MAT 615 PROBLEM SET 1

Homework Policy. This problem set explores ideas from [Sch68] and LS67]. Together with Artin's Approximation Theorem, Schlessinger's Theorem is one of the key ingredients in Artin's Axioms for Algebraicity of a functor or stack (one of the key techniques for constructing parameter spaces and moduli spaces). Moreover, infinitesimal deformation theory gives properties of these moduli spaces: dimension bounds, smoothness, bounds on the dimension of Zariski tangent spaces, flatness, etc.

Problems.
Problem 1. (The category of Artin algebras has finite products and coproducts.) Let Λ be a local Noetherian ring. Denote the maximal ideal by μ, and denote the residue field Λ / μ by k. For simplicity, assume that Λ is complete with respect to μ. A Λ - k-Artin algebra is a local homomomorphism,

$$
\alpha:(\Lambda, \mu) \rightarrow(A, \mathfrak{m})
$$

such that A is a finite length Λ-module and the induced field homomorphism,

$$
\Lambda / \mu \rightarrow A / \mathfrak{m}
$$

is an isomorphism. For Λ - k - Artin algebras (A, α) and $\left(A^{\prime}, \alpha^{\prime}\right)$, a morphism of Λ -k-Artin algebras from (A, α) to $\left(A^{\prime}, \alpha^{\prime}\right)$ is an Λ-algebra homomorphism $\psi: A \rightarrow A^{\prime}$.
(a) Check that every Λ - k Artin algebra has a unique morphism of Λ - k-algebras to k. Check that every morphism of Λ - k-Artin algebras is a local homomorphism. Check that the identity map on a Λ - k-Artin algebra is a morphism of Λ - k-Artin algebras. Also check that a composition of two morphisms of Λ - k-Artin algebras is a morphism of Λ - k-Artin algebra.
Thus, these notions define a category of Λ - k-Artin algebras that has a final object k. Denote this category by $C_{\Lambda, k}$. A Λ - k-complete algebra is a local homorphism,

$$
\rho:(\Lambda, \mu) \rightarrow(R, \mathfrak{n})
$$

such that for every positive integer e, the composite local homomorphism,

$$
\rho_{e}:(\Lambda, \mu) \rightarrow(R, \mathfrak{n}) \rightarrow\left(R / \mathfrak{n}^{e+1}, \mathfrak{n} / \mathfrak{n}^{e+1}\right)
$$

is a Λ - k-Artin algebra and such that the induced local homomorphism,

$$
(R, \mathfrak{n}) \rightarrow \underset{e}{\operatorname{proj}} \lim \left(R / \mathfrak{n}^{e+1}, \mathfrak{n} / \mathfrak{n}^{e+1}\right),
$$

is an isomorphism. A morphism of Λ - k-complete algebras from (R, ρ) to $\left(R^{\prime}, \rho^{\prime}\right)$ is a Λ-algebra homomorphism $\psi: R \rightarrow R^{\prime}$.
(b) (Full embedding of $C_{\Lambda, k}$ in $\widehat{C}_{\Lambda, k}$.) Check that these notions define a category $\widehat{C}_{\Lambda, k}$ of Λ - k-complete algebras. Check that every Λ - k-Artin algebra is a Λ - k-complete algebra. Check that the induced functor $C_{\Lambda, k} \rightarrow \widehat{C}_{\Lambda, k}$ is fully faithful.

