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1. Rational Points of Rationally Connected Varieties

Do polynomial equations with coefficients in a field K have solutions in K, and if so, how many?
Already for two linear polynomials in two variables, i.e., two intersecting lines in the plane, the
answer becomes uniform only if we work with projective varieties, or equivalently, homogeneous
polynomials. For K algebraically closed, this is settled by Hilbert’s Nullstellensatz, but it remains
a basic problem for non-algebraically closed fields such as Q, Fp(t), etc. Many number theorists
focus on nonexistence, or at least scarcity of rational points, and with good reason: it is useless
to search for solutions if they provably do not exist. However, my work focuses on existence and
density results under simple, testable geometric hypotheses that are special, yet ubiquitous. The
following theorem was conjectured by Kollár-Miyaoka-Mori and generalizes the classical theorem of
Tsen that a homogeneous polynomial with coefficients in K = C(t) has a rational point if the degree
is less than the number of variables.

Theorem 1.1 (Graber-Harris-Starr, [22]). A projective algebraic variety over K = C(t) has K-
rational points if for a general choice of t ∈ C the specialization is rationally connected, and then
the K-points are Zariski dense in the K-points.

Classically, a system of homogeneous equations is unirational if there is a “map” providing the loca-
tion of each solution, i.e., all general solutions arise from a single multivariable polynomial function
whose output for a general choice of inputs is a solution of the system. Because of homogeneity, we
can use polynomials, but classically the coordinates of these maps were rational functions, i.e., frac-
tions of polynomial functions in some fraction field C(t1, . . . , tn) of a polynomial ring C[t1, . . . , tn].
Anybody who uses a GPS knows that often a route from origin to destination is more convenient
than a map. Here, a route, or rational curve is the set of outputs of a single variable polynomial
function whose outputs are solutions of the system. A projective algebraic variety is rationally con-
nected if every pair of points on the variety is contained in a rational curve, i.e., there is always a
route from origin to destination. Rational connectedness is often easy to check.

This theorem is robust, there is an extension to positive characteristic by de Jong and myself, [12,
de Jong-Starr], and it has numerous applications: the proof of rational connectedness of log-Q-Fano
manifolds by Qi Zhang, [50], the proof of Shokurov’s Conjecture by Hacon-McKernan, [24], the
proof by Hassett-Tschinkel of weak approximation at places of good reduction, [30], the proof by
Kebekus-Solá Conde-Toma of the Bogomolov-McQuillan theorem, [32], etc. Moreover, there is a
converse theorem by Graber, Harris, Mazur and myself which we used to settle (in the negative) an
old problem posed by Serre to Grothendieck (an analogous positive result over finite fields was first
proved by Mazur in 1972, [39], and recently generalized by Berthelot-Esnault-Rülling, [4]).

Theorem 1.2 (Graber-Harris-Mazur-Starr, [21]). For every family X of varieties over a quasi-
projective parameter variety M , the restriction of the family over every curve in M has a rational
section if and only if there is a subfamily Y ⊂ X whose fiber over a general point of M is rationally
connected. In particular, there exists a smooth projective variety X over K = C(t) with no K-point
yet with vanishing hq(X,OX) for every q > 0.
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In fact, our X is an Enriques surface. After Graber, Harris, Mazur and I proved this “Converse
Theorem”, Lafon found an example of an Enriques surface over C ((t)) without any local point, [35].
Following this, Esnault asked about the existence of an Enriques surface with local points and with
“index 1”, i.e., the gcd of the degrees of all closed points equals 1, yet without K-rational points. By
elaborating the technique of the “Converse Theorem”, I constructed such Enriques surfaces. Thus,
at present there is no conjecture about sufficient conditions to guarantee existence of a rational point
on an O-acyclic variety such as an Enriques surface (it seems that rationally connected varieties are
precisely the correct family of varieties for such results).

Theorem 1.3 (Starr, [47]). There exists an Enriques surface over K = C(t) that has local points
everywhere, that has index 1, and yet the surface has no K-rational point.

In a similar vein, for Abelian varieties, Graber and I sharpened the “Converse Theorem”, demon-
strating that sections of Abelian varieties are a “one-dimensional phenomenon”.

