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2. Introduction

These are the lecture notes for a minicourse presented in the XX Escola de Al-
gebra at the Instituto Nacional de Matemática Pura e Aplicada in Rio de Janeiro,
Brazil, in August of 2008. The minicourse begins with an introduction to Brauer
groups and Galois cohomology followed by the proofs of the Chevalley-Warning
and Tsen-Lang theorems and their applications to Brauer groups and Galois coho-
mology. The minicourse concludes with some more recent theorems about Brauer
groups and Galois cohomology of function fields of varieties over an algebraically
closed field: de Jong’s Period-Index theorem and the split case of Serre’s ”Conjec-
ture II” over function fields of surfaces due to de Jong, He and myself and following
a strategy proposed by Philippe Gille. The split case completes the proof of the
general case of Serre’s ”Conjecture II” over function fields of surfaces following the
work of Merkurjev, Suslin, Bayer-Fluckiger, Parimala, Colliot-Thélène, and Gille.

In addition to introducing students and post-docs to the classical subjects of
Brauer groups and Galois cohomology, a second goal of the minicourse is to show
by example how results from geometry – specifically the geometry of rationally
connected varieties and the geometry of spaces of curves – can be used to prove
results in algebra – namely the Period-Index theorem and the split case of Serre’s
”Conjecture II”.

Here is a short description of the contents of the minicourse.
Chapter 1: Brauer groups and Galois cohomology. Definition of division

algebras and central simple algebras. Definition of the Brauer group. Short sketch
of Galois cohomology and its relation to the Brauer group.

Chapter 2: The Chevalley-Warning and Tsen-Lang theorems. The
statement and proofs of Chevalley’s theorem and Tsen’s theorem which prove that
the Brauer group of a finite field, resp. the function field of a curve over an alge-
braically closed field, is trivial. Statement of the generalized results of Chevalley-
Warning and Tsen-Lang with applications to Brauer groups and Galois cohomology.

Chapter 3: Rationally connected fibrations. A sketch of rationally con-
nected varieties. The statement of the conjecture of Kollár-Miyaoka-Mori that every
rationally connected fibration over a curve has a section. A sketch of the proof of
this conjecture by Graber, Harris and myself.

Chapter 4: The Period-Index theorem of de Jong Explanation of de
Jong’s Period-Index theorem: for every division algebra over the function field
of a surface, the period equals the index. Sketch of a second proof, by de Jong
and myself, using rational simple connectedness. Comparison to a third proof by
Lieblich, which also proves generalizations of de Jong’s theorem.

Chapter 5: Rational simple connectedness and Serre’s ”Conjecture
II” Description of known results about Serre’s “Conjecture II”: theorems of Merkur-
jev and Suslin, Bayer-Fluckiger and Parimala, Colliot-Thélène, Gille and Parimala,
and Gille. Sketch of the proof of the split case of Serre’s ”Conjecture II” over
function fields of surfaces using rational simple connectedness.
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CHAPTER 1

Brauer groups and Galois cohomology

1. Abelian Galois cohomology

The first lecture gives a quick survey of some results in Galois cohomology and
Brauer groups. Most results are stated without proof or with only an outline of a
proof. The main references for this lecture are [Ser02] and [Ser79]. For results
about homological algebra, the reference is [Wei94].

Let L/K be a Galois extension of fields, e.g., a separable closure Ks of K. The
Galois group Gal(L/K) is a profinite group, namely the inverse limit of the Galois
groups Gal(Li/K) of all finite Galois subextensions Li, i.e., K ⊂ Li ⊂ L.

Definition 1.1. An Abelian Gal(L/K)-module is an Abelian group A together
with a left action of Gal(L/K) by group homomorphisms. The module is discrete
if every element of A is stabilized by Gal(Li/K) for some finite Galois subextension
Li/K, or equivalently, if the canonical map of Abelian Gal(L/K)-modules

A→ lim
K⊂Li⊂L

Ai, Ai := AGal(L/Li),

is a bijection.
The Abelian category of all Abelian Gal(L/K)-modules is denoted Gal(L/K)−

mod. And the full Abelian subcategory of discrete Abelian Gal(L/K)-modules is
denoted Gal(L/K)−moddiscrete.

Let Li/K be a finite Galois subextension of L/K. There is a left-exact additive
functor

H0(Gal(Li/K),−) : Gal(Li/K)−mod → Z−mod,

B 7→ BGal(Li/K),

the functor of Gal(Li/K)-invariants.

Definition 1.2. The sequence of right derived functors of H0(Gal(Li/K),−)
considered as a cohomological δ-functor is the Galois cohomology or Gal(Li/K)-
cohomology,

Hp(Gal(Li/K),−) : Gal(Li/K)−mod → Z−mod,

Hp(Gal(Li/K), B) := RpH0(Gal(Li/K), B).

For a discrete Abelian Gal(L/K)-module A, for every integer p ≥ 0 the sequence
of group cohomologies (Hp(Gal(Li/K), Ai))Li form a directed system of Abelian
groups. Similarly, for every exact sequence of discrete Abelian Gal(L/K)-modules,

0 −−−−→ A′ −−−−→ A −−−−→ A′′ −−−−→ 0,

the collection of connecting maps

δp
Li

: Hp(Gal(Li/K), A′′i ) → Hp+1(Gal(Li/K), A′i)
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is a morphism of compatible systems.

Definition 1.3. The Galois cohomology or Gal(L/K)-cohomology is the coho-
mological δ-functor from Gal(L/K)−moddiscrete to Z−mod defined by the colimits

Hp(Gal(L/K),−) : Gal(L/K)−moddiscrete → Z−mod,

Hp(Gal(L/K), A) := lim
Li

Hp(Gal(Li/K), Ai),

and
δp : Hp(Gal(L/K), A′′) → Hp+1(Gal(L/K), A′), δp = lim

Li

δp
Li
.

This is a universal δ-functor. In fact the category Gal(L/K) − moddiscrete

has enough injective objects, and one can prove that the usual sequence of right
derived functors of AGal(L/K) is canonically isomorphic as a δ-functor to the one
from Definition 1.3. Definition 1.3 reflects one technique of studying Gal(L/K)-
cohomology: reduction to the case of finite Galois extensions Li/K.

For the reader who knows of such things, Gal(L/K)-cohomology is nothing
other than continuous group cohomology for the group Gal(L/K) with its profinite
topology. This raises the question, how is the study of Galois cohomology different
from the study of profinite group cohomology? The answer has to do mainly with
the particular Galois modules of interest.

1.1. Low degree Galois cohomology. The low degree Galois cohomology
groups have interpretations of special interest.

1.1.1. The zeroth group. Let L/K be a Galois extension and let A be a discrete
Gal(L/K)-module.

Proposition 1.4. There is a canonical bijection between H0(Gal(L/K), A) and
the normal subgroup AGal(L/K) of elements of A left invariant under Gal(L/K).

Proof. By definition, for every finite, Galois subextension K ⊂ Li ⊂ L

H0(Gal(Li/K), Ai) = A
Gal(Li/K)
i .

Since Ai is defined to be AGal(L/Li), this gives

H0(Gal(Li/K), Ai) = AGal(L/K).

Thus also
H0(Gal(L/K), A) = AGal(L/K),

i.e., H0(Gal(L/K), A) equals the subgroup of elements of A left invariant under
Gal(L/K). �

1.1.2. The first group, Interpretation I.. Let L/K be a Galois extension and
let A be a discrete, Abelian Gal(L/K)-module. A crossed homomorphism from
Gal(L/K) into A is a set map

a : Gal(L/K) → A

such that for every g, h ∈ Gal(L/K),

ag·h = ag · gah.

The crossed homomorphism is continuous if it factors through Gal(Li/K) for some
finite subextension K ⊂ Li ⊂ L.
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There is a distinguished continuous crossed homomorphism e, namely

eg = e,

the identity element of A for every g in Gal(Li/K). The set of continous crossed
homomorphisms from Gal(L/K) to A is denoted Z1

cts.(Gal(L/K), A). There is a
left action of A on Z1

cts.(Gal(L/K), A) associating to a crossed homomorphism a
and an element b of A, the new crossed homomorphism ab,

ab
g := b−1 · ag · gb.

Proposition 1.5. The standard description of group cohomology establishes a
bijection between the set Z1

cts.(Gal(L/K), A)/A of A-orbits and the set H1(Gal(L/K), A).
This bijection identifies the crossed homomorphism e with the additive identity of
H1(Gal(L/K), A).

Proof. It suffices to consider the case when L = Li is a finite Galois extension
of K. The “standard description” of group cohomology arises from the standard
resolution (or unnormalized bar resolution of the trivial (left) Z[Gal(Li/K)]-module
by free Z[Gal(Li/K)]-modules,

. . .→ Z[Gal(Li/K)](Gal(Li/K)p)
dp−→ · · · → Z[Gal(Li/K)](Gal(Li/K)×Gal(Li/K))

d2−→ Z[Gal(Li/K)](Gal(Li/K)) d1−→ Z[Gal(Li/K)] → Z → 0,

dp(e(g1,...,gp)) = g1eg2,...,gp
+

p−1∑
i=1

(−1)peg1,...,gi−1,gi·gi+1,gi+2,...,gp
+ (−1)peg1,...,gp−1 .

Applying HomZ[Gal(Li/K)]−mod(−, B) to this chain complex gives a cochain complex
computing

Hp(Gal(Li/K), A) = Extp
Z[Gal(Li/K)]−mod(Z, A).

Writing out the codifferential dual to the differential above gives the “standard de-
scription” of group cohomology in terms of cocycles and coboundaries. The group of
1-cocycles is precisely the group Z1(Gal(Li/K), A) of crossed homomorphisms with
e being the additive identity. And two crossed homomorphisms are cohomologous
if and only if they are equivalent. �

1.1.3. The first group, Interpretation II.. There is a second interpretation of
H1(Gal(L/K), A) in terms of discrete Gal(L/K)-equivariant A-torsors.

Definition 1.6. A right A-torsor is a nonempty set E together with a right
action of A which is free and transitive. A Gal(L/K)-equivariant A-torsor is a right
A-torsor together with a compatible left action of Gal(L/K) on E, i.e., for every g
in Gal(L/K), for every a in A and for every m in E,

g(m · a) = (gm) · (ga).

The Gal(L/K)-equivariant A-torsor is discrete if every element of E is stabi-
lized by Gal(L/Li) for some finite Galois subextension Li/K. An isomorphism of
Gal(Li/K)-equivariantA-torsors is a bijection which is simultaneously left Gal(Li/K)-
equivariant and right A-equivariant.

Let E be a Gal(Li/K)-equivariant A-torsor. For every element m of E, there
is a bijection of right A-torsors

Rm : A→ E, Rm(a) = m · a.
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This is left Gal(Li/K)-equivariant if and only if m is Gal(Li/K)-invariant. The
failure of m to be Gal(Li/K)-invariant is measured by the map

a : Gal(Li/K) → A, ∀g, gm = m · ag.

It is straightforward to verify a is a crossed homomorphism which is continuous if
E is discrete. Moreover, replacing m by m ·b−1 replaces the crossed homomorphism
a by ab. Thus the B-orbit of a is independent of the choice of m.

Proposition 1.7. Let L/K be a Galois extension and let A be a discrete
Gal(L/K)-module. The rule associating to every discrete Gal(L/K)-equivariant
A-torsor E the A-orbit of a in Z1

cts.(Gal(L/K), A)/A determines a bijection be-
tween the set of isomorphism classes of discrete Gal(L/K)-equivariant A-torsors
and Z1

cts.(Gal(L/K), A)/A.

Proof. For every pair (E1,m1) and (E2,m2), there is a unique isomorphism
of A-torsors

u : E1 → E2

such that u(m1) equals u(m2). This isomorphism is Gal(Li/K)-equivariant if and
only if the crossed homomorphisms associated to (E1,m1) and (E2,m2) are equal.

Moreover, for every crossed homomorphism a, there is a pair (E,m) giving rise
to a defined as follows. Define (E,m) to equal (A, e) as a right A-torsor. But endow
this with a new Gal(L/K)-action

g ∗a b := ag · gb.

If A is discrete and a is continuous, the new action is also discrete. And the crossed
homomorphism associated to (E,m) is precisely a.

This shows the rule associating to (E,m) the continuous crossed homomor-
phism a gives a bijection between the set of isomorphism classes of pairs (E,m)
and the set Z1

cts.(Gal(L/K), A). Since changingm tom·b−1 changes a to ab this rule
also gives a canonical bijection between the set of isomorphism classes of discrete
Gal(L/K)-equivariant A-torsors and the set Z1

cts.(Gal(L/K), A)/A. �

1.1.4. The second group. Let Li/K be a finite Galois extension and let A be an
Abelian Gal(Li/K)-module. An extension of Gal(Li/K) by A is an exact sequence
of groups

0 −−−−→ A −−−−→ E −−−−→ Gal(Li/K) −−−−→ 1,

i.e., a group E together with an isomorphism of A with a normal subgroup of E and
an isomorphism of Gal(Li/K) with the quotient group E/A such that the induced
conjugation action of E on A factors through the given action of Gal(Li/K) on A.
An isomorphism of extensions is a commutative diagram of short exact sequences
which is the identity on A and Gal(Li/K).

Proposition 1.8. There is a canonical bijection between the set of equivalence
classes of extensions of Gal(Li/K) by A and H2(Gal(Li/K), A). The bijection
associates the additive identity in H2(Gal(Li/K), A) to the equivalence class of the
semidirect product Ao Gal(Li/K).

This is best checked by using the standard resolution to describeH2(Gal(Li/K), A)
in terms of cocycles, cf. [Wei94, Theorem 6.6.3, p. 183].
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1.1.5. Cohomological dimension. Let L/K be a Galois extension. Let p be a
prime number and let n be a nonnegative integer.

Definition 1.9. The p-cohomological dimension of Gal(L/K), cdp(L/K), is
the smallest nonnegative integer n such that for every torsion, discrete, Abelian
Gal(L/K)-module A, the p-primary component of Hq(Gal(L/K), A) is {0} for all
q > n. If there is no such integer n, then cdp(L/K) is defined to be∞. The cohomo-
logical dimension of Gal(L/K), cd(L/K), is defined to be sup{cdp(L/K)|p prime }.
When L = Ks, a separable closure of K, these are denoted simply by cdp(K) and
cd(K).

2. Non-Abelian Galois cohomology and the long exact sequence

Let L/K be a Galois extension.

Definition 2.1. A Gal(L/K)-module is a (not necessarily Abelian) group A
together with a left action of Gal(L/K) acting by group homomorphisms. The
module is discrete if every element of A is stabilized by Gal(L/Li) for some finite
Galois subextension subextension Li/K.

The category of Gal(L/K)-modules is not Abelian, thus one cannot define
Galois cohomology in the same way as above. There is a theory of non-Abelian
cohomology, developed in [Gir71] for instance. However, for H0 and H1 it is
simpler to define H0(Gal(L/K), A) and H1(Gal(L/K), A) so that Propositions 1.4
and 1.5 continue to hold.

Definition 2.2. For every discrete Gal(L/K)-module A, the zeroth Galois
cohomology is the subgroup

H0(Gal(L/K), A) := AGal(L/K),

of elements of A left invariant under Gal(L/K). And the first Galois cohomology
is the set of right orbits,

H1(Gal(L/K), A) := Z1(Gal(L/K), A)/A.

Let u : A → B be a homomorphism of discrete Gal(L/K)-modules. Since u
is Gal(L/K)-equivariant, u maps AGal(L/K) to BGal(L/K). And for every crossed
homomorphism

a : Gal(L/K) → A,

the composition
u ◦ a : Gal(L/K) → B

is a crossed homomorphism. Moreover, u ◦ (ab) equals (u ◦ a)u(b). Thus u ◦ a maps
A-orbits into B-orbits. And u ◦ eA equals eB , so u preserves the distinguished
points.

Definition 2.3. For every homomorphism u : A → B of discrete Gal(L/K)-
modules, the group homomorphism

H0(Gal(L/K), u) : H0(Gal(L/K), A) → H0(Gal(L/K), B)

and the map of pointed sets

H1(Gal(L/K), u) : H1(Gal(L/K), A) → H1(Gal(L/K), B)

are as defined above.
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These maps complete the definition of the functors,

H0(Gal(L/K),−) : non-AbelianGal(L/K)−moddiscrete → Groups,

H1(Gal(L/K),−) : non-AbelianGal(L/K)−moddiscrete → Pointed Sets.

Remark 2.4. (i) Note that the proof of Proposition 1.7 is still valid. Thus there
is a canonical bijection betweenH1(Gal(L/K), A) and the pointed set of equivalence
classes of discrete Gal(L/K)-equivariant A-torsors.
(ii) Note also that for a product Gal(L/K)-module, B = A × C, the functori-
alities of H0 and H1 establish and isomorphism

H0(Gal(L/K), A× C) ∼= H0(Gal(L/K), A)×H0(Gal(L/K), C)

and a bijection of pointed sets,

H0(Gal(L/K), A× C) ∼= H0(Gal(L/K), A)×H0(Gal(L/K), C).

2.1. The long exact sequence. Notice that H1(Gal(L/K), A) typically has
no natural structure of group, although it does have the distinguished element [e].
Thus it may seem meaningless to ask about a long exact sequence of non-Abelian
Galois cohomology associated to a short exact sequence of groups. However the
situation is not as bad as it might at first seem.

2.1.1. Step I. Twisting. The first ingredient in describing the “long exact se-
quence” is the notion of twisting. Let E be a Gal(L/K)-equivariant A-torsor and
let F be a set with a left Gal(L/K)-action and a Gal(L/K)-equivariant right action
of A, i.e.,

g(f · a) = gf · ga

for every g in Gal(L/K), for every a in A and for every f in F . There is a
left Gal(L/K)-action on E × F by g(e, f) := (ge, gf). And there is a Gal(L/K)-
equivariant right action of A on E × F by (e, f) · a := (e · a, f · a). The set of right
A-orbits

EF := (E × F )/A
has a well-defined left action of Gal(L/K) such that [g(e, f)] equals g[(e, f)].

Definition 2.5. The Gal(L/K)-set EF is the twist of F by E. If E and F are
both discrete, EF is also discrete.

Twisting is functorial in both E and F . Since pairs (E,m) are unique up to
unique isomorphism, for every element a in Z1

cts.(Gal(L/F ), A), the twist aF is also
well-defined up to unique isomorphism. But since two representatives a and a′ of
the same A-orbit in Z1

cts.(Gal(L,F ), A) may be conjugate under many elements of
A, there is no canonical isomorphism of aF and a′F .

If A is non-Abelian then typically EF has no natural structure of A-set. How-
ever, if the action of A on F preserves some “structure”, then the twist EF typically
also has this “structure”. Here are two examples of this.

Example 2.6 (Translation by F ). Let A and B be Gal(L/K)-modules and let
F be a Gal(L/K)-set that has commuting Gal(L/K)-equivariant right actions of
both A and B. Then for every Gal(L/K)-equivariant A-torsor E, EF also has a
Gal(L/K)-equivariant right B-action. In particular, if F is a B-torsor, then also
EF is a B-torsor. Thus, associated to every Gal(L/K)-equivariant B-torsor F with
a commuting Gal(L/K)-equivariant right A-action, there is an induced set map

∗F : H1(Gal(L/K), A) → H1(Gal(L/K), B), [E] 7→ [EF ].
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This maps sends the trivial A-torsor to F , and thus can be considered a “translation
by F”.

The canonical example of this comes from a homomorphism u : A → B of
Gal(L/K)-modules. There is a right A-action on B via b · a := bu(a). And there is
a commuting “right” B-action on B via b · β := β−1b. Thus, as above, there is a
set map

u∗ : H1(Gal(L/K), A) → H1(Gal(L/K), B), [E] 7→ [EB].

Via Proposition 1.7, the map u∗ is precisely the same as the map H1(Gal(L/K), u).
A second example comes from the case that A is Abelian. Let B be A. For

every A-torsor F , let the B-torsor structure be precisely the same as the given
A-torsor structure. The “two” actions commute because multiplication in A is
commutative. And the induced map ∗F literally is translation by [F ] in the Abelian
group H1(Gal(L/K), A).

If F is itself a Gal(L/K)-module and if A acts by group homomorphisms, then
EF is also a group, i.e., a Gal(L/K)-module.

Example 2.7 (Inner twists). For instance, A acts on itself by inner automor-
phisms. Thus associated to every discrete Gal(L/K)-equivariant A-torsor E, there
is an associated Gal(L/K)-module EA,

EA := (E ×A)/ ∼, (m,a) ∼ (mγ, γ−1aγ).

To make this more explicit, observe there is a well-defined composition,

∗ : (E ×A)× (E ×A) → E ×A,

(m1, a1) ∗ (m2, a2) = (m1 · (a1b), b−1a1b1a2), m2 = m1 · b.
Observe that

(m1 · α, α−1a1α) ∗ (m2 · β, β−1a2β) = ((m1 · (a1b)) · β, β−1(b−1a1ba2)β).

Thus the composition gives a well-defined composition on EA. The identity element
is the class of E × {eA}. And the inverse of the class (m,a) is (m · a−1, a). It is
important to note that the composition above gives a well-defined left action of EA
on E = E × {eA} by

[(m1, a1)] ∗m2 := m1a1b, m2 = m1b.

Since EA is a group, we can change this into a “right” action by

m2 ∗ [(m1, a1)] := [(m1a
−1
1 , a−1

1 )] ∗m2 = m1a
−1b.

With respect to this action, E is both a Gal(L/K)-equivariant A-torsor and a
Gal(L/K)-equivariant EA-torsor. Thus, by the mechanism in Example 2.6, there
are well-defined set maps

∗E : H1(Gal(L/K), A) → H1(Gal(L/K),EA),

∗E : H1(Gal(L/K),EA) → H1(Gal(L/K), A).

Each of these maps sends the trivial torsor to E. Observe that if A is Abelian,
then EA equals A and the map ∗E agrees with the map from Example 2.6, i.e., it
is simply translation by [E] in the Abelian group H1(Gal(L/K), A).
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Proposition 2.8. The maps

∗E : H1(Gal(L/K), A) → H1(Gal(L/K),EA),

∗E : H1(Gal(L/K),EA) → H1(Gal(L/K), A).
are both bijections.

Proof. Let F be a Gal(L/K)-equivariant A-torsor. Denote by I the set

I = IsomA(E,F ) = {φ : E → F |∀e ∈ E,∀a ∈ A,φ(e · a) = φ(e) · a}.

Make this into a Gal(L/K)-set by defining,

(gφ)(e) :=
g
(φ(g−1

e)), i.e., (gφ)(ge) = g(φ(e)).

Make this into a right EA-set by defining

(φ · α)(e) := φ(e · α−1), i.e., (φ · α)(e · α) = φ(e).

Putting these together,

(g(φ · α))(g(e · α)) = φ(e) = (gφ · gα)(ge · gα).

Since g(e · α) equals ge · gα, it follows that g(φ · α) equals gφ · gα, i.e., the EA-action
is Gal(L/K)-equivariant.

On the underlying level of groups and group-sets ignoring the Gal(L/K)-
actions, E equals A as A-sets, EA equals A as groups, and F equals A as A-sets.
By considering this case, it is clear that the right EA-action on I makes I into an
EA-torsor. Therefore I is a Gal(L/K)-equivariant EA-torsor.

There is a canonical map

c : I × E → F, (φ, e) 7→ φ(e).

This map is EA-invariant for the diagonal right action of EA on I × E. Thus it
factors through a map

c′ : IE → F.

Since c is Gal(L/K)-equivariant and A-equivariant for the right A-action on E, c′

is a morphism of Gal(L/K)-equivariant A-torsors. Thus it is an isomorphism. So
∗E sends I to F .

Conversely, for every Gal(L/K)-equivariant EA-torsor J and for every mor-
phism

d′ : JE → F

of Gal(L/K)-equivariant A-torsors, the composition

d : J × E � JE
d′−→ F

is A-equivariant for the right A-action on E, and thus induces a set map

d′′ : J → I.

Since d is Gal(L/K)-equivariant and EA-equivariant, so is d′′. Thus d′′ is a map of
Gal(L/K)-equivariant EA-torsors, which is automatically an isomorphism. There-
fore, up to isomorphism, I is the unique Gal(L/K)-equivariant EA-torsor such that
IE is isomorphic to F , i.e., the map

∗E : H1(Gal(L/K),EA) → H1(Gal(L/K), A)

is bijective. The argument that the other map ∗E is bijective is similar. �
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Let u : A → B be a homomorphism of Gal(L/K)-modules and let E be a
discrete Gal(L/K)-equivariant A-torsor. There is a well-defined homomorphism of
Gal(L/K)-modules,

Eu : EA→ u∗EB

associated to the map

(E ×A) → (E ×B), (m,a) 7→ (m, b).

The proof of the following is a straightforward exercise for the reader.

Lemma 2.9. With respect to this map, both the diagram

H1(Gal(L/K), A) u∗−−−−→ H1(Gal(L/K), B)

∗E
y y∗u∗E

H1(Gal(L/K),EA) Eu∗−−−−→ H1(Gal(L/K), u∗EB)

(1)

and the diagram

H1(Gal(L/K),EA) Eu∗−−−−→ H1(Gal(L/K), u∗EB)

∗E
y y∗u∗E

H1(Gal(L/K), A) u∗−−−−→ H1(Gal(L/K), B)

(2)

commute.

Example 2.10. Next, consider an Abelian extension of discrete Gal(L/K)-
modules,

0 −−−−→ A′ −−−−→ A −−−−→ A′′ −−−−→ 1,

i.e., A′ is Abelian (although neither A nor A′′ need be Abelian). The conjugation
action of A on the normal subgroup A′ determines a well-defined action of A′′ on A′.
Thus, associated to every Gal(L/K)-equivariant A′′-torsor E′′ there is a discrete
Abelian Gal(L/K)-module E′′A′.

2.1.2. Step II. The first terms. This is enough to begin describing the long exact
sequence. Let u : A → B be an injective homomorphism of discrete Gal(L/K)-
modules. Denote by C = B/A the set of right A-cosets of B with its natural
discrete structure of Gal(L/K)-set. Denote by v : B → C the natural map, which
is Gal(L/K)-equivariant. The homomorphism u determines an injective homomor-
phism

H0(Gal(L/K), u) : H0(Gal(L/K), A) → H0(Gal(L/K), B),

and in particular an action of H0(Gal(L/K), A) on H0(Gal(L/K), B). Because v
is Gal(L/K)-equivariant, it also determines a map

v∗ : H0(Gal(L/K), B) → CGal(L/K).

Clearly the fibers of v∗ are precisely the H0(Gal(L/K), A)-orbits. In this sense, the
sequence of sets

1 −−−−→ H0(Gal(L/K), A) −−−−→ H0(Gal(L/K), B) −−−−→ CGal(L/K)

is an exact sequence of sets.
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2.1.3. Step III. The connecting map. The Gal(L/K)-invariant elements of C
are the same as the A-orbits E of B which are fixed as a set (but not necessarily
pointwise) by the action of Gal(L/K). Such a Gal(L/K)-invariant A-orbit E need
not contain a Gal(L/K)-invariant element, i.e., v∗ need not be surjective. For every
Gal(L/K)-invariant A-orbit E, the restrictions to E of the Gal(L/K)-action and
the A-action make E into a Gal(L/K)-invariant A-torsor. Forming the equivalence
class of this torsor gives a well-defined set map

δ : CGal(L/K) → H1(Gal(L/K), A).

