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Abstract. We prove that for n > 2 and d < n+1
2

, a general complex hyper-
surface X ⊂ Pn of degree d has the property that for each integer e the scheme
Re(X) parametrizing degree e, smooth rational curves on X is an integral, local
complete intersection scheme of “expected” dimension (n + 1− d)e + (n− 4).

The techniques used in the proof include:
(1) Classical results about lines on hypersurfaces including a new result

about flatness of the projection map from the space of pointed lines.
(2) The Kontsevich moduli space of stable maps, M0,r(X, e). In particular

we use the deformation theory of stable maps, properness of the stack
M0,r(X, e), and the decomposition of M0,r(X, e) described in [2].

(3) A version of Mori’s bend-and-break lemma.

1. Summary

1.1. Brief Summary. All schemes we consider will be C-schemes and all mor-
phisms will be morphisms of C-schemes. All (absolute) products will be over C.

For a projective scheme X over C along with an ample line bundle L we de-
fine Re(X) to be the open subscheme of the Hilbert scheme Hilbet+1(X/k) which
parametrizes smooth rational curves of degree e lying in X.
Theorem 1.1. Let n > 2 be an integer and let d be a positive integer such that
d < n+1

2 . For a general hypersurface X ⊂ Pn of degree d and for every integer e ≥ 1,
the scheme Re(X) is an integral, local complete intersection scheme of dimension
(n+ 1− d)e+ (n− 4).

The idea of the proof is as follows. There is an embedding of Re(X) into the
smooth scheme Re(Pn). Denote by π : Ue(Pn) → Re(Pn) the universal family of
rational curves in Pn and by ρ : Ue(Pn) → Pn the evaluation morphism. Then
Re(X) is the scheme of zeroes of a section of the locally free sheaf π∗ρ∗OPn(d).
Thus to prove that Re(X) is a local complete intersection scheme, it suffices to
prove that the codimension of Re(X) in Re(Pn) equals the rank of π∗ρ∗OPn(d).

The remainder of the proof is a “deformation and specialization” argument: we
embed the non-proper scheme Re(X) as an open subscheme of a proper scheme
which is still modular, i.e. we choose a “modular compactification”. Then we show
that every generic point in Re(X) specializes to a point in the “boundary” of the
compactification. We use deformation theory to study the irreducible components
of the boundary of the compactification. In particular we show that a general
point of each irreducible component of the boundary is a unibranch point of the
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compactification whose local ring is reduced and has the expected dimension. This
reduces the proof to a combinatorial argument.
1.2. Detailed Summary.

In the next few paragraphs we will give a detailed summary of the proof. Our
compactification consists of the embedding of Re(X) as an open subscheme in the
Kontsevich moduli space M0,0(X, e) parametrizing stable maps to X. We recall
the partition of M0,0(X, e) into locally closed subsets defined in [2]; we call this
partition the Behrend-Manin decomposition (our partition differs slightly from that
in [2]). In particular, the image of Re(X) is a dense open subset of a component
of this partition. We identify certain basic components as those components of the
partition parametrizing stable maps such that each irreducible component of the
domain curve is mapped to a line in X.

We prove a new result about lines on X. We define the incidence correspondence
of pointed lines in X:

F0,1(X) = {(p, l)|p a point, l a line, p ∈ l ⊂ X}. (1)

We prove that for a general hypersurface X ⊂ Pn of degree d ≤ n−1, the projection
morphism F0,1(X)→ X is flat of relative dimension n−d−1. From this theorem it
easily follows that each basic component B is an integral scheme whose general point
is a unibranch point of M0,0(X, e) at which M0,0(X, e) is reduced of dimension
(n+1−d)e+(n−4). Thus for each basic component B there is a unique irreducible
component M(B) of M0,0(X, e) which contains B, and M(B) is reduced and has
dimension (n+ 1− d)e+ (n− 4).

Using a version of the bend-and-break lemma of Mori, we prove that every irre-
ducible component of M0,0(X, e) is of the form M(B) for some basic component
B. Using this fact and results about flatness, we bootstrap to prove that each
evaluation map M0,r(X, e) → X is flat of the expected dimension and is gener-
ically unobstructed. This implies that each M0,r(X, e) (including r = 0) has the
expected dimension and is generically smooth. ThusM0,r(X, e) is a reduced, local
complete intersection stack of the expected dimension and it only remains to prove
that M0,r(X, e) is irreducible, i.e. it remains to prove that all of the irreducible
components M(B) are actually equal.

To prove that all of the irreducible components M(B) are equal, we observe that
there is a combinatorially defined equivalence relation defined on the set of basic
components B such that equivalent basic components, B ∼= B′ satisfy M(B) =
M(B′). Thus we are reduced to a combinatorial argument which proves that all
basic components are equivalent.

Along the way we generalize the strategy of proof above so that it could apply to
smooth projective schemes X other than hypersurfaces X ⊂ Pn of degree d < n+1

2
(this is made completely explicit for complete intersections in Pn). One is reduced
to proving

(1) The evaluation morphismM0,1(X, e)→ X is flat, generically unobstructed
and the general fiber is geometrically irreducible.

(2) For each positive integer e at most the threshold degree of X, the evaluation
morphism M0,1(X, e)→ X is flat of the expected dimension.

(3) For each positive integer e at most the threshold degree of X, the stack
M0,0(X, e) is irreducible.

2



The most difficult condition to verify seems to be (2), but it is our hope that this
can be verified for a larger class of Fano schemes X than the hypersurfaces above.

In [8], Kim and Pandharipande proved irreducibility and rationality of the stacks
M0,r(X,β) when X is a homogeneous variety for a linear algebraic group (and β
is a numerical equivalence class of curves on X). In particular, when X is a linear
or quadric hypersurface in Pn, with n ≥ 4, it follows from [8, Corollary 1] that
M0,r(X, e) is irreducible and from [8, Theorem 3] thatM0,r(X, e) is rational. This
paper can be seen as a generalization of the irreducibilty result [8, Corollary 1] to
hypersurfaces X ⊂ Pn of degree roughly d ≤ n

2 . In a forthcoming paper, [6], we give
a partial generalization of the rationality result of [8, Theorem 3] to hypersurfaces
X ⊂ Pn of degree roughly d ≤

√
n.

1.3. Notation. Given a C-vector space W , PW denotes the projective space
Proj(⊕d≥0S

d(W ∗)) which parametrizes one-dimensional linear subspaces of W (not
one-dimensional quotient spaces of W ). Given any integers k ≤ n, G(k, n) denotes
the Grassmannian which parametrizes k-dimensional linear subspaces of Cn. For
a triple of integers k ≤ l ≤ n, F ((k, l), n) denotes the partial flag variety which
parametrizes partial flags V1 ⊂ V2 ⊂ Cn of linear subspaces with dim(V1) = k and
dim(V2) = l.
1.4. Acknowledgments. The authors would like to thank Tom Graber, Ravi
Vakil, Andreas Gathmann, Olivier Debarre, and especially Johan de Jong for many
useful discussions.

2. Lines on Hypersurfaces

We denoteW = H0(Pn,OPn(d)) so that PW parametrizes degree d hypersurfaces
X ⊂ Pn. Let X ⊂ PW × Pn denote the universal family of degree d hypersurfaces
in Pn. For each degree d hypersurface X ⊂ Pn, denote by F1(X) the subscheme of
G(2, n + 1) which parametrizes lines L ⊂ X ⊂ Pn. Denote by F ((1, 2), n + 1) the
partial flag variety parametrizing pairs (p, L) where L ⊂ Pn is a line and p ∈ L is
a point. Denote by F0,1(X) the subscheme of F ((1, 2), n + 1) which parametrizes
pairs (p, L) with p ∈ L ⊂ X ⊂ Pn.

Similarly, let F1(X ) ⊂ PW × G(2, n + 1) denote the subscheme parametrizing
pairs (X,L) with L ∈ F1(X), and let F0,1(X ) ⊂ PW × F ((1, 2), n + 1) denote
the subscheme parametrizing triples (X, p, L) with (p, L) ∈ F0,1(X). There are
projection morphisms

π0 : PW × F ((1, 2), n+ 1)→ PW, (2)
π1 : PW × F ((1, 2), n+ 1)→ Pn, (3)

π2 : PW × F ((1, 2), n+ 1)→ G(2, n+ 1) (4)

By construction, the morphism (π0, π1) : F0,1(X ) → PW × Pn factors through
X ⊂ PW ×Pn. Denote by ρ : F0,1(X )→ X the induced morphism. For a particular
hypersurface X ∈ PW , denote by ρX : F0,1(X)→ X the fiber of ρ.

The main result of this section is the following theorem:

Theorem 2.1. Let d be a positive integer with d ≤ n−1. For a general hypersurface
X ∈ PW the morphism ρX : F0,1(X)→ X is flat of relative dimension n− d− 1.

We give the proof in the remainder of this section. From now on we assume that
d is given such that d ≤ n− 1.
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Denote by O the structure sheaf of PW×F ((1, 2), n+1) and denote by OF the O-
module which is the pushforward of the structure sheaf of F0,1(X ). OnG(2, n+1) we
have a universal rank 2 subbundle of O⊕n+1

G(2,n+1). Denote by S the pullback under π2

of this universal subbundle to PW ×F ((1, 2), n+1). And denote by U the pullback
under π0 of the universal rank 1 subbundle OPW (−1) ⊂ H0(Pn,OPn(d)) ⊗C OPW .
By restricting a section of H0(Pn,OPn(d)) to a line L ⊂ Pn parametrized by a point
[L] ∈ G(2, n + 1), we get a map U → Symd(S∨). By adjunction, this gives rise to
a map Symd(S) ⊗O U → O, whose image is exactly the ideal sheaf of F0,1(X ). In
other words, there is a partial resolution of coherent sheaves:

Symd(S)⊗O U
σ−−−−→ O −−−−→ OF −−−−→ 0. (5)

In other words, F0,1(X ) is the zero scheme of the global section O → Symd(S∨)⊗O
U∨ which is the transpose of σ.

Since Symd(S) ⊗O U is locally free of rank d + 1, every irreducible component
of X has codimension at most d + 1 in PW × F ((1, 2), n + 1). Therefore, every
(nonempty) fiber of ρ has dimension at least n− d− 1. We define U ⊂ X as a set
to be

U =
{
(X, p) ∈ X | dim(ρ−1(X, p)) ≤ n− d− 1

}
. (6)

It follows by upper semicontinuity of the fiber dimension that U is a Zariski open
subset of X , and we give it the corresponding structure of open subscheme of X .
A priori U might contain points (X, p) ⊂ X for which ρ−1(X, p) is empty. But
by [9, exercise V.4.6], it follows that ρ is surjective (also this exercise rederives the
statement above about dimensions of fibers).

Notice that the projection morphism π0 : X → Pn is a projective bundle
whose fiber over p ∈ Pn is identified, as a subscheme of PW , with the hyper-
plane parametrizing X ∈ PW with p ∈ X. In particular, X is a smooth k-scheme.
Given the map σ above, we can form the Koszul complex of locally free O-modules
in the usual way. By [10, Theorem 17.4 (iii)(4)], this complex is acyclic over U .
Therefore the fibers of ρ over U , considered as subschemes of the appropriate fiber
of π1 : F ((1, 2), n+ 1)→ Pn, all have equal Hilbert polynomial. Since U is smooth,
it follows from [7, Theorem III.9.9] that ρ is flat over U .

Let Y ⊂ F0,1(X ) denote the complement of U with the induced, reduced scheme
structure. Theorem 2 is equivalent to the statement that π0|Y : Y → PW is not
surjective. Denote by e the codimension of Y in X . Since the fiber dimension of
X → PW is n− 1, to prove that Y fails to dominate PW , it suffices to prove that
e > n− 1. In the remainder of this section we will prove that e > n− 1.

