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Abstract. For a hypersurface in complex projective space, X ⊂ Pn, we investigate the singular-
ities and Kodaira dimension of the Kontsevich moduli spaces M0,0(X, e) parametrizing rational

curves of degree e on X. If d + e ≤ n and X is a general hypersurface of degree d, we prove

thatM0,0(X, e) has only canonical singularities and we conjecture the same is true for the coarse

moduli space M0,0(X, e). We prove that this conjecture is implied by the “inversion of adjunc-

tion” conjecture of Kollár and Shokurov. Also we compute the canonical divisor of M0,0(X, e)
and show that for most pairs (d, e) with n ≤ d2 ≤ n2, the canonical divisor is a big divisor. When

combined with the above conjecture, this implies that in many cases M0,0(X, e) is a variety of
general type. This investigation is motivated by the question of which Fano hypersurfaces are

unirational.

1. Introduction

Let X ⊂ Pn be a general hypersurface of degree d in complex projective space Pn. The Kontsevich
moduli space M0,0(X, e) is a proper, Deligne-Mumford stack containing as an open substack the
scheme parametrizing smooth, rational curves of degree e on X (c.f. [11]). Except when d = 1,
d = 2 or e = 1, very little is known about the singularities and Kodaira dimension of M0,0(X, e).
When d = 1 and d = 2, the spaces M0,0(X, e) are all smooth [25] and rational [19]. When e = 1,
the space M0,0(X, e) is just the space of lines on X, which is completely understood [20, Thm.
V.4.3].

What is known for d ≥ 3 and e ≥ 2? If d < n+1
2 , it is proved in [15] that M0,0(X, e) is integral of

the expected dimension and has only local complete intersection singularities. If also d2 +d+1 < n,
it is proved in [16] that M0,0(X, e) has negative Kodaira dimension; in fact M0,0(X, e) is rationally
connected. If d ≥ n−1, the open substack of M0,0(X, e) parametrizing smooth rational curves is not
Zariski dense: the locus of multiple covers of lines yields an irreducible component of M0,0(X, e)
not contained in the closure of this open set. However all evidence suggests that for d ≤ n− 2 and
for X ⊂ Pn a general hypersurface of degree d, the stack M0,0(X, e) is irreducible for all e ≥ 1.

Question 1.1. For d ≤ n − 2 and X ⊂ Pn a general hypersurface of degree d, what type of
singularities doesM0,0(X, e) have? For which (n, d, e) are the singularities terminal, resp. canonical,
log canonical?

Fix e > 1 and d ≥ 1. Let PN denote the projective space parametrizing degree d hypersurfaces X ⊂
Pn. Let Cd ⊂ PN ×M0,0(Pn, e) denote the closed substack parametrizing pairs ([X], [f : D → X])
of X ⊂ Pn a hypersurface and f : D → X a stable map in M0,0(X, e). The main theorem of this
paper is the following.

Theorem 7.5. If e ≥ 2 and if d+e ≤ n, then Cd is an integral, normal, local complete intersection
stack of the expected dimension and has at worst canonical singularities.
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Corollary 7.6. If e ≥ 2 and if d + e ≤ n, then for a general hypersurface X ⊂ P(V ) of degree d,
the Kontsevich moduli space M0,0(X, e) is an integral, normal, local complete intersection stack of
the expected dimension (n+ 1− d)e+ (n− 3) and has at worst canonical singularities.

It is reasonable to expect that Theorem 7.8 is sharp. For instance the inequality d + e ≤ n is
consistent with the inequality d ≤ n − 1 necessary for Cd to be irreducible. On the other hand,
Corollary 7.9 is certainly not sharp: it fails to account for the cases d = 1 and d = 2 where
M0,0(X, e) is smooth for every e. For d ≥ 3 and e ≥ 2, the space M0,0(X, e) is singular, but
hopefully it is not too singular.

Question 1.2. For which integers d and n is it true that for a very general hypersurface X ⊂ Pn
of degree d, X is unirational?

This is the question which motivates this paper, although no new answers are given here. A necessary
condition is that d ≤ n; otherwise the Kodaira dimension of X is nonnegative. For d = 1, 2, 3 and
n ≥ d, it is known that a general hypersurface X ⊂ Pn of degree d is unirational. For each integer
d there is an integer φ(d) such that for n ≥ φ(d) and X ⊂ Pn a general hypersurface, then X is
unirational ( [12], [23, Chapter 23]). It is conjectured that if d ≤ n but large compared to n – e.g.
if d = n for n ≥ 4 – then a general hypersurface X ⊂ Pn is not unirational. But no example of such
a hypersurface has been proved to be non-unirational.

1.1. Kollár’s approach. The connection between Question 1.2 and this paper comes from a sug-
gestion by Kollár in [22], that a necessary condition for a variety X of dimension at least 2 to be
unirational is that for a general point p ∈ X, there exists a rational surface S ⊂ X containing p.

Definition 1.3. An irreducible, projective variety X over a field k is swept by rational surfaces
(resp. separably swept by rational surfaces) if there exists an irreducible variety Z and a rational
transformation F : Z × P2 → X such that,

(i) the rational transformation F is dominant (resp. dominant and separable), and
(ii) the rational transformation (prZ , F ) : Z × P2 → Z × X is generically finite to its image

(resp. generically finite and separable to its image).

Remark 1.4. There are several obvious remarks.

(i) This definition makes sense for any field k, not necessarily algebraically closed nor of char-
acteristic 0 (although this is the case of interest in the rest of the paper).

(ii) In the definition above, Z can be replaced by a separable, dominant cover and the conditions
will still hold.

(iii) Let X be a variety that is separably swept by rational surfaces. Let S ⊂ Z × X denote
the image of (prZ , F ). By [20, Thm. III.2.4], the base change S ⊗K(Z) K(Z) is a rational
surface. By [5], in fact there is a separable dominant morphism Z ′ → Z and a birational
transformation over Z ′, G : Z ′ × P2 → Z ′ ×Z S. After replacing Z by Z ′ and replacing F
by the composite Z ′ × P2 G−→ Z ′ ×Z S

prS−−→ S
prX−−→ X, (prZ , F ) is actually birational to its

image.
(iv) If X is (separably) unirational and dim(X) ≥ 2, then X is (separably) swept by rational

surfaces.
(v) If X is swept by rational surfaces (resp. separably swept by rational surfaces), then X is

uniruled (resp. separably uniruled).
(vi) Let dim(X) = n. Definition 1.3 is equivalent to the stronger condition where dim(Z) = n−2.

Moreover Z can be required to be smooth over k. In fact, by de Jong’s alterations of
singularities, up to replacing Z by a generically étale cover, Z can even be required to be
smooth and projective.
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(vii) The condition that X is swept by rational surfaces (resp. separably swept by rational
surfaces) is a birational property that is equivalent to the condition that there exist a
finitely-generated field extension L/k of transcendence degree n − 2 and a finite super-
extension (resp. finite separable super-extension) of K(X)/k of the form L(t1, t2)/K(X)
(resp. such that the compositum L ∗K(X) equals L(t1, t2)).

(viii) If X is swept by rational surfaces (resp. separably swept by rational surfaces) and f : X →
X ′ is a generically finite, dominant rational transformation (resp. generically étale, domi-
nant rational transformation), then also X ′ is swept by rational surfaces (resp. separably
swept by rational surfaces).

(ix) Unlike the analogous situation of rationally connected varieties, given a family of smooth,
projective varieties in characteristic zero, it is unclear whether the condition of being swept
by rational surfaces is a closed condition, or even an open condition, on fibers of the family.

It is technically more convenient to work with pencils of rational curves than to work with rational
surfaces. Replacing P2 by the birational surface P1 × P1, Definition 1.3 can be rephrased in terms
of pencils of rational curves.

Definition 1.5. Let X be a projective variety and e ≥ 1 an integer. An integral, closed substack
Y ⊂M0,0(X, e) is sweeping (resp. separably sweeping) if,

(i) for a general geometric point of Y , the associated stable map f : C → X has irreducible
domain and is birational to its image, and

(ii) the restriction over Y of the universal morphism, f : Y ×M0,0(X,e)
C → X is surjective (resp.

surjective and separable).

Remark 1.6. There are several obvious remarks.
(i) This definition makes sense for any field k, not necessarily algebraically closed nor of charac-

teristic 0; although in case of positive characteristic one should keep in mind thatM0,0(X, e)
may only be an Artin algebraic stack with finite diagonal (not a Deligne-Mumford stack).

(ii) If Y ⊂M0,0(X, e) is sweeping, then there is a Zariski dense open substack that is a scheme.
In particular, it makes sense to ask whether Y is uniruled (resp. separably uniruled).

(iii) If Y ⊂ M0,0(X, e) is sweeping (resp. separably sweeping), then for the irreducible compo-
nent M ⊂M0,0(X, e) containing Y , also M is sweeping (resp. separably sweeping).

(iv) If X is uniruled (resp. separably uniruled), then there is an integer e and an irreducible
component M ⊂M0,0(X, e) that is sweeping (resp. separably sweeping).

Lemma 1.7. Let X be a projective variety over a field k (not necessarily algebraically closed nor
of characteristic 0). The variety X is swept by rational surfaces (resp. separably swept by rational
surfaces) iff there exists an integer e and a substack Y ⊂M0,0(X, e) that is sweeping (resp. separably
sweeping) such that Y is uniruled (resp. separably uniruled).

Proof. Let X be a variety of dimension n that is swept by rational surfaces (resp. separably
swept by rational surfaces). Then there exists a smooth quasi-projective variety Z of dimension
n − 2 and a rational transformation F : Z × P1 × P1 → X that is dominant (resp. dominant
and separable) such that (prZ , F ) : Z × P1 × P1 → Z × X is generically finite (resp. birational
to its image). The indeterminacy locus of F , call it I ⊂ Z × P1 × P1, is a subvariety that has
codimension at least 2 at every point. The projection pr12(I) ⊂ Z × P1 has codimension at least
1 at every point, i.e. it is contained in a divisor D ⊂ Z × P1. Denoting U = Z × P1 − D, the
rational transformation F : U × P1 → X is a regular morphism. After shrinking U further, the
morphism (pr12, F ) : U × P1 → U ×X is a finite morphism (resp. a finite, birational morphism).
Let C ′ ⊂ U ×X denote the image and let G : C → U ×X denote the normalization of C ′. In case
X is separably swept by rational surfaces, G is the same as (pr12, F ).
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After shrinking U further, the morphism prU : C → U is a smooth, proper morphism of relative
dimension 1. Moreover every geometric fiber is dominated by P1, and therefore the geometric fibers
are connected curves that are isomorphic to P1. So prU : C → U is a family of genus 0 curves and
G : C → U ×X is a family of stable maps of genus 0 to X of some degree e. There is an induced
1-morphism ζ : U →M0,0(X, e). Define Y ⊂M0,0(X, e) to be the closed image substack of ζ.

The claim is that Y is sweeping (resp. separably sweeping) and that the coarse moduli space of Y
is uniruled (resp. separably uniruled). There is an open substack of Y over which the geometric
fibers of the universal curve are irreducible. By construction, this open substack contains the image
of ζ. So it is Zariski dense in Y . Similarly, the condition that the stable maps are birational to
their images is an open condition on Y . Since this condition holds on the image of ζ, it holds on
an open dense subset of Y . Therefore Y satisfies Item (i) of Definition 1.5. Now F : U × P1 → X
is dominant. Therefore also G : C → X is dominant. So f : Y ×M0,0(X,e)

C → X is dominant.
Therefore Y satisfies Item (ii) of Definition 1.5, i.e. Y is sweeping. Moreover if X is separably
swept by rational surfaces, then F is dominant, generically finite and separable which implies that
also f : Y ×M0,0(X,e)

C → X is dominant, generically finite and separable (since a sub-extension of
a separable field extension is separable), so Y is separably sweeping.

Consider ζ : U → Y . The claim is that ζ is dominant and generically finite (resp. dominant,
generically finite and separable). There is a factorization of F of the form

U × P1 → U ×Y (Y ×M0,0(X,e)
C) = C → Y ×M0,0(X,e)

C f−→ X. (1)

Since F is dominant and generically finite (resp. dominant, generically finite and separable), each
of these factors of F is dominant and generically finite (resp. dominant, generically finite and
separable). In particular U ×Y (Y ×M0,0(X,e)

C) → Y ×M0,0(X,e)
C is dominant and generically finite

(resp. and separable). But this is just the base-change of ζ : U → Y by the smooth surjective
morphism prY : Y ×M0,0(X,e)

C → Y . Therefore ζ : U → Y is dominant and generically finite (resp.
dominant, generically finite and separable). Since U is an open subset of Z × P1, Y is uniruled
(resp. separably uniruled). This proves the forward direction of the lemma.

Conversely, suppose that Y ⊂M0,0(X, e) is sweeping (resp. separably sweeping) and Y is uniruled
(resp. separably uniruled). Then there exists a rational transformation ζ : Z × P1 → Y that is
dominant and generically finite (resp. dominant, generically finite and separable).

Let π : C → Z × P1 be a projective completion of the pullback of the universal family of curves
over M0,0(X, e), and let H : C → X be the pullback of the universal stable map. After blowing
up C, C can be made normal and H can be made a regular morphism. Moreover, over a dense
open subset of Z × P1, the projection π is a smooth, proper morphism whose geometric fibers are
connected curves of genus 0. So the geometric generic fiber of prZ ◦ π : C → Z is a conic bundle
over P1. By Tsen’s theorem (c.f. [20, Cor. IV.6.6.2]), the base-change C ⊗K(Z) K(Z) is a rational
surface. By [5], in fact there is a dominant, generically finite and separable morphism Z ′ → Z
and a birational transformation over Z ′, G : Z ′ × P2 → Z ′ ×Z C. Observe that the composition
Z ′ × P1 → Z ′ × P1 → Y is still dominant and generically finite (resp. dominant, generically finite
and separable). Therefore Z may be replaced by Z ′ so that C is birational to Z × P2 over Z.

Denote by F the rational transformation H ◦G : Z × P2 → X. There is a factorization of F of the
form

Z × P2 G−→ C → Y ×M0,0(X,e)
C f−→ X. (2)

By assumption, each of these factors is dominant (resp. dominant and separable). Therefore F
is dominant (resp. dominant and separable). Consider (prZ ◦ π, F ) ◦ G : Z × P2 → Z × X. By
the hypotheses on Y , this morphism is generically finite (resp. generically finite and separable to
its image). Therefore X is swept by rational surfaces (resp. separably swept by rational surfaces).
This finishes the proof of the lemma. �

4



Because of the lemma, it is natural to try to understand the sweeping substacks of M0,0(X, e), and
in particular to try to understand the Kodaira dimension of these substacks. Recall that a standard
conjecture from the minimal model program predicts that an algebraic variety is uniruled iff its
Kodaira dimension is negative. If X ⊂ Pn is a hypersurface of degree d ≤ n, then for e >> 0, an
irreducible component of M0,0(X, e) will itself be sweeping. So the first step is to determine the
Kodaira dimension of each of the irreducible components of M0,0(X, e) that is sweeping.

As mentioned above, for X a general hypersurface of degree d < n+1
2 the stacks M0,0(X, e) are

irreducible and reduced, and the same is conjectured whenever d < n − 1. Under the hypothesis
that each M0,0(X, e) is an integral, normal stack of the expected dimension, one can compute
the canonical divisor of M0,0(X, e), i.e. one can compute the expected canonical divisor. This is
carried out in Section 10, and is a straightforward extension of the derivation in [28]. The exciting
observation is that when d satisfies the inequalities d ≤ n − 4 and d2 ≥ n + 2, then for almost all
values of e, the canonical divisor is big. And when d ≤ n − 7 and d(d + 1) ≥ 2(n + 1), then the
canonical divisor is big for every e ≥ 1.

Recall that a sufficient condition for a variety M to be of general type is that the canonical divisor
KM is big and M has only canonical singularities. This raises the hope that in the degree range
above the spaces M0,0(X, e) are all of general type. The missing ingredient is an analysis of the
singularities of M0,0(X, e). This paper is the result of an “initial investigation” of the singularities
of M0,0(X, e). Obviously much work is still needed to prove that M0,0(X, e) contains no uniruled
sweeping subvariety.

1.2. Detailed summary. The proof of Theorem 7.8 is a deformation-and-specialization argument.
The stack M0,0(Pn, e) is smooth, therefore the singularities of Cd come from loci in M0,0(Pn, e)
over which the fiber dimension of πd : Cd → M0,0(Pn, e) jumps. This defines a stratification of
M0,0(Pn, e), and the “deepest” stratum corresponds to the locus Y ⊂ M0,0(Pn, e) parametrizing
multiple covers of lines. This stratum is a smooth variety, and the normal bundle of Y ⊂M0,0(Pn, e)
is essentially the bundle of all (e− 1)× (n− 1) matrices.

The normal cone of π−1
d (Y ) ⊂ Cd is a projective cone over the normal bundle of Y ⊂M0,0(Pn, e).

When d + e ≤ n this projective cone is even a projective Abelian cone associated to a torsion-free
sheaf on the normal bundle of Y ⊂ M0,0(Pn, e). This torsion-free sheaf is essentially the direct
sum of d copies of the quotient of a bundle of rank (n − 1) by the universal (e − 1) × (n − 1)
matrix mentioned above. By an explicit resolution of singularities, this projective Abelian cone is
canonical. Then deformation to the normal cone produces a family over P1 whose fibers over A1

are all isomorphic to Cd and whose fiber over ∞ is the normal cone of π−1
d (Y ).

Applying inversion-of-adjunction results to this family, there exists an open substack U ⊂M0,0(Pn, e)
containing Y such that π−1

d (U) is canonical. The action of the group GLn+1 on Pn induces an ac-
tion of GLn+1 on M0,0(Pn, e). The open substack U is GLn+1-invariant, but also Y intersects the
closure of every orbit of GLn+1 on M0,0(Pn, e). Therefore U is all of M0,0(Pn, e), proving that Cd
is canonical.

Section 2, Section 3, Section 4 and Section 5 are all of a foundational nature, proving basic results
about the singularities of the relative Grassmannian, or Grassmannian cone, associated to a torsion-
free coherent sheaf E which has (local) projective dimension 1. The main result of Section 2 is
Proposition 2.15: This relates the singularities of a Grassmannian cone C parametrizing rank r
locally free quotients of E to the singularities of the pair (B, r · Bg−1), where Bg−1 is the closed
subscheme determined by the Fitting ideal of E . The main result of Section 3 is Proposition 3.15:
This computes the singularities of the Grassmannian cone of a direct sum of a copies of the cokernel
of the universal g × f matrix on the affine space of g × f matrices. The main result of Section 4
is Corollary 4.13: This applies known results related to inversion-of-adjunction to prove adjunction
results for a pair (B, r ·Bg−1) as above. Section 5 is a review of the construction of deformation to
the normal cone in preparation for the proof of the main theorem.
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In Section 6 and Section 7 the proof of the main theorem is given. Section 6 introduces the closed
substack Y ⊂ M0,0(Pn, e) parametrizing multiple covers of lines. The main result is Proposi-
tion 6.11, which is an analysis of the coherent sheaves used to define Cd when restricted to a
first-order neighborhood of Y in M0,0(Pn, e). Section 7 gives the proof of Theorem 7.8 along the
lines discussed above.

In Section 8, the Reid–Shepherd-Barron–Tai criterion is used to prove that the coarse moduli space
M0,0(Pn, e) has only canonical singularities (and in most cases it is even terminal). Combining this
analysis with the proof of Theorem 7.8, Section 9 proves that the inversion-of-adjunction conjecture
of Kollár and Shokurov implies that the coarse moduli space of the stack Cd has only canonical
singularities when either e ≥ 3 and d+ e ≤ n or e = 2 and d+ 3 ≤ n.

Finally, in Section 10, the expected canonical divisor of the stack M0,0(X, e) is computed – this
is the same as the canonical divisor on the coarse moduli space M0,0(X, e) in most cases. When
n+ 1 < d2 < (n− 3)2, for most choices of e the expected canonical divisor of M0,0(X, e) is big.

Acknowledgments This paper is a continuation of [15] and [16]. My greatest debt is to my
coauthors Joe Harris and Mike Roth. I am also grateful for useful conversations with Jiun-Cheng
Chen, A. Johan de Jong, Mircea Mustaţǎ, and especially János Kollár. I was supported by NSF
Grant DMS-0201423.

2. Discrepancies of a Grassmannian cone

Let B be a Noetherian scheme that is connected, normal, and Q-Gorenstein of pure dimension b.
Let φ : G → F be a morphism of locally free OB-modules of rank g and f respectively such that the
cokernel E = Coker(φ) has generic rank e = f − g. In this section all results are of a local nature
on B. So the results apply equally well to a coherent sheaf E that has local projective dimension 1
(in the sense of [27, p. 280]).

Notation 2.1. Denote by det(E) the invertible sheaf det(F) ⊗OB
det(G)∨. Let r be an integer,

1 ≤ r ≤ e, and denote by the pair (π : C → B,α : π∗E → Q) the relative Grassmannian cone
over B parametrizing rank r locally free quotients of E . Denote by OC(1) the invertible sheaf on
C, det(Q). Denote by the pair (ρ : C ′ → B, β : ρ∗F → Q′) the relative Grassmannian bundle
over B parametrizing rank r locally free quotients of F . Denote by OC′(1) the invertible sheaf on
C ′, det(Q′). The surjection π∗F → π∗E α−→ Q induces a morphism of B-schemes which we denote
h : C → C ′.

Comparing universal properties, h is a closed immersion whose ideal sheaf is the image of the
composite morphism

ρ∗G ⊗ (Q′)∨
φ⊗β†−−−→ π∗F ⊗OC′ ρ

∗F∨ Trace−−−→ OC′ . (3)

This morphism is denoted by γ.

If E is locally free, then π : C → B is Zariski locally a Grassmannian bundle. But, in general, the
fiber dimension is not necessarily constant. The results of the next few sections hold for arbitrary
integer r; although the case of interest in the remainder of the paper is r = 1. For r = 1, π : C → B
is a projective Abelian cone (paraphrasing notation of [9] and [3]). We begin with an obvious
criterion for C to be irreducible.

Notation 2.2. Let k be an integer k = 0, . . . , g. Denote by Bk ⊂ B the closed subscheme whose
ideal sheaf is generated by the (k + 1)× (k + 1)-minors of φ, i.e. Bk is the locus where φ has rank
at most k.

Lemma 2.3. (i) The coherent sheaf E is torsion-free iff codimB(Bg−1) ≥ 2.
(ii) The scheme C is irreducible iff codimB(Bk −Bk−1) ≥ r(g − k) + 1 for all k = 0, . . . , g − 1,

in which case C has dimension c = b+ r(e− r).
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(iii) Furthermore, the scheme C is regular in codimension 1 points if codimB(Bk − Bk−1) ≥
r(g − k) + 2 for all k = 0, . . . , g − 1.

If g = 0, all of these conditions are vacuously satisfied.

Proof. (i): Torsion sections of the sheaf E correspond locally on B to sections of F that are
generically in the image of G. Since B is normal and since G is locally free, the image of G in F
equals the intersection of its localization at all codimension 1 points of S. Hence a section of F
corresponds to a torsion (resp. torsion-free) section of E iff its localization at all codimension 1
points of B is torsion (resp. torsion-free) in E . Therefore E is torsion-free iff codimB(Bg−1) ≥ 2.

(ii): Of course C ′ has pure dimension b+ r(f − r) at every point. Consider the morphism γ. Since
the rank of ρ∗G⊗ (Q′)∨ is g ·r, the dimension of C at every point is at least c := b+r(f−r)−g ·r =
b+ r(e− r).

The restriction of π over the locally closed subscheme Bk − Bk−1 is proper and smooth of relative
dimension r ((f − k)− r) and has geometrically irreducible (and nonempty) fibers. In particular,
the preimage of B − Bg−1 is normal and irreducible of dimension c = b + r(e − r). Therefore, to
prove that C is irreducible, it suffices to prove that for each k = 0, . . . , g − 1, the dimension of
π−1(Bk − Bk−1) is at most c− 1. Conversely, if any of these sets has dimension c or greater, then
it is not in the closure of π−1(B − Bg−1), and therefore C is reducible. Hence C is irreducible iff
dimπ−1(Bk−Bk−1) ≤ c−1. The dimension of this set is clearly c−[codimB (Bk −Bk−1)− r(g − k)].
Therefore C is irreducible iff codimB (Bk −Bk−1) ≥ r(g − k) + 1 for all k = 0, . . . , g − 1.

(iii): Now suppose that in fact codimB (Bk −Bk−1) ≥ r(g − k) + 2 for all k = 0, . . . , g − 1. The
preimage π−1(B − Bg−1) is normal. So to prove that C is regular in codimension 1 points, it
suffices to prove that C is regular in codimension 1 points that are contained in one of the subsets
π−1(Bk−Bk−1) for k = 0, . . . , g−1. The inequality guarantees that each of the sets π−1(Bk−Bk−1)
has codimension at least 2 in C, therefore there are no such codimension 1 points. �

Remark 2.4. It can happen that φ satisfies the inequality of (ii) so that C is irreducible, and yet
C is not regular in codimension 1. For example, let B = A2, let r = 1, and let φ be the morphism
φ : OA2 → O⊕2

A2 with matrix (x2, y2)†. On the other hand, the third inequality is not a necessary
condition, cf. Proposition 3.15.

Hypothesis 2.5. Unless stated otherwise, the coherent sheaf E is torsion-free, i.e. codimB(Bg−1) ≥
2.

Lemma 2.6. Suppose that C has pure dimension c = b+ r(e− r).
(i) If B is Cohen-Macaulay, then C is Cohen-Macaulay. If also C is regular in codimension 1,

then C is normal.
(ii) If B is Gorenstein, then C is Gorenstein.
(iii) The morphism π admits a relative dualizing complex of the form ωπ[r(e − r)] where ωπ is

the invertible sheaf π∗det(E)⊗r ⊗OC
OC(−e).

(iv) If C is normal, then C is Q-Gorenstein and the Q-Cartier divisor class KC equals π∗KB +
Kπ where Kπ is the divisor class of ωπ.

Proof. (i): By assumption h(C) has pure codimension g · r in C, which equals the rank of G ⊗OC′

(Q′)∨. By [27, Thm. 17.3 and Thm. 17.4], if B is Cohen-Macaulay then h(C) is Cohen-Macaulay.
It follows from Serre’s criterion, [27, Thm. 23.8], that if C is regular in codimension 1, then C is
normal.

(ii): Using [27, Exer. 18.1], if B is Gorenstein then h(C) is Gorenstein.

(iii): The morphism ρ is smooth and has a relative dualizing complex ωρ[r(f − r)] where ωρ is the
invertible sheaf ρ∗det(F)⊗r⊗OC′ OC′(−f). The morphism h is a regular embedding and has a rela-
tive dualizing complex ωh[−rg] where ωh is the pullback of the invertible sheaf ExtrgOC′

(h∗OC ,OC′).
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Forming the Koszul complex associated to the sheaf map γ, ωh is isomorphic to π∗det (G∨)⊗r ⊗OC

OC(g). Therefore the composite π = ρ ◦ h has a relative dualizing complex ωπ[r(e − r)] where ωπ
is an invertible sheaf isomorphic to π∗det(E)⊗r ⊗OC(−e).
(iv): Suppose that C is normal. Let U ⊂ C be the smooth locus of C and let V ⊂ C ′ denote the
smooth locus of C ′. Since h is a regular embedding, U ⊂ h−1(V ). Also, since ρ is smooth, V is just
ρ−1(W ), where W ⊂ B is the smooth locus. Now ωB |W is isomorphic to OB(KB)|W and ωC′ |ρ−1(W )

is isomorphic to ρ∗OB(KB)⊗OC′ ωρ. By the same reasoning as above, ωC |V ∼= h∗ρ∗OB(KB)⊗ ωπ.
But of course ωC |V is isomorphic to OC(KC)|V . Therefore the Q-Weil divisor class KC is equal
to ρ∗KC + Kπ where Kπ is the divisor class of ωπ. Since this is a Q-Cartier divisor class, C is
Q-Gorenstein. �

Corollary 2.7. Let Y ⊂ B be a closed subscheme that is a regular embedding of pure codimension
codimB(Y ), i.e. for every closed point p ∈ Y , the ideal sheaf Ip ⊂ OB,p is generated by a regular
sequence of length codimB(Y ).