Observe that for every Gal(L/K)-invariantA-orbit E and every Gal(L/K)-invariant
element b of B, left multiplication by b defines an isomorphism of the Gal(L/K)-
equivariant A-torsor E and the Gal(L/K)-equivariant A-torsor b · E. Thus the
map δ is constan on each H0(Gal(L/K), B)-orbits in CGal(L/K). Conversely, if E1

and E2 are Gal(L/K)-invariant A-orbits in B and if v : E1 → E2 is an isomor-
phism of Gal(L/K)-invariant A-torsors, then there exists a unique element b of B
such that v(m) = b ·m for every m in E1. Since v is Gal(L/K)-equivariant, b is
Gal(L/K)-invariant. Therefore δ(E1) equals δ(E2) if and only if E1 and E2 differ
by left multiplication by an element of H0(Gal(L/K), B). In particular, the fiber
of δ over [A] is precisely the image of H0(Gal(L/K), B).

In all of these senses, the set map

1 → H0(Gal(L/K), A) → H0(Gal(L/K), B) → CGal(L/K) δ−→ H1(Gal(L/K), A)

is “exact”. The first map is injective. The fibers of the second map are precisely
the orbits for the action of H0(Gal(L/K), A) on H0(Gal(L/K), B). And the fibers
of the third map are precisely the orbits for the action of H0(Gal(L/K), B) on
(B/A)Gal(L/K).

2.1.4. Step IV. The map of torsors. Let E be a Gal(L/K)-equivariant A-torsor
and let u∗E be the associated Gal(L/K)-equivariant B-torsor as constructed in Ex-
ample 2.6, u∗E = E ×B/A. Taking inverse images, a Gal(L/K)-invariant element
of u∗E is the same as a Gal(L/K)-invariant A-orbit F of E × B. The projec-
tion prE : F → E is an isomorphism of Gal(L/K)-invariant A-torsors. Inverting
this, F is the graph F = Γv of a unique map v : E → B which is simultaneously
Gal(L/K)-equivariant and A-equivariant. But then E is isomorphic to v(E), which
is a Gal(L/K)-equivariant left A-orbit in B. Thus u∗E is isomorphic to the distin-
guished element of H1(Gal(L/K), B) if and only if E is isomorphic to an A-torsor
in the image of δ. In summary, this gives the following.

Proposition 2.11. Associated to an injective homomorphism of Gal(L/K)-
modules, u : A → B, and denoting by v : B → C the quotient map of Gal(L/K)-
sets, B → B/A, the sequence of set maps

1 → H0(Gal(L/K), A) u∗−→ H0(Gal(L/K), B) v∗−→ CGal(L/K)

δ−→ H1(Gal(L/K), A) u∗−→ H1(Gal(L/K), B)

is “exact” in the following sense: the first map u∗ is injective, the fibers of v∗ equal
the orbits of Image(u∗), the fibers of δ equal the orbits of H0(Gal(L/K), B), and
the fiber of u∗ over the distinguished element equals the image of δ.
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2.1.5. Step V. Fibers of u∗. Using the twists from Example 2.7, we can push
this a bit further. Let E be a Gal(L/K)-equivariant A-torsor and let

Eu : EA→ u∗EB

be the associated morphism of inner twist Gal(L/K)-modules as in Example 2.7.
This gives rise to a sequence of sets,

1 → H0(Gal(L/K),EA) Eu∗−−→ H0(Gal(L/K), u∗EB) Ev∗−−→ EC
Gal(L/K)

Eδ−−→ H1(Gal(L/K),EA) Eu∗−−→ H1(Gal(L/K), u∗EB)
By the diagram in Equation 2, the map ∗E defines a map from the fiber of
Eu∗ containing the trivial EA-torsor to the fiber of u∗ : H1(Gal(L/K), A) →
H1(Gal(L/K), B) containing [E].

Proposition 2.12. The fiber of

u∗ : H1(Gal(L/K), A) → H1(Gal(L/K), B)

containing [E] equals the image of the map

∗E ◦ Eδ : (EC)Gal(L/K) → H1(Gal(L/K), A).

Proof. This follows from Lemma 2.9, Proposition 2.8 and Proposition 2.11
applied to Eu as discussed above. �

2.1.6. Step VI. The image of u∗. Let F be a Gal(L/K)-equivariant B-torsor.

Proposition 2.13. There is Gal(L/K)-equivariant A-torsor E such that [F ]
equals u∗[E] if and only if F/u(A) has a Gal(L/K)-invariant element.

Proof. This is straightforward. Certainly EB = (E×B)/ ∼ has a Gal(L/K)-
invariant u(A)-orbit, namely the image of E × {eB}. So if [F ] equals u∗[E], then
F/u(A) has Gal(L/K)-invariant element.

Conversely, if F/u(A) has a Gal(L/K)-invariant element, the inverse image in F
is a Gal(L/K)-invariant u(A)-orbit E. The restrictions of the Gal(L/K)-structure
and the A-structure on F to E make E into a Gal(L/K)-equivariant A-torsor.
And the inclusion E ↪→ F induces a morphism EB → F of Gal(L/K)-equivariant
B-torsors. Thus [F ] equals u∗[E]. �

Observe that G/u(A) is the same as the twist GC. In the sense that the twist
GC should be considered “trivial” if it has a Gal(L/K)-invariant element, this
extends the long exact sequence of sets one more place to the right.

2.1.7. Step VII. Quotient by a normal subgroup. If A is a normal subgroup,
then C is naturally a discrete Gal(L/K)-module. In this case, for every Gal(L/K)-
equivariant A-torsor E, the quotient EC = u∗EB/EA is canonically isomorphic as
a Gal(L/K)-set to C. In particular, the rule associating to every element E the set
map

∗E ◦ Eδ : H0(Gal(L/K), C) → H1(Gal(L/K), A)
is an action of H0(Gal(L/K), C) on H1(Gal(L/K), A). The previous step shows
that the fibers of

u∗ : H1(Gal(L/K), A) → H1(Gal(L/K), B)

are precisely the orbits of H0(Gal(L/K), C). Finally, for every B-torsor G, the
twist GC from the previous paragraph still has a left C-action, and thus is a discrete
Gal(L/K)-equivariant C-torsor. As above, it is a trivial C-torsor if and only if it has
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a Gal(L/K)-invariant element if and only if G is in the image of u∗. In summary,
this gives the following.

Proposition 2.14. Associated to an injective homomorphism of Gal(L/K)-
modules, u : A → B whose image is normal, and denoting by v : B → C the
quotient map of Gal(L/K)-modules, B → B/A, the sequence of set maps

1 → H0(Gal(L/K), A) u∗−→ H0(Gal(L/K), B) v∗−→ H0(Gal(L/K), C)
δ−→ H1(Gal(L/K), A) u∗−→ H1(Gal(L/K), B) v∗−→ H1(Gal(L/K), C)

is “exact” in the following sense: the first map u∗ is injective with normal im-
age, the fibers of v∗ equal the orbits of Image(u∗), the fibers of δ equal the orbits of
H0(Gal(L/K), B), the fibers of the second map u∗ equal the orbits of H0(Gal(L/K), C),
and the image of the second map u∗ equals the fiber of the second map v∗ containing
the neutral element.

2.1.8. Step VIII. Quotient by an Abelian normal subgroup. The next step is
when A is both normal and Abelian. Then the conjugation action of B on A
descends to a well-defined action of C on A. Given c in C and a in A, we will denote
this action by cac−1 as a reminder that the action is bab−1 for any representative
b of the A-coset c in B.

Let
c : Gal(L/K) → C

be a continuous crossed homomorphism. This in turn determines a new discrete
action of G on A, namely

g ∗c a := cg · ga · c−1
g .

The action of Gal(L/K) on B defines a semidirect product B o Gal(L/K). And c
defines an action of B o Gal(L/K) on C by

(b, g) ∗c d := cg · gd · v(b)−1.

The stabilizer of the identity eC is a subgroup denoted cH. Of course cH contains
A× {1} as a subgroup. The induced quotient

H ⊂ B o Gal(L/K) π2−→ Gal(L/K)

is surjective and has kernel A. The conjugation action of H on A factors through
an action of Gal(L/K) on A. And of course this is the new action defined above.
Thus, altogether cH is an extension

0 −−−−→ cA −−−−→ cH −−−−→ Gal(L/K) −−−−→ 0.

This gives a well-defined element

∆(c) ∈ H2(Gal(L/K), cA).

For an element b of B, conjugation by b defines an automorphism of A inter-
twining the actions ∗c and ∗cv(b) . Similarly conjugation by (b, 1) ∈ B o Gal(L/K)
gives an isomorphism of cH and cv(b)H which gives a morphism of extensions

0 −−−−→ cA −−−−→ cH −−−−→ Gal(L/K) −−−−→ 0

∼=
y y∼= y=

0 −−−−→ cv(b)A −−−−→ cv(b)H −−−−→ Gal(L/K) −−−−→ 0.

In this sense, ∆(c) is independent of the choice of c.

20



Finally, every splitting of the extension comes from a lift of c to a crossed
homomorphism Gal(L/K) → B. This proves the following.

Proposition 2.15. For every element c in Z1
cts.(Gal(L/K), C), ∆(c) equals 0

in H2(Gal(L/K), A) if and only if [c] is in the image of v∗.

2.1.9. Step IX. Central extensions. The final step is when A is a central sub-
group of B. Then ∗c is the usual action of Gal(L/K) on A. Therefore ∆(c) is an
element of H2(Gal(L/K), A). Similarly, conjugation by b on A is trivial, and thus
conjugation by (b, 1) defines an isomorphism of extensions of cH and cv(b)H. There-
fore ∆(c) is independent of the representative of [c], i.e., there is a well-defined set
map

∆ : H1(Gal(L/K), C) → H2(Gal(L/K), A).

Finally, twisting A, B and C by an element c again gives a well-defined map

c∆ : H1(Gal(L/K), cC) → H1(Gal(L/K), A).

For the same reason as in Proposition 2.12,

∗c : H1(Gal(L/K), cC) → H1(Gal(L/K), C)

defines a bijection between the fiber of ∆ containing [c] and the fiber of c∆ over 0.
Therefore

∗c ◦ cv∗ : H1(Gal(L/K), cB) → H1(Gal(L/K), C)

maps surjectively onto the fiber of ∆ containing [c]. In summary, this gives the
following.

Proposition 2.16. Associated to a central extension of Gal(L/K)-modules,

0 −−−−→ A
u−−−−→ B

v−−−−→ C −−−−→ 1

the sequence of set maps

0 → H0(Gal(L/K), A) → H0(Gal(L/K), B) → H0(Gal(L/K), C) δ−→

H1(Gal(L/K), A) u∗−→ H1(Gal(L/K), B) v∗−→ H1(Gal(L/K), C) ∆−→ H2(Gal(L/K), A)

is exact in the following sense: the first map u∗ is injective with central image,
the fibers of v∗ equal the orbits of Image(u∗), the fibers of δ equal the orbits of
H0(Gal(L/K), B), the fibers of the second map u∗ equal the orbits of H0(Gal(L/K), C),
the fibers of the second map v∗ equal the orbits of the Abelian group H1(Gal(L/K), A),
and the fiber of ∆ containing the element [c] equals the image of the map

∗c ◦ cv∗ : H1(Gal(L/K), cB) → H1(Gal(L/K), C).

Remark 2.17. The long exact sequence is functorial in the short exact se-
quence. To be precise, given a commutative diagram of homomorphisms of Gal(L/K)-
modules

A
u−−−−→ B

f

y yg

A′
u′−−−−→ B′
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with u and u′ injective, the diagram

CGal(L/K) δu−−−−→ H1(Gal(L/K), A)

g∗

y yf∗

(C ′)Gal(L/K) δv−−−−→ H1(Gal(L/K), A′)
is commutative, where C = B/A and C ′ = B′/A′. Moreover, if A, resp. A′, is a
central subgroup of B, resp. of B′, then also the diagram

H1(Gal(L/K), C) ∆u−−−−→ H2(Gal(L/K), A)

g∗

y yf∗

H1(Gal(L/K), C ′) ∆v−−−−→ H2(Gal(L/K), A′)
is commutative. The proof of each of these assertions is a good exercise for the
reader.

3. Galois cohomology of smooth group schemes

Most of the flavor of Galois cohomology comes from the specific Galois modules
one studies. For instance, one could consider the action of Gal(Ks/K) on the étale
cohomology groups of an algebraic variety defined over K. Or, when K is a number
field, one could consider the action of Gal(L/K) on the ideal class group of the ring
of integers in L. There is another source of Galois modules which are somewhat
simpler than the previous 2 examples, but which still play an important role.

Let K be a field, let G be a quasi-compact, smooth group scheme over K, and
let L/K be a Galois extension. Then the set G(L) of L-points of G is a group
with a natural action of Gal(L/K) by group homomorphisms. Since G is locally
finitely presented over K, G(L) is a discrete Gal(L/K)-module. In fact, this is even
better than a usual Galois module. For every extension field K ′/K and for every
Galois extension L′/K ′, the set of L′-points G(L′) is a discrete Gal(L′/K ′)-module.
The Galois cohomologies of these modules satisfy all the functorialities one would
expect. It is a good exercise to formulate and prove these for oneself.

3.1. Galois descent of torsors. It is straightforward thatH0(Gal(L/K), G(L))
equalsG(K). There is also an alternative description ofH1(Gal(L/K), G(L)) whose
proof uses descent.

Definition 3.1. A right G-torsor over K is a nonempty, locally finitely pre-
sented K-scheme T together with a right action of G on T ,

µ : T ×K G→ T

in the category of K-schemes such that the induced morphism

(prT , µ) : T ×K G→ T ×K T

is an isomorphism. A morphism of G-torsors is a morphism of K-schemes which is
equivariant for the action of G (such a morphism is automatically an isomorphism).

Let T be a G-torsor over K. There is a bijective correspondence between T (K)
and the set of morphisms of G-torsors from the trivial G-torsor G to T via the rule
associating to t in T (K) the morphism

µt : G→ T, g 7→ µ(t, g).
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In particular, T is trivial if and only if T (K) is nonempty. By the same token, for
every field extension L/K, the base change T ⊗K L is trivial as a G⊗K L-torsor if
and only if T (L) is nonempty.

Let L/K be a Galois extension and let T be a G-torsor such that T (L) is
nonempty. Then the set T (L) is naturally a Gal(L/K)-equivariant G(L)-torsor.
Moreover, to every morphism

φ : T → T ′

of G-torsors over K, the induced set map

φ(L) : T (L) → T ′(L)

is a morphism of Gal(L/K)-equivariant G(L)-torsors. This defines a set map

p∗ : HomG−equiv.(T, T ′) → HomGal(L/K)−G(L)−equiv.(T (L), T ′(L)), φ 7→ φ(L)

from the set of morphisms of G-torsors to the set of morphisms of Gal(L/K)-
equivariant G(L)-torsors.

Proposition 3.2 (Galois descent). Let L/K be a finite Galois extension and
let G be a quasi-compact, smooth group scheme over K.

(0) Every G-torsor T over K is a quasi-projective, smooth K-scheme.
(i) For every pair T, T ′ of G-torsors over K such that T (L) and T ′(L) are

nonempty, the set map p∗ defined above is a bijection.
(ii) Every Gal(L/K)-equivariant G(L)-torsor is isomorphic to one associated

to a G-torsor over K.

Proof. This follows by the technique of descent, cf. [Wei56, Section I],
[Gro62, no. 190], [BLR90, §6.5]. �

When L/K is a Galois extension which is not necessarily finite, Proposition 3.2
still holds so long as we restrict attention to discrete torsors. In particular, the
theorem establishes a bijection between H1(Gal(Ks/K), G(L)) and the set of iso-
morphism classes of G-torsors.

3.1.1. Weil restriction of scalars. Let L/K be a finite extension of fields (not
necessarily separable). Let X be an L-scheme.

Definition 3.3. A Weil restriction ofX with respect to L/K is a pair (RL/K(X), f)
of a K-scheme RL/K(X) together with a morphism of L-schemes

f : RL/K(X)⊗K L→ X

which is universal among all such pairs.

Proposition 3.4 (Weil Restriction). For every quasi-projective L-scheme X
there exists a Weil restriction of X with respect to L/K. Moreover, RL/K(X) is a
quasi-projective K-scheme. And if X is L-smooth, then RL/K(X) is K-smooth.

Proof. This follows, for instance, from [Gro62, Part IV.4.c, p. 221-19]. See
also [BLR90, Theorem 4, p. 194]. The smoothness assertion is an easy application
of the infinitesimal lifting criterion for smoothness, cf. [Gro67, Théorème 17.5.1]
or [Har77, Exercise II.8.6]. �

For every quasi-compact, smooth group scheme GL over L, the Weil restriction
RL/K(GL) has a natural structure of a group scheme over K. For every GL-torsor
TL over L, the Weil restriction RL/K(TL) has a natural structure of a RL/K(GL)-
torsor.
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Also, for every K-scheme Y , denoting by YL the base change Y ⊗K L, the
identity morphism

Y ⊗K L→ YL

determines a K-morphism

iY : Y → RL/K(YL).

For every open affine U = Spec R of Y , for every K-algebra A and for every pair
of morphisms of K-algebras,

φ, φ′ : R→ A,

if the associated A⊗K L-points,

φ⊗ IdL, φ
′ ⊗ IdL : R→ A⊗K L

are equal, then φ and φ′ are equal; indeed, the map of K-vector spaces

HomK−v. space(R,A) → HomK−v. space(R,A⊗K L)

is injective since A → A ⊗K L is injective. Thus, for a quasi-projective K-scheme
Y , it follows that iY is an unramified monomorphism.

Proposition 3.5. Let L/K be a finite Galois extension.
(i) For every quasi-compact, smooth group scheme G over K,

iG : G→ RL/K(GL)

is both a closed immersion and a homomorphism of quasi-compact, smooth
group schemes over K.

(ii) The connecting map in Galois cohomology,

δ : (RL/K(GL)/G)(K) → H1(Gal(L/K), G(L))

is surjective, i.e., every G-torsor over K having an L-point is isomorphic
to a G-orbit in RL/K(GL).

Proof. (i). First of all, since G is a quasi-compact, smooth group scheme over
K, it is quasi-projective, cf. [BLR90, Theorem 1, p. 153] for instance. Thus GL

is also a quasi-projective, smooth group scheme over L. Thus, by Proposition 3.4,
RL/K(GL) is a quasi-projective, smooth group scheme over K. For every K-scheme
T , the pullback map G(T ) → G(T ⊗K L) is a group homomorphism. Thus also
iG(T ) is a group homomorphism, i.e., iG is a homomorphism of group schemes. And
by the usual argument, the image of iG is a closed subgroup scheme of RL/K(GL):
the closure of iG(G) is a group and iG(G) is a dense, equivariant open in this
group, and therefore the entire group. A homomorphism of group schemes which
is an unramified monomorphism is automatically a closed immersion; the closure
of the image is a group scheme which contains iG(G) is an equivariant, dense open,
hence as all of the closure.

(ii). Let T be a G-torsor over K. If T (L) is nonempty, then there is an
isomorphism of GL and TL as GL-torsors over L. Thus there is an isomorphism

u : RL/K(TL)
∼=−→ RL/K(GL)

as RL/K(GL)-torsors over K. The morphism

iG : G→ RL/K(GL)

is a homomorphism of group schemes over K. And the composition

u ◦ iT : T → RL/K(GL)
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embeds T as an iG(G)-orbit in RL/K(GL). �

Part (ii) can also be proved by writing out explicitly the map

H1(Gal(L/K), G(L))
iG,∗−−→ H1(Gal(L/K),RL/K(GL)(L))

and verifying it is constant.

3.2. Examples.
3.2.1. The multiplicative group. One particularly important case is when G =

Gm,K , the multiplicative group scheme Spec K[t, t−1].

Theorem 3.6 (Hilbert’s Theorem 90). For the multiplicative group, H0(Gal(Ks/K),Gm,K(Ks))
equals K∗ and H1(Gal(Ks/K),Gm,K(Ks)) is {[Gm,K(L)]}.

Proof. The first assertion is obvious. For the second assertion, it suffices
to verify H1(Gal(L/K),Gm,K(L)) is trivial for every finite Galois extension L/K,
i.e., every Gm,K-torsor having an L-point also has a K-point. By Proposition 3.5,
every Gm,K-torsor having an L-point is a Gm,K-orbit in RL/K(Gm,L). Of course
Gm,K is an open subscheme of the affine line A1

K , and the immersion is equivari-
ant. Thus RL/K(Gm,L) is an equivariant open subscheme of RL/K(A1

L). Up to
choosing a basis {b1, . . . , bn} for L as a K-vector space, RL/K(A1

L) is isomorphic
to An

K as a K-scheme. Moreover, the action of Gm,K on RL/K(A1
L) induced by the

homomorphism
iGm,K

: Gm,K → RL/K(Gm,L)
equals the standard action of Gm,K on An

K via this isomorphism. So the Gm,K-
orbits in RL/K(A1

K) are the same as the Gm,K-orbits in An
K , i.e., the set of nonzero

elements in 1-dimensional K-linear subspaces of An
K . Therefore Hilbert’s Theorem

90 reduces to the statement that every 1-dimensional K-linear subspace of An
K

contains a nonzero vector, which is obvious. �

Of course there is another proof which forms a Poincaré series out of a 1-cocycle
and then uses linear independence of automorphisms to conclude this Poincaré series
is nonzero. In fact the proof above uses the full machinery of descent, parts of which
are proved by using arguments very similar to the Poincaré series argument.

Because of Hilbert’s Theorem 90, the first nontrivial cohomology group is
H2(Gal(Ks/K),Gm,K(Ks)).

Definition 3.7. For every Galois extension L/K, the cohomological Brauer
group of L/K, denoted Br′(L/K), is H2(Gal(L/K),Gm,K(L)). When L is a sepa-
rable closure Ks of K, this is called the cohomological Brauer group of K, Br′(K).

3.2.2. Groups of roots of unity. Let n be a positive integer not divisible by
char(K). Then the group scheme µn,K := Spec K[t, t−1]/〈tn − 1〉 is a smooth
group scheme over K. There is a short exact sequence of smooth, commutative
group schemes over K, the Kummer sequence,

1 −−−−→ µn,K −−−−→ Gm,K
(−)n

−−−−→ Gm,K −−−−→ 1.

Proposition 3.8. The Kummer sequence induces isomorphisms of Abelian
groups,

H1(Gal(Ks/K),µn,K(Ks)) = K∗/(K∗)n

and
H2(Gal(K2/K),µn,K(Ks)) = Br′(K)[n].
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Proof. This follows immediately from the long exact sequence of (Abelian)
Galois cohomology and Theorem 3.6. �

3.2.3. Additive and unipotent groups. Another important case is when G =
Ga,K = Spec K[t], the additive group.

Proposition 3.9. For the additive group Ga,K , H0(Gal(Ks/K),Ga,K(Ks))
equals K and for every q > 0, Hq(Gal(Ks/K),Ga,K(Ks)) equals {0}.

Proof. For every finite Galois extension L/K with Galois group Γ, the normal
basis theorem gives an isomorphism between L and K[Γ] as K[Γ]-modules. Since
K[Γ] is a free module over itself, it has no higher Galois cohomology. �

If char(K) = p, then there is a short exact sequence of smooth, commutative
group schemes, the Artin-Schreier sequence,

0 −−−−→ Z/pZ −−−−→ Ga,K
F−−−−→ Ga,K −−−−→ 0

where F (a) = ap − a.

Corollary 3.10. If char(K) = p, then H0(Gal(Ks/K),Z/pZ) equals Z/pZ,
H1(Gal(Ks/K),Z/pZ) equals K/F (K), and for every q > 1, Hq(Gal(Ks/K),Z/pZ)
equals {0}.

Corollary 3.11. If a quasi-compact, smooth group scheme U over K has a
composition series by normal, closed subgroup schemes whose subquotients are each
isomorphic to Ga,K , then H1(Gal(Ks/K), U(Ks)) equals {∗}.

The first corollary follows from Proposition 3.9 and the long exact sequence of
Abelian Galois cohomology. The second corollary follows by inductively applying
Proposition 2.14 to the terms in the composition series, using Proposition 3.9 for
the base case of the induction.

Definition 3.12. A connected, quasi-compact, smooth group scheme U over
K is unipotent if for some integer N , U is isomorphic to a closed subgroup scheme
of GLN,K whose Ks-points are all unipotent (i.e., 1 is the only eigenvalue).

Remark 3.13. If K is a perfect field, then every connected, unipotent group
over K has a composition series whose subquotients are each isomorphic to Ga,K .
Thus H1(Gal(Ks/K), U(Ks)) equals {∗} for every connected, unipotent group U
over a perfect field K.

3.2.4. Matrix groups. For every integer n, the affine group scheme GLn,K over
K, resp. SLn,K , PGLn,K over K, represents the functor

K − algebras → Groups, A 7→ IsomA−mod(A⊕n, A⊕n),

resp.

K − algebras → Groups, A 7→ {φ ∈ IsomA−mod(A⊕n, A⊕n)|det(φ) = 1},

K − algebras → Groups, A 7→ IsomA−mod(A⊕n, A⊕n)/ ∼, φ ∼ λ · φ,∀λ ∈ A∗.
Basically the same, for every finite dimensionalK-vector space V , the group schemes
GLV,K , resp. SLV,K , PGLV,K , represents the functor

K − algebras → Groups, A 7→ IsomA−mod(A⊗K V,A⊗K V ),
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resp.

K − algebras → Groups, A 7→ {φ ∈ IsomA−mod(A⊗K V,A⊗K V )|det(φ) = 1},

K−algebras → Groups, A 7→ IsomA−mod(A⊗KV,A⊗KV )/ ∼, φ ∼ λ·φ,∀λ ∈ A∗.

Of course up to choosing a basis for V , these are the same groups.

Theorem 3.14 (Speiser’s Theorem). For every integer n ≥ 1, every GLn,K-
torsor over K, resp. every SLn,K-torsor over K, is trivial.

Proof. This is almost the same as the proof of Theorem 3.6. By the same
argument as there, for every finite Galois extension L/K, every GLn,K-torsor over
K with an L-point is isomorphic as a GLn,K-torsor to a free (right) GLn,K-orbit in
HomK−v. space(K⊕n, L⊕n). Every free orbit is of the form IsomK−v. space(K⊕n, V )
where V is an n-dimensional K-linear subspace of L⊕n. Choosing a basis for V ,
such an orbit has a K-point.

Consider the short exact sequence of group schemes

1 −−−−→ SLn,K −−−−→ GLn,K
det−−−−→ Gm,K −−−−→ 0.

This is “split” by the homomorphism

s : Gm,K → GLn,K ,

λ 7→


λ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
Thus the connecting map in the associated long exact sequence of Galois cohomol-
ogy is constant. ThereforeH1(Gal(Ks/K),SLn,K(Ks)) is a subset ofH1(Gal(Ks/K),GLn,K(Ks)),
which is a singleton set by the previous paragraph. �

The long exact sequence of Galois cohomology associated to the central exten-
sion

1 −−−−→ Gm,K
(−)·Idn×n−−−−−−−→ GLn,K

q−−−−→ PGLn,K −−−−→ 1

gives a connecting map

∆n : H1(Gal(L/K),PGLn,K(L)) → H2(Gal(L/K),Gm,K(L)) = Br′(L/K).