On Pn let Q denote the locally free quotient sheaf of O⊕n+1
Pn by OPV (−1). The

dual injection Q∨ ↪→
(
O⊕n+1

Pn

)∨
can be considered as a filtration of

(
O⊕n+1

Pn

)∨
. The

dth symmetric product of this filtration is a filtration of W ⊗C OPn :

W ⊗C O = F 0,d ⊃ F 1,d ⊃ · · · ⊃ F d,d ⊃ F d+1,d = 0. (7)

Here F i,d is the locally free subsheaf of W ⊗C O which is the image of the multi-
plication map

Symd−i
(
O⊕n+1

Pn

)∨ ⊗OPn SymiQ∨ →W ⊗C O. (8)

The associated graded sheaves of this filtration Gi,d = F i,d/F i+1,d are canonically
isomorphic to the sheaves OPn(d− i)⊗OPn SymiQ∨.

In particular, notice that F 1,d is simply the kernel of the evaluation map W ⊗C
OPn → OPn(d), i.e. the vector bundle parametrizes pairs (Φ, p) where Φ ∈ W is
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such that Φ(p) = 0. We identify a nonzero section Φ ∈ W , up to nonzero scaling,
with the hypersurface it defines X = V (Φ). Then the associated projective bundle
PF 1,d inside PW × Pn is the closed subscheme parametrizing pairs (X, p) with
p ∈ X, i.e. PF 1,d = X . To prove the inequality e > n − 1 from above, it suffices
to prove that for each p ∈ Pn (equivalently for any p ∈ Pn by homogeneity) the
intersection Y ∩ π−1

0 (p) ⊂ X has codimension greater than n− 1 in π−1
0 (p). In the

remainder of this section we will prove this.
Observe the filtration above is not split on Pn. But we can find a covering of

Pn by open affine subschemes Aα ⊂ Pn over which we do have a splitting (for
example, the standard covering by complements of coordinate hyperplanes). Here
by splitting we mean an isomorphism of bundles over Aα

s : W ⊗C OAα
−−−−→ ⊕d

j=0OPn(d− j)⊗OPn SymjQ∨|Aα
(9)

which maps F i,d|Aα
to the subbundle⊕d

j=iOPn(d−j)⊗OPn SymjQ∨|Aα
and such that

the induced isomorphism Gi,d|Aα
→ OPn(d−i)⊗OPn SymiQ∨|Aα

is the isomorphism
from above.

Given an open affine Aα ⊂ Pn we can form the projective bundle PAα
(F 1,d|Aα

)
over Aα. Given a splitting s on Aα, denote by

∆j(s) ⊂ PAα(F 1,d|Aα) (10)

the closed subscheme which parametrizes pairs (Φ, x), x ∈ Aα,Φ ∈ F 1,d|x such
that the jth component of s(Φ) is zero. Thus ∆0(s) is all of PAα(F 1,d|Aα). And,
considering PAα(F 1,d|Aα) as an open subscheme of X , ∆1(s) is the intersection of
PAα(F 1,d|Aα) with the singular locus of the projection morphism π0 : X → PW .
Although ∆0(s) and ∆1(s) are independent of the choice of s, the same is not true
for ∆i(s) with i > 1. The next result follows immediately from the definition of
the ∆j(s).

Lemma 2.2. For j > 0 the codimension of ∆j(s) in PAα(F 1,d|Aα) equals

rank
(
OPn(d− j)⊗OPn SymjQ∨

)
=
(
n− 1 + j
n− 1

)
. (11)

In particular, for j > 0 the codimension of ∆j(s) in PAα(F 1,d|Aα) is at least
n − 1 + j > n − 1. For each open subscheme Aα ⊂ PV , each splitting s, and each
point p ∈ Aα, define the locally closed subscheme

Yp,s :=
(
Y ∩ π−1

0 (p)
)
− ∪d

j=1

(
∆j(s) ∩ π−1

0 (p)
)
. (12)

To establish that e > n − 1, it suffices to prove that the codimension of Yp,s as a
subscheme of π−1

0 (p) has codimension greater than n− 1. In the remainder of this
section we prove this inequality.

On the complement of the closed subset ∆(s) := ∪d
j=1 (∆j(s)) there is a mor-

phism

PAα

(
F 1,d|Aα

)
−∆(s)

β−→
d∏

j=1

PAα

(
OPn(d− j)⊗OPn SymjQ∨

)
|Aα . (13)

We identify the space

PAα

(
OPn(d− j)⊗OPn SymjQ∨

)
|Aα (14)

with the scheme parametrizing degree j hypersurfaces in fibers of the projection
morphism PAα

Q|Aα
→ Aα. Thus β assigns to each suitable pair ([Φ], p) a sequence
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of hypersurfaces in PQ|p. Denote this sequence by (X1, . . . , Xj , . . . , Xd). Also,
denote by X = X1 ∩ · · · ∩Xd the intersection of these hypersurfaces.

Lemma 2.3. If we denote by X the hypersurface in PV corresponding to Φ, then
X1 ∩ · · · ∩Xd is the fiber of p ∈ X under ρX : F0,1(X)→ X.

Proof. This is most easily seen by passing to local coordinates. Let (x0, . . . , xn)
be a system of homogeneous coordinates on PV (i.e. a basis for V ∨) and let p
be the point with homogeneous coordinates [0, . . . , 0, 1]. We define a splitting s
as follows: for each degree d homogeneous polynomial Φ in (x0, . . . , xn) we have a
unique decomposition

Φ = Φd + Φd−1xn + · · ·+ Φd−ix
i
n + · · ·+ Φ0x

d
n (15)

where each Φi is a homogeneous polynomial of degree i in (x0, . . . , xn−1). Then
the fiber of F 1,d at p consists of those polynomials such that Φ0 = 0 and β(Φ) =
(Φd, . . . ,Φ1). For any line L passing through p there is a unique point of the form
y = (a0, . . . , an−1, 0) contained in L. Let P1 → Pn be the morphism given by

(t0, t1) 7→ (t1a0, t1a1, . . . , t1an−1, t0 + t1an). (16)

The image of this morphism is just L. Substituting into Φ yields the polynomial
on P1 given by

td0Φd(a0, . . . , an−1) + · · ·+ td−i
0 ti1Φd−i(a0, . . . , an−1) + . . .

+t0td−1
1 Φ1(a0, . . . , an−1).

The line L is contained in X iff this polynomial is identically zero iff each of the
terms Φi(a0, . . . , an) is zero. One can show that the homogeneous ideal generated
by the terms Φi is independent of our particular splitting. �

In particular, we conclude that every fiber of β which intersects Y is contained
in Y. Therefore the codimension of Yp,s in π−1

0 (p) equals the codimension of the
subvariety

β(Y) ⊂
d∏

j=1

P
(
OPn(d− j)⊗O SymjQ∨

)
|p. (17)

By construction, β(Y) is the locus parametrizing sequences of hypersurfaces in
PQ|p, (X1, . . . , Xd), of degrees 1, . . . , d respectively such that the intersection

X(1,...,d) := X1 ∩ · · · ∩Xd (18)

has dimension greater than n − d − 1. So we have reduced Theorem 2.1 to the
following theorem:

Theorem 2.4. Let Q be a vector space over k of dimension n and let d be an
integer such that 1 ≤ d ≤ n− 1. Let Pd denote the scheme

∏d
j=1 PSymjQ∨, which

parametrizes d-tuples (X1, . . . , Xd) of hypersurfaces Xi ∈ PQ of degree i. Denote
by Dd the closed subscheme of Pd which parametrizes sequences (X1, . . . , Xd) such
that

dim
(
X(1,...,d)

)
> n− d− 1. (19)

The codimension of Dd in Pd is greater than n− 1.
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Proof. We will prove this by induction on d. Consider first the case d = 1. Since
D1 = ∅ and the dimension of Pd = PQ∨ is n− 1, the result is true for d = 1.

Let Ud denote the open subscheme of Pd which is the complement of Dd. Then
for 1 ≤ d ≤ n − 2, Ud+1 is contained in Ud × PSymd+1Q∨. To see this, note
that if X(1,...,d) has dimension larger than n − d − 1, then X1,...,d+1 is nonempty
and has dimension greater than n − d − 2: it is nonempty since Xd+1 is ample,
it has dimension larger than n − d − 1 by the Hauptidealsatz. So we see that the
codimension of Dd+1 in Pd+1 is the minimum of the codimension of Dd in Pd and
the codimension of Dd+1∩(Ud×PSymd+1Q∨) in Ud×PSymd+1Q∨. So by induction
we are reduced to showing that the codimension of Dd+1 ∩ (Ud × PSymd+1Q∨) in
Ud × PSymd+1Q∨ is larger than n− 1.

Now suppose that (X1, . . . , Xd, Xd+1) is a point inDd+1∩(Ud×PSymd+1Q∨). By
assumption every irreducible component of X(1,...,d) has dimension n−d− 1. Since
also X(1,...,d+1) has dimension n − d − 1, we conclude that there is an irreducible
component C ⊂ X(1,...,d) such that C ⊂ Xd+1. If X(1,...,d) = C1 ∪ · · · ∪ Cr is
the irreducible decomposition, then the fiber of Dd+1 ∩ (Ud × PSymd+1Q∨) over
(X1, . . . , Xd) (which we consider as a subscheme of PSymd+1Q∨) is just the union
of i = 1, . . . , r of the set Bi ⊂ PSymd+1Q∨ parametrizing hypersurfaces Xd+1 such
that Ci ⊂ Xd+1. We are reduced to showing that the codimension of each Bi in
PSymd+1Q∨ is greater than n− 1. We prove this in a lemma:

Lemma 2.5. Let Y ⊂ PQ be an irreducible subscheme such that dimY = n−d−1.
Let B(Y ) ⊂ PSymd+1Q∨ be the locus of hypersurfaces Xd+1 such that Y ⊂ Xd+1.
The codimension of B(Y ) is greater than n− 1.

Proof. Let Λ ⊂ PQ be a (d−1)-plane which is disjoint from Y . Choose coordinates
on PQ, (x0, . . . , xn−1) with respect to which Λ = Z(xd, . . . , xn−1). Let Gm denote
the multiplicative group Spec C[t, t−1]. Let µ : Gm×PQ→ PQ be the group action
given by

µ(t, (x0, . . . , xd−1, xd, . . . , xn−1)) = (t−1x0, . . . , t
−1xd−1, txd, . . . , txn−1). (20)

Since the Hilbert scheme of PQ is proper, the valuative criterion implies that the
closed subscheme

µ−1(Y ) ⊂ Gm × PQ (21)
which is flat over Gm, extends over 0 to yield a closed subscheme

Y ⊂ A1 × PQ (22)

which is flat over A1. It is easy to see that the fiber of Y over 0 is a scheme whose
reduced scheme is just

Z(x0, . . . , xd−1) ⊂ PQ. (23)
Now we can form the family

B ⊂ A1 × PSymd+1Q∨,Bt = B(Yt). (24)

Over Gm the fibers of B are isomorphic. It follows by upper semicontinuity that
for t 6= 0 we have dim(Bt) ≤ dim(B0). And of course we have

B0 = B(Y0) ⊂ B (Z(x0, . . . , xd−1)) . (25)

So we are reduced to proving the lemma for the special case Y = Z(x0, . . . , xd−1).
The set B of hypersurfaces Xd+1 ⊂ PQ which contain Z(x0, . . . , xd−1) is just the
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projectivization of the kernel of the surjective linear map

H0(PQ,OPQ(d+ 1))→ H0(Y,OY (d+ 1)).

So the codimension of B in PQ equals

dimCH
0(Y,OY (d+ 1)) =

(
n

d+ 1

)
.

For d+ 1 ≤ n− 1 (which is one of our hypotheses) we see that
(

n
d+1

)
≥ n > n− 1.