For every covariant functor,

$$
F: C_{\Lambda, k} \rightarrow \text { Sets }
$$

define the associated profunctor,

$$
\widehat{F}: \widehat{C}_{\Lambda, k} \rightarrow \text { Sets, } \widehat{F}(R, \rho):=\underset{e}{\operatorname{proj}} \lim F\left(R / \mathfrak{m}_{R}^{e+1}\right)
$$

and for every natural transformation $\theta: F \Rightarrow G$ of set-valued functons on $C_{\Lambda, k}$, define

$$
\widehat{\theta}: \widehat{F} \Rightarrow \widehat{G}, \quad \widehat{\theta}_{(R, \rho)}:=\underset{e}{\operatorname{proj}} \lim \theta_{R / \mathfrak{m}_{R}^{e+1}}
$$

For every object (R, ρ) of $\widehat{C}_{\Lambda, k}$, denote by $h^{(R, \rho)}$ the Yoneda covariant functor,

$$
h^{(R, \rho)}: \widehat{C}_{\Lambda, k} \rightarrow \text { Sets }, \quad h^{(R, \rho)}(S, \sigma)=\operatorname{Hom}_{\widehat{C}_{\Lambda, k}}((R, \rho),(S, \sigma))
$$

and for every morphism $\psi:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right)$ of $\widehat{C}_{\Lambda, k}$, denote by h^{ψ} the natural transformation,

$$
h^{\psi}: h^{\left(R^{\prime}, \rho^{\prime}\right)} \Rightarrow h^{(R, \rho)}, \quad h^{\psi}\left(u:\left(R^{\prime}, \rho^{\prime}\right) \rightarrow(S, \sigma)\right)=u \circ \psi
$$

For every set-valued functor E on $\widehat{C}_{\Lambda, k}$, denote by E_{C} the restriction of E to $C_{\Lambda, k}$. The functor is continuous if the natural transformation,

$$
E \Rightarrow \widehat{E}_{C}, \quad E(R, \rho) \rightarrow \operatorname{proj} \lim E\left(R / \mathfrak{m}_{R}^{e+1}\right)
$$

is a natural isomorphism. A set-valued functor F on $C_{\Lambda, k}$ is prorepresentable if there exists an object (R, ρ) of $\widehat{C}_{\Lambda, k}$ such that E is naturally isomorphic to $h_{C}^{(R, \rho)}$. (c)(The pro-Yoneda lemma.) Check that $h^{(R, \rho)}$ is continuous. Check the following pro-Yoneda lemma: for every object (R, ρ) of $\widehat{C}_{\Lambda, k}$, for every set-valued functor E on $C_{\Lambda, k}$, every natural transformation from $h_{C}^{(R, \rho)}$ to E arises from a unique element of $\widehat{E}(R, \rho)$. Check that k is a final object in $C_{\Lambda, k}$. Check that $\left(\Lambda, \operatorname{Id}_{\Lambda}\right)$ is an initial object in $\widehat{C}_{\Lambda, k}$.
For objects of $C_{\Lambda, k}$,

$$
(A, \alpha: R \rightarrow A), \quad\left(A^{\prime}, \alpha^{\prime}: R \rightarrow A^{\prime}\right), \quad\left(A^{\prime \prime}, \alpha: R \rightarrow A^{\prime \prime}\right)
$$

for morphisms of $C_{\Lambda, k}$,

$$
\psi^{\prime}:\left(A^{\prime}, \alpha^{\prime}\right) \rightarrow(A, \alpha), \quad \psi^{\prime \prime}:\left(A^{\prime \prime}, \alpha^{\prime \prime}\right) \rightarrow(A, \alpha)
$$

form the induced fiber product in the category of underlying sets,

$$
p^{\prime}: A^{\prime} \times_{A} A^{\prime \prime} \rightarrow A^{\prime}, \quad p^{\prime \prime}: A^{\prime} \times_{A} A^{\prime \prime} \rightarrow A^{\prime \prime}, \quad \psi^{\prime} \circ p^{\prime}=\psi^{\prime \prime} \circ p^{\prime \prime}
$$

