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Homework Policy. This problem set explores some transversality results for maps
from genus 0 curves to varieties.

Problems.

Problem 0.(Invertible Sheaves on Projective Bundles) Let (S,OS) and
(C,OC) be connected schemes. Let

(π, π#) : (C,OC)→ (S,OS)

be a flat, proper morphism such that every geometric fiber Cs is nonempty, reduced,
connected, and has vanishing Hq(Cs,OCs) for every q > 0.

(a) Prove that Rqπ∗OC is zero for every q > 0, and prove that the homomorphism
π# : OS → π∗OC is an isomorphism, compatibly with arbitrary base change of S.
For every invertible OS-module A, prove that R1π∗(π

∗A) is zero for every q > 0,
and the adjointness map L → π∗(π

∗A) is an isomorphism.

(b) Let L be an invertible sheaf on C whose restriction to a geometric fiber Cs
is isomorphic to the structure sheaf. After restricting S to an appropriate open
neighborhood of s, prove that Rqπ∗L is zero for every q > 0, and prove that
A := π∗L is an invertible OS-module, compatibly with arbitrary base change of
S. Prove that the adjointness map π∗(π∗L) → L is an isomorphism, so that L is
isomorphic to the inverse image of an invertible sheaf π∗A.

(c) Now consider the special case that S is a DVR, and assume that every geometric
fiber of π is irreducible. For every invertible sheaf L on C whose restriction to the
geometric generic fiber is isomorphic to the structure sheaf, prove that also the
restriction to the closed fiber is isomorphic to the structure sheaf.

(d) In the general case of a connected scheme S, but still assuming that every geo-
metric fiber of π is irreducible, use the previous parts to prove that if the restriction
of L to one geometric fiber is isomorphic to the structure sheaf, then the restriction
to every geometric fiber is isomorphic to the structure sheaf, and L is isomorphic
to the pullback of a unique invertible sheaf, namely A = π∗L. In summary, the
following sequence is exact,

0→ Pic(S)
π∗−→ Pic(C)→ Pic(Cs).

(e) In the special case that every geometric fiber of π is isomorphic to projective
space Pn, use the degree isomorphism,

deg : Pic(Pn)→ Z,

to rewrite the exact sequence as

0→ Pic(S)
π∗−→ Pic(C)→ Z.

Show that this sequence is right exact if and only if there exists an invertible sheaf L
on C whose restriction to every geometric fiber is an ample generator of the Picard
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group. Any such invertible sheaf is usually called a relative Serre twisting sheaf
and is denote by O(1).

(f) With hypotheses as above, prove that there exists a relative Serre twisting sheaf
if and only if there exist Zariski local sections of π at every point of S.

(g) Assuming that there exists a Serre twisting sheaf O(1), prove that for every
integer d ≥ −n, for every integer q > 0, the higher direct image Rqπ∗O(d) is zero

and π∗O(d) is a locally free sheaf of rank
(
n+d
n

)
compatibly with arbitrary base

change. For every integer d ≥ 0, prove that the multiplication map,

Symd
OS

(π∗O(1))→ π∗O(d),

is an isomorphism.

(h) Assumptions as above, prove that ωπ = π∗(
∧n+1
OS

(π∗O(1))) ⊗OS
O(−n − 1) is

a relative dualizing sheaf for π. Conclude that for every integer d ≥ −n, for every
integer q > 0, the higher direct image Rn−1π∗ωπ(−d) is zero and Rnπ∗ωπ(−d) is a

locally free sheaf of rank
(
n+d
n

)
compatibly with arbitrary base change.

Problem 1(Free and Very Free Rational Curves) For a smooth, morphism
X → S, for a field-valued point of S, say Spec k → S, and for an S-morphism
u : P1

k → X, recall that u is free, resp. very free, if u∗TX/S is globally generated,
resp. ample.

(a) Let d ≥ 1 be an integer. For an invertible sheaf O(e) on P1
k, prove that the

following are equivalent.