Theorem 3.15. (i) The fiber of ∆n over the neutral element is {∗}.
(ii) The image of ∆n is contained in the n-torsion subgroup, Br′(L/K)[n].

Proof. (i). This follows from Proposition 2.16 and Theorem 3.14.
(ii). By Remark 2.17, associated to the following commutative diagram of

central extensions of smooth, linear group schemes,

1 −−−−→ Gm,K
(−)·Idn×n−−−−−−−→ GLn,K

q−−−−→ PGLn,K −−−−→ 1

(−)n

y y(det,q)

y=

1 −−−−→ Gm,K
e1−−−−→ Gm,K ×PGLn,K

π2−−−−→ PGLn,K −−−−→ 1
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there is a commutative diagram

H1(Gal(L/K),PGLn,K(L)) ∆n−−−−→ H2(Gal(L/K),Gm,K(L))

=

y y(−)n

H1(Gal(L/K),PGLn,K(L))
∆e1−−−−→ H2(Gal(L/K),Gm,K(L))

.

Since e1 is split, ∆e1 is the constant map. Thus the image of ∆n is in the kernel of
the raising to the nth power map, i.e., it is in Br′(L/K)[n]. �

For two finite dimensional K-vector spaces V and W , there is a morphism of
smooth group schemes,

⊗ : GLV,K ×GLW,K → GLV⊗KW,K , (φ, ψ) 7→ φ⊗ ψ.

This induces morphisms of smooth group schemes,

⊗ : SLV,K × SLW,K → SLV⊗KW,K ,

and

⊗ : PGLV,K ×PGLW,K → PGLV⊗KW,K .

In particular, by the functoriality of Galois cohomology and by Remark 2.4, this
induces a map of pointed sets,

⊗ : H1(Gal(L/K),PGLV,K(L))×H1(Gal(L/K),PGLW,K(L)) → H1(Gal(L/K),PGLV⊗KW,K(L)).

Up to choosing bases, this is the same as a map

⊗ : H1(Gal(L/K),PGLl,K(L))×H1(Gal(L/K),PGLn,K(L)) → H1(Gal(L/K),PGLln,K(L)).

Lemma 3.16. For every PGLl,K-torsor E, resp. PGLn,K-torsor F , with an
L-point, ∆ln(E ⊗ F ) equals ∆l(E) + ∆n(F ).

Proof. By Remark 2.17, associated to the following commutative diagram of
central extensions of smooth, linear group schemes,

1 −−−−→ Gm,K ×Gm,K −−−−→ GLl,K ×GLn,K −−−−→ PGLl,K ×PGLn,K −−−−→ 1

×
y y⊗ y⊗

1 −−−−→ Gm,K −−−−→ GLlm,K −−−−→ PGLlm,K −−−−→ 1

,

there is a commutative diagram

H1(Gal(L/K),PGLl,K(L))×H1(Gal(L/K),PGLn,K(L)) ∆l×∆n−−−−−→ Br′(L/K)× Br′(L/K)

⊗
y y×

H1(Gal(L/K),PGLln,K(L)) ∆ln−−−−→ Br′(L/K)

.

The lemma is equivalent to the commutativity of this diagram. �
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4. The Brauer group

Definition 4.1. Let L/K be a Galois extension. A central simple algebra over
L/K is a finite dimensional K-algebra A (so K is contained in the center of A)
such that A⊗K L is isomorphic as an L-algebra to the matrix algebra Matn×n,L for
some integer n. When L is a separable closure Ks, this is simply called a central
simple algebra over K.

In particular, matrix algebras Matn×n,K are central simple algebras over K. If
A is a central simple algebra over K, then so is the opposite algebra Aopp defined to
be A but with opposite multiplication a∗b := ba. And if A and A′ are central simple
algebras overK, so is A⊗KA

′. Thus the set of isomorphism classes of central simple
algebras is an associative, commutative semigroup with identity element [K]. But
it is better than this.

Definition 4.2. Two central simple algebras A and A′ are Morita equivalent
if there exist positive integers n and n′ such that Matn×n,K ⊗K A is isomorphic to
Matn′×n′,K ⊗K A′.

Proposition 4.3. Let A, A′ and B be central simple algebras over L/K. If
A and A′ are Morita equivalent, so are Aopp and (A′)opp, and so are A⊗K B and
A′ ⊗K B. Also, the natural map

A⊗K Aopp → HomK−v. space(A,A),

(a, b) 7→ (c 7→ acb)
is an isomorphism of central simple algebras. In fact the composition with the trace,

A⊗K Aopp → HomK−v. space(A,A) Trace−−−→ K

is a perfect pairing of K-vector spaces.

Proof. The assertions about Morita equivalence are straightforward. The
last two statements say that a certain maps of K-vector spaces are isomorphisms.
These may be checked after base change from K to Ks, and then A is isomorpic to
a matrix algebra. The assertions are easy to verify for matrix algebras (using the
bases of elementary matrices, for instance). �

Because of the proposition, the set of Morita equivalence classes is an Abelian
group under [A] + [B] = [A ⊗K B] and −[A] = [Aopp]. The identity element is
0 = [Matn,K ] for any integer n ≥ 1.

Definition 4.4. Let L/K be a Galois extension. The group of Morita equiv-
alence classes of central simple algebras over L/K is the Brauer group of L/K,
denote Br(L/K). When L is a separable closure Ks of K, this is referred to as the
Brauer group of K, Br(K).

4.1. Relation to PGL-torsors. Let n be a positive integer. The group
PGLn,K acts by algebra automorphisms on Matn×n,K via conjugation. Thus, for
every PGLn,K-torsor E over K, the twist

AE := EMatn×n,K = (E ×Matn×n,K)/PGLn,K

is a central simple algebra of dimension n2. For a field extension L/K, if E has an
L-point, then AE ⊗K L is isomorphic to Matn×n,L. This defines a set map,

A− : H1(Gal(L/K),PGLn,K(L)) → An(L/K)
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where An(L/K) is the set of isomorphism classes of central simple algebras A over
K such that A⊗K L ∼= Matn×n,L.

Proposition 4.5 (Skolem-Noether). The set map above is a bijection. More-
over, for PGLn,K-torsors E and F , the induced map from the set of morphisms
in the category of torsors to the set of morphisms in the category of central simple
algebras,

A− : HomPGLn,K
(E,F ) → HomK−CSA(AE , AF ),

is a bijection.

Proof. Let A be a central simple algebra in An(L/K). Define E to be the
affine K-scheme representing the functor

K − algebras → Sets, R 7→ IsomR−algebra(Matn×n,R, A⊗K R).

There is a right action of PGLn,K on E by precomposing isomorphisms with auto-
morphisms of Matn×n,K . The Skolem-Noether theorem says that this action makes
I a PGLn,K-torsor. In fact this can be checked after base change from K to Ks,
so it reduces to the classical formulation of the Skolem-Noether theorem: every
K-algebra endomorphism of Matn×n,Ks comes from PGLn,K(Ks). The natural
map

E ×Matn×n,K → A

is invariant for the natural PGLn,K-action and thus factors through a K-algebra
homomorphism

φ : AE → A.

Since this is a K-algebra homomorphism of central simple algebras, it is automati-
cally an isomorphism (this can be checked after base change to Ks where it follows
from Skolem-Noether).

For every PGLn,K-torsor F and every K-algebra homomorphism

ψ : AF → A,

the composition
F ×Matn×n,K → A

induces a morphism of schemes from τ : F → E. It is straightforward to verify this
is an isomorphism of PGLn,K-torsors, and is the unique isomorphism such that
ψ = φ ◦Aτ . The second part of the proposition follows. �

4.2. The cohomological Brauer group equals the Brauer group. Be-
cause of Proposition 4.5, the map from Theorem 3.15 factors through a well-defined
set map,

∆n : An(L/K) → Br′(L/K), ∆n(AE) := ∆n(E).

Lemma 4.6. For every [A] in Al(L/K) and for every [B] in An(L/K), ∆ln(A⊗K

B) equals ∆l(A) + ∆n(B). In particular, if A and B are Morita equivalent, then
∆l(A) equals ∆n(B). Thus there is a well-defined group homomorphism,

∆ : Br(L/K) → Br′(L/K), ∆([A]) = ∆l(A).

This group homomorphism is injective.
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Proof. For a PGLl,K-torsor E and a PGLn,K-torsor F , AE⊗F equals AE⊗K

AF as central simple algebras (this is easiest to verify using cocycles). Thus
Lemma 3.16 implies that ∆ln(AE ⊗K AF ) equals ∆l(AE) + ∆n(AF ). Together
with Proposition 4.5, this implies the first assertion.

Since ∆n(E) equals 0 for the trivial PGLn,K-torsor, also ∆n(Matn×n,K) equals
0. Thus, by the previous paragraph, ∆ln(A⊗K Matn×n,K) equals ∆l(A). Therefore
∆l(A) equals ∆n(B) if A and B are Morita equivalent. Thus there is a well-defined
map

∆ : Br(L/K) → Br′(L/K)

such that for every integer l ≥ 1 and every A in Al(L/K), ∆([A]) equals ∆l(A).
Finally, assume ∆([A]) equals ∆([B]). Then Aopp ⊗K B and Matln×ln,K are

elements of Aln(L/K) with the same image under ∆ln. By Theorem 3.15(i) and
Proposition 4.5, this implies that Aopp⊗K B is isomorphic to Matln×ln,K as central
simple algebras, i.e., [B] − [A] equals 0 in Br(L/K). Therefore [A] equals [B] in
Br(L/K). So ∆ is injective. �

Theorem 4.7. Let L/K be a finite Galois extension of degree n. Then

∆n : An(L/K) → Br′(L/K)

is surjective. Thus for every Galois extension L/K (not necessarily finite), the
homomorphism

∆ : Br(L/K) → Br′(L/K)

is surjective, and hence bijective. In other words, the Brauer group and the coho-
mological Brauer group are canonically isomorphic.

Proof. Using Proposition 1.8, every element in Br′(L/K) comes from an ex-
tension

1 −−−−→ L∗
u−−−−→ M

v−−−−→ Gal(L/K) −−−−→ 1.

The group algebra K[M ] is an associative K-algebra which is a free K-vector space
with basis {em|m ∈ M}. There is an action of M on L by K-algebra homomor-
phisms through the quotient v. This defines a multiplication on the tensor product

L[M ] := L⊗K K[M ], (a⊗ em) · (b⊗ en) := (av(m)b)⊗ emn

for elements a, b ∈ L and m,n ∈M . It is straightforward to verify this multiplica-
tion is K-linear and associative with 1⊗ 1N as an identity element.

Define I to be the 2-sided ideal in L[M ] defined by the generators,

I := 〈λ⊗ e1M
− 1⊗ eu(λ)|λ ∈ L∗〉.

Denote the quotient algebra by AM := L[M ]/I. As a (left) L-vector space, it is
straightforward to check that AM has dimension equal to #Gal(L/K) = n. This
algebra is usually denoted as the cross-product algebra associated to the extension
M .

It is a somewhat involved exercise to check that AM is a central simple algebra
and that ∆n(AM ) equals [M ]. This is usually done by choosing a set map splitting
s : Gal(L/K) →M of v and using this to translate everything into cocycles. Since
the details do not seem very illuminating, they are left to the interested reader, cf.
[Ser79, Exercises 1 and 2, p.159]. �
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4.3. Division algebras.

Definition 4.8. A division algebra over L/K is a central simple algebra A
over L/K such that every nonzero element of A is invertible. Equivalently, it is a
central simple algebra whose only right ideals are {0} and A (and the same also
holds with left ideals in place of right ideals). When L is a separable closure Ks of
K, these are referred to simply as division algebras over K.

Lemma 4.9. Let A be a division algebra over K Every finitely generated left
(or right) A-module is free.

Proof. Let M be a left A-module. If M equals {0} then the assertion is vac-
uous, M = A⊕0. Thus assume M is nonzero. Consider a surjective homomorphism
of D-modules,

q : A⊕n � M

for which the integer n is minimal. Denote by N the kernel of q. If N is nonempty,
then for some integer 1 ≤ i ≤ n, the projection

πi : K → A

is nonzero. Thus πi(N) is a nonzero left A-submodule of A, i.e., a left ideal in A.
Since A is a division algebra, πi(N) equals A. But this means that, modulo N ,
the ith basis element of A⊕n is congruent to a linear combination of the other basis
elements. So the restriction of q to the free submodules generated by the other
basis elements is still surjective, contradicting the minimality of n. Therefore N
equals {0}, i.e., q is an isomorphism of A-modules. �

In order to prove the next result, it is useful to describe the right ideals in
Matn×n,K . The proof is left as an exercise for the reader.

Lemma 4.10. For a nonzero, finite dimensional K-vector space V , the right
ideals of MatV,k are in 1-to-1 correspondence with the K-linear subspaces W of V
via the rule,

W 7→ HomK−v. space(V,W ).

Lemma 4.11 (Schur’s Lemma). Let A be a central simple algebra over K. As-
sume that A is not a division algebra, i.e., A has a proper, nonzero right ideal I.
Let I be a proper, nonzero right ideal which is minimal, i.e., has minimal dimension
as a K-vector space. Then every nonzero left A-module homomorphism,

φ : I → I

is an isomorphism and the K-algebra of A-module homomorphisms,

D := EndA−mod(I, I)

is a division algebra.

Proof. The image φ(I) is a left ideal in A. Since I is minimal, if φ is nonzero
then φ(I) equals I, i.e., φ is surjective. A surjective K-linear endomorphism of
a finite dimension K-vector space is injective, thus φ is an isomorphism. Thus
every nonzero element of D is nonzero. After base change from K to L, A ⊗K L
is isomorphic to MatV,L for some nonzero, finite dimensional L-vector space V .
By Lemma 4.10, I ⊗K L is isomorphic to HomL−v. space(V,W ) for some nonzero,
proper L-subspace W of V . It is straightforward to check that

EndMatV,L
(HomL−v. space(V,W )) = MatW,L.
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Thus D ⊗K L is isomorphic to MatW,L, i.e., D is a central simple algebra over K.
Therefore D is a division algebra. �

There is an induced left action of D on I which commutes with the right action
of A on I. Thus there is an induced K-algebra homomorphism,

A→ EndD(I).

Theorem 4.12 (Artin-Wedderburn Theorem). Every central simple algebra A
over L/K is isomorphic to D ⊗K Matn×n,K for a unique division algebra D over
L/K.

Proof. By base change from K to L, one can check that the K-linear map

A→ EndD(I)

above is an isomorphism. By Lemma 4.9, I is a free D-module, say I ∼= D⊕n.
Therefore A is isomorphic to D ⊗K Matn×n,K .

Let D be a division algebra and let A be D ⊗K Matn×n,K . Then, up to
isomorphism, the unique (nonzero) simple A-module is M := D⊕n with its natural
A-action. And the natural map

D → EndA−mod(M)

is an isomorphism of algebras. Therefore D is uniquely determined by A. �

4.4. The period-index problem.

Definition 4.13. Let A be a central simple algebra over K. The index of
A, denote index(A), is the unique integer n such that dimK(D) = n2 where D is
a division algebra Morita equivalent to A. The period or exponent of A, denoted
period(A), is the order of [A] in Br(K). A splitting field for A is a separable field
extension L/K such that A⊗K L is isomorphic to Matm×m,L for some integer m.

It turns out that index(A) equals both the minimal degree [L : K] of a splitting
field of A as well as the greatest common divisor of the degrees [L : K] of all
splitting fields.

Proposition 4.14 (R. Brauer). For every central simple algebra A over K,
period(A) divides index(A), and both integers have the same prime factors (but
often with different multiplicities).

Proof. See [Ser79, Exercise 3, p. 159]. �

In light of this proposition, it is natural to ask about the precise relation be-
tween the period and the index.

Problem 4.15 (The Period-Index Problem). Let K be a field. If there exists
a nonnegative integer r such that index(A) divides period(A)r for every central
simple algebra A, the least such integer is the power of K, denoted r(K); otherwise
r(K) is defined to be ∞. What is the power of K? For a given integer r, what
“conditions” on K guarantee that r(K) ≤ r?

Of course this problem is ill-posed since the meaning of “condition” is not
specified. In Chapter 4 we will explain some answers which hopefully give a clearer
meaning to this problem.
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5. The universal cover sequence

There is a generalization of the map ∆n from Theorem 3.15 to other linear
algebraic group schemes. The generalization uses some of the structure theory for
linear algebraic group schemes. Unipotent groups were defined in Definition 3.12.

Definition 5.1. A connected, quasi-compact, smooth group scheme T is mul-
tiplicative or of multiplicative type if for some integer n ≥ 0, T ⊗K Ks is isomorphic
to Gn

m,Ks as a group scheme over Ks.
For a quasi-compact, smooth group scheme G over K, the unipotent radical

of G, Ru(G), is the maximal connected, normal subgroup scheme of G which is
unipotent. If Ru(G) is trivial, then G is reductive.

For a connected, smooth, linear algebraic group scheme G over K, the mul-
tiplicative quotient of G, T (G), is the maximal quotient group of G (by a closed,
normal subgroup scheme) which is multiplicative. If Ru(G) and T (G) are trivial,
then G is semisimple. If T (G) is the quotient of G by Ru(G), then G is solvable.
The maximal connected, normal, solvable subgroup of G is the solvable radical of
G, or simply the radical of G, denoted R(G).

Let G be a connected, smooth, linear algebraic group scheme over K. Of course
Ru(G) is the unipotent radical of R(G). And Ru(G) is contained in the kernel of
G→ T (G). Thus there is an induced homomorphism of group schemes over K,

R(G)/Ru(G) → T (G).

This is a finite and faithfully flat morphism, i.e., an isogeny of group schemes. But
it is not necessarily an isomorphism. (Notice however that T (G) is trivial if and
only if R(G) equals Ru(G), so that G is semisimple if and only if R(G) is trivial.)
Because T (G) and R(G)/Ru(G) are different, there are 2 different decompositions
that arise naturally in the study of group schemes.

Notation 5.2. Let G be a connected, smooth, linear algebraic group scheme
over K. The first associated semisimple group of G is the group

L(G) = Ker(G→ T (G))/Ru(G).

The second associated semisimple group of G is the group

L′(G) = G/R(G).

As the definition of L′(G) is simpler, it is the one that arises most often. But
L(G) is slightly better behaved with respect to universal covers and fundamental
groups. Both of these definitions should be considered as decompositions of G into
a unipotent group, Ru(G), a multiplicative group, T (G), resp. R(G)/Ru(G), and
a semisimple group, L(G), resp., L′(G).

Definition 5.3. A connected, semisimple algebraic group L is simply connected
if for every connected, semisimple algebraic group M , every isogeny

M → L

is an isomorphism. For every connected, semisimple algebraic group L, there exists
a connected, simply connected, semisimple algebraic group L̃ and an isogeny

L̃→ L,

called the universal cover of L. The kernel of the universal cover, denote π1L, is
the fundamental group scheme of L.
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There is a central extension of group schemes,

0 −−−−→ π1L −−−−→ L̃ −−−−→ L −−−−→ 1

Note that π1L is sometimes not smooth, e.g., π1PGLn,K is the non-smooth group
scheme µn,K when char(K) divides n. There is a generalization of Galois coho-
mology, cohomology for the fppf topology, H1

fppf(K;−). This agrees with Galois
cohomology for smooth group schemes. This cohomology theory also has a long
exact sequence, leading to a sequence

0 → H0
fppf(K;π1G) → H0(Gal(Ks/K), G̃(Ks)) → H0(Gal(Ks/K), G(Ks)) δ−→

H1
fppf(K,π1G) u∗−→ H1(Gal(Ks/K), G̃(Ks)) v∗−→ H1(Gal(Ks/K), G(Ks)) ∆−→ H2

fppf(K,π1G).
This sequence satisfies the same conditions as in Proposition 2.16.

Serre posed two conjectures about this sequence. The first conjecture was
proved by R. Steinberg.

Theorem 5.4 (Steinberg’s Theorem = Serre’s “Conjecture I”). [Ste65] If
K has cohomological dimension ≤ 1, then for every connected, semisimple group
scheme G over K, H1(Gal(Ks/K), G(Ks)) is {∗}, and the converse holds. More
generally, if K has cohomological dimension ≤ 1, then H1(Gal(Ks/K), G(Ks))
equals {∗} for every connected, reductive group scheme G over K. If K is perfect,
it also holds for every connected, linear algebraic group scheme G over K.

If H1(Gal(Ks/K),PGLn,K(Ks)) equals {∗} for every n, then Br′(K) equals
{[K]} by Theorem 3.15. Using Proposition 3.8 and similar arguments, this implies
cd(K) ≤ 1, cf. also Theorem 3.3. For a field of cohomological dimension ≤ 1,
H1(Gal(Ks/K), T ) equals {∗} for every multiplicative group T , cf. [Ser79, Appli-
cation, p. 162]. Thus Steinberg’s theorem reduces to the case that G is connected
and semisimple. There is a further reduction to the case that G is simply connected
and quasi-split, i.e., there exists a closed subgroup B of G such that B ⊗K Ks is a
maximal solvable subgroup (i.e., a Borel subgroup) of G ⊗K Ks. Steinberg proves
that for every field K, for every simply connected, semisimple group G with a
Borel subgroup defined over K, every G-torsor arises as i∗E where i : T → G is
the inclusion of a multiplicative subgroup and where E is a T -torsor. When K has
cohomological dimension ≤ 1, E is a trivial T -torsor, and thus also i∗E is a trivial
G-torsor.

Conjecture 5.5 (Serre’s “Conjecture II”). [Ser02, §3] If K has cohomolog-
ical dimension 2 and if K is perfect, then for every connected, simply connected,
semisimple group scheme G̃ over K, H1(Gal(Ks/K), G̃(Ks)) is {∗}. Equivalently,
for every connected, semisimple group scheme G over K, the connecting map

∆ : H1(Gal(Ks/K), G(Ks)) → H2
fppf(K;π1G)

is injective.

Remark 5.6. In [Ser95], Serre explains that the hypothesis that K is perfect
is too strong in these conjectures. They should also hold if the perfect hypothesis
is replaced by the hypothesis that [K : Kp] ≤ p2 and H3

p (K ′) is 0 for all finite,
separable extensions K ′ of K. In particular, this new hypothesis holds when K is
a function field of a surface over an algebraically closed field k, i.e., K is a finitely
generated k-extension and tr.deg.(K/k) equals 2.
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This conjecture remains open in general, although much is known, cf. [Ser02,
§3], [Ser95], [CTGP04]. At least when K is perfect, a converse theorem is known,
cf. Theorem 3.3(ii). We will return to this conjecture in Chapter 5.
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CHAPTER 2

The Chevalley-Warning and Tsen-Lang theorems

1. The Chevalley-Warning Theorem

A motivating problem in both arithmetic and geometry is the following.

Problem 1.1. Given a field K and a K-variety X find sufficient, resp. neces-
sary, conditions for existence of a K-point of X.

The problem depends dramatically on the type of K: number field, finite field,
p-adic field, function field over a finite field, or function field over an algebraically
closed field. In arithmetic the number field case is most exciting. However the
geometric case, i.e., the case of a function field over an algebraically closed field, is
typically easier and may suggest approaches and conjectures in the arithmetic case.

Two results, the Chevalley-Warning theorem and Tsen’s theorem, deduce a suf-
ficient condition for existence of K-points by “counting”. More generally, counting
leads to a relative result: the Tsen-Lang theorem that a strong property about ex-
istence of k-points for a field k propagates to a weaker property about K-points for
certain field extensions K/k. The prototype result, both historically and logically,
is a theorem of Chevalley and its generalization by Warning. The counting result
at the heart of the proof is Lagrange’s theorem together with the observation that a
nonzero single-variable polynomial of degree ≤ q− 1 cannot have q distinct zeroes.

Lemma 1.2. For a finite field K with q elements, the polynomial 1 − xq−1

vanishes on K∗ and xq − x vanishes on all of K. For every integer n ≥ 0, for the
K-algebra homomorphism

evn : K[X0, . . . , Xn] → HomSets(Kn+1,K),

evn(p(X0, . . . , Xn)) = ((a0, . . . , an) 7→ p(a0, . . . , an)),

the kernel equals the ideal

In = 〈Xq
0 −X0, . . . , X

q
n −Xn〉.

Finally, the collection (Xq
i − Xi)i=0,...,n is a Gröbner basis with respect to every

monomial order refining the grading of monomials by total order. In particular, for
every p in In some term of p of highest degree is in the ideal 〈Xq

0 , . . . , X
q
n〉.

Proof. Because K∗ is a group of order q − 1, Lagrange’s theorem implies
aq−1 = 1 for every element a of K∗, i.e., 1− xq−1 vanishes on K∗. Multiplying by
x shows that xq − x vanishes on K. Thus the ideal In is at least contained in the
kernel of evn.

Modulo Xq
n − Xn, every element of K[X0, . . . , Xn] is congruent to one of the

form

p(X0, . . . , Xn) = pq−1X
q−1
n + · · ·+ p0X

0
n, p0, . . . , pq−1 ∈ K[X0, . . . , Xn−1].
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(Of course Kn is defined to be {0} and K[X0, . . . , Xn−1] is defined to be K if n
equals 0.) Since K has q elements and since a nonzero polynomial of degree ≤ q−1
can have at most q−1 distinct zeroes, for every (a0, . . . , an−1) ∈ Kn the polynomial
p(a0, . . . , an−1, Xn) is zero on K if and only if

p0(a0, . . . , an−1) = · · · = pq−1(a0, . . . , an−1) = 0.

Thus evn(p) equals 0 if and only if each evn−1(pi) equals 0. In that case, by the
induction hypothesis, each pi is in In−1 (in case n = 0, each pi equals 0). Then,
since In−1K[X0, . . . , Xn] is in In, p is in In. Therefore, by induction on n, the
kernel of evn is precisely In.

Finally, Buchberger’s algorithm applied to the set (Xq
0 − X0, . . . , X

q
n − Xn)

produces S-polynomials

Si,j = Xq
j (Xq

i −Xi)−Xq
i (Xq

j −Xj) = Xj(X
q
i −Xi)−Xi(X

q
j −Xj)

which have remainder 0. Therefore this set is a Gröbner basis by Buchberger’s
criterion. �

Theorem 1.3. [Che35],[War35] Let K be a finite field. Let n and r be positive
integers. Let F1, . . . , Fr be nonconstant, homogeneous polynomials in K[X0, . . . , Xn].
If

deg(F1) + · · ·+ deg(Fr) ≤ n

then there exists (a0, . . . , an) ∈ Kn+1 − {0} such that for every i = 1, . . . , r,
Fi(a0, . . . , an) equals 0. Stated differently, the projective scheme V(F1, . . . , Fr) ⊂
Pn

K has a K-point.