(i) If C ×B Y has the expected dimension b− codimB(Y ) + r(e− r), then there exists an open
subset U ⊂ B containing Y such that C ×B U has the expected dimension b+ r(e− r).

(ii) If also C ×B Y is irreducible, then U can be chosen so that C ×B U is irreducible.
(iii) If also C ×B Y is normal and B is Cohen-Macaulay, then U can be chosen so that C ×B U

is normal.

Proof. (i): Let Ci ⊂ C be an irreducible component of C that has nonempty intersection with
C×B Y . The dimension of C is at least b+ r(e− r); the claim is that it is exactly b+ r(e− r). Since
Y ⊂ B is a regular embedding locally defined by a regular sequence of length codimB(Y ), it follows
by Krull’s Hauptidealsatz that dim(Ci ×B Y ) ≥ dim(Ci) − codimB(Y ). On the other hand, since
Ci×B Y is a closed subscheme of C×B Y , dim(Ci×B Y ) ≤ dim(C×B Y ) = b+r(e−r)−codimB(Y ).
Therefore dim(Ci) = b + r(e − r). So for any irreducible component Ci ⊂ C whose dimension is
larger than b+ r(e− r), π(Ci)∩ Y = ∅. Define U to be the complement of the finitely many closed
sets π(Ci) as above. Then U satisfies (i).

(ii): Suppose that also C×BY is irreducible. By Lemma 2.3, for each k = 0, . . . , g−1, codimY (Yk−
Yk−1) ≥ r(g − k) + 1. Now Yk = Bk ∩ Y . So again by Krull’s Hauptidealsatz, for every irreducible
component (Bk)i of Bk that intersects Y , dim((Bk)i) ≤ dim(Yk)+codimB(Y ), i.e. codimB((Bk)i) ≥
codimY (Yk). Now shrink the U from the last paragraph by taking the complement of the finitely
many irreducible components (Bk)i that do not intersect Y and have the wrong codimension. Then
for every (Bk)i that intersects U , codimB((Bk)i) ≥ codimY (Yk) ≥ r(g − k) + 1. Therefore, by
Lemma 2.3, C ×B U is irreducible.

(iii): Finally, suppose that also C ×B Y is normal and B is Cohen-Macaulay. By Item (i) of
Lemma 2.6, to prove that C×BU is normal, it suffices to prove that C×BU is regular in codimension
one. Let (C ×B U)sing be the singular locus of C ×B U . Since C ×B Y ⊂ C ×B U is a Cartier
divisor, every regular point of C ×B Y is also a regular point of C ×B U . Therefore the intersection
of (C×BU)sing with C×B Y is contained in (C×B Y )sing. Since C×B Y is normal, (C×B Y )sing has
codimension at least 2 in C×B Y . So, again by Krull’s Hauptidealsatz, every irreducible component
of (C ×B U)sing that intersects C ×B Y has codimension at least 2 in C ×B U . After shrinking U
more, C ×B U is normal. �

Hypothesis 2.8. Unless stated otherwise, C is irreducible of the expected dimension c = b+r(e−r).

Definition 2.9. A morphism of schemes u : B̃ → B is a resolution of E if,
(i) u is a birational, proper morphism,
(ii) B̃ is smooth,
(iii) the exceptional locus of u is a simple normal crossings divisor E1 ∪ · · · ∪ Ek, and
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(iv) the coherent sheaf Ẽ := u∗E/torsion is a locally free O eB-module of rank e.

Notation 2.10. Let u : B̃ → B be a resolution of E . Denote by G̃ the kernel of the induced
surjective sheaf map u∗F → Ẽ and denote by φ̃ : G̃ → u∗F the induced injection, i.e. Ẽ is the
cokernel of φ̃. Denote by the pair (pr1 : B̃ ×B C ′ → B̃,pr∗2β : pr∗2ρ

∗F → pr∗2Q′) the base-change
of (ρ : C ′ → B, β). Denote by the pair (π̃ : C̃ → B̃, α̃ : π̃∗Ẽ → Q̃) the Grassmannian bundle
parametrizing rank r locally free quotients of Ẽ . Denote by O eC(1) the invertible sheaf on C̃,
det(Q̃). The surjection u∗F → Ẽ induces a closed immersion that is denoted h̃ : C̃ → B̃ ×B C ′.

Because the morphism u∗F → Ẽ factors through the pullback u∗F → u∗E , the composition pr2 ◦h :
C̃ → C ′ factors through h, i.e. there is an induced morphism v : C̃ → C. Of course v∗Q ∼= Q̃ and
π ◦ v = u ◦ π̃.

Lemma 2.11. The morphism v : C̃ → C is a weak resolution of singularities, that is
(i) v is a proper, birational morphism, and
(ii) C̃ is nonsingular.

Moreover, the exceptional locus of v is contained in the divisor π̃−1(E1 ∪ · · · ∪ Ek).

Proof. This is obvious. �

Remark 2.12. If B is a finite type scheme over an algebraically closed field of characteristic 0, then
a resolution of E exists. Form the Grassmannian bundle (πe : G→ B,αe : π∗eE → Q) parametrizing
rank e locally free quotients of E . Since E generically has rank e, there is an irreducible component
G0 of G such that πe : G0 → B is birational. Let Z ⊂ G0 denote the fundamental locus of
π−1
e . By [17], there exists a log resolution B̃ → B of the pair (G0, Z), and the induced morphism
u : B̃ → B will be a resolution of E .

Lemma 2.13. The morphism u : B̃ → B is a log resolution of the pair (B,Bg−1).

Proof. The morphism φ : G → F induces an element
∧g

φ ∈ HomOB
(
∧g G,∧g F), i.e. an element

in
∧g F ⊗OB

(
∧g G)∨. There is an induced map

Id⊗
g∧
φ :

e∧
F →

e∧
F ⊗OB

g∧
F ⊗OB

(
g∧
G

)∨
. (4)

Compose this map with the wedge product map on F to get a map
∧e F → det(E). Consider the

restriction of this map to the torsion-free subsheaf G ·
∧e−1 F ⊂

∧e F . On the generic point of B,
it is clear that this map is the zero map. A morphism between torsion-free sheaves on B that is
zero at the generic point of B is the zero map. So the restriction of the map to G ·

∧e−1 F is zero,
proving that the map factors through a map ψ :

∧e E → det(E).

Since E is torsion-free, Bg−1 has codimension at least 2 in B. So ψ is an isomorphism in codimension
1. Denote by I ⊂ OB the unique ideal sheaf so that Image(ψ) equals I · det(E). In other words, I
is the eth Fitting ideal of φ – the ideal sheaf generated by the g × g minors of φ. This is precisely
the ideal sheaf of the subscheme Bg−1. It follows that (u∗

∧e E) /torsion is just u−1I · u∗det(E).

The surjection u∗E → Ẽ induces a surjection (u∗
∧e E) /torsion →

∧e Ẽ . It is easy to see that this
surjection is in fact an isomorphism. Hence there is a canonical isomorphism u−1I · u∗det(E) ∼=
det(Ẽ). In particular, the pullback ideal sheaf u−1I ·O eB is a Cartier divisor. Moreover, this divisor
is a subdivisor of the simple normal crossings divisor E1∪ · · ·∪Ek, and so it is also a simple normal
crossings divisor. �
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By definition, the log discrepancies a(Ei;B, r ·Bg−1) of (B, r ·Bg−1) along the divisors E1, . . . , Ek ⊂
B̃ are defined by

K eB − u∗KB − r · u−1(Bg−1) =
k∑
i=1

(a(Ei;B, r ·Bg−1)− 1)Ei (5)

where u−1(Bg−1) ⊂ B̃ is defined to be the closed subscheme corresponding to u−1I · O eB .

Lemma 2.14. The relative canonical divisor of v : C̃ → C is equal to the following divisor

K eC − v∗KC =
k∑
i=1

(a(Ei;B, r ·Bg−1)− 1) π̃∗Ei. (6)

Proof. By the isomorphism in the proof of Lemma 2.13, u−1I ∼= det(Ẽ) ⊗O eB u∗det(E)∨. On the
other hand, applying Lemma 2.6 to both C and C̃,

K eC − v∗KC = π̃∗
(
K eB − u∗KB + r · C1(det(Ẽ))− r · u∗C1(det(E))

)
. (7)

�

Proposition 2.15. The pair (C, ∅) is log canonical (resp. Kawamata log terminal, canonical) iff
the pair (B, r ·Bg−1) is log canonical (resp. Kawamata log terminal, canonical).

Proof. Of course the total discrepancy of (C, ∅), totaldiscrep(C, ∅), is the minimum of 0 and the
discrepancy of C, discrep(C, ∅). So (C, ∅) is log canonical (resp. Kawamata log terminal, canonical)
iff totaldiscrep(C, ∅) is = 0 (resp. > −1, ≥ −1). By a standard argument, cf. [24, Cor. 2.32] and [7,
Prop. 1.3(iv)], totaldiscrep(C, ∅) = totaldiscrep(C̃,−K eC/C). Since C̃ is smooth and π̃∗(E1∪· · ·∪Ek)
is a simple normal crossings divisor, the total discrepancy is given by a combinatorial formula in the
coefficients a(π̃∗(Ei); C̃,−K eC/C), cf. [24, Defn. 2.28] and [24, Defn. 2.34]. But these are the same
as the coefficients a(Ei;B, r ·Bg−1). So the total discrepancy of (C, ∅) equals the minimum of 0 and
the integers a(Ei;B, r ·Bg−1)−1. Moreover, by assumption all of the divisors Ei are exceptional for
u. Therefore the minimum of the integers a(Ei;B, r ·Bg−1)− 1 is the discrepancy of (B, r ·Bg−1).
Therefore (C, ∅) is log canonical, etc. iff (B, r ·Bg−1) is log canonical, etc. �

Remark 2.16. If each log discrepancy a(Ei;B, r · Bg−1) is different than 1, then the exceptional
locus of v : C̃ → C is all of π̃−1(E1 ∪ · · · ∪ Ek) and v is a strong resolution of singularities. In this
case C is terminal iff (B, r · Bg−1) is terminal. But if any log discrepancy equals 1, this can fail;
e.g. if B = A2 and φ : OA2 → O⊕2

A2 is the map with matrix (x, y)†, then for r = 1 the cone C is the
blowing up of A2 in the origin. So C is smooth, and thus terminal. But the pair (A2, {0}) is only
canonical.

2.1. Further manipulations. The results of this subsection are straightforward and are not ac-
tually used in the rest of the paper, but it is natural to state them here. In this subsection the
Grassmannian cone C is denoted Cr to emphasize the integer r. Proofs are left to the reader.

Lemma 2.17. Let 1 ≤ s < r ≤ e. If Cr is normal of pure dimension b + r(e − r), then also
Cs is normal of pure dimension b + s(e − s). Moreover, if Cr is log canonical (resp. Kawamata
log terminal, canonical, terminal) then also Cs is log canonical (resp. Kawamata log terminal,
canonical, terminal).
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Let φ(i) : G(i) → F (i), i = 1, . . . , N be a sequence of injective morphisms of locally free sheaves such
that for each i = 1, . . . , N the cokernel E(i) has generic rank e(i) = f (i)−g(i). Let r(1), . . . , r(N) be a
sequence of integers with 1 ≤ r(i) ≤ e(i). Let π(i) : C(i) → B denote the Grassmannian cone of rank
r(i) locally free quotients of E(i) and let π : C → B denote the fiber product C(1) ×B · · · ×B C(N).

Lemma 2.18. Suppose that C has pure dimension c = b +
∑
i r

(i)(e(i) − r(i)). Then Lemma 2.6
applies to π : C → B where now the dualizing complex is ωπ[

∑
i r

(i)(e(i)− r(i))] with ωπ equal to the

tensor product of π∗
[
det(E(1))⊗r

(1) ⊗ · · · ⊗ det(E(N))⊗r
(N)
]

with OC(1)(−e(1))⊗· · ·⊗OC(N)(−e(N)).

Lemma 2.19. Suppose that C is normal of pure dimension c. For each i = 1, . . . , N let Z(i) denote
the closed subscheme associated to the e(i) Fitting ideal of φ(i).

(i) For each divisor E of K(B), the log discrepancy a(π−1(E);C, ∅) equals the log discrepancy
a(E;B,

∑
i r

(i)Z(i)).
(ii) The pair (C, ∅) is log canonical (resp. Kawamata log terminal, canonical) iff (B,

∑
i r

(i)Z(i))
is log canonical (resp. Kawamata log terminal, canonical).

(iii) For every subset I ⊂ {1, . . . , N}, the fiber product C(I) =
∏
B(C(i)|i ∈ I) is normal of pure

dimension b+
∑
i∈I r

(i)Z(i).
(iv) If C is log canonical (resp. Kawamata log terminal, canonical), then C(I) is log canonical

(resp. Kawamata log terminal, canonical).

Define G := ⊕iGi, define F := ⊕iFi, define φ : G → F to be the direct sum over i = 1, . . . , N of φ(i)

and define E to be the cokernel of φ, i.e. E ∼= ⊕iE(i). Denote by e the sum
∑
i e

(i) and let r be an
integer 1 ≤ r ≤ e. Define π′ : C ′ → B to be the Grassmannian cone parametrizing rank r locally
free quotients of E .

Lemma 2.20. (i) The eth Fitting ideal of φ is the product I(1) · · · · · I(N).
(ii) If C ′ is normal of pure dimension b + r(e − r), then for every subset I ⊂ {1, . . . , N}, the

Grassmannian bundle C ′I → B parametrizing rank r locally free quotients of ⊕i∈IE(i) is
normal of pure dimension b+ r(

∑
i∈I e

(i) − r).
(iii) If, moreover, C ′ is log canonical (resp. Kawamta log terminal, canonical), then also C ′I is

log canonical (resp. Kawamata log terminal, canonical).

3. Log discrepancies of generic determinantal varieties

Let K be a field, not necessarily algebraically closed nor of characteristic zero. In this section all
schemes are K-schemes. The interested reader will see how to prove analogous results over Spec (Z),
and thus over an arbitrary base scheme.

Let S be a K-scheme and let G, F be locally free OS-modules of finite rank g and f respectively
with g ≤ f .

Notation 3.1. Denote by π(0) : M (0)(S,G,F) → S the affine bundle Spec
S
Sym∗ (HomOS

(G,F)∨).
When there is no risk of confusion, denote M (0)(S,G,F) by M (0). There is a tautological sheaf
map, denoted

φ : G ⊗OS
OM(0) → F ⊗OS

OM(0) . (8)

Definition 3.2. For k = 0, . . . , g, the kth generic determinantal variety M (0)
k ⊂M (0) is defined to

be the closed subscheme of M (0) whose ideal sheaf is generated by the (k + 1)× (k + 1)-minors of
φ just as in Notation 2.2 (c.f. also [1, Sec. II.2]). For technical reasons, denote by M (0)

−1 the empty
set. In particular, M (0)

0 is just the zero section of π(0) : M (0) → S.

In this section the log discrepancies of the pair (M (0),M
(0)
k ) are computed. This is straightforward

once a log resolution is constructed. The log resolution is constructed by first blowing up M
(0)
0 ,

then blowing up the strict transform of M (0)
1 , the blowing up the strict transform of M (0)

2 , etc.
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3.1. The log resolution. The log resolution of (M (0),M
(0)
k ) used here is the obvious one: succe-

sively blow up the strict transforms of the schemes M (0)
0 ,M

(0)
1 , . . . ,M

(0)
k . Using the action of the

group GL(F)×S GL(G), it is easy to prove this does give a log resolution. For completeness, we go
through the proof in (somewhat tedious) detail.

Remark 3.3. The set of subschemes M (0)
k ⊂ M (0) form a stratification, and in case the ground

field is C, this is a conical stratification in the sense of [26] and the blowing up we construct coincides
with the minimal wonderful compactification. We choose not to follow [26] for two reasons: First
of all, the log resolution is quite general and is valid over an arbitrary ground field K, not just
over C (and in fact over Spec (Z), though we don’t prove this). More importantly, in computing
log discrepancies later, it is crucial that the log resolution has the additional property that for
each M

(0)
k , the inverse image of the ideal sheaf of M (0)

k is an invertible sheaf, i.e., it contains no
embedded points. This typically fails for the minimal wonderful compactification associated to a
conical stratification. For example, consider the nodal plane cubic p ∈ C sitting in P2 sitting as a
linear subvariety of P3. Then ({p}, C−{p},P3−C) is a conical stratification of P3. And the inverse
image of the ideal sheaf of C in the minimal wonderful compactification has an “embedded line”
on the exceptional divisor over p. It would be interesting to know if there are extra hypotheses of
a general nature that can be added to the definition of a conical stratification so that the minimal
wonderful compactification has the additional property.

In the case that f = g, the log resolution in this section is identical to that in [18]. Moreover in [18]
it is proved that the inverse image of the ideal sheaf of M (0)

k is an invertible sheaf. However the
case of most interest here is f 6= g. Thus the full description of the log resolution and proofs of the
basic properties of the log resolution are given. The next lemma gives a precise definition of the
sequence of blowing ups mentioned above.

Lemma 3.4. There exists a sequence of schemes M (r) for r = 0, . . . , g and morphisms u(s,r) :
M (r) →M (s) for each 0 ≤ s ≤ r ≤ g with the following properties

(i) For 0 ≤ t ≤ s ≤ r ≤ g, we have u(t,s) ◦ u(s,r) = u(t,r).
(ii) For r = 0, . . . , g, the morphism u(0,r) : M (r) → M (0) is an isomorphism over the open

subscheme M (0) −M
(0)
r−1.

(iii) For each 0 ≤ r ≤ k ≤ g, define M (r)
k ⊂ M (r) to be the closure of the pullback by u(0,r) of

M
(0)
r −M

(0)
k−1. Then, for r = 0, . . . , g − 1 the morphism u(r,r+1) : M (r+1) → M (r) is the

blowing up of M (r) along M (r)
r .

Proof. This is almost tautological. The one thing that needs to be checked is that, definingM (r+1) to
be the blowing up of M (r) along M (r)

r , the induced map u0,r+1 : M (r+1) →M (0) is an isomorphism
over M (0) −M

(0)
r . But this follows immediately from the two facts: ur,0 is an isomorphism over

M (0) −M
(0)
r−1 and ur,r+1 is an isomorphism over the preimage under ur,0 of M (0) −M

(0)
r . �

Notation 3.5. Let (S,G,F) be a datum with rank(G) = g, rank(F) = f (and of course g ≤ f). For
each r = 1, . . . , k, denote by E(r)

r−1(S,G,F) ⊂ M (r)(S,G,F) the exceptional divisor of the blowing
up ur−1,r. For r = 2, . . . , k, and for k = 0, . . . , r − 2, denote by E

(r)
k ⊂ M (r) the strict transform

of E(k+1)
k under the morphism uk+1,r : M (r) → M (k+1). Clearly for each 0 ≤ r < s ≤ g, the

exceptional locus of ur,s : M (s) →M (r) is E(s)
r ∪ · · · ∪ E(s)

s−1.

Definition 3.6. Let (S,G′,F ′) and (S,G,F) be data of pairs of locally free sheaves on S with
g′ ≤ f ′ and g ≤ f . A morphism between the data is a triple ζ = (p, q, T ) where

(i) p : G → G′ is a surjective morphism of OS-modules,
(ii) q : F ′ → F is an injective morphism of OS-modules whose cokernel is locally free, and
(iii) T : G → F is a morphism of OS-modules,
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and such that there are direct sum decompositions

G = Ker(T )⊕Ker(p), F = Image(T )⊕ Image(q). (9)

In particular, g − g′ = f − f ′. The rank of ζ is the common integer g − g′ = f − f ′.

Lemma 3.7. Let ζ = (p, q, T ) be a morphism (S,G′,F ′) → (S,G,F) of rank l. For r = 0, . . . , g′

there exist morphisms of S-schemes

τ r(ζ) : GL(F)×S GL(G)×S M (r)(S,G′,F ′) →M (r+l)(S,G,F) (10)

satisfying the following conditions.

(i) The image of the composite morphism u0,l◦τ0(ζ) is contained in M (0)(S,G,F)−M (0)
l−1(S,G,F).

(ii) The morphism τ0(ζ) is the unique morphism such that u0,l ◦ τ0(ζ) is the morphism whose
restriction to the fiber over a point x ∈ S maps a triple (α, β, L) in GL(Fx) × GL(Gx) ×
M (0)(x,G′x,F ′

x) to the element α ◦ (Tx + qx ◦ L ◦ px) ◦ β−1.
(iii) For 0 ≤ r ≤ s ≤ g′, ul+r,l+s ◦τ s(ζ) equals τ r(ζ)◦(Id× Id× ur,s); moreover, the correspond-

ing commutative diagram is Cartesian.
(iv) For each 0 ≤ r ≤ g′, the morphism τ r(ζ) is quasi-compact, separated and smooth, and

Image(τ r(ζ)) = (u0,l+r)−1(M (0) −M
(0)
l−1).

(v) For each 0 ≤ r ≤ k ≤ g′,

(τ r(ζ))−1(M (r+1)
k+1 (S,G,F)) = GL(F)×S GL(G)×S M (r)

k (S,G′,F ′).

(vi) For each 0 ≤ r ≤ g′ and each 0 ≤ i ≤ r − 1,

(τ r(ζ))−1(E(r+l)
i+l (S,G,F) = GL(F)×S GL(G)×S E(r)

i (S,G′,F ′).

In particular, this is a Cartier divisor.

Proof. The claim is that for each 0 ≤ r ≤ g′, there exists a sequence of morphisms τ0(ζ), . . . , τ r(ζ)
satisfying (i)–(vi). The claim is proved by induction on r. First consider the case r = 0. The
morphism in (ii),

τ(ζ) : GL(F)×S GL(G)×S M (0)(S,G′,F ′) →M (0)(S,G,F), (11)

is defined more precisely by giving a natural transformation of the obvious functors represented by
the two schemes and invoking Yoneda’s lemma.

Let T be a k-scheme. By the universal properties of the three factors, a morphism from T to
GL(F)×S GL(G)×S M (0)(S,G′,F ′) is equivalent to a morphism f : T → S together with a triple
(α, β, L) consisting of α : f∗F → f∗F an automorphism of OT -modules, β : f∗G → f∗G is an auto-
morphism of OT -modules, and L : f∗G′ → f∗F ′ a morphism of OT -modules. There is an associated
morphism of OT -modules f∗G → f∗F by L′ = α ◦ (f∗T + f∗q ◦ Lf∗p) ◦ β−1. By the universal
property of M (0)(S,G,F) the pair (f, L′) is equivalent to a morphism T → M (0)(S,G,F). The
association (f, α, β, L) 7→ (f, L′) is a natural transformation of Yoneda functors and so determines
a morphism of S-schemes τ .

(i) and (ii): Using the direct sum decompositions of G and F induced by (p, q, T ), for any point
x ∈ T the rank of L′x equals rank(Tf(x)) + rank(Lx), i.e. l + rank(Lx). This is bigger than l − 1,
hence the image of τ is contained in the complement of M (0)

l−1(S,G,F). Since u0,l : M (l)(S,G,F) →
M (0)(S,G,F) is an isomorphism over the complement of M (0)

l−1(S,G,F), there is a unique morphism
τ0(ζ) such that u0,l ◦ τ0(ζ) equals τ .

(iv); r=0: This is equivalent to the claim that τ is quasi-compact, smooth and separated. It is
clear that both GL(F)×S GL(G)×S M (0)(S,G′,F ′) and M (0)(S,G,F) are quasi-compact, smooth
and separated over S. Therefore τ is quasi-compact, finitely-presented and separated. To show that
τ is smooth it suffices to check the Jacobian criterion for fibers of τ over geometric points of S.
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Let x ∈ S be a geometric point and let (α, β, L) be a closed point of the fiber of GL(F) ×S
GL(G) ×S M (0)(S,G′,F ′) over x. The smooth group scheme GL(F) ×S GL(G) acts on both the
domain and target of τ and τ is equivariant for this action. Therefore it suffices to check the Jacobian
criterion at one representative point of every orbit. Hence it suffices to consider the special case
α = idF and β = idG . The Zariski tangent space to the fiber of GL(F)×S GL(G)×SM (0)(S,G′,F ′)
over x at any closed point is canonically identified with the κ(x)-vector space Hom(Fx,Fx) ×
Hom(Gx,Gx) × Hom(G′x,F ′

x). Similarly the Zariski tangent space to the fiber of M (0)(S,G,F) is
canonically identified with Hom(Gx,Fx). And dτ maps a triple (α1, β1, L1) to the element α1◦(Tx+
qx ◦ L ◦ px) + qx ◦ L1 ◦ px + (Tx + qx ◦ L ◦ px) ◦ β1.

Let d = rank(L). There exists an ordered bases for Gx and Fx with respect to which Tx has the
matrix representation,  Il,l 0l,d 0l,g′−d

0d,l 0d,d 0d,g′−d
0f ′−d,l 0f ′−d,d 0f ′−d,g′−d

 , (12)

and with respect to which qx ◦ L ◦ px has the matrix representation, 0l,l 0l,d 0l,g′−d
0d,l Id,d 0d,g′−d

0f ′−d,l 0f ′−d,d 0f ′−d,g′−d

 . (13)

For any linear operator L′ ∈ Hom(Gx,Fx) consider the matrix representation of L′ with respect to
the ordered bases above,  L′1 L′2 L′3

L′4 L′5 L′6
L′7 L′8 L′9

 , (14)

where the block submatrices L′i have the same dimensions as the blocks in the matrices of T and
L. Then, denoting,

α1 =

 L′1 L′2 0
L′4 L′5 0
L′7 L′8 0

 , (15)

β1 =

 0l,l 0l,d L′3
0d,l 0d,d L′6

0f ′−d,l 0f ′−d,d 0f ′−d,g′−d

 , (16)

qx ◦ L1 ◦ px =

 0l,l 0l,d 0l,g′−d
0d,l 0d,d 0d,g′−d

0f ′−d,l 0f ′−d,d L′9

 , (17)

the pair (α1, β1, L1) maps to L′ under dτ . Hence τ satisfies the Jacobian criterion and τ and τ0(ζ)
are smooth.

(iii), (v), and (vi); r=0: For L′ = τ(α, β, L), rank(L′) = l+ rank(L). Hence the preimage under
τ of M (0)

l+k(S,G,F) is the closed subscheme GL(F) ×S GL(G) ×S M (0)
k (S,G′,F ′); i.e., (v) holds.

Finally (iii) and (vi) are vacuous for the “sequence” of morphisms τ0(ζ). This finishes the base case
r = 0.

(iii) and (iv); induction step: Now comes the induction step. Let r = 1, . . . , g′. By way
of induction, suppose that morphisms τ0(ζ), . . . , τ r−1(ζ) have been constructed satisfying (i)–(vi).
Since τ r−1(ζ) is smooth, the fiber product of τ r−1(ζ) with the blowing up ul+r−1,l+r is canonically
isomorphic to the blowing up of GL(F) ×S GL(G) ×S M (r−1)(S,G′,F ′) along the preimage of
M

(l+r−1)
l+r−1 (S,G,F). By the induction hypothesis, the preimage is precisely GL(F) ×S GL(G) ×S

M
(r−1)
r−1 (S,G′,F ′). So the base-change of ul+r−1,l+r by τ r−1(ζ) is just Id × Id × ur−1,r. Define

τ r(ζ) : GL(F)×S GL(G)×SM (r)(S,G′,F ′) →M (l+r)(S,G,F) to be the base-change of τ r−1(ζ) by
ul+r−1,l+r.
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By construction of τ r(ζ) and the induction hypothesis, τ0(ζ), . . . , τ r(ζ) satisfies (iii). Since τ r(ζ) is
the base-change of a quasi-compact, separated and smooth morphism, τ r(ζ) is also quasi-compact,
separated and smooth, i.e. (iv) holds.

