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MAT 544 Problem Set 6 Solutions

Problems.

Problem 1 Let (W, ‖ • ‖W ) be a Banach space (the most important case is W = Rn). Let I be a
bounded, open interval in R with closure I, and let

F : I → L(W,W ), t 7→ (Ft : W → W )

be a bounded, continuous function. For every t0 ∈ I, consider the initial value problem

dA

dt
(t) = Ft ◦ A(t), A(t0) = IdW

where A is a continuously differentiable function from some open neighborhood of t0 in I to
L(W,W ). As proved in lecture, there is a unique solution At0(t). Denote this by A(t, t0) = At0(t),
called a Green’s function.

(a) For fixed t0, t1 ∈ I, check that both of the following functions

Ã(t) = A(t, t0), Â(t) = A(t, t1) ◦ A(t1, t0).

solve the initial value problem

dA

dt
(t) = Ft ◦ A(t), A(t1) = A(t1, t0),

and thus are equal by uniqueness. In particular, conclude that A(t1, t0) and A(t0, t1) are inverse
(bounded) linear operators.

(b) Let U be an element in L(W,W ) which has an inverse U−1 in L(W,W ). Check that B(t, t0) =
U ◦ A(t, t0) ◦ U−1 is a solution of the initial value problem

dB

dt
(t) = (U ◦ Ft ◦ U−1) ◦B(t), B(t0) = IdW .

(c) Now let ~g : I → W be a continuous function and consider the initial value problem

d~x

dt
= Ft(~x(t)) + ~g(t), ~x(t0) = 0.
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where ~x(t) is a continuous map I → W which is continuously differentiable on I. This equation is
called an inhomogeneous linear ODE. Check that the following formula gives one solution (which
is unique)

~x(t) = A(t, t0) ◦
∫ t

t0

A(s, t0)−1 ◦ ~g(s)ds = A(t, t0) ◦
∫ t

t0

A(t0, s) ◦ ~g(s)ds =

∫ t

t0

A(t, s) ◦ ~g(s)ds.

Problem 2 Let (W, ‖ • ‖W ) be a Banach space, e.g., W = Rn. Let f(z) =
∑∞

n=0 cnz
n be an

absolutely convergent series with positive radius of convergence R, i.e.,

∞∑
n=0

|cn|Rn <∞.

(a) For every A in the closed ball B≤R(0) in L(W,W ), prove that the sequence of partial sums

N∑
n=0

cnA
n

converges to a limit. Call this limit fL(W,W )(A).

(b) Prove further that the associated map

fL(W,W ) : B≤R(0)→ L(W,W ), A 7→ fL(W,W )(A)

is continuous. (Consider this as a uniform limit of polynomial functions.)

(c) For every U in L(W,W ) with inverse U−1 also in L(W,W ), prove that fL(W,W )(UAU
−1) equals

UfL(W,W )(A)U−1.

Problem 3 Read about how to find the Jordan normal form, particularly for 2 × 2, 3 × 3
and 4 × 4 matrices. One short review is available from the lecture notes at the following URL:
http://ocw.mit.edu/courses/mathematics/18-034-honors-differential-equations-spring-2004/

Problem 4 Consider the following second order differential equation with initial values.

d2

dt2
x(t)− 6

d

dt
x(t) + 9x(t) = 0, x(t0) = b0, x

′(t0) = b1

(a) Find a 2×2 matrix A such that for every choice of b0,b1, the unique solution of the initial value
problem

d

dt
~x(t) = A~x(t), ~x(t) =

[
x0(t)
x1(t)

]
, ~x(t0) =

[
b0

b1

]
.
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gives a solution of the second order differential equation by x(t) = x0(t).

(b) Find an invertible 2× 2 matrix U such that AU = UÃ where Ã is a 2× 2 matrix of the form

Ã = S̃ + Ñ

where S̃ is a diagonal matrix, Ñ is a strictly upper triangular matrix (with zeroes on the diagonal),
and S̃Ñ = Ñ S̃.

(c) Compute exp(S̃(t− t0)), exp(Ñ(t− t0)) and

exp(Ã(t− t0)) = exp(S̃(t− t0))exp(Ñ(t− t0)).

The compute exp(A(t− t0))U = Uexp(Ã(t− t0)).

(d) Let c0, c1 be real numbers such that[
b0

b1

]
= U

[
c0

c1

]
.

Find the solution of the initial value problem with respect to c0 and c1, and use this to find the
solution of the original second order differential equation with respect to c0 and c1.

Problem 5 For the same differential equation as in Problem 4, use Problem 1(c) to solve the
following inhomogeneous equation

d2

dt2
x(t)− 6

d

dt
x(t) + 9x(t) = e3t, x(t0) = x′(t0) = 0.

There are other methods to solve this problem (such as the method of undetermined coefficients).
You may use these methods to check your work, but please write up the solution using the Green’s
function as in Problem 1(c).

Solutions to Problems.

Solution to (1) There are some results about linear maps. Each one is elementary. Some have
been explicitly proved in lecture. It seems best to state them explicitly. Let (U, ‖ • ‖U), (V, ‖ • ‖V )
and (W, ‖ • ‖W ) be normed vector spaces.

Lemma 0.1. (i) For every bounded linear map S : U → V and for every bounded linear map
T : V → W , the composition T ◦ S : U → W is a bounded linear map and ‖T ◦ S‖op ≤
‖T‖op · ‖S‖op.