We conclude that the codimension of B(Y ) in PSymd+1Q∨ is greater than n − 1.
This proves the lemma. �

By the above lemma, we conclude that the codimension of eachBi in PSymd+1Q∨

is greater than n− 1. So we have proved Theorem 2.4 �

Since we had reduced Theorem 2.1 to Theorem 2.4, we have proved Theorem 2.1.
While we are discussing results about lines on hypersurfaces, let us mention two

other results about lines on hypersurfaces.
Lemma 2.6. [9, exercise V.4.4.2] For general X and a general line L ⊂ X, the
normal bundle NL/X is of the form O⊕d−1

L ⊕OL(1)⊕n−1−d.
Theorem 2.7. [9, Theorem V.4.3.2] For general X, the Fano scheme F1(X) is
smooth. Therefore F0,1(X) is smooth. By generic smoothness, the general fiber of
F0,1(X)→ X is smooth.

3. Stable A-graphs and Stable Maps

We follow the notation from [2] regarding stable A-graphs. However, we shall
only need to use genus 0 trees.
3.1. Graphs and Trees.
Definition 3.1. A graph τ is a 4-tuple (Fτ ,Wτ , jτ , ∂τ ) defined as follows:

(1) Fτ is a finite set called the set of flags
(2) Wτ is a finite set called the set of vertices
(3) jτ : Fτ → Fτ is an involution
(4) ∂τ : Fτ →Wτ is a map called the evaluation map.

In addition we have the auxiliary definitions
(1) the set of tails Sτ ⊂ Fτ is the set of fixed points of jτ
(2) the set of edges Eτ is the quotient of Fτ \ Sτ by jτ
(3) for a vertex v ∈Wτ , the valence of v is defined to be val(v) = #(∂−1(v)).

We shall often write Flag(τ) in place of Fτ , Vertex(τ) in place of Wτ , Tail(τ) in
place of Sτ , Edge(τ) in place of Eτ , and f in place of jτ (f).

We can associate to a graph its geometric realization |τ | which is a CW-complex
defined as follows. The set of 0-cells of |τ | is

|τ |0 = Vertex(τ) t Tail(τ). (26)

The set of 1-cells of |τ | is

|τ |1 = Edge(τ) t Tail(τ). (27)

If [0, 1] is a 1-cell associated to an edge
{
f, f
}
, the point 0 is glued to the 0-cell ∂f ,

and the point 1 is glued to the 0-cell ∂f . If [0, 1] is the 1-cell associated to a tail f ,
the point 0 is glued to the 0-cell ∂f , and the point 1 is glued to the 0-cell f .
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Definition 3.2. A tree is a connected graph such that H1(|τ |,Z) = 0, i.e. a graph
which contains no closed loops.

One important tree is the empty tree λ∅, i.e. the tree such that Vertex(λ∅) = ∅.
For each nonnegative integer r define λr to be the tree with one vertex, Vertex(λr) =
{v}, and with r flags (all of which are tails), Tail(λr) = {f1, . . . , fr}. Also, for each
pair of nonnegative integers (r1, r2), define λr1,r2 to be the connected tree with two
vertices v1, v2, with r1 tails attached to v1 and with r2 tails attached to v2.

Definition 3.3. An A-graph is a pair (τ, βτ ) where τ is a tree and

β : Vertex(τ)→ Z≥0 (28)

is a map called the A-structure. We shall often abbreviate (τ, βτ ) by just writing
τ . We say that an A-graph τ is stable if for each vertex v ∈ Vertex(τ) such that
βτ (v) = 0, there are at least 3 distinct flags f ∈ Flag(τ) such that ∂f = v (i.e. the
valence of v is at least 3).

One important A-graph is the empty graph, τ∅. This is the unique A-graph whose
underlying graph is λ∅. For each pair of nonnegative integers r and e, define τr(e)
to be the unique A-graph whose underlying graph is λr and such that β(v) = e.
Obviously τr(e) is stable iff either r ≥ 3 or e > 0. For each pair of pairs (r1, r2)
and (e1, e2) where r1, r2, e1 and e2 are nonnegative integers, define τr1,r2(e1, e2) to
be the unique A-graph whose underlying graph is λr1,r2 , such that β(v1) = e1 and
such that β(v2) = e2.

There is a category whose objects are the stable A-graphs. The morphisms in
this category are each a composition of two basic types of morphisms: contractions
and combinatorial morphisms, c.f. [2] for the precise definitions. Essentially a con-
traction of A-graphs φ : τ → σ is a map from the vertices of τ onto the vertices of
σ which maps adjacent vertices to adjacent vertices (here two vertices are adjacent
if they are equal or if they are connected by an edge). And a combinatorial mor-
phism τ ←↩ σ is the inclusion of a subgraph σ into a graph τ . The functor which
associates to a stable A-graph the corresponding Behrend-Manin stack is covariant
for contractions. But it is contravariant for combinatorial morphisms. Therefore
we think of a combinatorial morphism τ ←↩ σ as a morphism from τ to σ (which
explains our terminology τ ←↩ σ for combinatorial morphisms).

Particularly important are morphisms of graphs which remove tails. For each
stable A-graph τ we define r>0(τ) to be the stable A-graph obtained by removing
every tail f ∈ Tail(τ) such that β(∂f) > 0. We define τ ←↩ r>0(τ) to be the
canonical combinatorial morphism. For each stable A-graph τ we define r0(τ) to
be the stabilization of the A-graph obtained by removing all tails f ∈ Tail(τ) such
that β(∂f) = 0. Technically the canonical morphism of graphs from τ to r0(τ)
consists of both a combinatorial morphism and a contraction. But we shall denote
it by τ ←↩ r0(τ) just as if it were a combinatorial morphism. Finally, we define
r(τ) := r>0(r0(τ)) = r0(r>0(τ)).

There are numerical invariants associated to an A-graph.
Definition 3.4. Given an A-graph τ , define

β(τ) =
∑

v∈Vertex(τ)

β(v). (29)
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If (X,L) is a polarized variety such that KX
num= mL for some integer m, define

the expected dimension

dim(X, τ) = −mβ(τ) + #Tail(τ)−#Edge(τ) + (dim(X)− 3). (30)
3.2. Prestable Curves and Dual Graphs.
Definition 3.5. A prestable curve with r marked points (C, (x1, . . . , xr)) is a pair
where C is a complete, reduced, at worst nodal curve and xi ∈ C, i = 1, . . . , r are
distinct, nonsingular points of C.

Suppose that (C, (x1, . . . , xr)) is a connected, prestable curve whose arithmetic
genus is 0. One associates to (C, (x1, . . . , xn)) a dual graph, ∆: a tree whose
vertices {v1, v2, . . . } correspond to the irreducible components {C1, C2, . . . } of C,
whose edges {{f1, f1}, {f2, f2}, . . . } correspond to the nodes {q1, q2, . . . } of C, and
whose tails {g1, . . . , gr} correspond to the marked points {p1, . . . , pr} of C.
Definition 3.6. Let (X,L) be a polarized variety. A prestable map is a pair

((C, (x1, . . . , xn)), C h−→ X) (31)

where (C, (x1, . . . , xn)) is a prestable curve, and where C h−→ X is a morphism of
C-schemes.

Just as one associates to a connected prestable curve (C, x1, . . . , xn) of arith-
metic genus 0 a tree ∆(C, x), one can associate an A-graph to a prestable map(
(C, x1, . . . , xn), C h−→ X

)
from a connected prestable curve of arithmetic genus 0.

The underlying tree of ∆(C, x, h) is simply ∆(C, x). And, given a component Ci of
C with corresponding vertex vi ∈ Vertex(∆(C, x)), one defines

β(vi) =
∫

Ci

h∗i (c1(L)). (32)

The A-graph ∆(C, x, h) is a stable A-graph iff (C, x, h) is a stable map.
3.3. Behrend-Manin stacks.

We refer the reader to [2] for the definition of the stacks M(X, τ). These are
proper Deligne-Mumford stacks which parametrize stable maps along with some
extra data. We shall sometimes deal with these stacks, but more often we shall
deal with the open substack M(X, τ) ⊂ M(X, τ) of strict maps which we now
define.
Definition 3.7. Let X be a variety, L a line bundle on X, and let τ be a stable
A-graph. A strict τ -map is a datum

((Cv), (hv : Cv → X), (qf )) (33)

defined as follows:
(1) (Cv) is a set parametrized by v ∈ Vertex(τ) of smooth rational curves, i.e.

each Cv
∼= P1

(2) (hv : Cv → X) is a set parametrized by v ∈ Vertex(τ) of morphisms of
C-schemes,

(3) (qf ) is a set parametrized by f ∈ Flag(τ) of closed points qf ∈ C∂f

and satisfying the following conditions
(1) for v ∈ Vertex(τ), the degree of h∗v(L) as a line bundle on Cv is βτ (v),
(2) for f1, f2 ∈ Flag(τ) distinct flags with ∂f1 = ∂f2, qf1 6= qf2 ,
(3) for f ∈ Flag(τ), we have h∂f (qf ) = h∂f (qf ).
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Convention: For the empty graph, τ∅, we define a strict τ∅-map to simply be
a point in X. Thus the set of strict τ∅-maps is simply X.
Definition 3.8. If T is a C-scheme, then a family of strict τ -maps over T is a
datum

((πv : Cv → T ), (hv : Cv → X), (qf : T → C∂f )) (34)
defined as follows:

(1) (πv : Cv → T ) is a set parametrized by v ∈ Vertex(τ) of smooth, proper
morphisms whose geometric fibers are rational curves

(2) (hv : Cv → X) is a set parametrized by v ∈ Vertex(τ) of morphisms of
C-schemes

(3) (qf : T → C∂f ) is a set parametrized by f ∈ Flag(τ) of morphisms of
schemes such that π∂f ◦ qf = idT

and satisfying the following conditions
(1) for v ∈ Vertex(τ), the degree of h∗v(L) on each geometric fiber of Cv → S is

βτ (v)
(2) for f1, f2 ∈ Flag(τ) distinct flags with ∂f1 = ∂f2, qf1 and qf2 are disjoint

sections
(3) for f ∈ Flag(τ), we have h∂f ◦ qf = h∂f ◦ qf .

Convention: For the empty graph, τ∅ we define a family of strict τ∅-maps over
T to be a morphism h : T → X.

Suppose given two families of strict τ -maps over S, say

η = ((πv : Cv → T ), (hv : Cv → X), (qf : T → C∂f )), (35)
ζ = ((π′v : C′v → T ), (h′v : C′v → X), (q′f : T → C′∂f )). (36)

Definition 3.9. A morphism of families of strict τ -maps over S, φ : η → ζ, is a
collection of isomorphisms of S-schemes:

φ = (φv : Cv → C′v) (37)

indexed by v ∈ Vertex(τ) and satisfying
(1) for v ∈ Vertex(τ), h′v ◦ φv = hv

(2) for f ∈ Flag(τ), φ∂f ◦ qf = q′f .

One defines composition of morphisms in the obvious way. Notice that every
morphism is an isomorphism. Thus the category of families of strict τ -maps over
S is a groupoid. Given a morphism S′

u−→ S and a family η of strict τ -maps over
S, one has the usual pullback u∗(η) which is a family of strict τ -maps over S′. In
this way we have the notion a category fibered in groupoids over the category of C-
schemes along with a clivage normalisée in the sense of [5, Exp. VI]. We denote this
category byM(X, τ). We will occasionally also denote byM(X, τ) the associated
lax 2-functor from the category of C-schemes to the 2-category of groupoids (with
a small skeletal subcategory).

of a functor from the category of C-schemes to the category of groupoids which
associates to each S the groupoid of families of strict τ -maps over S. We denote
this functor byM(X, τ).

In every case it is easy to see that M(X, τ) is a stack in groupoids over C. In
many cases this is even a Deligne-Mumford stack:
Theorem 3.10. If X is projective and L is ample, the functor M(X, τ) is a
Deligne-Mumford stack which is separated and finite type over C.
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Proof. There is a 1-morphism M(X, τ) →M(X, τ) where M(X, τ) is the refined
functor defined in [2]. In [2] it is proved thatM(X, τ) is a proper Deligne-Mumford
stack over C. And it is clear thatM(X, τ)→M(X, τ) is a representable morphism
which is an open immersion. Thus M(X, τ) is a Deligne-Mumford stack which is
separated and finite type over C. �
3.4. Properties and Related Constructions.