Theorem 1.4 (Graber-Starr, [23]). For every smooth, quasi-projective complex variety M , there is
an explicit family of curves on M (the “triangle curves”), such that for every normal, projective vari-
ety X and for every surjective morphism X →M whose geometric generic fiber is an Abelian variety,
for a very general curve C ⊂ M in this family, the restriction Sections(X/M) → Sections(XC/C)
is an isomorphism.

2. Rationally Simply Connected Varieties and Rational Points

Despite the many answers that flow from the Graber-Harris-Starr theorem, it raises just as many
new questions. In particular, what is the analogue for other fields such as C(s, t) or Fp(t)? We have
one answer that settles the geometric case of a conjecture of Serre, formulated in 1963, [6]. Existence
of points depends on the vanishing of the elementary obstruction of Colliot-Thélène and Sansuc,
which has a simple description in the case of Picard rank one. A projective variety together with a
specified embedding in projective space, X ⊂ PN

K , has vanishing “elementary obstruction in Picard

rank one” if, even after extending from K to the algebraic closure K, every projective embedding
of X is obtained from this one by Veronese re-embedding followed by linear projection.

Theorem 2.1 (de Jong - He - Starr, [11]). For K = C(s, t), or more generally the function field
of a complex surface, for an embedded projective variety with vanishing elementary obstruction in
Picard rank one, if the base change to K is rationally simply connected and if the codimension 1
specializations are irreducible, then there exists a K-rational point.

A codimension 1 specialization is a substitution of the parameters such as t = s that reduces from
two free parameters to one parameter, and irreducibility means that, after removing the singular
set from the specialized subvariety of PN , the smooth locus is still connected. Since existence of
rational sections can be checked after specialization, it suffices to check this transversality condition
for a sufficiently general deformation, and this is usually easy. The condition on rational simple
connectedness roughly means that the parameter spaces of rational curves containing two general
points of the variety are themselves rationally connected. This is analogous to simple connectedness
of a manifold, i.e., path connectedness of the loop spaces. In particular, a complete intersection in
Pn of sufficiently general hypersurfaces of degrees d1, . . . , dc is rationally simply connected if and
only if d21 + · · ·+ d2c ≤ n, [16, DeLand]. This inequality means that not only is the first Chern class
of the tangent bundle positive, i.e., d ≤ n as in Tsen’s theorem, but also we have positivity of the
second graded piece of the Chern character, ch2 = (c1(TX)2 − 2c2(TX))/2.

One special case of the theorem settles the split case of Serre’s 1963 “Conjecture II” for function fields
of complex surfaces, [43, Section III.3], the last unproved case (following tremendous earlier results
by Merkurjev and Suslin, Bayer-Fluckiger and Parimala, Chernousov, Gille, and Colliot-Thélène).
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Corollary 2.2 (Geometric case of Serre’s “Conjecture II”, de Jong – He – Starr, [11]). For K the
function field of a surface over C, or over any algebraically closed field, for every semisimple, simply
connected algebraic group over K, every principal homogeneous space for this group over K has a
K-rational point.

One key step is an argument lifting from positive characteristic, e.g., Fp = Z/pZ, to characteristic
0, e.g., C. Combining this “discriminant avoidance” technique with the theorem above and seminal
work of Esnault, [17] and [18], and Esnault-Xu, [19], on rational points of rationally connected
varieties defined over finite fields, Chenyang Xu and I proved the following.

Theorem 2.3 (Starr-Xu, in preparation). A projective variety over K = Fp(t) or any global function
field has a K-rational point if it is the specialization from characteristic 0 of a rationally simply
connected variety with vanishing Picard rank one elementary obstruction.

In particular, this reproves for these fields the split case of Serre’s Conjecture II (the full conjecture
for Fp(t) was proved by Harder, [26]), the Brauer-Hasse-Noether theorem, the Tsen-Lang theorem,
[49], [36], but also it gives new theorems for complete intersections in Grassmannian varieties when
combined with the PhD thesis of my former advisee Robert Findley, [20].

Although it is tempting to seek an analogue over number fields, it has been known since Terjanian’s
disproof of the Artin conjecture, [48], that a theorem as above cannot hold for all number fields.
However, Ax and Kochen did prove an analogue of Artin’s conjecture for “most” local fields, [1].
This is tied to Ax’s theory of PAC fields as arise in the proof of the Ax-Kochen theorem. I have
generalized the Graber-Harris-Starr theorem to PAC fields.