Proof. Denote by q the number of elements in K. The polynomial

G(X0, . . . , Xn) = 1−
n∏

i=0

(1−Xq−1
i )

equals 0 on {0} and equals 1 on Kn+1 − {0}. For the same reason, the polynomial

H(X0, . . . , Xn) = 1−
r∏

j=1

(1− Fj(X0, . . . , Xn)q−1)

equals 0 on

{(a0, . . . , an) ∈ Kn+1|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}
and equals 1 on the complement of this set in Kn+1. Since each Fi is homogeneous,
0 is a common zero of F1, . . . , Fr. Thus the difference G−H equals 1 on

{(a0, . . . , an) ∈ Kn+1 − {0}|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}
and equals 0 on the complement of this set in Kn+1. Thus, to prove that F1, . . . , Fr

have a nontrivial common zero, it suffices to prove the polynomial G−H does not
lie in the ideal In.

Since
deg(F1) + · · ·+ deg(Fr) ≤ n,

H has strictly smaller degree than G. Thus the leading term of G − H equals
the leading term of G. There is only one term of G of degree deg(G). Thus, for
every monomial ordering refining the grading by total degree, the leading term of
G equals

(−1)n+1Xq−1
0 Xq−1

1 · · ·Xq−1
n .
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This is clearly divisible by none of Xq
i for i = 0, . . . , n, i.e., the leading term of

G − H is not in the ideal 〈Xq
0 , . . . , X

q
n〉. Because (Xq

0 − X0, . . . , X
q
n − Xn) is a

Gröbner basis for In with respect to the monomial order, G−H is not in In. �

2. The Tsen-Lang Theorem

On the geometric side, an analogue of Chevalley’s theorem was proved by Tsen,
cf. [Tse33]. This was later generalized independently by Tsen and Lang, cf.
[Tse36], [Lan52]. Lang introduced a definition which simplifies the argument.

Definition 2.1. [Lan52] Let m be a nonnegative integer. A field K is called
Cm, or said to have property Cm, if it satisfies the following. For every positive
integer n and every sequence of positive integers (d1, . . . , dr) satisfying

dm
1 + · · ·+ dm

r ≤ n,

every sequence (F1, . . . , Fr) of homogeneous polynomials Fi ∈ K[X0, . . . , Xn] with
deg(Fi) = di has a common zero in Kn+1 − {0}.

Remark 2.2. In fact the definition in [Lan52] is a little bit different than this.
For fields having normic forms, Lang proves the definition above is equivalent to
his definition. And the definition above works best with the following results.

With this definition, the statement of the Chevalley-Warning theorem is quite
simple: every finite field has property C1. The next result proves that property Cm

is preserved by algebraic extension.

Lemma 2.3. For every nonnegative integer m, every algebraic extension of a
field with property Cm has property Cm.

Proof. Let K be a field with property Cm and let L′/K be an algebraic
extension. For every sequence of polynomials (F1, . . . , Fr) as in the definition, the
coefficients generate a finitely generated subextension L/K of L′/K. Thus clearly
it suffices to prove the lemma for finitely generated, algebraic extensions L/K.

Denote by e the finite dimension dimK(L). Because multiplication on L is
K-bilinear, each homogeneous, degree di, polynomial map of L-vector spaces,

Fi : L⊕(n+1) → L,

is also a homogeneous, degree di, polynomial map of K-vector spaces. Choosing
a K-basis for L and decomposing Fi accordingly, Fi is equivalent to e distinct
homogeneous, degree di, polynomial maps of K-vector spaces,

Fi,j : L⊕(n+1) → K, j = 1, . . . , e.

The set of common zeroes of the collection of homogeneous polynomial maps
(Fi|i = 1, . . . , r) equals the set of common zeroes of the collection of homogeneous
polynomial functions (Fi,j |i = 1, . . . , r, j = 1, . . . , e). Thus it suffices to prove there
is a nontrivial common zero of all the functions Fi,j .

By hypothesis,
r∑

i=1

deg(Fi)m is no greater than n.

Thus, also
r∑

i=1

e∑
j=1

deg(Fi,j)m = e
r∑

i=1

deg(Fi)m is no greater than en.
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Since K has property Cm and since

dimK(L⊕(n+1)), i.e., (n+ 1)dimK(L) = e(n+ 1),

is larger than en, the collection of homogeneous polynomials Fi,j has a common
zero in L⊕(n+1) − {0}. �

The heart of the Tsen-Lang theorem is the following proposition.

Proposition 2.4. Let K/k be a function field of a curve, i.e., a finitely gener-
ated, separable field extension of transcendence degree 1. If k has property Cm then
K has property Cm+1.

This is proved in a series of steps. Let n, r and d1, . . . , dr be positive integers
such that

dm+1
1 + · · ·+ dm+1

r ≤ n.

For every collection of homogeneous polynomials

F1, . . . , Fr ∈ K[X0, . . . , Xn], deg(Fi) = di,

the goal is to prove that the collection of homogeneous, degree di, polynomial maps
of K-vector spaces

F1, . . . , Fr : K⊕(n+1) → K

has a common zero. Of course, as in the proof of Lemma 2.3, this is also a collection
of homogeneous polynomial maps of k-vector spaces. Unfortunately both of these
k-vector spaces are infinite dimensional. However, using geometry, these polyno-
mial maps can be realized as the colimits of polynomial maps of finite dimensional
k-vector spaces. For these maps there is an analogue of the Chevalley-Warning ar-
gument replacing the counting argument by a parameter counting argument which
ultimately follows from the Riemann-Roch theorem for curves. The first step is to
give a projective model of K/k.

Lemma 2.5. For every separable, finitely generated field extension K/k of tran-
scendence degree 1, there exists a smooth, projective, connected curve C over k and
an isomorphism of k-extensions K ∼= k(C). Moreover the pair (C,K ∼= k(C)) is
unique up to unique isomorphism.

Proof. This is essentially the Zariski-Riemann surface of the extension K/k.
For a proof in the case that k is algebraically closed, see [Har77, Theorem I.6.9].
The proof in the general case is similar. �

The isomorphism K ∼= k(C) is useful because the infinite dimensional k-vector
space k(C) has a plethora of naturally-defined finite dimensional subspaces. For
every Cartier divisor D on C, denote by VD the subspace

VD := H0(C,OC(D)) = {f ∈ k(C)|div(f) +D ≥ 0}.
The collection of all Cartier divisors D on C is a partially ordered set where

D′ ≥ D if and only if D′ −D is effective.

The system of subspaces VD of k(C) is compatible for this partial order, i.e., if
D′ ≥ D then VD′ ⊃ VD. And K is the union of all the subspaces VD, i.e., it is the
colimit of this compatible system of finite dimensional k-vector spaces. Thus for
all k-multilinear algebra operations which commute with colimits, the operation
on k(C) can be understood in terms of its restrictions to the finite dimensional
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subspaces k(C). The next lemma makes this more concrete for the polynomial
map F .

Lemma 2.6. Let C be a smooth, projective, connected curve over a field k and
let

Fi ∈ k(C)[X0, . . . , Xn]di
, i = 1, . . . , r

be a collection of polynomials in the spaces k(C)[X0, . . . , Xn]di
of homogeneous, de-

gree di polynomials. There exists an effective, Cartier divisor P on C and for every
i = 1, . . . , r there exists a global section FC,i of the coherent sheaf OC(P )[X0, . . . , Xn]di

such that for every i = 1, . . . , r the germ of FC,i at the generic point of C equals
Fi.

Remark 2.7. In particular, for every Cartier divisor D on C and for every
i = 1, . . . , r there is a homogeneous, degree d, polynomial map of k-vector spaces

FC,D,i : V ⊕(n+1)
D →Wdi,P,D, Wdi,P,D := VdiD+P ,

such that for every i = 1, . . . , r the restriction of Fi to V
⊕(n+1)
D equals FC,D,i

considered as a map with target K (rather than the subspace VdD+P ).

Proof. The coefficients of each Fi are rational functions on C. Each such
function has a polar divisor. Since there are only finitely many coefficients of the
finitely many polynomials F1, . . . , Fr, there exists a single effective, Cartier divisor
P on C such that every coefficient is a global section of OC(P ). �

Because of Lemma 2.6, the original polynomial maps F1, . . . , Fr can be under-
stood in terms of their restrictions to the subspaces VD. The dimensions of these
subspaces are determined by the Riemann-Roch theorem.

Theorem 2.8 (Riemann-Roch for smooth, projective curves). Let k be a field.
Let C be a smooth, projective, connected curve over k. Denote by ωC/k the sheaf of
relative differentials of C over k and denote by g(C) = genus(C) the unique integer
such that deg(ωC/k) = 2g(C)− 2. For every invertible sheaf L on C,

h0(C,L)− h0(C,ωC ⊗OC
L∨) = deg(L) + 1− g(C).

Remark 2.9. In particular, if deg(L) > deg(ωC) = 2g(C)−2 so that ωC⊗OC
L∨

has negative degree, then h0(C,ωC ⊗OC
L∨) equals zero. And then

h0(C,L) = deg(L) + 1− g(C).

For a Cartier divisor D satisfying

deg(D) > 2g(C)− 2 and for each i = 1, . . . , r, dideg(D) + deg(P ) > 2g(C)− 2,

the Riemann-Roch theorem gives that V ⊕(n+1)
D and Wdi,P,D are finite dimensional

k-vector spaces of respective dimensions,

dimk(V ⊕(n+1)
D ) = (n+ 1)h0(C,OC(D)) = (n+ 1)(deg(D) + 1− g)

and
dimk(Wdi,P,D) = dim(VdiD+P ) = dideg(D) + deg(P ) + 1− g.

In this case, choosing a basis for Wdi,P,D and decomposing

FC,D,i : V ⊕(n+1)
D →Wdi,P,D
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into its associated components, there exist dimk(Wdi,P,D) homogeneous, degree d,
polynomial functions

(FC,D,i)j : V ⊕(n+1)
D → k, j = 1, . . . ,dimk(Wdi,P,D)

such that a zero of FC,D,i is precisely the same as a common zero of all the functions
(FC,D,i)j .

Proof of Proposition 2.4. By hypothesis, each di and n+ 1−
∑r

i=1 d
m+1
i

are nonzero so that the fractions
2g(C)− 2− deg(P )

di
for each i = 1, . . . , r,

(n+ 1−
∑r

i=1 d
m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

are all defined. Let D be an effective, Cartier divisor on C such that

deg(D) > 2g(C)− 2, deg(D) >
2g(C)− 2− deg(P )

di
, i = 1, . . . , r, and

deg(D) >
(n+ 1−

∑r
i=1 d

m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

.

Because deg(D) > 2g(C)− 2, the Riemann-Roch theorem states that

dimk(V ⊕(n+1)
D ) = (n+ 1)dimk(VD) = (n+ 1)(deg(D) + 1− g).

For every i = 1, . . . , r, because di is positive and because deg(D) > (2g(C) − 2 −
deg(P ))/di, also

deg(diD + P ) = dideg(D) + deg(P ) is greater than 2g(C)− 2.

Thus the Riemann-Roch theorem states that

dimk(Wdi,P,D) = dimk(VdiD+P ) = dideg(D) + deg(P ) + 1− g(C).

Thus for the collection of polynomial functions (FC,D,i)j ,

dimk(V ⊕(n+1)
D )−

r∑
i=1

∑
j

deg((FC,D,i)j)m

equals

(n+ 1)(deg(D) + 1− g)−
r∑

i=1

(dideg(D) + deg(P ) + 1− g(C))dm
i =

(n+ 1−
r∑

i=1

dm+1
i )deg(D)− [(n+ 1−

r∑
i=1

dm
i )(g − 1) +

r∑
i=1

dm
i deg(P )].

Because

deg(D) >
(n+ 1−

∑r
i=1 d

m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

and because n+ 1−
∑r

i=1 d
m+1
i is positive, also

(n+ 1−
r∑

i=1

dm+1
i )deg(D) > [(n+ 1−

r∑
i=1

dm
i )(g − 1) +

r∑
i=1

dm
i deg(P )].

Therefore

dimk(V ⊕(n+1)
D ) is greater than

r∑
i=1

∑
j

deg((Fi,C,D)j)m.
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Because of the inequality above, and because k has property Cm, there is
a nontrivial common zero of the collection of homogeneous polynomial functions
(FC,D,i)j , i = 1, . . . , r, j = 1, . . . ,dimk(Wdi,Pi,D). Therefore there is a nontrivial
common zero of the collection of homogeneous polynomial maps FC,D,i, i = 1, . . . , r.
By Lemma 2.6, the image of this nonzero element in K⊕(n+1) is a nonzero element
which is a common zero of the polynomials F1, . . . , Fr. �

Proposition 2.4 is the main step in the proof of the Tsen-Lang theorem.

Theorem 2.10 (The Tsen-Lang Theorem). [Lan52] Let K/k be a field exten-
sion with finite transcendence degree, tr.deg.(K/k) = t. If k has property Cm then
K has property Cm+t.

Proof. The proof of the theorem is by induction on t. When t = 0, i.e.,
when K/k is algebraic, the result follows from Lemma 2.3. Thus assume t > 0 and
the result is known for t − 1. Let (b1, . . . , bt) be a transcendence basis for K/k.
Let Et, resp. Et−1, denote the subfield of K generated by k and b1, . . . , bt, resp.
generated by k and b1, . . . , bt−1. Since Et−1/k has transcendence degree t − 1, by
the induction hypothesis Et−1 has property Cm+t−1. Now Et/Et−1 is a purely
transcendental extension of transcendence degree 1. In particular, it is finitely
generated and separable. Since Et−1 has property Cm+t−1, by Proposition 2.4 Et

has property Cm+t. Finally by Lemma 2.3 again, since K/Et is algebraic and Et

has property Cm+t, also K has property Cm+t. �

The homogeneous version of the Nullstellensatz implies a field k has property
C0 if and only if k is algebraically closed. Thus one corollary of Theorem 2.10 is
the following.

Corollary 2.11. Let k be an algebraically closed field and let K/k be a field
extension of finite transcendence degree t. The field K has property Ct.

In particular, the case t = 1 is historically the first result in this direction.

Corollary 2.12 (Tsen’s theorem). [Tse36] The function field of a curve over
an algebraically closed field has property C1.

3. Applications to Brauer groups

Chevalley and Tsen recognized that property C1, which they called quasi-
algebraic closure, has an important consequence for division algebras. Lang rec-
ognized that property C2 also has an important consequence for division algebras,
cf. [Lan52, Theorem 13].

Let A be a central simple algebra over K with dimK(A) = n2, and let E
be the corresponding PGLn,K-torsor. Because the determinant polynomial det on
Matn×n,K is invariant for the inner action of PGLn,K , det determines a well-defined
polynomial map on A.

Definition 3.1. For a central simple algebra A over K with dimK(A) = n2,
the reduced norm is the unique, degree n polynomial map

NrmA/k : A→ K

such that the induced degree n polynomial map

NrmA/K ⊗ Id : A⊗K Ks → Ks
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agrees with the determinant map

det : Matn×n,Ks → Ks

via one, and hence every, Ks-algebra isomorphism of A and Matn×n,Ks .

Since det is multiplicative, so is NrmA/K , i.e.,

∀a, b ∈ A, NrmA/K(ab) = NrmA/K(a)NrmA/K(b).

And the restriction to the centerK is the polynomial map λ 7→ λn. These properties
characterize the reduced norm. By the same type of Galois invariance argument as
above, and using Cramer’s rule, an element a of A has a (left and right) inverse if
and only if NrmA/K(a) is nonzero. In particular, if D is a division algebra the only
zero of NrmA/K is a = 0.

Proposition 3.2. Let K be a field
(i) If K has property C1, then the only division algebra with center K is K

itself. Thus Br(K) equals {[K]}.
(ii) If K has property C2 then for every division algebra D with center K the

reduced norm map

NrmD/K : D → K

is surjective.

Proof. (i). Let D be a division algebra with center K. Denote by n the
index of D. Because Matn×n(K) has dimension n2 as a K-vector space, also D
has dimension n2 as a K-vector space. If K has property C1, then since the
homogeneous polynomial map NrmD/K has only the trivial zero,

n = deg(NrmD/K) ≥ dimK(D) = n2,

i.e., n = 1. Thus for a fieldK with property C1, the only finite dimensional, division
algebra with center K has dimension 1, i.e., D equals K.

(ii). Next suppose that K has property C2. Clearly NrmD/k(0) equals 0. Thus
to prove that

NrmD/K : D → K

is surjective, it suffices to prove that for every nonzero c ∈ K there exists b in D
with NrmD/K(b) = c. Consider the homogeneous, degree n, polynomial map

Fc : D ⊕K → K, (a, λ) 7→ NrmD/K(a)− cλn.

Since
dimK(D ⊕K) = n2 + 1 > deg(Fc)2,

by property C2 the map Fc has a zero (a, λ) 6= (0, 0), i.e., NrmD/k(a) = cλn. In
particular, λ must be nonzero since otherwise a is a nonzero element of D with
NrmD/K(a) = 0. But then b = (1/λ)a is an element of D with NrmD/k(b) = c. �

It was later recognized, particularly through the work of Merkurjev and Suslin,
that these properties of division algebras are equivalent to properties of Galois
cohomology.

Theorem 3.3. [Ser02, Proposition 5, §I.3.1], [Sus84, Corollary 24.9] Let K
be a field.

(i) The cohomological dimension of K is ≤ 1 if and only if for every finite
extension L/K, the only division algebra with center L is L itself.
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(ii) If K is perfect, the cohomological dimension of K is ≤ 2 if and only if for
every finite extension L/K, for every division algebra D with center L,
the reduced norm map NrmD/L is surjective.
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CHAPTER 3

Rationally connected fibrations over curves

1. Rationally connected varieties

The theorems of Chevalley-Warning and Tsen-Lang are positive answers to
Problem 1.1 for certain classes of fields. It is natural to ask whether these theorems
can be generalized for such fields.

Problem 1.1. Let r be a nonnegative integer. Give sufficient geometric condi-
tions on a variety such that for every Cr field K (or perhaps every Cr field satisfying
some additional hypotheses) and for every K-variety satisfying the conditions, X
has a K-point.

As with Problem 1.1, this problem is quite vague. Nonetheless there are im-
portant partial answers. One such answer is the following.

Theorem 1.2. [Man86] [CT87] Let K be a C1 field and let X be a projective
K-variety. If X ⊗K K is birational to P2

K
then X has a K-point.

This begs the question: What (if anything) is the common feature of rational
surfaces and of the varieties occurring in the Chevalley-Warning and Tsen-Lang
theorems, i.e., complete intersections in Pn of hypersurfaces of degrees d1, . . . , dr

with d1 + · · · + dr ≤ n? One answer is rational connectedness. This is a property
that was studied by Kollár-Miyaoka-Mori and Campana, cf. [Kol96].

Definition 1.3. Let k be an algebraically closed field. An integral (thus
nonempty), separated, finite type, k-scheme X is rationally connected, resp. sepa-
rably rationally connected, if there exists an integral, finite type k-scheme M and a
morphism of k-schemes

u : M ×k P1
k → X, (m, t) 7→ u(m, t)

such that the induced morphism of k-schemes

u(2) : M ×k P1
k ×k P1

k → X ×k X, (m, t1, t1) 7→ (u(m, t1), u(m, t2))

is surjective, resp. surjective and generically smooth.
In a similar way, X is rationally chain connected, resp. separably rationally

chain connected, if for some integer m ≥ 1, the analogous property holds after
replacing P1

k by the proper, connected, nodal, reducible curve Cm which is a chain
of m smooth rational curves.

In other references, the condition on u(2) is that it be dominant rather than
surjective. In the following arguments, it is preferrable to demand that u(2) is
surjective. When X is proper and char(k) = 0, the definitions turn out to be
equivalent.
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Figure 1. Every pair of points in a rationally connected variety
lie in an image of the projective line

Figure 1 shows a rationally connected variety, where every pair of points is
contained in an image u(P1) of the projective line.

The definition of rational connectedness, resp. rational chain connectedness,
mentions a particular parameter space M . However, using the general theory of
Hilbert schemes, it suffices to check that every pair (x1, x2) of K-points of X ⊗k K
is contained in some rational K-curve, resp. a chain of rational K-curves, (not
necessarily from a fixed parameter space) for one sufficiently large, algebraically
closed, field extension K/k, i.e., for an algebraically closed extension K/k such that
for every countable collection of proper closed subvarieties Yi ( X, there exists a
K-point of X contained in none of the sets Yi. For instance, K/k is sufficiently large
if K is uncountable or if K/k contains the fraction field k(X)/k as a subextension.

A very closely related property is the existence of a very free rational curve.
For a d-dimensional variety X, a very free rational curve is a morphism

f : P1
k → Xsmooth

into the smooth locus of X such that f∗TX is ample, i.e.,

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(ad), a1, . . . , ad > 0.

Definition 1.4. Let k be a field and let X be a quasi-projective k-scheme.
Denote by Xsmooth the smooth locus of X. The very free locus Xv.f. of X is the
union of the images in Xsmooth of all very free rational curves to Xsmooth ⊗k K
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as K/k varies over all algebraically closed extensions. More generally, for a flat,
quasi-projective morphism of schemes,

π : X → B,

denoting by Xπ,smooth the smooth locus of the morphism π, the very free locus
Xπ,v.f. is the union in Xπ,smooth of the images of every very free rational curve in
every geometric fiber of Xπ,smooth over B.

The next theorem explains the relation of these different properties.

Theorem 1.5. [Kol96, §IV.3], [HT06], Unless stated otherwise, all varieties
below are d-dimensional, reduced, irreducible, quasi-projective schemes over an al-
gebraically closed field k.

(0) In characteristic 0, every rationally connected variety is separably ratio-
nally connected.

(i) For every flat, proper morphism π : X → B (not necessarily of quasi-
projective varieties over a field), the subset of B parameterizing points
whose geometric fiber is rationally chain connected is stable under special-
ization. (If one bounds the degree of the chains with respect to a relatively
ample invertible OX-module, then it is a closed subset.)

(ii) The very free locus of a quasi-projective variety is open. More generally,
for every flat, quasi-projective morphism, π : X → B, the subset Xπ,v.f.

of Xπ,smooth is an open subset.
(iii) The very free locus Xv.f. of a quasi-projective variety is (separably) ratio-

nally connected in the following strong sense. For every positive integer
N , for every positive integer m, and for every positive integer a, for every
collection of distinct closed points t1, . . . , tN ∈ P1

k, for every collection of
closed points x1, . . . , xN ∈ Xv.f., and for every specification of an m-jet of
a smooth curve in X at each point xi, there exists a morphism

f : P1
k → Xv.f.

such that for every i = 1, . . . , N , f is unramified at ti, f(ti) equals xi and
the m-jet of ti in P1

k maps isomorphically to the specified m-jet at xi, and

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(ad), a1, . . . , ad ≥ a.

(iv) Every rational curve in Xsmooth intersecting Xv.f. is contained in Xv.f..
Thus for every smooth, rationally chain connected variety, if X contains
a very free rational curve then Xv.f. equals all of X.

(v) A proper variety X is rationally chain connected if it is generically ratio-
nally chain connected, i.e., if there exists a morphism u as in the definition
such that u(2) is dominant (but not necessarily surjective).

(vi) For the morphism u : M ×k P1
k → X, let l be a closed point of M such

that ul : P1 → X has image in Xsmooth and such that u(2) is smooth at
(l, t1, t2) for some t1, t2 ∈ P1

k. Then the morphism ul is very free. Thus
an irreducible, quasi-projective variety X contains a very free curve if and
only if there is a separably rationally connected open subset of Xsmooth.
Also, a smooth, quasi-projective variety X in characteristic 0 which is
generically rationally connected contains a very free morphism.
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(vii) For a surjective morphism f : X → Y of varieties over an algebraically
closed field, if X is rationally connected, resp. rationally chain connected,
then also Y is rationally connected, resp. rationally chain connected.

(viii) For a birational morphism f : X → Y of proper varieties over an alge-
braically closed field, if Y is rationally connected then X is rationally chain
connected. If the characteristic is zero, then X is rationally connected.

Remark 1.6. Item (ii) is proved in Proposition 3.6. The generic case of Item
(iii), which is all we will need, is proved in Proposition 3.7. The complete result was
proved by Hassett and Tschinkel, [HT06]. Item (iv) follows from Corollary 3.8.
The remaining items are not proved, nor are they used in the proof of the main
theorem. For the most part they are proved by similar arguments; complete proofs
are in [Kol96, §IV.3].

Rational connectedness is analogous to path connectedness in topology, and
satisfies the analogues of many properties of path connectedness. One property of
path connectedness is this: for a fibration of CW complexes, if the base space and
the fibers are path connected, then also the total space is path connected. This led
to two conjectures by Kollár, Miyaoka and Mori.

Conjecture 1.7. [Kol96, Conjecture IV.5.6] Let π : X → B be a surjective
morphism of smooth, projective schemes over an algebraically closed field of char-
acteristic 0. If both B and a general fiber of π are rationally connected, then X is
also rationally connected.

Conjecture 1.7 is implied by the following conjecture about rationally connected
fibrations over curves.

Conjecture 1.8. [Kol96, Conjecture IV.6.1.1] Let π : X → B be a surjective
morphism of projective schemes over an algebraically closed field of characteristic
0. If B is a smooth curve and if a general fiber of f is rationally connected, then
there exists a morphism s : B → X such that π ◦ s equals IdB , i.e., s is a section of
π.

Our next goal is to prove the following result.

Theorem 1.9. [GHS03] Conjecture 1.8 of Kollár-Miyaoka-Mori is true. Pre-
cisely, let k be an algebraically closed field of characteristic 0 and let π : X → B be
a surjective morphism from a normal, projective k-scheme X to a smooth, projec-
tive, connected k-curve B. If the geometric generic fiber XηB

is a normal, integral
scheme whose smooth locus contains a very free curve, then there exists a morphism
s : B → X such that π ◦ s equals IdB.

This was generalized by A. J. de Jong to the case that k is algebraically closed
of arbitrary characteristic, [dJS03]. The key difference has to do with extensions
of valuation rings in characteristic 0 and in positive characteristic. Given a flat
morphism of smooth schemes in characteristic 0, π : U → B, and given codimension
1 points ηD of U and η∆ of B with π(ηD) = η∆, the induced local homomorphism
of stalks π∗U : ÔB,η∆ → ÔU,ηD

, is equivalent to

k(∆) [[t]] → k(D) [[r]] , t 7→ urm

for a unit u and a positive integer m, cf. the proof of Lemma 4.3 below. In
particular, it is rigid in the sense that t 7→ urm + vrm+1 + . . . is equivalent to
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t 7→ urm. However, extensions of positive characteristic valuation rings are not
rigid, e.g., t 7→ rp + v1r

p+1 is equivalent to t 7→ rp + v2r
p+1 only if v1 = v2. But

there is a weak rigidity of local homomorphisms, Krasner’s lemma in the theory of
non-Archimedean valuations. This is a key step in the generalization to positive
characteristic.

Of course when k has characteristic 0, then since X is normal the fiber XηB

is automatically normal. If X is also smooth (which can be achieved thanks to
resolution of singularities in characteristic 0), then also XηB

is smooth. Then the
hypothesis on XηB

is equivalent to rational connectedness.

2. Outline of the proof

The proof that follows is based on a proof by T. Graber, J. Harris and myself
(not quite the version we chose to publish) together with several major simplifica-
tions due to A. J. de Jong. The basic idea is to choose a smooth curve C ⊂ X
such that π|C : C → B is finite, and then try to deform C as a curve in X until
it specializes to a reducible curve in X, one component of which is the image of a
section s of π. Here are some definitions that make this precise.