(ii) For every bounded linear map S : U → V , the map C•,S : L(V,W )→ L(U,W ) by C•,S(T ) =
T ◦S is a bounded linear map with ‖C•,S‖op ≤ ‖S‖op. Similarly, for every bounded linear map
T : V → W , the map CT,• : L(U, V )→ L(U,W ) by CT,•(S) = T ◦ S is a bounded linear map
with ‖CT,•‖op ≤ ‖T‖op.
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(iii) The linear map C•,∗ : L(U, V )→ L(L(V,W ), L(U,W )) by S 7→ C•,S is a bounded linear map
with operator norm ≤ 1. Similarly the linear map C∗,• : L(V,W ) → L(L(U, V ), L(U,W )) by
T 7→ CT,• is a bounded linear map with operator norm ≤ 1.

(iv) The composition morphism

C : L(V,W )× L(U, V )→ L(U,W ), (T, S) 7→ T ◦ S

is continuously differentiable with total derivative

dC(T,S)(∆T,∆S) = ∆T ◦ S + T ◦∆S.

Proof. (i) It is easy to see that a composition of linear maps is a linear map (and this is proved in
linear algebra courses). Assume that S and T are bounded linear maps. For every ~u ∈ U , we have
‖S(~u)‖V ≤ ‖S‖op‖~u‖U . And for every ~v ∈ V , also ‖T (~v)‖W ≤ ‖T‖op‖~v‖V . Setting ~v = S(~u) gives
‖(S ◦ T )(~u)‖W ≤ ‖S‖op‖T (~u)‖V ≤ ‖S‖op‖T‖op‖~u‖U . Therefore T ◦ S is a bounded linear map and
‖T ◦ S‖op ≤ ‖T‖op · ‖S‖op.

(ii) It is straightforward to see that C•,S is a linear map. This is essentially (one half of) distributiv-
ity of composition with addition and scalar multiplication. And by (i), ‖C•,S(T )‖op = ‖T ◦ S‖op ≤
‖T‖op‖S‖op. Therefore C•,S is a bounded linear map with ‖C•,S‖op ≤ ‖S‖op. A similar argument
proves the analogous result for CT,•.

(iii) It is straightforward to see that C•,∗ is a linear map. This is essentially the other half of distribu-
tivity. And by (ii), ‖C•,S‖op ≤ ‖S‖op. Therefore C•,∗ is a bounded linear map with ‖C•,∗‖op ≤ 1.
A similar argument proves the analogous result for C∗,•.

(iv) By Theorem 3.8.2 on p. 154, for every (T, S) ∈ L(V,W )×L(U, V ), the derivative dC(T,S) exists
and varies continuously in (T, S) if and only if for every (T, S) both partial derivatives d(C•,S)T
and d(CT,•)S exist and vary continuously in (T, S). By (ii), both C•,S and CT,• are bounded linear
operators, hence differentiable with derivatives d(C•,S)T = C•,S and d(CT,•)S = CT,•. By (iii), these
both vary continuously in (T, S). Hence C is continuously differentiable, and

dC(T,S)(∆T,∆S) = d(C•,S)T (∆T ) + d(CT,•)S(∆S) = ∆T ◦ S + T ◦∆S.

Corollary 0.2. Let (R, ‖ • ‖R) be a normed vector space, let R̃ be an open subset of R, let S :
R̃ → L(U, V ) and T : R̃ → L(V,W ) be continuously differentiable functions. Then the function
T ◦ S : R̃→ L(U,W ) by ~r 7→ T (~r) ◦ S(~r) is continuously differentiable and

d(T ◦ S)~r(∆~r) = dT~r(∆~r) ◦ S(~r) + T (~r) ◦ dS~r(∆~r).

In particular, if R = R with its absolute value norm, then we have

d

dt
(T (t) ◦ S(t)) =

dT

dt
(t) ◦ S(t) + T (t) ◦ dS

dt
(t).
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Proof. This follows from Lemma 0.1 together with the Chain Rule, Theorem 3.6.2 on p. 143.

Solution to (a) Apply Corollary 0.2 with R = R, R̃ = I, U = V = W , with T (t) = A(t, t1) and
with S(t) the constant function S(t) = A(t1, t0), which has zero derivative. This gives

d

dt
(A(t, t1) ◦ A(t1, t0)) =

d

dt
A(t, t1) ◦ A(t1, t0).

Since A(t, t1) is a solution of the initial value problem,

d

dt
A(t, t1) = Ft ◦ A(t, t1).

Substituting this in gives

d

dt
(A(t, t1) ◦ A(t1, t0)) = (Ft ◦ A(t, t1)) ◦ A(t1, t0).

And by associativity of composition, this gives

d

dt
(A(t, t1) ◦ A(t1, t0)) = Ft ◦ (A(t, t1) ◦ A(t1, t0)),

i.e.,
d

dt
Â(t) = Ft ◦ Â(t).

Moreover we have
Â(t1) = A(t1, t1) ◦ A(t1, t0).

Since A(t, t1) solves the initial value problem, A(t1, t1) equals IdW . Therefore we have

Â(t1) = IdW ◦ A(t1, t0) = A(t1, t0).

Therefore Â(t) solves the given initial value problem. On the other hand, Ã(t) = A(t, t0) clearly
solves the initial value problem. Since the solution of the initial value problem is unique, it follows
that Â(t) = Ã(t), i.e.,

A(t, t1) ◦ A(t1, t0) = A(t, t0).

In particular, since A(t0, t0) = IdW = A(t1, t1), we conclude that

A(t0, t1) ◦ A(t1, t0) = IdW = A(t1, t0) ◦ A(t0, t1).

Therefore A(t1, t0) and A(t0, t1) are inverse linear operators.

Solution to (b) First of all, for any continuously differentiable function f : I → L(W,W ), by
Corollary 0.2, f(t) ◦ U−1 is continuously differentiable, and

d

dt
(f(t) ◦ U−1) =

df

dt
(t) ◦ U−1.
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And for f(t) = U ◦ A(t, t0), again by Corollary 0.2,

d

dt
(U ◦ A(t, t0)) = U ◦ d

dt
A(t, t0).