Denote by

$$
\left(\alpha^{\prime}, \alpha^{\prime \prime}\right): \Lambda \rightarrow A^{\prime} \times_{A} A^{\prime \prime}
$$

the unique set map such that $p^{\prime} \circ\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)$ equals α^{\prime} and $p^{\prime \prime} \circ\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)$ equals $\alpha^{\prime \prime}$.
(d) (Existence of fiber products.) Check that there exists a unique structure of Λ - k-Artin algebra on $\left(A^{\prime} \times{ }_{A} A^{\prime \prime},\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)\right)$ such that both p^{\prime} and $p^{\prime \prime}$ are morphisms in $C_{\Lambda, k}$. Conclude that the category $C_{\Lambda, k}$ has finite fiber products. By taking inverse limits, show that also $\widehat{C}_{\Lambda, k}$ has finite fiber products, and the embedding of $C_{\Lambda, k}$ in $\widehat{C}_{\Lambda, k}$ preserves fiber products.
For morphisms of $C_{\Lambda, k}$,

$$
\phi^{\prime}:(A, \alpha) \rightarrow\left(A^{\prime}, \alpha^{\prime}\right),{ }_{2}^{\phi^{\prime \prime}}:(A, \alpha) \rightarrow\left(A^{\prime \prime}, \alpha^{\prime \prime}\right),
$$

denote by

$$
q^{\prime}: A^{\prime} \rightarrow A^{\prime} \otimes_{A} A^{\prime \prime}, \quad q^{\prime \prime}: A^{\prime \prime} \rightarrow A^{\prime} \otimes_{A} A^{\prime \prime}
$$

the usual tensor product of A-modules.
(e)(Existence of cofiber coproducts.) Check that there exists a unique structure of Λ - k-Artin algebra on $A^{\prime} \otimes_{A} A^{\prime \prime}$ such that both q^{\prime} and $q^{\prime \prime}$ are morphisms in $C_{\Lambda, k}$. Conclude that the category $C_{\Lambda, k}$ has (finite) cofiber coproducts. By taking inverse limits of cofiber coproducts in $C_{\Lambda, k}$, show that also $\widehat{C}_{\Lambda, k}$ has cofiber coproducts, and the embedding of $C_{\Lambda, k}$ in $\widehat{C}_{\Lambda, k}$ preserves cofiber coproducts.
Please note, for morphisms of $\widehat{C}_{\Lambda, k}$,

$$
\phi^{\prime}:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right), \quad \phi^{\prime \prime}:(R, \rho) \rightarrow\left(R^{\prime \prime}, \rho^{\prime \prime}\right)
$$

for the cofiber coproduct $R^{\prime} \widehat{\otimes}_{R} R^{\prime \prime}$ in $\widehat{C}_{\Lambda, k}$, the natural homomorphism,

$$
R^{\prime} \otimes_{R} R^{\prime \prime} \rightarrow R^{\prime} \widehat{\otimes}_{R} R^{\prime \prime}
$$

is not necessarily an isomorphism, since $R^{\prime} \otimes_{R} R^{\prime \prime}$ might not be complete. This homomorphism is the completion with respect to the maximal ideal $\mathfrak{m}^{\prime} \otimes_{R} R^{\prime \prime}+$ $R^{\prime} \otimes_{R} \mathfrak{m}^{\prime \prime}$.
Problem 2.(Adjoints and Vector Space Objects.) For the completion $\Lambda \llbracket t \rrbracket$ of the polynomial ring $\Lambda[t]$ with repsect to the maximal ideal $\mu \Lambda[t]+t \Lambda[t]$, prove that the Yoneda functor $\widetilde{T}_{0}=h^{\Lambda[t t]}$ associates to every object (R, ρ) of $\widehat{C}_{\Lambda, k}$ the maximal ideal or R. This is a functor from $\widehat{C}_{\Lambda, k}$ to the Abelian category $\Lambda-\bmod$ of Λ-modules. Also, denote by T_{0} the covariant functor,

$$
T_{0}: \widehat{C}_{\Lambda, k} \rightarrow k-\bmod , \quad T_{0}(R, \rho)=\mathfrak{m}_{R} / \mathfrak{m}_{R}^{2}
$$

