⊕OP2(1), NS′′i /P4 ∼= OP1×P1(1, 1)⊕OP1×P1(2, 2). (38)

Thus we haveNS′/P4(−Mi−L) ∼= OP2(−1)⊕OP2(−1) andNS′′i /P4(−B) ∼= OP1×P1(−1,−1)⊕OP1×P1 . Moreover
NMi/S′

∼= OP1(1) and NMi/S′′i
∼= OP1 . Thus our two exact sequences are:

0 −−−−→ OP2(−1)⊕OP2(−1) −−−−→ NSi/P4 |S′i(−Mi − L) −−−−→ OP1(−1) −−−−→ 0

0 −−−−→ OP1×P1(−1,−1)⊕OP1×P1 −−−−→ NSi/P4 |S′′i (−B) −−−−→ OP1(−1) −−−−→ 0
(39)

It quickly follows from the long exact sequence in cohomology that

Hj>0(S′, NSi/P4 |S′(−Mi − L)) = Hj>0(S′′i , NSi/P4 |S′′i (−B)) = 0 (40)

Applying the long exact sequence in cohomology to our first short exact sequence, we conclude thatHj>0(Si, IE/Si
NSi/P4) = 0.

This proves claim 8.4

We conclude that N2 → H
5,1

is smooth at (E,S1, S2). Since [E] is a smooth point of Hilb5t(X) which lies
in H

5,1
, we conclude that N2 is smooth at (E,S1, S2) and the irreducible component of N2 which contains

(E,S1, S2) dominates H
5,1

, i.e. the irreducible component is P .

Claim 8.5. The fiber of r : P → H
4,0 ×H

4,0
containing (E,S1, S2) is one-dimensional at (E,S1, S2).

Of course the residual to L in S′i ∩ X is a smooth conic D′
i which intersects Mi in {qi, ri}. And the

residual to B in S′′i ∩ X is a smooth conic D′′
i which contains ri. Let us define Di = D′

i ∪ D′′
i . Then

r(E,S1, S2) = (D1, D2).

Now we want to determine the dimension of every irreducible component of the fiber Φ = r−1(D1, D2)
through (E,S1, S2). By lemma [6, lemma 6.3], we may restrict our attention to the open subset of Φ
parametrizing pairs (C,R1, R2) such that each of R1, R2 is in T ∪ U , i.e. Ri is either a cubic scroll or
the union of a 2-plane and a quadric surface along a line. But for any conic G in a cubic scroll Σ with
directrix D and fiber F , we know that G ∼ D + F . Given a union of 2 such conics, G′, G′′, we see that
3H −G′ −G′′ ∼ D + 4F . Thus the residual to such a curve in Σ ∩X would be a quintic curve of arithmetic
genus 0, not arithmetic genus 1. We conclude that for (C,R1, R2) in Φ, we must have Ri is in T .

For an open neighborhood of (E,S1, S2) in Φ, we must have that D′
i lies in the irreducible component of

Ri which is a 2-plane. Now suppose given such a (C,R1, R2). There is a unique 2-plane S′i which contains D′
i.
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Thus Ri = S′i ∪R′′i for some smooth quadric surface R′′i . And C = L∪A for some quartic elliptic A. Now
span(A) contains both span(D′′

1 ) and span(D′′
2 ). Thus span(A) = Π. Finally, since S′i∩Π = Mi, we can only

have S′i∩R′′i = Mi. In particular, we conclude that Mi intersects A in the points p, qi. Thus A ⊂ Y = Π∩X
is a quartic elliptic curve passing through p, q1 and q2. These points impose independent conditions on the
4-dimensional linear system of quartic elliptic curves residual to D′′

i . Thus there is a 1-dimensional linear
system of A’s.

For each A in this pencil of quartic elliptic curves, we have A∪D′′
i ⊂ Y lies in |OY (2)|. Since Y is linearly

normal and lies in no quadric surfaces, we have |OY (2)| = |OΠ(2)|. Thus there is a unique quadric surface
R′′i containing A ∪ D′′

i . Since {p, qi, ri} ⊂ Mi ∩ R′′i , we conclude that Mi ⊂ R′′i . Thus Ri = S′i ∪ R′′i is a
surface in T , and (A,R1, R2) is a point in the fiber Φ. So the fiber of Φ is one-dimensional at (E,S1, S2),
which finishes the proof of claim 8.5.

By the above, Φ is a 1-dimensional irreducible variety in a neighborhood of (E,S1, S2). It follows by upper
semicontinuity of the fiber dimension that the general fiber of r : P → H

4,0
(X) × H

4,0
(X) is at most

1-dimensional.