Notice that with our notation M(X, τr(e)) is the moduli stack of Kontsevich
stable maps M0,r(X, e), and M(X, τr(e)) simply parametrizes those stable maps
such that the domain curve is irreducible.
Definition 3.11. Suppose that τ is a stable A-graph and f ∈ Flag(τ). Then there
is a 1-morphism

evf :M(X, τ)→ X (38)
defined by sending a family of τ -maps, η (with notation as above), to the morphism
h∂f ◦ qf .

If α = (αF , αV ) : σ → τ is a combinatorial morphism of graphs, τ ←↩ σ, there is
an associated 1-morphism

M(X,α) :M(X, τ)→M(X,σ). (39)

If α is the inclusion of σ as a subgraph of τ , thenM(X,α) is the forgetful morphism
which “remembers” only those components of τ -maps whose vertex is contained in
σ. The reader is referred to [2, Theorem 3.6] for the precise definition. We will
refer to the restriction of M(X,α) to M(X, τ) as M(X,α).

If φ = (φW , φF ) : τ → τ ′ is a contraction of stable A-graphs, there is a corre-
sponding 1-morphism of proper Deligne-Mumford stacks

M(X,φ) :M(X, τ)→M(X, τ ′). (40)

This morphism “forgets” the labeling of some the individual components of the
domain curve. The reader is referred to [2, Theorem 3.6] for the precise definition.
We will denote byM(X,φ) the restriction of this 1-morphism to the open substack
M(X, τ) ofM(X, τ).

One important case to understand is when β(τ) = 0. We have already defined
M(X, τ∅) =M(X, τ∅) = X where τ∅ is the empty graph. For any stable A-graph τ
such that β(τ) = 0 and such that #Tail(τ) = r, we have M(X, τ) = X ×M(∗, τ)
where M(∗, τ) ⊂M0,r is the obvious substack.

Consider the case that φ : τ → τ ′ is a contraction of stable A-graphs such
that β(τ) = β(τ ′) = 0. Then M(X, τ) → M(X, τ ′) is simply the product of
idX : X → X with the 1-morphism M(∗, φ) :M(∗, τ) → M(∗, τ ′). In particular,
using the notation of [2], consider the case that φ is an isogeny, i.e. φ is the
morphism which removes some subset of the set of tails from τ and then stabilizes
the resulting (possibly unstable) graph.
Lemma 3.12. Let τ, τ ′ be stable A-graphs such that β(τ) = β(τ ′) = 0 and let
φ : τ → τ ′ be an isogeny. Then M(X,φ) : M(X, τ) → M(X, τ ′) is smooth of
relative dimension dim(X, τ)− dim(X, τ ′) with geometrically connected fibers.

Proof. Of course it is equivalent to prove that

M(∗, φ) :M(∗, τ)→M(∗, τ ′) (41)

is smooth of relative dimension dim(X, τ)−dim(X, τ ′) with geometrically connected
fibers. Now it follows by Proposition 7.4 of [2] thatM(∗, τ) andM(∗, τ ′) have the
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expected dimension. Thus all we really need to show is that M(∗, τ) → M(∗, τ ′)
is smooth with geometrically irreducible fibers. Moreover, since every isogeny is a
composition of morphisms obtained by stably removing one tail, we may suppose
that φ : τ → τ ′ corresponds to stably removing one tail f ∈ Tail(τ).

There are two cases. Suppose first of all that when we remove f from τ , the
resulting graph is unstable. But then ∂f = v is a vertex with valence 3. Since a
rational curve with 3 marked points has no moduli, we conclude that M(∗, τ) →
M(∗, τ ′) is an open immersion.

The second case is that when we remove f from τ , the resulting graph is stable,
i.e. the resulting graph is just τ ′. But then if v = φ(∂f), we conclude that φ :
M(∗, τ)→M(∗, τ ′) is simply an open subset of the universal curve over M(∗, τ ′)
corresponding to the vertex v. In both cases we conclude thatM(∗, τ)→M(∗, τ ′)
is smooth with geometrically connected fibers. �

For each stable A-graph τ define e = β(τ) and define r = #Tail(τ). Then there
is a contraction φ : τ → τr(e) which is unique up to a labeling of the tails of τ .
Definition 3.13. The contraction φ above is the canonical contraction. The
corresponding 1-morphism (well-defined up to relabeling the tails)

M(X,φ) :M(X, τ)→M0,r(X, e) (42)

will be referred to as the canonical contraction morphism.

Notice that the image of M(X,φ) as a subset of the set |M0,r(X, e)| is well-
defined.
Proposition 3.14. Let φ : τ → τ ′ be a contraction of stable A-graphs. The
image of the 1-morphismM(X,φ) is a locally closed subset of the topological space
|M(X, τ)|.
Proof. For notation’s sake let’s denote the continuous map of topological spaces

|M(X,φ)| : |M(X, τ)| → |M(X, τ ′)| (43)

by f : M → M ′ and let’s denote the open substack M(X, τ) of M(X, τ) by Mo.
Then f : M → M ′ is a closed map. And it is easy to see that f−1(f(Mo)) = Mo.
Therefore f(Mo) = f(M)−f(M−Mo) is a difference of closed sets and so is locally
closed. �

We now fix n and α and consider the set S of all images

{Image(M(X,φ))} (44)

as φ ranges over all contractions of stable A-graphs to τn(α). The set of isomorphism
classes of such contractions is clearly finite. The previous lemma shows that S
forms a locally closed decomposition of the topological space |M0,n(X,α)|, i.e. a
partition of |M0,n(X,α)| into locally closed subsets. This partition is what we call
the Behrend-Manin decomposition.

4. Flatness and Dimension Results

In this section we consider the dimensions of the stacksM(X, τ) and the evalu-
ation morphisms. The main property we are interested in is the following:
Definition 4.1. Given a stable A-graph τ , we say that D(X, τ) holds if the di-
mension of every irreducible component ofM(X, τ) equals the expected dimension
dim(X, τ).
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By deformation theory there is an a priori lower bound on the dimension of any
irreducible component ofM(X, τ):
Lemma 4.2. Every irreducible component of M(X, τ) has dimension at least
dim(X, τ). In particular, every irreducible component of M(X, τ) has dimension
at least dim(X, τ).

Proof. This is a standard result. In the case that τ = τr(e) it follows from [3,
section 5.2]. In the general case the theorem follows from [1]. The theorem isn’t
actually stated in [1], so we show how it follows from results there.

Let M(τ) denote the stack of τ -marked prestable curves as in [1]. There is a
forgetful 1-morphism of algebraic (Artin) stacks

M(X, τ)→M(τ). (45)

By [1, Lemma 1], M(τ) is smooth of dimension

#Tail(τ)−#Edge(τ)− 3. (46)

Let C(τ)→M(τ) be the universal curve. By [1, Proposition 4],M(X, τ) is an open
substack of the relative morphism-scheme,

MorM(τ) (C(τ), X ×M(τ)) . (47)

By [9, Theorem 2.17.1], it follows that every irreducible component ofM(X, τ) has
dimension at least

h0(C, f∗TX)− h1(C, f∗TX) + #Tail(τ)−#Edge(τ). (48)

By Riemann-Roch, we have (h0 − h1)(C, f∗TX) = −KX .f∗[C] + dim(X). We
conclude that every irreducible component ofM(X, τ) has dimension at least

−KX .f∗[C] + dim(X)− 3 + #Flag(τ)−#Edge(τ) = dim(X, τ). (49)

�

When Vertex(τ) has more than one element, we can try to reduce D(X, τ) to
D(X, τi) for some proper subgraphs τi of τ , thus giving an inductive proof that
D(X, τ) holds. To carry out such a proof, we need to know that the evaluation
morphisms have constant fiber dimension. So we introduce the following property:
Definition 4.3. Given a stable A-graph τ and a flag f ∈ Flag(τ), we say that
E(X, τ, f) holds if

evf :M(X, τ)→ X (50)

is dominant and has constant fiber dimension dim(X, τ)− dim(X).

Notice that if there is any flag f ∈ Flag(τ) such that E(X, τ, f) holds, then it
follows that D(X, τ) holds.

In the case that X ⊂ PN is a complete intersection, then the properties D and
E are equivalent to stronger properties.
Definition 4.4. Given a stable A-graph τ , we say that LCI(X, τ) holds ifM(X, τ)
is a local complete intersection and if D(X, τ) holds. Given a stable A-graph τ and
a flag f ∈ Flag(τ), we say that FE(X, τ, f) holds if

evf :M(X, τ)→ X (51)

is flat of relative dimension dim(X, τ)− dim(X).
14



Lemma 4.5. If X ⊂ PN is a complete intersection, then D(X, τ) holds iff
LCI(X, τ) holds. Also E(X, τ, f) holds iff FE(X, τ, f) holds. The same result holds
with M(X, τ) replaced by M(X, τ).

Proof. Suppose that X is a complete intersection of r = N − n hypersurfaces of
degrees d1, . . . , dr. ConsiderM(PN , τ) and denote the universal curve by

π : C →M(PN , τ). (52)

Let h : C → PN denote the universal map. Since

OPN (d) := OPN (d1)⊕ · · · ⊕ OPN (dr) (53)

is generated by global sections, also h∗OPN (d) is generated by global sections. On
a genus 0 tree, if F is a sheaf generated by global sections then H1(C,F ) = 0, so
R1π∗ (h∗OPN (d)) = 0.

Now by [2, Proposition 7.4],M(PN , τ) is smooth of dimension

(N + 1)β(τ) + (N − 3) + #Flag(τ)−#Edge(τ). (54)

So by [11, Corollary II.2] the pushforward E := π∗ (h∗OPN (d)) is a locally free sheaf
of rank

r∑
i=1

χ(C, h∗OPN (di)) =
r∑

i=1

(diβ(τ) + 1) =

(∑
i

di

)
β(τ) + r. (55)

Now the defining equations of the hypersurfaces in PN give a global section σ of
E, andM(X, τ) is precisely the zero scheme of σ. Finally notice that the expected
codimension, dim(Pn, τ)− dim(X, τ), ofM(X, τ) inM(PN , τ) is just

−KPN .f∗[C] +KX .f∗[C] + dim(PN )− dimX =

(∑
i

di

)
β(τ) + r. (56)

Thus, ifM(X, τ), then it follows thatM(X, τ) is a local complete intersection. So
if D(X, τ) holds, then also LCI(X, τ) holds. The opposite inclusion is obvious.

Now suppose that E(X, τ, f) holds. In particular D(X, τ) holds, so LCI(X, τ)
holds. But now by [10, Theorem 23.1], evf is a dominant morphism from a Cohen-
Macaulay scheme to a smooth scheme with constant fiber dimension, therefore it
is flat. So FE(X, τ, f) holds. The opposite inclusion is obvious.

The same proof works when we replace M(X, τ) byM(X, τ). �

Consider the following diagram:
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Diagram 1

Here τ is an A-graph which contains the two subgraphs

a1 : τ ←↩ τ1, a2 : τ ←↩ τ2. (57)

The edge {f1, f2} of τ is made up of the two tails f1 ∈ Tail(τ1), f2 ∈ Tail(τ2). Let
f ∈ Flag(τ2) be any flag (possibly f = f2).
Lemma 4.6. If FE(X, τ1, f1) and FE(X, τ2, f) hold, then FE(X, τ, f) holds.

Proof. The combinatorial morphisms a1 and a2 give rise to a 1-morphism

M(X, a1, a2) :M(X, τ)→M(X, τ1)×evf1 ,X,evf2
M(X, τ2). (58)

It is clear from the definition of strict τ -maps thatM(X, a1, a2) is an open immer-
sion.