(v); induction step: Since τ r(ζ) and τ r−1(ζ) are smooth, and by (iii), the process of forming the
strict transform by ul+r,l+r−1 of a closed subscheme and then forming the preimage under τ r(ζ)
is the same as the process of first forming the preimage under τ r−1(ζ) and then forming the strict
transform under Id× Id×ur,r−1. By the induction hypothesis and (v), the preimage under τ r−1(ζ)
of M (r+l−1)

k (S,G,F) equals GL(F) ×S GL(G) ×S M (r−1)
k (S,G′,F ′). The strict transform of this

subscheme under Id× Id× ur−1,r is GL(F)×S GL(G)×SM (r)
k (S,G′,F ′). Therefore (v) is satisfied

for τ r(ζ).

(vi); induction step: As above, for i = 0, . . . , r − 2 the pullback by τ r(ζ) of the strict transform
by ul+r,l+r−1 of E(l+r−1)

i+l (S,G,F) equals the strict transform of the pullback by τ r−1(ζ). By the

induction hypothesis and (vi), this pullback is GL(F) ×S GL(G) ×S E(r−1)
i (S,G′,F ′). The strict

transform of this subscheme under Id× Id× ur,r−1 is GL(F)×S GL(G)×S E(r)
i (S,G′,F ′). Finally,

using (iii), the preimage under τ r(ζ) of the exceptional divisor of ur+l,r+l−1, i.e. of E(r+l)
r+l−1(S,G,F),

equals the exceptional divisor of Id × Id × ur,r−1, i.e. GL(F) ×S GL(G) ×S E(r)
r−1(S,G′,F ′). This

proves (vi) and finishes the induction step. The lemma is proved by induction on r. �

Lemma 3.8. Let V be a smooth K-scheme and let D ⊂ V be a simple normal crossings divisor.
The K-scheme A1 × V is smooth and the divisor D′ = (A1 × D) ∪ ({0} × V ) is a simple normal
crossings divisor in A1 × V .

Proof. This follows immediately from the definition of simple normal crossings divisor. �

Notation 3.9. Denote by U (0) ⊂M (0)(S,G,F) the complement of the zero section M (0)
0 (S,G,F).

For each r = 0, . . . , g denote by U (r) ⊂ M (r) the open subscheme U (r) =
(
u0,r

)−1 (U (0)) and
denote by vr,s : U (s) → U (r) the restriction of ur,s to U (s). For each r = 0, . . . , g and each
i = r, . . . , g, denote by I(r)

k the ideal sheaf of the closed subscheme M (r)
k ⊂M (r). Finally denote by

f : A1 × U (0) →M (0) the morphism sending a pair (λ, L) in A1 × U (0) to the point λ · L ∈M (0).

The preimage under f of M (0)
0 is precisely {0} × U (0), which is a Cartier divisor in A1 × U (0).

Therefore, by the universal property of blowing up, there is a unique morphism f1 : A1 × U (0) →
M (1) such that u0,1 ◦ f1 = f . It is easy to check that f1 : A1 × U (1) →M (1) is a Gm-torsor where
Gm acts on A1 × U (1) by µ · (λ, L) = (µ · λ, µ−1 · L). In particular, f1 is smooth and surjective.
The preimage under f1 of E(1)

0 is {0} ×U (1). The next lemma proves that for k = 1, . . . , g − 1, the
preimage under f1 of M (1)

k is A1 ×
(
U (1) ∩M (1)

k

)
.

Lemma 3.10. Define G(1) to be the locally free sheaf (u0,1)∗G(E(1)
0 ) and let (u0,1)∗G → G(1) denote

the canonical sheaf map.
(i) There is a factorization φ(1) : G(1) → (u0,1)∗F of (u0,1)∗φ.
(ii) The pullback of φ(1) by f1 is canonically isomorphic to the pullback pr∗2φ of the restriction

of φ to U (0) = U (1).
(iii) For every geometric point x of M (1), rank(φ(1)|x) ≥ 1.
(iv) For each k = 1, . . . , g− 1, the inverse image ideal sheaf (u0,1)−1(I(0)

k ) equals the ideal sheaf
I(1)
k · OM(1)(−(k + 1)E(1)

0 ).
(v) For each k = 1, . . . , g − 1, the preimage under f (1) of M (1)

k equals A1 × (U (1) ∩M (1)
k ).
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Proof. (i): The restriction of (u0,1)∗φ to E
(1)
0 is the zero map. Therefore it factors through the

elementary-transform-up of (u0,1)∗G, i.e. it factors through a morphism φ(1) : G(1) → (u0,1)∗F .
This proves (i).

(iii): The morphism (f1)∗G(1) equals pr∗2G(0× U (1)). This is canonically isomorphic to pr∗2G. Via
this isomorphism, the pullback (f1)∗φ(1) equals pr∗2φ. Since φ|U(0) has rank at least 1 at all geometric
points, the same is true of pr∗2φ. Therefore φ(1) has rank at least 1 at all geometric points.

(iv) and (v): One can check that two ideal sheaves are equal after a faithfully flat base change.
Since f1 is faithfully flat, to prove both (iv) and (v), it suffices to prove that the inverse image ideal
sheaf of I(0)

k in A1 × U (1) equals

pr−1
2 (I(0)) · OA1×U(1)(−(k + 1){0} × U (1)). (18)

Let t denote the coordinate on A1. Then the preimage under f1 of (u0,1)∗φ is precisely the matrix
t · pr∗2φ. Therefore the ideal sheaf generated by the (k + 1) × (k + 1)-minors of this matrix is just
tk+1 times the ideal generated by (k+1)× (k+1)-minors of pr∗2φ, i.e. the inverse image ideal sheaf
of I(0)

k under u0,1 ◦ f1 is as above. �

Lemma 3.11. For r = 1, . . . , g there exist morphisms of S-schemes

fr : A1 × U (r) →M (r)

satisfying the following conditions.
(i) The image of the composite morphism u0,1 ◦ f1 is contained in U (0).
(ii) The morphism f1 is the unique morphism such that u1,0 ◦ f1 = f .
(iii) For 1 ≤ r ≤ s ≤ g, ur,s ◦fs equals fr ◦(Id× vr,s); moreover, the corresponding commutative

diagram is Cartesian.
(iv) For each 1 ≤ r ≤ g, the morphism fr is a Gm-torsor, in particular it is surjective and

smooth.
(v) For each 1 ≤ r ≤ k ≤ g,

(fr)−1(M (r)
k ) = A1 × (U (r) ∩M (r)

k ).

(vi) For each 2 ≤ r ≤ g and 1 ≤ k ≤ r − 1,

(fr)−1(E(r)
k ) = A1 × (U (r) ∩ E(r)

k ).

And for each 1 ≤ r ≤ g, the preimage under fr of E(r)
0 is {0} × U (r).

Proof. (i), (ii), and r = 1: Item (i) is trivial and is only included to maintain symmetry with
Lemma 3.7. Item (ii) follows from the construction of f (1). The claim is that for each 1 ≤ r ≤ g,
there exists a sequence of morphisms f1, . . . , fr satisfying (i)–(vi). The claim is proved by induction
on r. For r = 1 this has already been established; in particular, (v) follows from (v) of Lemma 3.10.

(iii) and (iv); induction step: Now comes the induction step. Let r = 2, . . . , g. By way of
induction, suppose that morphisms f1, . . . , fr−1 have been constructed satisfying (i)–(vi). Since
fr−1 is smooth, the fiber product of fr−1 with the blowing up ur−1,r is canonically isomorphic to
the blowing up of A1 × U (r−1) along the preimage of M (r−1)

r−1 . By the induction hypothesis and
(v), the preimage is precisely A1 × (U (r−1) ∩M (r−1)

r−1 ). So the base-change of ur−1,r by fr−1 is just
Id× vr−1,r. Define fr : A1 × U (r) →M (r) to be the base-change of fr−1 by ur−1,r.

By construction of fr and the induction hypothesis, f1, . . . , fr satisfies (iii). Since fr is the base-
change of the Gm-torsor fr−1, also fr is a Gm-torsor, i.e. (iv) holds.

(v); induction step: Using the Cartesian property of (iii) and since fr−1 and fr are smooth,
the process of forming the strict transform under ur−1,r and then forming the preimage under fr

is the same as the process of first forming the preimage under fr−1 and then forming the strict
transform under Id × vr−1,r. By the induction hypothesis and (v), the preimage under fr−1 of
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M
(r−1)
k equals A1 × (U (r−1) ∩M (r−1)

k ). The strict transform of this subscheme under Id× vr−1,r is
A1 × (U (r) ∩M (r)

k ).

(vi); induction step: As above, for k = 0, . . . , r − 2 the pullback by fr of the strict transform of
E

(r−1)
k equals the strict transform of the pullback by fr−1. By the induction hypothesis and (vi),

the pullback of E(r−1)
0 equals {0}×U (r−1) and the pullback of E(r−1)

k equals A1× (U (r−1)∩E(r−1)
k )

for k = 1, . . . , r−2. The strict transforms of these subschemes are {0}×U (r) and A1× (U (r)∩E(r)
k )

respectively. Finally, using (iii), the preimage under fr of the exceptional divisor of ur−1,r, i.e. of
E

(r)
r−1, equals the exceptional divisor of Id × vr−1,r, i.e. A1 × (U (r) ∩ E(r)

r−1). This proves (vi) and
finishes the induction step. The lemma by induction on r. �

The next proposition is the main result of this section.

Proposition 3.12. (i) For each r = 0, . . . , g, the scheme M (r) is smooth over S.
(ii) For each r = 1, . . . , g, the closed subscheme E(r)

0 ∪ · · · ∪ E(r)
r−1 is a simple normal crossings

divisor in M (r); moreover the intersection with every geometric fiber over S is a simple
normal crossings divisor.

(iii) For each r = 1, . . . , g, the scheme M (r)
r is smooth over S, and therefore M (r)

r → M (r) is a
regular embedding.

(iv) For r = 0, . . . , g there exist locally free sheaves of rank g on M (r), G(r), and morphisms
of sheaves φ(r) : G(r) → (u0,r)∗F , such that G(0) = G and φ(0) = φ, such that G(1) =
(u0,1)∗G(0)(E(1)

0 ) and φ(1) is as in Lemma 3.10, and that satisfy the following condition: for

each r = 1, . . . , g there is a factorization (ur−1,r)∗G(r−1) ψ(r)

−−−→ G(r) φ(r)

−−→ (u0,r)∗F such that
the cokernel of ψ(r) is the pushforward from E

(r)
r−1 of a locally free sheaf of rank g + 1 − r

and such that φ(r) has rank at least r at all geometric points, and has rank g at the generic
point of E(r)

r−1.
(v) The morphisms ψ(r) and φ(r) above are unique up to unique isomorphism (considering the

sheaves G(r) as subsheaves of G ⊗O
M(0) K(M (0)), then the morphisms are honestly unique).

Moreover, they are equivariant for the obvious action of the group scheme GL(F)×GL(G).
(vi) For each 0 ≤ r < s ≤ g and each k ≥ s, the inverse image ideal sheaf (ur,s)∗I(r)

k equals

I(s)
k · OM(s)(−(

s−1∑
i=r

(k + 1− i)E(s)
i )). (19)

Proof. g=0: The proposition can be checked Zariski locally over S. And Zariski locally over S,
the locally free sheaves G and F are free. Hence it suffices to consider the case that S = Spec (K).
The result is proved by induction on g. For g = 0, there is nothing to prove. Therefore, by way of
induction, we may suppose that g > 0 and the result has been proved whenever rank(G) < g.

The idea of the induction step is described in the next 2 paragraphs. First of all, for M (0) (i)–(vi)
are obvious. Thus it suffices to consider M (r) with r = 1, . . . , g. The next step is to restrict over
U (1), . . . , U (g) and check (i)–(vi) through when restricted over these open sets. This can be checked
after a smooth surjective base-change on the sets U (r). Lemma 3.7 gives a sequence of such base-
changes τ r−1(ζ) for any rank 1 morphism ζ : (S,G′,F ′) → (S,G,F). After base-change by τ r−1(ζ),
(i)–(vi) over U (r) reduce to (i)–(vi) over M (r−1)(S,G′,F ′). Since rank(G′) < rank(G), (i)–(vi) over
M (r−1)(S,G′,F ′) hold by the induction assumption.

Next, to establish the proposition over all of M (r), consider the sequence of morphisms fr : A1 ×
U (r) → M (r) from Lemma 3.11. These morphisms are smooth and surjective, so (i)–(vi) may be
checked after base-change by fr. And these reduce to (i)–(vi) over U (r). Since (i)–(vi) have been
proved over U (r), this finishes the induction step. The proof follows by induction.
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(i); U (r): First (i)–(vi) are proved when restricted over U (1), . . . , U (g). Let T ∈ U (0) be a geometric
point with rank(T ) = 1. There exists G′ of rank g− 1, F ′ of rank f − 1, p : G → G′, and q : F ′ → F
so that ζ = (p, q, T ) is a morphism (G′,F ′) → (G,F). By Lemma 3.7, for each r = 0, . . . , g−1, there
exists a quasi-compact, separated, smooth morphism τ r(ζ) : GL(F)×SGL(G)×SM (r)(S,G′,F ′) →
M (r+1)(S,G,F) whose image is U (r+1).

Since τ r−1(ζ) : GL(F) ×S GL(G) ×S M (r−1)(S,G′,F ′) → U (r) is smooth and surjective, to prove
that U (r) is smooth over S it suffices to prove that GL(F)×S GL(G)×SM (r−1)(S,G′,F ′) is smooth
over S. By the induction hypothesis, M (r−1)(S,G′,F ′) is smooth over S. And GL(F) and GL(G)
are obviously smooth over S. Therefore the fiber product is smooth over S. This proves (i) over
U (r).

(ii); U (r): Similarly, to prove that U (r) ∩
(
E

(r)
0 ∪ · · · ∪ E(r)

r−1

)
is a simple normal crossings divisor,

it suffices to prove that the pullback under τ r−1(ζ) is a simple normal crossings divisor. By (vi)
of Lemma 3.7, this pullback is of the form GL(F) ×S GL(G) ×S E where E = E

(r−1)
0 ∪ . . . E(r−1)

r−2

(the “missing” divisor is due to the fact that the pullback of E(r)
0 is the empty set). By the induc-

tion hypothesis, E is a simple normal crossings divisor in M (r−1)(S,G′,F ′). Therefore GL(F) ×S
GL(G)×S E is a simple normal crossings divisor in GL(F)×S GL(G)×S M (r−1)(S,G′,F ′). Hence
U (r) ∩

(
E

(r)
0 ∪ · · · ∪ E(r)

r−1

)
is a simple normal crossings divisor in U (r). This proves (ii) over U (r).

(iii); U (r): To prove that U (r) ∩ M (r)
r is smooth over S, it suffices to prove that the pullback

under τ r−1(ζ) is smooth over S. By (v) of Lemma 3.7, the pullback is GL(F) ×S GL(G) ×S
M

(r−1)
r−1 (S,G′,F ′). By the induction hypothesisM (r−1)

r−1 (S,G′,F ′) is smooth over S, so also GL(F)×S
GL(G) ×S M (r−1)

r−1 (S,G′,F ′) is smooth over S. It follows that U (r) ∩M (r)
r is smooth over S. This

establishes (iii) over U (r).

(v); U (r): Item (iv) is quite a bit more involved. By the induction hypothesis, the maps (ψ′)(r) :
(ur−1,r)∗ (G′)(r−1) → (G′)(r) and the maps (φ′)(r) : (G′)(r) → (u0,r)∗F ′ on M (r)(S,G′,F ′) are all
defined and satisfy the conditions in (iv) and (v). First (v) is proved on U (r). Observe that if
the sequence of maps ψ(s), φ(s) exists for s = 0, . . . , r − 1, then there is at most one pair ψ(r), φ(r)

satisfying the hypotheses. This is because the restriction of (ur−1,r)∗φ(r−1) to E
(r)
r−1 has rank at

least r − 1. So the kernel has rank at least g + 1 − r. If there exists a pair ψ(r), φ(r), then the
restriction of (ur−1,r)∗φ(r−1) to E

(r)
r−1 has constant rank r − 1 (i.e. the cokernel is locally free of

rank g+ 1− r) and ψ(r) : (ur−1,r)∗G(r−1) → G(r) must be the elementary-transform-up along E(r)
r−1

whose kernel equals the kernel of (ur−1,r)∗φ(r−1). And then φ(r) is the unique morphism through
which (ur−1,r)∗φ(r−1) factors. This proves (v) (in fact, without restricting over U (r)). Equivariance
with respect to GL(F)×S GL(G) follows by induction on r and the uniqueness just mentioned.

(iv); U (r): Next the existence of ψ(r), φ(r) is proved when restricted over U (r). This is proved
by faithfully flat (in fact smooth) descent, i.e. a descent datum is constructed for the faithfully
flat cover τ r−1(ζ) : GL(F) ×S GL(G) ×S M (r−1)(S,G′,F ′) → U (r). The uniqueness in (iv) and
equivariance with respect to GL(F)×S GL(G) will give the cocycle condition.

For each r = 1, . . . , g define G(r)
pre on M (r−1)(S,G′,F ′) to be the direct sum of (G′)(r−1) and

Ker(p)⊗OS
OM(r−1) . In particular, G(1) is simply G ⊗OS

OM(0) . For each r = 2, . . . , g define ψ(r)
pre :

(ur−2,r−1)∗G(r−1)
pre → G(r)

pre to be the direct sum of (ψ′)(r−1) : (ur−2,r−1)∗ (G′)(r−2) → (G′)(r−1) and
the identity map on Ker(p)⊗OS

OM(r−1) . For each r = 1, . . . , g define φ(r)
pre : G(r)

pre → F ⊗OS
OM(r−1)

to be the sum of the map

q ◦ (φ′)(r−1) : (G′)(r−1) → F ′ ⊗OS
OM(r−1) → F ⊗OS

OM(r−1) (20)

with the map T : Ker(p)⊗OS
OM(r−1) → F ⊗OS

OM(r−1) .

On GL(F) there is a universal automorphism α : F ⊗OS
O → F ⊗OS

O and on GL(F) there is a
universal automorphism β : G⊗OS

O → G⊗OS
O. By slight abuse of notation, also denote by α and
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β the pullbacks of these automorphisms to GL(F) ×S GL(G) ×S M (r−1)(S,G′,F ′). By definition,
the pullback by τ r−1(ζ) of (u0,r)∗φ equals α ◦ (u0,r−1)∗pr∗3φ

(1)
pre ◦ β−1. Next the part of the descent

datum on GL(F)×S GL(G)×S M (r−1)(S,G′,F ′) defining G(r), ψ(r) and φ(r) is specified. For each
r = 1, . . . , g define τ r(ζ)∗G(r) to be pr∗3G

(r)
pre. Define τ0(ζ)∗ψ(1) to be β−1, where the domain of

β−1 is identified with G ⊗OS
O ∼= τ0(ζ)∗(u0,1)∗G(0) and where the range of β−1 is identified with

G ⊗OS
O ∼= pr∗3G

(1)
pre. For r = 2, . . . , g, define τ r−1(ζ)∗ψ(r) to be pr∗3ψ

(r)
pre. For all r = 1, . . . , g, define

τ r−1(ζ)∗φ(r) to be α ◦ pr∗3φ
(r)
pre.

Now to finish specifying the descent data, patching morphisms on the fiber product of τ r−1(ζ)
with itself are needed. There are canonical descent data associated to the sheaves G ⊗OS

OM(r)

and F ⊗OS
OM(r) on M (r)(S,G,F). And, up to unique isomorphism, there is at most one way of

extending the descent data for G(r), ψ(r) and φ(r) so that the descent data giving ψ(r) and φ(r)

are morphisms from the descent datum for G ⊗OS
OM(r) to the descent datum for G(r) and from

the descent datum for G(r) to the descent datum for F ⊗OS
OM(r) respectively. This doesn’t prove

that such descent data exists! Proving existence is an exercise in the compatibilities of all the
sheaves and morphisms defined so far, and is left to the reader. The key point, as always, is that
on M (r)(S,G,F), on the base-change by τ r−1(ζ), and on the double base-change by τ r−1(ζ), the
morphism ψ(r) is, up to unique isomorphism, the elementary-transform-up determined by the kernel
of (ur−1,r)∗φ(r−1) restricted to E(r)

r−1.

The upshot is that the sheaves G(r) and sheaf maps ψ(r), φ(r) exist when restricted over U (r).
Checking the properties in (iv), i.e. that the cokernel of ψ(r) is as specified and that the rank
of φ(r) is as specified, can be done after base-changing by τ r−1(ζ). And then it follows from the
construction of the descent datum, and by the induction hypothesis applied to M (r−1)(S,G′,F ′).
Again, the details are left to the interested reader.

(vi); U (r): Next (vi) is proved when restricted over U (r), or rather over U (s). The map v1,0 :
U (1) → U (0) is an isomorphism, so it suffices to consider the cases 1 ≤ r < s ≤ g. To check that two
ideal sheaves are equal, it suffices to check after faithfully flat base-change. So it suffices to check
after base-change by τ s−1(ζ). By (iii) of Lemma 3.7, the inverse image under τ s−1(ζ) of the inverse
image under ur,s equals the inverse image under Id× Id×ur−1,s−1 of τ r−1(ζ). By (v) of Lemma 3.7,
the inverse image under τ r−1(ζ) of I(r)

k equals the ideal sheaf of the closed subscheme GL(F) ×S
GL(G)×SM (r−1)

k−1 (S,G′,F ′) of GL(F)×S GL(G)×SM (r−1)(S,G′,F ′). By the induction hypothesis

and (v), the inverse image of I(r−1)
k−1 (S,G′,F ′) under ur−1,s−1 is the product of I(s−1)

k−1 (S,G′,F ′) with

the invertible ideal sheaf associated to the Cartier divisor
∑s−2
j=r−1((k − 1) + 1− j)E(s−1)

j . Making

the substitution i = j + 1, the Cartier divisor is
∑s−1
i=r (k + 1− i)E(s−1)

i−1 . Taking the inverse image
of this ideal sheaf under pr3, and using (v) and (vi) of Lemma 3.7, this gives the same ideal sheaf
as the inverse image under τ s−1(ζ) of the ideal sheaf in (vi) above. This establishes (vi) over U (r).
This finishes the proof of the proposition “over U (r)”.

(i), M (r): To finish the induction step, (i)–(vi) have to be proved over all of M (r)(S,G,F). This
is done using the morphisms fr : A1 × U (r) → M (r) from Lemma 3.11. By (iv) of Lemma 3.11,
the morphism fr is smooth and surjective, so to check the target of fr is smooth over S, it suffices
to check the domain of fr is smooth over S. As established above, U (r) is smooth over S so that
A1 × U (r) is smooth over S. Therefore M (r) is smooth over S. This proves (i) over all of M (r).

(ii), M (r): Similarly, to show that E(r)
0 ∪· · ·∪E(r)

r−1 is a simple normal crossings divisor, it suffices to
prove that the pullback by fr is a simple normal crossings divisor. By (vi) of Lemma 3.11, the preim-
age of E(r)

0 is {0}×U (r) and the preimage of E(r)
1 ∪· · ·∪E(r)

r−1 is A1×
(
U (r) ∩

(
E

(r)
1 ∪ · · · ∪ E(r)

r−1

))
.

As proved above, U (r) ∩
(
E

(r)
1 ∪ · · · ∪ E(r)

r−1

)
is a simple normal crossings divisor in U (r). So by

Lemma 3.8, the divisor (fr)−1
(
E

(r)
0 ∪ · · · ∪ E(r)

r−1

)
is a simple normal crossings divisor. This proves

(ii) over all of M (r).
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(iii), M (r): To show that M (r)
r is smooth over S, it suffices to show that the preimage under fr

is smooth over S. By (v) of Lemma 3.11, the preimage of M (r)
r is A1 ×

(
U (r) ∩M (r)

r

)
. As proved

above, U (r) ∩M (r)
r is smooth. So A1 ×

(
U (r) ∩M (r)

r

)
is smooth, and therefore M (r)

r is smooth.

This proves (iii) over all of M (r).

(iv) and (v); M (r): As over U (r), (iv) and (v) are a bit more involved (although most of the
work is already done). As before, Item (5) is automatic, once the existence of G(r), ψ(r) and
φ(r) satisfying (iv) is proved. Existence is proved by faithfully flat descent with respect to the
faithfully flat (in fact smooth) morphism fr : A1 × U (r) → M (r). Next the part of the descent
data on A1 × U (r) defining G(r), ψ(r) and φ(r) is specified. For each r = 1, . . . , g, define (fr)∗G(r)

to be pr∗2(G(r)|U(r))⊗OA1×U(r)({0} × U (r)) (of course this definition looks circular, but recall that
G(r)|U(r) , ψ(r)|U(r) and φ(r)|U(r) were already constructed above). Let t be the coordinate on A1

considered as a global section of the invertible sheaf OA1×U(r)({0} × U (r)) whose vanishing locus
is precisely {0} × U (r) (this conflicts with the usual terminology that calls this section “1”). The
point is that there is a canonical everywhere nonzero global section of this invertible sheaf (which
in the usual terminology is denoted by “ 1

t ”, but here is denoted by “1”), and with respect to this
trivialization the regular function t corresponds to a section whose vanishing locus is {0} × U (r).

Define (f1)∗(ψ(1)) to be the map

Id⊗ t : G ⊗OS
OA1×U(1) → G ⊗OS

OA1×U(1)({0} × U (1)). (21)

Of course the domain of this map is identified with the pullback by f1 of G(0) = G ⊗OS
OM(1) and

the target is identified with (f1)∗G(1) defined above. For r = 2, . . . , g, define (fr)∗(ψ(r)) to be the
map pr∗2(ψ

(r)|U(r)) ⊗ Id. Define (f1)∗(φ(1)) to be the composition of the canonical isomorphism
Id⊗ 1 : pr∗2G(r)⊗OA1×U(r)({0}×U (r)) → pr∗2G(r) with pr∗2(φ

(r)|U(r)). Observe that (f1)∗φ(1) is the
same map constructed in Lemma 3.10.

Next it is proved these definitions of (fr)∗ψ(r) and (fr)∗φ(r) have the properties from (iv). For r = 1,
this is precisely Lemma 3.10. Suppose that r ≥ 2. As established above, (φ(r)|U(r))◦(ψ(r)|U(r)) equals
(vr−1,r)∗(φ(r−1)|U(r−1)). Pulling back by pr∗2 and using (iii) from Lemma 3.11, (fr)∗φ(r) ◦ (fr)∗ψ(r)

equals (Id × vr−1,r)∗(fr−1)∗φ(r−1) = (fr)∗(ur−1,r)∗φ(r−1). This is the first necessary property.
As established above, the cokernel of ψ(r)|U(r) is the push forward of a locally free sheaf of rank
g+1− r from the divisor U (r) ∩E(r)

r−1 in U (r). Therefore the cokernel of (fr)∗ψ(r), i.e. the cokernel
of pr∗2(ψ

(r)|U(r)), is the push forward of a locally free sheaf of rank g + 1 − r from the divisor
A1 × (U (r) ∩ E(r)

r−1), i.e. the divisor (fr)−1(E(r)
r−1). This is the second necessary property. And

as established above, φ(r)|U(r) has rank at least r at all geometric points. Therefore (fr)∗φ(r), i.e.
pr∗2(φ

(r)|U(r)), has rank at least r at all geometric points. This is the last necessary property.

