MAT 544 Real Analysis 1 Jason Starr
Stony Brook University Fall 2011
Problem Set 1, Due Thurs. 09/08/2011

MAT 544 Problem Set 1 Solutions

Problems.

Let (X,dx) and (Y, dy) be metric spaces. Define a function
dxxy 1 (X XY)x (X xY)—=R

by dxxy (21, 91), (22, 92)) = dx (1, 22) + dy (y1,2)-
(a) Prove that this is a metric space.

(b) Denote by mx : X xY — X and my : X XY — Y the two projections. Prove that these
functions are continuous, in fact even Lipschitz (hence uniformly continuous).

(c) If X and Y are each complete metric spaces, prove that also X x Y (with the above metric) is
a complete metric space.

(d) Let (Z,dz) be a metric space and let (fx : Z — X, fy : Z — Y) be a pair of continuous
functions. Prove that there exists a unique continuous function f : Z — X x Y such that fx equals
fomx and fy equals f omy.

(e) Give an example of metric spaces X and Y and a metric d on X x Y which is different from
dxxy and which still satisfies the property from part (d). Conclude that this property does not
characterize dxxy (however, it does characterize the topology induced by this metric).

Problem 2.| Let (X, dx) be a metric space. Give X x X the metric from [Problem 1| Prove that

the function dx : X x X — R is Lipschitz for this metric.
Problem 3.| For a metric space (X, dx), an element x of X, and a real number r > 0, the closed
ball is sometimes defined to be

Bgr(x) = {ml S X|dx<l’,$/) < T}a
i.e., one uses “less than or equal to” rather than “less than” as in the definition of the open unit
ball.

(a) For r > 0, prove that the closure of the open unit ball B,(x) is contained in the closed unit
ball Bo, (z).
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(b) Give an example of a subset S of R? (with the usual Euclidean metric), an element z of S and
a real number r > 0, such that for the subspace metric on S, the closure of B,(x) in S is strictly
contained in B<,(x).

Problem 4. Define sequence of integers (a,)n>o and (b,)n,>0 by the recursive relation ay = 2,
by = 1 and for every n > 0,

Gpy1 = ai + 2b721, bni1 = 2a,b,.

Prove that every b, # 0 so that (a,/by,)n>0 is a well-defined sequence in Q, prove that this sequence
is Cauchy, and prove that this sequence does not have a limit. Thus the Archimedean ordered field
Q is not complete.

Problem 5. This is Exercise 4.3.14 of Loomis-Sternberg. Let (X,dx), (Y,dy) and (Z,dz) be
metric spaces. Define the metric dxxy on X x Y as in[Problem 1] Let g : X XY — Z be a
function such that for every x € X the function

9 1Y = Z, yr glz,y)
is continuous and for every y € Y the function
Gy X = Z, x> g(x,y)

is continuous uniformly over y, i.e., for every xy in X and for every e > 0, there exists 6 > 0 such
that

dx (20, 7) <6 = dz(9(20,y), 9(z,y)) <€
for all values y € Y simultaneously. Prove that g is continuous.

Solutions to Problems.
Solution to |(1)]

Solution to We must verify the three axioms: positive definiteness, symmetry and the triangle
inequality. Let (z1,y1), (z2,92) € X X Y be elements. Since X is positive, dx(x1,2z2) > 0. Since YV’
is positive, dy (y1,y2) > 0. Thus dxxy ((x1,41), (22, y2)) is the sum of two nonnegative real numbers,
dx(x1,22) + dy(y1,y2). Therefore the sum is nonnegative. Moreover, the sum of two nonnegative
numbers equals 0 if and only if both summands equal 0. Therefore dx«y ((z1, 1), (z2,¥2)) equals
0 if and only if both dx(z1,22) = 0 and dy (y1,y2) = 0. Since dx and dy are positive definite, this
holds if and only if 1 = x9 and y; = ys, i.e., if and only if (z1,y1) = (29, y2). Therefore dxyy is
positive definite.