Theorem 2.4 (Starr, [46]). For every perfect PAC field K that contains the algebraic closure of its
prime subfield, for every specialization over K of a family of projective varieties over a DVR whose
geometric generic fiber is separably rationally connected, the variety has a K-point.

In characteristic 0 this was proved by a completely different method by Kollár and then Hogadi-Xu,
following Kollár’s proof of the characteristic 0 Ax conjecture, [33], [31]. Since in characteristic p the
theorem is also known for all subfields k of the algebraic closure of the prime field by work of Esnault
and Esnault-Xu,[17], [18], [19], I am quite hopeful about the Ax conjecture in all characteristics.

3. Spaces of Rational Curves on Varieties

The spaces of rational curves on a rationally connected variety are algebro-geometric analogues of
path and loop spaces of a path-connected manifold. A key innovation was Kontsevich’s introduction
of his spaces of stable maps, [34], following earlier work of Gromov and Witten. These spaces,
together with the Behrend-Fantechi theory of virtual fundamental classes in algebraic geometry
based on perfect obstruction theories, [3], lead to a robust theory of Gromov-Witten invariants
in algebraic geometry. These are inspired by the classical enumerative problem of counting the
number of rational curves of a given homology class in a specified projective variety that intersect
given general linear spaces. Nonetheless, there are few cases where these Gromov-Witten invariants
are proved to agree with these enumerative curve counts, i.e., where the Gromov-Witten invariants
are enumerative. Following earlier work of Kontsevich when the target is a projective homogeneous
variety, [34], one of the first such results for inhomogeneous varieties was the following.

Theorem 3.1 (Harris-Roth-Starr, Coskun-Starr, [27], [10]). For every integer d ≤ (n + 1)/2, for
every sufficiently general hypersurface X ⊂ CPn of degree d, for every integer e ≥ 1, the Kontsevich
space M0,n(X, e) is irreducible and reduced of the expected dimension. In particular, the Gromov-
Witten invariants are enumerative.
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This is proved by induction on e, using a combination of the Bend-and-Break technique applied so
powerfully by Mori and a careful study of the boundary of the Kontsevich space. A better argument
for the base case was the key to the recent theorem of Eric Riedl and David Yang, who proved the
theorem above whenever d ≤ n− 2, [42]. This is the optimal range for the Kontsevich spaces to be
irreducible of the expected dimension.

It was hoped that the Kontsevich spaces of a rationally connected variety might be “almost” ra-
tionally connected, and, in particular, uniruled. This would provide an inductive strategy to prove
that every rationally connected variety is unirational. However, Kontsevich spaces need not be
uniruled, and now most experts believe that there exist non-unirational Fano manifolds – this is one
of the main open problems in this area. The first examples of non-uniruled Kontsevich spaces were
discovered in joint work with de Jong. The target Fano manifold is a smooth cubic hypersurface
X ⊂ CP4. This has a unique (3, 1)-Hodge class, up to scaling.

Theorem 3.2 (de Jong-Starr, [13]). If X is sufficiently general, then the (3, 1)-form induces a
holomorphic (2, 0)-form on every desingularization of M0,0(X, e), and the form is nondegenerate if

e is odd and ≥ 5, resp. has 1-dimensional kernel if e is even and ≥ 6. In particular, M0,0(X, e) is
non-uniruled, resp. is either non-uniruled or a conic bundle over a non-uniruled variety.

The (2, 0)-form discovered by de Jong and me has recently been studied further by Lehn-Lehn-
Sorger-van Straten who prove that, for e = 3, there is a smooth birational model of the rational
quotient of M0,0(X, 3) on which the (2, 0)-form is everywhere nondegenerate, i.e., the model is a
hyperkähler sixfold, [38]. By combining the de Jong-Starr method with a quite different method
of Roya Beheshti, Beheshti and I proved the following strong non-uniruledness result for spaces of
curves of small degree.

Theorem 3.3 (Beheshti-Starr, [2]). For every n ≥ 5, for every smooth, degree n hypersurface
X ⊂ Pn, every sufficiently general point of X is contained in no rational surface that is fibered by
rational curves that are (generically) smooth and (n− 1)-normal.