Putting this together gives,

d

dt
(U ◦ A(t, t0) ◦ U−1) = U ◦ dA(t, t0)

dt
◦ U−1.

Since A(t, t0) solves the initial value problem,

dA(t, t0)

dt
= Ft ◦ A(t, t0),

we have that
d

dt
B(t, t0) = U ◦ Ft ◦ A(t, t0) ◦ U−1 =

U ◦ Ft ◦ U−1 ◦ U ◦ A(t, t) ◦ U−1 = (U ◦ Ft ◦ U−1) ◦B(t, t0).

Finally, B(t0, t0) = U ◦ A(t0, t0) ◦ U−1. Since A(t0, t0) equals IdW , this gives

B(t0, t0) = U ◦ IdW ◦ U−1 = U ◦ U−1 = IdW .

Therefore B(t, t0) = U ◦ A(t, t0) ◦ U−1 solves the initial value problem.

Solution to (c) Denote by T : I → L(W,W ) the function T (t) = A(t, t0). This is continuously
differentiable with derivative

dT

dt
(t) = Ft ◦ T (t)

Denote by S : I → W = L(R,W ) the function

S(t) =

∫ t

t0

A(s, t0)−1 ◦ ~g(s)ds.

By the Fundamental Theorem of Calculus, S(t) is continuously differentiable with derivative equal
to the continuous function

dS

dt
= A(t, t0)−1 ◦ ~g(t).

Therefore applying Corollary 0.2, ~x : I → W = L(R,W ), ~x(t) = T (t) ◦ S(t), is continuously
differentiable with derivative equal to

d~x

dt
(t) =

dT

dt
(t) ◦ S(t) + T (t) ◦ dS

dt
(t) =

Ft ◦ T (t) ◦ S(t) + A(t, t0) ◦ (A(t, t0)−1 ◦ ~g(t)) = Ft ◦ ~x(t) + ~g(t).
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Therefore ~x(t) solves the ordinary differential equation. Moreover,

~x(t0) = T (t0) ◦ S(t0) = A(t0, t0) ◦ 0W = IdW (0W ) = 0W .

Therefore ~x(t) solves the initial value problem.

Solution to (2) (a) and (b) Although the following is not called for in this problem, it did come
up in lecture. For a real-valued power series f(z) =

∑∞
m=0 cmz

m with radius of convergence R, not
only is the power series fL(W,W )(T ) :=

∑∞
m=0 cmT

m convergent and continuous for T ∈ BR(0) ⊂
L(W,W ), in fact it is continuously differentiable on BR(0). This requires more work than proving
only that fL(W,W ) is continuous. The proof uses analogues in L(W,W ) of some elementary algebraic
facts about polynomials, e.g., the binomial theorem, and some elementary results about derivatives
of polynomials, and the proof uses the Taylor approximation with remainder for real-valued power
series. The basic idea is that for T,∆T ∈ L(W,W ) with t := ‖T‖op, ∆t := ‖∆T‖op, one can bound
the remainder term in the first-order Taylor approximation, ‖fL(W,W )(T + ∆T ) − fL(W,W )(T ) −
d(fL(W,W ))T (∆T )‖op, by the analogous “classical” term |f(t+ ∆t)− f(t)− f ′(t)∆t|, which in turn
is bounded by the Mean Value Theorem in terms of a uniform constant times |∆t|2.

Lemma 0.3. Let (V, ‖ • ‖V ) be a Banach space. Let R > 0 be a real number. Let (cm)m=0,1,2,... be
a sequence of elements in V such that the power series

∑∞
m=0 cmt

m has radius of convergence R,
i.e., for every 0 ≤ r < R, the series

∑∞
m=0 ‖cm‖V rm converges. Then all of the following hold.

(i) For every real number 0 ≤ r < R, the sequence (fn)n=0,1,2,... of partial sums fn =
∑n

m=0 cmt
m

converges in BC([−r, r], V ). In particular, the pointwise limit f∞ is a continuous function
f∞ : (−R,R)→ V .

(ii) For every sequence (am)m=0,1,2,... of real numbers with lim sup( m
√
|am|) ≤ 1 and for every

integer k ≥ 0, also (amcm+k)m=0,1,2,... gives a power series of radius of convergence R.

(iii) In particular, the sequences ((m + 1)cm+1)m=0,1,2,... and ((m + 2)(m + 1)cm+2)m=0,1,2,... give
continuous functions g∞(t) =

∑∞
m=1mcmt

m−1 and h∞(t) =
∑∞

m=2 m(m − 1)cmt
m−2 defined

on (−R,R).

(iv) Denote by ‖h∞‖V (t) the power series
∑∞

m=0m(m− 1)‖cm‖V tm−2 which is uniformly conver-
gent, bounded and continuous on every [−r, r] with 0 < r < R and which is continuous on
(−R,R). For every real number 0 < r < R, for every t ∈ (−r, r), and for every real ∆t with
|∆t| < r − |t|, we have

‖f∞(t+ ∆t)− f∞(t)− g∞(t) ·∆t‖V ≤
1

2
‖h∞‖V (r) · |∆t|2.

In particular, f∞(t) is differentiable at t with derivative equal to g∞(t).

Proof. (i) Because V is a Banach space, also BC([−r, r], V ) is a Banach space with the uniform
norm. Thus every absolutely convergent series in BC([−r, r], V ) is convergent. And the hypotheses
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exactly insure that the series (fn)n=0,1,2,... is absolutely convergent,

n∑
m=0

‖cmtm‖un ≤
n∑

m=0

‖cm‖V rm.

Since (−R,R) is the union of [−r, r] over all r with 0 < r < R, it follows that f∞ is defined and
continuous on all of (−R,R).

(ii) and (iii) This follows by the Root Test from single variable calculus.