To finish the proof of (iv), the rest of the descent data must be specified, i.e. the patching morphisms
on the fiber product of fr with itself are needed. As over U (r), there is at most one way of completing
the descent data so that ψ(r) and φ(r) give morphisms with the given descent data for G ⊗OS

OM(r)

and F ⊗OS
OM(r) . Proving that one can complete the descent data is an exercise left to the reader.

The key point (as always!) is that ψ(r) is the elementary-transform-up determined by the kernel of
(ur−1,r)∗φ(r−1) restricted to E(r)

r−1. This proves (iv) and (v) on all of M (r).

(vi); M (r): First suppose that r = 0. By (iv) of Lemma 3.10, (u0,1)−1(I(0)
k ) equals I(1)

k ·
OM(1)(−(k+1)E(1)

0 ). By (v) of Lemma 3.11, (f1)−1(I(1)
k ) is the ideal sheaf pr−1

2 (I(1)
k |U(1)). By (vi)

of Lemma 3.11, (f1)−1OM(1)(−E(1)
0 ) is the ideal sheaf of {0} × U (1). The process of forming the

preimage of an ideal sheaf by pr2 and then forming the preimage of that ideal sheaf by Id× v1,s is
the same as the process of first forming the preimage of the ideal sheaf by v1,s and then forming
the preimage by pr2. As established above, (v1,s)−1(I(1)

k |U(1)) equals the restriction to U (s) of the
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ideal sheaf

I(s)
k · OU(s)(−(

s−1∑
i=1

(k + 1− i)E(s)
i )). (22)

And the inverse image under Id×v1,s of the ideal sheaf of {0}×U (1) is the ideal sheaf of {0}×U (s).
Putting the pieces together, the inverse image under Id× v1,s of the inverse image under f1 of the
inverse image under u0,1 of I(0)

k equals the ideal sheaf

pr−1
2 (I(s)

k |U(s))·OA1×U(s)

(
−(k + 1){0} × U (s)

)
⊗OA1×U(s)

(
−

(
s−1∑
i=1

(k + 1− i)A1 ×
(
U (s) ∩ E(s)

i

)))
.

(23)
By (v) and (vi) of Lemma 3.11, this is precisely the inverse image under fs of the ideal sheaf from
(vi). Using (iii) of Lemma 3.11 one last time, and using that one can check equality of ideal sheaves
after faithfully flat base-change, (vi) holds when r = 1.

Checking (vi) for r > 1 is even easier and follows by the same sort of argument as above; the details
are left to the reader. This proves that (vi) holds over all of M (r), and thus finishes the proof that
the proposition holds over all of M (r). The proposition is proved by induction on the rank of G. �

3.2. Computation of the log discrepancies. In this section the log resolution from the last
section is applied to compute the log discrepancies of the pair (M (0),M

(0)
k ). In the application, it

is also necessary to compute the log discrepancies of the pair (M (0), q ·M (0)
k ). Then, combined with

the results of Section 2, these computations are used to find the log discrepancies of some projective
cones.

Lemma 3.13. Let (S,G,F) be a datum with rank(G) = g and rank(F) = f . For each 0 ≤ r < s ≤ g,
the relative canonical divisor of ur,s : M (s) →M (r) equals

KM(s) − (ur,s)∗KM(r) =
s−1∑
i=r

((f − i)(g − i)− 1)E(s)
i . (24)

For r < s ≤ k < g and each positive integer q, the inverse image under ur,s of the ideal sheaf(
I(r)
k

)q
equals (

I(s)
k

)q
· OM(s)

(
−q

(
s−1∑
i=r

(k + 1− i)E(s)
i

))
. (25)

and the associated cycle is

q
[
M

(s)
k

]
+
s−1∑
i=r

q(k + 1− i)E(s)
i (26)

Finally, for k < s ≤ g and each positive integer q, the inverse image under ur,s of the ideal sheaf(
I(r)
k

)q
is an invertible ideal sheaf defining the Cartier divisor

k∑
i=r

q(k + 1− i)E(s)
i (27)

Proof. By Proposition 3.12, M (r)
r ⊂ M (r) is a regular embedding. And by [1, Prop., p. 67], the

codimension of M (r)
r , which equals the codimension of M (0)

r in M (0), equals (f−r)(g−r). Therefore
the relative canonical divisor of the blowing up ur,r+1 : M (r+1) →M (r) is (f −r)(g−r)E(r+1)

r . The
first formula follows since the relative canonical divisor of a composition of birational morphisms is
the sum of the relative canonical divisors of the separate morphisms.

The second formula follows from (vi) of Proposition 3.12. The final formula follows from the second
formula and that fact that (ur,r−1)−1I(r−1)

r−1 equals the invertible ideal sheaf OM(r)(−E(r)
r−1). �
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Corollary 3.14. Let (S,G,F) be a datum with rank(G) = g and rank(F) = f . Suppose that S
is smooth, that g ≥ 1, that f ≥ 2 and that 0 ≤ k ≤ g − 1. Consider the pair (M (r)(S,G,F), q ·
M

(r)
k (S,G,F)) where q ≥ 0. For i = r, . . . , k, the log discrepancies are

a(E(g)
i ;M (r), q ·M (r)

k ) = (f − i)(g − i)− q(k + 1− i). (28)

Define a = min{(f − i)(g − i) − q(k + 1 − i)|i = r, . . . , k}. Then (M (r), q ·M (r)
k ) is log canonical

iff a ≥ 0, in which case the minimal log discrepancy, mld(M (r);M (r), q ·M (r)
k ), equals min(1, a).

In particular, if q ≤ f − g + 1, then the pair (M (r), q ·M (r)
g−1) is log canonical and the minimal log

discrepancy equals min(1, f − g + 1− q).

Proof. The corollary follows from the computations in Lemma 3.13 and the definition of the log
discrepancies and minimal log discrepancies of a pair (c.f. [7, Defn. 1.1]). �

Let (S,G,F) be a datum with rank(G) = g and rank(F) = f . Let A and A′ be locally free sheaves
on S with rank(A) = a and rank(A′) = a′ with a > 0. Define E to be the cokernel of the following
sheaf map on M (0),

Id⊗ φ : A⊗OS
G ⊗OS

OM(0) → A⊗OS
F ⊗OS

OM(0) ⊕A′ ⊗OS
OM(0) . (29)

The sheaf map is zero on the summand A′ ⊗OS
OM(0) , so this locally free sheaf will be a direct

summand of E . Denote by the pair (π : C → M (0), α : π∗E → Q) the relative Grassmannian cone
parametrizing rank r locally free quotients of E .

Proposition 3.15. If a ·r ≤ f −g and if S is smooth and geometrically connected, then C has pure
dimension equal to the expected dimension d = dim(C) = dim(S)+f ·g+r ((a(f − g) + a′)− r) and
C is a normal, integral, local complete intersection scheme that has, at worst, canonical singularities.

Proof. Denote g′ = a · g = rank(A ⊗OS
G). For each k = 0, . . . , g − 1 and l = 0, . . . , a − 1,

Ba·k+l = Ba·k = M
(0)
k . And this has codimension (f − k)(g − k) = (f − g)(g − k) + (g − k)2. Also

r(g′ − (a · k + l)) + 1 = a · r(g − k) + 1 − rl. By assumption, f − g ≥ a · r, and for k ≤ g − 1,
(g − k)2 ≥ 1. Therefore (f − g)(g − k) + (g − k)2 ≥ a · r(g − k) + 1− rl for all k = 0, . . . , g − 1 and
l = 0, . . . , a− 1. Therefore, by Lemma 2.3, C is irreducible of the expected dimension. And by the
proof of Lemma 2.6, C is a local complete intersection scheme. In particular it is Cohen-Macaulay.
Moreover, π : C → M (0) is smooth over M (0) − M

(0)
g−1. So C is generically reduced. Since C

is Cohen-Macaulay, it follows that C is everywhere reduced. A reduced Cohen-Macauly scheme
satisfies Serre’s condition S2 for normality. Thus to prove that C is normal, it suffices to prove that
C is regular in codimension 1.

If a · r < f − g, then the same parameter count as above shows that for all k = 0, . . . , g − 1 and
l = 0, . . . , a − 1 we have that (f − k)(g − k) ≥ r(g′ − (a · k + l)) + 2. By Lemma 2.3 it follows
that C is regular in codimension 1 so that C is normal. Therefore assume that a · r = f − g. Of
course C is regular on the dense open subset π−1(M (0) −M

(0)
g−1). The only codimension one point

not contained in this locus is the generic point of π−1(M (0)
g−1 −M

(0)
g−2).

As in the proof of Lemma 2.3, denote by (ρ : C ′ →M (0), β : ρ∗F → Q′) the Grassmannian bundle
parametrizing rank r locally free quotients of A ⊗OS

F ⊗OS
OM(0) ⊕ A′ ⊗OS

OM(0) . There is a
natural closed immersion h : C → C ′ compatible with projection to M (0).

Observe that C ′ = P ×S M (0) where σ : P → S is the Grassmannian bundle parametrizing rank
r locally free quotients of A ⊗OS

F ⊕ A′. Therefore there is a projection pr2 : C → P compatible
with projection to S. The question is local, so it suffices to base-change to an open subset of S over
which A is trivial. Choose an ordered basis for A so that A⊗OS

F is just F⊕a. Let W ⊂ P denote
the dense open set over which the sheaf map (π′)∗(A⊗OS

F) → Q′ is surjective. On W there is a
smooth, surjective morphism to the Grassmannian P ′ parametrizing rank r locally free quotients
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of A⊗OS
F . Any rank r quotient space of A⊗OS

F , i.e. of F⊕a, is represented as the image of a
matrix F⊕a → O⊕r of the form

M =

 v1,1 v1,2 . . . v1,a
...

...
. . .

...
vr,1 vr,2 . . . vr,a

 (30)

where the vi,j are sections of F∨. This matrix determines a point x′ in P ′. Let x ∈W be any point
mapping to x′. Thinking of the fiber of pr2 : C → P ′ over x as a subscheme of M (0), it is just the
subscheme of matrices L : G → F such that M ◦L⊕a is the zero matrix, i.e. it is the set of matrices
L such that the kernel of the transpose matrix L† contains the subspace

K = span{vi,j |1 ≤ i ≤ r, 1 ≤ j ≤ a}. (31)

This is the space of matrices L† from F∨/K to G∨. Let V ′ ⊂ P ′ be the dense open subset
parametrizing quotients where dim(K) = a · r and let V ⊂ W be the preimage of V . Over V ,
pr2 : C → P is a vector bundle of rank (f − a · r)g. In particular, the preimage is a nonempty,
smooth scheme, i.e. pr−1

2 (V ) is contained in the smooth locus Csmooth. But of course, the map L†

may still have any rank between 0 and g (recall that f −a · r ≥ g, so that the dimension of F∨/K is
greater than the dimension of G∨). Therefore this open set intersects the preimage of every strata
M

(0)
k −M (0)

k−1. Combined with an obvious homogeneity argument, the open set intersects every fiber
of π. So the smooth locus Csmooth intersects every fiber of π and C is regular in codimension 1
points. Therefore, in every case, C is normal.

The (a · (f − g) + a′)th Fitting ideal J of Id⊗ φ, i.e. the ideal generated by the maximal minors of
the matrix of Id⊗φ, is easily seen to be Ia where I is the (f − g)th Fitting ideal of I, i.e. the ideal
sheaf of M (0)

g−1. By Proposition 2.15, the cone (C, ∅) is canonical iff the pair (M (0), a · r ·M (0)
g−1) is

canonical. And by Corollary 3.14, (M (0), a · r ·M (0)
g−1) is canonical. Therefore (C, ∅) is canonical,

which finishes the proof. �

Remark 3.16. When a · r > f − g, the cone C has more than one irreducible component. It would
be interesting to determine the minimal log discrepancies of the different irreducible components of
C, in particular of the unique irreducible component which dominates M (0). The first case is when
a · r = f − g+1. In this case it follows from the proof above that the second irreducible component
is the closure of the preimage of M (0)

g−1 −M
(0)
g−2, and that the restriction of pr2 to this irreducible

component is birationally a vector bundle of rank (f − a · r)g over P . It may be possible to use this
structure to compute the minimal log discrepancies of the two irreducible components.

4. Adjunction for (B,Bg−1)

Let K be a field, not necessarily algebraically closed nor of characteristic zero. In this section all
schemes are K-schemes. K-schemes. We use the results of the last section. The interested reader
will see how to prove analogous results over an arbitrary base scheme.

In Section 2 the log discrepancies of a Grassmannian cone C → B were related to the log discrep-
ancies of the pair (B,Bg−1). In this section the following question is considered: Let S ⊂ B be a
Cartier divisor. If (S, Sg−1) is log canonical (resp. Kawamata log terminal, canonical), is (B,Bg−1)
log canonical (resp. Kawamata log terminal, canonical) on a Zariski open set containing S? This
question is a version of “inversion of adjunction”. Combining theorems by Kollár and Shokurov
about inversion of adjunction with some new constructions gives some answers to this question.

Hypothesis 4.1. Throughout this section E is torsion-free of rank e = f − g > 0.

Let the pair (ρ : C ′ → B, β : ρ∗F → Q′) denote the Grassmannian bundle of rank g locally free
quotients of F . The first construction equates the log discrepancies of the pair (B,Bg−1) with the
log discrepancies of a pair (C ′,Dφ) for a Cartier divisor Dφ ⊂ C ′. Morally, the construction is a
version of the following well-known principle (pointed-out to me by Kollár).
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Principle 4.2. A pair (B,Z) is log canonical (resp. Kawamata log terminal, canonical) if for a
general hypersurface H ⊂ B containing Z, the pair (B,H) is log canonical (resp. Kawamata log
terminal, canonical).

Indeed, if we locally trivialize F so that C ′ ∼= B ×Grass(g, f), then the fibers of Dφ → Grass(g, f)
considered as subvarieties of B are hypersurfaces containing Bg−1. Therefore one expects that the
general fiber of the pair (C ′,Dφ) is log canonical, etc. iff (B,Bg−1) is log canonical, etc. In this
case, it is even true that (C ′,Dφ) is log canonical, etc. iff (B,Bg−1) is log canonical, etc.

Notation 4.3. Denote by δ : ρ∗G → Q′ the composition

δ : ρ∗G ρ∗φ−−→ ρ∗F β−→ Q′. (32)

Both ρ∗G and Q′ have rank g, so δ induces a well-defined morphism of invertible sheaves det(δ) :
ρ∗det(G) → OC′(1). Denote by Dφ ⊂ C ′ the zero scheme of this morphism.

Lemma 4.4. The Cartier divisor Dφ is irreducible and generically reduced, and the projection
morphism π : Dφ → B admits a dualizing complex of the form

ωDφ/B = ρ∗
(
det(F)⊗(r−1) ⊗OB

det(E)
)
⊗OC′ OC′(−(f − 1))|Dφ

[r(f − r)− 1]. (33)

If B is Cohen-Macaulay (resp. Gorenstein) then also Dφ is Cohen-Macaulay (resp. Gorenstein). If
B is Cohen-Macaulay and codimB(Bg−1) ≥ 3, then Dφ is normal.

Proof. The proof is the same sort of argument as in the proofs of Lemma 2.3 and Lemma 2.6. The
details are left to the reader. There is one extra detail in the proof of the last claim: over B−Bg−1,
the divisor Dφ is not necessarily smooth. However the singular locus of Dφ is the locus where δ has
rank at most g − 2, and this has codimension at least 4 in ρ−1(B −Bg−1). So the singular locus of
Dφ ∩ ρ−1(B−Bg−1) has codimension at least 3 in Dφ. If codimB(Bg−1) ≥ 3, then the codimension
of Dφ ∩ ρ−1(Bg−1) in C ′, i.e. the codimension of ρ−1(Bg−1) in C ′, equals codimB(Bg−1) ≥ 3.
Therefore the codimension of ρ−1(Bg−1) in Dφ is codimB(Bg−1) − 1 ≥ 2. So the singular locus of
Dφ has codimension at least 2 in Dφ, and, by Serre’s criterion, Dφ is normal. �

Remark 4.5. The last condition for Dφ to be normal is not a necessary condition. It seems certain
that Dφ is normal provided that for every codimension 2 point η of B contained in Bg−1, B is regular
at η and Ig−1 ·OB,η equals the maximal ideal pη. In fact it seems likely that Dφ is normal provided
that for every codimension 2 point η of B contained in Bg−1, B is regular at η and Ig−1 · OB,η/p2

η

inside of pη/p
2
η has dimension at least 1 as a κ(η)-vector space. For example, let B = A2 and

φ : OA2 → O⊕2
A2 be the map with matrix (x, ym)† for m ≥ 1. Then Dφ is normal.

Let u : B̃ → B be a resolution of E , and let Ẽ and φ̃ : G̃ → u∗F be as in Notation 2.10. Inside of the
fiber product B̃×BC ′, there is the Cartier divisor Deφ. The projection morphism pr2 : B̃×BC ′ → C ′

maps Deφ onto Dφ. Denote by w : Deφ → Dφ the induced morphism.

Lemma 4.6. The support of the inverse image Cartier divisor pr∗2Dφ is contained in the divisor
Deφ ∪ pr−1

1 (E1 ∪ . . . Ek). Moreover,

K eB×BC′
+Deφ = pr∗2 (KC′ +Dφ) +

k∑
i=1

(a(Ei;B,Bg−1)− 1) pr∗1Ei. (34)

Proof. Over B̃ − (E1 ∪ · · · ∪ Ek), it is clear that pr2 is an isomorphism. Therefore,

K eB×BC′
+Deφ = pr∗2 (KC′ +Dφ) +

k∑
i=1

(ai − 1) pr∗1Ei (35)

for some sequence of rational numbers a1, . . . , ak. To compute the integers ai, first restrict to
Deφ. By adjunction, the restriction of K eB×BC′

+ Deφ to Deφ is just KD eφ . And the restriction of
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pr∗2(KC′ + Dφ) equals w∗KDφ
(which is defined to be the sum of KB and C1(ωDφ/B) if Dφ is not

normal). Applying Lemma 4.4 to both Dφ and Deφ,
KD eφ − w∗KDφ

=

π̃∗
[
K eB − u∗KB + C1(det(Ẽ))− C1(det(E))

]
.

(36)

As proved in Lemma 2.14, the divisor on the right is just
∑k
i=1 (a(Ei;B,Bg−1)− 1) π̃∗Ei. So the

restriction to Deφ of
∑k
i=1 (ai − 1) pr∗1Ei equals the restriction of

∑k
i=1 (a(Ei;B,Bg−1)− 1) pr∗1Ei.

To finish the argument, it must be proved that the pullback map Pic(B̃) → Pic(Deφ) is injective.
There are two possible cases: f − g ≤ g or f − g > g.

Suppose first that f − g ≤ g. Form the Grassmannian bundle (σ : C ′′ → B̃, ε : σ∗G̃ → Q′′)
parametrizing rank g − (f − g) locally free quotients of G̃. The coproduct of ε : σ∗G̃ → Q′′ and
σ∗φ̃ : σ∗G̃ → σ∗u∗F gives a surjective morphism of sheaves σ∗u∗F → R where R is locally free
of rank rank(F) − rank(G̃) + rank(Q′′) = g. There is an induced morphism from C ′′ to B̃ ×B C

compatible with the projection to B̃. And the image is contained in Deφ. Since σ : C ′′ → B̃ is a
Grassmannian bundle, the pullback map on Picard groups is injective. And this map factors through
the pullback map on Picard groups from B̃ to Deφ. Therefore the pullback map Pic(B̃) → Pic(Deφ)
is injective.

Finally, suppose that f −g > g. In this case let (σ : C ′′ → B̃, ε : σ∗(Ẽ) → Q′′) be the Grassmannian
bundle parametrizing rank g locally free quotients of Ẽ . There is an obvious closed immersion of
C ′′ into B̃ ×B C ′. And the image clearly lies in Deφ. As in the last paragraph, this implies that the

pullback map Pic(B̃) → Pic(Deφ) is injective. �

As the scheme Deφ → B̃ is typically not smooth, this is not a log resolution of (C ′,Dφ). The

construction of a log resolution of (B̃ ×B C ′,Deφ) is essentially equivalent to the construction in
Section 3.

Notation 4.7. Denote by C(0) the fiber product C(0) = B̃×BC ′ and denote byM (0) = M (0)(B̃, G̃,O⊕geB )
the scheme constructed in Section 3. Denote by p(0) : T (0) → C(0) the GLg-torsor parametriz-
ing sheaf isomorphisms pr∗2Q′ → O⊕g

C(0) (with the obvious left GLg-action) and denote by λ :
(p(0))∗pr∗2Q′ → O⊕g

T (0) the universal isomorphism. Denote by ε the composition of (p(0))∗δ :
(p(0))∗pr∗1G̃ → (p(0))∗pr∗2Q′ with λ. Denote by q(0) : T (0) → M (0) the morphism of B̃-schemes
induced by ε. Observe that this morphism is equivariant for the obvious GLg-action on M (0).
Denote by g′ the maximum of 0 and 2g − f .

Lemma 4.8. (i) The image of q(0) equals M (0) −M
(0)
g′−1.

(ii) The morphism q(0) : T (0) →
(
M (0) −M

(0)
g′−1

)
factors as an open immersion into a torsor

over M (0) for the vector bundle over B̃ associated to HomO eB
(
Ẽ ,O⊕geB

)
. In particular, q(0)

is smooth.
(iii) The inverse image scheme (p(0))−1(Deφ) equals the inverse image scheme (q(0))−1(M (0)

g−1).

Proof. (i): This follows by considering the intersection of the subbundle pr∗1G̃ ⊂ pr∗1u
∗F with the

kernel of pr∗1u
∗F → pr∗2Q′. The first subbundle has rank g at every point, and the second has rank

f − g. Hence the maximal possible intersection is f − g if f − g ≤ g, and g otherwise. So the
minimal possible rank of ε is g− (f − g) = 2g− f if 2g− f ≥ 0, and 0 otherwise, i.e. it is g′. On the
other hand, up to composing with an isomorphism pr∗2Q′ → O⊕g

C(0) , any morphism G̃ → O⊕geB can be

obtained as a fiber of ε over a geometric point of T (0). Therefore q(0) : T (0) →
(
M (0) −M

(0)
g′−1

)
is

surjective.
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(ii): The torsor over M (0) is simply M (0)(B̃, u∗F ,O⊕geB ). The open immersion from T (0) to this
scheme is clear.

(iii) By construction, Deφ is the scheme determined by the determinant of δ. And the pullback
(p(0))∗δ equals (q(0))∗φ by construction. Therefore the inverse image of Deφ under p(0) is precisely

the inverse image of M (0)
g−1 under q(0). �

Notation 4.9. Denote by

T (g) → T (g−1) → · · · → T (1) → T (0) (37)

the sequence of morphisms obtained via base-change by q(0) from the sequence of morphisms

M (g) →M (g−1) → · · · →M (1) →M (0) (38)

constructed in Lemma 3.4.

In particular, each scheme T (k) has a natural GLg-action and the each morphism T (k+1) → T (k) is
GLg-equivariant. For each i = 1, . . . , g the composition T (i) → T (0) is equivalent to the blowing up
of an ideal sheaf J (i)

T on T (0). Moreover, this ideal sheaf is GLg-equivariant. Therefore it is of the
form (p(0))−1J (i)

C for some ideal sheaf J (i)C on C(0).

Notation 4.10. Denote by

C(g) → C(g−1) → · · · → C(1) → C(0) (39)

the sequence of morphisms obtained by blowing up each of the ideal sheaves J (i)C .

For each 0 ≤ r < s ≤ g, there is a Cartesian diagram

T (s) −−−−→ T (r)y y
C(s) −−−−→ C(r)

(40)

where the vertical arrows are GLg-torsors, and there is a Cartesian diagram

T (s) −−−−→ T (r)y y
M (s) −−−−→ M (r)

(41)

where the vertical arrows are open subsets of torsors for a smooth group scheme. By Proposition 3.12
M (g) →M (0) gives a log resolution of the pair (M (0),M

(0)
g−1). So C(g) → C(0) gives a log resolution

of the pair (C(0),Deφ). Moreover C(0) → B̃ is smooth.

Notation 4.11. Denote by F0, . . . , Fg−1 the Cartier divisors on C(g) corresponding to the divisors
E

(g)
0 , . . . E

(g)
g−1 on M (g). Of course Fi = ∅ for i < g′.

Proposition 4.12. There exists a log resolution t : C(g) → B̃ ×B C ′ of the pair
(
B̃ ×B C ′,Deφ

)
with exceptional locus Fg′ ∪ · · · ∪ Fg−2 satisfying the following properties.

(i) The morphism pr1 ◦ t : C(g) → B̃ is smooth, and the intersection of every fiber with Fg′ ∪
· · · ∪ Fg−2 ∪ Fg−1 is a simple normal crossings divisor.

(ii) The morphism pr2 ◦ t : C(g) → C ′ is a log resolution of the pair (C ′,Dφ) with exceptional
locus Fg′ ∪ · · · ∪ Fg−2 ∪ (pr2 ◦ t)−1 (E1 ∪ · · · ∪ Ek) and such that the strict transform of Dφ
is the divisor Fg−1.
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(iii) There is an equivalence of Q-Cartier divisor classes on C(g)

KC(g) − (pr2 ◦ t)∗(KC′ +Dφ) =
−Fg−1 +

∑g−2
j=g′ ((g − 1− j)(g − j)− 1)Fj+∑k

i=1 (a(Ei;B,Bg−1)− 1) (pr1 ◦ t)∗Ei
(42)

(iv) The log discrepancy of (C ′,Dφ) equals the minimum of 1 and the log discrepancy of (B,Bg−1).
In particular, every exceptional divisor for (B,Bg−1) gives rise to an exceptional divisor for
(C ′,Dφ).

(v) The pair (C ′,Dφ) is log canonical (resp. purely log terminal, canonical) iff the pair (B,Bg−1)
is log canonical (resp. purely log terminal, canonical).

(vi) Assume that Dφ is normal. Then the total discrepancy of (Dφ, ∅) equals the total discrepancy
of (B,Bg−1).

(vii) Assume that Dφ is normal. Then (Dφ, ∅) is log canonical (resp. Kawamata log terminal,
canonical) iff the pair (B,Bg−1) is log canonical (resp. purely log terminal, canonical).

(viii) Assume that Dφ is normal. If (B,Bg−1) is terminal, then Dφ is terminal. If for every
exceptional divisor Ei, a(Ei;B,Bg−1) 6= 1, then the converse also holds.

Proof. (i): This can be checked after performing the smooth, surjective base-change by T (g) → C(g).
And again by smooth surjective base-change, the result on T (g) is equivalent to the statement that
M (g) is smooth over B̃ and every fiber intersects E(g)

g′ ∪ · · · ∪ E(g)
g−1 in a simple normal crossings

divisor. This follows from (i) and (ii) of Proposition 3.12.

(ii): As mentioned, t is a log resolution of Deφ. Moreover the divisor Fg′ ∪ . . . Fg−2 is flat over B̃
and intersects every fiber in a simple normal crossings divisor. Therefore Fg′ ∪ . . . Fg−2 ∪ (pr2 ◦
t)−1 (E1 ∪ · · · ∪ Ek) is a simple normal crossings divisor. It follows that pr2 ◦ t is a log resolution of
(C ′,Dφ).

(iii), (iv) and (v): Item (iii) follows from Corollary 3.14 and Lemma 4.6. Items (iv) and (v) follow
immediately from (iii).

(vi), (vii) and (viii): Observe that Fg−1 → Dφ is a resolution of singularities. Also,

KFg−1 − (w ◦ t)∗KDφ
=∑g−2

j=g′ ((g − 1− j)(g − j)− 1)Fj |Fg−1+∑k
i=1 (a(Ei;B,Bg−1)− 1) (pr1 ◦ t)∗Ei.