Denote by θ the natural transformation

$$
\theta: \widetilde{T}_{0} \Rightarrow T_{0}, \quad \mathfrak{m}_{R} \mapsto \mathfrak{m}_{R} / \mathfrak{m}_{R}^{2}
$$

Since T_{0} is a functor, for every morphism in $\widehat{C}_{\Lambda, k}$,

$$
\chi:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right)
$$

there is an induced morphism of k-vector spaces,

$$
T_{0}(R, \rho) \rightarrow T_{0}\left(R^{\prime}, \rho^{\prime}\right)
$$

Denote the cokernel k-vector space by $T_{0}(\chi)$.
(a)(Functoriality of T_{0}.) Prove that T_{0} is covariant in $\left(R^{\prime}, \rho^{\prime}\right)$ with (R, ρ) held fixed, and prove that T_{0} is contravariant in (R, ρ) with $\left(R^{\prime}, \rho^{\prime}\right)$ held fixed. For every pair of morphisms in $\widehat{C}_{\Lambda, k}$,

$$
\chi:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right), \quad \chi^{\prime}:\left(R^{\prime}, \rho^{\prime}\right) \rightarrow\left(R^{\prime \prime}, \rho^{\prime \prime}\right)
$$

check that the following is a right exact sequence of k-vector spaces,

$$
T_{0}(\chi) \rightarrow T_{0}\left(\chi^{\prime} \circ \chi\right) \rightarrow T_{0}\left(\chi^{\prime}\right) \rightarrow 0 .
$$

(b)(The functor of maximal ideals.) Prove that the restriction of \widetilde{T}_{0} to $C_{\Lambda, k}$ is a functor to the Abelian category $\Lambda-\mathbf{m o d}_{0}$ of finite length Λ-modules. Also, check that a morphism in $C_{\Lambda, k}$,

$$
\begin{gathered}
\phi:(A, \alpha) \rightarrow\left(A^{\prime}, \alpha^{\prime}\right), \\
3
\end{gathered}
$$

is surjective, resp. injective, bijective, if and only if the induced set map

$$
h^{\Lambda[t t]}(\phi): h^{\Lambda[t t]}(A, \alpha) \rightarrow h^{\Lambda[t t]}\left(A^{\prime}, \alpha^{\prime}\right)
$$

is surjective, resp. injective, bijective.
(c)(The left adjoint of \widetilde{T}_{0}.) Denote by $\Lambda-\boldsymbol{m o d}_{\mathrm{fg}}$ the full subcategory of $\Lambda-\mathbf{m o d}$ of finitely generated Λ-modules (with the natural complete μ-adic topology). Prove that for every finitely generated Λ-module M, there is an object $\Lambda \llbracket M \rrbracket$ in $\widehat{C}_{\Lambda, k}$ such that the functor $h^{\Lambda[[M]}(R, \rho)$ is naturally isomorphic to

$$
\operatorname{Hom}_{\Lambda-\bmod _{\mathrm{fg}}}\left(M, \mathfrak{m}_{R}\right) .
$$

Prove that this is functorial in M, and the induced functor

$$
\Lambda \llbracket-\rrbracket: \Lambda-\bmod _{\mathrm{fg}} \rightarrow \widehat{C}_{\Lambda, k}
$$

is "essentially" a left adjoint of \widetilde{T}_{0} in the sense that there is a natural equivalence for every (A, α) an object of $C_{\Lambda, k}$,

$$
\operatorname{Hom}_{\Lambda-\bmod _{\mathrm{fg}}}\left(M, \widetilde{T}_{0, C}(A, \alpha)\right) \cong \operatorname{Hom}_{\widehat{C}_{\Lambda, k}}(\Lambda \llbracket M \rrbracket,(A, \alpha))
$$