For a general rational quartic [C] ∈ H4,0(X), it follows by lemma 8.1 that p−1
2,1([C]) ⊂ N2 is a unirational

4-fold. So the subvariety ZC := p2,2(p−1
2,1([C]) is an irreducible, unirational variety. Also observe that the

subvarieties ZC sweep out H4,0(X): given a curve [D] ∈ H4,0(X), if we choose any curve [C] ∈ ZD, then also
[D] is contained in ZC .

Since the fiber dimension of p2,i : N2 → H4,0,(X) is at most 1, we conclude the dimension of ZC is at least
4− 1 = 3. Since J(X) contains no unirational subvarieties, ZC is contained in a fiber of the Abel-Jacobi map
u4,0 : H4,0,(X) → J(X). By theorem 6.4, the general fiber of u4,0 is irreducible of dimension 3. Combining
this with the fact that a general point of H4,0(X) is contained in an irreducible 3-fold ZC , we conclude that
the general fiber of u4,0 is one of the general subvarieties ZC , and vice versa. As a consequence, observe that
the general fiber dimension of u4,0 is 1 (and not 0). This completes the proof of the theorem. �

Corollary 8.6. The general fiber of the Abel-Jacobi map u5,1 : H5,1(X) → J(X) is an irreducible,
unirational 5-fold.

Proof. Recall from the proof of lemma 8.1 that not only did we show that p−1
2,i ([C]) is unirational, but we

showed that there is a dominant, generically-finite morphism B → p−1
2,i ([C]) such that B is unirational and

on B we can produce a section σ of the family of elliptic curves E – in fact we used |2σ| as the g1
2 ’s on E to

produce the surface Σ′. Thus we have a distinguished line on each Σ′ corresponding to |2σ|. And if C ′ is the
residual to E ⊂ Σ′ ∩ X, this line intersects C ′ in a distinguished point. What this shows is that there is a
unirational variety B dominating a general fiber Z = u−1

4,0(p) such that after we base-change to B, we have
a section τ of the family of quartic rational curves C ′. Thus the family of quartic rational curves over B is a
conic bundle with a section; therefore it is a P1-bundle.

It is easy to see that given a quartic rational curve C ′ along with a point p, the locus of cubic scrolls
containing C is canonically birational to Sym2(C)×C∗, which is canonically birational to A3. Thus the fiber
product H̃ ×H4,0(X) B → B is canonically birational to A3 × B → B. In particular, since B is itself
unirational, we conclude that H̃ ×H4,0(X) B is also unirational.

Consider the composite morphism:

H̃ ×H4,0(X) B −−−−→ H̃ −−−−→ H5,1(X). (41)

Define Y to be the image. Because H̃ → H5,1(X) has fiber dimension, we conclude that

dim(Y ) ≥ dimH̃ ×H4,0(X) B − 1 = dim(B) + 3− 1 = 3 + 3− 1 = 5. (42)

So Y is a unirational variety of dimension 5. Since J(X) contains no unirational varieties, we conclude that
Y is contained in a fiber of u5,1. Since H̃ → H5,1(X) is dominant, we conclude that a general point of
H5,1(X) is contained in one of the varieties Y . Finally, by theorem 7.2, we see that the general fiber of u5,1 is
an irreducible 5-fold. Thus we have that Y equals a fiber of u5,1, so the general fiber of u5,1 is an irreducible,
unirational 5-fold. �
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9. Quintic Rational Curves

In this section we will prove that the Abel-Jacobi map u5,0 : H5,0(X) → J(X) is dominant and the general
fiber is an irreducible, unirational 5-fold.

The construction we use to understand quintic rational curves is as follows. Define I ⊂ H5,0(X)×G(1, 4)
to be the locally closed subvariety parametrizing pairs ([C], [L]) where L is a 3-secant line to C which is not a
4-secant line. There is a unique isomorphism φ : C → L which is the identity on C ∩L. By lemma 5.6, there
is a cubic scroll h : Σ → P4 such that L is the directrix of Σ, C ⊂ Σ, and φ is the restriction of the projection
π : Σ → L to C. The residual to C in Σ ∩X is a quartic rational curve C ′ (which does not intersect L and
which intersects lines of the ruling in a degree 2 divisor).
Lemma 9.1. The scheme H5,0(X) is irreducible of dimension 10. The morphism I → H5,0(X) is birational.
For a general pair ([C], [L]) the residual quartic curve C ′ is a smooth, nondegenerate quartic rational curve.