Next, since dx and dy are symmetric, dy(xs, 1) = dx(x1,z2) and dy (y2,41) = dy (y1,y2). There-
fore we also have for the sum,

dx(xg, 1) + dy (Yo, y1) = dx (21, x2) + dy (y1, y2).

In other words, dx«y ((x2,92), (x1,y1)) = dxxy ((x1,91), (x2,y2)). Therefore dy«y is symmetric.
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Finally, let (z3,y3) € X X Y be a third element. Since dx and dy satisfy the triangle inequality,
we have both

dx (z1,23) < dx (w1, 22) + dx (72, 23), dy(y1,y3) < dy(y1,92) + dy (Y2, y3).

Therefore, taking the sum gives

dx (w1, 23)+dy (y1,y3) < (dx (21, 22) + dx (22, 23))+(dy (y1,y3) < dy (Y1, y2) + dy (Y2, y3)) = (dx (21, 22) + dy (y;

where we have used associativity of addition. In other words,

dxxy (21,91), (23,93)) < dxxy (21, 91), (T2, 42)) + dxxy (T2, 92), (73, 93))-

Therefore dx«y also satisfies the triangle inequality. Since it is positive definite, symmetric and
satisfies the triangle inequality, dxy is a metric function.

Solution to |(1b)| As above, let (z1,y;) and (z2,ys) be elements in X x Y. Then mx(x;,y;) equals
x; for i = 1,2. Therefore, dx (mx (1, 1), Tx (T2, y2)) equals dx (x1, z2). Since dy is positive definite,
0 < dy(y1,y2) so that

dx(x1,x2) < dx(x1,22) + dy(y1,y2) = dxxy ((z1,11), (x2, y2)).

Putting the pieces together,

dx (mx (21, 91), 7x (T2, ¥2)) < dxxy ((21,91), (2, 92))-

Therefore 7y is Lipschitz with Lipschitz constant 1. By an exactly similar argument, also 7y is
Lipschitz with Lipschitz constant 1.

Solution to @ Let ((n, Yn) )nez-, be a Cauchy sequence in X xY'. Since mx and my are uniformly
continuous by |(b)] both (z,)nez., is Cauchy in X and (y,)nez., is Cauchy in Y. Since X and Y’
are each complete, both sequences converge in their respective metric spaces. Call the limits x,
resp. Y- Lhen for every real € > 0, there exist integers Nx > 0, respectively Ny > 0, such that for
every integer n > Nx, resp. n > Ny, we have dx (7, Ts) < €/2, resp. dy (Yn, Yoo) < €/2. Setting
N = max(Ny, Ny), then for every integer n > N, we have

€ €
dXXY((xn)yn>7 (x007yoo>> = dX(xna xoo) + dY(yna yoo) < 5 + 5 = €.

Therefore the sequence (@, Yn))nez-, converges to (oo, Yso) in X x Y. Since every Cauchy sequence
converges, X X Y is complete.

Solution to First of all, there exists a unique function f : Z7 — X X Y such that both
mx o f = fx and my o f = fy, namely f(z) = (fx(2), fy(2)). So the problem is to prove that f
is continuous. Let € > 0 be a real number, and let z be an element in Z. Since fx is continuous
there exists a real number dx > 0 such that dz(z,2') < dx implies dx(fx(z), fx(2")) < €/2.
Similarly, since fy is continuous there exists a real number dy > 0 such that dz(z, 2’) < dy implies
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dy (fy(z), fy(z")) < €/2. Denote § = min(dx,dy ), which is still a positive real number. Then
dz(z,2") < ¢ implies that

Ay (F(2), £(2)) = dx(fx(2), Fx () +dv (e (2), () < 5 + 5 =

Thus also f is continuous. In fact this argument also clearly implies that if fx and fy are both
uniformly continuous (so that dx and dy depend only on €, not on z), then so is f. And if fx, resp.
fy, is Kx-Lipschitz, resp. Ky-Lipschitz, then also f is K-Lipschitz for K = Kx + Ky.