(43)

By the same sort of argument as in Lemma 4.6, all of the relevant divisor classes are linearly
independent on Fg−1. Since the coefficients (g − 1 − j)(g − j) are at least 2 for j = g′, . . . , g − 2,
the total discrepancy of Dφ equals the total discrepancy of (B,Bg−1). This proves (vi). As always,
it is possible that some exceptional divisors of (B,Bg−1) do not give rise to exceptional divisors of
Dφ. Items (vii) and (viii) follow immediately from (vi). �

Corollary 4.13. Let S ⊂ B be an irreducible Cartier divisor. Denote by φS the restriction of φ to
S. Assume that DφS

is irreducible.
(i) Suppose that S is Kawamata log terminal. Then (S, Sg−1) is log canonical iff there exists an

open subscheme U ⊂ B containing S such that (U, S+Ug−1) is log canonical. In particular,
if (S, Sg−1) is log canonical, then (U,Ug−1) is log canonical.

(ii) Suppose that DφS
is irreducible and normal. Then (S, Sg−1) is Kawamata log terminal iff

there exists an open subscheme U ⊂ B containing S such that (U, S + Ug−1) is purely log
terminal. In particular, if (S, Sg−1) is Kawamata log terminal, then (U,Ug−1) is Kawamata
log terminal.

(iii) Suppose that B is Gorenstein and that DφS
is irreducible and normal. Then (S, Sg−1) is

canonical iff there exists an open subscheme U ⊂ B containing S such that (U,Ug−1) is
canonical. In particular, if (S, Sg−1) is canonical then (U,Ug−1) is canonical.
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Proof. (i): First observe that ρ−1(S) ⊂ C ′ is also Kawamata log terminal since ρ is smooth.
By Proposition 4.12, (S, Sg−1) is log canonical iff (ρ−1(S),DφS

) is log canonical. By a similar
argument, (B,S+Bg−1) is log canonical iff (C ′, ρ−1(S)+Dφ) is log canonical. By [21, Thm. 7.5.2],
(ρ−1(S),DφS

) is log canonical iff (C ′, ρ−1(S)+Dφ) is log canonical near ρ−1(S). Therefore (S, Sg−1)
is log canonical iff (B,S +Bg−1) is log canonical near S.

(ii) and (iii): For (ii), combine (vii) of Proposition 4.12 with [21, Thm. 7.5.1]. For (iii), combine
(vii) of Proposition 4.12 with [32] (see also [21, Thm. 7.9]). �

Remark 4.14. If one further assumes that B is a local complete intersection scheme, then one can
also use the results of Ein and Mustaţǎ [6] to prove Corollary 4.13 and to relate the minimal log
discrepancy of (S, Sg−1) to the minimal log discrepancy of (B,Bg−1).

5. Deformation to the normal cone

Corollary 4.13 concludes results about (B,Bg−1) by analyzing the restriction of φ to an irreducible
Cartier divisor S. In applications it is also natural to restrict φ to an irreducible closed subvariety
Y ⊂ B that is not necessarily a Cartier divisor; in particular, if r is the smallest integer such that
Br 6= ∅, then one natural choice is to take Y to be an irreducible component of Br. In this section,
the general case is reduced to the case of a Cartier divisor by using deformation to the normal cone.
We briefly review the discussion of deformation to the normal cone from [9, Chapter 5]. All of the
unproved assertions regarding deformation to the normal cone used here are proved there.

The following setup is a little more general than needed. Let φ : G → F be a morphism of locally
free OX -modules of ranks g and f (but do not assume that f > g). Denote by E the cokernel of
φ. Let Y ⊂ B be a closed subscheme with ideal sheaf J . Denote by KY and EY the kernel and
cokernel respectively of the map of OY -modules

φ⊗ Id : G ⊗OB
OY → F ⊗OB

OY . (44)

In particular EY is simply E ⊗OB
OY . Consider the following commutative diagram with exact rows

0 −−−−→ G ⊗OB
J /J 2 −−−−→ G ⊗OB

OB/J 2 −−−−→ G ⊗OB
OY −−−−→ 0

φ1

y yφ2

yφ3

0 −−−−→ F ⊗OB
J /J 2 −−−−→ F ⊗OB

OB/J 2 −−−−→ F ⊗OB
OY −−−−→ 0

(45)

Each map φi is just φ⊗ Id. Since tensor product is right exact, the cokernel of φ1 is just EY ⊗OY

J /J 2. And by definition the kernel of φ3 is KY . By the Snake Lemma, there is an induced
connecting map from Ker(φ3) to Coker(φ1).

Definition 5.1. The connecting map, denoted θ = θφ,Y : KY → EY ⊗OY
J /J 2, is the map of

OY -modules induced by the Snake Lemma as above. The induced map of the connecting map is
the map θ′φ,Y : HomOY

(EY ,KY ) → J /J 2 induced from θφ,Y by adjointness of Hom and tensor
product.

Hypothesis 5.2. From now on, EY is assumed to be a locally free OY -module. This implies
that also KY is a locally free OY -module. In the later sections, J /J 2 will also be a locally free
OY -module (but this is not a hypothesis in this section).

Lemma 5.3. (i) For the transpose φ†, the kernel of φ†|Y is E∨Y , the cokernel of φ†|Y is K∨Y ,
and the connecting map θ′φ†,Y is identified with θ′φ,Y under the canonical isomorphism

HomOY
(K∨Y , E∨Y ) ∼= HomOY

(EY ,KY ).

(ii) Let φ′ : G′ → F ′ be a second morphism of locally free sheaves on B such that the kernel and
cokernel of φ′|Y are locally free OY -modules, K′Y and E ′Y . Consider φ⊕φ′ : G⊕G′ → F⊕F ′.
The kernel of (φ ⊕ φ′)|Y is KY ⊕ K′Y , the cokernel of (φ ⊕ φ′)|Y is EY ⊕ E ′Y , and θφ⊕φ′,Y
equals θφ,Y ⊕ θφ′,Y via the canonical isomorphisms.
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(iii) Consider φ ⊗ φ′ : G ⊗OB
G′ → F ⊗OB

F ′. The kernel of φ ⊗ φ′ is the surjective image of
(KY ⊗OY

G′|Y ) ⊕ (G|Y ⊗OY
K′Y ), the cokernel of φ ⊗ φ′ is a subsheaf of (EY ⊗OY

F ′|Y ) ⊕
(F|Y ⊗OY

E ′Y ), and θφ⊗φ′,Y is the unique morphism compatible with (θφ,Y ⊗φ′)⊕(φ⊗θφ′,Y ).
(iv) Let ψG : G → G′ and ψF : F → F ′ be morphisms of OB-modules such that there is a

commutative diagram:

G φ−−−−→ F

ψG

y yψF
G′ φ′−−−−→ F ′

(46)

There are unique morphisms ψK : KY → K′Y and ψE : EY → E ′Y such that the following
diagram commutes:

0 −−−−→ KY −−−−→ G|Y
φ|Y−−−−→ F|Y −−−−→ EY −−−−→ 0

ψK

y ψG

y yψF yψE
0 −−−−→ K′Y −−−−→ G′|Y

φ′|Y−−−−→ F ′|Y −−−−→ E ′Y −−−−→ 0

(47)

Moreover, the diagram of connecting maps commutes:

KY
θφ,Y−−−−→ EY ⊗OY

J /J 2

ψK

y yψE⊗Id

K′Y
θφ′,Y−−−−→ E ′Y ⊗OY

J /J 2.

(48)

Proof. Each of these follows by simple diagram-chasing. The details are left to the reader. �

Deformation to the normal cone, which is described in detail in [9, Chapter 5], is as follows. Form
the product B × P1 and consider the closed subscheme Y × {∞} ⊂ B × P1. The ideal sheaf of this
subscheme is

J ′ = pr−1
1 (J ) + pr−1

2 (OP1(−∞)). (49)
This decomposition of the ideal sheaf yields a decomposition of the Rees algebra

⊕∞n=0(J ′)n/(J ′)n+1 ∼=
pr∗1
(
⊕∞n=0(J )n/J n+1

)
⊗ pr∗2 (⊕∞n=0OP1(−n∞)/OP1(−(n+ 1)∞)) . (50)

The relative Spec of the Rees algebra is the normal cone. If the normal cone is the symmetric algebra
of a locally free sheaf, the normal cone is called the normal bundle. The decomposition above gives
an isomorphism of the normal cone CY×{∞}(B × P1) with the fiber product pr∗1CYB ×Y×{∞}
pr∗2N{∞}P1.

Notation 5.4. Denote C = pr∗1CYB and C ′ = CY×{∞}(B × P1). The normal bundle N{∞}P1 is
just the trivial rank 1 vector bundle, denoted by 1 in [9].

The isomorphism of algebras respects the Gm-actions induced by the grading of the algebras. There-
fore, in the notation of [9], there is an equivalence of cones C ′ ∼= C ⊕ 1.

Let u : M → B × P1 be the blowing up of B × P1 along Y × {∞}. Denote by % : M → P1 the
composition pr2 ◦ u. This is a flat morphism. The preimage of A1 = P1 − {∞} is isomorphic to
B × A1 (compatible with the projections to B and to A1). And the Cartier divisor M∞ = %−1(∞)
is the sum of two effective divisors BY and P(C ′) = P(C⊕1). Here BY is the blowing up of B along
Y . And, as usual, for a cone K, the symbol P(K) means the relative Proj of the graded algebra
associated to K. Denote by π : P(C ⊕ 1) → Y the obvious projection morphism.

The intersection of BY and P(C ⊕ 1) is the exceptional divisor on BY and is the “hyperplane
section at infinity” P(C) in P(C ⊕ 1). The complement of the hyperplane section at infinity is
identified with the cone C over Y . Finally, there is a closed immersion ι : Y × P1 → M such that
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u ◦ ι : Y × P1 → B × P1 is the obvious closed immersion. The fiber of ι(Y × P1) over ∞ is identifed
with the zero section of C ⊂ P(C ⊕ 1).

Definition 5.5. For a closed subscheme Y ⊂ B, the deformation to the normal cone is the datum
(% : M → P1, ι : Y ×P1 ↪→M,BY ↪→M,P(C⊕1) ↪→M). Denote by φM : GM → FM the morphism
of locally free sheaves u∗pr∗1φ.

On P(C⊕1) there is a rank 1 locally free quotient β : π∗
(
pr∗1J /J 2 ⊕OY

)
→ OP(C⊕1)(1) (satisfying

a well-known universal property). Denote by β1 : π∗
(
pr∗1J /J 2

)
→ OP(C⊕1)(1) and β2 : OP(C⊕1) →

OP(C⊕1)(1) the two components of β. Of course, the zero scheme of the section β2 is precisely
the hyperplane section at infinity P(C) ⊂ P(C ⊕ 1). The invertible sheaf OM (−P(C ⊕ 1))|P(C⊕1)

is canonically isomorphic to OP(C⊕1)(1); the isomorphism is induced by the isomorphism of ideal
sheaves u−1J ′ ∼= OM (−P(C ⊕ 1)).

The pullback φM factors through an elementary-transform-up of GM . To describe this elementary-
transform-up, first dualize all sheaves and form the adjoints of all sheaf morphisms. Consider the
adjoint morphism φ†M : F∨

M → G∨M . The restriction of φM to P(C⊕1) is just π∗(φ|Y ). In particular,
the image of (F∨

M ) |P(C⊕1) is contained in the kernel of π∗ (G ⊗OB
OY )∨ → π∗ (KY )∨. Define the

subsheaf (G̃)∨ ⊂ (GM )∨ to be the kernel of the surjection

(GM )∨ → (GM )∨ |P(C⊕1)
∼= π∗ (G ⊗OB

OY )∨ → π∗ (KY )∨ . (51)

Then φ†M factors through the subsheaf (G̃)∨. Define (φ̃)† : F∨
M → (G̃)∨ to be the induced map.

Lemma 5.6. Denote by G̃ the dual of (G̃)∨, and denote by φ̃ the adjoint of (φ̃)†.

(i) The sheaf (G̃)∨ is locally free of rank g. Therefore also G̃ is locally free of rank g.
(ii) The cokernel of the sheaf map GM → G̃ is canonically isomorphic to the push-forward from

P(C ⊕ 1) of the locally free sheaf π∗KY ⊗OP(C⊕1)(−1).
(iii) The restriction of GM → G̃ to P(C ⊕ 1) fits into an exact sequence

0 −→ π∗KY −→ π∗(G ⊗OB
OY ) −→

G̃|P(C⊕1) −→ π∗KY ⊗OP(C⊕1)(−1) −→ 0
(52)

Proof. Item (i) is very easy and is just the fact that an elementary-transform-down along a Cartier
divisor gives rise to a locally free sheaf. For (ii) and (iii), observe that the restriction to P(C ⊕ 1)
of (G̃)∨ → (GM )∨ fits into an exact sequence,

0 −→ TorOM
1 (OP(C⊕1), π

∗K∨Y ) −→ (G̃)∨|P(C⊕1)

−→ π∗(G ⊗OB
OY )∨ −→ π∗K∨Y −→ 0.

(53)

Of course TorOM
1 (OP(C⊕1),OP(C⊕1)) is just OM (−P(C ⊕ 1))|P(C⊕1), i.e. OP(C⊕1)(1). Therefore the

left-most term in the exact sequence is just K∨Y ⊗OP(C⊕1)(1). Dualizing this sequence gives (ii) and
(iii). �

Notation 5.7. The restriction of φ̃ to P(C ⊕ 1) induces a morphism of locally free sheaves

G̃|P(C⊕1)/π
∗(G ⊗OB

OY ) → π∗(F ⊗OB
OY )/π∗(G ⊗OB

OY ). (54)

Up to canonical isomorphism, this is the same as a morphism

γ : π∗KY ⊗OP(C⊕1)(−1) → π∗EY . (55)

And the cokernel of φ̃ on P(C ⊕ 1) equals the cokernel of γ.

The next goal is to show that the map γ essentially is the same as the map θφ,Y .
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The canonical inclusion G̃ ⊗ OM (−P(C ⊕ 1)) → G̃ factors through the kernel of G̃ → π∗KY ⊗
OP(C⊕1)(−1). So there is an induced inclusion G̃ ⊗ OM (−P(C ⊕ 1)) → GM whose cokernel is
π∗ (G ⊗OB

OY /KY ). In particular, there is a commutative diagram:

G̃ ⊗ OM (−P(C ⊕ 1)) −−−−→ GM
eφ⊗Id

y yφM

FM ⊗OM (−P(C ⊕ 1)) −−−−→ FM

(56)

Lemma 5.8. There is a commutative diagram of coherent sheaves:

π∗KY
π∗θφ,Y−−−−−→ π∗EY ⊗ π∗(J /J 2)

Id

y yId⊗β1

π∗KY
γ⊗Id−−−−→ π∗EY ⊗OP(C⊕1)(1)

(57)

Proof. To ease notation in this proof, denote P = P(C ⊕ 1). Consider the commutative diagram
with exact rows analogous to Equation( 45) whose rows are

0 −→ GM ⊗OM
OM (−P)/OM (−2P) −→ GM ⊗OM

OM/OM (−2P)
−→ GM ⊗OM

OP −→ 0 (58)

0 −→ FM ⊗OM
OM (−P)/OM (−2P) −→ FM ⊗OM

OM/OM (−2P)
−→ FM ⊗OM

OP −→ 0 (59)

Associated to this commutative diagram, the snake lemma produces a connecting map θφM ,P :
π∗KY → π∗EY ⊗OP(1).

Observe that the ideal sheaf u−1pr−1
1 (J ) is contained in the ideal sheaf OM (−P) (moreover, after

dividing by the defining equation of P, the residual ideal sheaf is the ideal sheaf of the closed
immersion ι : Y × P1 → M). Therefore there is a map from the pullback by pr1 ◦ u of the
commutative diagram in Equation( 45) to the commutative diagram above. In particular there is a
commutative diagram of connecting maps

π∗KY
π∗θφ,Y−−−−−→ π∗EY ⊗ π∗

(
J /J 2

)
Id

y yId⊗β

π∗KY
θφM ,P−−−−→ π∗EY ⊗OP(1)

(60)

Now consider the map G̃(−P) → GM⊗OM
OM/OM (−2P) constructed above. The image of G̃(−P) in

the quotient GM ⊗OM
OP is precisely π∗KY . Moreover there is the map φ̃⊗ Id : G̃(−P) → FM (−P)

and the diagram in Equation ( 56) commutes. Therefore G̃(−P) can be used to compute the
connecting map θφM ,P. But the construction of γ was by precisely the same construction, i.e. the
connecting map θφM ,P equals γ ⊗ Id. �

6. The stack of multiple covers of lines

Hypothesis 6.1. From this point on, the base field K is algebraically closed of characteristic 0.

Let V denote a K-vector space of dimension n+1 so that the projective space P(V ) is isomorphic
to Pn. In this and the next sections, results from the previous sections are applied to M0,0(P(V ), e),
the Kontsevich moduli stack parametrizing stable maps from unmarked, genus 0 curves to P(V )
of degree e. For more details about this stack, see [11]. The goal is to prove that for a positive
integer d with d + e ≤ n, for a general hypersurface X ⊂ P(V ) of degree d, the closed substack
M0,0(X, e) ⊂M0,0(P(V ), e) has at worst canonical singularities.

31



Remark 6.2. What does it mean to say that a pair of Deligne-Mumford stacks is canonical (resp.
log canonical, etc.)? For a pair (B, Y ), one can compute the log discrepancy a(E;B, Y ) étale locally
on B, i.e. if (fi : Bi → B) is an étale cover, then a(E;B, Y ) = min(a(f∗i E;Bi, f−1

i Y )|center(f∗i E) 6=
∅). There is a standard way of extending any étale local notion for schemes to Deligne-Mumford
stacks: the Deligne-Mumford stack has an étale local cover by schemes and the log discrepancies
are defined using this cover by the formula above.

Consider the Kontsevich moduli stack M0,r(P(V ), e). Let p : C → M0,r(P(V ), e) denote the
universal curve, and let f : C → P(V ) denote the universal map. For each integer d > 0, on
M0,r(P(V ), e) there is a locally free sheaf Pd of rank ed+1 defined by Pd = p∗f

∗OP(V )(d). Standard
facts about stable maps together with cohomology and base change imply that the higher direct
images of f∗OP(V )(d) vanish and that Pd is locally free of rank ed + 1. The case of interest is
r = 0, but in fact this holds for arbitrary r. There is a canonical evaluation morphism of locally
free sheaves on M0,0(P(V ), e), φ†d : H0(P(V ),OP(V )(d))⊗κ O → Pd.

Definition 6.3. For each e ≥ 1 and d ≥ 0, define Gd to be the dual of Pd, define Fd to be the trivial
locally free sheaf H0(P(V ),OP(V )(d))∨⊗κO, and define the co-evaluation morphism for degree d to
be the morphism,

φd : G → F , (61)
adjoint to the evaluation morphism. Define Ed to be the cokernel of φd. Define (πd : Cd →
M0,0(P(V ), e), αd : π∗Ed → Qd) to be the projective Abelian cone parametrizing rank 1 locally free
quotients of Ed. When there is no risk of confusion, the subscripts will be dropped.

The goal is to analyze the singularities of C. Denote by (ρ : C ′ →M0,0(P(V ), e), β : H0(P(V ),OP(V )(d))∨⊗κ
O → Q′) the projective bundle parametrizing rank 1 locally free quotients of the trivial locally free
sheaf H0(P(V ),OP(V )(d)) ⊗κ O. Of course C ′ is the same as the product PH0(P(V ),OP(V )(d)) ×
M0,0(P(V ), e). As in Section 2, define h : C → C ′ to be the tautological closed immersion. Our
interest in C comes from the following easy result. The proof is left to the reader (but also see [15,
Lemma 4.5]).

Lemma 6.4. The Deligne-Mumford stack C parametrizes pairs ([X], [f : C → X]) consisting of
[X] ∈ PH0(P(V ),OP(V )(d)), a hypersurface of degree d in P(V ), and f : C → X, a Kontsevich
stable map of genus 0 and degree e to X. In particular, for each [X] ∈ PH0(P(V ),OP(V )(d)), the
fiber of C over [X] is canonically identified with the Kontsevich moduli stack M0,0(X, e).

Notation 6.5. Denote by G = G(2, V ) the Grassmannian variety over κ parametrizing rank 2
locally free quotients of V ∨, i.e. parametrizing 2-dimensional linear subspaces of V . Let V ∨⊗κOG →
S∨ denote the universal quotient, so that the adjoint S ↪→ V ⊗κOG is the universal rank 2 subbundle.
Denote the quotient of the universal subbundle by V ⊗κ OG → T . Observe that T∨ ↪→ V ∨ ⊗κ OG
is simply the annihilator of S. For each d ≥ 0, there is an induced filtration on Symd(V ∨)⊗κ OG

Symd(V ∨)⊗κ OG = F 0 ⊃ F 1 ⊃ · · · ⊃ F d

F i = Symi(T∨) · Symd−i(V ∨), F i/F i+1 ∼= Symi(T∨)⊗OG Symd−i(S∨)
(62)

This filtration is the same as the filtration by order of vanishing along S.

Definition 6.6. There is an induced morphism PS → P(V ) identifying G with the Hilbert scheme
of lines in P(V ). The stack of multiple covers of lines Y is defined to be the closed substack of
G ×M0,0(P(V ), e) parametrizing pairs ([L], [f : C → L]) where [L] ∈ G is a line in P(V ) and
f : C → L is a Kontsevich stable map of genus 0 and degree e.

There are several equivalent definitions. Of course the projection prG : Y → G is Zariski locally
isomorphic to the product G × M0,0(P1, e). An easy observation is that the projection Y →
M0,0(P(V ), e) is a closed immersion.
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Lemma 6.7. The 1-morphism Y →M0,0(P(V ), e) is representable by closed immersions and the
image is the rank 2 locus (M0,0(P(V ), e))2 for φ1 : G1 → F1. Moreover, for each φd the reduced
substack of the rank (d+ 1) locus (M0,0(P(V ), e))d+1 equals the image of Y .

Proof. It is clear that Y → M0,0(P(V ), e) is injective on geometric points; after all for a pair
([L], [f : C → L]), we have that L = f(C), so the line [L] is uniquely determined by f : C → P(V ).
Moreover for a stable map f : C → X, the rank of φ1 restricted to the residue field of [f ] is
at least as big as H0(f(C),OP(V )(1)|f(C)). For a pure 1-dimensional subscheme of P(V ), this
dimension is always at least 2, and equals 2 only if f(C) is a line. Therefore every geometric point
of (M0,0(P(V ), e))2 is a geometric point of Y . The same sort of argument shows that for every d,
the rank (d+ 1) locus of φd equals Y (as sets of geometric points).

Moreover, since (M0,0(P(V ), e))1 is empty, on (M0,0(P(V ), e))2 the quotient E of φ1 is a locally
free sheaf of rank 2. Then E is a quotient of H0(P(V ),OP(V )(1))∨ which induces a morphism from
(M0,0(P(V ), e))2 to G, from which it is easy to construct an inverse to Y → (M0,0(P(V ), e))2. �

Consider the restriction of φd to Y . It is simpler to phrase the results for the adjoint φ†d, but by (i)
of Lemma 5.3, they are both equivalent.

Lemma 6.8. The kernel of φ†1|Y equals pr∗GT
∨ ⊂ V ∨⊗κOY . The cokernel of φ†1|Y is a locally free

sheaf R of rank e − 1. And the induced connecting map θ′
φ†1,Y

: HomOY
(R, pr∗GT∨) → J /J 2 is an

isomorphism of OY -modules.

Proof. The first two assertions follow from the proof of Lemma 6.7; the details are left to the reader.
The third assertion can probably be proved directly, but it also follows from the deformation theory
of Kontsevich stable maps developed in [2] and [3] (see also [16, Sec. 3]). Since Y is smooth and
since M0,0(P(V ), e) is smooth, the conormal sheaf J /J 2 is a locally free OY -module. The first
step is to describe this sheaf.

As above, let π : C → Y be the universal curve. Let g : C → P(S) be the universal map (compatible
with projection to G), and let prP(V ) : P(S) → P(V ) be the obvious projection so that f = prP(V )◦g is
the universal map from C to P(V ). There is a perfect complex of amplitude [−1, 0] on C, denoted Lf ,
such that the object (Rπ∗L∨f )[1] in the derived category of Y is quasi-isomorphic to the restriction
of the tangent bundle of M0,0(P(V ), e). Similarly, there is a perfect complex of amplitude [−1, 0],
denoted Lg, such that the object (Rπ∗L∨g )[1] in the derived category of Y is quasi-isomorphic to
the vertical tangent bundle of the morphism prG : Y → G. These complexes are as follows:

−1 0

Lf : f∗Ω1
P(V )

(df)†−−−−→ Ω1
C/Y

Lg :g∗Ω1
P(S)/G

(dg)†−−−−→ Ω1
C/Y

(63)

Of course the derivative of the morphism prP(V ) : P(S) → P(V ) induces a surjective sheaf map from
f∗Ω1

P(V ) to g∗Ω1
P(S)/G whose kernel is just g∗OP(S)(−1)⊗pr∗GT

∨. So there is a distinguished triangle

g∗OP(S)(−1)⊗ pr∗GT
∨[1] → Lf → Lg (64)

Applying the derived functor RHomOC (∗,OC) to the distinguished triangle above produces a dis-
tinguished triangle,

L∨g → L∨f → HomOC
(
pr∗GT

∨, g∗OP(S)(1)
)
[−1]. (65)

Finally apply Rπ∗ to this distinguished triangle to get a distinguished triangle,

(Rπ∗L∨g )[1] → (Rπ∗L∨f )[1] → HomOY
(pr∗GT

∨,P1) [0], (66)
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(obviously some minor details have been left out). The derivative map from the vertical tangent
bundle of prG : Y → G to the restriction of the tangent bundle of M0,0(P(V ), e) has cokernel
isomorphic to HomOY

(pr∗GT
∨,P1).

The map φ†1|Y has image pr∗GS
∨. Therefore inside of this cokernel there is a subsheaf HomOY

(pr∗GT
∨,pr∗GS

∨).
This is just the pullback of the tangent bundle of G. The cokernel of this subsheaf is the normal
bundle of Y →M0,0(P(V ), e). And, since R is P1/pr∗GS

∨ by definition, this cokernel is canonically
isomorphic to HomOY

(pr∗GT
∨,R). Therefore the dual sheaf, J /J 2, is canonically isomorphic to

HomOY
(R,pr∗GT

∨). Obviously this is very close to what is needed.

Using the canonical isomorphism above, the induced connecting map θ′
φ†1,Y

is an endomorphism of

the locally free sheaf HomOY
(R,pr∗GT

∨). An endomorphism of a locally free sheaf is an isomorphism
iff the determinant of the endomorphism is invertible. Since Y is a proper, smooth, connected
Deligne-Mumford stack, the global sections of OY are just the constants. So to prove that the
determinant is invertible, it suffices to prove that it is nonzero at a single point.