(iv) Without loss of generality, assume that ∆t ≥ 0. As we have seen before, the function

It,t+∆t : BC([−r, r], V )→ V, f(t) 7→
∫ t+∆t

t

f(s)ds

is a bounded linear functional with operator norm ≤ |∆t|. In particular, since the partial sums
gn =

∑n
m=1 mcmt

m−1 converge uniformly to g∞, the integrals converge as well. By construction,∫ t+∆t

t

gn(s)ds = fn(t+ ∆t)− fn(t).

Similarly we have ∫ t+∆t

t

gn(s)− gn(t)ds = fn(t+ ∆t)− fn(t)− gn(t)∆t.

Since (fn)n=0,1,2,... converges uniformly to f∞ and since (gn)n=0,1,2,... converges uniformly to g∞, it
suffices to prove that for every n = 0, 1, 2, . . . , we have

‖
∫ t+∆t

t

gn(s)− gn(t)ds‖V ≤
1

2
‖h∞‖W (r)|∆t‖2.

Of course this integral is the same as

n∑
m=1

mcm

∫ t+∆t

t

sm−1 − tm−1ds.

By the Mean Value Theorem (or the Binomial Theorem, etc.), |sm−1− tm−1| ≤ |s− t|(m− 1)rm−2.
Integrating gives,∥∥∥∥∫ t+∆t

t

gn(s)− gn(t)ds

∥∥∥∥
V

≤ 1

2

n∑
m=2

m(m− 1)‖cm‖W rm−2 · |∆t|2 ≤ 1

2
‖h∞‖W (r) · |∆t|2.
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For every integer n ≥ 2, define a function

Cn : L(W,W )n → L(W,W )

recursively in n by C2(T1, T2) = C(T1, T2), where C is the function from Lemma 0.1, and by

Cn+1(T1, . . . , Tn, Tn+1) = C(Cn(T1, . . . , Tn), Tn+1).

Because composition is associative, the function Cn can be unambiguously expressed by

Cn(T1, . . . , Tn) = T1 ◦ · · · ◦ Tn.

Define the diagonal map by,

δn : L(W,W )→ L(W,W )n, T 7→ (T, T, . . . , T ).

And define the power map by Pn = Cn ◦ δn, i.e.,

Pn : L(W,W )→ L(W,W )n, T 7→ T ◦ T ◦ · · · ◦ T (n times ).

Let n ≥ 1 be an integer. Denote by Jn the set of all functions j : {1, . . . , n} → {1, 2}. In particular
denote by cn,1, resp. cn,2, the constant function with value 1, resp. with value 2. For each j ∈ Jn,
define a function

ĵ : L(W,W )× L(W,W )→ L(W,W )n, (T1, T2) 7→ (Tj(1), Tj(2), . . . , Tj(n)),

i.e., for every projection πk : L(W,W )n → L(W,W ) we have πk ◦ ĵ = πj(k). In particular, for
i = 1, 2 we have

ĉn,i(T1, T2) = (Ti, Ti, . . . , Ti) = Pn ◦ πi(T1, T1).

For every j ∈ Jn, denote by j̃ the composition Cn ◦ ĵ,

j̃ : L(W,W )× L(W,W )→ L(W,W ), (T1, T2) 7→ Tj(1) ◦ · · · ◦ Tj(k) ◦ · · · ◦ Tj(n).

For every integer k = 0, . . . , n, denote by Jn,k the set of functions j in Jn with j−1({2}) of cardinality
k, e.g., Jn,0 = {cn,1} and Jn,n = {cn,2}. Define a function DPn by

DPn : L(W,W )× L(W,W )→ L(W,W ), (DPn)T1(T2) =
∑
j∈Jn,1

j̃(T1, T2) =

n∑
k=1

Cn(T1, . . . , T1, T2, T1, . . . , T1) (kth variable ).

Lemma 0.4. Notations are as above.
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(i) For every n ≥ 2, the function Cn(T1, . . . , Tn) is continuously differentiable with

d(Cn)(T1,...,Tn)(∆T1, . . . ,∆Tn) =
n∑

k=1

Cn(T1, . . . , Tk−1,∆Tk, Tk+1, . . . , Tn).

The function δn(T ) is a bounded linear map with operator norm ≤ n. And Pn(T ) is continu-
ously differentiable with d(Pn)T (∆T ) = (DPn)T (∆T ).

(ii) For every n ≥ 1 and for every j ∈ Jn, the function ĵ(T1, T2) is a bounded linear map with
operator norm ≤ n. In particular, it is continuously differentiable.

(iii) For every n ≥ 1 and for every j ∈ Jn, the function j̃(T1, T2) is continuously differentiable
with

dj̃(T1,T2)(∆T1,∆T2) =
n∑

k=1

Cn(Tj(1), . . . , Tj(k−1),∆Tj(k), Tj(k+1), . . . , Tj(n)).

(iv) Each set Jn,k is finite of size
(
n
k

)
. The set Jn is finite of size 2n.

(v) For every j ∈ Jn,k we have

‖j̃(T1, T2)‖op ≤ ‖T1‖n−kop ‖T2‖kop.

In particular, we have
‖d(Pn)T‖op ≤ n‖T‖n−1

op .

(vi) For every integer n ≥ 1 and for every (T,∆T ) ∈ L(W,W )× L(W,W ), we have

Pn(T + ∆T ) = (T + ∆T )n =
∑
j∈Jn

j̃(T,∆T ) =
n∑

k=0

∑
j∈Jn,k

j̃(T,∆T ) =

Pn(T ) + (dPn)T (∆T ) +
n∑

k=2

∑
j∈Jn,k

j̃(T,∆T ).