If in this theorem we could remove the hypothesis that the generic rational curve is smooth and
(n−1)-normal, then we would prove that these Fano hypersurfaces are not unirational, thus settling
the open problem of unirational of Fano manifolds.

In the positive direction, when ch2(TX) is non-negative, then the Kontsevich spaces often are ra-
tionally connected. The first such result was proved by Harris and me, [28, Harris-Starr], and the
optimal result, weak rational simple connectedness, was proved by de Jong and me. This is relevant
thanks to a weak approximation theorem of Hassett (generalized by me from the strong to the weak
form of rational simple connectedness), [29]: for every fibration over a curve, as in the Graber-
Harris-Starr theorem, if one fiber is weakly rationally simply connected, then every finite collection
of formal sections of the fibration (at disjoint points of the base curve) can be approximated to ar-
bitrary (contact) order by rational sections, i.e., weak approximation holds. The following theorem
was incorporated into the PhD thesis of one of de Jong’s advisee Matt DeLand, [16], who proved
an even stronger result that X is strongly rationally simply connected whenever ch2(TX) is strictly
positive.

Theorem 3.4 (de Jong-Starr, [14]). For every smooth complete intersection X ⊂ Pn, if ch2(TX) is
non-negative (excluding quadric surfaces), then for every e � 0, the Kontsevich space M0,2(X, e)
is rationally connected, and even the geometric generic fiber of the evaluation morphism to X ×X
is rationally connected (weak rational simple connectedness). In particular, these varieties satisfy
weak approximation.



RESEARCH STATEMENT 5

An analogous theorem has been proved for complete intersections in Grassmannian varieties in the
PhD thesis of my advisee, Robert Findley, [20]. His theorem shattered the naive guesses for complete
intersections in projective homogeneous varieties.

Question 3.5 (Starr). For a projective homogeneous space G/P of Picard number 1 such as an
orthogonal or Lagrangian Grassmannian, which smooth complete intersections X in G/P are ratio-
nally simply connected?

Although smooth complete intersections in Pn, in Grassmannians, and in projective homogeneous
spaces are special among all Fano manifold, de Jong and I do have a partial result in the general
case.

Theorem 3.6 (de Jong-Starr, [15]). Let X be a complex Fano manifold with ch2(TX) nef and with
pseudo-index ≥ 3. For every curve class β such that M0,0(X,β) is irreducible and parametrizes at

least one free rational curve, M0,0(X,β) is uniruled.

This is proved by an analysis for the Kontsevich spaces of the virtual canonical bundles associated
to the Behrend-Fantechi perfect obstruction theory, together with a “virtual” extension of Mori’s
fundamental Bend-and-Break approach to proving uniruledness. A key role is played by a special
birational contraction of the Kontsevich space discovered by Coskun, Harris and myself as part of
our general investigation of the ample and effective cones of the Kontsevich spaces with target Pn.

Theorem 3.7 (Coskun-Harris-Starr, [8], [7]). For every n ≥ 0, for every m ≥ 0, and for every
e ≥ 0, there is an explicit description of the nef cone, resp. basepointfree cone, ample cone, of
the Kontsevich space of M0,m(Pn, e) in terms of the same cone for the moduli space of M0,m+e/Se

of genus 0 curves with m labeled points and e unlabeled points. For every integer e = 1, . . . , n,
there is an explicit simplicial description of the effective cone of M0,0(Pn, e), and this equals the
pseudo-effective cone.

This has been generalized to Grassmannians by Coskun and me, [9, Coskun-Starr]. The Segal
Conjecture, sharpened by Cohen-Jones-Segal, [5], is an overarching conjecture in this area predicting
the topology of moduli spaces of rational curves on Fano manifolds. Although it is wide open, Zhiyu
Tian and I were recently able to establish the “Picard group” version for Fano manifolds of small
degree. Our proof combines the inductive technique of the Harris-Roth-Starr theorem, an analysis
I carried out for singularities of low degree Kontsevich spaces, and the technique from the Greer-Li-
Tian theorem on Picard groups of K3 surfaces (with the Coskun-Harris-Starr birational contraction
above playing the role of the “GIT moduli space” from Greer-Li-Tian).

