Test Canvas: MAT 131 Midterm 1 Online Portion (**Webcam**) - Requires Respondus LockDown Browser

The Test Canvas lets you add, edit, and reorder questions, as well as review a test. More Help

You can edit, delete, or change the point values of test questions on this page. If necessary, test attempts will be regraded after you submit your changes.

```
Description MAT 131 Midterm 1 Online Portion
Instructions The following 10 questions are multiple choice. Please choose one answer for each question. Each
    question is worth }1\mathrm{ point, for a total of }10\mathrm{ possible points on this online exam (together with the 50 possible
    points on the written exam, for a total of 60 possible points for the written and online exams combined).
Total 10
Questions
Total Points }1
Number of 190
Attempts
```

Select: All None Select by Type: - Question Type - V
Points \square Update and Regrade \quad Hide Question Details

1. Multiple Choice: Problem 1: For every invertible function

 with do...| Question | For every invertible function with domain (a, b) and with range (c, d), the inverse function |
| :--- | :--- |
| of that function has the following domain and range. | |
| Answer | Domain (c, d) and range (a, b). |
| Domain (a, b) and range (c, d). | |

The largest interval on which any mathematical expression for the inverse function is defined.

The largest subset of the range on which the function is either increasing or decreasing

Points: 1
2. Multiple Choice: Problem 2: The Horizontal Line Test says that a ...

Question The Horizontal Line Test says that a function defined on a subset of the real numbers is an invertible function if and only if the following holds.

Answer
Every horizontal line intersects the graph of the function in at most one point.

Every horizontal line intersects the graph in at least one point.

The function is an increasing function or the function is a decreasing function.

The horizontal line $\$ y=0 \$$ intersects the function in no points.

3. Multiple Choice: Problem 3: According to the Intermediate

 Value T...Question According to the Intermediate Value Theorem, the function $f(x)=x^{5}-\cos (\pi x / 2)$ has
the following property.
Answer At least one zero in the interval $(-1,+1)$.
No zeroes in the real line.
At least one zero in the interval $(+1,+\infty)$.
At least one zero in the interval $(-\infty,-1)$.

Question The horizontal translation of the parabola $y=x^{2}$ by 3 units in the positive x-direction is the graph of the following function.

Answer

$$
y=x^{2}-6 x+9
$$

$$
y=(x+3)^{2}
$$

$$
y=x^{2}+3
$$

$$
y=(x / 3)^{2}
$$

5. Multiple Choice: Problem 5: For a function defined on an interval...

Question For a function $f(x)$ defined on an interval (a, b), for a real number $x=c$ in that interval, the limit as X approaches C of the function $f(x)$ equals a real number L if and only if the following condition holds.

Answer
Both $\lim f(x)$ and $\lim f(x)$ are defined and both equal L. $x \rightarrow c^{-} \quad x \rightarrow c^{+}$

There are real numbers X that are arbitrarily close to $X=C$ such that the corresponding values $f(x)$ are arbitrarily close to L.

The graph of $f(x)$ satisfies the Horizontal Line Test for all values of x that are sufficiently close to $X=C$.

After redefining $f(c)$ to equal L, the function $f(x)$ is continuous on a sufficiently small open interval containing $x=c$.

6. Multiple Choice: Problem 6: For every positive integer , the

 limi...Question For every positive integer n, the limit $\lim _{x \rightarrow 1} \frac{x^{n}-1}{x-1}$ has the following property.

Answer
The limit equals n.

The limit is undefined.

The limit equals $n x^{n-1}$.

The limit can only be computed using L'Hopital's Rule (which we have not yet covered).

Points: 1

7. Multiple Choice: Problem 7: If an invertible function defined

on

Question If an invertible function defined on an interval (a, b) is continuous, then the inverse function has the following property.

Answer
The inverse function is also continuous.

The inverse function is sometimes not continuous, but it always satisfies the Vertical Line Test.

The inverse function is sometimes not continuous, but it always satisfies the Horizontal Line Test.

The inverse function is either an increasing function or it is a decreasing function, but it sometimes fails to satisfy the Intermediate Value Theorem.

8. Multiple Choice: Problem 8: A function defined on an open interva...

 following property.Answer It is an increasing function and satisfies the Intermediate Value Theorem. It is an increasing function that satisfies the Horizontal Line Test.

It is an increasing function such that at every point of the open interval both of the onesided limits are defined.

9. Multiple Choice: Problem 9: For real numbers and , for every incr...

 the following property holds.Answer
For every point of the interval, neither one-sided limit equals $+\infty$ or $-\infty$ (i.e., neither one-sided limit fails to be equal to a real number for the precise reason that the limit equals $+\infty$ or $-\infty$).

The one-sided limit can equal $+\infty$ for at most one point of the open interval (and there are examples where this happens).

The one-sided limit can equal $-\infty$ for at most one point of the open interval (and there are examples where this happens).

The only discontinuities that can occur are infinite discontinuities.

10. Multiple Choice: Problem 10: For every polynomial function that is...

Question For every polynomial function $g(x)$ that is not identically zero, and for every polynomial function $h(x)$, the function $f(x)=\frac{h(x)}{g(x)}$ has the following property.

Answer
It is defined, it is continuous, and it is differentiable at every real number $x=C$ such that $g(c)$ is nonzero.

It is defined, it is continuous, and it is differentiable at the real number $X=C$ so long as the rational function obtained by factoring the numerator by all factors of the form $(x-c)^{n}$ and factoring the denominator by all factors of the form $(x-c)^{m}$ is defined, continuous, and differentiable at $X=C$.

It is defined, it is continuous, and it is differentiable at $X=C$ if and only if the highestdegree factor $(x-c)^{n}$ of the numerator has degree at least as positive as the highestdegree factor $(x-c)^{m}$ of the denominator.

The one-sided limits of $f(x)$ at $x=c$ are either $+\infty$ or $-\infty$ if $g(c)$ equals 0 .

Select: All None Select by Type: - Question Type - V
Points \quad Update and Regrade \quad Hide Question Details