(vii) For every (T,∆T ) ∈ L(W,W )× L(W,W ), we have

‖Pn(T + ∆T )− Pn(T )− (dPn)T (∆T )‖op ≤
n∑

k=2

(
n

k

)
‖T‖n−kop ‖∆T‖kop =

(‖T‖op + ‖∆T‖op)n − ‖T‖nop − n‖T‖n−1
op ‖∆T‖op.

10
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Proof. (i) This is proved by induction on n. The base case n = 2 is proved in Lemma 0.1. Thus
let n ≥ 2 be an integer, assume the result is true for C2, . . . , Cn, and consider the result for Cn+1.
Since Cn+1(T1, . . . , Tn, Tn+1) is defined to be C2(Cn(T1, . . . , Tn), Tn+1), and since C2 and Cn are
continuously differentiable, by the Chain Rule also Cn+1 is continuously differentiable and

(dCn+1)T1,...,Tn,Tn+1(∆T1, . . . ,∆Tn,∆Tn+1) =

(d(C2)•,Tn)Cn(T1,...,Tn) ◦ (dCn)(T1,...,Tn)(∆T1, . . . ,∆Tn) + (d(C2)Cn(T1,...,Tn),•)Tn+1(∆Tn+1) =

n∑
k=1

Cn(T1, . . . , Tk−1,∆Tk, Tk+1, . . . , Tn) ◦ Tn+1 + Cn(T1, . . . , Tn) ◦∆Tn+1 =

n+1∑
k=1

Cn+1(T1, . . . , Tk−1,∆Tk, Tk+1, . . . , Tn, Tn+1).

This proves (i) by induction on n. It is obvious that δn is a linear map. By the definition of
the product norm on L(W,W )n, it is clear that the operator norm is ≤ n. In particular, δn is
continuously differentiable with derivative equal to δn. By the Chain Rule, Pn = Cn ◦ δn is also
continuously differentiable with the specified derivative.

(ii) It is obvious that this is a linear map. And by the triangle inequality

‖ĵ(T1, T2)‖L(W,W )n =
n∑

k=1

‖Tj(k)‖L(W,W ) = |j−1({1})|‖T1‖L(W,W ) + |j−1({2})|‖T2‖L(W,W )

≤ n(‖T1‖L(W,W ) + ‖T2‖L(W,W )) = n‖(T1, T2)‖L(W,W )×L(W,W ).

So ĵ is a bounded linear map with ‖ĵ‖op ≤ n.

(iii) By (i), Cn is continuously differentiable. And by (ii), ĵ is continuously differentiable. By the
Chain Rule, the composition j̃ = Cn ◦ ĵ is continuously differentiable with derivative

dj̃(T1,T2)(∆T1,∆T2) = (dCn)ĵ(T1,T2) ◦ ĵ(∆T1,∆T2) =

n∑
k=1

Cn(Tj(1), . . . , Tj(k−1), πk ◦ ĵ(∆T1,∆T2), Tj(k+1), . . . , Tj(n)) =

n∑
k=1

Cn(Tj(1), . . . , Tj(k−1),∆Tj(k), Tj(k+1), . . . , Tj(n)).

(iv) This is elementary combinatorics (and is proved in MAT 200, for instance).

(v) By (i) of Lemma 0.1 and induction,

‖j̃(T1, T2)‖op = ‖Tj(1) ◦ · · · ◦ Tj(n)‖op ≤
∏

1≤k≤n

‖Tj(k)‖op =

11
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 ∏
1≤k≤n, j(k)=1

‖T1‖op

 ·
 ∏

1≤k≤n, j(k)=2

‖T2‖op

 = ‖T1‖n−kop · ‖T2‖kop.

Combined with the triangle inequality and (iv), this gives

‖d(Pn)T (∆T )‖op ≤ |Jn,1|‖T‖n−1
op ‖∆T‖op = n‖T‖op‖n−1∆T‖op.

Therefore we have
‖d(Pn)T‖op ≤ n‖T‖n−1

op .

(vi) Just as with the usual Binomial Theorem, this is proved by induction on n. For n = 1 it is
elementary; J1 = {c1,1, c1,2}, c̃1,1(T,∆T ) = T and c̃1,2(T,∆T ) = ∆T . By way of induction, assume
the result is proved for the integers 1, . . . , n, and consider the result for n + 1. For every j ∈ Jn
and for i = 1, 2, define j(i) ∈ Jn+1 by

j(i)(k) =

{
j(k), k ∈ {1, . . . , n},
i, k = n+ 1.

Then Jn+1 equals {j(1)|j ∈ Jn} t {j(2)|j ∈ Jn}. By construction of Pn+1 and by bilinearity of C we
have

Pn+1(T + ∆T ) = C(Pn(T + ∆T ), (T + ∆T )) = C(Pn(T + ∆T ), T ) + C(Pn(T + ∆T ),∆T ).

By the induction hypothesis and by bilinearity of C this is

C(
∑
j∈Jn

j̃(T,∆T ), T ) + C(
∑
j∈Jn

j̃(T,∆T ),∆T ) =
∑
j∈Jn

j̃(T,∆T ) ◦ T +
∑
j∈Jn

j̃(T,∆T ) ◦∆T =

∑
j∈Jn

j̃(1)(T,∆T ) +
∑
j∈Jn

f̃(2)(T,∆T ) =
∑

j′∈Jn+1

j̃′(T,∆T ).

Thus the result holds for n+ 1. So the result is proved by induction on n.

(vii) By (vi) and (i) we have

Pn(T + ∆T )− Pn(T )− (dPn)T (∆T ) =
n∑

k=2

∑
j∈Jn,k

f̃(T,∆T ).

By the triangle inequality, this gives,

‖Pn(T + ∆T )− Pn(T )− (dPn)T (∆T )‖op ≤
n∑

k=2

∑
j∈Jn,k

‖f̃(T,∆T )‖op.