(i) There exists an effective divisor D ⊂ P1
k of degree d such that the following

morphism is surjective,

rD : H0(P1
k,O(e))→ H0(D,O(e)|D).

(ii) The cohomology H1(P1
k,O(e− d)) is zero.

(iii) The integer e is at least as positive as d− 1.
(iv) For every effective divisor D ⊂ P1

k of degree ≤ d, the morphism rD is
surjective.

Also discuss what happens when d equals 0.

(b) Let d ≥ 1 be an integer. For a locally free sheaf E of finite positive rank, prove
that the following are equivalent.

(i) There exists an effective divisor D ⊂ P1
k of degree d such that the following

morphism is surjective,

rD : H0(P1
k, E)→ H0(D, E|D).

(ii) The cohomology H1(P1
k, E(−d)) is zero.

(iii) The degree e of every invertible quotient of E is at least as positive as d−1.
(iv) For every effective divisor D ⊂ P1

k of degree ≤ d, the morphism rD is
surjective.

(c) As above, assume that X is smooth over S so that the fiber Xk = Spec k×SX
is smooth over Spec k. Let (M,OM ) be a finite type, integral k-scheme. Let

(π, π#) : (C,OC)→ (M,OM ),
2
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be a smooth, projective morphism whose geometric fibers are all isomorphic to P1.
Let

(u, u#) : (C,OC)→ (X,OX)

be a morphism of S-schemes. Let d ≥ 1 be an integer. Assume the induced
morphism of d-fold fiber products is dominant,

ud : C ×M · · · ×M C → Xk ×Spec k · · · ×Spec k Xk.

Also assume either that the characteristic of k is 0 or that there exists a subvariety
of the domain that is dominant and generically finite over the target with degree
prime to the characteristic. Conclude that there exists a dense open subset U ⊂M
such that every map um parameterized by a geometric point m of U has pullback
tangent bundle E = u∗mTX/S satisfying the equivalent conditions of the previous

part. (Hint. Apply generic smoothness to ud, and use the hypothesis on the
characteristic to prove that ud induces a separable extension of function fields.)
Such a morphism um is called (d − 1)-free. Thus, free maps are 0-free, and very
free maps are 1-free.

(d) Assume now that k is algebraically closed of Repeat the previous part with M
replaced by the finitely many irreducible components of M \U (with their reduced
structures). Combined with a Noetherian induction argument, conclude that there
exists a dense open subscheme V of Xd such that um is (d − 1)-free whenever
udm(Cdm) intersects V . In particular, for every curve class β, conclude that there
exists a dense open subscheme Xβ of X such that the morphism

ev :M0,1(X/S, β)→ X

is smooth over Xβ .

(e) Let C be a proper, connected, reduced, at-worst-nodal curve that is a tree of
genus 0 curves, i.e., every irreducible component is a smooth, genus 0 curve and the
arithmetic genus equals 0. A leaf of the tree is an irreducible component that con-
tains precisely one node of C. Use induction on the number of leaves to prove that
for every locally free OC-module E whose restriction to every component is globally
generated, for every smooth k-point p of C, the cohomology group H1(C, E(−p))
is zero, and the following restriction map is surjective,

rp : H0(C, E)→ E|p.

In fact, even for p a node of C, show that rp is surjective.

(f) As above, let C be a tree of smooth, genus 0 curves. Let u : C → X is a
k-morphism whose irreducible components are free maps. Apply the previous part
to E = u∗TX/S to conclude that for every smooth k-point p of C, the evaluation
morphism

ev :M0,1(X/S, β)→ X

is smooth at the point (C, p, u). By taking p to be a node (or by using some other
deformation theory), also conclude that there are deformation of (C, u) that smooth
the node, so that the open subset M0,0(X/S, β) is locally dense in M0,0(X/S, β)
near (C, u).

(g) A smooth, projective morphism X → S is convex if for every tree of smooth,
genus 0 curves C and for every S-morphism u : C → X, the pullback E = u∗TX is
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globally generated. In this case, prove that

ev :M0,1(X/S, β)→ X

is everywhere smooth, and the openM0,0(X/S, β) is everywhere dense inM0,1(X/S, β).