In particular, deduce isomorphisms,

$$
\Lambda \llbracket M \oplus N \rrbracket \cong \Lambda \llbracket M \rrbracket \widehat{\otimes}_{\Lambda} \Lambda \llbracket N \rrbracket
$$

and use the addition map on M to deduce a morphism in $\widehat{C}_{\Lambda, k}$,

$$
\Sigma_{M}^{*}: \Lambda \llbracket M \rrbracket \rightarrow \Lambda \llbracket M \oplus M \rrbracket=\Lambda \llbracket M \rrbracket \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket .
$$

inducing the addition map on the Yoneda functor $\operatorname{Hom}_{\Lambda-\bmod }\left(M, h^{\Lambda[t]}(A)\right)$. Since the Yoneda functor is endowed with a structure of functor to $\Lambda-\bmod$, the object $\Lambda \llbracket M \rrbracket$ is a Λ-module object in the opposite category $\widehat{C}_{\Lambda, k}^{\mathrm{opp}}$.

On the other hand, for every k-vector space V, denote by $k \oplus V$ the quotient of $\Lambda \llbracket V \rrbracket$ by the sum of $\mu \cdot \Lambda \llbracket V \rrbracket$ and the square of the maximal ideal. Thus, $k \oplus V$ is a k-algebra whose maximal ideal is the k-vector space V, and the square of this maximal ideal is zero.
(d) (The right adjoint of T_{0}.) For the contravariant functor,

$$
h_{k \oplus V}: \widehat{C}_{\Lambda, k}^{\mathrm{opp}} \rightarrow \text { Sets, } \quad h_{k \oplus V}(R, \rho)=\operatorname{Hom}_{\widehat{C}_{\Lambda, k}}((R, \rho), k \oplus V),
$$

check that there is a natural equivalence

$$
\operatorname{Hom}_{\widehat{C}_{\Lambda, k}}((R, \rho), k \oplus V) \cong \operatorname{Hom}_{k-\bmod }\left(T_{0}(R, \rho), V\right)=\operatorname{Der}_{\Lambda}((R, \rho), V)
$$

In particular, deduce isomorphisms,

$$
k \oplus(V \oplus W) \cong(k \oplus V) \times_{k}(k \oplus W)
$$

and use the addition map on V to deduce a morphism in $C_{\Lambda, k}$,

$$
\Sigma_{V}:(k \oplus V) \times_{k}(k \oplus V) \rightarrow k \oplus V,
$$

inducing the addition map on the Yoneda functor $\operatorname{Hom}_{k-\bmod }\left(T_{0}(-), V\right)$. This addition map together with the natural endomorphisms of $k \oplus V$ obtained by scaling V by elements of k make $h_{k \oplus V}$ into a functor with values in k-vector spaces, i.e., $k \oplus V$ is a k-vector space object in $C_{\Lambda, k}$.

Problem 3.(Formal smoothness.) For covariant functors,

$$
F, G: C_{\Lambda, k} \rightarrow \text { Sets }
$$

a natural transformation $\eta: F \Rightarrow G$ is formally smooth if for every surjective morphism ϕ^{\prime} in $C_{\Lambda, k}$,

$$
\phi^{\prime}:\left(A^{\prime}, \alpha^{\prime}\right) \rightarrow(A, \alpha)
$$

also the set map

$$
\left(F\left(\phi^{\prime}\right), \eta_{\left(A^{\prime}, \alpha^{\prime}\right)}\right): F\left(A^{\prime}, \alpha^{\prime}\right) \rightarrow F(A, \alpha) \times_{G(A, \alpha)} G\left(A^{\prime}, \alpha^{\prime}\right)
$$

is surjective. Since $\mathfrak{m}_{A^{\prime}} \rightarrow \mathfrak{m}_{A}$ and $\mathfrak{m}_{A^{\prime}}^{2} \rightarrow \mathfrak{m}_{A}^{2}$ are both surjective, the natural transformation $\theta: \widetilde{T}_{0} \Rightarrow T_{0}$ from Problem 1(b) is smooth, i.e., the object $\Lambda \llbracket t \rrbracket$ of $\widehat{C}_{\Lambda, k}$ together with the element t in its maximal ideal is a hull for T_{0} (sometimes also called a "miniversal formal deformation").
(a)(Formally smooth objects and projective objects.) For every M in Λ $\bmod _{\mathrm{fg}}$, for the unique morphism in $\widehat{C}_{\Lambda, k}$,