Solution to |(1e)| For any positive real number ¢, the function (cdxxy)((z1,v1), (x2,92)) = ¢ -
dxxy((x1,71), (T2, y2)) is another metric which satisfies @ For a less trivial example, for X =
Y = R with the usual metric, the Euclidean metric on X x Y = R? satisfies @

Solution to Let (z1,y1) and (x2,y2) be elements in X x X. By the triangle inequality, we
have

dx (29, y2) < dx (w2, 21) + dx(z1,91) + dx (Y1, Y2)-
Using symmetry of dy, this says that

dx(z2,y2) —dx(z1,y1) < dx(z1,22) + dx(y1, y2)-

By permuting x; with x5 and y; with 9, the same argument also implies that

dx(21,91) — dx (22, y2) < dx (w2, 1) + dx (Y2, y1) = dx (21, 22) + dx (y1,92)-

Therefore we have,

|dX($Qay2) - dx(931>y1)| < dx(l"l,ﬂﬁz) + dX(yl7y2) = dXxX((xlayl)a (9527y2))-

Therefore dx is Lipschitz with Lipschitz constant 1.

Solution to Define the function dx, : X — R by dx.(2") := dx(x,2’). Observe that the
open unit ball B..(z) is simply the inverse image of the open interval (—r,r) under the continuous
function dx .. Similarly, the closed unit ball is the inverse image of the closed unit interval [—r, r].
Since dx is continuous by [Problem 2| also dx, is continuous. Therefore the inverse image of
the closed subset [—r,7] of R is a closed subset of X, i.e., B<,(x) is a closed subset of X. And it
contains the open unit ball B_,(z). Since B<,.(z) is one closed set containing B.,(z), it contains
the smallest closed set containing B.,(x), i.e., it contains the closure of B.,.(x).

On the other hand, the closed unit ball need not equal the closure of the open unit ball. For
instance, for any metric space X and any positive real number ¢, define a new metric function on
X by

di (., y) = min(dx (z,y), €).
It is straightforward to verify that d’ is still a metric function. For every real number r < €, the open
ball B, (z) for this new metric equals the open ball B.,(z) for the original metric. In particular,
both metrics give the same convergent sequences, and thus the same topology. So the closure of
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B’ (z) equals the closure of B..(z). And by part (a), this is contained in B<.(z). On the other
hand, the closed ball BZ (z) is the entire metric space X. So if B<.(x) is properly contained in X,
e.g., if X is unbounded as is X = R, then BL () strictly contains the closure of B ().

For a similar example with S a subset of R?, consider the complement S of the open annulus
A= {(z,y) € R*1 < 2% +y* < 4}. Then B-»(0,0) N S equals B<;(0,0), which is already closed.
Hence the closure equals B<1(0,0). On the other hand, B<2(0,0) NS contains the circle of radius
2 centered at (0,0). So it strictly contains the closure of B.2(0,0) N S.

Solution to @ The solution to this exercise was discussed in lecture.

Solution to Let € be a positive real number. Let (zq,yo) be an element of X x Y. Since
gz, © Y — Z is continuous, there exists a positive real dy such that dy(yo,y1) < dy implies
that dz(g(zo,%0), 9(%0,y1)) < €/2. And since g,, : X — Z is equicontinuous at z, there ex-
ists a positive real dx such that for all y; € Y simultaneously, dx(z¢,z;) < Jdx implies that
dz(g(xo,y1), g(x1,y1)) < €/2. Therefore, by the triangle inequality, for all (x1, y;) with dx (2o, 1) <
dx and with dy (yo,y1) < dy, we have

€ €
dz(g(x0,Y0), 9(x1, 1)) < dz(g(x0,Y0), 9(x0,11)) + dz(9(w0, Y1), g(x1,91)) < st =€

Finally, choosing § = min(dx, dy), then dx.y ((zo,%0), (z1,91)) < 0 implies that both dx(z¢, z1) <
dx and dy (Yo, y1) < dy, and thus dz(g(zo, ), 9(x1,91)) < €. So g is continuous at (xg, yo).
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