Nota bene. A smooth projective variety in characteristic 0 is convex if there
exists a transitive algebraic action of an algebraic group on the variety, i.e., if the
variety is a projective homogeneous variety. It is an open conjecture that every
rationally connected convex variety is a projective homogeneous variety.

Problem 2(Irreducibility of Spaces of Genus 0 Stable Maps to Projective
Space) Let k be an algebraically closed field of characteristic 0. Let r ≥ 1 be an
integer.

(a) Use the previous exercise to prove that for every integer e ≥ 1, the following
evaluation morphism is everywhere smooth,

ev :M0,1(Prk, e)→ Prk,

with relative dimension equal to the “expected dimension” (“naive dimension”,
“virtual dimension”),

me := 〈c1(TPr
k/k

), e[line]〉 − 2 = (r + 1)e− 2,

and M0,0(Prk, e) is dense in M0,0(Prk, e). Thus, also M0,1(Prk, e) is smooth of the
expected dimension

me + r = 〈c1(TPr
k/k

), e[line]〉+ (dim(Pr)− 3) + 1 = (r + 1)e+ r − 2.

(b) For every integer n ≥ 1, the morphism forgetting all marked points,

Φ0,n→0,e :M0,n(Prk, e)→M0,0(Prk, e)

is flat of relative dimension n with connected geometric fibers. Apply this when
n = 1 to conclude that also M0,0(Prk, e) is smooth of the expected dimension

me + r − 1. Next, apply this for arbitrary n to prove that every M0,n(Prk, e) has
pure dimension equal to the expected dimension me+r−1+n, and every irreducible
component dominates some irreducible component of M0,0(Prk, e).

(c) Use the model of Home
k(P1

k,Prk) as a dense Zariski open in the projective
space PHomk(H0(Prk,O(1)), H0(P1

k,O(e))) to prove thatM0,0(Prk, e) is irreducible,
and even unirational (in fact, Clemens proved that it is rational). Conclude that
also M0,0(Prk, e) is irreducible. Combined with the previous part, and using that

Φ0,n→0,e has irreducible fibers overM0,0(Pr, e), conclude that everyM0,n(Prk, e) is
irreducible of the expected dimension

〈c1(TPr
k/k

), e[line]〉+ dim(Prk)− 3 + n = (r + 1)e+ r − 3 + n.

Problem 3(Transversality in Kontsevich’s Recursion for Plane Curves
of Geometric Genus 0) Now let n equal 3e − 1, and consider the evaluation
morphism

ev0,n,e :M0,n(P2
k, e)→ (P2

k)n.

Both the domain and target are irreducible of dimension 2n = 2(3e− 1).

(a) Conclude that there exists a dense open subscheme Vn of (P2
k)n over which every

fiber of ev0,n,e is finite (possibly empty). Up to shrinking, arrange that the fibers
4
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are reduced. Since M0,n(P2
k, e) is a dense open in M0,n(P2

k, e), up to shrinking
further, arrange that the fiber over every point of Ve is contained in M0,n(P2

k, e).

(b) The claim, to be proved by induction on e, is that ev0,3e−1,e is generically
finite to its image; equivalently, that ev0,3e−1,e is dominant. When e equals 1 and
n equals 2, prove this directly. In fact, prove that V1 is simply the complement of
the diagonal in (P2

k)2 and every fiber is one reduced point (parameterizing a line).

(c) By way of induction, assume that ev0,3e−1,e is dominant. Denote by W ⊂ (P2
k)3

the Cartier divisor parameterizing ordered triples of collinear points. By considering
genus 0 stable maps of degree e+ 1 that are a union of a line and a degree e stable
map (attached at one intersection point of the line and the degree e plane curve),
prove that for every 1 ≤ λ < µ < µ ≤ 3(e+ 1)− 2, the image of

ev0,3(e+1)−1,e+1 :M0,3(e+1)−1(P2
k, e+ 1)→ (P2

k)3(e+1)−1

contains the inverse image Wλ,µ,ν of W under the projection,

prλ,µ,ν : (P2
k)3(e+1)−1 → (P2

k)3.

