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MAT 544 Problem Set 4 Solutions

Problems.

Problem 1 Look over the problems and solutions from Midterm 1, now posted on the exams page
of the course webpage. Understand the correct solutions to each of the problems. Each student
will get full credit for this problem; there is nothing to write up or turn in (but I do expect each
student to actually understand the solutions).

Problem 2 For an R-vector space U , recall that two norms ‖•‖U and ‖•‖′U are equivalent if there
exist real numbers 0 < m,M such that for every ~u ∈ U ,

m‖~u‖U ≤ ‖~u‖′U ≤M‖~u‖U .

For normed vector spaces (V, ‖ • ‖V ) and (W, ‖ • ‖W ), an open subset O ⊂ V , and a continuous
function F : O → W , recall that the function F is (Frechet) differentiable at ~v0 ∈ O if there exists
a bounded linear operator

dF~v0 : V → W

such that for every real number ε > 0, there exists a real number δ > 0 with

‖F (~v0 + ~v)− F (~v0)− dF~v0(~v)‖W ≤ ε‖~v‖V

whenever ‖~v‖V < δ. In this case the bounded linear operator dF~v0 is called the (Frechet) derivative
of F at ~v0.
Prove that if ‖ • ‖′V is a norm on V which is equivalent to ‖ • ‖V , then F is differentiable at ~v9 with
respect to ‖ • ‖V if and only if it is differentiable at ~v0 with respect to ‖ • ‖′V , and in this case the
derivatives are equal. Similarly, if ‖ • ‖′W is a norm on W which is equivalent to ‖ • ‖W , prove that
F is differentiable at ~v0 with respect to ‖ • ‖W if and only if it is so with respect to ‖ • ‖′W , and in
this case the derivatives are equal. In particular, if V and W are finite dimensional, then all norms
on V , respectively on W , are equivalent, hence differentiability is an intrinsic property.

Problem 3 Let V be a finite dimensional real vector space. Denote by L(V, V ) the vector space
of linear transformations T : V → V (all of which are automatically bounded with respect to all
norms on V ). Denote by Det(T ) and Tr(T ) the determinant and trace of T (with respect to one,
and hence any, basis for V ). Thus

Det : L(V, V )→ R
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is a continuous function and
Tr : L(V, V )→ R

is a (bounded) linear transformation. Prove that Det is differentiable at IdV and d(Det)IdV equals
Tr.

Problem 4 Let (X, dX) be a metric space. For this problem, an almost contraction is a continous
map T : (X, dX)→ (X, dX) such that for all x, x′ ∈ X with x 6= x′, we have

dX(T (x), T (x′)) < dX(x, x′),

where this is strict inequality.

(a) Prove that an almost contraction has at most one fixed point x, and this is the same as a point
of X at which the following function attains a minimum

f : X → R≥0, f(x) = dX(x, T (x)).

(b) Prove that every almost contraction of a compact metric space has a fixed point.

Problem 5 Let dR be the usual distance function on R, namely dR(s, t) = |t− s|. Find an example
of an almost contraction f : R→ R which has no fixed point. Conclude that in Problem 4 it does
not suffice to replace “compact” by “complete” (although, of course, “complete” is sufficient in the
Banach contraction mapping fixed point theorem).

Solutions to Problems.

Solution to (2) First we prove that differentiability is preserved by equivalent norms on the
domain vector space V . Because “equivalence of norms” is indeed an equivalence relation, and in
particular because it is symmetric, it suffices to prove that if ‖ • ‖′V is equivalent to ‖ • ‖V , then
differentiability of F at ~v0 with respect to ‖ • ‖V implies differentiability of F at ~v0 with respect to
‖ • ‖′V , and that the derivative of F at ~v0 with respect to ‖ • ‖V equals the derivative dF~v0 of F at
~v0 with respect to ‖ • ‖′V . Thus assume that F is differentiable at ~v0 with respect to ‖ • ‖V , and
denote the derivative by dF~v0 . We must prove that for every positive real ε′ there exists a postive
real δ′ such that for every ~v ∈ V with ‖~v‖′V < δ′, we have

‖F (~v0 + ~v)− F (~v0)− dF~v0(~v)‖W ≤ ε′‖~v‖′V .