Definition 2.1. Let πC : C → B be a finite morphism of smooth, projective
k-curves. A linked curve with handle C is a reduced, connected, projective curve
Clink with irreducible components

Clink = C ∪ L1 ∪ · · · ∪ Lm

together with a morphism

πC,link : Clink → B

such that

(i) πC,link restricts to πC on the component C,
(ii) the restriction of πC,link to each link component Li is a constant morphism

with image bi, where b1, . . . , bm are distinct closed points of B,
(iii) and each link Li is a smooth, rational curve intersecting C in a finite

number of nodes of Clink.

If every link Li intersects C in a single node of Clink, then (Clink, πC,link) is called
a comb and the links Li are called teeth. For combs we will use the notation Ccomb

rather than Clink.
A one-parameter deformation of a linked curve (Clink, πC,link) is a datum of a

smooth, connected, pointed curve (Π, 0) and a projective morphism

(ρ, πC) : C → Π×k B

such that ρ is flat and such that C0 := ρ−1(0) together with the restriction of πC
equals the linked curve (Clink, πC,link).

A one-parameter deformation specializes to a section curve if there exists a
closed point ∞ ∈ Π and an irreducible component Bi of C∞ := ρ−1(∞) such that

(i) C∞ is reduced at the generic point of Bi

(ii) and the restriction of πC to Bi is an isomorphism

πC |Bi : Bi

∼=−→ B.
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Figure 2. A linked curve with handle C and some links intersect-
ing C in more than 1 point

Given a linked curve, a one-parameter deformation of the linked curve and
a B-morphism j : Clink → X, an extension of j is an open neighborhood of 0,
0 ∈ N ⊂ B and a B-morphism

jN : CN → X, CN := ρ−1(N)

restricting to j on C0 = Clink.

Figure 2 shows a linked curve with some links intersecting the handle in more
than 1 point. And Figure 3 shows a comb, where every tooth intersects the handle
precisely once.

For the purposes of producing a section, the particular parameter space (Π, 0)
of the one-parameter deformation is irrelevant. Thus, it is allowed to replace the
one-parameter deformation by the new one-parameter deformation obtained from
a finite base change (Π′, 0′) → (Π, 0). The following lemma is straightforward.

Lemma 2.2. Let (Π, 0,∞) together with (ρ, πC) : C → Π×kB be a one-parameter
deformation of (Clink, πC,link) specializing to a section curve Bi. For every mor-
phism of 2-pointed, smooth, connected curves

(Π′, 0′,∞′) → (Π, 0,∞),

the base change morphism
Π′ ×Π C → Π′ ×k B

is also a one-parameter deformation of (Clink, πC,link) specializing to the section
curve Bi.
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Figure 3. A comb is a linked curve where every link, or tooth,
intersects the handle precisely once

The usefulness of these definitions is the following simple consequence of the
valuative criterion of properness.

Lemma 2.3. Let (Clink, πlink) be a linked curve together with a B-morphism
j : Clink → X. If there exists a one-parameter deformation of the linked curve
specializing to a section curve and if there exists an extension of j, then there exists
a section s : B → X of π.

Proof. Let R denote the stalk OC,ηBi
of OC at the generic point ηBi of Bi.

By the hypotheses on C and Bi, R is a discrete valuation ring with residue field
κ = k(Bi) and fraction field K = k(C). The restriction of jN to the generic point
of C is a B-morphism

jK : Spec K → X.

Because π : X → B is proper, by the valuative criterion of properness the B-
morphism jK extends to a B-morphism

jR : Spec R→ X,

which in turn gives a B-morphism from the residue field Spec κ to X, i.e., a rational
B-map

jBi
: Bi ⊃ U → X, U ⊂ Bi a dense, Zariski open.

Finally, because Bi is a smooth curve, the valuative criterion applies once more and
this rational transformation extends to a B-morphism

jBi
: Bi → X.
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Because πC |Bi
: Bi → B is an isomorphism, there exists a unique B-morphism

s : B → X

such that jBi = s ◦ πC |Bi . The morphism s is a section of π. �

Thus the proof of the theorem breaks into three parts:
(i) find a “good” linked curve j : Clink → X,
(ii) find a one-parameter deformation of the linked curve specializing to a

section curve,
(iii) and find an extension of j to the one-parameter deformation.
The first step in finding j : Clink → X is to form a curve Cinit which is an

intersection of X with dim(X) − 1 general hyperplanes in projective space. By
Bertini’s theorem, if the hyperplanes are sufficiently general, then Cinit will sat-
isfy any reasonable transversality property. Moreover, there is a technique due to
Kollár-Miyaoka-Mori – the smoothing combs technique – for improving Cinit to an-
other curve C ⊂ X still satisfying the transversality property and also satisfying a
positivity property with respect to the vertical tangent bundle of π : X → B.

Unfortunately, even after such an improvement, there may be no one-parameter
deformation of π|C : C → B specializing to a section curve. However, after attach-
ing sufficiently many link components over general closed points of B, there does
exist a one-parameter deformation of Clink specializing to a section curve. This is
one aspect of the well-known theorem that for a fixed base curve B and for a fixed
degree d, if the number β of branch points is sufficiently large the Hurwitz scheme
of degree d covers of B with β branch points is irreducible. (This was proved by
Hurwitz when g(B) = 0, [Hur91], proved by Richard Hamilton for arbitrary genus
in his thesis, and periodically reproved ever since, cf. [GHS02].) Because the gen-
eral fibers of π : X → B are rationally connected, the inclusion C ⊂ X extends to
a B-morphism j : Clink → X.

Finally the positivity property mentioned above implies j extends to the one-
parameter deformation, at least after base change by a morphism Π′ → Π.

3. Hilbert schemes and smoothing combs

The smoothing combs technique of Kollár-Miyaoka-Mori depends on a result
from the deformation theory of Hilbert schemes. Here is the setup for this result.
Let Y → S be a flat, quasi-projective morphism and let

(ρHilb : Hilb(Y/S) → S,Univ(Y/S) ⊂ Hilb(Y/S)×S T )

be universal among pairs (ρ : T → S,Z ⊂ T ×S Y ) of an S-scheme T and a closed
subscheme Z ⊂ T ×S Y such that Z → T is proper, flat and finitely presented. In
other words, Hilb(Y/S) is the relative Hilbert scheme of Y over S.

In particular, for every field K the K-valued points of Hilb(Y/S) are naturally
in bijection with pairs (s, Z) of a K-valued point s of S and a closed subscheme Z
of Ys := {s}×S Y . The closed immersion Z → Ys is a regular embedding if at every
point of Z the stalk of the ideal sheaf IZ/Ys

is generated by a regular sequence
of elements in the stalk of OYs . In this case the conormal sheaf IZ/Ys

/I2
Z/Ys

is a
locally free OZ-module, and hence also the normal sheaf

NZ/Ys
:= HomOZ

(IZ/Ys
/I2

Z/Ys
,OS)
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is a locally free OZ-module. The regular embeddings which arise in the proof of
Theorem 1.9 are precisely closed immersions of at-worst-nodal curves in a smooth
variety.

Proposition 3.1. [Kol96, Theorem I.2.10, Lemma I.2.12.1, Proposition I.2.14.2]
If Z ⊂ Ys is a regular embedding and if h1(Z,NZ/Ys

) equals 0, then Hilb(Y/S) is
smooth over S at (s, Z).

There is a variation of this proposition which is also useful. There is a flag
Hilbert scheme of Y over S, i.e., a universal pair

(ρfHilb : fHilb(Y/S) → S,Univ1(Y/S) ⊂ Univ2(Y/S) ⊂ Hilb(Y/S)×S T )

among all pairs (ρ : T → S,Z1 ⊂ Z2 ⊂ T ×S Y ) of an S-scheme T and a nested
pair of closed subschemes Z1 ⊂ Z2 ⊂ T ×S Y such that for i = 1, 2, the projection
Zi → T is proper, flat and finitely presented. There are obvious forgetful morphisms

Fi : fHilb(Y/S) → Hilb(Y/S), Fi(s, Z1, Z2) = (s, Zi).

Proposition 3.2. Let K be a field and let (s, Z1, Z2) be a K-point of fHilb(Y/S).
If each closed immersion Z1 ⊂ Z2 and Z2 ⊂ Ys is a regular embedding and if

h1(Z2,NZ2/Ys
) = 0, h1(Z1,NZ1/Z2) = 0, and if hi(Z2, IZ1/Z2 ·NZ2/Y2) = 0 for i = 1, 2,

then fHilb(Y/S) is smooth over S at (s, Z1, Z2), for each i = 1, 2, Hilb(Y/S) is
smooth over S at (s, Zi), and each forgetful morphism Fi : fHilb(Y/S) → Hilb(Y/S)
is smooth at (s, Z1, Z2).

Proof. Since h1(Z2,NZ2/Ys
) equals 0, Hilb(Y/S) is smooth at (s, Z2) by

Proposition 3.1. It is easy to see that the forgetful morphism F2 is equivalent
to the relative Hilbert scheme Hilb(Univ(Y/S)/Hilb(Y/S)) over Hilb(Y/S). Thus,
applying Proposition 3.1 to this Hilbert scheme, the vanishing of h1(Z1,NZ1/Z2)
implies F2 is smooth at (s, Z1, Z2). Since a composition of smooth morphisms is
smooth, also fHilb(Y/S) is smooth over S at (s, Z1, Z2). The long exact sequence
of cohomology associated to the short exact sequence

0 −−−−→ IZ1/Z2 · NZ2/Ys
−−−−→ NZ2/Ys

−−−−→ NZ2/Ys
|Z1 −−−−→ 0

implies that h1(Z1,NZ2/Ys
|Z1) equals h1(Z2,NZ2/Ys

), which is 0. Thus, the long
exact sequence of cohomology associated to

0 −−−−→ NZ1/Z2 −−−−→ NZ1/Ys
−−−−→ NZ2/Ys

|Z1 −−−−→ 0

implies that h1(Z2,NZ1/Y2) equals 0. So again by Proposition 3.1, Hilb(Y/S) is
smooth over S at (s, Z1). Finally, F1 is a morphism of smooth S-schemes at
(s, Z1, Z2). Thus, to prove F1 is smooth, it suffices to prove it is surjective on
Zariski tangent vector spaces. This follows from the vanishing of h1(Z2, IZ1/Z2 ·
NZ2/Ys

). �

Another ingredient in the smoothing combs technique is a a simple result about
elementary transforms of locally free sheaves on a curve: the higher cohomology of
the sheaf becomes zero after applying elementary transforms at sufficiently many
points.

Lemma 3.3. Let C be a projective, at-worst-nodal, connected curve over a field
k and let E be a locally free OC-module.
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(i) There exists a short exact sequence of coherent sheaves,

0 → F∨ → E∨ → T → 0

such that T is a torsion sheaf with support in Csmooth and such that
h1(C,F) equals 0.

(ii) Inside the parameter space of torsion quotients q : E∨ � T with support
in Csmooth, denoting

F∨ := Ker(E∨ → T ) and F := HomOC
(F∨,OC),

the subset parameterizing quotients for which h1(C,F) = 0 is an open
subset.

(iii) If h1(C,F) equals 0, then for every short exact sequence of coherent
sheaves

0 → G∨ → E∨ q′−→ S → 0
admitting a morphism r : S → T of torsion sheaves with support in
Csmooth for which q = r ◦ q′, h1(C,G) equals 0.

Proof. (i) By Serre’s vanishing theorem, there exists an effective, ample divi-
sor D in the smooth locus of C such that h1(C, E(D)) equals 0. Define F = E(D),
define E → F to be the obvious morphism E → E(D), and define T to be the
cokernel of F∨ → E∨.

(ii) This follows immediately from the semicontinuity theorem, cf. [Har77,
§III.12].

(iii) There exists an injective morphism of coherent sheaves F → G with torsion
cokernel. Because h1(C,F) equals 0 and because h1 of every torsion sheaf is zero,
the long exact sequence of cohomology implies that also h1(C,G) equals 0. �

It is worth noting one interpretation of the sheaf F associated to a torsion quo-
tient T . Assume that T is isomorphic to a direct sum of skyscraper sheaves at n dis-
tinct points c1, . . . , cn of Csmooth. (Inside the parameter space of torsion quotients,
those with this property form a dense, open subset.) For each point ci, the linear
functional E∨|ci � T |ci gives a one-dimensional subspace Homk(T |ci , k) ↪→ E|ci .
The sheaf F is precisely the sheaf of rational sections of E having at worst a simple
pole at each point ci in the direction of this one-dimensional subspace of E|ci

. This
is often called an elementary transform up of E at the point ci in the specified direc-
tion. So Lemma 3.3 says that h1 becomes zero after sufficiently many elementary
transforms up at general points in general directions.

This interpretation is useful because the normal sheaf of a reducible curve can
be understood in terms of elementary transforms up. To be precise, let Y be a
k-scheme, let C be a proper, nodal curve, let C0 be a closed subcurve (i.e., a union
of irreducible components of C), and let j : C → Y be a regular embedding such
that Y is smooth at every node p1, . . . , pn of C which is contained in C0 and which
is not a node of C0. Then j0 : C0 → Y is also a regular embedding and both
NC/Y |C0 and NC0/Y are locally free sheaves on C0. For each i, there is a branch
Ci of C at pi other than C0. Denote by TCi,pi

the tangent direction of this branch
in TY,pi

.

Lemma 3.4. [GHS03, Lemma 2.6] The restriction NC/Y |C0 equals the sheaf
of rational sections of NC0/Y having at most a simple pole at each point pi in the
normal direction determined by TCi,pi

.
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Proof. The restrictions ofNC/Y |C0 andNC0/Y to the complement of {p1, . . . , pn}
are canonically isomorphic. The lemma states that this canonical isomorphism is
the restriction of an injection NC0/Y ↪→ NC/Y |C0 which identifies NC/Y |C0 with
the sheaf of rational sections, etc. This local assertion can be verified in a formal
neighborhood of each node pi.

Locally near pi, C → Y is formally isomorphic to the union of the two axes
inside a 2-plane inside an n-plane, i.e., the subscheme of An

k with ideal IC/Y =
〈x1x2, x3, . . . , xn〉. The branch C0 corresponds to just one of the axes, e.g., the
subscheme of An

k with ideal IC0/Y = 〈x2, x3, . . . , xn〉. The tangent direction of the
other branch Ci is spanned by (0, 1, 0, . . . , 0). Thus it is clear that IC/Y /IC0/Y ·IC/Y

is the submodule of IC0/Y /I
2
C0/Y of elements whose fiber at 0 is contained in the

annihilator of TCi,pi
. Dualizing gives the lemma. �

The final bit of deformation theory needed has to do with deforming nodes.
Let C be a proper, nodal curve and let j : C → Y be a regular embedding. Let p
be a node of C and assume that Y is smooth at p. There are two branches C1 and
C2 of C at p (possibly contained in the same irreducible component of C). The
sheaf

T := Ext1OC
(ΩC ,OC)

is a skyscraper sheaf supported at p and with fiber canonically identified to

T |p = TC1,p ⊗k TC2,p.

The following lemma is as much definition as lemma.

Lemma 3.5. There exists a quotient of coherent sheaves

NC/Y � T
such that for both i = 1, 2 the quotient NC/Y |Ci

/NCi/Y equals T . A first-order
deformation of C ⊂ Y , i.e., a global section of NC/Y is said to smooth the node
p to first-order if the image of the section in TC1,p ⊗k TC2,p is nonzero. For a
deformation

C ⊂ Π×k Y

of C ⊂ Y over a smooth pointed curve (Π, 0) (i.e., C0 = C), if the associated
first-order deformation of C ⊂ Y smooths the node p to first-order, then p is not
contained in the closure of the singular locus of the projection,

(Π− {0})×Π C → (Π− {0})
i.e., a general fiber Ct of the deformation smooths the node.

This is a well-known result. A good reference for this result, and many other
results about deformations of singularities, is [Art76], particularly §I.6. Here is a
brief remark on the proof. Because C ⊂ Y is a regular embedding, the conormal
sequence is exact on the left, i.e.,

0 −−−−→ IC/Y /I2
C/Y −−−−→ ΩY |C −−−−→ ΩC −−−−→ 0

is a short exact sequence. Applying global Ext, there is a connecting map

δ : H0(C,NC/Y ) → Ext1OC
(ΩC ,OC).

There is also a local-to-global sequence for global Ext inducing a map

Ext1OC
(ΩC ,OC) → H0(C,Ext1OC

(ΩC ,OC)) = H0(C, T ) = TC1,p ⊗k TC2,p.
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The composition of these two maps is precisely the map on global sections associated
to NC/Y → T . The global Ext group is identified with the first-order deformations
of C as an abstract scheme, and the Ext term is identified with the first-order
deformations of the node. It is worth noting that even if the first-order deformation
does not smooth the node, the full deformation C ⊂ Π×k Y may smooth the node
if the total space C is singular at (0, p).

The first result using the smoothing combs technique is the following.

Proposition 3.6. Let Y be a quasi-projective scheme over an algebraically
closed field k. The very free locus Yv.f. is an open subset of Y . More generally, for
a flat, quasi-projective morphism π : Y → B, the relative very free locus Yπ,v.f. is
an open subset of Y .

Let Y be an irreducible, quasi-projective scheme over an algebraically closed
field k. Denote by t1, resp. t2, the closed point of P1

k, t1 = 0, resp. t2 = ∞. Let y1
and y2 be closed points of Yv.f., let a and k be nonnegative integers, and let there
be given curvilinear k-jets in Y at each of y1 and y2. If the given k-jets are general
among all curvilinear k-jets at y1 and y2, then there exists a morphism

f : (P1
k, t1, t2) → (Yv.f., y1, y2)

mapping the k-jet of P1 at ti isomorphically to the given k-jet at yi for i = 1, 2 and
such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.

Proof. In the absolute case, resp. relative case, the very free locus Yv.f., resp.
Yπ,v.f., is defined to be the same as the very free locus of the smooth locus Ysmooth,
resp. Yπ,smooth. Since the smooth locus is open in Y , and since an open subset of
an open subset is an open subset, it suffices to prove the very free locus is open
under the additional hypothesis that Y is smooth, resp. that π is smooth.

By the definition of Yv.f., for each i = 1, 2 there exists a very free morphism

fi : (P1, 0) → (Yv.f., yi), f∗i TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1.

In particular, for each i = 1, 2, h1(P1, f∗i TY (−0 − ∞)) equals 0, where 0, resp.
∞, is the Cartier divisor of the point 0, resp. ∞, in P1. Since the normal sheaf
of fi is a quotient of f∗i TY , also h1(P1,Nfi(−0 − ∞)) equals 0. Thus, applying
Proposition 3.2 where Z1 = {0,∞} and Z2 = P1, there exist deformations of the
morphism fi such that fi(0) equals yi and fi(∞) is any point in a nonempty Zariski
open subset of Y . The same argument holds in the relative case.

Next assume that Y is irreducible and quasi-projective. Then the smooth locus
Ysmooth is also irreducible (or empty). Thus, by the same argument as above, a proof
of the second result for smooth varieties implies the second result in general. Thus
assume Y is also smooth.

Since Y is irreducible, the open for i = 1 intersects the open for i = 2. Thus
there exist very free morphisms f1 and f2 such that f1(∞) = f2(∞). Let C be
the nodal curve with two irreducible components C1 and C2 each isomorphic to
P1 and with a single node which, when considered as a point in either C1 or C2,
corresponds to ∞ in P1. Let f : C → Y be the unique morphism whose restriction
to each component Ci equals fi. Denote by

0 −−−−→ N ′
C/Y −−−−→ NC/Y −−−−→ T −−−−→ 0
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the short exact sequence coming from Lemma 3.5. Using Lemma 3.4, there is an
exact sequence

0 −−−−→ NC/Y |C1(−0−∞) −−−−→ N ′
C/Y (−y1 − y2) −−−−→ NC2/Y (−0) −−−−→ 0

and an exact sequence

0 −−−−→ NC1/Y (−0−∞) −−−−→ NC/Y |C1(−0−∞) −−−−→ κ∞ −−−−→ 0

where κ∞ is the skyscraper sheaf on C1 supported at ∞. Applying the long exact
sequence of cohomology, using that h1(Ci,NCi/Y (−0 −∞)) equals 0 for i = 1, 2,
and chasing diagrams, this finally gives that h1(C,N ′

C/Y (−y1 − y2)) also equals 0.
This has two consequences. First, this implies h1(C,NC/Y (−y1 − y2)) equals

0, and thus the space of deformations of C containing y1 and y2 is smooth by
Proposition 3.2. And second, the map

H0(C,NC/Y (−y1 − y2)) → TC1,∞ ⊗ TC2,∞

is surjective. Thus there exist first-order deformations of C containing y1 and y2
and smoothing the node at ∞. Since the space of deformations containing y1 and
y2 is smooth, this first-order deformation is the one associated to a one-parameter
deformation

C ⊂ Π×k Y

of [C] over a smooth, pointed curve (Π, 0) (e.g., choose Π to be a general complete
intersection curve in the smooth deformation space containing the given Zariski
tangent vector). By Lemma 3.5, for a general point t of Π, Ct is a smooth, connected
curve containing y1 and y2. Since the arithmetic genus of C is 0, the arithmetic
genus of Ct is also 0, i.e., Ct

∼= P1
k. Let

f1 : P1
k → Ct

be an isomorphism with f1(ti) = yi for i = 1, 2. Because h1(C,NC/Y (−y1 − y2))
equals 0, by the semicontinuity theorem also h1(Ct,NCt/Y (−y1−y2)) equals 0. This
implies that

f∗1TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), for integers a1, . . . , an ≥ 1.

Next, for every integer a, let ga : (P1 → P1 be the morphism z 7→ za. Then the
composition fa = f1 ◦ g1 is a morphism

fa : (P1
k, t1, t2) → (Yv.f., y1, y2)

with

f∗aTY = g∗a(f∗1TY ) ∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ a,

namely the new integer ai(fa) equals a · ai(f1). Next, choosing a ≥ 2k + 1, this
implies that

h1(P1, f∗aTY (−(k + 1)(t1 + t2))) = 0.

Applying Proposition 3.2 with P1 ×k Y in the place of Y , with the graph of fa in
the place of Z2 and with Z1 = (k+1)(t1 + t2) in the place of Z, deformations of fa

map the k-jet of P1 at t1, resp. at t2, isomorphically to a general k-jet at y1, resp.
at y2. �
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The following proposition is the strongest generalization of Proposition 3.6 we
will need. It is stated as a theorem about finding new sections of a rationally
connected fibration under the hypothesis that one such section exists. In this sense
it may seem premature (and dangerously close to circular logic), since Theorem 1.9
is not yet proved. In fact the proposition is used in the proof of Theorem 1.9 not
for the original fibration, but only for a constant fibration

prP1 : P1
k ×k Y → P1

k

which obviously admits sections (constant sections). So there is nothing circular in
the application of the proposition to the proof of Theorem 1.9.

Proposition 3.7 (Generic weak approximation). [KMM92], [HT06] Let B
be a smooth, connected, projective curve over an algebraically closed field k. Let
π : U → B be a smooth, quasi-projective morphism having irreducible geometric
fibers. Assume there exists a section s : B → U mapping the generic point of B
into the very free locus of the generic fiber of π. Let (b1, . . . , bM , b′1, . . . , b

′
M ′) be

distinct closed points of B such that s(bi) is in the very free locus Ubi,v.f. of the
fiber Ubi

for each i = 1, . . . ,M . Let k and a be nonnegative integers. For each i,
let xi be a closed point of Ubi,v.f. and let there be given a curvilinear k-jet in U at
xi. Assuming each of these k-jets is a general k-jet at xi, there exists a section
σ : B → U such that

(i) for each i = 1, . . . ,M , σ(bi) equals xi,
(ii) for each i = 1, . . . ,M ′, σ(b′i) equals s(b′i),
(iii) for every invertible OB-module L of degree ≤ a, h1(B,Nσ(B)/U ⊗OB

L∨)
equals 0,

(iv) and σ maps the k-jet of bi in B isomorphically to the given k-jet at xi for
each i.

In fact Hassett and Tschinkel proved much more: the result holds for arbitrary
k-jets transverse to the fibers of π (i.e., for k-jets whose associated Zariski tangent
vector is not contained in a fiber of π). In what follows we only need the “generic”
result, which is all we prove.

Proof. Denote by Ωπ the locally free sheaf of relative differentials of π, and
denote by Tπ the dual locally free sheaf. Choose a large integer N and enlarge the
set of pairs ((bi, xi))|i=1,...,M to a set ((bi, xi))i=1,...,N having the same properties
above and such that the collection (bi)i=M+1,...,N is a general collection of N −M
points in B (this is possible because for all but finitely many closed points of B,
s(b) is contained in Ub,v.f.). By Proposition 3.6, applied with k = 1, i.e., in the
case that k-jets are simply tangent directions, for every i = 1, . . . , N there exists a
morphism

fi : (P1, 0,∞) → (Ubi,v.f., s(bi), xi)
such that

f∗i Tπ
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1

and the tangent direction of fi(P1) at s(bi) is a general tangent direction in TUbi
,s(bi).

But of course the tangent space TUbi
,s(bi) equals the normal space Ns(B)/U |s(bi).

Thus the tangent direction of fi(P1) at s(bi) gives a general normal direction to
s(B) in U at s(bi).

Form the comb j : Ccomb → U with handle s(B) and with each morphism
fi being a tooth Li attached at s(bi). By Lemma 3.4, NCcomb/U |s(B) equals the
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sheaf of rational sections of Ns(B)/U having at most a simple pole at each point
s(bi) in a general normal direction at s(bi). Assuming the integer N is suffi-
ciently large, Lemma 3.3 then implies that h1(B, s∗NCcomb/U ) equals 0. More-
over, fixing an auxiliary invertible sheaf M on B of degree g(B) + 1 and applying
Lemma 3.3 to s∗Ns(B)/U (−(b′1 + · · ·+ b′M ′))⊗OB

M∨, for N sufficiently large also
h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB

M∨) equals 0.
For every i, there is a short exact sequence

0 −−−−→ f∗i NLi/Ubi
−−−−→ f∗i NLi/U −−−−→ f∗i NUbi

/U −−−−→ 0.

Of course the normal sheaf NUbi
/U is just OUbi

since Ubi
is a smooth fiber of a

morphism to a curve. Also the tangent direction of s(B) at s(bi) surjects onto the
fiber of NUbi

/U at s(bi). Thus the elementary transform up of NLi/U at s(bi) in
this direction surjects onto the elementary transform up of O1

P at ∞, i.e., it surjects
onto OP1(1). Thus, by Lemma 3.4, there is a short exact sequence

0 −−−−→ f∗i NLi/Ubi
−−−−→ f∗i NCcomb/U −−−−→ OP1(1) −−−−→ 0.