The proof is reduced to a simple (slightly tedious) computation in local coordinates. Choose homoge-
neous coordinates Y0, . . . , Yn on P(V ), i.e. Y0, . . . , Yn is an ordered basis for V ∨ = H0(P(V ),OP(V )(1)).
Choose homogeneous coordinates X0, X1 on P1. Let A be the affine space associated to the dual
vector space W of linear transformations

W∨ := Homκ

(
H0(P1,OP1(e− 2)), span{Y2, . . . , Yn}

)
. (67)

A basis for the vector space W∨, i.e. for the vector space of linear forms on A, is given by the
tensors (Xi

0X
e−2−i
1 )∨ ⊗ Yj for j = 2, . . . , n and i = 0, . . . , e − 2. Define F : P1 × A → P(V ) to be

the morphism with F ∗OP(V )(1) = pr∗P1OP1(e) and where the pullback of homogeneous coordinates
is defined by

F ∗Y0 = pr∗P1Xe
0 ,

F ∗Y1 = pr∗P1Xe
1 ,

F ∗Yj =
∑e−2
i=0 pr∗P1(Xi+1

0 Xe−1−i
1 ) · pr∗A((Xi

0X
e−2−i
1 )∨ ⊗ Yj), j = 2, . . . , n

(68)

The morphism F is a family of stable maps of degree e over A and defines a 1-morphism ζ : A →
M0,0(P(V ), e). The pullback by ζ of P1 is simply the trivial vector bundle H0(P1,OP1(e)) on A,
and the pullback of φ†1 is simply the map:

φ†1(1⊗ Y0) = 1⊗Xe
0 ,

φ†1(1⊗ Y1) = 1⊗Xe
1 ,

φ†1(1⊗ Yj) =
∑e−2
i=0

(
(Xi

0X
e−2−i
1 )∨ ⊗ Yj

)
⊗Xi+1

0 Xe−1−i
1 , j = 2, . . . , n

(69)

It follows that the rank 2 locus is the origin 0 ∈ A. The inverse image ideal sheaf ζ−1J is just the
ideal of the origin, i.e. the ideal with generators (Xi

0X
e−2−i
1 )∨⊗Yj for i = 0, . . . , e and j = 2, . . . , n.

The kernel of φ†1|0 is span{Y2, . . . , Yn}. The image of φ†1|0 is span{Xe
0 , X

e
1}, and the cokernel is

X0X1 ·H0(P1,OP1(e− 2)). So the pullback of HomOY
(EY ,KY ) is the vector space,

Homκ

(
H0(P1,OP1(e− 2)), span{Y2, . . . , Yn}

)
.

Chasing through the snake diagram associated to F , the pullback of the map θ′
φ†1,Y

: HomOY
(EY ,KY ) →

J /J 2 is the map
(Xi

0X
e−2−i
1 )∨ ⊗ Yj 7→ (Xi

0X
e−2−i
1 )∨ ⊗ Yj (70)

i.e. it is the identity map. This proves that θφ†1,Y is an isomorphism when restricted to the image
of 0 ∈ A. As mentioned above, this suffices to prove that θφ†1,Y is everywhere an isomorphism. �

Remark 6.9. In fact, via the canonical isomorphism of J /J 2 with HomOY
(EY ,KY ) induced by

the deformation theory computation, the endomorphism θφ†1,Y
is the identity map. Since this is not

used here, it is not proved.
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Notation 6.10. For every nonnegative integer d, denote by Ad the locally free OY -module,
pr∗G(Symd−1(S∨))∨, denote by Rd the locally free OY -module, R ⊗OY

pr∗GSymd(S∨), and denote
by T∨d the locally free OG-module, T∨ ⊗OG Symd(S∨).

Proposition 6.11. Using the isomorphisms from Lemma 6.8, the following hold.
(i) For each d ≥ 1, the kernel of φ†d|Y is pr∗GF

1 ⊂ Symd(V ∨)⊗κ OY .
(ii) The cokernel of φ†d|Y is canonically isomorphic to Rd−1.
(iii) The induced connecting map

θ′
φ†d,Y

: HomOY
(Rd−1, pr∗GF

1) → J /J 2 (71)

is the zero map on the subsheaf HomOY
(Rd−1, pr∗GF

2).
(iv) Identify F 1/F 2 with T∨⊗OGSymd−1(S∨), i.e. T∨d−1, and identify J /J 2 with HomOY

(pr∗GT
∨,R)

using θ′
φ†1,Y

. The following map,

θ′′
φ†d,Y

: HomOY
(Rd−1, pr∗GT

∨
d−1) → HomOY

(R, pr∗GT∨), (72)

induced by θ′
φ†d,Y

, equals the map obtained by contracting the Symd−1(S∨) factors.

Proof. (i): The sheaf Pd is defined to be π∗f∗OP(V )(d). Consider the fiber product P(S) ×G Y .
There is an induced finite, flat, surjective morphism (g, π) : C → P(S)×GY . And f∗OP(V )(d) equals
(g, π)∗pr∗P(S)OP(S)(d). Since π = prY ◦ (g, π),

Pd = (prY )∗(g, π)∗(g, π)∗pr∗P(S)OP(S)(d). (73)

There is a canonical sheaf map pr∗P(S)OP(S)(d) → (g, π)∗(g, π)∗pr∗P(S)OP(S)(d). Because (g, π) is
faithfully flat, this sheaf map is injective. Since pushforward is left exact, there is an injective sheaf
map from (prY )∗pr∗P(S)OP(S)(d) to Pd. But of course the first sheaf is just pr∗GSymd(S∨). And

the injective sheaf map Symd(S∨) → Pd is the image of φ†d|Y . Therefore the kernel of φ†d|Y is
the pullback of the kernel of Symd(V ∨) ⊗κ OG → Symd(S∨), i.e. the first filtered subsheaf F 1 of
Symd(V ∨)⊗κ OG. This proves that the kernel of φ†d|Y equals pr∗GF

1.

(ii): On P(S) there is a short exact sequence,

0 → pr∗GS(d−1,1)(S∨)⊗OP(S)(−1) → pr∗GSymd−1(S∨) → OP(S)(d− 1) → 0, (74)

where S(d−1,1) is the Schur functor as defined in [10, Sec. 6.1]. Twist this sequence by OP(S)(1) and
pullback by (g, π) to get a short exact sequence of OC-modules. Pushing forward by π yields a long
exact sequence of higher direct image sheaves. Since π : C → Y is a flat family of at-worst-nodal
curves of genus 0, R1π∗OC is zero. Therefore, the long exact sequence reduces to the following short
exact sequence,

0 → pr∗GS(d−1,1)(S∨) → pr∗GSymd−1(S∨)⊗ P1 → Pd → 0. (75)
Of course, there is a commutative diagram with exact rows:

0 → pr∗GS(d−1,1)(S∨) → pr∗GSymd−1(S∨)⊗ pr∗GS
∨ → pr∗GSymd(S∨) → 0

Id ↓ ↓ Id⊗ φ†1 ↓ φ†d
0 → pr∗GS(d−1,1)(S∨) → pr∗GSymd−1(S∨)⊗ P1 → Pd → 0

(76)

Applying the snake lemma to this diagram yields an isomorphism of the cokernel of φ†d with R ⊗
pr∗GSymd−1(S∨), i.e. Rd−1.

(iii) In the special case d = 1, (iii) follows from Lemma 6.8. Thus suppose that d > 1. The proof
of (iii) uses the fact that there is a commutative diagram of sheaves on M0,0(P(V ), e):

V ∨ ⊗K Symd−1(V ∨)⊗K O
φ†1⊗Id
−−−−→ P1 ⊗K Symd−1(V ∨)

ψG

y yψF
Symd(V ∨)⊗K O

φ†d−−−−→ Pd

(77)
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Associated to φ†1 ⊗ Id is the induced connecting map,

θ′
φ†1⊗Id,Y

: HomOY
(R⊗K Symd−1(V ∨),pr∗GT

∨ ⊗K Symd−1(V ∨)) → J /J 2. (78)

Of course this is obtained from θ′
φ†1,Y

by contracting the Symd−1(V ∨) factors. Define θ′′
φ†1⊗Id,Y

to

be the restriction of θ′
φ†1⊗Id,Y

to the subsheaf HomOY
(Rd−1,pr∗GT

∨ ⊗K Symd−1(V ∨)). By (iv) of
Lemma 5.3, there is a commutative diagram of induced connecting maps,

HomOY
(Rd−1,pr∗GT

∨ ⊗K Symd−1(V ∨))
θ′

φ
†
1⊗Id,Y

−−−−−−→ J /J 2

ψ

y yId

HomOY
(Rd−1pr∗GF

1)
θ′

φ
†
d

,Y

−−−−→ J /J 2

(79)

Since θ′
ψ†1⊗Id,Y

is obtained by contracting the Symd−1(V ∨) factors, in particular the kernel of

θφ†1⊗Id,Y contains the subsheaf HomOY
(Rd−1,pr∗GT

∨ ⊗OY
F 1). Therefore the kernel of θ′

φ†d,Y
con-

tains the image under ψ of this subsheaf. But the image under ψ is just HomOY
(Rd−1,pr∗GF

2).
Forming the quotient by this sheaf gives another commutative diagram,

HomOY
(Rd−1,pr∗GT

∨ ⊗K Symd−1(V ∨))
θ′

φ
†
1⊗Id,Y

−−−−−−→ J /J 2

ψ′′
y yId

HomOY
(Rd−1,pr∗GTd−1)

θ′′
φ
†
d

,Y

−−−−→ J /J 2

(80)

Since ψ′′ is surjective, θ′′
φ†d,Y

is the unique morphism making the above diagram commute. But

using the fact that θ′
φ†1⊗Id,Y

is obtained from contracting the Symd−1(V ∨) factors, it is clear that

the diagram also commutes when θ′′
φ†d,Y

is replaced by the map obtained from θ′
φ†1,Y

by contracting

the Symd−1(S∨) factors. Therefore θ′′
φ†d,Y

equals the map obtained from θ′
φ†1,Y

by contracting the

Symd−1(S∨) factors. �

Corollary 6.12. Regarding the restriction φd|Y : Gd|Y → Fd|Y , the following hold.
(i) The cokernel EY is canonically isomorphic to pr∗G(F 1)∨.
(ii) The kernel KY is canonically isomorphic to (Rd−1)∨.
(iii) The induced connecting map θ′φd,Y

is canonically isomorphic to the induced connecting map
θ′
φ†d,Y

.

Proof. This follows from (i) of Lemma 5.3 and Proposition 6.11. �

7. Proof of the main theorem

Fix an integer e ≥ 1.

Notation 7.1. To simplify notation, in this section denote B = M0,0(P(V ), e). For each integer
d, denote by π : Cd → B the projective Abelian cone of the coherent OB-module, Ed = Coker(φd).
When there is no risk of confusion, Cd is denoted by C.

By Lemma 6.4, Cd is the Deligne-Mumford stack parametrizing pairs ([X], [f : C → X]) of a
hypersurface of degree d, X ⊂ P(V ), together with a stable map, [f : C → X], in M0,0(X, e). In
this section the singularities of the cone Cd are described. The reader is reminded that K is an
algebraically closed field of characteristic 0.
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The simplest case is e = 1. The next two results are already known, in fact in arbitrary character-
istic [20, Thm. V.4.3]. Only that part used here is proved (or rather reproved).

Proposition 7.2. If e = 1, then B is a smooth projective scheme and for all d ≥ 1 the morphism
πd : Cd → B is a projective bundle of the expected dimension. In particular Cd is a geometrically
irreducible, smooth scheme of the expected dimension.

Proof. Since e = 1, Y equals B, which is simply the Grassmannian G. ThusR is the zero sheaf. And
by Corollary 6.12, the cokernel Ed is locally free of the expected dimension. Therefore π : C → B
is a projective bundle. �

Theorem 7.3. [20, V.4.3] If e = 1 and if d > 2n − 3, then the projection morphism hd : Cd →
PH0

(
P(V ),OP(V )(d)

)
is not surjective, i.e. the general fiber is empty. If d ≤ 2n − 3, then the

projection morphism hd is surjective, and the general fiber is a smooth scheme of the expected
dimension 2n−d−3. Moreover if d < 2n−3 and (d, n) 6= (2, 3), then the general fiber is geometrically
connected.

Proof. For the full proof, the reader should consult [20]. Only that part of the theorem used later
is proved here, namely that the general fiber is nonempty and smooth for d ≤ n − 1 and that the
general fiber is geometrically connected for d ≤ n− 2.

Suppose that d ≤ n − 1. Since Cd is irreducible of the expected dimension, hd is surjective iff the
general fiber has the expected dimension. To prove the general fiber has the expected dimension,
it suffices to find one pair ([X], [L]) consisting of a hypersurface X ⊂ P(V ) and a line L ⊂ X such
that X is smooth along L and such that H1(L,NL/X) is zero. Then the Zariski tangent space
of the fiber, i.e. H0(L,NL/X), has the expected dimension proving that on a nonempty (hence
dense) open subset of C, hd has the expected fiber dimension. Choose homogeneous coordinates
Y0, Y1, Y2, . . . , Yn on P(V ). Define L to be the vanishing locus of Y2, . . . , Yn. Define X ⊂ P(V ) to
be the hypersurface with defining equation

F :=
d+1∑
j=2

Y d+1−j
0 Y j−2

1 Yj (81)

At every point of L, either the partial derivative F2 is nonzero or the partial derivative Fd+1 is
nonzero. Therefore X is smooth along L. Moreover, by the usual exact sequence,

0 → NL/X → OL(1)n−1 F2,...,Fd+1,0,...,0−−−−−−−−−−−→ OL(d) → 0, (82)

NL/X is isomorphic to Od−1
L ⊕ OL(1)n−d−1. Therefore H1(L,NL/X) is zero proving that hd

is surjective and the generic fiber has the expected dimension. Since Cd is smooth and since
PH0(P(V ),OP(V )(d)) is smooth, it follows by generic smoothness that the generic fiber of hd is
everywhere smooth.

Next it is proved that the generic fiber of hd is connected if d ≤ n−2. In this case, by the same sort of
dimension computation as above, for a general hypersurface X ⊂ P(V ), every irreducible component
of M0,1(X, 1) surjects to X under the evaluation morphism ev : M0,1(X, 1) → X. Therefore, to
prove that M0,1(X, 1) is connected, and thus that M0,0(X, 1) is connected, it suffices to prove
that every fiber of ev is connected. Now for a given p ∈ X, the set of lines in P(V ) containing p
is canonically isomorphic to the projective space P(V/Lp), where Lp ⊂ V is the one-dimensional
vector subspace corresponding to p. Choose homogeneous coordinates so that p = [1 : 0 : · · · : 0].
Then the Taylor expansion of the defining equation F of X about the point p has the form,

F = Y d−1
0 F1(Y1, . . . , Yn) + Y d−2

0 F2(Y1, . . . , Yn) + · · ·+ Y0Fd−1(Y1, . . . , Yn) + Fd(Y1, . . . , Yn), (83)

where each Fi is a homogeneous polynomial of degree i in Y1, . . . , Yn. A line passing through
p with parametric equation [(1 − t) : tY1 : tY2 : · · · : tYn] is contained in X iff the equations
F1(Y1, . . . , Yn), . . . , Fd(Y1, . . . , Yn) are all zero. It should be observed that some of the homogeneous
equations Fi may be identically zero. Nonetheless, the common zero locus of F1, . . . , Fd in P(V/Lp)
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is an intersection of at most d hypersurfaces in a projective space of dimension n−1. In a projective
space of dimension n− 1, an intersection of at most n− 2 hypersurfaces is always connected. Since
d ≤ n−2, the common zero locus of F1, . . . , Fd is connected. Therefore every fiber of ev is connected,
proving that the fiber M0,0(X, 1) = h−1

d ([X]) is connected. �

Now suppose that e > 1. Consider the closed immersion Y ↪→ B.

Notation 7.4. Because the conormal sheaf of Y is locally free, the normal cone C is denoted by
the letter N (also to avoid confusion with the cone Cd which we are studying).

Associated to the closed immersion Y → B, there is the deformation to the normal cone (% : M →
P1, ι : Y × P1 → M,BY → M,P(N ⊕ 1) → M) as in Definition 5.5. Define Mo = M − BY . In
particular, the intersection of Mo with P(N ⊕ 1) is just N .

Let φ̃d : G̃ → FM be the elementary-transform-up of the pullback of φd as described in Lemma 5.6.
Let Ẽd be the cokernel of φ̃d|Mo and let π̃d : C̃d →Mo be the projective Abelian cone parametrizing
rank 1 locally free quotients of Ẽd. Observe that over the open subset %−1(A1) = B × A1, Ẽd is
simply pr∗BEd and C̃d is simply Cd × A1.

Lemma 7.5. Let e ≥ 2. If d+ e ≤ n, then the fiber product C̃d×Mo N is an integral, normal, local
complete intersection scheme of the expected dimension having at worst canonical singularities.

Proof. By Lemma 6.8, the normal bundle N → Y is the vector bundle associated to the locally
free sheaf HomOY

(R∨,pr∗GT ), i.e. N = M (0)(Y,R∨,pr∗GT ) in the notation of Section 3. Denote by

Ad−1 the locally free sheaf pr∗G
(
Symd−1(S∨)

)∨
, as in Notation 6.10. This is a locally free sheaf of

rank d on Y .

By Corollary 6.12, the kernel of φd|Y is the locally free sheaf

KY = Ad−1 ⊗OY
(R∨) (84)

and the cokernel EY of φd|Y fits into a short exact sequence of locally free sheaves

0 → Ad−1 ⊗OY
(pr∗GT ) → EY → pr∗G(F 2)∨ → 0. (85)

Denote the first sheaf in this sequence by E ′Y and denote the third sheaf in this sequence by A′. By
Notation 5.7, the cokernel of φ̃d on the Cartier divisor N ⊂ Mo equals the cokernel of the sheaf
map γ : π∗YKY → π∗Y EY . This uses the fact that OP(N⊕1)(1) is canonically trivialized on N , so that
all “twists” by this sheaf are canonically just “twists” by the structure sheaf. By Lemma 5.8, the
map γ is the unique map induced by θφd,Y . By (i) of Lemma 5.3, this means that γ is the transpose
of the unique map induced by θφ†d,Y . By (iii) of Lemma 6.11, the map θφ†d,Y is the map induced by
the universal homomorphism from pr∗G(T∨) to R.

Putting all the pieces together, there are two conclusions: First, the image of γ is actually the image
of a sheaf map,

γ′ : KY ⊗OY
ON → E ′Y ⊗OY

ON , (86)
so that there is a short exact sequence (which is split Zariski locally over Y ),

0 → Coker(γ′) → Coker(γ) → pr∗YA′ → 0. (87)

And second, denoting by ψ : R∨ ⊗OY
ON → pr∗GT ⊗OY

ON the universal sheaf homomorphism on
N , the sheaf map γ′ is just Id⊗ ψ,

γ′ = Id⊗ ψ : Ad−1 ⊗OY
(R∨)⊗OY

ON → Ad−1 ⊗OY
(pr∗GT )⊗OY

ON . (88)

Now the rank of R∨ is e− 1, the rank of pr∗GT is n− 1 and the rank of Ad−1 is d. By assumption,
d ≤ (n−1)−(e−1). This means that, Zariski locally over Y , the hypotheses of Proposition 3.15 hold.
So C̃d ×Mo N is a normal, integral, local complete intersection scheme of the expected dimension
having at worst canonical singularities. �
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Notation 7.6. Denote by W ⊂ B the maximal open substack over which Cd is an integral,
normal scheme of the expected dimension having at worst canonical singularities. Observe that
W ×A1 ⊂ B×A1 is the maximal open substack over which C̃d×Mo (B×A1) is an integral, normal
scheme of the expected dimension having at worst canonical singularities. Denote by W ′ ⊂ Mo

the maximal open substack over which C̃d is an integral, normal scheme of the expected dimension
having at worst canonical singularities.

Lemma 7.7. If e ≥ 2 and d + e ≤ n, then the open substack W ⊂ B contains the closed substack
Y ⊂ B.

Proof. By Lemma 7.5, by Corollary 2.7, by Proposition 2.15, and by (iii) of Corollary 4.13 applied
to N ⊂Mo, the open substack W ′ contains N .

There is one slight finesse in checking the hypothesis of (iii) of Corollary 4.13: In case n − e ≥ 2,
codimN (Ng−1) = (f − (g− 1))(g− (g− 1)) = f − g+ 1 equals (n− 1)− (e− 1) + 1 = n− e+ 1 ≥ 3.
Therefore Lemma 4.4 proves that the hypothesis of (iii) of Corollary 4.13 is satisfied.

The one remaining case is d = 1, e = n − 1. In this case, there is an ad hoc argument. The
morphism φ̃1 restricted to N is just the universal sheaf map ψ. In this special case DφN

sits inside
N ×Y P(pr∗GT ). The projection DφN

→ P(pr∗GT ) is a Zariski locally trivial bundle. Given a closed
point p ∈ Y and a one-dimensional subspace L ⊂ pr∗GT |p, the fiber over this point, considered as
a subvariety of N = M (0)(Y,R∨,pr∗GT ), equals the cone whose vertex set is Homκ(p)(R∨|p, L) and
whose quotient by the vertex set is the set of non-invertible linear maps inHomκ(p)(R∨|p,pr∗GT |p/L).
Observe that this second vector space is essentially just the vector space of square (e− 1)× (e− 1)
matrices. In the special case e = 2, the cone is just a linear space and so it is smooth. In case e ≥ 3
the vertex set has codimension (e − 1)2 − 1 ≥ 3 in the fiber of DφN

, and the singular locus of the
quotient has codimension 4 − 1 = 3: Homκ(p)(R∨|p,pr∗GT |p/L)e−3 has codimension 4. Therefore
the singular locus has codimension 3 in the fiber of DφN

. So the fiber is normal, which implies that
DφN

is normal. Therefore when d = 1 and e = n − 1, the hypotheses of (iii) of Corollary 4.13 are
again satisfied.

Of course W ′ ∩ %−1(A1) equals W × A1. Let p ∈ Y be any point and consider ι({p} × P1) ⊂ M .
By construction of the deformation to the normal cone from Definition 5.5, ι(p,∞) is the point on
the zero section of N → Y over p ∈ Y . In particular ι({p}× P1) ⊂Mo and ι(p,∞) ∈ N . Therefore
ι({p} × P1) intersects W ′. So ι({p} ×A1) intersects W ′ ∩ %−1(A1), i.e {p} ×A1 intersects W ×A1.
Therefore p ∈W . Therefore Y is contained in W . �

Theorem 7.8. If e ≥ 2 and if d+e ≤ n, then Cd is an integral, normal, local complete intersection
stack of the expected dimension having at worst canonical singularities.

Proof. By Lemma 7.7, the open substack W contains Y . Now the automorphism group GL(V ) acts
on P(V ) and thus on B. Moreover the sheaves Gd and Fd have natural GL(V )-linearizations and
the morphism φd is GL(V )-equivariant. Therefore W is a GL(V )-invariant open substack of B. So
to prove that W = B, it suffices to prove that the closure of every GL(V )-orbit intersects Y .

Let f : D → P(V ) be any stable map of genus 0 and degree e. Choose a direct sum decomposition
V = V2 ⊕ Vn−1 so that P(Vn−1) ⊂ P(V ) is disjoint from f(D). Consider the Gm-action m :
Gm × P(V ) → P(V ) given by t · (v, v′) = (v, tv′), where v ∈ V2, v

′ ∈ Vn−1. This defines an action
of a subgroup scheme of GL(V ). Acting on [f : D → P(V )] yields a 1-morphism ζ : Gm → B.
The limit as t → 0 of this action is simply the stable map g ◦ f : D → P(V2) ⊂ P(V ) where
g : P(V ) − P(Vn−1) → P(V2) is the projection map. In particular, g ◦ f is a multiple cover of the
line P(V2). Therefore the closure of the GL(V )-orbit of [f : D → P(V )] intersects Y in the point
[g ◦ f : D → P(V )]. It follows that W is all of B, i.e. Cd is an integral, normal, local complete
intersection stack of the expected dimension having at worst canonical singularities. �
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Corollary 7.9. If e ≥ 2 and if d + e ≤ n, then for a general hypersurface X ⊂ P(V ) of degree d,
the Kontsevich moduli space M0,0(X, e) is an integral, normal, local complete intersection stack of
the expected dimension (n+ 1− d)e+ (n− 3) having at worst canonical singularities.

Proof. By Theorem 7.8, Cd is integral, normal, Gorenstein and canonical. Consider the projection
hd : Cd → PH0(P(V ),OP(V )(d)). The pullback of the hyperplane linear system gives a base-point-
free linear system on Cd. By repeated application of [30, Thm. 1.13] (see also [21, Prop. 7.7]),
the general fiber of hd is a reduced, normal, local complete intersection stack having at worst
canonical singularities. The one issue that remains is connectedness, i.e. it is a priori possible
that hd : Cd → PH0(P(V ),OP(V )(d)) has a nontrivial Stein factorization. But observe that by
Corollary 7.3 (in fact by the part reproved there), the restriction of hd to Y is surjective and has
a trivial Stein factorization. So hd|Y yields a section of the Stein factorization of hd, which is
irreducible and finite over PH0(P(V ),OP(V )(d)). It follows that also the Stein factorization of hd is
trivial, i.e. the fibers of hd are connected. So the general fiber of hd is an integral, normal, local
complete intersection stack of the expected dimension having at worst canonical singularities. �

8. Singularities of M0,0(Pn, e)

In this section the Reid–Shepherd-Barron–Tai criterion is used to prove that (with a very few
exceptions) the coarse moduli spaces M0,0(Pn, e) are terminal. The same computations are used to
prove that if one carries out the deformation to the normal cone construction as in Section 7 over
the coarse moduli space (instead of the stack, as in the last section), one obtains a family whose
general fiber is the coarse moduli space of Cd and whose special fiber is a normal, Q-Gorenstein,
canonical variety. The “inversion of adjunction” conjecture then implies that Cd is itself canonical,
and therefore M0,0(X, e) is canonical for X general.

Let Γ be a finite cyclic group of order r and let ζ ∈ Homgroup(Γ,Gm) be a generator for the
character group of Γ. Let M be a finite dimensional Γ-representation over k (the field K is still of
characteristic 0, but the following definition makes sense so long as the characteristic is prime to
#Γ). There is a direct sum decomposition,

M = ⊕r−1
i=0L

⊕ai

ζi , (89)

where each Lζi is the one-dimensional representation corresponding to the character ζi.

Definition 8.1. The invariant of M with respect to ζ (after Reid–Shepherd-Barron–Tai) is

αζ(M) =
1
r

r−1∑
i=0

iai. (90)

The invariant of M is α(M) = minαζ(M) as ζ varies over all generators of the character group.

The importance of the invariant is the following theorem.

Theorem 8.2 (Reid–Shepherd-Barron–Tai criterion, [31]). Let Y be a smooth k-variety, let G be
a finite subgroup of the group of k-automorphisms of Y , and suppose that G acts without quasi-
reflections. Then the quotient variety X = Y//G is terminal (resp. canonical) iff for every cyclic
subgroup Γ ⊂ G and every closed point x ∈ Y Γ, the invariant of the Zariski tangent space to Y at
x satisfies

α(TxY ) > 1, resp. α(TxY ) ≥ 1. (91)

Corollary 8.3. Let X be a smooth, connected Deligne-Mumford stack over K. Denote by p : X → X
the coarse moduli space, and suppose that p is an isomorphism over the complement of a closed subset
of codimension ≥ 2. Then X is terminal (resp. canonical) iff for every geometric point x of X , and
for every cyclic subgroup Γ of the stabilizer group of x, the invariant of the Zariski tangent space to
X at x satisfies

α(TxX ) > 1, resp. α(TxY ) ≥ 1. (92)
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Proof. This is just a rewording of Theorem 8.2 into the language of Deligne-Mumford stacks. �

Corollary 8.4. Let X be a smooth, connected Deligne-Mumford stack over K. Let f : Y → X
be a smooth, representable 1-morphism of Deligne-Mumford stacks. Suppose that the morphism
p : X → X is an isomorphism away from codimension 2 and that X is terminal (resp. canonical).
Then the map to the coarse moduli space of Y, say q : Y → Y , is an isomorphism away from
codimension 2 and Y is terminal (resp. canonical).

Proof. Let U ⊂ X denote the maximal open substack over which p is an isomorphism. Then X −U
has codimension at least 2 in X . Since f is smooth, in particular it is flat. Therefore f−1(X − U)
has codimension at least 2 in Y. And f−1(U) is a scheme because f is representable. Therefore
q is an isomorphism when restricted to f−1(U), which shows that q is an isomorphism away from
codimension 2.