Since ε′ and m are positive real numbers, so is ε := mε′. Since F is differentiable at ~v0 with respect
to ‖ • ‖V , there exists a real number δ > 0 such that for every ~v ∈ V with ‖~v‖V < δ we have

‖F (~v0 + ~v)− F (~v0)− dF~v0(~v)‖W ≤ ε‖~v‖V .

Since δ and m are positive real numbers, δ′ := mδ is a positive real number. By hypothesis,
‖~v‖′V < δ′ implies that

‖~v‖V ≤ (1/m)|~v‖′V < (δ′/m) = δ,
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which in turn implies that

‖F (~v0 + ~v)− F (~v0)− dF~v0(~v)‖W ≤ ε‖~v‖V .

Also by hypothesis,
ε‖~v‖V = ε′(m‖~v‖V ) ≤ ε′‖~v‖′V .

Therefore the hypothesis ‖~v‖′V < δ′ implies that

‖F (~v0 + ~v)− F (~v0)− dF~v0(~v)‖W ≤ ε′‖~v‖′V ,

just as needed.

The argument for equivalent norms on W is similar and easier. The details are left to the reader.

Solution to (3) There are two simple facts which are useful for this problem: a bounded linear
transformation is always differentiable with derivative equal to the transformation, and a function
to the space of (bounded) linear operators on a finite dimensional vector space is continuous if and
only if each of its “column vector” coordinate functions is continuous. So I will formulate these as
lemmas.

Lemma 0.1. Let (U, ‖•‖U) and (W, ‖•‖W ) be normed vector spaces. Every bounded linear operator
T : U → W is differentiable at every ~u0 in U and the derivative dT~u0 equals T .

Proof. For every ~u in U , since T is linear we have

T (~u0 + ~u)− T (~u0)− T (~u) = [T (~u0) + T (~u)]− T (~u0)− T (~u) = 0W .

So with dT~u0 defined to be T , for every positive real ε, for any positive real δ, for every ~u in U with
‖~u‖U < δ, we have

‖T (~u0 + ~u)− T (~u0)− dT~u0(~u)‖W = ‖0W‖W = 0 ≤ ε‖~u‖U .

For normed vector spaces (U, ‖ • ‖U) and (W, ‖ • ‖W ) there is a natural map

cU,W : L(U,W )× U → W, (T, ~u) 7→ T (~u).

The following goes (almost) without saying.

Lemma 0.2. The map cU is continuous.

Proof. Let (T, ~u) be an element in L(U,W )×U . Let ε be a positive real. Define δL := min(
√
ε/3, ε/3(1+

‖~u‖U)) and define δU := min(
√
ε/3, ε/3(1 + ‖T‖op)). These are positive real numbers. Let

T ′ ∈ L(U,W ) and ~u′ ∈ U be elements such that ‖T ′ − T‖op < δL and ‖~u′ − ~u‖U < δU . Then

we have ‖T ′ − T‖op‖~u′ − ~u‖U <
√
ε/3

√
ε/3 = ε/3. Similarly we have ‖T ′ − T‖op‖~u‖U < (ε/3(1 +
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‖~u‖U))‖~u‖U < ε/3. And finally we have ‖T‖op‖~u′− ~u‖U < ‖T‖op(ε/3(1 + ‖T‖op)) < ε/3. Therefore
we have (using the triangle inequality),

‖T ′(~u′)− T (~u)‖W = ‖(T ′ − T )(~u′ − ~u) + (T ′ − T )(~u) + T (~u′ − ~u)‖W ≤

‖(T ′ − T )(~u′ − ~u)‖W + ‖(T ′ − T )(~u)‖U + ‖T (~u′ − ~u)‖W ≤
‖T ′ − T‖op‖~u′ − ~u‖U + ‖T ′ − T‖op‖~u‖U + ‖T‖op‖~u′ − ~u‖U ≤ ε/3 + ε/3 + ε/3 = ε.

Now let (X, dX) be a metric space and let there be given a function

τ : X → L(U,W ), x 7→ (τx : U → W )

Form the new function

(τ × IdU) : X × U → L(U,W )× U, (x, ~u) 7→ (τx, ~u).

Finally, form the composition τ̃ := cU,V ◦ (τ × IdU), i.e.,

τ̃ : X × U → U, τ̃(x, ~u) = τx(~u).

If τ is continuous, so is τ × IdU . And since cU,W is continuous, then also τ̃ is continuous. The useful
result about linear maps is a converse of this observation.