Twisting by OP1(−2) and applying the long exact sequence of cohomology associ-
ated to the short exact sequence, h1(P1, f∗i NCcomb/U (−0−∞)) equals 0. Combined
with the result of the previous paragraph and joining the two types of normal sheaf
via the short exact sequence

0 → ⊕N
i=1NCcomb/U |Li

(−xi−s(bi)) → NCcomb/U (−(x1 + · · ·+xN )− (b′1 + · · ·+b′M ′))

→ NCcomb/U |s(B)(−(b′1 + · · ·+ b′M ′)) → 0,

the long exact sequence of cohomology implies both that

h1(Ccomb,NCcomb/U (−(x1 + · · ·+ xN )− (b′1 + · · ·+ b′M ′))) equals 0,

and that the map

H0(Ccomb,NCcomb/U (−(x1+· · ·+xN )−(b′1+· · ·+b′M ′))) → H0(B, s∗NCcomb/U (−(b′1+· · ·+b′M ′)))

is surjective.
Thus, by Proposition 3.2, the space of deformations of Ccomb containing x1, . . . , xN

and b′1, . . . , b
′
M ′ is smooth. And, by Lemma 3.5, to prove there exists a deforma-

tion smoothing every node of Ccomb, it suffices to prove for every i there exists
a section of s∗NCcomb/U (−(b′1 + · · · + b′M ′)) whose image in Ts(B),s(bi) ⊗k TLi,s(bi)

is nonzero. Of course this skyscraper sheaf Ts(bi) is a quotient of the fiber of
s∗NCcomb/U (−(b′1 + · · · + b′M ′)) at bi. Thus it suffices to prove for every i that
h1(B, s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))) equals 0. Recall the auxiliary invertible
sheafM of degree g(B)+1. Because the invertible sheafM(−bi) has degree g(B), it
is effective, say OB(∆i). Thus there exists an injective OB-module homomorphism

s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨ ↪→

s∗NCcomb/U (−(b′1 + . . . b′M ′))⊗OB
M∨(∆i) = s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))

with torsion cokernel. Since h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨) equals

0, and since every torsion sheaf has h1 equal to 0, also h1(B, s∗NCcomb/U (−bi −
(b′1 + · · ·+ b′M ′))) equals 0 for every i. Therefore there exist a one-parameter family
of deformations (Ct)t∈Π of Ccomb containing each of x1, . . . , xM , containing each
of s(b′1), . . . , s(b

′
M ′) and smoothing every node of Ccomb, i.e., for t general, Ct is

smooth.
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Because πU maps s(B) to B with degree 1, also πU maps Ct to B with degree
1. Because Ct is smooth, this means the projection Ct → B is an isomorphism.
Therefore there exists a section σt : B → U of πU with image Ct. In particular,
σt(bi) = xi for every i = 1, . . . ,M and σt(b′i) = s(b′i) for every i = 1, . . . ,M ′.
Because h1(Ccomb,NCcomb/U (−(x1 + · · · + xN ))) equals 0, by semicontinuity also
h1(B, σ∗tNσt(B)/U (−(x1 + · · · + xN ))) equals 0 for t general. In particular, if N ≥
a + g(B), then for every invertible sheaf L of degree ≤ a, L∨(x1 + · · · + xN ) has
degree ≥ g(B) and thus is effective, say OB(∆). Therefore there exists an injective
sheaf homomorphism

σ∗tNσt(B)/U (−(x1+· · ·+xN )) ↪→ σ∗tNσt(B)/U (−(x1+· · ·+xN )+∆) = σ∗tNσt(B)/U⊗OB
L∨

with torsion cokernel. So, by the same type of argument as above, h1(B, σ∗tNσt(B)/U⊗OB

L∨) equals 0 for every invertible sheaf L of degree ≤ a.
Finally, applying the last result when a = (k + 1)(M +M ′) and L = OB((k +

1)(b1 + · · · + bM + b′1 + · · · + b′M ′)), there exists a section σ : B → U of πU as
above and satisfying h1(B, σ∗Nσ(B)/U (−(k + 1)(b1 + · · · + bM + b′1 + · · · + b′M ′)))
equals 0. Therefore, by Proposition 3.2 once more, for a general deformation of
σ(B) containing x1, . . . , xM and s(b′1), . . . , s(b

′
M ′), the k-jet of the curve at each

point xi and s(b′i) is a general curvilinear k-jet in U at that point. �

The main application is to the case when U equals P1×kY where Y is a smooth,
irreducible, quasi-projective k-scheme whose very free locus Yv.f. is nonempty.

Corollary 3.8. Every rational curve in Y intersecting Yv.f. is contained in
Yv.f.. For every integer k, for every integer a, for every collection of distinct, closed
points b1, . . . , bM of P1, for every collection of closed points y1, . . . , yM of Yv.f. (not
necessarily distinct), and for every choice of a curvilinear k-jet in Y at each point yi,
if each k-jet is general among curvilinear k-jets at yi, then there exists a morphism

f : (P1, b1, . . . , bM ) → (Y, y1, . . . , yM )

mapping the k-jet of P1 at bi isomorphically onto the given k-jet at yi and such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.

Proof. Let B = P1, let U = B×kY and let πB be the obvious projection. The
sections of πB are precisely the graphs of morphisms f : P1 → Y . In particular, if
f is a morphism whose image intersects Yv.f., then the section s = (IdB , f) satisfies
the hypotheses of Proposition 3.7. Thus, for every point b′ = b′1 of P1, there exists
a section σ = (IdP1 , φ) with σ(b′) = s(b′) and with h1(B, σ∗Nσ(B)/U (−2)) equal
to 0. In other words, φ : P1

k → Y is a morphism with φ(b′) = f(b′) and with
h1(P1, φ∗TY (−2)) equal to 0. Thus φ is a very free morphism whose image contains
f(b′). Therefore every point in the image of f is contained in the very free locus,
i.e., every rational curve in Y intersecting Yv.f. is contained in Yv.f..

The rest of the corollary is just a straightforward translation of Proposition 3.7
to this context. �

There is one more result in this direction which is useful. The proof is similar
to the arguments above.

Lemma 3.9. [Kol96, Lemma II.7.10.1] Let Ccomb be a comb with handle C and
teeth L1, . . . , Ln. Let ρ : C → Π be a one-parameter deformation of Ccomb over a
pointed curve (Π, 0) whose general fiber Ct is smooth. Let E be a locally free sheaf
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on C. If E|Li
is ample for every i and if h1(C, (E|C) ⊗OC

M) equals 0 for every
invertible OC-module M of degree ≥ n, then h1(Ct, E|Ct) equals 0 for general t in
Π.

4. Ramification issues

The argument sketched in Section 2 and the powerful smoothing combs tech-
nique from Section 3 form the core of the proof of Theorem 1.9. However there is
a technical issue complicating matters. There may be codimension 1 points of X
at which the morphism π : X → B is not smooth. In other words, finitely many
scheme-theoretic fibers of π may have irreducible components occurring with mul-
tiplicity ≥ 1. This is a well-known issue when working with fibrations. Although
there are sophisticated ways to deal with this (using log structures or Deligne-
Mumford stacks), for the purposes of this proof it suffices to deal with this in a
more naive manner.

In fact there may be codimension 0 points of X at which π is not smooth, at
least if k has positive characteristic. The hypotheses in Theorem 1.9 prevent this,
but something slightly weaker suffices. Let B be a smooth k-curve, let X be a
reduced, finite type k-scheme and let π : X → B be a flat morphism. From here
on, we assume the following hypothesis.

Hypothesis 4.1. The geometric generic fiber of π is reduced. Equivalently, π is
smooth at every generic point of X, cf. [Gro67, Proposition 4.6.1]. This hypothesis
is automatic if char(k) equals 0.

Definition 4.2. The good locus of π is the maximal open subscheme U of X
such that U is smooth and such that for every point b of B the reduced scheme
of the fiber π−1(b) ∩ U is smooth. Denote the restriction of π to U by πU . The
morphism π is good if the good locus equals all of X. The log divisor of π is the
Cartier divisor Dπ,log of U given by

Dπ,log :=
∑

b∈B(k)

π∗U (b)− π∗U (b)red,

where π∗U (b)red is the reduced Cartier divisor.
Since the geometric generic fiber of π is reduced, so is the geometric generic

fiber of πU (or else it is empty if U is empty). Thus the sum in the definition of
the log divisor reduces to a sum over those finitely many closed points b of B for
which π∗U (b) is nonreduced.

Lemma 4.3. The complement of U in X has codimension ≥ 2. If char(k) equals
0, then the pullback map on relative differentials

π∗U : π∗UΩB/k → ΩU/k

factors uniquely through the inclusion

π∗UΩB/k ↪→ π∗UΩB/k(Dπ,log)

and the cokernel

Ωπ,log := Coker(π∗UΩB/k(Dπ,log) → ΩU/k)

is locally free.
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Proof. To construct U , first remove the closure of the singular locus of the
geometric generic fiber of π and next remove the singular locus from the reduced
scheme of the finitely many singular fibers. Both of these sets have codimension 2
in X (the first by Hypothesis 4.1).

The proof of the second part uses that char(k) = 0. It can be checked formally
locally near every closed point x of U . Denote by b the image π(x) in B and denote
by D the reduced structure on the irreducible component of π−1(b) containing x.
Since x is in U , D is a smooth Cartier divisor in U . Let r be a defining equation
for D in U and let t be a defining equation for b in B. Near x, π∗(b) = mD+ other
terms. Thus, in ÔU,x,

π∗t = amr
m + am+1r

m+1 + . . .

where am is a unit. Because char(k) = 0, the power series

u = m
√
am + am+1r + . . .

is a well-defined unit in ÔU,x. Thus, after replacing r by ur, there exists a regu-
lar system of parameters r, r2, . . . , rn for ÔU,x with respect to which the pullback
homomorphism π∗ is the unique local homomorphism with

π∗t = rm and π∗(dt) = mrm−1dr.

In particular, the pullback homomorphism π∗ on relative differentials locally factors
through π∗ΩB((e−1)D) = π∗ΩB(Dπ,log). Moreover the stalk of the cokernel of the
induced homomorphism is the free module generated by dr2, . . . , drn. �

The locally free quotient Ωπ,log of Ωπ is called the sheaf of log relative differen-
tials. Of course it equals the torsion-free quotient of Ωπ. But its true importance
comes from the following lemma: given a base change V → B for which the nor-
malized fiber product ˜U ×B V is smooth over V , the sheaf Ω

Ũ×BV /V
of relative

differentials of ˜U ×B V over V equals the pullback of Ωπ,log. Thus the relative
deformation theory of ˜U ×B V over V is already captured by the sheaf Ωπ,log on
U . Before stating the lemma precisely, there is some setup.

Let
π : U → B, $ : V → B

be two good morphisms with respective log divisors Dπ,log and E$,log. Let b be a
closed point of B. Let D be a prime divisor of U in Supp(Dπ,log) ∩ π−1(b), and
let E be a prime divisor of V in Supp(E$,log) ∩$−1(b). Denote by mD − 1, resp.
mE − 1, the coefficient of D in Dπ,log, resp. the coefficient of E in E$,log. The
normalized fiber product of U and V along D and E is the normalization ˜U ×B V
of U ×B V along D ×{b} E. Denote by

prU : U ×B V → U, prV : U ×B V → V

the two projections, and denote by

p̃rU : ˜U ×B V → U, p̃rV : ˜U ×B V → V

the compositions with the normalization morphism. Denote by Exc the exceptional
locus of the morphism, i.e.,

Exc := (p̃r−1
U (D) ∩ p̃r−1

V (E))reduced.

From this point forward we explicitly assume that char(k) equals 0.
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Hypothesis 4.4. The algebraically closed ground field k has characteristic 0.
In particular, this implies Hypothesis 4.1.

The sheaves Ωπ and Ωπ,log agree on a dense open subset of U , namely U −
Supp(Dπ,log). Because p̃rV and prV are isomorphic over a dense open subset of V
(namely V − E) also Ω eprV

agrees with p̃r∗V Ωπ on a dense open subset of ˜U ×B V .

Therefore also Ω$ agrees with p̃r∗V Ωπ,log on a dense open subset of ˜U ×B V .

Lemma 4.5. The morphism

p̃rV : ˜U ×B V → V

is smooth at every point of Exc if and only if mD divides mE. In this case the
reduced normalization equals the blowing up of U ×B V along the closed subscheme
pr−1

U (D)× pr−1
V ((mE/mD)E) and Exc is contained in the maximal open neighbor-

hood of ˜U ×B V on which Ωeπ agrees with (p̃rV )∗Ωπ,log.

Proof. This is proved in much the same way as the second part of Lemma 4.3.
For every closed point x of U and y of V with common image point b = π(x) =
$(y), there exist a regular system of parameters (r, r2, . . . , rn) for ÔU,x, resp.
(s, s2, . . . , sp) for ÔV,y, and a regular parameter t for ÔB,b such that

π∗t = rmD and $∗t = smE ,

and thus,

ÔU×BV,(x,y) = k [[r, r2, . . . , rn, s, s2, . . . , sp]] /〈rmD − smE 〉.
Denoting by m the greatest common factor of mD and mE , the stalk of the nor-
malization equals

k [[u, r, r2, . . . , rn, s, s2, . . . , sp]] /〈r − umE/m, s− umD/m〉.
Thus it is formally smooth as a k [[s, s2, . . . , sp]]-algebra if and only ifmD/m equals 1,
i.e., if and only ifmD dividesmE . In this case it is easy to see that the normalization
is the blowing up at the ideal 〈s, tmE/mD 〉 and it is easy to see that the module
of relative differentials is the free module generated by dr2, . . . , drn, i.e., it is the
pullback of Ωπ,log. �

Having introduced the ideas need to deal with the ramification issues, we now
resume the proof of Theorem 1.9. So from this point on we assume the following.

Hypothesis 4.6. The following hypotheses of Theorem 1.9 hold.
(i) The algebraically closed ground field k has characteristic 0, i.e., Hypoth-

esis 4.4 holds.
(ii) The smooth k-curve B is projective and connected.
(iii) The reduced, finite type k-scheme X is normal and projective.
(iv) And the geometric generic fiber of the flat morphism π : X → B is a

normal, integral scheme whose smooth locus contains a very free curve.

Definition 4.7. A log preflexible curve is a connected, smooth, proper curve
C ⊂ U such that

(i) the generic fiber of C over B is contained in the very free locus of the
generic fiber of U over B,

(ii) πU (C) equals B,
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Figure 4. Where a log preflexible curve intersects a reduced, pos-
sibly singular, fiber the map from the curve to B is unramified.

(iii) and every intersection point of C with supp(Dπ,log) is transverse, i.e., the
tangent direction of C at the intersection point is not contained in the
tangent space of supp(Dπ,log).

A linked log preflexible curve is a B-morphism from a linked curve j : Clink → U
such that the handle C is log preflexible and for every link Li the image in B of Li

is disjoint from the image in B of Dπ,log.
A log preflexible curve C is a log flexible curve if

h1(C, Tπ,log|C) equals 0, where Tπ,log := HomOU
(Ωπ,log,OU ).

A linked log preflexible curve is a linked log flexible curve if

h1(Clink, j
∗Tπ,log) equals 0.

Figure 4 shows a log preflexible curve intersecting a singular, but reduced fiber.
Because the curve is transverse to the fiber, the morphism to B is unramified. On
the other hand, Figure 5 shows a log preflexible curve intersecting a nonreduced
fiber – the middle component has multiplicity 2. Necessarily the map from the
curve to B is ramified.

Lemma 4.8. There exists a log preflexible curve C. In fact, every intersection
of X with dim(X)− 1 general hyperplanes is a log preflexible curve.

Proof. BecauseX−U has codimension 2 inX, a general complete intersection
curve in X is disjoint from X−U , i.e., it is contained in U . By hypothesis, Uπ,v.f. is
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Figure 5. Where a log preflexible curve intersects a nonreduced
fiber – e.g., the middle component has multiplicity 2 – the map
from the curve to B is necessarily ramified.

a dense open subset of U and thus a general complete intersection curve intersects
this open. Finally, by Bertini’s theorem a general complete intersection curve in U
is smooth and intersects supp(Dπ,log) transversally. �

An important consequence of the smoothing combs technique is the following
result.

Proposition 4.9. There exists a log flexible curve in X. In fact, for every
comb in X with log preflexible handle C and with sufficiently many very free teeth
in fibers of πU attached at general points of C and with general tangent directions,
there exists a one-parameter deformation of the comb whose general member is a
log flexible curve.

Proof. By hypothesis, C intersects the very free locus Uπ,v.f. of the morphism
πU . By the same argument as in the proof of Proposition 3.6, Uπ,v.f. is open. There-
fore all but finitely many points of C are contained in Uπ,v.f.. By Proposition 3.6
applied to 1-jets, i.e., to tangent directions, for each such point c there exists a
very free rational curve in UπU (c) containing c and whose tangent direction at c is
a general tangent direction in UπU (c).

Let Ccomb be a comb obtained by attaching to C a number of teeth L1, . . . , LN

as in the previous paragraph at general points of C (in particular, points where
C → B is unramified) and with general tangent directions in UπU (c). These tangent
directions are the same as normal directions to C in U . By the same argument as
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in the proof of Proposition 3.7, if N is sufficiently large there is a one-parameter
deformation

C ⊂ Π×k U

of Ccomb such that Ct is smooth for general t in Π. The properties (i), (ii) and (iii)
of Definition 4.7 are all open properties and hold for C0 = Ccomb, thus also hold for
Ct so long as t is general.

For each tooth Li in a fiber Ubi
, Tπ,log|Li

equals TUbi
|Li

. Since Li is very free,
this is an ample locally free sheaf. Thus, by Lemma 3.9 with the pullback of Tπ,log

in the place of E , we have that h1(Ct, Tπ,log|Ct) equals 0 for t a general point of Π.
Therefore, for t a general point of Π, Ct is a log flexible curve. �

Because the fibers of π are rationally connected, every log preflexible curve,
resp. log flexible curve, extends to a linked log preflexible curve, resp. linked log
flexible curve.

Lemma 4.10. For every linked curve Clink such that each point bi = πC,link(Li)
is disjoint from πU (Dπ,log), and for every B-morphism j0 : C → X mapping C
isomorphically to a log preflexible curve, resp. log flexible curve, and mapping
each fiber Cbi into the very free locus Uπ,v.f. of πU , there exists a B-morphism
j : Clink → X which is linked log preflexible, resp. linked log flexible, and restricting
to j0 on C.

Proof. Let Li be a link of Clink. Let Li intersect C in m points t1, . . . , tm
contained in the fiber over a general point bi of B. Let x1, . . . , xm be the images
j(t1), . . . , j(tm) in Ubi,v.f.. By Corollary 3.8, there exists a morphism

ji : (Li, t1, . . . , tm) → ((Ubi,v.f., x1, . . . , xm)

such that

j∗i TUbi

∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ m− 1.

Because of this,
h1(Li, j

∗
i TUbi

(−(t1 + · · ·+ tm))) equals 0.
Define j : Clink → U to be the unique morphism restricting to j0 on C and

restricting to ji on each link Li. Because ji(tk) = j0(tk) for every link Li and for
every node tk contained in Li, this morphism is defined. It is clearly log preflexible.

Next assume that j0 is log flexible. The claim is that j is also log flexible. To
see this, consider the short exact sequence

0 −−−−→ ⊕ij
∗
i TUbi

(−Cbi) −−−−→ j∗Tπ,log −−−−→ j∗0Tπ,log −−−−→ 0.

By the hypothesis that j0 is log flexible, the third term has vanishing h1. And by
the construction of ji, j∗i TUbi

(−Cbi
), i.e., j∗i TUbi

(−(t1 + · · · + tm)), has vanishing
h1. Thus, by the long exact sequence of cohomology, also h1(Clink, j

∗Tπ,log) equals
0. Therefore j : Clink → U is a linked log flexible curve. �

5. Existence of log deformations

There is a definition of one-parameter deformation that takes the divisor Dπ,log

into account. Unfortunately, not every curve over B admits a log deformation
specializing to a section curve, e.g., étale covers of B are rigid. However, after
attaching a sufficient number of links, the linked curve does admit a log deformation
specializing to a section curve.
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Definition 5.1. Let (Clink, πC,link) be a linked curve with handle C. Let
DC ⊂ C be an effective, reduced, Cartier divisor contained in the smooth locus of
Clink. A one-parameter log deformation of (Clink, πC,link, DC) is a one-parameter
deformation of (Clink, πC,link),

(ρ, πC) : C → Π×k B

together with an effective Cartier divisor DC ⊂ C such that
(i) the pullback of DC to C0 = Clink equals DC

(ii) and πC(DC) equals πC(DC), i.e., DC is vertical over B.

Lemma 5.2. For every finite morphism of smooth, projective curves πC : C →
B and for every effective, reduced, Cartier divisor DC of C, after attaching suffi-
ciently many links to C over general points of B, there exists a one-parameter log
deformation specializing to a section curve.

Proof. For all sufficiently positive integers e, for a general morphism g : C →
P1 of degree e, the induced morphism (πC , g) : C → B ×k P1 is unramified and
is injective except for finitely many double points, none of which intersects the
image of DC . Denote by Σ → B ×k P1 the blowing up along the finitely many
double points of (πC , g)(C). Then there is a B-morphism h : C → Σ which is an
embedding.

For each point p of DC , denote by mp the multiplicity of p in the Cartier divisor
π∗C(πC(p)). Denote by νp : Σ′p → Σ the mp-fold iterated blowup of Σ first at p,
then at the image of p in the strict transform of h(C), etc. Denote by Ep the final
exceptional divisor of this sequence of blowups. The point of this construction is
that the strict transform of h(C) intersects Ep at p, and Ep occurs with multiplicity
mp in the Cartier divisor Σ′p ×B {πC(p)}. Denote by ν : Σ′ → Σ the fiber product
over all points p in DC of νp : Σ′p → Σ. Denote by E the Cartier divisor in Σ′

being the sum over all p of the pullback of Ep from Σ′p. Denote by πΣ′ : Σ′ → B

the composition of Σ′ → Σ → B ×k P1 with prB . Denote by h′ : C → Σ′ the strict
transform of h(C). The point of this construction is that E is a Cartier divisor in
Σ′ which is vertical over B and such that h∗E equals DC .

Denote by d the degree of πC and let t1, . . . , td be closed points of P1 such that
the Cartier divisor B×k {t1, . . . , td} of B×k P1 is disjoint from all double points of
(πC , g)(C) and disjoint from (πC , g)(D). Denote by T the strict transform of B×k

{t1, . . . , td} in Σ′. Form the invertible sheaf OΣ′(h′(C) − T ) and the pushforward
E := πΣ′,∗OΣ′(h′(C)− T ) on B. Because πΣ′ is flat and because OΣ′(h′(C)− T ) is
locally free, E is torsion-free. For every point b in B − πC(DC), Σ′b is isomorphic
to P1 (via the projection Σ′ → B ×k P1 → P1). And Σ′b ∩ h′(C) and Σ′b ∩ T are
divisors of the same degree d. Thus OΣ′(h′(C)−T )|Σ′b is isomorphic to OΣ′b

∼= OP1 .
Therefore E|b is isomorphic to H0(Σ′b,OΣ′b

), which is one-dimensional. Therefore E
is an invertible sheaf.

By Riemann-Roch and Serre duality, for every sufficiently large degree, for a
general effective divisor ∆ on B of that degree, E ⊗OB

OB(∆) is globally generated.
Choose ∆ to be disjoint from πC(DC) and from the image in B of the finitely many
intersection points of h′(C) and T . Since E ⊗OB

OB(∆) is globally generated, there
exists a section which is nonzero at every point of ∆. Of course a nonzero section
of this sheaf (up to scaling) is precisely the same thing as a divisor V on Σ′ such
that

h′(C) + π∗Σ′∆ ∼ T + V.
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For b in B − πC(DC), if the section is nonzero at b then V does not intersect Σ′b.
The same does not necessarily hold for points b of πC(DC) since b may lie in the
support of R1πΣ′,∗OΣ′(h′(C)−T ). Therefore V is a sum of finitely many irreducible
components of fibers of πΣ′ (possibly with multiplicity) lying over points not in ∆.

The linked curve (Clink, πC,link) is h′(C)+π∗Σ′∆ together with the restriction of
πΣ′ . Denote by Π the pencil of divisors in Σ′ spanned by the divisors h′(C)+π∗Σ′∆
and T + V , with these two divisors marked as 0 and ∞ respectively. Denote by
C ⊂ Π×k Σ′ the corresponding family of divisors. By Bertini’s theorem, the general
member Ct is smooth away from the base locus. Now the only singular points
of h′(C) + π∗Σ′∆ are the points h′(π−1

C (∆)). Since V does not intersect π∗Σ′∆,
these singular points are not in the base locus. Since C0 is nonsingular at every
basepoint, the same is true for Ct for t general. Thus a general member Ct is smooth
everywhere.

Define DC to be the pullback to C of the Cartier divisor E in Σ′. Because E is
vertical over B and because h∗E equals DC , the deformation C together with the ef-
fective Cartier divisor DC is a one-parameter log deformation of (Clink, πC,link, DC).
And it specializes at t = ∞ to a union of section curves and vertical curves. �

6. Completion of the proof

We are finally prepared for the proof of Theorem 1.9.

Proof of Theorem 1.9. By Proposition 4.9, there exists a log flexible curve
j0 : C → U . Denote by DC the reduced scheme of the intersection C ∩Dπ,log. By
Lemma 5.2, after attaching finitely many links to C over the points of a general
divisor ∆ of B, the linked curve Clink together with DC admits a one-parameter
log deformation

(ρ, πC) : C → Π×k B, DC ⊂ C
of (Clink, DC) specializing to a section curve (in fact C∞ is a union of section curves
and vertical curves).

By Proposition 3.6, the relative very free locus Uπ,v.f. is open in U . Thus
C ∩ Uπ,v.f. is open in C. So its complement is finitely many points in C. Thus a
general divisor ∆ is disjoint from the finite set πU (Dπ,log) and from the finite set
πC(C − C ∩ Uπ,v.f.). Then, by Lemma 4.10, there exists an extension of j0 to a
linked log flexible curve

j : Clink → U.

Form the fiber product

UC := C ×πC,B,πU
U.

Since πU is flat, also the projection

prC : UC → C
is flat. Since πC is surjective, the geometric generic fiber of prC equals the geometric
generic fiber of πU , which is integral. Since prC is flat with integral geometric generic
fiber, UC is integral. Define

ν : ŨC → UC

to be the blowing up of UC along the closed subscheme DC ×B Dπ,log. Since UC is
integral, also ŨC is integral. And the composition

ŨC → UC → C → Π
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is surjective. Since Π is a smooth curve, the morphism

ρ̃ : ŨC → Π

is flat.
Consider the graph,

Γj : Clink = C0 → C0 ×B U = UC,0.

Because the links of Clink do not intersect Dπ,log, the image of Γj is smooth at every
point of intersection with DC ×B Dπ,log. Since ν is birational, Γj gives a rational
transformation from Clink to ŨC,0. Since ν is proper, and since Clink is smooth at
every point of intersection with DC ×B Dπ,log, the valuative criterion of properness
implies this rational transformation is actually a regular morphism

Γ̃j : C0 → ŨC,0.

Clearly this is a section of the projection morphism

prC0
: ŨC,0 → C0.

For every point t in Clink −DC , the morphism πU : U → B is smooth at j(t).
Therefore also UC,0 → C0 is smooth at Γj(t). And since ν is an isomorphism over
Γj(t), also prC0

: ŨC,0 → C0 is smooth at Γ̃j(t). Also the vertical tangent bundle
equals the pullback of the vertical tangent bundle of πU : U → B, which also equals
Tπ,log (since j(t) is not in Dπ,log).