Proof. This follows from [6, corollary 9.3, theorem 9.4]. �

What are the fibers of I → H4,0(X)? By lemma 5.1, the fiber over [C ′] for C ′ a general quartic rational
curve is simply an open subset of the P2 which parametrizes the collection of g1

2 ’s on C ′.
Theorem 9.2. The general fiber of u5,0 : H5,0,(X) → J(X) is an irreducible, unirational 5-fold.

Proof. Since I → H5,0(X) is birational, we will show that the general fiber of u5,0 : I → J(X) is an
irreducible, unirational 5-fold.

Now I surjects to an open subscheme of H4,0,(X) with irreducible fibers isomorphic to open subsets of
P2. By the residuation trick, we know that u5,0 is the pointwise inverse (up to constant translation) of the
composite map:

I −−−−→ H4,0(X)
u4,0−−−−→ J(X) (43)

We know the general fiber of u4,0 is an irreducible 3-fold. Thus we conclude that the general fiber of
I1 → J(X) is an irreducible 5-fold.

To see that the general fiber is unirational, we once again use the fact that for general p ∈ J(X) there
is a morphism B → u−1

4,0(p) such that B is unirational and the base-change to B of the universal curve
over H4,0(X) admits a section. Thus the base-change of the universal curve is birational to B × A1. So the
“relative symmetric product” of the universal curve is birational to B × A2. By lemma 9.1 I → H4,0(X)
is isomorphic to an open subset of the relative second symmetric product of the universal curve. Thus the
fiber product B ×H4,0(X) I is birational to B × A2. Since B is unirational, so is B × A2. And B ×H4,0(X) I
dominates the fiber over p ∈ J(X). Thus we conclude that the general fiber of I → J(X) is unirational. �

10. Quintic Curves of Genus 2

By Bézout’s theorem, X cannot contain a plane curve of degree d > 3. Thus the next case after quintic
elliptic curves is quintic curves of genus 2.

In this section we will show that the Abel-Jacobi map u5,2 : H5,2(X) → J(X) has image image(u5,2) =
u1,0(F ). Moreover the general fiber is irreducible and rational of dimension 8. The construction we will use
to prove this is as follows. Suppose that C ⊂ X is a smooth quintic curve of genus 2. By Riemann-Roch,
h0(C,OP4(1)|C) = 4, so C is contained in a hyperplane section H ∩X. Similarly, h0(C,OP4(2)|C) = 9 < 10,
so C is contained in a quadric surface Q ⊂ H. The residual to C in Q ∩X is a line L ⊂ X. Thus there is a
morphism f : H̃5,1(X) → F where H̃5,1(X) is the normalization of H5,1(X).
Lemma 10.1. The scheme H5,2(X) is irreducible of dimension 10 and the morphism f : H̃5,2(X) → F is
dominant.

Proof. This follows from the proof of [6, theorem 10.1]. �

What is the fiber of f? Given a line L ⊂ X, to specify the curve C, it suffices to specify the hyperplane H
containing L and the quadric surface Q ⊂ H containing L. The collection of pairs

PQ∨ = {([L], [H]) ∈ F × P4∨ : L ⊂ H} (44)
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is a P2-bundle over F . And the collection of triples

I = {([L], [H], [Q]) : L ⊂ Q ⊂ H} (45)

is a P6-bundle over PQ∨. By a dimension count we conclude that the morphism g : H̃5,2(X) → I maps
birationally to an open subset of I. Thus the fibers of f are irreducible, rational varieties of dimension 8.
Corollary 10.2. The Abel-Jacobi map u5,2 has image a (translate of) an open subset of −u1,0(F ), and the
general fiber of u5,2 is an irreducible, rational 8-fold.

Proof. By the residuation trick we know u5,2 is the pointwise inverse of u1,0 ◦ g. And u1,0 is an embedding.
Since g is dominant, we conclude that image(u5,2) is an open subset of −u1,0(X). Since the fibers of u5,2

equal the fibers of g, we conclude the general fiber of u5,2 is an irreducible, rational variety of dimension
8. �

10.1. Irreducibility for Hd,0(X). We have avoided using the following result in the previous section, but
we present it here to mention one important corollary.

Theorem 10.3. For each d the space Hd,0(X) is an irreducible, reduced, local complete intersection scheme
of dimension 2d. Moreover the general point of Hd,0(X) is an unobstructed curve.

This is theorem 1 of [7]. We will not discuss the proof here, but we will prove a corollary that follows from
theorem 10.3 and our analysis of H4,0(X) and H5,0(X). Let H̃d,0(X) denote the normalization of Hd,0(X).