Lemma 0.3. Assume that U is finite dimensional so that the closed unit ball in U is compact. Let
τ : X → L(U,W ) be a function such that the associated map τ̃ : X × U → W is continuous. Then
τ is continuous.

Proof. Assume that τ̃ is continuous. Let x0 be an element of X. Since addition and subtraction
are continuous in the normed vector space L(U,W ), for the function σ : X → L(U,W ) defined by
σx := τx− τx0 , the function σ̃ is continuous. So for every positive real ε, for the open ball Bε/2(0W )
in W , the subset Aε := σ̃−1Bε/2(0W ) is an open subset of X × U . Since σx0 equals 0, for every
~u in the closed unit ball B≤1(0U) in U , (x0, ~u) is in Aε. Since Aε is open, there exists an open
neighborhood Xε,~u of x0 in X and there exists a positive real δ~u such that Xε,~u × Bδ~u(~u) is in Aε.
The following collection of open sets cover B≤1(0U) in U

{Bδ~u(~u)|~u ∈ B≤1(0U)}.

By hypothesis B≤1(0U) is compact. Hence there exists a finite subset F ⊂ B≤1(0U) such that the
following collection of open sets also covers B≤1(0U),

{Bδ~u(~u)|~u ∈ F}.

So for every ~u′ ∈ B≤1(0U), there exists ~u ∈ F such that ~u′ ∈ Bδ~u(~u). Define Xε to be the finite
intersection

Xε = ∩~u∈FXε,~u.
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As a finite intersection of open sets, Xε is open. Since each of these open sets contains x0, also Xε

contains x0. And since Xε,~u×Bδ~u(~u) is in Aε, in particular Xε×{~u′} is in Aε, i.e., for every x ∈ Xε,
for every ~u′ ∈ B≤1(0U),

‖τx(~u′)− τx0(~u′)‖W < ε/2.

But this precisely says that for every x in the open neighborhood Xε of x0, ‖τx− τx0‖op ≤ ε/2 < ε.
This is precisely the definition of τ : X → L(U,W ) being continuous at x0. Since this holds for
every x0 in X, τ is continuous.

One can use the Hahn-Banach theorem to prove that the hypothesis of compactness of the closed
unit ball is essential in this proof. The desire to “weaken” this compactness hypothesis leads to
the “weak topology” on L(U,W ), which is the finest topology on L(U,W ) such that for every
topological space X and for every function τ : X → L(U,W ), τ is continuous if and only if the
associated function τ̃ : X ×U → W is continuous. At any rate, Lemma0.3 exactly applies when U
is finite dimensional.

Returning to the solution of the problem, there is undoubtedly a “coordinate-free” solution to this
problem. But it seems simplest to use coordinates. Let b = (~b1, . . . ,~bn) be an ordered basis for V .
This basis determines a linear isomorphism of vector spaces

eb : L(V, V )→ V n = (V × · · · × V ), eb(T ) = (T (~b1), . . . , T (~bn)).

Because all norms on a finite dimensional vector space are equivalent, this linear isomorphism
is an equivalence of normed vector spaces (in the sense of “equivalent norms” as above). Hence
differentiability of Det is equivalent to differentiability of the following function Det ◦ e−1b , i.e.,

Detb : V n → R, Det(T ) = Detb(T (~b1), . . . , T (~bn)).

The usual axioms for the determinant function presented in undergraduate linear algebra courses
are as follows.

(i) The function Detb is n-multilinear, i.e., for every k = 1, . . . , n, for every collection ak =
(~a1, . . . ,~ak−1,~ak+1, . . . ,~an) in V n−1, the function Detb,k,ak(~vk) := Detb(~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an)
is R-linear.

(ii) The function Detb is alternating, i.e., Detb(~v1, . . . , ~vn) equals 0 if there exist integers k, l with
1 ≤ k < l ≤ n such that ~vk equals ~vl.

(iii) The function Detb is “calibrated” in the sense that Detb(~b1, . . . ,~bn) equals 1.

For differentiability, Axiom (i) is particularly important.