(d) Since M0,3(e+1)−1(P2
k, e + 1) is irreducible, the image of ev0,3(e+1)−1,e+1 is

irreducible. Since the image contains the
(

3e+1
3

)
distinct irreducible Cartier divisors

Wλ,µ,ν , conclude that the image is all of (P2
k)3(e+1)−1. Thus, conclude the claim by

induction on e.

(e) Finally, conclude that there exists a dense open subscheme Ve of (P2
k)3e−1 such

that the fiber of ev0,3e−1,e over every geometric point of Ve is reduced, is contained in
M0,3e−1(P2

k, e), and has length equal to Ne, the integer from Kontsevich’s recursion
formula.

Problem 4(Transversality for Low Degree Genus 0 Curves on General
Projective K3 Surfaces) Let k be an algebraically closed field of characteristic
0. This exercise works through a few low degree cases of Xi Chen’s Transversality
Theorem for genus 0 curves on projective K3 surfaces.

(a) Let Π ⊂ PH0(P2
k,O(3)) be a general pencil of plane curves. Denote by C ⊂

Π ×k P2
k the restriction over Π of the universal family of plane cubics. Prove that

the projection ν : C → P2
k is a projective, birational morphism that is a blowing

up at 9 reduced, k-points. In particular, since the Euler characteristic of P2
k equals

3, conclude that the Euler characteristic of C equals 3 + 9 = 12. Use excision for
Euler characteristics to conclude that there are 12 singular fibers of C → Π, each
of which is a nodal plane cubic with Euler characteristic 1 (smooth plane cubics
have Euler characteristic 0).

(b) Compute that the relative dualizing sheaf ωC/Π is isomorphic to the pullback

of OΠ(1). For a degree 2 morphism h : P1
k → Π that is branched over none of

the 12 discriminant points, conclude that the fiber product S = P1
k ×Π C is a

smooth surface with a fibration over P1
k have 2× 12 = 24 singular fibers (thus with

Euler characteristic equal to 24) and with relative dualizing sheaf isomorphic to
the pullback of OP1

k
(2). Since the dualizing sheaf of P1

k is isomorphic to OP1
k
(−2),

conclude that the dualizing sheaf of S is isomorphic to the structure sheaf of S.
Thus, S is a K3 surface. Therefore, there exist elliptic K3 surfaces with precisely
24 singular fibers.
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(c) Read about the Plücker identities among the number of flex lines, bitangents,
nodes, and cusps of a plane curve and its dual plane curve. Use these to prove that
a general plane sextic curve has precisely 28 bitangent lines. Conclude that for a
double cover of P2

k branched over a general plane sextic curve, there are precisely
2× 28 = 56 genus 0 curves that map 1-to-1 to a line in P2

k under the covering map.

(d) Prove that for every integer d ≥ 3, for a sufficiently general hypersurface Sd of
degree d in P3

k, there are finitely many tritangent 2-planes to Sd, each of which in-
tersects Sd in a plane curve with 3 ordinary double points and no other singularities.
For d ≥ 4, count parameters to prove that a general degree d surface Sd contains no
lines. Thus, for d equal to 4, conclude that a general quartic surface S4 has finitely
many hyperplane sections that are irreducible, nodal curves of geometric genus 0,
and it contains no hyperplane sections that are reducible, that are nonreduced, or
that have geometric genus 0 with worse singularities than 3 ordinary double points.