Theorem 3.8 (Starr – Zhiyu Tian, in preparation). For d ≤ n−(1/2)−
√
n− (33/4), for X ⊂ CPn

a general degree d hypersurface, for every e ≥ 1, M0,0(X, e) is algebraically simply connected, and

the pullback map Pic(M0,0(CPn, e))Q → Pic(M0,0(X, e))Q is a bijection. This bijection preserves
the nef cone and the basepointfree cone.

4. Properties of Algebraic Stacks

In addition to Geometric Invariant Theory, the other modern approach to moduli spaces is the
theory of algebraic stacks developed by Deligne-Mumford and Michael Artin. Roughly, algebraic
stacks are the objects obtained by gluing together quotients of schemes by algebraic group actions
that are not necessarily free actions. Although many of the basic results for schemes were proved
for algebraic stacks, cf. [37, Laumon – Moret-Bailly] and [44, The Stacks Project], many questions
remain open. Olsson and I settled one of these problems in our work on Hilbert schemes and Quot
schemes of stacks.
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Theorem 4.1 (Olsson - Starr, [40]). For every proper Deligne-Mumford stack over a field, the Hilbert
functor and the Quot functor are represented by algebraic spaces that are separated and locally finitely
presented over the field. If the stack is a global quotient stack that has a projective coarse moduli
space, then the Hilbert and Quot functors (with specified Hilbert polynomial) are projective schemes
over the field.

More important than the theorem were the techniques we developed: a generalization of devissage
to stacks that leverages the Chow lemma of Laumon – Moret-Bailly, the notion of “generating
sheaves” as a tool to understand the Abelian category of coherent sheaves on a global quotient
stack, and a new notion of a “two-step obstruction theory”. In a subsequent preprint [45, Starr], I
investigated further the idea of a “two-step obstruction theory”, proving that Artin’s axioms for an
algebraic stack are compatible with compositions (roughly, the functorial formulation of a multi-step
obstruction theory). All of these notions were vastly generalized in separate works of Olsson [41],
who extended these results to Artin stacks with finite diagonal, and Hall - Rydh, [25], who proved
the ultimate generalization. Nonetheless, there are elementary open questions even for the simplest
case of a smooth, two-dimensional Deligne-Mumford stack X over C that is a global quotient stack,
that has quasi-projective coarse moduli space, and that is stacky at only finitely many points.

Question 4.2 (Li Li – Starr). For a stack X as above, what are the Betti numbers, resp. Hodge

numbers, classes in the Grothendieck group, of the associated smooth Hilbert schemes Hilb
P (t)
X/C

parameterizing 0-dimensional closed substacks with specified Hilbert polynomial P (t)?

Many special cases follow from work of Gusein-Zade, Luengo and Melle-Hernandez, but the general
case is open.
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[4] P. Berthelot, H. Esnault, and K. Rülling. Rational points over finite fields for regular models of algebraic varieties

of Hodge type ≥ 1. Ann. of Math. (2), 176(1):413–508, 2012.
[5] R. L. Cohen, J. D. S. Jones, and G. B. Segal. Stability for holomorphic spheres and Morse theory. In Geometry

and topology: Aarhus (1998), volume 258 of Contemp. Math., pages 87–106. Amer. Math. Soc., Providence, RI,
2000.

[6] P. Colmez and J.-P. Serre, editors. Correspondance Grothendieck-Serre. Documents Mathématiques (Paris) [Math-
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École Norm. Sup. (4), 38:671–692, 2005.
[22] T. Graber, J. Harris, and J. Starr. Families of rationally connected varieties. J. Amer. Math. Soc., 16(1):57–67

(electronic), 2003.
[23] T. Graber and J. M. Starr. Restriction of sections for families of abelian varieties. In A celebration of algebraic

geometry, volume 18 of Clay Math. Proc., pages 311–327. Amer. Math. Soc., Providence, RI, 2013.
[24] C. D. Hacon and J. Mckernan. On Shokurov’s rational connectedness conjecture. Duke Math. J., 138(1):119–136,

2007.
[25] J. Hall and D. Rydh. General Hilbert stacks and Quot schemes. Michigan Math. J., 64(2):335–347, 2015.
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