By Theorem 3.8.2 on p. 154 of the textbook, Detb is continuously differentiable if and only
if for every k = 1, . . . , n and for every ak = (~a1, . . . ,~ak−1,~ak+1, . . . ,~an) in V n−1, the function
Detb,k,ak(~vk) := Detb(~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an) is differentiable and the associated function

dDetkb : V n → L(V, V ), (~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an) 7→ d(Detb,k,ak)~vk
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is continuous. By Axiom (i) above, the function Detb,k,ak is linear. Since V is a finite dimensional
vector space, this linear operator is automatically bounded. Thus by Lemma 0.1, the function
is differentiable and the derivative is simply d(Detb,k,ak)~vk = Detb,k,ak , which in particular is in-

dependent of the argument ~vk. Hence the function dDetkb factors through the (continuous) linear

projection V n → V n−1 sending (~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an) to ak. Thus dDetkb is continuous if
the associated function

Detkb : V n−1 → L(V, V ), ak 7→ Detkb,k,ak
is a continuous function. Again since V is finite dimensional, by Lemmas 0.2 and 0.3, the function
Detkb is continuous if and only if the following function is continuous

D̃etkb : V n−1 × V → V, (ak, ~vk) 7→ Detb,k,ak(vk) = Detb(~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an).

But up to the permutation

V n−1 × V → V n, (ak, ~vk) 7→ (~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an),

the function D̃etkb is precisely Detb, which is continuous (since it is a polynomial function, for
instance). Since for every k = 1, . . . , n, the function Detb,k,ak is differentiable and the deriva-

tive function dDetkb is continuous, by Theorem 3.8.2, p. 154, the function Detb is differentiable
(and the derivative is continuous). Moreover for each a = (~a1, . . . ,~an) ∈ V n, we have that
d(Detb)a(~v1, . . . , ~vk, . . . , ~vn) equals

n∑
k=1

d(Detb,k,ak)(~vk) =
n∑
k=1

Detb(~a1, . . . ,~ak−1, ~vk,~ak+1, . . . ,~an).

Now consider the special case that a equals b, i.e., (~b1, . . . ,~bn). For a vector ~v ∈ V , denote by
x1(~v), . . . , xn(~v) the unique real numbers such that

~v =
n∑
j=1

xj(~v)~bj,

i.e., (x1, . . . , xn) are the “coordinates with respect to ~b”, which then form the ordered basis of

L(V,R) which is “dual” to the ordered basis (~b1, . . . ,~bn) of V . Then for every k = 1, . . . , n, Axiom
(i) implies that

Detb(~b1, . . . ,~bk−1, ~vk,~bk+1, . . . ,~bn) =
n∑
j=1

xj(~vk)Detb(~b1, . . . ,~bk−1,~bj,~bk+1, . . . ,~bn).

By Axiom (ii), the term in the jth summand Detb(~b1, . . . ,~bk−1,~bj,~bk+1, . . . ,~bn) equals 0 unless
j equals k. So only the kth summand is nonzero. And for j = k, by Axiom (iii), the term

Detb(~b1, . . . ,~bk−1,~bk,~bk+1, . . . ,~bn) equals 1. Therefore the sum equals

Detb(~b1, . . . ,~bk−1, ~vk,~bk+1, . . . ,~bn) = xk(~vk).
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Substituting this into the formula for d(Detb)b gives

d(Detb)b(~v1, . . . , ~vn) = x1(~v1) + · · ·+ xn(~vn).

Now eb(IdV ) exactly equals (~b1, . . . ,~bn) = b. And for T in L(V, V ) with eb(T ) = (T (~b1), . . . , T (~bn)) =
(~v1, . . . , ~vn), the expression

x1(~v1) + · · ·+ xn(~vn) = x1(T (~b1)) + · · ·+ xn(T (~bn))

is precisely Tr(T ). Making these substitutions gives

dDetIdV (T ) = d(Detb)eb(IdV )(eb(T )) = Tr(T ).

As a final note, this one computation will allow us to compute dDetR for every R in L(V, V ).
Observe for every S ∈ L(V, V ) that the function

LS : L(V, V )→ L(V, V ), T 7→ S ◦ T

is a linear operator of a finite dimensional vector space, hence bounded. In fact, even in the infinite
dimensional case this is bounded with ‖LS‖op ≤ ‖S‖op – one of the axioms for a Banach algebra.
Thus by Lemma 0.1, LS is continuously differentiable with constant derivative function equal to
LS. Thus by the chain rule, the composition Det ◦ LS is also continuously differentiable with

d(Det ◦ LS)R = d(Det)LS(R) ◦ d(LS)R = d(Det)SR ◦ LS.