$$
\psi: \Lambda \rightarrow \Lambda \llbracket M \rrbracket
$$

prove that the induced natural transformation of Yoneda functors,

$$
h^{\psi}: h^{\Lambda[[M]]} \Rightarrow h^{\Lambda}
$$

is formally smooth if and only if M is a projective Λ-module, i.e., if and only if M is isomorphic to $\Lambda^{\oplus r}$ for some nonnegative integer r. (Hint. Consider the special case of a surjective homomorphism $s: N^{\prime} \rightarrow N$ in $\Lambda-$ mod $_{\mathrm{fg}}$, the associated morphism $\Lambda \llbracket s \rrbracket: \Lambda \llbracket N^{\prime} \rrbracket \rightarrow \Lambda \llbracket N \rrbracket$, and let ϕ_{e}^{\prime} be the associated morphism in $C_{\Lambda, k}$ obtained by forming the quotient for the domain and target by the $(e+1)^{\text {st }}$ power of each respective maximal ideal.) Deduce that for every object (R, ρ) of $\widehat{C}_{\Lambda, k}$ and every finitely generated, projective Λ-module M, for the induced morphism in $\widehat{C}_{\Lambda, k}$,

$$
q:(R, \rho) \rightarrow(R, \rho) \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket
$$

the natural transformation of Yoneda functors is formally smooth.
For every morphism in $\widehat{C}_{\Lambda, k}$,

$$
\chi:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right)
$$

with induced map of k-vector spaces

$$
T_{0}(R, \rho) \rightarrow T_{0}\left(R^{\prime}, \rho^{\prime}\right)
$$

let M be a free Λ-module of rank r equal to the k-vector space dimension of the cokernel $T_{0}(\chi)$, and let

$$
s: M \rightarrow \widetilde{T}_{0}\left(R^{\prime}, \rho^{\prime}\right)
$$

be a Λ-module homomorphism whose composition to $T_{0}(\chi)$ is a surjection. Let

$$
\psi:(R, \rho) \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket \rightarrow\left(R^{\prime}, \rho^{\prime}\right)
$$

be the induced morphism in $\widehat{C}_{\Lambda, k}$, i.e., ψ is a surjection from a power series algebra over R to the R-algebra R^{\prime}. Let I denote the kernel of I, and let $T_{1}(\chi)$ denote the k-vector space $I / \mathfrak{m} \cdot I$, where \mathfrak{m} denotes the maximal ideal of $(R, \rho) \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket$.
(b)(The functor T_{1} and formal smoothness.) Prove that $T_{1}(\chi)$ is independent of the choice of (M, s, ψ). Prove that $T_{1}(\chi)$ is functorial in $\left(R^{\prime}, \rho^{\prime}\right)$ with (R, ρ) held fixed, and in (R, ρ) with $\left(R^{\prime}, \rho^{\prime}\right)$ held fixed. Use Nakayama's Lemma to prove that
I is zero if and only if $T_{1}(\chi)$ is zero. Finally, prove that there exists a splitting of the surjection ψ in the category of (R, ρ)-algebras if and only if I is zero. Conclude that χ is formally smooth if and only if $T_{1}(\chi)$ is zero. Thus, every formally smooth (R, ρ)-algebra arises as in part (a).