Problem 5(Explicit Kollár-Ruan Theorem.) Recall that for every uniruled
compact Kähler manifold (X, J, ω), the Kollár-Ruan Theorem proves that there
exists a homology class β ∈ H2(X,Z) of a free rational curve that has minimal
pairing against [ω], and for every such class β, the primary Gromov-Witten invari-
ant,

〈ηX , [ω] ^ [ω], . . . , [ω] ^ [ω]〉(X,J,ω)
0,m+1,β

is strictly positive, where ηX is the Poincaré dual of the homology class of a point
p (a generator of the top degree cohomology of X), and where m = mβ equals

the nonnegative integer 〈c1(T 1,0
(X,J)), β〉 − 2. In fact, if ω is the first Chern class of

a very ample divisor, then for a general m-tuple of pairs (H ′1, H
′′
1 ), . . . , (H ′m, H

′′
m),

this primary Gromov-Witten invariant is a positive integer equal to the number
of immersed, genus-0 stable maps with smooth domain of homology class β whose
image contains a specified general point p and whose image intersects each of the
m specified codimension 2 subvarieties H1 = H ′1 ∩H ′′1 , . . . ,Hm = H ′m ∩H ′′m. This
problem computes this explicitly in some cases.

(a) For X equal to projective space P(C⊕(n+1)) or a (“classical”, “An-type”,
“SLn+1”) Grassmannian, Grass(r,C⊕(n+1)), 1 ≤ r ≤ n, prove that for every sym-
plectic form, the homology class of the form is a positive real multiple of the first
Chern class [ω] of the Plücker line bundle (the pullback of O(1) with respect to the
Plücker embedding). Conclude that the the unique minimal free β is the homology
class of a line (with respect to the Plücker embedding).

(b) For X a Grassmannian, for [ω] the Plücker class, for β equal to the class of a
line, prove that for every p ∈ X, the fiber of the evaluation map is isomorphic to a
product of projective spaces P(C⊕r)× P(C⊕n+1−r) ∼= CPr−1 × CPn−r. Also prove
that the ample divisor class of lines that intersect H = H ′ ∩H ′′ is the sum of the
pullbacks via the two projections of the first Chern class of the respective Serre
twisting sheaves O(1) on CPr−1 and CPn−r. Deduce that the primary Gromov-
Witten invariant above equals the binomial coefficient

(
n−1
r−1

)
.

(c) ForX a product of two projective spaces, say CPn1×CPn2 , n1, n2 ≥ 1, show that
the cohomology classes of symplectic forms are all linear combinations with strictly
positive coefficients of the two classes A1 = pr∗1c1(O(1)) and A2 = pr∗2c1(O(1)), i.e.,
[ω] = a1A1 +a2A2 for a1, a2 > 0. If a1 > a2, resp. if a2 > a1, prove that the unique
minimal free homology class β equals β2 = [{p1} × L2], resp. β1 = [L1 × {p2}]
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where L1 ⊂ CPn1 , resp. L2 ⊂ CPn2 is a line. If a1 equals a2, prove that both β1

and β2 are minimal free classes.

(d) Prove that the fiber of the evaluation map for β1, resp. for β2, is a projective
space Pn1−1, resp. Pn2−1. Prove that the cohomology class of (a1A1 + a2A2) ^
(a1A1 + a2A2) on this fiber is a2

1c1(O(1)), resp. a2
2c1(O(1)). Thus, in cases that

a2 ≥ a1, resp. a2 ≥ a1, prove that the primary Gromov-Witten invariant equals

a
2(n1−1)
1 , resp. a

2(n2−1)
2 .

(e) Let d and n be positive integers with 1 ≤ d ≤ n − 1 and n ≥ 4. For every
smooth, degree d hypersurface X ⊂ CPn, prove that every homology class of a
symplectic form is a positive real multiple of [ω] = c1(O(1))|X . Prove that the
unique minimal free class β is the homology class of a line L contained in X.

(f) Continuing the previous case, for a general point p in X, prove that the fiber of
the evaluation map for X, considered as a subvariety of the fiber CPn−1 of the fiber
of the evaluation map for CPn, is a complete intersection of d − 1 hypersurfaces
of respective degrees 2, 3, . . . , d − 1, d. Moreover, show that [ω] ^ [ω] gives the
restriction to the complete intersection of c1(O(1)) from CPn−1. Conclude that the
primary Gromov-Witten invariant above equals d!, the factorial of d.

(g) For d equal to n, n ≥ 4, every smooth hypersurface X of degree d in CPn is
uniruled, but the minimal homology free homology class is β = 2[L] (lines are not
free, there are free conics). What is the primary Gromov-Witten invariant?