Since evf1 :M(X, τ1)→ X is flat of relative dimension dim(X, τ1)− dim(X), it
follows that the projection morphism

pr2 :M(X, τ1)×evf1 ,X,evf2
M(X, τ2)→M(X, τ2) (59)

is flat of relative dimension dim(X, τ1)− dim(X). And evf :M(X, τ2)→ X is flat
of relative dimension dim(X, τ2)− dim(X). Thus the composite morphism

M(X, τ1)×evf1 ,X,evf2
M(X, τ2)

pr2−−→M(X, τ2)
evf−−→ X (60)

is flat of relative dimension dim(X, τ1) + dim(X, τ2) − 2dim(X). Of course evf :
M(X, τ) → X is simply the restriction of the composite morphism, so it is flat of
the same relative dimension. But notice that

dim(X, τ1) + dim(X, τ2)− dim(X) =
(−KX .β(τ1) +−KX .β(τ2)) + 2 (dim(X)− 3) +

(#Flag(τ1) + #Flag(τ2)) + (#Edge(τ1) + #Edge(τ2))− dim(X) =
−KX .β(τ) + 2 (dim(X)− 3) + (#Tail(τ) + 2)−

(#Edge(τ)− 1)− dim(X) = dim(X, τ).

(61)

From this it follows that
evf :M(X, τ)→ X (62)

is flat of constant fiber dimension dim(X, τ)−dim(X). Thus FE(X, τ, f) holds. �
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Definition 4.7. Suppose that τ is a stable A-graph and define the maximum
component degree of τ to be

E(τ) = sup
v∈Vertex(τ)

β(v). (63)

Proposition 4.8. Suppose that τ is a stable A-graph with E(τ) = E. If for
each e = 0, . . . , E we have FE(X, τ1(e), f) holds, then for each flag f ∈ Flag(τ),
FE(X, τ, f) holds.

Proof. We prove this by induction on #Vertex(τ). Suppose τ has a single vertex.
Then τ = τr(e) for some r and e. If e = 0, then M(X, τr(0)) =M(∗, τr(0)) ×X,
and the evaluation morphism is just projection. So evf is flat of relative dimension

dim(M(∗, τr(0))) = dim(X, τr(0))− dim(X), (64)

i.e. FE(X, τr(0), f) holds.
Next consider the case τ = τr(e) with e > 0. For any flag f ∈ Flag(τr(e))

there is a combinatorial morphism a : τr(e) ←↩ τ1(e) which maps the unique flag
f1 ∈ Flag(τ1(e)) to f . The associated 1-morphism

M(X, a) :M(X, τr(e))→M(X, τ1(e)) (65)

is isomorphic to an open subset of the (e − 1)-fold fiber product of the universal
curve overM(X, τ1(e)). Since the universal curve is smooth of relative dimension 1
overM(X, τ1(e)), we conclude thatM(X, a) is smooth of relative dimension e− 1.
The evaluation morphism evf :M(X, τr(e))→ X factors as the composition

M(X, τr(e))
M(X,a)−−−−−→ M(X, τ1(e))

evf1−−−−→ X. (66)

Therefore if FE(X, τ1(e), f1) holds, then evf is flat of relative dimension

(e− 1) + (dim(X, τ1(e))− dim(X)) = dim(X, τr(e))− dim(X), (67)

in other words FE(X, τr(e), f) holds. Thus the Proposition is proved when τ has a
single vertex.

Now suppose that τ has more than one vertex and suppose that for all e ≤ E =
E(τ), FE(τ1(e), f) holds. By way of induction, assume that the proposition is true
for all graphs τ ′ such that #Vertex(τ ′) < #Vertex(τ). Let {f1, f2} be any edge.
Define τ1 and τ2 to be the graphs obtained by breaking the edge into two tails (see di-
agram 1). Let f ∈ Flag(τ) be a flag, and without loss of generality suppose that f ∈
Flag(τ2). Now E(τ2) ≤ E(τ) and #Vertex(τ2) < #Vertex(τ), so by the induction
assumption FE(X, τ2, f) holds. Also E(τ1) ≤ E(τ) and #Vertex(τ1) < #Vertex(τ),
so by the induction assumption FE(X, τ1, f1) holds. Then by Lemma 4.6, we con-
clude that FE(X, τ, f) holds. So the proposition is proved by induction. �

5. Specializations

In the previous section we reduced the flatness and dimension results for a general
stable A-graph τ to flatness and dimension results for the the stable A-graphs τ1(e)
with 0 ≤ e ≤ E(τ). In this section we will use specializations to reduce the flatness
and dimension results for all τ1(e), e > 1 to flatness and dimension results for a finite
number of cases τ1(e), e = 1, . . . , E(X) where E(X) is the threshold degree ofX. We
define a stableA-graph σ to be basic if for each vertex v ∈ Vertex(σ), we have β(v) ≤
E(X). The specializations we produce will show that every irreducible component
of M(X, τ) contains a basic locally closed subset M(X,σ). Thus to understand
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the irreducible components of M(X, τ) it suffices to understand the irreducible
components which pass through the general point of a basic locus M(X,σ).

Convention Suppose that we have a contraction φ : σ → τ . There is an induced
morphism

M(X,φ) :M(X,σ)→M(X, τ) (68)

which is unramified with locally closed image. We will speak ofM(X,σ) as though
it is a substack of M(X, τ). Thus given an irreducible component M ⊂ M(X, τ)
and an irreducible component N ⊂M(X,σ) we will say N ⊂M to mean that the
image of N is contained in M .

The basic lemma is the following easy version of Mori’s bend-and-break lemma.
Lemma 5.1. Let e > 0. There is no complete curve contained in a fiber of the
evaluation morphism

evf1,f2 :M(X, τ2(e))→ X ×X. (69)

Proof. Suppose that C is a complete curve and ζ : C →M(X, τ2(e)) has image in a
fiber of evf1,f2 . Denote the family ζ of strict τ2(e)-maps by (π : Σ→ C, h, (q1, q2)).
Denote evf1,f2(C) = (p1, p2). LetH ⊂ X be a hyperplane section containing neither
p1 nor p2. Define C ′ = Σ ×X H, so C ′ is a finite ramified cover of C. Let B be
the normalization of an irreducible component of C ′ which dominates C. The base-
change Σ×CB now admits the two sections q1, q2 as well as a third section q3 which
is everywhere disjoint from both q1 and q2. Any P1-bundle with three everywhere
disjoint sections is isomorphic to P1×B and the three sections are constant sections
{0}×B, {1}×B, {∞}×B. But now the morphism h : Σ×C B → X contracts the
sections q1 and q2. By the rigidity lemma, [11, p. 43], we conclude that h factors
through the projection Σ×C B ∼= P1×B → P1. So we conclude that C →M(X, τ)
is a constant map. �
Corollary 5.2. Let M ⊂ M(X, τ2(e)) be an irreducible, closed substack and
suppose that the fibers of evf1,f2 : M → X × X have dimension at least 1. Then
M ∩

(
M(X, τ2(e))−M(X, τ2(e))

)
is either all of M or contains an irreducible

component with codimension 1 in M .

Proof. Suppose that M intersectsM(X, τ2(e)). Define I ⊂ X ×X to be the image
I = evf1,f2(M). In order to prove that

∂M := M ∩
(
M(X, τ2(e))−M(X, τ2(e))

)
(70)

has an irreducible component of codimension 1 in M , it suffices to prove that for
every (p1, p2) ∈ I, ev−1(p1, p2)∩∂M ⊂ ev−1(p1, p2)∩M has codimension 1. Suppose
that it has codimension at least 2. Then the coarse moduli space |ev−1(p1, p2) ∩
∂M | ⊂ |ev−1(p1, p2)∩M | has codimension at least 2. Since the coarse moduli spaces
are proper varieties, we can find a complete curve C in |ev−1(p1, p2)∩M | which does
not intersect |ev−1(p1, p2) ∩ ∂M |. Since M(X, τ2(e)) is a Deligne-Mumford stack,
there exists a finite ramified cover C ′ → C such that C ′ → |M(X, τ2(e))| factors
through M(X, τ2(e))→ |M(X, τ2(e))|. But then by Lemma 5.1, we conclude that
C ′ → |M(X, τ2(e))| is constant, which contradicts the construction of C. Therefore
∂M ⊂M has codimension 1. �

The main application is the following:
Proposition 5.3. Suppose that X ⊂ PN is a complete intersection. Suppose that
FE(X, τ1(e), f1) holds for every e < E and suppose that every irreducible component

18



of M(X, τ1(E)) has dimension at least 2dim(X). Then FE(X, τ1(E), f1) holds as
well.

Proof. By Lemma 4.5, to prove that FE(X, τ1(E), f1) holds, it suffices to prove
that E(X, τ1(E), f1) holds. Let ζ ∈ M(X, τ1(e)) be a point, denote p = evf1(ζ),
and let M ⊂ ev−1

f1
(p) be an irreducible component which contains p. We need to

prove that dim(M) = dim(X, τ1(e))− dim(X).
Now consider the forgetful morphism

M(X, a) :M(X, τ2(e))→M(X, τ1(e)). (71)

This is a smooth surjective morphism: let N ⊂M(X, τ2(e)) be the preimage of M .
Then dim(N) = dim(M) + 1, thus we have to prove that

dim(N) = dim(X, τ1(e)) + 1− dim(X). (72)

It suffices to prove that the general fiber of evf2 : N → X has dimension at most
dim(X, τ1(e)) + 1− 2dim(X) (since we already know the dimension is at least this
large).

Choose any point q 6= p in evf2(N) and consider Nq := ev−1
f2

(q)∩N . By assump-
tion, dim(X, τ1(e))+1−2dim(X) ≥ 1, so dim(Nq) ≥ 1. Define N ⊂M(X, τ2(e)) to
be the closure of N . By Corollary 5.2 we conclude that ∂N ⊂ N has codimension
1. In other words, there is a stable A-graph σ′ 6∼= τ2(e) whose canonical contraction
is φ′ : σ′ → τ2(e) and such that N ∩ Image(M(X,σ′)) ⊂ N has an irreducible
component of codimension 1.

Now there is precisely one stable A-graph σ0 6∼= τ2(e) whose stabilization after
removing f2 equals τ1(e), namely:

Diagram 2

By the assumption that q 6= p, the point (q, p) 6∈ evf1,f2(M(X,σ0)). So σ′ is not
σ0. We conclude that the image ofM(X,σ′) inM(X, τ1(e)) (under the map which
stably removes f2) is again a boundary componentM(X,σ) for some φ : σ → τ1(e)
(not the identity). Therefore M∩Image(M(X,σ)) ⊂M is a locally closed substack
such that some irreducible component has codimension one in M .

Since σ 6∼= τ1(E), we have E(σ) < E. By our assumption and by Proposi-
tion 4.8, we conclude that FE(X,σ, f1) holds. In particular, M ∩ Image(M(X,σ))
has dimension at most dim(X,σ) − dim(X). So the dimension of M is at most
dim(X,σ) + 1 − dim(X). Since dim(X,σ) + 1 ≤ dim(X, τ1(e)), we conclude that
dim(M) ≤ dim(X, τ1(e))− dim(X). So FE(X, τ1(e), f1) holds. �
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Remark The condition that X ⊂ PN be a complete intersection is essentially
superfluous. If instead we had worked throughout with the property E(X, τ, f)
rather than FE(X, τ, f) (which is a little trickier), then the argument above proves
the analogous result without this condition on X.
Definition 5.4. If X ⊂ PN is a complete intersection of hypersurfaces of degrees
d1, d2, . . . , dr, define the threshold degree to be

E(X) = E(N, (d1, . . . , dr)) =
⌊

N + 2− r
N + 1− (d1 + · · ·+ dr)

⌋
. (73)

In particular, if X ⊂ PN is a hypersurface of degree d < N+1
2 then E(X) = 1.

Corollary 5.5. Suppose that X ⊂ PN is a complete intersection of hypersur-
faces of degrees d1, d2, . . . , dr. If FE(X, τ1(e), f1) holds for each 1 ≤ e ≤ E(X),
then for every stable A-graph τ and flag f ∈ Flag(τ), FE(X, τ, f) holds. In par-
ticular, if X ⊂ PN is a hypersurface of degree d < N+1

2 then it suffices to prove
FE(X, τ1(1), f1).