And by (v), for j ∈ Jn,k we have ‖j̃(T,∆T )‖op ≤ ‖T1‖n−kop · ‖T2‖kop. Thus the inequality above gives,

‖Pn(T + ∆T )− Pn(T )− (dPn)T (∆T )‖op ≤
n∑

k=2

|Jn,k| · ‖T1‖n−kop · ‖T2‖kop.

12
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Combined with (iv), this gives,

‖Pn(T + ∆T )− Pn(T )− (dPn)T (∆T )‖op ≤
n∑

k=2

(
n

k

)
‖T1‖n−kop · ‖T2‖kop.

Let r > 0 be a real number. Let B≤r(0) denote the closed unit ball in L(W,W ). And for every
integer n ≥ 0, denote by Pn,r : B≤r(0) → L(W,W ) the restriction of Pn to B≤r(0). This is
continuous by Lemma 0.4(i), and it is bounded with ‖Pn,r‖un ≤ rn by (v). For every integer
n ≥ 1, denote by dPn : L(W,W ) → L(L(W,W ), L(W,W )) the function T 7→ (dPn)T , and denote
by dPn,r : B≤r(0) → L(L(W,W ), L(W,W )) the restriction to B≤r(0). By Lemma 0.4(i), dPn is a
continuous function. And by Lemma 0.4(v), dPn,r is bounded with ‖dPn,r‖un ≤ nrn−1.

Proposition 0.5. Let R > 0 be a real number. Let (cm)m=0,1,2,... be a sequence of real numbers
such that the power series f∞(t) =

∑∞
m=0 cmt

m has radius of convergence R. Denote by |f∞|(t)
the associated power series

∑∞
m=0 |cm|tm, which also has radius of convergence R. And denote by

g∞(t), h∞(t) and |h∞|(t) the associated power series as defined in Lemma 0.3. All of the following
hold.

(i) For every real number 0 < r < R, the sequence (cmPm,r)m=0,1,2,... gives an absolutely conver-
gent series

∑∞
m=0 cmPm,r in BC(B≤r(0), L(W,W )). Moreover,

∑∞
m=0 ‖cmPm,r‖un ≤

∑∞
m=0 |cm|rm =

|f∞|(r).

(ii) The absolutely convergent series
∑∞

m=0 cmPm,r is convergent; denote the limit by f∞,≤r :
B≤r(0) → L(W,W ) and denote by f∞,R : BR(0) → L(W,W ) the unique function whose
restriction to every B≤r(0) equals f∞,≤r. The function f∞,R is continuous.

(iii) For every real number 0 < r < R, the sequence (cmdPm,R)m=0,1,2,... gives an absolutely conver-
gent series

∑∞
m=0 cmdPm,r in BC(B≤r(0), L(L(W,W ), L(W,W ))) Moreover,

∑∞
m=0 ‖cmdPm,r‖un ≤∑∞

m=0m|cm|rm−1 = |g∞|(r).

(iv) The absolutely convergent series
∑∞

m=0 cmdPm,r is convergent; denote the limit by

Df∞,≤r : B≤r(0)→ L(L(W,W ), L(W,W )), T 7→ (Df∞,≤r)T ,

and denote by Df∞,R : BR(0)→ L(L(W,W ), L(W,W )) the unique function whose restriction
to every B≤r(0) equals Df∞,≤r. The function Df∞,R is continuous.

(v) For every real number 0 < r < R, for every T ∈ Br(0) ⊂ L(W,W ), and for every ∆T ∈
L(W,W ) with ‖∆T‖op < r − ‖T‖op, we have

‖f∞,r(T + ∆T )− f∞,r(T )− (Df∞,R)T (∆T )‖un ≤
1

2
|h∞|(r)‖∆T‖2

op.

In particular, f∞,R is differentiable at T with derivative equal to (Df∞,R)T . As this is con-
tinuous, f∞,R is continuously differentiable on BR(0).

13
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Proof. (i) As discussed above, ‖Pm,r‖un ≤ rm. Thus we have for every integer n ≥ 0,

n∑
m=0

‖cmPm,r‖un ≤
n∑

m=0

|cm|rm ≤ |f∞|(r).

So the series is absolutely convergent.

(ii) Since L(W,W ) is a Banach space, BC(B≤r(0), L(W,W )) is also a Banach space with respect
to the uniform norm. Every series in a Banach space which is absolutely convergent is convergent.
Finally, for every T ∈ BR(0), there exists a real number r with ‖T‖op < r < R so that T ∈ Br(0) ⊂
B≤r(0). The restriction of f∞,R to the open set Br(0) equals the restriction of f∞,≤r by definition.
And by construction, f∞,≤r is in BC(B≤r(0), L(W,W )), i.e., it is bounded and continuous. Thus
the restriction of f∞,R to Br(0) is continuous (and bounded), so f∞,R is continuous at T . Since this
holds for every T ∈ BR(0), f∞,R is continuous.

(iii) This is similar to (i) using the estimate

|DPm,r| ≤ mrm−1

from above.

(iv) This is similar to (ii).

(v) Since ‖•‖un is continuous (with respect to the uniform norm), and since (fn,r)n=0,1,... converges
uniformly to f∞,r and (Dfn,r)n=1,2,... converges uniformly to Df∞,r, it suffices to prove for every
integer n ≥ 0 that

‖fn,r(T + ∆T )− fn,r(T )− (Dfn,r)T (∆T )‖op ≤
1

2
|h∞|(r)‖∆T‖2

op.

And we have

fn,r(T + ∆T )− fn,r(T )− (Dfn,r)T (∆T ) =
n∑

m=0

cm [Pm,r(T + ∆T )− Pm,r(T )− (dPm,r)T (∆T )] .

Thus we have

‖fn,r(T +∆T )−fn,r(T )−(Dfn,r)T (∆T )‖op ≤
n∑

m=0

|cm|‖Pm,r(T +∆T )−Pm,r(T )−(dPm,r)T (∆T )‖op.