Next, apply Corollary 8.3. Let y be a geometric point of Y and let x = f(y). Because f is
representable, the homomorphism from the stabilizer group of y to the stabilizer group of x is
injective. So a cyclic subgroup Γ of the stabilizer group of y is also a cyclic subgroup of the
stabilizer group of x. By Corollary 8.3, the invariant of TxX as a Γ-representation is greater than
1 (resp. at least 1). Since f is smooth, the differential df : TyY → TxX is surjective. Therefore the
invariant of TyY is greater than or equal to the invariant of TxX . Applying Corollary 8.3 one more
time, Y is terminal (resp. canonical). �

Remark 8.5. Unfortunately, for nice representable 1-morphisms f : Y → X of smooth Deligne-
Mumford stacks that are not smooth, Corollary 8.4 often fails. For instance, if Z ⊂ X is a Zariski
closed substack that is smooth and f : Y → X is the blowing up of X along Z, it can happen that
p : X → X is an isomorphism away from codimension 2, that q : Y → Y is an isomorphism away
from codimension 2, that X is terminal (resp. canonical), but Y is not terminal (resp. canonical).
For instance, consider the action of the group of third roots of unity µ3 on affine 4-space A4 by
ω ·(X1, X2, X3, X4) = (ωX1, ωX2, ωX3, ωX4). Let Z ⊂ A4 be the variety associated to the invariant
ideal 〈X1, X2, X3〉. Let Y → A4 denote the blowing up along Z. Then f : [Y/µ3] → [X/µ3] is
a 1-morphism of smooth Deligne-Mumford stacks satisfying the hypotheses above and X//µ3 is
terminal. But Y//µ3 is not even canonical.

Let Γ be a finite cyclic group of order r and let ∆ ⊂ Γ be a subgroup of index s. Let γ : Γ → Gm be
a generator for the character group of Γ. The restriction of γ to ∆ is a generator for the character
group of ∆. The following lemma is a rewording of the argument on pp. 33–34 of [14].

Lemma 8.6. [14, pp. 33–34] Let V be a finite-dimensional representation of ∆ and let V ⊗K[∆]

K[Γ] be the induced Γ-representation. The relation between the invariant of V ⊗K[∆] K[Γ] as a
Γ-representation and the invariant of V as a ∆-representation is,

αΓ,γ

(
V ⊗K[∆] K[Γ]

)
= α∆,γ|∆(V ) +

s− 1
2

dimK(V ). (93)

Proof. Each side of the equation is additive in V , therefore it suffices to consider the case that V is
an irreducible representation, i.e. a character V = Lγ|l∆ for some integer l = 0, . . . rs − 1. Let φ be a
generator for Γ, so that φs is a generator for ∆. Let ε be a nonzero element of V . For each integer
j = 0, . . . , s− 1, denote m = −l − j·r

s and define the element εj ∈ V ⊗K[∆] K[Γ] to be,

εj =
s−1∑
i=0

γm(φi)ε⊗ φi. (94)

It is trivial to compute that εj · φ = εj · γ−m(φ). So εj spans an irreducible subrepresentation of
V ⊗K[∆]K[Γ] that is isomorphic to Lγ−m .
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This gives s different irreducible subrepresentations of V ⊗K[∆] K[Γ], which is also the dimension
as a K-vector space. So there is an irreducible decomposition,

V ⊗K[∆] K[Γ] ∼=
s−1⊕
j=0

L
γl+j· r

s
. (95)

It follows that the invariant of V ⊗K[∆] K[Γ] as a Γ representation is
1
r

[
l + (l + r

s ) + · · ·+ (l + (s− 1) rs )
]

= l/
(
r
s

)
+ s−1

2 =
α∆,γ|∆(V ) + s−1

2 dimK(V ). (96)

�

Recall that M0,0(Pn, e) ⊂ M0,0(Pn, e) is the open substack parametrizing stable maps with irre-
ducible domain, and M0,0(Pn, e) is the coarse moduli space of M0,0(Pn, e).

Proposition 8.7. Let x be a geometric point of M0,0(Pn, e) and let Γ be a subgroup of the stabilizer
group of x. Denote r = #Γ. The invariant of the Zariski tangent space to M0,0(Pn, e) at x equals

α(TxM0,0(X, e)) =
e(n+ 1)

2

(
1− 1

r

)
− 1. (97)

Except in the cases (e, n) = (2, 1) and (e, n) = (2, 2), the map p : M0,0(Pn, e) → M0,0(Pn, e) is an
isomorphism away from codimension 2. Except for the cases (e, n) = (2, 1), (2, 2), (3, 1), and (2, 3),
M0,0(Pn, e) is terminal. In the the cases (e, n) = (3, 1), (2, 3), M0,0(Pn, e) is canonical.

Proof. By the same GLn+1-invariance argument as in the proof of Theorem 7.8, it suffices to prove
the result when x is a geometric point of Y ∩M0,0(Pn, e). At such a point the Zariski tangent space
decomposes as a direct sum of the Zariski tangent space to Y and the normal bundle to Y . The
Zariski tangent space to Y further decomposes as the direct sum of the Zariski tangent space to G
and the vertical tangent bundle of prG : Y → G. And by Lemma 6.8, the normal bundle to Y is
a direct sum of n − 1 copies of R∨. What is needed is to compute the invariants (with respect to
some ζ) of the vertical tangent bundle of prG and of R∨.

The vertical tangent bundle of prG is the same as the tangent bundle of M0,0(P1, e), so suppose now
that n = 1. Let the geometric point x parametrize a stable map f : C → P1. Choose a generator
for Γ, which will be an automorphism φ : C → C such that f ◦ φ = f and such that φs = Id iff r
divides s. It is easy to show that, up to a choice of homogeneous coordinates, φ : C → C is just the
isomorphism [X0 : X1] 7→ [X0 : ξX1] for some primitive rth root of unity.

Denote by g : C → C0 the quotient of C by φ and let h : C0 → P1 be the unique morphism such
that f = h ◦ g. The Zariski tangent space to M0,0(P1, e) is just the vector space of global sections
of the torsion sheaf f∗TP1/TC . And this fits into an exact sequence,

0 −−−−→ g∗TC0/TC −−−−→ g∗h∗TP1/TC −−−−→ g∗ (h∗TP1/TC0) −−−−→ 0. (98)

Now, as a representation of Γ, g∗ (h∗TP1/TC0) is isomorphic to the tensor product (h∗TP1/TC0)⊗K
K[Γ], where the first factor is a trivial representation. In particular, the invariant with respect to
any generator ζ is just,

αζ(g∗(h∗TP1/TC0)) = 2(
e

r
− 1) ·

(
0
r

+
1
r

+ · · ·+ r − 1
r

)
= (e− r)

(
1− 1

r

)
. (99)

By direct computation, as a representation of Γ, g∗TC0/TC is isomorphic to

g∗TC0/TC
∼= L⊕2

ξ0 ⊕ L⊕1
ξ1 ⊕ L⊕1

ξr−1 ⊕
r−2⊕
i=1

L⊕2
ξi . (100)

It follows that the invariant with respect to any generator ζ is just,

αζ(g∗TC0/TC) = 2
(

0
r

+
1
r

+ · · ·+ r − 1
r

)
−
(
i

r
+
r − i

r

)
= r

(
1− 1

r

)
− 1. (101)
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Here i is the unique integer such that {ξ1, ξr−1} = {ζi, ζr−i}. Summing up, with respect to any
generator ζ,

αζ(TxM0,0(P1, e)) = e

(
1− 1

r

)
− 1. (102)

Next consider the invariant of R|x. For clarity, denote this vector space by Rf . Each of g : C → C0

and h : C0 → P1 is also a stable map of a genus 0 curve to P1. So each of these also has a
canonically associated vector space Rg, respectively Rh. As Γ representations, Rg is just K[Γ]/K1
(by direct computation), and Rh is a trivial representation of dimension e

r − 1. It is easy to
see that the relationship between these spaces is that Rf is isomorphic as a Γ-representation to
Rh ⊗K Rg ⊕Rg ⊕Rh. Therefore the invariant of Rf is

αζ(Rf ) =
e

2

(
1− 1

r

)
. (103)

This is also the invariant of R∨
f .

As mentioned above, the normal bundle of Y at x is isomorphic as a Γ-representation to a direct
sum of n− 1 copies of R∨

f . And the vertical tangent space to prG is the same as the tangent space
to M0,0(P1, e). Therefore,

αζ(TxM0,0(Pn, e)) =
(n− 1)e

2

(
1− 1

r

)
+ e

(
1− 1

r

)
− 1 =

(n+ 1)e
2

(
1− 1

r

)
− 1. (104)

For (e, n) 6= (2, 1), (2, 2), the invariant is at least 1, proving that the stabilizer group of x acts
without quasi-reflections and the coarse moduli space has canonical singularities. Moreover, except
in the extra cases (e, n) = (3, 1), (2, 3), the invariant is actually larger than 1, proving that the
coarse moduli space has terminal singularities. �

Remark 8.8. In case e = 2, n = 1, every geometric point of M0,0(P1, 2) has nontrivial stabilizer.
In fact the coarse moduli space M0,0(P1, 2) is isomorphic to the complement of a smooth plane
conic in P2 (via the branch morphism, c.f. [8]), and p : M0,0(P1, 2) → M0,0(P1, 2) is a Z/2Z-gerbe.
In case e = 2, n = 2, the coarse moduli space M0,0(P2, 2) is smooth and is isomorphic to an open
subset of the blowing up of P5 along a Veronese surface (the open subset is the complement of the
proper transform of the discriminant hypersurface). In this case the morphism p : M0,0(P2, 2) →
M0,0(P2, 2) is an isomorphism on the complement of the exceptional divisor, and over the exceptional
divisor it is a Z/2Z-gerbe.

Lemma 8.9. Let (e, n) 6= (2, 1), (2, 2), be a pair of positive integers. If at least one of e and n is
odd, then M0,0(Pn, e) is Gorenstein. If both e and n are even, then M0,0(Pn, e) is not Gorenstein.

Proof. Since (e, n) 6= (2, 1), (2, 2), p : M0,0(Pn, e) → M0,0(Pn, e) is an isomorphism away from
codimension 2. It follows from [24, Prop. 5.75] that the dualizing sheaf of M0,0(Pn, e) is the
pushforward by p∗ of the dualizing sheaf of M0,0(Pn, e). Given a geometric point x of M0,0(Pn, e),
the dualizing sheaf of M0,0(Pn, e) is invertible at p(x) iff there exists a section of the dualizing sheaf
near p(x) whose pullback to M0,0(Pn, e) is non-zero at x. Such a section corresponds to a nonzero
element in the one-dimensional vector space det(TxM0,0(Pn, e))∨ that is invariant under the action
of the stabilizer group of x. Therefore M0,0(Pn, e) is Gorenstein iff for every geometric point x
of M0,0(Pn, e) and for every cyclic subgroup Γ of the stabilizer group of x, the induced character
det(TxM0,0(Pn, e)) is trivial.

As in the proof of Proposition 8.7, it suffices to compute the character for geometric points x of
Y ∩M0,0(Pn, e). In the proof of Proposition 8.7 the characters of all relevant Γ-representations
were computed. The character of g∗ (h∗TP1/TC0) is just det(K[Γ])⊗2( e

r−1) where 2( er − 1) is the
dimension of h∗TP1/TC0 . Similarly, the character of TxMP1,e() is det(K[Γ])⊗2 (the missing Lξ1
and Lξr−1 factors tensor to give a trivial character). Finally, the character of Rg is det(K[Γ]) and
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the character of Rf
∼= (Rh ⊗K Rg) ⊕ (Rh) ⊕ (Rg) is det(K[Γ])⊗

e
r . Altogether, the character of

TxM0,0(Pn, e) is det(K[Γ])⊗(n+1) e
r .

If r is odd, then the character det(K[Γ]) is trivial so that the character of TxM0,0(Pn, e) is trivial.
But if r is even, the character det(K[Γ]) equals L

ζ
r
2

for any generator ζ of the character group of
Γ. This is a nontrivial character whose square is trivial. For r even, the character of TxM0,0(Pn, e)
is nontrivial iff e

r is odd and n + 1 is odd. Therefore if e is odd or n is odd, then the character of
TXM0,0(Pn, e) is trivial for every geometric point, i.e. M0,0(Pn, e) is Gorenstein.

On the other hand, suppose that n and e are both even. Then for any line L ⊂ Pn and any reduced
degree 2 divisor on L, the cyclic cover f : C → L of degree e branched over that divisor gives a
stable map of degree e whose stabilizer group is cyclic of order r = e. Therefore the character of
TxM0,0(Pn, e) is nontrivial, i.e. M0,0(Pn, e) is not Gorenstein. �

Proposition 8.10. Let (e, n) 6= (2, 1), (2, 2), be a pair of positive integers. If e ≥ 3 and n = 1, the
coarse moduli space M0,0(P1, e) is canonical. If (e, n) = (2, 3), the coarse moduli space M0,0(P3, 2)
is canonical. In all other cases, the coarse moduli space M0,0(Pn, e) is terminal.

Proof. The proof follows closely the argument on pp. 33–34 of [14]. As in the proof of Proposi-
tion 8.7, to prove that M0,0(Pn, e) is canonical (resp. terminal), it suffices to check that for every
geometric point x of Y and for every cyclic subgroup Γ of the stabilizer group of x, the invariant of
TxM0,0(Pn, e) is bigger than 1 (resp. at least 1). Choose some line P1 ⊂ Pn; the geometric point
x will belong to the closed substack M0,0(P1, e) ⊂ M0,0(Pn, e). The proof that the invariant of
TxM0,0(Pn, e) is bigger than 1 (resp. at least 1) proceeds by induction on the number δ of nodes of
C. The base case is when δ = 0, i.e. x is in M0,0(Pn, e), and follows from Proposition 8.7. Therefore
suppose δ > 0, and, by way of induction, suppose the result has been proved for all points with
fewer than δ nodes.

Let φ be a generator for Γ and let {q, φq, φ2q, . . . , φs−1q} be an orbit of Γ on C such that each
φiq is a node. Of course, s divides the order of Γ, which is denoted by r. The language of [4] for
stable A-graphs is used. Denote by τ the stable A-graph of f : C → P1, i.e. τ is the dual graph of
C labelled by the degree of f , and denote by M(P1, τ) the corresponding Behrend-Manin moduli
stacks (essentially this is the closed substack of M0,0(P1, e) parametrizing stable maps obtained
as specializations of deformations of f that do not smooth the nodes of C). Let E0, E1, . . . , Es−1

denote the edges of τ corresponding to the nodes q, φq, . . . , φs−1q. Let ψ : τ → σ be the maximal
contraction of τ not contracting any of the edges E0, . . . , Es−1, i.e. σ is the same as the dual graph
of a curve obtained by smoothing all the nodes of C except q, . . . , φs−1q. Then f : C → P1 gives a
geometric point of the Behrend-Manin moduli stack M(P1, σ), i.e. the moduli space of stable maps
to P1 whose dual graph has a contraction to σ.

There is a canonical 1-morphism M(P1, σ) → M0,0(P1, e) that is unramified and whose normal
sheaf is locally free. Therefore the tangent bundle of M(P1, σ) at [f : C → X] is a vector subspace
of the tangent bundle of M0,0(P1, e) at [f : C → X]. Moreover the cokernel, i.e. the normal bundle,
is precisely,

N[f ] =
s−1⊕
i=0

T ′φiq ⊗k T
′′
φiq, (105)

where T ′φiq and T ′′φiq are the tangent spaces of the two branches of C at φiq (there isn’t any canonical
ordering of the two branches; the notation T ′ and T ′′ is just for convenience).

Now suppose there exists a nonzero Γ-invariant section ε ∈ N[f ]. Then there exists a Γ-invariant
section ε̃ of T[f ]M0,0(P1, e) mapping to ε. Over an étale neighborhood of the image of [f ] in
M0,0(P1, e), the stack M0,0(P1, e) is a finite group quotient [M/G], where G is the stabilizer group
of f and M is a smooth scheme. In particular the invariant locus MΓ ⊂ M is a smooth closed
subscheme whose Zariski tangent space at [f ] is the Γ-invariant subspace of T[f ]M0,0(P1, e). In
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particular there exists a smooth, connected curve B ⊂ MΓ such that B contains the point [f ] and
the tangent space to B at [f ] equals span(ε̃). Since ε̃ has nonzero image in N[f ], the curve B is not
contained in the image of M(P1, σ). So a general point of B parametrizes a stable map with fewer
nodes than f : C → P1. On the other hand, the invariant of the Zariski tangent space is constant
in connected families. So by the induction hypothesis, the invariant of f equals the invariant of a
general point of B which is greater than 1 (resp. at least 1).

By the last paragraph, the proof reduces to the case when the Γ-invariant subspace of
⊕s−1

i=0 T
′
φiq ⊗

T ′′φiq is trivial for every node q of C. Let ∆ ⊂ Γ denote the subgroup generated by φs. There
is an action of ∆ on T ′q ⊗ T ′′q , and the Γ-representation N[f ] is simply the induced representation(
T ′q ⊗ T ′′q

)
⊗K[∆] K[Γ]. By Lemma 8.6, the invariant of N[f ] as a Γ-representation is simply,

αγ(N[f ]) = l · s
r

+
s− 1

2
, (106)

where the character T ′q ⊗ T ′′q of ∆ is γ|l∆ for l = 0, . . . , rs − 1.

If s ≥ 3, then already the invariant of N[f ] is greater than 1. Thus assume that s = 1 or s = 2. If
s = 2, then the invariant of N[f ] is 1

2 + l · 2
r . If s = 1, then the invariant is l · 1

r . The only possibilities
that don’t give an invariant larger than 1 are,

(i) every node of C is fixed by φ, or
(ii) there is precisely one pair of nodes q, φq not fixed by φ.

These possibilities are considered in turn.

(i): Suppose first that every node of C is fixed by φ. Then every irreducible component of C is
stabilized by φ (as a set, not pointwise). Since φ is nontrivial, there exists an irreducible component
Ci of C on which the action of φ is nontrivial. Let C1 be an irreducible component so that the
restriction φ|C1 has maximal order r1 (i.e. φ|mC1

= Id iff r1 divides m). The irreducible component
C1 contains at least one node of C and contains no more than two nodes of C since the only
automorphism of P1 fixing three points is the identity. In particular, C1 is not contracted by f .

Let τ be the stable A-graph of C and let ψ : τ → σ be the maximal contraction not contracting the
edges corresponding to nodes on C1. There is a morphism M(P1, σ) →M0,0(P1, e) and the normal
bundle, as mentioned above, is the direct sum over nodes q on C1 of T ′q ⊗T ′′q . Let ξ : σ ↪→ τ ′ be the
combinatorial morphism that is the inclusion of the maximal sub-A-graph of τ whose only vertex
is v1, the vertex of the irreducible component of C1. More simply, τ ′ is the graph with the single
vertex v1 corresponding to C1 and with one tail for each node of C contained in C1 (i.e. either
one or two tails depending on whether C1 contains one or two nodes of C). Let f1 : (C1, q) → P1

or f1 : (C1, q, q
′) → P1 be the marked stable map that is the restriction of f to the irreducible

component C1 marked by the nodes of C contained on C1.

There is a commutative diagram of 1-morphisms:

M(σ,P1) −−−−→ M(σ,Pn)

M(ξ,P1)

y yM(ξ,Pn)

M(τ ′,P1) −−−−→ M(τ ′,Pn)

(107)

The horizontal arrows are closed immersions and the vertical arrows are smooth. So the invariant
of the tangent space T[f ]M(σ,Pn) is greater than or equal to the invariant of the tangent space
T[f1]M(τ ′,Pn). Let e1 be the degree of f1 : C1 → P1. As a Γ-representation, T[f1]M(τ ′,Pn) is
the direct sum of T[f1]M0,0(Pn, e1) with the tangent space TqC1 (or TqC1 ⊕ Tq′C1 if C1 contains

two nodes). By Proposition 8.7, the invariant of T[f1]M0,0(Pn, e1) is e1(n+1)
2

(
1− 1

r1

)
− 1. Except

for the four cases (e1, n) = (2, 1), (2, 2), (2, 3), (3, 2), this invariant is already greater than 1, hence
the invariant of T[f ]M0,0(Pn, e) is also greater than 1. To finish the proof in case (i), each case
(e1, n) = (2, 1), (2, 2), (2, 3), (3, 2) is considered.
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(i); (e1, n) = (2, 3), (3, 2): If (e1, n) = (2, 3) or (3, 2) the invariant e1(n+1)
2

(
1− 1

r1

)
− 1 equals 1.

And then the invariant of TqC is either 1
2 for (2, 3) or 1

3 or 2
3 for (3, 2). Therefore the invariant of

M(τ ′,Pn) is greater than 1. So the invariant of T[f ]M0,0(Pn, e) is also greater than 1.

(i); (e1, n) = (2, 2): If (e1, n) = (2, 2), the invariant of T[f1]M0,0(P2, 2) is 1
2 . The invariant of TqC1

is also 1
2 . So if there are two nodes on C1, the invariant is already greater than 1. If there is only

one node, so far the invariant only equals 1. But also the invariant of T ′q ⊗ T ′′q , is positive. So the
invariant of T[f ]M0,0(Pn, e) is greater than 1.

(i); (e1, n) = (2, 1): Finally, suppose (e1, n) = (2, 1). The invariant of T[f1]M0,0(P1, 2) is zero.
The invariant of TqC1 is 1

2 . If there are two nodes on C1, then the invariant is 1 and then the
contributions of T ′q ⊗ T ′′q and T ′q′ ⊗ T ′′q′ will make the total invariant of T[f ]M0,0(P1, e) greater than
1. Therefore assume there is only one node. Then the invariant of T[f1]M(P1, σ) equals 1

2 . Consider
the Γ-representation T ′q ⊗ T ′′q . Let C2 denote the irreducible component of C that intersects C1 at
q. Because the order r1 is the maximal among all orders of φ|Ci , either φ acts trivially on C2 or the
order of φ|C2 is 2. In the second case, both T ′q and T ′′q give characters of Γ that are γ

r
2 , the unique

character of order 2. So the tensor product is the trivial character. This violates the assumption
that for every node there are no non-zero Γ-invariant sections of

⊕s−1
i=0 T

′
φiq ⊗ T ′′φiq. Therefore φ

acts trivially on C2 and the invariant of T ′q ⊗ T ′′q is 1
2 . So the invariant of T[f ]M0,0(P1, e) is at least

1
2 + 1

2 = 1. Unfortunately, this is the best one can do – it is quite easy to write down a degree
e ≥ 3 cover of P1 with reducible domain where the invariant equals 1. So for n = 1 and e ≥ 3, the
conclusion is that the invariant is ≥ 1, i.e. M0,0(P1, e) has canonical singularities (of course we still
have to dispense with the case that there are two nodes q, φq interchanged by φ!).

(ii): This finishes the analysis when φ fixes all nodes. Next suppose that there is exactly one
pair of nodes {q, φq} which are not fixed by φ. The node q disconnects C into a union of two
connected subcurves, denoted Dq and C2. Let C2 denote the subcurve containing φq. The node
φq disconnects C2 into a union of two connected subcurves, denoted Dφq and C1. Let C1 denote
the subcurve containing q. So C1 is the maximal connected subcurve of C containing q and φq on
which both q and φq are nonsingular points. Observe that φ(Dq) = Dφq, φ(Dφq) = Dq and both
Dq and Dφq are smooth. Let Cq ⊂ C1 be the irreducible component containing q and let Cφq ⊂ C1

be the irreducible component containing φq. Observe that φ(Cq) = Cφq and φ(Cφq) = Cq. There
are two possibilities depending on whether Cq (and thus Cφq) is contracted by f or not.

(ii); Cq is contracted: Suppose that Cq is contracted by f and suppose that Cq 6= Cφq. Then Cq
contains at least three nodes, q and two other nodes. By assumption, each of the two other nodes is
fixed by φ. Also φ(Cq) = φ(Cφq). Since Cq is not equal to Cφq, then Cq ∩Cφq is at most one node.
But then the second of the other nodes cannot be fixed by φ. This is a contradiction. Therefore if
Cq is contracted by f , then Cq = Cφq and Cq contains at least one other node q′ of C1 that is one
of the two fixed points of φ|Cq

. Also, since φ|Cq
contains the orbit {q, φq} of order 2, φ|Cq

has order
2.

The node q′ disconnects C1 into Cq and a connected subcurve C0. Suppose that φ|C0 is the identity.
Then the Γ-representation T ′r ⊗ T ′′r has invariant 1

2 . Combined with the invariant 1
2 + l·r

2 coming
from the nodes {q, φq}, the total invariant is greater than 1 so that the invariant of T[f ]M0,0(Pn, e)
is greater than 1. Next suppose that φ|C0 is not the identity. Then by the same analysis as in (i),
the invariant coming from C0 is at least 1

2 (except when (e1, n) = (2, 1), in which case the invariant
is at least 1). Combined with the invariant 1

2 + l·r
2 coming from the nodes {q, φq}, the total invariant

is greater than 1 so that the invariant of T[f ]M0,0(Pn, e) is greater than 1.

(ii); Cq is not contracted: The final case is when f does not contract Cq. By the same analysis
as above, Dq and Dφq are irreducible and are not contracted by f . Let τ be the stable A-graph
of f and let ψ : τ → σ be the maximal contraction not contracting the edges corresponding to
the nodes q and φq. Then σ has three vertices: v0 corresponding to the connected subcurve Dq,
v1 corresponding to the connected subcurve C1, and v2 corresponding to the connected subcurve
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Dφq. The stable map f : C → P1 determines a point of the Behrend-Manin stack, M(Pn, σ). The
Zariski tangent space of M(Pn, σ) at [f ] is a Γ-sub-representation of the Zariski tangent space of
M0,0(Pn, e) and the cokernel is (T ′q ⊗ T ′′q )⊕ (T ′φq ⊗ T ′′φq).

Let ξ : σ ↪→ τ ′ be the maximal disconnected subgraph of σ containing the vertices v0 and v2, i.e. the
stable A-graph with vertices v0 and v2 and one flag attached to each vertex corresponding to the
marked point q and φq respectively. There is an associated 1-morphism M(Pn, σ) → M(Pn, τ ′).
Because C1 is not contracted by f , this 1-morphism is smooth. In particular, the invariant of
T[f ]M(Pn, σ) is at least as large as the invariant of T[f ]M(Pn, τ ′). Of course M(Pn, τ ′) is simply a
product of the two factors from v0 and v2, M0,1(Pn, e1) ×M0,1(Pn, e1), where e1 is the degree of
f |Dq

: Dq → Pn. The Zariski tangent space is then a direct sum of the two factors from v0 and v2.
The automorphism φ permutes the two factors and φ2 acts as an automorphism of each factor.

Let γ be a generator for the character group of Γ = 〈φ〉. Then also γ is a generator for the character
group of 〈φ2〉. The rank of TM0,1(Pn, e1) equals (n+ 1)e1 + (n− 3) + 1. Consider the invariant α′γ
of this 〈φ2〉-representation with respect to γ. One contribution comes from the marked point q; this
contribution is positive. So the invariant is positive. By Lemma 8.6, the invariant of TM(Pn, τ ′)
as a Γ-representation with respect to γ is,

αγ(TM(Pn, τ ′)) ≥ α′γ + ((n+ 1)e1 + (n− 3) + 1)
1
2
. (108)

The right-hand-side of the equation is a minimum when n = 1 and e1 = 1, in which case it is
still larger than 1

2 (since α′γ is positive). So the invariant of M(Pn, σ) is larger than 1
2 . And the

invariant of
(
T ′q ⊗ T ′′q

)
⊕
(
T ′φq ⊗ T ′′φq

)
is larger than 1

2 . Therefore the invariant of T[f ]M0,0(Pn, e)
is larger than 1. �

Next consider the coarse moduli space of Cd. As in Section 7, let (% : M → P1, ι : Y × P1 →
M,By →M,P(N⊕1) →M) denote the deformation to the normal cone associated to the inclusion
Y ↪→ B, where B = M0,0(Pn, e). Let π̃d : C̃d →Mo denote the projective Abelian cone.