Let t be a point of DC and let Dt be the unique irreducible component of Dπ,log

containing j(t). Give Dt the reduced structure. Because j0(C) is transverse to Dt

at j0(t), the ramification index mC − 1 of πC : C → B at t equals the ramification
index mD − 1 of πU along Dt. Therefore, by Lemma 4.5, the projection

prC0
: ŨC,0 → C0

is smooth over the preimage of {t}×Dt for every t and the vertical tangent bundle
equals the pullback of Tπ,log. Since Γj(t) is in {t} × Dt, this implies that prC0

is
smooth at every point of the image of Γ̃j and the vertical tangent bundle of prC0

equals the pullback of Tπ,log.
Since Γ̃j is a section with image in the smooth locus of prC0

, the normal sheaf
N equals the restriction of the vertical tangent bundle. Therefore Γ̃∗jN equals
j∗Tπ,log. Since j : Clink → U is log flexible, h1(Clink, j

∗Tπ,log) equals 0. Therefore,
by Proposition 3.1, the relative Hilbert scheme Hilb(ŨC/Π) is smooth over Π at
the point 0′ := [Image(Γ̃j)]. Thus for a general complete intersection curve Π′

containing 0′, the morphism Π′ → Π is smooth at 0′.
Replace Π′ by the unique irreducible component containing 0′, and then replace

this by its normalization. The result is that Π′ is a smooth, projective, connected
curve together with a morphism Π′ → Hilb(ŨC/Π) so that the induced morphism
Π′ → Π is smooth at 0′. In particular it is flat, so surjective. Let ∞′ denote a
closed point of Π′ mapping to ∞. Then (Π′, 0′,∞′) → (Π, 0,∞) is a flat morphism
of 2-pointed smooth curves. Thus, by Lemma 2.2, the base change Π′ ×Π C is a
one-parameter deformation of Clink over (Π′, 0′,∞′) specializing to a section curve.

Denote by
Z ⊂ Π′ ×Π ŨC
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the pullback of the universal closed subscheme Univ(ŨC/Π) by the morphism Π′ →
Hilb(ŨC/Π). The composition with prC is a projective morphism

Z ⊂ Π′ ×Π ŨC → Π′ ×Π C

of flat Π′-schemes. Moreover, the fiber over 0′ ∈ Π′ is an isomorphism since the
projection Γ̃j(Clink) → Clink is an isomorphism. Therefore the morphism is an
isomorphism over N ×Π C for some open neighborhood N of 0′ in Π′. (This is well-
known; a complete proof is given in [dJS03, Lemma 4.7].) Invert this isomorphism
and compose it with the morphism

Π′ ×Π ŨC → ŨC → UC → U.

The result is precisely an extension

jN : N ×Π C → X

of j for the one-parameter deformation Π′ ×Π C. Therefore, by Lemma 2.3, there
exists a section s : B → X of π. �

7. Corollaries

There are a number of consequences of Theorem 1.9 and its generalization to
positive characteristic in [dJS03]. Many of these consequences were recognized
before Conjecture 1.8 was proved.

Corollary 7.1. [Kol96, Conjecture IV.5.6] Conjecture 1.7 is true. Moreover,
for every smooth, projective, irreducible variety X over an algebraically closed field
of characteristic 0, there exists a dense open X0 ⊂ X and a projective, smooth
morphism q0 : X0 → Q0 such that every fiber of q0 is rationally connected, and
every projective closure of Q0 is nonuniruled.

Corollary 7.2. [GHS03, Corollary 1.7] The uniruledness conjecture implies
Mumford’s conjecture. To be precise, assume that for every smooth, projective,
irreducible variety X over an algebraically closed field k of characteristic 0, if
X is nonuniruled then h0(X,ω⊗n

X ) is nonzero for some n > 0. Then for every
smooth, projective, irreducible variety X over k, if X is not rationally connected
then h0(X,Ω⊗n

X ) is nonzero for some n > 0.

The next corollary is a fixed point theorem. In characteristic 0 it can be proved
using the Atiyah-Bott fixed point theorem. But in positive characteristic it is a new
result. There are examples due to Shioda proving one cannot replace “separably
rationally connected” by “rationally connected”, cf. [Shi74].

Corollary 7.3. [Kol03] Let Y be a smooth, projective, separably rationally
connected variety over a field k and let f : Y → Y be a k-automorphism. If char(k)
is positive, say p, assume in addition that f has finite order n not divisible by p2.
Then the fixed locus of f is nonempty.

Proof. Of course it suffices to prove the case when k is algebraically closed,
since the fixed locus of the base change equals the base change of the fixed locus.
First assume f has finite order n. If n is prime to char(k), let B′ denote P1 and
let Z/nZ act on P1 by multiplication by a primitive nth root of unity. Note this
action fixes ∞ and has trivial generic stabilizer. If char(k) = p is positive and if
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n = pm where m is prime to p, let B′ be the normal, projective completion of the
affine curve

V(ym − (xp − x)) ⊂ A2
k.

Let ζ be a primitive mth root of unity, and let a generator of Z/mZ act by (x, y) 7→
(x, ζy). Similarly, let a generator of Z/pZ act by (x, y) 7→ (x+ 1, y). Clearly these
actions commute, thus define an action of Z/nZ on B′. Note this action fixes the
unique point ∞ not in the affine chart above, and the action has trivial generic
stabilizer.

Let Z/nZ act diagonally on Y ×k B
′, and let X be the quotient. Also let B

be the quotient of the Z/nZ-action on B′. The projection π : X → B satisfies
the hypotheses of Theorem 1.9 (or its generalization in [dJS03]). Therefore there
exists a section. This is the same as Z/nZ-equivariant k-morphism f : B′ → Y . In
particular, since ∞ is a fixed point in B′, f(∞) is a fixed point in Y .

Next assume k has characteristic 0. By general limit arguments there exists an
integral, finitely generated Z-algebra R, a ring homomorphism R ↪→ k, a smooth,
projective morphism YR → Spec R whose relative very free locus is all of YR, and
an R-automorphism fR : YR → YR such that the base change YR ⊗R k equals Y
and the base change of fR equals f . The intersection (YR)fR of the graph of fR and
the diagonal of YR ×R YR is the fixed subscheme of fR (actually its image under
the diagonal morphism). Since (YR)fR is a proper scheme over Spec R, the image
in Spec R is a closed subscheme of Spec R. To prove this closed subscheme equals
all of Spec R, and thus contains the image of Spec k, it suffices to prove it contains
a Zariski dense set of closed points.

Choose an f -invariant very ample sheaf, choose a basis for the space of global
sections, and let A be the N ×N matrix with entries in R giving the action of f on
global sections with respect to this basis. The set of maximal ideal in Spec R with
residue field of characteristic p > N are Zariski dense in Spec R. Every invertible
matrix over a characteristic p field with order divisible by p2 has a Jordan block
with eigenvalue 1 and size divisible by p. Thus, since p > N , the finite order of
fR modulo the prime is not divisible by p2. Therefore, by the previous case, the
reduction of fR modulo the prime has nonempty fixed locus. Therefore the original
automorphism f has nonempty fixed locus. �

This fixed point theorem implies that separably rationally connected varieties
are simply connected. When the field k is C, this was first proved by Campana
using analytic methods, cf. the excellent reference by Debarre, [Deb01, Corollary
4.18].

Corollary 7.4 (Campana, Kollár). [Cam91], [Deb03, 3.6] Let X be a smooth,
projective, separably rationally connected variety over an algebraically closed field
k. The algebraic fundamental group of X is trivial. If k = C, then the topological
fundamental group of X is also trivial.

Kollár has generalized this considerably to prove a result for open subschemes
of rationally connected varieties, cf. [Kol03].

Proof. The full proof is included in the beautiful survey by Debarre, [Deb03,
3.6]. Here is a brief sketch. First of all, for every quasi-projective, (not necessarily
separably) rationally chain connected variety, Campana proved that the algebraic
fundamental group is finite and also the topological fundamental group is finite
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when k equals C (so that the topological fundamental group is defined). Thus the
universal cover X̃ → X is finite. Since X is smooth, projective and separably ratio-
nally connected, also X̃ is smooth, projective and separably rationally connected.
If the fundamental group of X is nonzero, then it contains a cyclic subgroup Z/nZ
such that p2 does not divide n. Of course the action of this group on X̃ is fixed-
point-free. But Corollary 7.3 implies there exists a fixed point. Thus X is simply
connected. �

Theorem 1.9 also plays an important role in the proof of a “converse” to that
same theorem.

Theorem 7.5. [GHMS05] Let π : X → B be a surjective morphism of normal,
projective, irreducible varieties over an algebraically closed field k of characteristic
zero. Assume that for some sufficiently large, algebraically closed field extension
K/k, for every k-morphism C → B from a smooth, projective, K-curve to B, the
pullback πC : C×BX → C has a section. Then there exists a closed subvariety Y ⊂
X such that the geometric generic fiber of π|Y : Y → B is nonempty, irreducible
and rationally connected.

One corollary of this theorem, in fact the motivation for proving it, was to
answer a question first asked by Serre and left unresolved by Theorem 1.9: could
it be that a smooth, projective variety X over the function field of a curve has a
rational point if it is O-acyclic, i.e., if hi(X,OX) equals 0 for all i > 0? One reason
to ask this is that the corresponding question has a positive answer if “function field”
is replaced by “finite field” thanks to N. Katz’s positive characteristic analogue of
the Atiyah-Bott fixed point theorem, [DK73, Exposé XXII, Corollaire 3.2], recently
generalized by Esnault, [Esn03]. Nonetheless, the answer is negative over function
fields.

Corollary 7.6. [GHMS05] There exists a surjective morphism π : X → B
of smooth, projective varieties over C such that B is a curve and the geometric
generic fiber of π is an Enriques surface, but π has no section. Thus, to guarantee
a fibration over a curve has a section, it is not sufficient to assume the geometric
generic fiber is O-acyclic.

In fact G. Lafon found an explicit morphism π as in Corollary 7.6 where B is
P1

C, or in fact P1
k for any field k with char(k) 6= 2, and there does not even exist a

power series section near 0 ∈ P1
k, cf. [Laf04].
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CHAPTER 4

The Period-Index theorem of de Jong

1. Statement of the theorem

This chapter and the next are extracted from an earlier set of lecture notes,
[Sta08]. The results in this chapter are joint work with A. J. de Jong. In particular,
a full proof of Theorem 4.2 is presented in [Sta08]. For this reason we will not
reproduce the proof here, but we will reproduce enough of the proof to prove de
Jong’s Period-Index theorem.

Recall Problem 4.15: for a given field K, what is the precise relationship be-
tween the index of division algebras and the period, or exponent, of division alge-
bras? Of course if K is algebraically closed, or more generally if K has cohomolog-
ical dimension ≤ 1, Theorem 3.3(i) implies that the only division algebra over K is
K itself. Thus both the period and the index equal 1. And in this sense the power
r(K) of K equals 0. In particular, by Chevalley’s theorem and Tsen’s theorem
discussed in Chapter 2, this holds if K is a finite field or if K is the fraction field
of a curve over an algebraically closed field. The following question was explicitly
asked by Colliot-Thélène, cf. [CT01].

Question 1.1. Let K be the function field of a variety of dimension d ≥ 2 over
C. For every division algebra D over K, does index(D) divide period(D)d−1? In
other words, is r(K) equal to d− 1?

There are examples showing r(K) is ≥ d−1, so this question is sharp. One can
also ask this question with C replaced by any algebraically closed field k, perhaps
with the restriction that char(k) does not divide period(D). Even more generally,
one could ask this question with K replaced by any Cd field, e.g., a function field
of a variety of dimension d− 1 over a finite field.

The first major advance in this direction (from which subsequent advances have
flowed) is the following theorem of A. J. de Jong.

Theorem 1.2 (de Jong’s Period-Index theorem). [dJ04] Let k be an alge-
braically closed field. Let K/k be the function field of a surface over k. Then the
power of K is 1, i.e., for every central simple algebra A over K, the period of A
equals the index of A.

Initially de Jong proved this under the additional hypothesis that char(k) does
not divide the period of A. Using the technique of discriminant avoidance, described
below, de Jong and I removed this hypothesis, cf. [dJS05, Theorem 1.0.2]. The
original proof of de Jong used an analysis of the moduli space of Azumaya algebras,
i.e., sheaves of central simple algebras, on a smooth, projective surface. The second
proof of de Jong and myself will be presented below. Lieblich used moduli spaces of
α-twisted sheaves, as introduced by Căldăraru and Yoshioka, to give a third proof.
Moreover, Lieblich’s proof proves more.
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Theorem 1.3. [Lie08] For K the function field of a surface over a finite field
k, for every division algebra D over K, if char(k) does not divide period(D), then
index(D) divides period(D)3. If, moreover, D is the generic fiber of an Azumaya
algebra on a smooth, proper model of K, then index(D) equals period(D).

Before explaining the second proof due to de Jong and myself, there are 3 more
reformulations of Theorem 1.2. The first reformulation has to do with the map ∆n

from Theorem 3.15.

Lemma 1.4. For a field K, the power r(K) equals 1, i.e., the period equals the
index for every division algebra over K, if and only if for every integer n ≥ 1 the
map

∆n : H1(Gal(Ks/K),PGLn,K(Ks)) → Br′(K)[n]
is surjective, and thus bijective.

Proof. Assume first that r(K) equals 1. By Theorem 4.7 and Theorem 4.12,
every element of Br′(K) is of the form ∆[D] for some division algebra D. Since
r(K) equals 1, the order of ∆[D] equals the index of D. Thus, if the order r
of ∆[D] divides n, say n = rl, then A = D ⊗K Matl×l,K gives an element of
H1(Gal(Ks/K),PGLn,K(Ks)) mapping to ∆[D] in Br′(K)[n]. Thus ∆n is surjec-
tive.

Next assume that ∆n is surjective for every n. Let D be a division algebra
over K, and denote by n the order of ∆(D). Since ∆n is surjective, there exists
an Azumaya algebra A with dimK(A) = n2 such that ∆n(A) equals ∆(D). By
Theorem 4.7, A is Morita equivalent to D. By Theorem 4.12, A = D⊗K Matl×l,K

for some integer l ≥ 1. Comparing dimensions of these K-vector spaces, the period
n is at least as large as the index of D. Since the period divides the index, also the
index is at least as large as the period, and thus both are equal. �

The second reformulation requires the auxiliary notion of generalized Brauer-
Severi varieties. Let A be a central simple algebra over K with dimK(A) = n2 and
let r ≥ 1 be an integer. The functor

K−algebras → Sets, R 7→ {I ⊂ A⊗KR| I a free R-module of rank rn and a right ideal }
is representable.

Definition 1.5. [Bla91], [SVdB92] The generalized Brauer-Severi variety,
Grassr,A, is the scheme representing the functor above. Stated differently, if E de-
notes the PGLn,K-torsor associated toA, then Grassr,A equals the twist EGrassK(r,K⊕n)
of the usual Grassmannian GrassK(R,K⊕n) of locally free, rank r, locally direct
summands of K⊕n.

Lemma 1.6. For a field K, the power r(K) equals 1 if and only if for every
central simple algebra A, for r = period(A), Grassr,A has a K-point.

Proof. Assume first that r(K) equals 1. Let A be a central simple algebra
with dimK(A) = n2. By Theorem 4.12, A is isomorphic to D⊗K Matl×l,K for some
division algebra D over K and some integer l ≥ 1, i.e.,

A = EndD−mod(D⊕l).

Since r(K) equals 1, period(A) = period(D) equals index(D). Denote by D⊕1 ⊂
D⊕l the left D-submodule of D⊕l generated by the first basis element. Then

I = HomD−mod(D⊕l, D⊕1)

76



is a right ideal in A with dimK(I) = rn. Thus I gives a K-point of Grassr,A.
Next assume that Grassr,A always has a K-point. Let D be a division algebra

of order r. Since Grassr,D has a K-point, there is a right ideal I in D with

dimK(I) = period(D) · index(D).

Since the only nonzero right ideal in D is D itself, I equals D. Since dimK(D) =
index(D)2, dividing gives

period(D) = index(D).

�

Among all the generalized Brauer-Severi varieties Grassr,A, the one with r =
period(A) has a special property.

Lemma 1.7. Let K be a field and let A be a central simple algebra over K with
dimK(A) = n2. Let r be an integer, 1 ≤ r ≤ n. There exists an invertible sheaf L
on Grassr,A such that Pic(Grassr,A ⊗K Ks) = Z · (L⊗K Ks), i.e., the base change
of L to Grassr,A ⊗K Ks = GrassKs(r, (Ks)⊕n) generates the Picard group, if and
only if period(A) divides r.

Proof. Consider the commutative diagram of central extensions of smooth
group schemes (similar to the one from the proof of Theorem 3.15).

1 −−−−→ Gm,K −−−−→ GLn,K −−−−→ PGLn,K −−−−→ 1

(−)r

y yq

y=

1 −−−−→ Gm,K −−−−→
s

GLn,K/µr,K · Idn×n −−−−→ PGLn,K −−−−→ 1

.

Using Proposition 2.16 and Remark 2.17, ∆n(A) has order dividing r if and only if
the associated PGLn,K-torsor of A lifts to a torsor for GLn,K/µr,K . On the other
hand, the image of the natural homomorphism

r∧
: GLn,K → GL(n

r),K

is precisely the quotient GLn,K/µr,K . Thus, from the commutative diagram

1 −−−−→ Gm,K −−−−→
s

GLn,K/µr,K −−−−→ PGLn,K −−−−→ 1

=

y yVr

yVr

1 −−−−→ Gm,K −−−−→ GL(n
r),K −−−−→ PGL(n

r),K −−−−→ 1

a PGLn,K-torsor lifts to a torsor for GLn,K/µr,K if and only if the associated
PGL(n

r),K-torsor lifts to a torsor for GL(n
r),K , i.e., if it lifts from the group of

projective equivalences on P(K⊕(n
r)) the group of equivalences of (P(K⊕(n

r)),O(1)).
Since the restriction ofO(1) to GrassK(r,K⊕n) is the generator of the Picard group,
it follows that ∆n(A) has order dividing r if and only if there exists an invertible
sheaf L on Grassr,A whose base change to Ks is a generator of the Picard group. �

This is relevant to Lemma 1.6 because of the elementary obstruction to the
existence of K-points.
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Definition 1.8. [CTS87] Let K be a field and let X be a geometrically
integral, quasi-projective, smooth K-scheme. The elementary obstruction to the
existence of a K-point of X is the short exact sequence of Gal(Ks/K)-modules,

1 −−−−→ (Ks)∗ −−−−→ Ks(X)∗ −−−−→ Ks(X)∗/(Ks)∗ −−−−→ 1

where Ks(X) is the fraction field of X ⊗K Ks. Stated differently, the elementary
obstruction is zero if and only if there exists a Galois-invariant splitting of (Ks)∗ →
Ks(X)∗.

Remark 1.9. If X has a K-point, or even a 0-cycle of degree 1 over K, then the
elementary obstruction is zero, cf. [CTS87, Prop. 2.2.2], [Sko01, Theorem 2.3.4].
And if X is projective with Pic(X ⊗K Ks) isomorphic to Z, then the elementary
obstruction vanishes if and only if there exists an invertible sheaf L on X such that
L ⊗K Ks is a generator for the Picard group, cf. [BCTS08, Lemma 2.2(v)].

This leads to the final reinterpretation of Theorem 1.2

Lemma 1.10. For a field K, the power r(K) equals 1 if and only if for every
central simple algebra A, denoting by n the integer such that dimK(A) = n2, for
every integer r with 1 ≤ r ≤ n, vanishing of the elementary obstruction for Grassr,A

is a sufficient condition for existence of a K-point.

This last reformulation suggests a problem, the refined version of Problem 1.1
for function fields of surfaces.

Problem 1.11. Let K be the function field of a surface over an algebraically
closed field k. Let X be a smooth, projective K-scheme. Find sufficient conditions
on X ⊗K Ks so that X has a K-point when the elementary obstruction vanishes,
e.g., when there exists an invertible sheaf L on X such that L⊗K Ks is a generator
for Pic(X ⊗K Ks).

2. Abel maps over curves and sections over surfaces

Let κ be a characteristic 0 field, not necessarily algebraically closed. Let C be
a smooth, projective, geometrically integral curve over κ. Let π : X → B be a
projective, flat morphism whose geometric generic fiber is irreducible and smooth.
And let L be a π-ample invertible sheaf on X.

Definition 2.1. For a κ-scheme S, a family of sections of π parameterized by
S is a morphism of C-schemes

τ : S ×κ C → X.

For an integer e, the family of sections has degree e if the invertible sheaf τ∗L on
S ×κ C has relative degree e over S, i.e., for every geometric point s of S, the
basechange of the invertible sheaf to Cs has degree e. A pair (S, τ) as above is
universal if for every κ-scheme S′ and for every family of degree e sections of π
parameterized by S,

τ ′ : S′ ×κ C → X,

there exists a unique κ-morphism f : S′ → S such that τ ′ equals τ ◦ (f, IdC).

Theorem 2.2 (Grothendieck). [Gro62, Part IV.4.c, p. 221-19] For every
integer e there exists a pair (Sectionse(X/C/κ), σ) of a κ-scheme and a family
of degree e sections of π parameterized by Sectionse(X/C/κ),

σ : Sectionse(X/C/κ)×κ C → X,
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such that σ∗L which is universal. Moreover Sectionse(X/C/κ) is a quasi-projective
κ-scheme.

Invertible sheaves on C of degree e are parameterized by the Picard scheme
Pice

C/κ. Thus, associated to the invertible sheaf σ∗L there is a morphism of κ-
schemes

α : Sectionse(X/C/κ) → Pice
C/κ.

This morphism is the Abel map associated to L.
The quasi-projective κ-scheme Sectionse(X/C/κ) is rarely projective. There

is a projective scheme Σe(X/C/κ) containing Sectionse(X/C/κ) as an open sub-
scheme: the coarse moduli space of the stack of stable sections, i.e., stable maps
to X whose stabilization under π is an isomorphism to C. Stable maps are an
important tool in this area, but a discussion of the basics of stable maps would
carry us rather far from the main story. Thus, suffice it to say that Σe(X/C/κ) is
a projective scheme, and there exists a κ-morphism

α : Σe(X/C/κ) → Pice
C/κ.

whose restriction to Sectionse(X/C/κ) is the Abel map from the last paragraph.
Although the following problem may at first appear to have little to do with Prob-
lem 1.11, in fact the two are intimately connected.

Problem 2.3. Let κ, π : X → C and L be as above. Assume that the base
change of L to the geometric generic fiber of π generates the Picard group. Find
conditions conditions under which there exists a sequence of closed subschemes
(Ze ⊂ Σe(X/C/κ)e�0 such that Ze intersects Sectionse(X/C/κ) and such that the
restriction of the Abel map

α|Ze : Ze → Pice
C/κ

is surjective with rationally connected geometric generic fiber.

In fact there do exist such conditions which capture, in some sense, the notion
of “rational simple connectedness”.

3. Rational simple connectedness hypotheses

Hypothesis 1. The κ-scheme X is smooth and projective.
Hypothesis 2. The invertible sheaf L is π-ample and π-relatively globally

generated.
All of the hypotheses are insensitive to replacing L by L ⊗OX

π∗M for an
invertible sheaf M on B. Thus, in Hypothesis 2, we may even assume L is ample
and globally generated.

The remaining hypotheses are stated in terms of Y .
Hypothesis 3. The basechange LY of L to Y is very ample.
From now on we consider Y to be embedded in a projective space PN

K by the
complete linear system of LY . In particular, M0,1(Y/K, 1) is the projective K-
scheme parameterizing pointed lines (p, L) in Y , i.e., L is a line contained in Y and
p is a point of L. There is an “evaluation” K-morphism

ev : M0,1(Y/K, 1) → Y, (L, p) 7→ p.

Hypothesis 4. The morphism ev above is surjective, the geometric generic
fiber of ev is irreducible and rationally connected, and the fiber of ev over every
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codimension 1 point η of Y is “Morse”, i.e., M0,1(Y/K, 1) is smooth at every point
of ev−1(η) and the only singularities on the geometric fiber over η are at worst
finitely many ordinary double point singularities.

Of course there is a dense open subset of Y , Yfree, such that every line in Y
intersecting Yfree is free. Thus

ev : ev−1(Yfree) → Yfree

is smooth and projective. In particular, the fiber of ev over the geometric generic
point of Y is automatically smooth.

If one thinks of rational curves in Y as analogous to continuous paths in a CW
complex, this hypothesis is analogous to asking that the space of continuous paths
with one boundary point fixed is itself path-connected. Since continuous paths with
one fixed boundary point can be retracted to a constant path to the basepoint, the
condition always holds. The Morse condition is technical, but often easy to verify.
Notice also that this hypothesis implies that LY is not itself a tensor power K⊕d

for an integer d > 1.
The next hypothesis uses the space of chains of free lines. For an integer n ≥ 1,

a chain of n free lines is an n-tuple

(C, p1, qn) = ((L1, p1, q1), (L2, p2, q2), . . . , (Ln, pn, qn))

where each Li is a free line in Y , p1 and qi are K-points of Li, and qi = pi+1 for
i = 1, . . . , n − 1. The points p1 and qn are considered “boundary points” of the
chain analogous to the boundary points 0 and 1 of the closed unit interval [0, 1].

There is a quasi-projectiveK-scheme FreeChain2(Y/K, n) parameterizing chains
of n free lines. And there is an “evaluation” K-morphism

ev : FreeChain2(Y/K, n) → Y ×K Y, (C, p1, qn) 7→ (p1, qn).

Hypothesis 5. For some positive integer n = n0, the morphism ev above is
dominant and the geometric generic fiber is “birationally rationally connected”, i.e.,
it is isomorphic as a scheme over K(Y ×K Y ) to an open subscheme of a projective,
rationally connected scheme.

Under Hypotheses 3 and 4, ev is dominant if and only if Y is irreducible and LY

is a generator of Pic(Y ). If the Picard number equals 1, the argument proving ev
is dominant appears, for instance, in [Kol96, Corollary IV.4.14]. And the opposite
direction follows from [Kol96, Proposition IV.3.13.3].

Together with Hypotheses 1 and 2, this implies a condition on the singular
fibers of π: The specializations of the geometric generic fiber occurring as singular
fibers of π are sufficiently mild that the ample generator of the Picard group of the
geometric generic fiber extends to an ample invertible sheaf on the special fiber. In
particular this implies all singular geometric fibers are irreducible and more.

The hypothesis that the fibers of ev are rationally connected is very strong.
The fiber of ev is analogous to the space of continuous paths in a path connected
CW complex connecting two points. The CW complex is simply connected if and
only if this path space is simply connected. In this way we consider Hypothesis 5
to be a version of “rational simple connectedness”.

The final hypothesis may seem technical, but it is essential. There are examples
where Hypotheses 1 through 5 hold and yet the fibers of the Abel maps are not
rationally connected.
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Hypothesis 6. There exists a very twisting scroll in Y , i.e., a pair (R,D)
consisting of a closed subscheme R of P1

K ×K Y and a Cartier divisor class D on R
such that

(i) R is a scroll, i.e., prP1 : R → P1 is a smooth morphism whose geometric
fibers are lines in Y ,

(ii) OR(D) is globally generated and D has relative degree 1 over P1,
(iii) the normal sheaf NR/P1×Y is globally generated, and
(iv) h1(R,NR/P1×Y (−D)⊗OP1

OP1(−2)) equals 0.
In fact this complicated condition has a simple geometric meaning. By Bertini’s

theorem, a general member of the linear system |D| is a smooth curve in R. By
(ii), this curve is of the form τ(P1) for a section τ : P1 → R of prP1 . The scroll R
together with the section τ defines a family of pointed lines in Y parameterized by
P1

K . Equivalently, it defines a K-morphism

ζ : P1
K →M0,1(Y, 1).