By Lemma 0.4(vii), we have

‖Pm,r(T + ∆T )− Pm,r(T )− (dPm,r)T (∆T )‖op ≤ (t+ ∆t)m − tm −mtm−1∆t,

where t := ‖T‖op and ∆t : −‖∆T‖op. Substituting this in gives

‖fn,r(T + ∆T )− fn,r(T )− (Dfn,r)T (∆T )‖op ≤
n∑

m=0

|cm|((t+ ∆t)m − tm −mtm−1∆t) =

14
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|fn|(t+ ∆t)− |fn|(t)− |gn|(t)∆t.
And by Lemma 0.3(iv), we have

||fn|(t+ ∆t)− |fn|(t)− |gn|(t)∆t| ≤
1

2
|h∞|(r)|∆t|2,

for every integer n ≥ 0. Taking the limit as n→∞, this gives the bound

‖f∞,r(T + ∆T )− f∞,r(T )− (Df∞,R)T (∆T )‖un ≤
1

2
|h∞|(r)‖∆T‖2

op.

Of particular importance is the case when T and ∆T commute. In this case (dPm)T (∆T ) equals
mTm−1 ◦ ∆T . So in this special case, (df∞,R)T (∆T ) equals g∞,R(T ) ◦ ∆T . In particular, when
f∞(t) is the power series about 0 giving et, then for T and ∆T commuting, this gives dexpT (∆T ) =
exp(T ) ◦∆T = ∆T ◦ exp(T ). This was the crucial step in proving that

A(t, t0) := exp

(∫ t

t0

Fsds

)
solves the initial value problem,

d

dt
A(t) = Ft ◦ A(t), A(t0) = IdW

in the special case that Ft and Ft commute for every s, t ∈ I.

Solution to (c) By induction on n ≥ 2, it is straightforward to compute that Cn(UT1U
−1, . . . , UTnU

−1) =
UCn(T1, . . . , Tn)U−1: the base case n = 2 is

C(UT1U
−1, UT2U

−1) = (UT1U
−1)(UT2U

−1) = UT1(U−1U)T2U
−1 = U(T1T2)U−1 = UC(T1, T2)U−1.

And the induction step is

Cn+1(UT1U
−1, . . . , UTnU

−1, UTn+1U
−1) = C(Cn(UT1U

−1, . . . , UTnU
−1), UTn+1U

−1),

which by the induction hypothesis equals

C(UCn(T1, . . . , Tn)U−1, UTn+1U
−1)

which applying the base case once more gives

UC(Cn(T1, . . . , Tn), Tn+1)U−1 = UCn+1(T1, . . . , Tn, Tn+1)U−1.

Thus also Pn(UTU−1) = UPn(T )U−1. So for each of the partial sum polynomials fn(z), fn(UTU−1)
is a finite linear combination of expressions Pm(UTU−1), which by the last sentence equals UPm(T )U−1,
and hence fn(UTU−1) = Ufn(T )U−1. Taking the limit as n→∞ gives f∞(UTU−1) = Uf∞(T )U−1.

15
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Solution to (4)

Solution to (a) Define x0(t) = x(t) and x1(t) = x′(t). Then x′′(t) = x′1(t). Thus the second order
differential equation

d2x

dt2
(t) = −9x(t) + 6

dx

dt
(t)

becomes a first order differential equation,

dx1

dt
(t) = −9x0(t) + 6x1(t).

Altogether, the differential system reads,{
dx0

dt
(t) = 0x0(t) + 1x1(t)

dx1

dt
(t) = −9x0(t) + 6x1(t)

In other words, this is the vector-valued IVP,

d~x

dt
(t) = A~x(t), ~x(t0) =

[
b0

b1

]
,

where A and ~x(t) are

A =

[
0 1
−9 6

]
, ~x(t) =

[
x0(t)
x1(t)

]
.

Solution to (b) The first step in finding a Jordan normal form is to compute the characteristic
polynomial cA(x) := Det(xI2×2 − A),

cA(x) = Det

[
x −1
9 x− 6

]
= x(x− 6)− (−1)(9) = x2 − 6x+ 9.

Notice that for every n× n matrix, cA(x) := Det(xIn×n − A) has the form

cA(x) = xn − Tr(A)xn−2 + · · ·+ (−1)nDet(A)x0.

Since clearly Tr(A) = 6 and Det(A) = 0(6)− (1)(−9) = 9, this also gives cA(x) = x2 − 6x+ 9.

The next step in computing the Jordan normal form is to compute the factorization of cA(x). By
the quadratic formula, the only root is 3, so cA(x) equals (x− 3)2. So there is only one eigenvalue,
λ = 3. So the semisimple part of the Jordan canonical form must be

S̃ =

[
3 0
0 3

]
= 3Id2×2.

Notice that for every invertible matrix U , U(3Id2×2)U−1 equals 3(UU−1) = 3Id2×2. So the semisim-
ple part of A, S = US̃U−1, is still 3Id2×2. Thus A is diagonalizable if and only if A equals

16

http://www.math.sunysb.edu/~jstarr/mat544.fall11/index.html
mailto:jstarr@math.sunysb.edu


MAT 544 Real Analysis I
Stony Brook University
Problem Set 6, Due Thurs. 10/20/2011

Jason Starr
Fall 2011

S = 3Id2×2, which it clearly does not. Thus A is not diagonalizable, and the nilpotent part of A is
N = A− S = A− 3Id2×2,

N =

[
0 1
−9 6

]
−
[

3 0
0 3

]
=

[
−3 1
−9 3

]
.

As a double-check, we have

N2 = N ·N =

[
−3 1
−9 3

]
·
[
−3 1
−9 3

]
=

[
0 0
0 0

]
= 02×2.