Theorem 10.4. For each d ≥ 4, the Abel-Jacobi morphism αd,0 : H̃d,0(X) → J(X) is dominant and the
general fiber is irreducible.

Proof. Let Hd → Hd,0(X) denote the normalization of the closure of Hd,0(X). We will actually show that
αd,0 : Hd → J(X) is dominant and the general fiber is irreducible. Let us denote the Stein factorization of
αd,0 as follows:

Hd βd−−−−→ Zd
γd−−−−→ J(X) (46)

We need to prove that γd is an open immersion. By theorem 10.3, we know that Zd is irreducible. We will
prove by induction that there is a rational section εd : J(X) → Zd. It then follows that γd is an open
immersion. We have already established this result in case d = 4 or 5. Therefore suppose that d ≥ 6 and
suppose that the theorem has been proved for all integers less than d (and greater than 3).

Let Hd−2,0(X)u ⊂ Hd−2,0(X) denote the open subscheme of Hd−2,0(X) such that the corresponding curve
is unobstructed. Let π : Cd−2 → Hd−2,0(X)u denote the universal curve. The points of Cd−2 parametrize
pairs ([C], p) where [C] ∈ Hd−2,0(X) and p ∈ C. Let L ⊂ X be a general line. Let U ⊂ Cd−2 denote the open
subscheme parametrizing pairs ([C], p) such that p ∈ X \L. We have a family of 2-planes P ⊂ U × P4 whose
fiber over ([C], p) is span(L, p). Let D ⊂ U ×X denote the intersection of U ×X with P inside U × P4. Let
D1 ⊂ D denote the constant family U × L ⊂ U × P4. Let D2 denote the residual family of conics. By [6,
corollary 2.7], D2 is flat over U . Let V ⊂ U denote the open subscheme parametrizing pairs ([C], p) such that
the corresponding conic C ′ is smooth and such that C intersects C ′ transversally at p and in no other points.
Then over V the union Cd−2 ∪D2 ⊂ V ×X is a flat family of curves of degree d and arithmetic genus 0. So
there is an induced morphism f : V → Hilbdt+1(X).

We will prove that f(V ) ⊂ Hd,0(X). In fact we will prove that every point in f(V ) satisfies the conditions
in [6, lemma 2.3], namely H1(C ′, NC′/X(−p)) = H1(C,NC/X) = 0. It then follows that such a point is a
smooth point of Hilbdt+1(X) and also that the node smooths so that the point is in Hd,0(X). Let ([C], p) be
a point of V , and let C ′ be the corresponding conic. Let B = C ∪ C ′ denote the union. By construction B
is a connected nodal curve. We need to prove that H1(B,NB/X) = 0.

We have the exact sequence:

0 −−−−→ NB/X |C′(−p) −−−−→ NB/X −−−−→ NB/X |C −−−−→ 0. (47)

And we have two exact sequences:
0 −−−−→ NC′/X(−p) −−−−→ NB/X |C′(−p) −−−−→ Op −−−−→ 0

0 −−−−→ NC/X −−−−→ NB/X |C −−−−→ Op −−−−→ 0
. (48)
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We have seen that NC′/X is either OC′(1) ⊕ OC′(1) or OC′(2) ⊕ OC′ . Thus H1(C ′, NC′/X(−p)) = 0.
By the long exact sequence in cohomology we conclude that H1(C ′, NB/X |C′(−p)) = 0. By assumption
H1(C,NC/X) = 0, therefore also H1(C,NB/X |C) = 0. By the long exact sequence in cohomology we
conclude that H1(B,NB/X) = 0, i.e. B is unobstructed.

We conclude that f(V ) is contained in the smooth locus of Hd,0(X). Thus we can factor f as g : V → Hd.
By additivity θ(B) = θ(C) + θ(C ′). And by residuation we have θ(C ′) = −θ(L) (up to a fixed constant).
Thus we conclude that the composite map:

V
g−−−−→ Hd αd,0−−−−→ J(X) (49)

equals the pointwise inverse (up to a constant translation) of the composite:

V −−−−→ Hd−2 αd−2,0−−−−→ J(X). (50)

Since V → Hd−2 has irreducible fibers, the Stein factorization of this composite is just the Stein factorization
of αd−2,0 (or more precisely an open subscheme). By the induction assumption γd−2 : Zd−2 → J(X) is an
open immersion. By the universal property of the Stein factorization of V → J(X), there is an induced
morphism εd : Zd−2 → Zd. This is a rational section of γd : Zd → J(X), which shows that γd is an open
immersion. Therefore the morphism αd,0 : Hd → J(X) is dominant and the general fiber is irreducible, as
was to be shown. �
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