Lemma 8.11. If e ≥ 3 and if d+ e ≤ n, then the map to the coarse moduli space

C̃d ×Mo N → (C̃d ×Mo N)coarse (109)

is an isomorphism away from codimension 2, and the coarse moduli space (C̃d ×Mo N)coarse is a
normal, Q-Gorenstein variety with only canonical singularities.

Proof. Of course C̃d ×Mo N is normal and Gorenstein, therefore the coarse moduli space is normal
and Q-Gorenstein. To see that the coarse moduli map is an isomorphism away from codimension
2 and that the coarse moduli space is canonical, recall the resolution of the Deligne-Mumford
stack, C̃d ×Mo N . The resolution is constructed as follows. First of all, the projection N → Y is
M (0)(Y,R∨,pr∗GT ). By Proposition 3.12, there is a 1-morphism of stacks ue−1,0 : M (e−1) → N such
that M (e−1) → Y is representable and smooth. There is a projective bundle C ′d over M (e−1) and
a morphism C ′d → C̃d ×Mo N that is a resolution of singularities. Observe that also C ′d → Y is
representable and smooth. By Corollary 3.14, the relative canonical divisor of C ′d → C̃d ×Mo N is
effective.

Now consider the coarse moduli spaces Y → Ycoarse, C ′d → C ′d,coarse and C̃d ×Mo N → (C̃d ×Mo

N)coarse. By Proposition 8.10, the morphism Y → Ycoarse is an isomorphism away from codimension
2 and Ycoarse is canonical (this corresponds to the case (e, 1) where e ≥ 3). By Corollary 8.4, also
C ′d → C ′d,coarse is an isomorphism away from codimension 2 and C ′d,coarse is canonical. There is an
open substack U ⊂ C̃d ×Mo N such that C ′d → C̃d ×Mo N is an isomorphism over U and such that
the complement of U has codimension at least 2. And the morphism U → Ucoarse is an isomorphism
away from codimension 2. Therefore also the morphism

C̃d ×Mo N → (C̃d ×Mo N)coarse (110)
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is an isomorphism away from codimension 2.

Because C ′d → C ′d,coarse is an isomorphism away from codimension 2, the relative canonical divisor
of C ′d,coarse → (C̃d ×Mo N)coarse equals the image of the canonical divisor of C ′d → C̃d ×Mo N .
Therefore the relative canonical divisor is effective. But also C ′d,coarse is canonical. It follows that
also (C̃d ×Mo N)coarse is canonical. This finishes the proof. �

Remark 8.12. If e = 2 and d+ 3 ≤ n, the second part of the lemma also holds by a slightly more
ad hoc argument (note that this inequality is worse than the inequality d+ e ≤ n). In this case Y is
a Z/2Z-gerbe over its coarse moduli space. And N = M (0) is a vector bundle of 1×(n−1)-matrices.
So the only stratum to blow up to form M (1) is the zero section. Doing this, the Z/2Z-invariant
locus of M (1) is the whole exceptional divisor E. A simple computation shows that the 1-morphism
C ′d → M (1) preserves all stabilizer groups of geometric points (i.e. the induced homomorphisms
of stabilizer groups are isomorphisms). Therefore the morphism C ′d → C ′d,coarse is a morphism to
a smooth variety ramified of ramification index 1 along the preimage of E, i.e. it does not satisfy
the first part of the lemma. However, it is straightforward to compute that the relative canonical
divisor of C ′d,coarse → (C̃d ×Mo N)coarse is n−3−d

2 Ecoarse. Therefore (C̃d ×Mo N)coarse is canonical
when d+ 3 ≤ n.

9. Conjectures about M0,0(X, e)

Conjecture 9.1 (Inversion of Adjunction, Conj. 7.3 [21]). Let X be a normal variety, S a normal
Cartier divisor and B =

∑
biBi a Q-divisor. Assume that KX + S +B is Q-Cartier. Then

totaldiscrep(S,B|S) = discrep(Center ∩ S 6= ∅, X, S +B), (111)

where the notation on the right means that we compute the discrepancy using only those divisors
whose center on X intersects S.

Conjecture 9.2. If e ≥ 3 and d+e ≤ n, the coarse moduli space Cd,coarse is a normal, Q-Gorenstein
variety with only canonical singularities. If e = 2 and d+ 3 ≤ n, the coarse moduli space Cd,coarse
is a normal, Q-Gorenstein variety with only canonical singularities.

Conjecture 9.3. If e ≥ 3, d + e ≤ n, and if X ⊂ Pn is a general hypersurface of degree d, then
M0,0(X, e) is a normal, Q-Gorenstein variety with only canonical singularities. If e = 2, d+ 3 ≤ n

and if X ⊂ Pn is a general hypersurface of degree d, then M0,0(X, 2) is a normal, Q-Gorenstein
variety with only canonical singularities.

Proposition 9.4. Suppose that d+ e ≤ n.
(i) If e ≥ 2 then the coarse moduli space (Cd)coarse is normal, Q-Gorenstein and Kawamata

log terminal.
(ii) If e ≥ 3 and d+ e ≤ n, then the coarse moduli map

Cd → (Cd)coarse (112)

is an isomorphism away from codimension 2.
(iii) Conjecture 9.1 implies Conjecture 9.2.

Proof. (i): First of all, the stack Cd is normal and Gorenstein with canonical singularities by
Theorem 7.8. So the coarse moduli space Cd,coarse is normal and Q-Gorenstein. And by [21, Prop.
3.16], Cd,coarse is Kawamata log terminal.

(ii): Denote by Z ⊂ Cd the closed substack where the map Cd → (Cd)coarse is not an isomorphism.
Denote by Z̃ ⊂ C̃d the closed substack where the map C̃d → (C̃d)coarse is not an isomorphism.
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Clearly Z̃ ∩ ρ−1(A1) = Z × A1. Of course Z is invariant under the action of GLn+1. By the same
argument as in the proof of Theorem 7.8, every irreducible component of Z̃ has non-empty inter-
section with the fiber over ∞, i.e. C̃d ×Mo N . By Lemma 8.11, if e ≥ 3, then every irreducible
component of Z̃ ∩ (C̃d ×Mo N) has codimension at least 2. By Krull’s Hauptidealsatz, every ir-
reducible component of Z̃ has codimension at least 2. Therefore every irreducible component of
Z ⊂ Cd has codimension at least 2.

(iii): As in the proof of Theorem 7.8, let W ⊂M0,0(Pn, e) be the largest open substack over which
Cd,coarse is canonical. This is a GLn+1-invariant open set, so to prove that W is all of M0,0(Pn, e),
it suffices to prove that W contains the image of Y .

Let C̃d → Mo be as in Section 7. Let Mo → Mo
coarse and C̃d → C̃d,coarse be the coarse moduli

spaces. Let W ′ ⊂ Mo
coarse be the largest open subset over which C̃d,coarse is canonical. Of course

W ′ ∩ %−1(A1) = W × A1. Now by Lemma 8.11, the Cartier divisor (C̃d ×Mo N)coarse in C̃d,coarse
is normal and canonical. Assuming Conjecture 9.1 is true, there is an open subvariety of C̃d,coarse
containing (C̃d×MoN)coarse that is canonical, i.e. W ′ contains %−1(∞). By the same argument as in
the proof of Theorem 7.8, W contains the image of Y , i.e. W is all of M0,0(Pn, e). So Conjecture 9.2
is true. �

Proposition 9.5. Let d, e and n be positive integers such that d+ e ≤ n. Let X ⊂ Pn be a general
hypersurface of degree d.

(i) If e ≥ 2, the coarse moduli space M0,0(X, e) is normal, Q-Gorenstein and Kawamata log
terminal.

(ii) If e ≥ 3, the coarse moduli map

M0,0(X, e) →M0,0(X, e) (113)

is an isomorphism away from codimension 2.
(iii) Conjecture 9.2 implies Conjecture 9.3.

Proof. This is the same argument as in the proof of Corollary 7.9. �

Remark 9.6. In (ii), if e = 2 then the coarse moduli map fails to be an isomorphism precisely on
the locus Y ∩M0,0(X, 2). By direct computation, for X general this locus has dimension 2n−d−1.
And M0,0(X, 2) has dimension 3n − d − 2. Therefore, if d + 3 ≤ n, then the coarse moduli map
M0,0(X, 2) →M0,0(X, 2) is an isomorphism away from codimension 2.

10. The canonical class on M0,r(X, e)

Let X ⊂ Pn be a complete intersection of c hypersurfaces of degrees d = (d1, . . . , dc). Associ-
ated to the inclusion morphism, there is a 1-morphism of Kontsevich moduli spaces M0,r(X, e) →
M0,r(Pn, e). This 1-morphism is representable and is a closed immersion. The image is the zero
locus of a section σ of a locally free sheaf Pd in the small étale site of M0,r(Pn, e).

If σ is a regular section, the dualizing sheaf ω′ on M0,r(X, e) can be expressed as the pullback
from M0,r(Pn, e) of the tensor product ω⊗ det(Pd), where ω is the dualizing sheaf on M0,r(Pn, e).
Pandharipande computed the Q-Picard group of M0,r(Pn, e) in [29]. And he computed the Q-
divisor class of ω in [28]. The purpose of this section is to compute the class det(Pd) in terms of
the standard generators of the Q-Picard group, and thereby compute the Q-divisor class of ω′ in
the case that σ is a regular section.

Let p : C →M0,r(Pn, e) denote the universal curve. Let f : C → Pn denote the universal morphism.
For each integer d, form the pullback sheaf f∗OPr (d). Define Ed to be the pushforward p∗(f∗OPr (d).
More generally, given an ordered sequence d = (d1, . . . , dc) of integers, defineOPn(d) to beOPn(d1)⊕
· · · ⊕ OPn(dc) and define Pd to be Pd1 ⊕ · · · ⊕ Pdc .
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There is a pullback map on global sections,

H0 (Pn,OPn(d)) → H0 (C, f∗OPn(d)) → H0
(
M0,r(Pn, e),Pd

)
. (114)

Denote the composite map by f∗. More generally, given an ordered sequence d, there is a pullback
map on global sections,

f∗ : H0 (Pn,OPn(d)) → H0
(
M0,r(Pn, e),Pd

)
. (115)

Lemma 10.1. If d ≥ 0, then Pd is a locally free sheaf of rank de + 1 in the small étale site
of M0,r(Pn, e) and Rip∗ (f∗OPn(d)) is zero for i > 0. More generally, if d = (d1, . . . , dc) and
d1, . . . , dc ≥ 0, then Pd is a locally free sheaf of rank |d|e + c, where |d| = d1 + · · · + dc and
Rip∗ (f∗OPn(d)) is zero for i > 0.

Proof. This has been proved in other places, in particular it is proved as part of the the proof of [15,
Lemma 4.5]. �

Now let d1, . . . , dc be a sequence of positive integers, and let s = (s1, . . . , sc) be a global section
of H0 (Pn,OPn(d)). Let X ⊂ Pn be the zero locus of s. Let σ denote the pullback section f∗s ∈
H0
(
M0,r(Pn, e),Pd

)
.

Lemma 10.2. The zero locus of σ as a closed substack of M0,r(Pn, e) is the image of the closed
immersion M0,r(X, e) →M0,r(Pn, e).

Proof. This is also proved as part of the proof of [15, Lemma 4.5]. �

Since Pd is a locally free sheaf of rank e|d| + c, and since M0,r(Pn, e) is smooth, σ is a regular
section iff the codimension of M0,r(X, e) in M0,r(Pn, e) equals e|d|+c. In this case, the generalized
version of the adjunction theorem proves the dualizing sheaf ω′ on M0,r(X, e) is the pullback of the
sheaf ω ⊗ det(Pd), where ω is the dualizing sheaf on M0,r(Pn, e).

In [29], Pandharipande described the Q-Picard group Pic
(
M0,r(Pn, e)

)
⊗Q. For simplicity, assume

that n > 1 and e > 0 and also that (n, e) 6= (2, 2). The divisor class H is defined as the image of a
positive generator h2 ∈ CH2(Pn) under the composition

CH2(Pn) f∗−→ CH2(C)⊗Q p∗−→ CH1(M0,r(Pn, e))⊗Q. (116)

For each of the r sections gi : M0,r(Pn, e) → C, the divisor class Li is defined as the image of
a positive generator h ∈ CH1(Pn) under pullback by f ◦ gi. Finally, for each weighted partition
P = (A∪B, eA, eB) of ({1, . . . , r}, e), there is the class ∆P of the corresponding boundary stratum
of M0,r(Pn, e). A weighted partition is a datum consisting of a partition A ∪ B of {1, . . . , r}, and
of a pair of nonnegative integers eA, eB such that eA + eB = e, satisfying the condition |A| ≥ 2
(resp. |B| ≥ 2) if eA = 0 (resp. eB = 0). The corresponding boundary stratum is the closure of
the locally closed substack parametrizing stable maps whose dual graph is of type (A ∪B, eA, eB).
Pandharipande’s result is that the Q-Picard group is a Q-vector space with basis,

{H} ∪ {Li|i = 1, . . . , r} ∪ {∆P |P = (A ∪B, eA, eB)}. (117)

In the case that r = 0, for i = 0, . . . ,
[
e
2

]
, denote by Di,0 the Q-divisor class ∆P where P =

(∅∪ ∅, i, e− i). And for r > 0, for i = 0, . . . ,
[
e
2

]
and j = 0, . . . , r denote by Wi,j the set of weighted

partitions {(A ∪B, eA, eB)||A| = j, eA = i}. Denote by Di,j the Q-divisor class

Di,j =
∑

P∈Wi,j

∆P . (118)

In [28], Pandharipande computed the Q-divisor class of the dualizing sheaf ω in terms of the basis
above.
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Proposition 10.3 (Pandharipande, Prop. 2 [28]). The dualizing sheaf ω on M0,0(Pn, e) has Q-
divisor class,

ω =
1
2e

−(n+ 1)(e+ 1)H+
[ e
2 ]∑
i=1

((n+ 1)(e− i)i− 4e)Di,0

 . (119)

Proposition 10.4 (Pandharipande, Prop. 3 [28]). The first Chern class of the dualizing sheaf ω
on M0,r(Pn, e) has Q-divisor class,

C1(ω) =
1

2e2
[−(n+ 1)(e+ 1)e+ 2r]H− 1

2e

n∑
p=1

Lp +

1
2e2

[ e
2 ]∑
i=0

r∑
j=0

[
(n+ 1)e(e− i)i+ 2e2j − 4eij + 2ri2 − 4e2

]
Di,j .

It remains to compute the Q-divisor class of the first Chern class C1(Pd). First compute for each
integer d ≥ 0, the first Chern class C1(Pd). This computation is an application of the Grothendieck-
Riemann-Roch formula [9, Thm. 15.2]. Observe that p is a representable morphism between smooth
Deligne-Mumford stacks with projective coarse moduli space. So one can deduce Grothendieck-
Riemann-Roch for p from Grothendieck-Riemann-Roch for the coarse moduli spaces using [34].
Alternatively, one can use the Grothendieck-Riemann-Roch theorem of Toen [33].

By Lemma 10.1, the element in K-theory, Rp![f∗OPn(d)] equals [Pd]. So, by the Grothendieck-
Riemann-Roch formula,

ch[Pd] = p∗ (f∗ch[OPn(d)] ∩ todd(p)) . (120)

Denote by h ∈ CH1(Pn) the first Chern class of OPn(1). Then, up to terms in CH3(Pn),

ch[OPn(d)] = 1 + dh+
d2

2
h2 + . . . (121)

By [13, Section 3.E], up to terms in CH3(C)⊗Q,

todd(p) = 1− 1
2
C1(ωp) +

1
12
(
η + C1(ωp)2

)
+ . . . , (122)

where η is the Q-divisor class of the ramification locus of p. By [29, Lemma 2.1.2], p∗
(
η + C1(ωp)2

)
equals zero. Therefore, up to terms in CH2(M0,r(Pn, e))⊗Q,

p∗ (f∗ch[OPn(d)] ∩ todd(p)) =

p∗

(
df∗(h)− 1

2
C1(ωp)

)
+
d2

2
p∗f

∗(h2)− d

2
p∗ (f∗(h) ∩ C1(ωp)) .

Clearly p∗(f∗(h)) is just e and p∗(C1(ωp)) is just −2. By definition, p∗f∗(h2) is the divisor class H.

Lemma 10.5. In the Q-Picard group of M0,r(Pn, e),

p∗ (f∗(h) ∩ C1(ωp)) =
1
d

−H+
[ e
2 ]∑
i=1

r∑
j=0

(e− i)iDi,j

 . (123)

Proof. Denote by α the difference of the right-hand-side of the equation from the left-hand-side.
The proposition is that α equals 0 in the Q-Picard group.

The method of proof is the same as in [29, Section 1.2]. Consider the class S of all pairs (B, ζ)
where B is a smooth complete curve, ζ : B → M0,r(Pn, e) is a 1-morphism and such that (B, ζ)
satisfies,
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(i) for the pullback of the universal curve, pζ : Cζ → B, Cζ is a smooth surface,
(ii) the general fiber of pζ is a smooth, rational curve,
(iii) every singular fiber of pζ has exactly two irreducible components, and
(iv) blowing down one irreducible component in each singular fiber yields a ruled surface over

B.

In [29], it is proved that for any nonzero divisor class β in the Q-Picard group of M0,r(Pn, e), there
is a pair (B, ζ) in S such that ζ∗(β) has nonzero degree on B. So to prove the proposition, it suffices
to prove that for every pair (B, ζ) in S, ζ∗(α) has degree zero.

Suppose (B, ζ) is in S. Let (E1∪E′1, . . . , Em∪E′m) denote the irreducible components of the singular
fibers of pζ . Let s : B → Cζ denote a section of pζ not intersecting any of E1, . . . , Em (by (iv), such
a section exists), and let S denote s(B). Let F denote any smooth fiber of pζ . In the group of
numerical equivalence classes, N1(Cζ), the classes [S], [F ], [E1], . . . , [Em] give a basis for N1(Cζ) as
a free Z-module.

Denote k = −deg([S] ∩ [S]). By straightforward computation,

deg([F ] ∩ [F ]) = 0
deg([F ] ∩ [S]) = 1
deg([F ] ∩ [Ei]) = 0
deg([S] ∩ [Ei]) = 0
deg([Ei] ∩ [Ei]) = −1
deg([Ei] ∩ [Ej ]) = 0, i 6= j

(124)

By the adjunction formula,
(
ζ∗ωp ⊗OCζ

(Ei)
)
|Ei

∼= ωEi
. Therefore, deg (ζ∗C1(ωp) + [Ei]) ∩ [Ei] =

−2, i.e. deg(ζ∗C1(ωp)∩[Ei]) = −1. Similarly,
(
ζ∗ωp ⊗OCζ

(F )
)
|F ∼= ωF . Therefore deg (ζ∗C1(ωp) + [F ])∩

[F ] = −2, i.e. deg(ζ∗C1(ωp) ∩ [F ]) = −2. Finally, by adjunction
(
ζ∗ωp ⊗OCζ

(S)
)
|S is isomorphic

to the relative dualizing sheaf of pζ |S : S → B. But this is an isomorphism, so the relative dualizing
sheaf is just OS . Therefore deg (ζ∗C1(ωp) + [S]) ∩ [S] = 0, i.e. deg(ζ∗C1(ωp) ∩ [S]) = k. Putting
this all together, the numerical equivalence class of ζ∗C1(ωp) equals

ζ∗C1(ωp) = −2[S]− k[F ] +
m∑
i=1

[Ei]. (125)

Denote l = deg(ζ∗f∗(h)) ∩ [S]. For each i = 1, . . . ,m, define ei = deg(ζ∗f∗(h) ∩ [Ei]). By a similar
computation as above, the numerical equivalence class of ζ∗f∗(h) equals

ζ∗f∗(h) = e[S] + (l + ek)[F ]−
m∑
i=1

ei[Ei]. (126)

Thus, deg(ζ∗C1(ωp) ∩ ζ∗f∗(h)) = −2l − ek +
∑m
i=1 ei. Similarly, deg(ζ∗f∗(h) ∩ ζ∗f∗(h)) = 2el +

e2k−
∑m
i=1 eei+

∑m
i=1 ei(e− ei), i.e. −edeg(ζ∗C1(ωp)∩ ζ∗f∗(h))+

∑m
i=1 ei(e− ei). Finally, observe

that,

deg

ζ∗ [ e
2 ]∑
i=1

r∑
j=0

i(e− i)Di,j

 =
m∑
i=0

ei(e− ei). (127)

In conclusion,

degζ∗p∗ (C1(ωp) ∩ f∗(h)) = −1
e
deg(ζ∗H) +

1
e

[ e
2 ]∑
i=1

r∑
j=0

i(e− i)deg(ζ∗Di,j), (128)

just as required. �
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Proposition 10.6. OnM0,r(Pn, e), the Q-divisor class of the first Chern class of Pd = p∗(f∗OPn(d))
equals,

C1(Pd) =
d

2e

(ed+ 1)H−
[ e
2 ]∑
i=1

r∑
j=0

i(e− i)Di,j

 . (129)

More generally, for d = (d1, . . . , dc), the Q-divisor class of the first Chern class of Pd = p∗(f∗OPn(d))
equals,

C1(Pd) =
1
2e

(
c∏

k=1

(edk + 1)

)( c∑
k=1

dk

)
H+

(
c∑

k=1

dk
edk + 1

) [ e
2 ]∑
i=1

c∑
j=0

i(e− i)Di,j

 . (130)

Proof. Substituting the result from Lemma 10.5 into the Grothendieck-Riemann-Roch formula
yields, up to terms in CH2(M0,r(Pn, e))⊗Q,

ch[Pd] = (ed+ 1) +
d2

2
H+

d

2e

H−
[ e
2 ]∑
i=1

r∑
j=0

i(e− i)Di,j

+ . . . (131)

Since ch[Pd] = rank(Pd) + C1(Pd) + . . . , the first part of the proposition follows.

Since Pd
∼= ⊕ck=1Pdi , we have the formula

C1(Pd) =

(
c∏

k=1

rank(Pdk
)

)
c∑

k=1

C1(Pdk
)

rank(Pdk
)
. (132)

Substituting the first part of the proposition gives the second part of the proposition. �

The following corollaries follow immediately from Proposition 10.6. They are stated separately for
notational convenience.

Let s ∈ H0(Pn,OPn(d)) be a section with zero locus X ⊂ Pn. Consider the locally free sheaf Pd
on M0,0(Pn, e). Denote by σ = f∗s the induced section of Pd; the closed substack M0,0(X, e) ⊂
M0,0(Pn, e) is the zero locus of σ.

Corollary 10.7. If the section σ = f∗s of Pd is a regular section, i.e. if M0,0(X, e) has the
expected codimension ed+ 1 in M0,0(Pn, e), then the Q-divisor class of the first Chern class of the
dualizing sheaf on M0,0(X, e) equals,

1
2e

((d2 − n− 1)e− (n+ 1− d)
)
H+

[ e
2 ]∑
i=1

((n+ 1− d)i(e− i)− 4e)Di,0

 . (133)

Let d = (d1, . . . , dc) be a sequence of positive integers. Let s ∈ H0(Pn,OPn(d)) be a section with
zero locus X ⊂ Pn. Consider the locally free sheaf Pd on M0,r(Pn, e). Denote by σ = f∗s the
induced section; the closed substack M0,0(X, e) ⊂M0,0(Pn, e) is the zero locus of σ.

Corollary 10.8. If the section σ = f∗s is a regular section, i.e. M0,r(X, e) has the expected
codimension e|d|+c in M0,r(Pn, e), then the Q-divisor class of the first Chern class of the dualizing
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sheaf on M0,r(X, e) equals,

1
2e2

[
e

(
c∏

k=1

edk + 1

)(
c∑

k=1

dk

)
+ 2r − (n+ 1)(e+ 1)

]
H− 2

e

r∑
j=1

Lj +

r∑
j=0

jD0,j +
1

2e2

[ e
2 ]∑
i=1

r∑
j=0

[(
c∏

k=1

edk + 1

)(
c∑

k=1

edk
edk + 1

)
i(e− i)+

(n+ 1)ei(e− i) + 2e2j − 4eij + 2ri2 − 4e2
]
Di,j

Lemma 10.9. Let X ⊂ Pn be a projective scheme.
(i) If every geometric generic point of M0,0(X, e) parametrizes a stable map mapping bira-

tionally to its image, then the pullback of the Q-divisor class H in the Q-Picard group of
M0,0(X, e) is big. Moreover, the pullback of this divisor class to the seminormalization of
M0,0(X, e) is Cartier and base-point-free.

(ii) If every geometric generic point of M0,0(X, e) parametrizes a an a-normal smooth rational
curve in X, then the pullback of the Q-divisor class C1(Pa) is an effective Cartier divisor.

(iii) If every geometric generic point of M0,0(X, e) parametrizes a stable map with irreducible
domain, then for i = 1, . . . ,

[
e
2

]
, the pullback of Di,0 is an effective Q-Cartier divisor.

Proof. (i): To prove (i), replace M0,0(X, e) by its seminormalization M0,0(X, e)sn. Consider the
universal curve p : C → M0,0(X, e)sn and the universal morphism f : C → X. Form the closed
image subscheme C ⊂ M0,0(X, e)sn × X of (p, f). Now C is a well defined family of algebraic
cycles in the sense of [20, Defn. I.3.10]. By [20, Thm. I.3.21], there is a Chow variety Chow1,e(X)
and an induced morphism M0,0(X, e)sn → Chow1,e(X), the Kontsevich-Chow morphism. By the
construction in [20, Section I.3.23], there is an ample invertible sheaf on Chow1,e(X) such that H
is the pullback of this ample invertible sheaf. By the hypothesis that every geometric generic point
of M0,0(X, e) parametrizes a stable map that maps birationally to its image, the Kontsevich-Chow
morphism is generically finite. Therefore H is base-point-free and big.

(ii): Let W ⊂ H0(Pn,OPn(a)) be a general vector subspace of dimension ae+1. There is an induced
map W ⊗C OM0,0(X,e)

→ Ea and the first Chern class is simply the locus where this map fails to be
an isomorphism. By the assumption that every geometric generic point of M0,0(X, e) parametrizes
an a-normal stable map which, there is no irreducible component of M0,0(X, e) contained in this
locus. Therefore this locus is an effective Cartier divisor.

(iii): Finally, by construction the boundary divisors are effective Q-Cartier divisors on M0,0(Pn, e).
If no irreducible component of M0,0(X, e) is contained in the boundary, then the pullbacks of the
boundary divisors are effective Q-Cartier divisors on M0,0(X, e). �

Corollary 10.10. Let X ⊂ Pn be a general hypersurface of degree d.
(i) If d < min(n− 3, n+1

2 ) and d2 ≥ n+ 2, then for e >> 0 the canonical divisor of M0,0(X, e)
is big.

(ii) If d < min(n − 6, n+1
2 ) and d2 + d ≥ 2n + 2, then for every e > 0 the canonical divisor of

M0,0(X, e) is big.
In particular, if also e ≥ 3 and d+ e ≤ n or e = 2 and d+ 3 ≤ n, then Conjecture 9.3 implies that
M0,0(X, e) is of general type.

Proof. When d < n+1
2 , then [15, Prop. 7.4] implies that M0,0(X, e) satisfies the hypotheses of (i)

and (iii) of Lemma 10.9. Combining this with the formula from Corollary 10.7 gives (i) and (ii).

Finally, by Proposition 9.5 and Remark 9.6, if e ≥ 3 and d + e ≤ n or if e = 2 and d + 3 ≤ n,
then the coarse moduli map M0,0(X, e) → M0,0(X, e) is an isomorphism away from codimension
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2 so that the canonical bundle of M0,0(X, e) equals the canonical bundle of M0,0(X, e). Therefore
Conjecture 9.3 implies that M0,0(X, e) is of general type. �
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