The conditions (ii)–(iv) say that ζ(P1) is in the smooth locus of both morphisms

ev : M0,1(Y, 1) → Y

and
ρ : M0,1(Y, 1) →M0,0(Y, 1),

that the pullback ζ∗Tρ := ζ∗(Ωρ)∨ is globally generated, and that the pullback
ζ∗Tev := ζ∗(Ω∨ev is ample. In fact if there exists a morphism ζ with these properties,
then there also exists a morphism such that both ζ∗Tρ and ζ∗Tev are ample. Then
ζ is very free relative to both ev and ρ.

4. Rational connectedness of the Abel map

These are all the hypotheses. However, before stating the theorem there is one
more definition.

Definition 4.1. Let d ≥ 0 be an integer. For an algebraically closed extension
field k of κ, a d-free section of π defined over k is a section σ : C ⊗κ k → X defined
over k such that for one (and hence every sufficiently general) effective Cartier
divisor D of C ⊗κ k of degree d,

h1(C ⊗κ k, σ
∗Nσ(C⊗κk)/X⊗κk(−D)) equals 0.

In particular, when d ≥ max 2g, 1 the first cohomology vanishes if and only if
the map on global sections

H0(C ⊗κ k, σ
∗Nσ(C⊗κk)/X⊗κk) → H0(C ⊗κ k, σ

∗Nσ(C⊗κk)/X⊗κk ⊗OC
OD)

is surjective. We call a section (g)-free if it is d-free for some d ≥ max 2g, 1, i.e., for
g ≥ 1 it is 2g-free and for g = 0 it is 1-free.

Theorem 4.2 (de Jong, Starr). If (X,L, π) satisfies Hypotheses 1 through 6,
then there exists a sequence (Ze)e�0 of irreducible components Ze of Σe(X/C/κ)
such that

(i) for each e� 0, a general point of Ze parameterizes a free section of π,
(ii) for each e� 0, the Abel map

α|Ze
: Ze → Pice

C/κ

is surjective with rationally connected geometric generic fiber, and
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(iii) for every algebraically closed field extension k of κ, for every (g)-free sec-
tion σ0 : C ⊗κ k → X of π defined over k, and for all δ � 0, every stable
section obtained by attaching δ free lines in fibers of π to σ0(C) gives a
k-point of Σe0+δ(X/C/κ) lying in Ze0+δ.

Moreover every geometric fiber Xt of π is integral. And every point of the smooth
locus (Xt)smooth is contained in a very free rational curve in (Xt)smooth.

Note that (iii) implies that the sequence (Ze)e�0 is canonical. In particular, it
is Galois invariant. Thus, in order to verify the theorem over every characteristic
0 field κ, it suffices to verify the theorem over algebraically closed, characteristic 0
fields. Moreover, as the statements are geometric, it suffices to pass to “sufficiently
large” algebraically closed fields, e.g., uncountable fields. This will be technically
convenient later (although, of course, the interested reader can easily formulate
all of our arguments over any characteristic 0 field). From this point on, we will
assume that κ is an uncountable, algebraically closed field of characteristic 0.

The proof of this theorem goes beyond what we can present here. However
we will present a proof in the special case necessary for de Jong’s Period-Index
theorem.

5. Rational simply connected fibrations over a surface

Theorem 4.2 is important because of its application to the existence of rational
sections of fibrations over surfaces.

Corollary 5.1 (de Jong, Starr). Let k be an algebraically closed field of char-
acteristic 0. Let S be a smooth, integral, projective surface over k. Let f : X → S
be a proper morphism. Assume there exists a Zariski open subset U of S and an
invertible sheaf L on f−1(U) such that

(i) S − U is a finite collection of k-points of S,
(ii) f−1(U) is smooth,
(iii) the restriction

f |f−1(U) : f−1(U) → U

is flat and surjective
(iv) L is f-ample and f-relatively globally generated, and
(v) the geometric generic fiber Y of f together with the base change LY of L

satisfy Hypotheses 3–6 of Section 3.

Then there exists a rational section of f .

Proof. There exists a Lefschetz pencil of ample divisors on S whose basepoints
are all contained in U . So after replacing S by the blowing up of the base locus,
replacing f and L by the pullbacks over the blowing up, and replacing U by its
inverse image in the blowing up, we may assume in addition that there exists a
surjective, projective morphism

r : S → P1
k.

Theorem 2.2 generalizes to give a pair (Sectionse(X/S/P1
k), σ) of a P1

k-scheme
Sectionse(X/S/P1

k) and an S-morphism

σ : Sectionse(X/S/P1
k)×P1 S → X
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which is universal among such pairs. And there is a generalization of the definition
of Σe(X/C/κ) giving a P1-scheme Σe(X/S/P1

k) and a family of stable sections

(ρ : C → Σe(X/S/P1
k), h : C → X)

of π having L-degree e. And again using the methods of [KM76], there is an Abel
map of P1

k-schemes
α : Σe(X/S/P1

k) → Pice
S/P1

k
,

at least when we restrict over the dense open subset (P1
k)ω,good – the maximal open

subset over which ω is smooth (over the finitely many k-points of P1
k − (P1

k)ω,good

there are some technical difficulties in representing the relative Picard functor by a
projective scheme).

Denote the function field k(P1
k) by κ (of course it is not algebraically closed).

So Spec κ → P1
k is the generic point of P1

k. The fibers of these P1
k schemes and

morphisms of P1
k-schemes over Spec κ are

Σe(X/S/P1
k)×P1

k
Spec κ = Σe(Xκ/C/κ),

Pice(X/S/P1
k)×P1

k
Spec κ = Pice

C/κ

where Xκ denotes X ×P1
k

Spec κ and C denotes S ×P1
k

Spec κ. Moreover the
basechange of the P1

k-morphism α above is the Abel map

α : Σe(Xκ/C/κ) → Pice
C/κ

defined in Section 2.
The hypotheses on X,L, U and Y imply Hypotheses 1–6 for Xκ,Lκ and Y

(which hasn’t actually changed). Thus, by Theorem 4.2, there exists a sequence
(Ze)e≥e0 of irreducible components Ze of Σe(Xκ/C/κ) satisfying Conditions (i)–(iii)
of Theorem 4.2. For every e ≥ e0, the closure of Ze in Σe(X/S/P1

k) is an irreducible
component ZP1

k,e of Σe(X/S/P1
k). Because of Conditions (i) for (Ze)e≥e0 , a general

point of ZP1
k,e intersects Sectionse(X/S/P1

k) is a dense open subset of ZP1
k,e. And

because of Condition (ii), for e� 0 the Abel map

α : ZP1
k,e → Pice

S/P1
k

is surjective (at least over (P1
k)ω,good), and the geometric generic fiber is rationally

connected.
For every integer e there exist sections

σ : (P1
k)ω,good → Pice

S/P1
k
.

Indeed, the exceptional divisor over the blowing up of every basepoint of the Lef-
schetz pencil of divisors on S is a Cartier divisor on S which defines a section to
Pic1

S/P1
k
. So e times this section gives a section σ.

For e� 0, the geometric generic fiber of

α : ZP1
k,e → Pice

S/P1
k

is rationally connected. It may happen, nonetheless, that the fiber of

α : ZP1
k,e → Pice

S/P1
k

over the geometric generic point of σ(P1
k) is not rationally connected. There is a

standard way to deal with this issue. We can always realize σ(P1
k) as an irreducible

component of multiplicity 1 in a complete intersection curve C0 in Pice
S/P1

k
, i.e., C0 is
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a curve which is a complete intersection of g = g(C) very ample divisors in Pice
S/P1

k
.

And we can deform these divisors to obtain a family of complete intersection curves
(Ct) in Pice

S/P1
k

parameterized by a DVR R = k [[t]]. By deforming the divisors
appropriately, we can arrange that the fiber of Ct over the geometric generic point
k ((t)) is smooth, and the fiber of α over the geometric generic point of Ct is rationally
connected.

Thus after performing a base change from k to L = k ((t)), the restriction of α
over the geometric generic fiber

CL := C ⊗
k

h
[t]

i k ((t))

is a rationally connected fibration over the smooth, projective curve CL over the
algebraically closed field L. Thus, by Theorem 1.9, there exists a section. But
by the usual limit theorems, every section over L can, in fact, be defined over the
fraction field k(R′) = k

((
t1/N

))
of some finite extension R′ = k

[[
t1/N

]]
of R.

Since σ(P1
k) is an irreducible component of multiplicity 1 in C0, σ(P1

k) is still
an irreducible component of multiplicity one in the base change Ct ⊗R R′. Thus
Ct⊗RR

′ is normal at the generic point of σ(P1
k), which is a codimension 1 point of

this 2-dimensional scheme. Finally, by the valuative criterion of properness applied
to the proper P1-scheme ZP1

t ,e, the section defined over Ct ⊗R k(R′) extends to the
generic point of σ(P1

k). Thus there exists a rational section

τ : σ(P1
k) 99K ZP1

k,e

of α. Again by the valuative criterion of properness, this extends to all of σ(P1
k).

It may happen that τ(Spec κ) parameterizes a stable section rather than a
section. But every stable section has a unique handle, i.e., the unique component
which is the image of a section. Because the handle is canonical, it satisfies the
cocycle condition for Galois descent, and thus is defined over the same field of
definition as the stable section – in this case κ. Thus finally, quite possibly for
some integer e′ < e, there exists a κ-point of Sectionse′(X/S/P1

k). By the universal
property of Sectionse′(X/S/P1

k), this is equivalent to a morphism

Spec κ×P1
k
S → X.

The closure of the image of this morphism is an integral closed subscheme Z of X
such that the projection Z → S is a proper morphism which is an isomorphism
over C. Thus it is birational, i.e., Z is the closure of the image of a rational section
of X → S. Therefore f : X → S has a rational section. �

6. Discriminant avoidance

Even though the theorems above require that char(κ) equals 0, there is a tech-
nique for “lifting” from positive characteristic. It is recalled very briefly below, but
the proof will not be discussed.

Let G be a reductive group scheme over some base scheme T . Let X be a
smooth, projective T -scheme on which G acts. For every T -scheme S and every
G-torsor T over S, there is an associated S-scheme

XT := X ×T T /G,
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the quotient by the free action of G. Let U be a dense open subscheme of T . Let
c be a nonnegative integer. Consider the following two properties of the datum
(T,G,X ) and the integer c.

Property 6.1. For every algebraically closed field over U , Spec k → U , for
every projective, integral k-scheme S of dimension c, and for every G-torsor T over
S, the projection

XT → S

admits a rational section.

Property 6.2. For every algebraically closed field over T , Spec k → U , for
every quasi-projective, integral k-scheme S of dimension c, and for every G-torsor
T over S, the projection

XT → S

admits a rational section.

The basic technique of “discriminant avoidance” proves the following.

Proposition 6.3. [dJS05] If Property 1 holds, then Property 2 holds.

Corollary 6.4. To prove Theorem 1.2, it suffices to prove Theorem 4.2 in
the special case that the morphism

X ⊗κ κ→ C ⊗κ κ

is of the form GrassC⊗κκ(r, E) for a locally free sheaf E of rank n divisible by r on
C ⊗κ κ.

Proof. By Lemma 1.6, to prove Theorem 1.2 it suffices to prove that for every
pair of positive integers r, n with r dividing n, for every field K as in Theorem 1.2,
for every central simple algebra A with dimK(A) = n2 and period(A) dividing r,
the generalized Brauer-Severi variety Grassr,A has a K-point.

Define T = Spec Zp and define U = Spec Qp. Let G be the group scheme
GLn,T /µr,T appearing in the proof of Lemma 1.7. And let (X , L) be (GrassT (r,O⊕n

T ),O(1)).
By the proof of Lemma 1.7, for every algebraically closed field k, for every fraction
field K of a surface over k, and for every central simple algebra A over K with
dimK(A) = n2 and period(A) dividing r, there exists a quasi-projective surface S
over k with fraction field K, and there exists a G-torsor T over S such that Grassr,A

is the generic fiber of the S-scheme XT . Thus by Proposition 6.3, to prove Grassr,A

always has aK-point, it suffices to prove that for every characteristic 0 algebraically
closed field k, for every projective surface S over k, and for every G-torsor T over
S, XT has a rational section over S. Define L on XT to be the twist of L on X .

By resolution of singularities on surfaces in characteristic 0 (which is reasonably
easy), we may as well assume S is smooth. Then the proof of Corollary 5.1 reduces
existence of a rational section to Theorem 4.2 for the restriction of XT and L to
the generic fiber C of a Lefschetz pencil of divisors on S. By Corollary 2.12 and by
Proposition 3.2(i), the base change of T to C ⊗κ κ lifts to a torsor for GLn,κ. This
is equivalent to a locally free sheaf E of rank n on C ⊗κ κ. Thus the base change
of XT to C ⊗κ κ equals GrassC⊗κκ(r, E). �
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7. Proof of the main theorem for Grassmann bundles

We will not prove Theorem 4.2, but we will prove it for Grassmann bundles
coming from Azumaya algebras over C. The following proof is an ad hoc argument
using the well-known fact that the moduli space of stable sheaves of fixed rank and
determinant on a curve is unirational.

Proposition 7.1. Let κ be a characteristic 0 field, let C be a smooth, projective,
geometrically integral κ-scheme, let

π : X → C

be a flat, projective morphism, and let L be a π-ample invertible sheaf on X whose
base change to the geometric generic fiber of π generates the Picard group. Assume
further that the morphism

π ⊗ Id : X ⊗κ κ→ C ⊗κ κ

is a Grassmann bundle GrassC⊗κκ(r, E) for a locally free sheaf E of rank n divis-
ible by r on C ⊗κ κ. Then the conclusion of Theorem 4.2 holds. Therefore, by
Corollary 6.4, de Jong’s Period-Index theorem, Theorem 1.2, also holds.

Proof. Thus Sectionse(X/C/κ)⊗κ κ is the scheme parametrizing locally free,
rank r quotients Q of E∨ of degree e. And the Abel map associates to Q the
determinant det(Q) =

∧r Q (up to a constant translation which makes no difference
in the following).

Denote by Ve the subscheme Ve of Sectionse(X/C/κ)⊗κ κ parametrizing quo-
tients with are stable sheaves. Since stability is an open condition in families, Ve

is an open subscheme. Moreover, since Q is stable if and only if every twist of
Q by an invertible sheaf is stable, Ve is independent of the choice of lift of the
torsor (T ×S C)⊗κ κ to a GLn,L-torsor over C ⊗κ L, where T is as in the proof of
Corollary 6.4. Therefore Ve is invariant under the action of Gal(κ/κ), i.e., Ve equals
Ue⊗κκ for some open subscheme Ue of Sectionse(X/C/κ). Finally, for e� 0, there
exist quotients Q which are stable so that Ue is nonempty. Define Ze to be the
closure of Ue.

By standard arguments it is not hard to show that for e� 0 every stable sheaf
of rank r and degree e on C ⊗κ L appears as a quotient Q, and also that

h1(C,HomOC⊗κL(E ,Q) equals 0.

Therefore the forgetful morphism

Φ : Ue → Bunr,e,stable(C ⊗κ L)

to the moduli space of stable rank r, degree e, locally free sheaves on C ⊗κ L is
surjective and the fiber over every point Q is an open subset of the constant rank
affine space HomOC⊗κL(E ,Q), i.e., Φ is an open subscheme of an affine bundle over
the moduli space of stable sheaves. And the Abel map factors through the “usual”
Abel map

det : Bunr,e,stable(C ⊗κ L) → Pice
C⊗κL/L.

As is well-known, the morphism det above has rationally connected (and even
unirational) fibers of dimension (r2 − 1)(g(C)− 1), i.e., the moduli space of stable
sheaves of rank r and fixed determinant is unirational. Thus the geometric generic
fiber of

α|Ue
: Ue → Pice

C/κ
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is isomorphic to an open subscheme of an affine bundle over a rationally connected
variety, which is itself an open subscheme of a rationally connected projective vari-
ety. But it is also isomorphic to a dense open subset of the projective variety which
is the geometric generic fiber of

α|Ze
: Ze → Pice

C/κ.

Since rational connectedness is a birational invariant among projective varieties,
the geometric generic fiber of α|Ze is rationally connected. �
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CHAPTER 5

Rational simple connectedness and Serre’s
“Conjecture II”

1. Generalized Grassmannians are rationally simply connected

This chapter is extracted from an earlier set of lecture notes, [Sta08]. The
omitted proofs can be found there. The results of this chapter are joint work with
A. J. de Jong and Xuhua He, heavily relying on a strategy proposed by Philippe
Gille.

The proof of Proposition 7.1 used an ad hoc argument. But in fact one can
directly verify the hypotheses of Theorem 4.2 for Grassmannians. The most diffi-
cult hypothesis to verify is the existence of a very twisting scroll. This is not too
bad for Grassmannians. But for generalized Grassmannians, i.e., minimal (positive
dimensional) homogeneous spaces, for other groups, e.g., groups of type E8, it be-
comes unreasonable to verify this “by hand”. Thus it is extremely fortunate that
Xuhua He has given a very simple, elegant proof that every generalized Grassman-
nian satisfies the hypotheses. Moreover, the proof uses only general results about
root systems – it does not use the classification of simple algebraic groups. The
conclusion is the following.

Corollary 1.1 (de Jong, He, Starr). Let k be an algebraically closed field
of characteristic 0. Let X be a smooth, connected, projective k-scheme of positive
dimension which is a homogeneous space for a linear algebraic group scheme G over
k. Assume there exists an invertible sheaf L on X which is an ample generator for
Pic(X). Then X and L satisfy Hypotheses 3–6 of Section 3.

Corollary 1.2 (de Jong, He, Starr). Let k be an algebraically closed field
of characteristic 0. Let S be a smooth, integral, projective surface over k. Let
f : X → S be a proper morphism. Assume there exists a Zariski open subset U of
S and an invertible sheaf L on f−1(U) such that

(i) S − U is a finite collection of k-points of S,
(ii) f−1(U) is smooth,
(iii) the restriction

f |f−1(U) : f−1(U) → U

is flat and surjective
(iv) L is f-relatively globally generated, and
(v) the geometric generic fiber Y of f is a homogeneous space for a linear

algebraic group over K = k(S) and LY is an ample generator for Pic(Y ).

Then there exists a rational section of f .
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2. Statement of the theorem

Serre’s Conjecture II, Conjecture 5.5, has been proved for some important
classes of fields, but in general it remains open. One class of fields satisfying the
hypotheses of the conjecture is the class of function fields K of surfaces over an
algebraically closed field k. Notice that if char(k) is positive, then K is not perfect
but does satisfy the conditions of Remark 5.6.

For these fields, there has been tremendous progress. In particular, work of
Merkurjev–Suslin, Ojanguren–Parimala, Colliot-Thélène–Gille–Parimala and Gille
has reduced Serre’s Conjecture II for all function fields K of surfaces over an al-
gebraically closed field k to the special case for such fields when G is an simple
algebraic group of type E8, cf. [CTGP04, Theorem 1.2(v)]. The main application
of Theorem 4.2 and Corollary 5.1 settles the “split case” of Serre’s Conjecture II
for function fields K.

Theorem 2.1 (de Jong, He, Starr). Let k be an algebraically closed field and
let K/k be the function field of a surface. Let G be a connected, simply connected,
semisimple algebraic group over k. Every G-torsor over K is trivial.

In particular, if GK is a simple algebraic group over K of type E8, then GK

is itself split and thus every GK-torsor over K is trivial. So Serre’s Conjecture II
holds over function fields for groups of type E8.

Remark 2.2. As we explain further below, in addition to Corollary 1.2, the
main input to Theorem 2.1 is a strategy due to Philippe Gille.

3. Reductions of structure group

There is a statement that implies both Theorem 2.1 as well as again proving
Theorem 1.2 (it is essentially the same proof as above). The statement below is a
generalization of a consequence of Theorem 4.2 proved by Philippe Gille. Gille’s
strategy is absolutely fundamental in the proof of Theorem 2.1. Let k be an alge-
braically closed field. Let G be a (smooth) connected, simply connected, semisimple
algebraic group over k, and let P be a (reduced) parabolic subgroup of G. The
center ZG of G is a finite group scheme which is contained in P . There is a maximal
quotient P � TP which is an algebraic torus. Denote by ZG,P the kernel of the in-
duced homomorphism ZG → TP . The natural action of G on G/P lifts canonically
to a linear action on every invertible sheaf over G/P . The finite subgroup scheme
ZG,P is the maximal subgroup acting trivially on G/P and on every invertible sheaf
over G/P . Thus G/ZG,P is the maximal quotient of G acting on G/P whose action
lifts to a linear action on every invertible sheaf over G/P .

Theorem 3.1. Let K/k be the function field of a surface over k. For every
torsor T for G/ZG,P over K, the associated K-variety X = T /P has a K-point.
Equivalently, the torsor T has a reduction of structure group to P/ZG,P .

Proof. Let T denote Spec of the Witt ring of k, e.g., T = Spec k if k has
characteristic 0 and T = Spec Zp if k equals Z/pZ. And denote by U the open
subset of T which consists of the generic point only.

Associated to the root datum for G, we can construct a smooth, linear algebraic
group scheme GT over T . And associated to the parabolic P , we can construct a
closed subgroup scheme PT over T . The definition of ZG,P extends to give a finite,
flat group scheme ZGT ,PT

over T . The quotient group scheme G = GT /ZGT ,PT
is
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a reductive group scheme since it is T -flat and the closed fiber is reductive. And
the T -scheme X = GT /PT is smooth and quasi-projective. Since the closed fiber
is proper over k, X is projective over T . Thus G and X satisfy the hypotheses in
Section 6. The goal is to prove Property 6.2 for c = 2. Because of Proposition 6.3,
it suffices to prove Property 6.1 for c = 2. In particular, to prove the theorem it
suffices to assume that k has characteristic 0.

Now we use an induction argument proposed by Philippe Gille. The induction
is on the corank, rank(G) − rank(P ). The base case is when P is a maximal
parabolic. Again applying Proposition 6.3, to prove the result for all G/ZG,P -
torsors over fraction fields K of surfaces over k, it suffices to prove the result for
each torsor which is the generic fiber of a G/ZG,P -torsor over a smooth, projective,
connected surface S over k. In this case the S-scheme XS = [TS×(G/P )]/(G/ZG,P )
satisfies the hypotheses of Corollary 1.2. Thus Corollary 1.2 implies the result in
this case.

By way of induction, assume the corank is > 1 and the result is known for all
smaller values of the corank. Since the corank is > 1, P is not a maximal parabolic.
Let Q be a maximal parabolic containing P . Then ZG,P is contained in ZG,Q. For
every G/ZG,P -torsor over K, by the base case, the associated G/ZG,Q-torsor has
a reduction of structure group to Q/ZG,Q. Thus the original G/ZG,P -torsor has a
reduction of structure group to Q/ZG,P (observe (G/ZG,P )/(Q/ZG,P ) is the same
as (G/ZG,Q)/(Q/ZG,Q) since both are just G/Q).

Now Q has a filtration by normal subgroup schemes,

Q = Q0 ⊃ Q1 ⊃ Q2,

where Q2 is the unipotent radical of Q and where Q0/Q1 is the maximal quotient of
Q which is of multiplicative type, i.e., isomorphic to Gm,k. By Hilbert’s Theorem
90, every Q0/Q1-torsor over K is trivial, thus there is a reduction of structure group
to Q1/ZG,P (by construction ZG,P is contained in P∩Q1). And over a characteristic
0 field, every torsor for a unipotent group is trivial. Thus this Q1/ZG,P -torsor
has a reduction of structure group to (P ∩ Q1)/ZG,P if and only if the associated
Q1/ZG,PQ2 torsor has a reduction of structure group to (P∩Q1)/ZG,P (P∩Q2). But
Q1/Q2 is again a semisimple, simply connected algebraic group, G′ (P ∩Q1)/(P ∩
Q2) is a parabolic subgroup P ′, and ZG′,P ′ equals the image of ZG,P . Since the
corank of P ′ in G′ is 1 less than the corank of P in G, by the induction hypothesis
every G′/ZG′,P ′ -torsor over the fraction field of a surface K has a reduction of
structure group to P ′/ZG′,P ′ . Thus every G/ZG,P -torsor over K has a reduction
of structure group to P/ZG,P . Therefore the result is proved by induction on the
corank. �

Proof of Theorem 1.2. This is roughly the same as the proof already pre-
sented. We include this proof to illustrate how Theorem 3.1 connects the Period-
Index problem, Problem 4.15, and Serre’s Conjecture II, Conjecture 5.5. Let G be
SLn,k. Let m be an integer 1 < m < n and which divides n. Let P be the maximal
parabolic subgroup of SLn,k consisting of upper block matrices with the upper right
block of size m and another diagonal block of size n−m. The center ZG of SLn,k

is the group scheme µn of nth roots of unity. And ZG,P is the subgroup scheme
µm.

One can prove that a torsor for G/ZG = PGLn,k has a reduction of structure
group to G/ZG,P if and only if the order of the corresponding element in the Brauer
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group H2(Gal(K), µn) divides m. And then, by Theorem 3.1, there is a reduction
of structure group to P/ZG,P .

Here is a reformultation in terms of central simple algebras. Let C be a central
simple algebra with center K and with dimK(C) = n2. Let TK be the K-scheme
whose set of A-points for each commutative K-algebra A equals the set of A-algebra
isomorphisms of C⊗KA with Matn×n,A. Since the automorphism group of Matn×n

is PGLn, TK is a PGLn,k-torsor over K. By the previous paragraph, if the order of
[C] in the Brauer group of K divides m, then there is a reduction of structure group
to P/ZG,P . But this is the same thing as an isomorphism of C with Matm×m,K⊗KB
for some central simple algebra B. In particular, if D is a division algebra over K
with dimK(D) = n2, then D is not isomorphic to Matm×m,K ⊗K B. Thus the
order of [D] does not divide m. Since this holds for every proper divisor m of n,
the conclusion is that the order of [D] equals n. �

Proof of Theorem 2.1. By the same argument as in the proof of Theo-
rem 3.1, it suffices to prove the case when k has characteristic 0. Denote by B a
Borel subgroup of G. Then ZG,B is the trivial group scheme. So by Theorem 3.1,
every G-torsor over K has a reduction of structure group to a B-torsor over K.
Denote by Ru(B) the unipotent radical of B. Since B is connected and solvable,
B/Ru(B) is of multiplicative type, i.e., isomorphic to Gr

m,k where r is the rank of
G. By Hilbert’s Theorem 90, every torsor for B/Ru(B) is trivial. Thus there is
a reduction of structure group to Ru(B). But every torsor for a unipotent group
over a characteristic 0 field is trivial. Thus the B-torsor is trivial, and hence the
original G-torsor was also trivial. �
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chen Univ., 11:73, 1935.
[CT87] Jean-Louis Colliot-Thélène. Arithmétique des variétés rationnelles et problèmes bira-
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