Proof. By Proposition 4.8, to prove that FE(X, τ, f) always holds it suffices to
prove that FE(X, τ1(e), f1) always holds (for e > 0). Now for e > E(X) we have
by Lemma 4.2 that every irreducible component of M(X, τ1(e)) has dimension at
least

(N + 1− (d1 + · · ·+ dr)) e+ (N − r − 3) + 1 ≥
(N + 1− (d1 + · · ·+ dr)) N+2−r

N+1−(d1+···+dr) + (N − r − 3) + 1, (74)

which, of course, is just 2dim(X). So by Proposition 5.3 and induction, to prove
FE(X, τ1(e), f1) for all e, it suffices to prove FE(X, τ1(e), f1) in the cases e =
1, . . . , E(X). �
Corollary 5.6. With the same hypotheses as in Corollary 5.5, suppose that
FE(X, τ1(e), f1) holds for each 1 ≤ e ≤ E(X). Then for every stable A-graph
τ , M(X, τ) has pure dimension dim(X, τ).

Proof. If E(τ) = 0, then M(X, τ) = M(∗, τ) × X and the result follows from [2,
Proposition 7.4]. Suppose that E(τ) > 0 and let v ∈ Vertex(τ) be such that β(v) >
0. Define a : τ ′ ←↩ τ to be the combinatorial morphism which adds a new tail f to v.
Then M(X, a) is smooth and surjective of relative dimension 1. By Corollary 5.5,
FE(X, τ ′, f) holds. In particular, M(X, τ ′) has pure dimension dim(X, τ ′). It
follows thatM(X, τ) has pure dimension dim(X, τ ′)− 1 = dim(X, τ). �

A second application of the proof of Proposition 5.3 is the following:
Proposition 5.7. Suppose that X ⊂ PN is a complete intersection. Suppose that
FE(X, τ1(e), f1) holds for every e < E and suppose that every irreducible component
of M(X, τ1(E)) has dimension at least 2dim(X). Then for every irreducible com-
ponent M ⊂M(X, τ0(E)) there is a graph σ = τ0,0(i, j), 0 < i, j and i+j = E, and
an irreducible component N ⊂M(X, τ0,0(i, j)) such that N ⊂M is a codimension
1 subvariety.

Proof. Let M ′ ⊂ M(X, τ1(e)) be the irreducible component which dominates M .
By the proof of Proposition 5.3 there is a graph σ 6∼= τ1(e) with canonical contraction
φ : σ → τ1(e) such that M ′ ∩M(X,σ) ⊂M has codimension 1. NowM(X,σ) has
dimension dim(X,σ) and by Lemma 4.2 M ′ has dimension at least dim(X, τ1(e)).
But dim(X,σ) = dim(X, τ1(e)) −#Edge(σ). So σ has exactly one edge, i.e. σ =
τ1,0(i, j) for some i, j with i+j = E. By stability i, j > 0. Moreover, M ′∩M(X,σ)
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has dimension dim(X,σ) so there is an irreducible component N ′ ⊂M(X,σ) such
that N ′ ⊂M ′.

SinceM(X, τ1,0(i, j))→M(X, τ0,0(i, j)) is smooth of relative dimension 1, there
is an irreducible component N ⊂ M(X, τ0,0(i, j)) such that N ′ is the preimage of
N . Thus N ⊂M is a codimension 1 subvariety. �
Definition 5.8. Let X ⊂ PN be a complete intersection with threshold degree
E(X) = E. A stable A-graph τ is basic for X if its maximal component degree
E(τ) satisfies E(τ) ≤ E(X).
Definition 5.9. For an A-graph τ , define its degree 0 subgraph to be the maximal
subgraph τ ←↩ τ0 such that E(τ0) = 0, i.e. τ0 is the (possibly disconnected)
subgraph of τ with

Vertex(τ0) = {v ∈ Vertex(τ)|β(v) = 0} (75)

and
Flag(τ0) = {f ∈ Flag(τ)|∂f ∈ Vertex(τ0)}. (76)

A contraction of A-graphs φ : σ → τ is nice if φ induces an isomorphism σ0 ∼= τ0.
Theorem 5.10. Let X ⊂ PN be a complete intersection, τ a stable A-graph and
M ⊂ M(X, τ) an irreducible component. Suppose that FE(X, τ1(e), f1) holds for
each 1 ≤ e ≤ E(X). Then there exists a nice contraction φ : σ → τ and an
irreducible component N ⊂M(X,σ) such that σ is basic and such that N ⊂M .

Proof. We will prove this by induction on the maximal component degree E(τ). If
E(τ) ≤ E(X), then we can take φ to be the identity τ → τ and N = M .

Suppose that E > E(X). By way of induction, assume the theorem is proved for
all graphs τ with E(τ) < E. We will deduce the theorem for graphs with E(τ) = E
by induction on #Vertex(τ), and thus establish the theorem by induction on E(τ).

First we consider the case that #Vertex(τ) = 1, i.e. τ = τr(E) for some r.
Define a : τr(E) ←↩ τ0(E) be the combinatorial morphism which strips the tails
from τr(E). Then M(X, a) : M(X, τr(E)) → M(X, τ0(E)) is smooth, surjective
with connected fibers of dimension r. So we conclude that M is the preimage of an
irreducible component M ′ ⊂M(X, τ0(E)). Now by Proposition 5.7 there is a nice
contraction ψ : ρ → τ0(E) and an irreducible component L ⊂ M(X, ρ) such that
L ⊂ M

′
. As E(ρ) < E, by assumption there exists a nice contraction φ′ : σ′ → ρ

such that σ′ is basic and there exists an irreducible component N ′ ⊂M(X,σ) such
that N ′ ⊂ L. Therefore ψ ◦ φ′ : σ′ → τ0(E) is a nice contraction and N ′ ⊂ M ′.
Now let v ∈ Vertex(σ′) be any vertex and let b : σ ←↩ σ′ be the graph obtained
by attaching r tails to v. Note that M(X, b) is smooth, surjective with connected
fibers of dimension r. Let φ : σ → τr(E) be the contraction obtained from ψ ◦ φ′
by sending the r tails of σ to the r tails of τr(E). Then φ is a nice contraction
and σ is basic. Define N ⊂ M(X,σ) to be the preimage of N ′ under M(X, a).
The morphism M(X, a) is compatible with M(X, b), i.e. M(X, a) ◦ M(X,φ) =
M(X,ψ ◦φ′)◦M(X, b), andM(X, a) is smooth along the image ofM(X,φ). Thus
we conclude that N ⊂M , the theorem is proved for M .

Now we consider the general case. For each graph τ , define

l(τ) := #Vertex(τ). (77)

When l = 1, we have the case in the last paragraph. Suppose l > 1 and, by way
of induction on l, suppose that for all stable A-graphs τ with E(τ) = E and with
l(τ) < l, the theorem is proved. Suppose that τ is a stable A-graph with E(τ) = E
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and l(τ) = l. Let {f1, f2} be an edge of τ . Define a1 : τ ←↩ τ1 and a2 : τ ←↩ τ2 be
the two subgraphs obtained by breaking the edge (see diagram 1).

Now the morphism M(X, a1) : M(X, τ) → M(X, τ1) is the composition of an
open immersion and the projection of the fiber product

M(X, τ1)×evf1 ,X,evf2
M(X, τ2)→M(X, τ1). (78)

By Proposition 5.3 the morphism evf2 is flat. Therefore M(X, a1) is flat. So M
dominates an irreducible component M1 of M(X, a1). Since l(τ1) = l(τ) − l(τ2)
and l(τ2) > 0 by the assumption that E(τ2) = E, we have l(τ1) < l(τ). So by the
induction assumption, there exists a nice contraction φ1 : ρ1 → τ1 and an irreducible
component L1 ⊂M(X, ρ1) such that ρ1 is basic and such that L1 ⊂M1.

SinceM(X, a1) is proper, there exists an irreducible subvariety L ⊂M such that
M(X, a1)(L) = L1 and such that the fiber dimension of L→ L1 is at least the fiber
dimension ofM(X, a1). Up to replacing L by an open subset, we may suppose L is
contained in one of the locally closed substacks M(X, ρ). Since M(X, a1) maps L
intoM(X, ρ1), we must have that ρ is glued from ρ1 and a graph ρ2 by making an
edge out of f1 and f2. Moreover ρ2 must contract to τ2. But then the dimension
of L is at most

dim(X, ρ1) + dim(X, ρ2)− dim(X) =
dim(X, ρ1) + (dim(X, τ)− dim(X, τ1))− (#Edge(ρ2)−#Edge(τ2)) .

(79)

Thus we conclude that #Edge(ρ2) = #Edge(τ2), i.e. ρ2 = τ2. So ψ : ρ → τ is a
nice contraction and L ⊂ M(X, ρ) is an irreducible component such that L ⊂ M .
Moreover, l(ρ) = l(ρ2) = l(τ2) < l(τ). By the induction assumption, there exists a
nice contraction φ : σ → ρ and an irreducible component N ⊂ M(X,σ) such that
σ is basic and such that N ⊂ L. But then ψ ◦φ : σ → τ is nice and N ⊂M , i.e. the
theorem is proved for M . So the theorem is proved by induction on E and l. �

The previous theorem suggests a strategy for proving that any givenM(X, τ) is
irreducible:

(1) Determine all nice contractions φ : σ → τ such that σ is basic.
(2) Determine all irreducible components N ⊂M(X,σ).
(3) Show that for each N , there is a unique irreducible component M(N) ⊂
M(X,σ) which contains N .

(4) Prove that all of the putative irreducible components M(N) are actually
equal.

The first step (1) is a combinatorial problem. The simplest case for (2) is when
M(X,σ) is itself irreducible for each basic σ. One can try to prove (3) by a de-
formation theory argument; if one proves that the general point of M is a smooth
point of the stack M(X, τ), then it follows that there is a unique irreducible com-
ponent M(N) which contains N . We will prove (4) by linking up basic graphs using
almost basic graphs (we will explain this further below). Although one should be
able to carry out this strategy in the case of complete intersections (and perhaps
even more general varieties), in the remainder of this paper we will restrict our-
selves to hypersurfaces X ⊂ PN with d < N+1

2 . Then the steps above all reduce to
questions regarding lines on X.

6. Properties of evaluation morphisms
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In the last two sections we investigated when an evaluation morphism evf :
M(X, τ)→ X is flat of the expected dimension. In this section we also investigate
when the general fiber is irreducible, and when the morphism evf is unobstructed
at a general point ofM(X, τ). By the same techniques in the last two sections, we
reduce these properties for a general basic A-graph τ to the property for A-graphs
of the form τ1(e) with e = 1, . . . , E(X). Using this result, we carry out Steps (2)
and (3) of the strategy of proof in the previous sections.

The new property of evaluation morphisms we want to consider is the following.

Definition 6.1. Suppose X ⊂ PN is a smooth subvariety, τ is a stable A-graph
and f ∈ Flag(τ). We say that B(X, τ, f) holds if we have

(1) FE(X, τ, f) holds,
(2) the general fiber of evf is geometrically irreducible,
(3) inM(X, τ) there is a point [h : C → X] which is free, i.e. h∗TX is generated

by global sections.

The difficult item to check is still (1). We return to this point at the end of this
section. First we give a reformulation of item (3) of the definition above.
Lemma 6.2. Suppose that (C, qfi

) is a genus 0 prestable curve with dual graph τ ,
and suppose that E is a locally free sheaf on C. The following are equivalent:

(1) E is generated by global sections.
(2) For each irreducible component Cv of C, the restriction Ev of E to Cv is

generated by global sections.
(3) For each irreducible component Cv of C and each point q ∈ Cv, we have

H1(Cv, Ev(−q)) = 0.