Problem 6(Non-Transversality for the Rational Connectedness Problem)
Recall from lecture that a conjecture of Kollár, proved in complex dimension ≤ 3 by
Zhiyu Tian, predicts symplectic invariance of rational connectedness. This exercise
explains one reason that the proof of the Kollár-Ruan theorem does not extend to
this setting.

(a) Let a ≤ b be integers. For every integer c, prove that there exists a surjective
OP1 -module homomorphism from OP1(b) ⊕ OP1(a) to OP1(c) if and only if c ≥ b.
In this case, compute that the kernel of the surjection is OP1(d), where a+ b equals
c+ d.

(b) For every integer e ≥ 0, by definition the Hirzebruch surface Σe is the
P1-bundle over P1 associated to the locally free sheaf OP1-module OP1 ⊕OP1(−e).
Prove that this is (non-canonically) isomorphic to the P1-bundle over P1 associated
to OP1(b)⊕OP1(a) for every pair of integers a ≤ b such that b− a equals e.

(c) Conclude from the first part that for every integer e ≥ 0, the Hirzebruch surface
Σe+2 deforms to Σe. Thus, there are precisely two deformation classes of Hirzebruch
surfaces depending only on the parity of e.

(d) For every integer e > 0, prove that there exists a unique section σ0 : P1 → Σe
of the projection π : Σe → P1 such that the normal bundle of the section pulls
back to OP1(−e). This section is called the directrix of the Hirzebruch surface (it
corresponds to a maximal destabilizing subbundle). Denote byD0 ∈ H2(Σe,Z)
the Poincaré dual cohomology class of [σ0], and denote by F ∈ H2(Σe,Z) the class
of a fiber.

(e) For e ≥ 1, for real numbers r, prove that D0 + rF ∈ H2(Σe,R) is the (1, 1)
class of a Kähler form if and only if r > e. In this case, deformations of this class
are also Kähler on Σe−2, Σe−4, etc. Show that the homology class β of a fiber of π
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is the unique minimal free class, the fiber of the evaluation map is one point, and
the primary Gromov-Witten invariant equals 1.

(f) For e ≥ 1, prove that the minimal chain of rational curves connecting 2 general
points of Σe is a union of σ0(P1) and two fibers. Compute that the pairing of the
homology class β of this chain agains D0 + rF equals 2 + (r − e).
(g) Finally, consider the case that e ≥ 4 is even, resp. odd. Prove that the
homology class β from the previous part is not represented by a genus 0 stable map
on the deformation Σ0, resp. on Σ1. Conclude that every genus 0 Gromov-Witten
invariant on Σe defined with respect to β equals 0. Thus, the naive extension of
the Kollár-Ruan proof to the setting of genus 0 stable maps connecting 2 general
points does not work for Σe.

Problem 7(Kollár-Ruan Theorem in Mixed Characteristic) This problem
is for students who like to think about algebraic geometry in positive characteristic
or mixed characteristic. Let R be a finitely generated Z-algebra that is an integrally
closed, integral domain and such that Z→ R is injective, i.e., R⊗ZQ is nonzero. Let
XR be a smooth, projective R-scheme whose geometric fibers are connected. Let
LR be an ample invertible sheaf on XR (this will be the stand-in for the symplectic
form).

(a) Let η : R→ C be a ring homomorphism (by the Lefschetz principle, such a ring
homomorphism exists), and denote by (Xη, Lη) the base change complex projective
manifold together with an ample invertible sheaf. Assume that (Xη, Lη) is uniruled.
Let β be a minimal free homology class on Xη. Denote by e the intersection number
〈c1(Lη), β〉. Thus, the (polarized) Hom scheme Home

C(CP1, (Xη, Lη)) is nonempty,
and, in fact, the evaluation morphism

ev : Home
C(CP1, (Xη, Lη))× CP1 → Xη

has a nonempty Zariski open subset Uη of the domain on which the morphism is
smooth.