By the Gauss-Jordan row reduction algorithm, or any other means, the kernel of N and N2 are

EN = Ker(N) = span

([
1
3

])
, EN2 = Ker(N2) = R2.

Thus the algorithm for finding U and N is to first find a primitive subspace, i.e., a 1-dimensional
subspace G2 ⊂ EN2 such that EN2 = G2 + EN1 . The span of any vector not in EN1 will do, say
G2 = span(e2). This subspace has as basis just the vector ~v2 := e2. Then for a second basis vector,
we choose

~v1 = N~v2 =

[
−3 1
−9 3

]
·
[

0
1

]
=

[
1
3

]
.

So the change-of-basis matrix is

U = [~v1|~v2] =

[
1 0
3 1

]
, U−1 =

[
1 0
−3 1

]
.

And Ñ is determined by

AU = A[~v1|~v2] = [A~v1|A~v2] = [~0|~v1] = [0~v1+0~v2|1~v1+0~v2] = [~v1|~v2]·
[

0 1
0 0

]
= UÑ, Ñ =

[
0 1
0 0

]
.

Solution to (c) Since S̃ equals 3Id2×2, we have

S̃(t− t0) = 3(t− t0)Id2×2 =

[
3(t− t0) 0

0 3(t− t0)

]
.

Since this is diagonal,

exp(S̃(t− t0)) = e3(t−t0)Id2×2 =

[
e3(t−t0) 0

0 e3(t−t0)

]
.

Similarly, we have

Ñ(t− t0) =

[
0 t− t0
0 0

]
.

17
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Since (Ñ(t− t0))2 equals 02×2, we have

exp(Ñ(t− t0)) = Id2×2 + Ñ(t− t0) +
1

2!
(Ñ(t− t0))2 + · · · = Id2×2 + Ñ(t− t0) =[

1 t− t0
0 1

]
.

Thus we have

exp(Ã(t− t0)) = exp(S̃(t− t0))exp(Ñ(t− t0)) =

[
e3(t−t0) 0

0 e3(t−t0)

]
·
[

1 t− t0
0 1

]
=

[
e3(t−t0) (t− t0)e3(t−t0)

0 e3(t−t0)

]
= e3(t−t0)exp(N(t− t0)).

By Problem 2(c), we have

exp(A(t− t0))U = Uexp(Ã(t− t0)) = U · (e3(t−t0)exp(Ñ(t− t0))) = e3(t−t0)U · exp(Ñ(t− t0)) =

e3(t−t0)

[
1 0
3 1

] [
1 (t− t0)
0 1

]
= e3(t−t0)

[
1 (t− t0)
3 3(t− t0) + 1

]
.

This gives,

exp(A(t− t0)) = (Uexp(Ã(t− t0)))U−1 = e3(t−t0)

[
1 (t− t0)
3 3(t− t0) + 1

] [
1 0
−3 1

]
=

e3(t−t0)

[
−3(t− t0) + 1 1(t− t0)
−9(t− t0) 3(t− t0) + 1

]
.

So the Green’s function is

A(t, t0) = A(t− t0) = e3(t−t0)

[
−3(t− t0) + 1 1(t− t0)
−9(t− t0) 3(t− t0) + 1

]
.

Solution to (d) The general solution of the initial value problem

d~x

dt
(t) = A~x(t), ~x(t0) = ~b

is given by
~x(t) = exp(A(t− t0))~b.

If we write ~b = U~c, this becomes,

~x(t) = exp(A(t− t0))U~c = Uexp(Ã(t− t0))~c.
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In our case, we have

exp(Ã(t−t0))~c = e3(t−t0)exp(Ñ(t−t0))~c = e3(t−t0)

[
1 t− t0
0 1

] [
c0

c1

]
= e3(t−t0)

[
c0 + c1(t− t0)

c1

]
.

Thus we have
~x(t) = Uexp(Ã(t− t0))~c = e3(t−t0)Uexp(Ñ(t− t0))~c =

e3(t−t0)

[
1 0
3 1

] [
c0 + c1(t− t0)

c1

]
= e3(t−t0)

[
c0 + c1(t− t0)

(3c0 + c1) + 3c1(t− t0)

]
.

In particular, the solution of the original second order differential equation is

x(t) = x0(t) = [c0 + c1(t− t0)]e3(t−t0).

Solution to (5) The associated inhomogeneous first order linear IVP is

d~x

dt
(t) = A~x(t) + ~g(t), ~x(t0) = ~0,

where the inhomogeneous term is

~g(t) =

[
0
e3t

]
.

The Green’s function is

A(t, s) = A(t− s) = e3(t−s)
[
−3(t− s) + 1 1(t− s)
−9(t− s) 3(t− s) + 1

]
.

This gives

A(t, s)~g(s) = e3(t−s)
[
−3(t− s) + 1 1(t− s)
−9(t− s) 3(t− s) + 1

] [
0
e3s

]
=

[
(t− s)e3t

(3(t− s) + 1)e3t

]
.

So by , the solution is

~x(t) =

∫ t

t0

A(t, s)~g(s)ds =

∫ t

t0

[
(t− s)e3t

(3(t− s) + 1)e3t

]
ds =

e3t

∫ t

t0

[
(t− s)

3(t− s) + 1

]
ds =

e3t

[
(1/2)(t2 − t20)

(3/2)(t2 − t20) + (t− t0)

]
.

So the solution of the IVP is

~x(t) =

[
x0(t)
x1(t)

]
= e3t

[
(1/2)(t2 − t20)

(3/2)(t2 − t20) + (t− t0)

]
.

So the solution of the original second order, inhomogeneous, linear IVP is

x(t) = x0(t) =
1

2
(t2 − t20)e3t.

Direct computation confirms this is the solution.
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