Proof. Clearly (1) implies (2). By Grothendieck’s Lemma [7, exercise V.2.4], Ev

splits as a direct sum of line bundles L1⊕· · ·⊕Lr. If (2) is satisfied, then each Lv is
generated by global sections, i.e. if we identify Cv with P1, then Li = OP1(ai) with
ai ≥ 0. Since H1(P1,OP1(a−1)) = 0 for a ≥ 0, we conclude that H1(Cv, Ev(−q)) =
0. So (2) implies (3).

Finally suppose that (3) is satisfied. We shall prove that E is generated by
global sections by induction on the number of vertices of τ , i.e. on the number of
irreducible components of C. If C has a single irreducible component, then C is
isomorphic to P1. By Grothendieck’s Lemma we know E = OP1(a1)⊕· · ·⊕OP1(ar)
for some integers ai. Since H1(P1, E(−q)) = 0, we conclude that each a− 1 ≥ −1,
i.e a ≥ 0. So E is generated by global sections.

Now suppose that τ has more than one vertex and let v1 be any leaf of τ ,
i.e. v1 is adjacent to exactly one other vertex. Let i1 : C1 → C be the irreducible
component associated to v1, let i2 : C2 → C be the union of all the other irreducible
components of C and let q be the unique point of intersection of C1 and C2. Let E1

denote the restriction of E to C1 and let E2 denote the restriction of E to C2. By
the induction assumption, we may assume that E2 is generated by global sections.
But now we have an exact sequence of sheaves on C:

0→ (i1)∗(E1(−q))→ E → (i2)∗(E2)→ 0. (80)

The obstruction to lifting the global sections of E2 to global sections of E is an
element of H1(C1, E1(−q)), which is zero by assumption. So every global section of
E2 is the restriction of a global section of E. Thus the locus where E isn’t generated
by global sections (i.e. the cokernel of the morphism H0(C,E) ⊗C OE → E) is a
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closed subset of C1 − C2. Since τ has more than one vertex, we can find a second
leaf v2 of τ . Repeating the argument with v2 we conclude that E is generated by
global sections. �
Lemma 6.3. With the same notation as in Lemma 6.2, if E satisfies any of
the three equivalent conditions above, and if p ∈ C is any smooth point, then
H1(C,E(−p)) = 0.

Proof. If C has a single irreducible component, this follows from the equivalent
condition (3) in Lemma 6.2. Suppose that C has l > 1 irreducible components.
By way of induction, suppose that the lemma has been proved for all curves with
fewer than l irreducible components. We can find a leaf v1 of C such that p is not
contained in the corresponding irreducible component C2. Let C2, i1, i2, and q be
as in the proof of Lemma 6.2. Then we have a short exact sequence:

0→ (i1)∗(E1(−q))→ E(−p)→ (i2)∗(E2(−p))→ 0. (81)

By the induction assumption, both H1(C1, E1(−q)) = 0 and H1(C2, E2(−p)) = 0.
So by the long exact sequence in cohomology associated to the short exact sequence
above, we conclude that H1(C,E(−p)) = 0. So the lemma is proved by induction
on l. �
Lemma 6.4. Suppose n > 2 and X ⊂ Pn is a general hypersurface of degree
d < n+1

2 . Then B(X, τ1(1), f1) holds.

Proof. By Theorem 2.1, for general X we have that FE(X, τ1(1), f1) holds, i.e. we
have (1). By Lemma 2.6, for general X there is a free line on X, i.e. we have (3).

By Theorem 2.7, for general X, F0,1(X) is smooth. Thus by generic smoothness,
the general fiber of evf1 is smooth. By Lemma 2.3, the general fiber of evf1 is a
complete intersection in Pn−1 of dimension n − d − 1 > 1. Thus the general fiber
is geometrically connected by repeated application of [4, corollaire 3.5, exp. XII].
Since a smooth, geometrically connected scheme is geometrically irreducible, we
have (2). �

The main theorem of this section is the following:
Proposition 6.5. Suppose X ⊂ PN is a smooth subvariety which satisfies B(X, τ1(e), f1)
for e = 1, . . . , E. Let τ be an A-graph such that E(τ) ≤ E. Then we have the fol-
lowing:

(1) For each f ∈ Flag(τ), we have B(X, τ, f).
(2) M(X, τ) is an irreducible stack.

Proof. Both statements are trivial in case τ is empty, so assume τ is nonempty.
Observe that (1) implies (2): given v ∈ Vertex(τ), define a new A-graph τ ′ and
a combinatorial morphism α : τ ′ ←↩ τ which attaches a new flag f ′ to τ at v.
Then M(X,α) : M(X, τ ′) → M(X, τ) is smooth, surjective with geometrically
irreducible fibers. So M(X, τ ′) is irreducible iff M(X, τ) is irreducible. By (1),
evf ′ :M(X, τ ′)→ X is flat and the general fiber is geometrically irreducible. Since
X is irreducible, it follows thatM(X, τ ′) is irreducible. So it remains to prove (1).

First of all, suppose that β(τ) = 0. Let α : τ ←↩ ∅ be the unique morphism.
Then evf coincides with M(X,α) : M(X, τ) → M(X, ∅) = X. Thus (1) follows
from Lemma 3.12. So we are reduced to the case that β(τ) > 0.

We prove (1) by induction on the number of vertices of τ . Suppose that τ has
a single vertex, i.e. τ = τr(e) for some r > 0. Let α : τr(e) ←↩ τ1(e) be the unique
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combinatorial morphism which maps f1 ∈ Flag(τ1(e)) to f ∈ Flag(τr(e)). Then
evf factors as the composition

M(X, τr(e))
M(X,α)−−−−−→ M(X, τ1(e))

evf1−−−−→ X. (82)

Of course M(X,α) is an open immersion into the (r − 1)-fold fiber product of the
universal curve, so M(X,α) is smooth with geometrically irreducible fibers. And
by B, evf1 is flat and the general fiber is geometrically irreducible. Therefore the
composition is flat and the general fiber is geometrically irreducible, i.e. items (1)
and (2) of condition B(X, τr(e), f) hold. The condition that h∗TX is generated by
global sections is independent of the number of vertices, so item (3) of B(X, τr(e), f)
holds as well, i.e. B(X, τr(e), f) holds.

Now suppose that there is more than one vertex, say #Vertex(τ) = l > 1. By
way of assumption, suppose that B(X,σ, f) has been proved for all A-graphs σ
such that #Vertex(σ) < l. Let {f1, f2} be any edge and consider the subgraphs
α1 : τ ←↩ τ1 and α2 : τ ←↩ τ2 as in diagram 1. Without loss of generality, suppose
that f is in τ1. Then evf factors as the composition:

M(X, τ)
M(X,α1)−−−−−−→ M(X, τ1)

evf−−−−→ X. (83)

NowM(X,α1) factors as the composition of an open immersion and the projection

π1 :M(X, τ1)×evf1 ,X,evf2
M(X, τ2)→M(X, τ1). (84)

Since #Vertex(τi) < l for i = 1, 2, the induction assumption says that (2) holds
for evfi :M(X, τi)→ X. Since evf1 is open, the general fiber of π1 dominates the
general fiber of evf2 . So π1 is flat and the general fiber is geometrically irreducible.
Thus the same is true ofM(X,α1). Since #Vertex(τ1) < l, evf :M(X, τ1)→ X is
flat and the general fiber is geometrically irreducible. Thus the composition is flat
and the general fiber is geometrically irreducible, i.e. items (1) and (2) of B(X, τ, f)
hold.

Finally we consider item (3) of B(X, τ, f). Each of the two projectionsM(X,α1)
and M(X,α2) are dominant. By the induction assumption, for i = 1, 2 the set of
points inM(X, τ1) which parametrize stable maps with h∗TX generated by global
sections is an open, dense set Ui. The preimage of each Ui in M(X, τ) is an open
dense set, and the intersection of these two open dense sets is an open dense set.
For a point in this intersection – using the equivalent condition (2) of Lemma 6.2
– we have that the restriction of h∗TX to each irreducible component with vertex
v ∈ τ1 is generated by global sections, and also the restriction of h∗TX to each
irreducible component with vertex v ∈ τ2 is generated by global sections. So by
the equivalent condition (2) of Lemma 6.2, we conclude that h∗TX is generated by
global sections. Thus item (3) of B(X, τ, f) is satisfied. This completes the proof
that B(X, τ, f) holds, and the proposition is proved by induction. �

Propsition 6.5 simplifies Step 2 in the strategy of the last section to checking that
B(X, τ1(e), f1) holds for all e = 1, . . . , E(X). Next we reduce Step 3 to checking
that B(X, τ1(e), f1) holds for all e = 1, . . . , E(X).
Proposition 6.6. Suppose that τ is a stable A-graph, f ∈ Tail(τ) and suppose
that B(X, τ, f) holds. Suppose that α : τ → σ is a contraction. The morphism
M(X,α) maps a general point of M(X, τ) to a point in the smooth locus of the
morphism evf :M(X,σ)→ X.
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Proof. As in the proof of Proposition 6.5, the case that β(σ) = 0 follows from
Lemma 3.12. So we are reduced to the case β(σ) > 0.

Let M(σ) denote the (non-separated) Artin stack of prestable σ-curves as in [2,
definition 2.6]. There is a 1-morphism M(X,σ) → M(σ) given by forgetting the
map to X. “Remembering” the map to X gives an isomorphism of M(X,σ) with
the relative scheme of morphisms MorM(σ)(σ,X), by [1, prop. 4]. Since M(σ) is
smooth by [1, prop. 2], to prove that evf is smooth at a point, it suffices to prove
the following morphism is smooth at this point:

(π, evf ) :M(X,σ)→M×X. (85)

By [9, Theorem II.1.7], to check that a point ζ = ((Cv), (qf ′), (hv)) ofM(X,σ) is in
the smooth locus of (π, evf ), it suffices to check that H1(C, h∗TX(−qf )) = 0. For
a general point in the image of M(X,α), this follows from item (3) of B(X, τ, f)
along with Lemma 6.3. �
Corollary 6.7. Suppose X ⊂ PN is a smooth subvariety which satisfies B(X, τ1(e), f1)
for all e = 1, . . . , E. Let τ be an A-graph with E(τ) ≤ E and suppose that α : τ → σ
is a contraction. The morphism M(X,α) maps a general point of M(X, τ) to a
smooth point of M(X,σ).

Proof. This is trivial if τ is empty. Suppose τ is not empty and let v be a vertex of
τ . Let τ ←↩ τ ′ be the combinatorial morphism which attaches a new tail, f , at the
vertex v. Let σ ←↩ σ′ be the combinatorial morphism which attaches a new tail,
f , at the vertex of σ which is the image of v. Let α′ : τ ′ → σ′ be the contraction
which restricts to α and which maps f to f . By Proposition 6.5, B(X, τ ′, f) holds.
By Proposition 6.6, M(X,α′) maps a general point of M(X, τ ′) to a point in the
smooth locus of evf : M(X,σ′) → X. A point in the smooth locus of evf is a
smooth point of M(X,σ′). The image of this point in M(X,σ) is also a smooth
point. SinceM(X, τ ′) surjects ontoM(X, τ), a general point ofM(X, τ ′) maps to
a general point of M(X, τ). Thus M(X,α) maps a general point of M(X, τ) to a
smooth point of M(X,σ). �

Remark: Now suppose B(X, τ1(e), f1) holds for all e = 1, . . . , E, suppose that
τ is a stable A-graph with E(τ) ≤ E and suppose that α : τ → σ is a contraction.
By Corollary 6.7 and (2) of Proposition 6.5, we conclude that there is a unique
irreducible component M(α) of M(X,σ) which contains the image of M(X,α),
and M(α) is smooth of the expected dimension at a general point. So Steps (2)
and (3) of the strategy in the last section are successful.