(b) Consider the relative Hom scheme over Spec R,

He
R = Home

R(P1
R, (XR, LR)),

together with its evaluation morphism,

ev : He
R ×Spec R P1

R → XR.

Prove that there exists a maximal open subscheme U of He
R ×Spec R P1

R (which
a priori might be empty) on which ev is a smooth morphism. Prove that the
formation of U is compatible with flat base change of R. Since the base change of U
by η is nonempty, conclude that for the unique minimal open and closed subscheme
Ui of U (i.e., union of connected components) whose base change by η intersects
Uη in a dense open of Uη, the generic fiber of Ui → Spec R is nonempty. Up to
replacing R by the image of a finite, injective ring homomorphism R → R′ and
then replacing (XR, LR) by the base change (XR′ , LR′), we may even assume that
every connected component of Ui has connected base change Ui,η that intersects
Uη in a nonempty open subset. Thus, performing this base change, the data of Ui
is a stand-in for the homology class β.

(c) Since U is smooth over XR, and since XR is smooth over Spec R, also U
is smooth over Spec R. Since smooth morphisms are universally open, conclude
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that the image of Ui in Spec R is a dense Zariski open subset of Spec R. By
considering the dense Zariski open subsets Spec R[1/n] of Spec R, observe that
this general argument gives no information about which “bad characteristics” we
need to exclude to guarantee the existence of free, genus 0 curves in the base change
of XR.

(d) Read about a priori bounds on degrees of singular loci of projective varieties
of bounded degrees (Mumford’s article on varieties defined by quadratic equations
is a classic). Apply these bounds to the fibers of the R-morphism,

ev :M0,1(XR/Spec R,Ui)→ XR,

where “Ui” means that we allow all curve classes obtained from maps parameterized
by Ui. Conclude that, in fact, there exists an explicit positive integer n0 depend-
ing only on the dimension and the degree of the generic fiber of the evaluation
morphism,

ev :M0,1(Xη, β)→ Xη,

with respect to the ample invertible sheaf coming from c1(Lη) ^ c1(Lη) such that
after inverting n0 in R, for every ring homomorphism to an algebraically closed
field,

s : R[1/n0]→ k,

the evaluation morphism of the base change

ev :M0,1(Xs, Ui,s)→ Xs

is smooth over a dense Zariski open subset of Xs. Conclude positivity of the Kollár-
Ruan primary Gromov-Witten invariant for Xs coming from each β′ ∈ Ui,s (defined
now via algebraic geometry, so that the definition extends to positive characteristic).

(d) For every finitely generated Z-algebra R̃ that is an integrally closed, integral

domain with R̃ ⊗Z Q nonempty, for every proper smooth R̃-scheme X̃R̃ → Spec R̃

and ample line bundle L̃R̃, for every ring homomorphism,

s̃ : R̃→ k,

such that the base change (X̃s̃, L̃s̃) is isomorphic to (Xs, Ls) as polarized k-schemes,

the Gromov-Witten invariant for (X̃s̃, L̃s̃) equals the Gromov-Witten invariant for
(Xs, Ls). Since algebro-geometric Gromov-Witten invariants are invariant under
“generization” (sometimes called, “deformations-in-the-small”), conclude that also
for every ring homomorphism

η̃ : R̃→ C,
the base change complex projective manifold X̃η̃ is uniruled. Thus, the Kollár-
Ruan Theorem not only proves symplectic deformation invariance of uniruledness,
but also invariance under mixed characteristic deformations that avoid positive
characteristics p that are less than an explicit integer n0 depending only on Chern
numbers of the polarized complex manifold (Xη, Lη) and Gromov-Witten invari-
ants.

(e) To convince yourself that deformation invariance through mixed characteristic
is very different from symplectic deformation invariance, read about Serre’s exam-
ples of complex projective manifolds that are deformation invariant through mixed
characteristic (in fact “Galois twists” for the fraction field of a ring of integers R),
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yet have non-isomorphic fundamental groups (thus, are not even homotopic, much
less symplectically deformation equivalent).
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