In particular, when R is invertible and when S = R−1, this gives

d(Det ◦ LS)R(T ) = d(Det)IdV (ST ) = Tr(ST ).

On the other hand, since Det is multiplicative,

(Det ◦ LS)(T ) = Det(ST ) = Det(S)Det(T ) = (Det(S)Det)(T ).

And by linearity, d(Det(S)Det) = Det(S)dDet. Putting the pieces together,

Det(S)dDetR(T ) = Tr(ST ).

Since R is invertible, Det(S) is invertible with inverse Det(R). So this finally gives

dDetR(T ) = Tr([Det(R)R−1]T ).

By Cramer’s Rule, Det(R)R−1 is the cofactor transformation Rcof whose entries are defined and
continuous functions of R (even polynomial functions of the entries of R) for all R, not only when
R invertible. So we conclude that for all invertible R in L(V, V ),

dDetR = Tr ◦ LRcof .
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Since both sides are continuous functions L(V, V )→ L(L(V, V ),R), the subset of L(V, V ) on which
these functions are equal is closed. Since it contains the dense open set of invertible operators R,
this closed set is all of L(V, V ). Therefore for every R in L(V, V ),

dDetR(T ) = Tr(RcofT ).

Solution to (4)

Solution to (a) The proof that there is at most one fixed point is exactly as in the case of a
contraction. Let x1 and x2 be fixed points, i.e., T (xi) = xi for i = 1, 2. Then dX(T (x1), T (x2))
equals dX(x1, x2). But if x1 6= x2, then by definition of an almost contraction, dX(T (x1), T (x2)) is
strictly less than dX(x1, x2). Therefore x1 must equal x2.

Since dX takes on only nonnegative values, for a fixed point x of X, the value dX(x, T (x)) =
dX(x, x) = 0 is a minimum value of f(x) = dX(x, T (x)). Conversely, let x be an element of X such
that f(x) is a minimum value of f . If T (x) does not equal x, then since T is an almost contraction
we have d(T (T (x)), T (x)) is strictly less than d(T (x), x). But d(T (T (x)), T (x)) equals f(T (x)). So
f(T (x)) < f(x), contradicting that f(x) is a minimum value of f . Therefore T (x) equals x, i.e., x
is a fixed point.

Solution to (b) Since dX : X × X → R and T : X → X are continuous, also the function
f(x) = dX(x, T (x)) is a continuous function f : X → R. If X is compact, then also f(X) is a
compact subset of R. By the Heine-Borel theorem, f(X) is closed and bounded. In particular,
by the least upper bound property (or rather the greatest lower bound property), f(X) contains
its infimum. Therefore there exists x ∈ X such that f(x) is the infimum of f(X), i.e., f(x) is a
minimum value of f . By (a), x is a fixed point of T .

Solution to (5) There are many such examples. For instance, begin with a function

gZ : Z→ (−1/2, 1/2)

which is strictly decreasing, e.g., gZ(n) = −(1/2)(1− (1/2)n) for n ≥ 0 and gZ(−n) = +(1/2)(1−
(1/2)n) for −n ≤ 0. Then for every integer n, we have −1 < gZ(n + 1) − gZ(n) < 1, 0 <
1 + gZ(n+ 1)− gZ(n) < 1, and gZ(n) > −1. Then the function

fZ : Z→ R, fZ(n) = n+ 2 + gZ(n)

is stricly increasing and is an almost contraction in the sense that

fZ(n+ 1)− fZ(n) = 1 + gZ(n+ 1)− gZ(n) < 1 = (n+ 1)− n.

And also fZ(n) = n+ 2 + hZ(n) > n+ 2 + (−1) = n+ 1. Now extend fZ to the unique continuous
function f : R→ R which is linear on each interval [n, n+ 1], i.e.,

f(n+ t) = fZ(n) + t(fZ(n+ 1)− fZ(n))

for 0 ≤ t ≤ 1. Since fZ is strictly increasing, so is f . Since fZ is an almost contraction, so is f .
Finally, for every integer n and for every t with 0 ≤ t ≤ 1, f(n+ t) ≥ f(n) = fZ(n) > n+1 > n+ t.
Thus n+ t is not a fixed point of f .
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