Finally we give a simpler criterion for when B(X, τ, f) holds for all τ with E(τ) ≤
E, where E is some fixed integer, and also reduce the number of components M(α)
we have to deal with in Step (4) of our strategy.
Proposition 6.8. Suppose that X ⊂ PN is a smooth subvariety satisfying

(1) B(X, τ1(1), f1) holds,
(2) FE(X, τ1(e), f1) holds for e = 1, . . . , E, and
(3) M(X, τ0(e)) is irreducible for e = 1, . . . , E.

Then for each stable A-graph τ with E(τ) ≤ E and each flag f ∈ Flag(τ), B(X, τ, f)
holds and there is a nice contraction α : σ → τ such that E(σ) ≤ 1 and such that
M(X,α) maps the general point of M(X,σ) to a smooth point of M(X, τ).
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Proof. It is easy to see that there is always a nice contraction α : σ → τ such that
E(σ) ≤ 1. By Proposition 6.6, we know that M(X,α) maps a general point of
M(X,σ) to a smooth point ofM(X, τ).

By Proposition 6.5, to prove that B(X, τ, f) holds for all τ with E(τ) ≤ E, it suf-
fices to prove that B(X, τ1(e), f1) holds for all e = 1, . . . , E. LetM(X, τ1(e))′ denote
the normalization ofM(X, τ1(e)). Consider the Stein factorizationM(X, τ1(e))′ →
Z → X of evf1 . By Proposition 6.6, there is a open, dense subset U ⊂ M(X,σ)
such that M(X,α) maps U into the smooth locus of evf1 . So M(X,α)|U : U →
M(X, τ1(e)) factors through M(X, τ1(e))′. Now consider the image V of U in Z.
By Proposition 6.5, the general fiber of evf1 |U : U → X is geometrically irreducible.
Therefore V → X is generically injective.

Let V ⊂ Z be the Zariski closure of V with the induced, reduced scheme struc-
ture. Then V is an irreducible stack and V → X is surjective and generically injec-
tive. In particular, V is a nonempty irreducible component of Z. So the preimage of
V inM(X, τ1(e)) is a nonempty irreducible component ofM(X, τ1(e)). By Corol-
lary 5.6, every stratum in the Behrend-Manin decomposition of M(X, τ1(e)) has
the expected dimension. ThusM(X, τ1(e)) is Zariski dense inM(X, τ1(e)). By as-
sumption,M(X, τ0(e)) is irreducible. SinceM(X, τ1(e))→M(X, τ1(e)) is smooth
with geometrically connected fibers, also M(X, τ1(e)) is irreducible. Therefore
M(X, τ1(e)) is irreducible. Therefore V = Z and we conclude that the general fiber
of M(X, τ1(e))′ → X is normal and geometrically connected, thus geometrically
irreducible. It follows that the general fiber of M(X, τ1(e)) → X is geometrically
connected, i.e. we have established item (2) of the definition of B(X, τ1(e), f1).

To establish item (3) of the definition of B(X, τ1(e), f1), observe that the locus
of points inM(X, τ1(e)) parametrizing stable maps for which h∗TX is generated by
global sections is an open locus. By Lemma 6.2 and the assumption B(X, τ1(1), f1),
for a general point ofM(X,σ), we have that h∗TX is generated by global sections.
So this open set intersects the general point of the image of M(X,α), so it is
nonempty. Therefore it intersects M(X, τ) and item (3) follows. �

We summarize the results of this section for the case of complete intersections
in the following corollary.
Corollary 6.9. Suppose that X ⊂ PN is a smooth complete intersection of thresh-
old degree E(X) which satisfies:

(1) B(X, τ1(1), f1) holds,
(2) FE(X, τ1(e), f1) holds for e = 1, . . . , E(X), and
(3) M(X, τ0(e)) holds for e = 1, . . . , E(X).

Then we have
(1) For each basic A-graph τ and each flag f ∈ Flag(τ), B(X, τ, f) holds.
(2) For each stable A-graph τ and each contraction α : σ → τ of a basic A-

graph σ to τ , there is a unique irreducible component M(α) of M(X, τ)
which contains the image of M(X,α). Moreover M(α) is smooth of the
expected dimension at a general point of the image of M(X,α).

(3) M(X, τ) is the union of the irreducible components M(α) as α : σ → τ
ranges over nice contractions such that E(σ) ≤ 1.

Proof. The only new statement is (3). By Theorem 5.10, we know that each irre-
ducible component of M(X, τ) is one of the irreducible components M(α′) for a
nice contraction α′ : σ′ → τ with σ a basic A-graph. Of course we can find a nice
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contraction β : σ → σ′ such that E(σ) ≤ 1. Let α : σ → τ be the composition of
β and α′. Then M(α′) is an irreducible component which contains the image of
M(X,α). So M(α′) = M(α), i.e. we have proved (3). �

7. Equating Irreducible Components

Suppose that X ⊂ PN is a complete intersection which satisfies the hypotheses
of Corollary 6.9. Then for each stable A-graph τ , we know that M(X, τ) has the
expected dimension and is a union of irreducible components M(α) as α : σ → τ
ranges over nice contractions with E(σ) ≤ 1. To prove that M(X, τ) (and hence
M(X, τ)) is irreducible, we are reduced to proving that the irreducible components
M(α) are all equal.

Suppose that B(X, τ1(e), f1) holds for all e = 1, . . . , E where E is some integer
with E ≥ E(X). Fix a stable A-graph τ and let SE(τ) be the set of (isomorphism
classes of) nice contractions α : σ → τ with E(σ) ≤ E. Define a relation α ≤ α′

if there exists a contraction ε : σ → σ′ such that α = α′ ◦ ε. If α ≤ α′, then
observe M(α) = M(α′). Form the equivalence relation ∼= on SE(τ) generated
by ≤. Notice conclusion (3) of Corollary 6.9 implies that every equivalence class
contains a contraction α : σ → τ such that E(σ) ≤ 1. Since M(α) = M(α′) if
α ∼= α′, we see that the number of irreducible components of M(X, τ) is bounded
by the number of equivalence classes of ∼= on SE(τ). So to prove that M(X, τ) is
irreducible, it suffices to prove that every two elements of SE(τ) are equivalent.
Definition 7.1. Given X ⊂ PN a smooth complete intersection, define the modi-
fied threshold degree of X to be E′(X) = max(E(X), 2).
Proposition 7.2. Suppose that X ⊂ PN is a smooth complete intersection such
that for e = 1, . . . , E′(X), we have B(X, τ1(e), f1) holds. Then for each posi-
tive integer e, every two elements of SE′(X)(τ0(e)) are equivalent. In particular
M(X, τ0(e)) is irreducible.

Proof. Recall a connected tree τ is called an path if τ has precisely one or two
vertices (so no vertex has valence greater than 2). The number of vertices in a
path is the diameter of the path. Given any connected tree τ , the diameter of τ ,
diam(τ), is defined to be the maximum diameter of a subgraph which is a path. If
α : σ → τ0(e) is a nice contraction, then there are at most e vertices in σ. So the
diameter of σ is at most e. Moreover, there is a unique contraction αe : σe → τ0(e)
with diam(σe) = e. Here σe is the A-graph whose underlying graph is the path of
length e, and for each vertex v ∈ σe we have β(v) = 1.

To prove that any two elements in SE′(X)(τ0(e)) are equivalent, it suffices to
prove that any two nice contractions α : σ → τ with E(σ) = 1 are equivalent. We
will prove that for each such α : σ → τ with diam(σ) < e, there is a nice contraction
α′ : σ′ → τ such that σ ∼= σ′, E(σ′) = 1 and diam(σ′) ≥ diam(σ). From this it
follows by induction that all such contractions are equivalent to αe : σe → τ .

Suppose that α : σ → τ is a nice contraction with E(σ) = 1 and diam(σ) < e.
Let γ ↪→ σ be a subgraph which is a path such that diam(γ) = diam(σ). Since γ
does not equal σ, there exists a vertex v1 of γ such that the valence of v1 is at least
3. Let f1, f2 be an edge of σ not contained in γ such that ∂f1 = v1. Let v2 = ∂f2.
Form the nice contraction ε : σ → ρ which contracts v1 and v2 to a common vertex
v of σ with β(v) = 2. The nice contraction α : σ → τ0(e) factors through a nice
contraction αρ : ρ→ τ0(e).
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The image of γ in ρ is a path γρ which contains v. Now let γ′ → γρ be a
contraction of a path of length diam(γ) + 1 which contracts two adjacent vertices
w1 and w2 to v (where β(w1) = β(w2) = 1). There is a unique nice contraction
ε′ : σ′ → ρ such that γ′ is a path in σ′, such that the restriction of ε′ to γ′ is just
γ′ → ρ, such that every flag of v not contained in γρ is the image of a flag of w1,
and which is an isomorphism from σ′ − γ′ → ρ − γρ. Define α′ = αρ ◦ ε. Then
α′ : σ′ → τ0(e) is a nice contraction, E(σ′) = 1, α ∼= α′ and diam(σ′) = diam(σ)+1.
This proves the claim.

So by induction on the diameter of σ, every element of SE′(X)(τ0(e)) is equivalent
to αe : σe → τ0(e). In particularM(X, τ0(e)) =M0,0(X, e) is irreducible. �
Corollary 7.3. With the same hypotheses as in Proposition 7.2, for each stable
A-graph τ we have

(1) M(X, τ) is an integral, local complete intersection stack of the expected
dimension dim(X, τ), and M(X, τ) is the unique dense stratum in the
Behrend-Manin decomposition.

(2) For each flag f ∈ Flag(τ), B(X, τ, f) holds.
(3) For each contraction α : σ → τ , M(X, τ) is smooth at the general point of

the image of M(X,α) :M(X,σ)→M(X, τ).

Proof. By Corollary 5.5, FE(X, τ1(e), f1) holds for all integers e > 0. By assump-
tion, B(X, τ1(1), f1) holds. And by Proposition 7.2, M(X, τ0(e)) is irreducible for
each integer e > 0. Thus by Proposition 6.8, for every stable A-graph τ and every
flag f ∈ Flag(τ), we have that B(X, τ, f) holds. This establishes (2).

As in the proof of Proposition 6.5, (2) implies that for every stable A-graph
τ , M(X, τ) is irreducible of the expected dimension. By a parameter count, we
conclude thatM(X, τ) is the unique dense stratum of the Behrend-Manin decom-
position ofM(X, τ). SoM(X, τ) is also irreducible of the expected dimension, and
generically smooth. So D(X, τ) holds. By Lemma 4.5, we conclude that LCI(X, τ)
holds, i.e. M(X, τ) is a local complete intersection stack. Since it is generically
smooth, and thus generically reduced, it is reduced. SoM(X, τ) is an integral, local
complete intersection stack of the expected dimension dim(X, τ) and M(X, τ) is
the unique dense stratum in the Behrend-Manin decomposition. This establishes
(1).

Finally (3) follows from (1) and Corollary 6.7. �

Finally, we prove that a general hypersurface X ⊂ Pn of degree d < n+1
2 satisfies

the hypotheses of Proposition 7.2.
Proposition 7.4. Suppose n > 2, d ≤ n+1

2 and suppose X ⊂ Pn is a hypersurface
of degree d, so E′(X) = 2. If B(X, τ1(1), f1) holds for X (recall from Lemma 6.4
that B(X, τ1(1), f1) holds for a general X) then also B(X, τ1(2), f1) holds. For such
an X, the results of Corollary 7.3 hold.

Proof. By Corollary 5.5, LCI(X, τ1(2), f1) holds. Since M(X, τ0(2)) is the unique
dense stratum in the Behrend-Manin decomposition, to prove that M(X, τ0(2))
is irreducible, it is equivalent to prove that M(X, τ0(2)) is irreducible. To see
that M(X, τ0(2)) is irreducible, observe by Theorem 5.10 that every irreducible
component of M(X, τ) is of the form M(α) for a nice contraction α : σ → τ0(2)
with E(α) = 1. But there is a unique such contraction, namely α2 : σ2 → τ0(2).
SoM(X, τ0(2)) is irreducible.

Now by property 6.8, B(X, τ1(2), f1) holds. �
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