Problem 4.(Schlessinger's Theorem.) A covariant functor F from $C_{\Lambda, k}$ to Sets is pointed if $F(k)$ is a singleton set, say $\{0\}$. If also the natural set map

$$
F\left((k \oplus V) \times_{k}(k \oplus W)\right) \rightarrow F(k \oplus V) \times_{F(k)} F(k \oplus W),
$$

is a bijection for every pair (V, W) of finite dimensional k-vector spaces, then the maps Σ_{V} and the natural k-algebra endomorphisms of $k \oplus V$ make each set $F(k \oplus V)$ into a k-vector space in such a way that the composite functor

$$
F(k \oplus-): k-\bmod _{0} \rightarrow k-\bmod , \quad V \mapsto F(k \oplus V),
$$

is a k-linear, exact functor. For the free, 1 -dimensional k-vector space k, denote by $T^{0}(F)$ the image of this functor on k.

A morphism in $C_{\Lambda, k}$ that is a surjection on underlying sets,

$$
\phi^{\prime}:\left(A^{\prime}, \alpha^{\prime \prime}\right) \rightarrow(A, \alpha)
$$

is an infinitesimal extension, resp. a small extension, if the kernel of ϕ is annihilated by the maximal ideal $\mathfrak{m}_{A^{\prime}}$, resp. if it is an infinitesimal extension and the kernel is isomorphic to k as a k-vector space. In particular, every $k \oplus V$ is an infinitesimal extension of k that is a finite iterated sequence of small extensions.
For every object (R, ρ) of $\widehat{C}_{\Lambda, k}$, check that the Yoneda functor $F=h^{R, \rho}$ is a pointed functor that satisfies all of the following conditions relative to every pair of morphisms in $C_{\Lambda, k}$,

$$
\phi^{\prime}:\left(A^{\prime}, \alpha^{\prime}\right) \rightarrow(A, \alpha), \quad \phi^{\prime \prime}:\left(A^{\prime \prime}, \alpha^{\prime \prime}\right) \rightarrow(A, \alpha)
$$

and the induced map

$$
F\left(\phi^{\prime}, \phi^{\prime \prime}\right): F\left(A^{\prime} \times_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)
$$

(H1) The set map $F\left(\phi^{\prime}, \phi^{\prime \prime}\right)$ is surjective whenever ϕ^{\prime} is a small extension.
(H2) The set map $F\left(\phi^{\prime}, \phi^{\prime \prime}\right)$ is a bijection whenever A equals k and $A^{\prime \prime}$ equals $k \oplus V$. (Because of (H1), it suffices to check when V is 1-dimensional.)
(H3) The natural k-vector space structure on each $F(k \oplus V)$ is finite dimensional.
(H4) The set map $F\left(\phi^{\prime}, \phi^{\prime}\right)$ is a bijection for every small extension ϕ^{\prime}.
Also check that $T^{0}\left(h^{(R, \rho)}\right)$ is the dual k-vector space of $T_{0}(R, \rho)$.
Theorem 0.1. Sch68, Theorem 2.11] Every pointed functor

$$
F: C_{\Lambda, k} \rightarrow \text { Sets }
$$

that satisfies (H1) - (H3), resp. that satisfies (H1) - (H4), has a hull, resp. is naturally isomorphic to $h^{(R, \rho)}$ for some (R, ρ) in $\widehat{C}_{\Lambda, k}$.

Let X_{Λ} be a scheme that is projective and flat over over Spec Λ. Let Z_{0} be a closed subscheme of the fiber $X_{0}=X \times_{\text {Spec } \Lambda}$ Spec k. Denote by $\operatorname{Hilb}_{X_{\Lambda} / \Lambda, Z_{0}}$ the (covariant) functor on $C_{\Lambda, k}$ that associates to every (A, α) the set of closed subschemes Z_{A} of $X \times_{\text {Spec } \Lambda} \operatorname{Spec} A$ that are A-flat and whose base change $Z_{A} \times_{\text {Spec } A} \operatorname{Spec} k$ equals Z_{0}. Try to directly verify the hypotheses of Schlessinger's theorem for prorepresentability of F.

Problem 4.(The Functor T^{1} and Obstructions.) The notation here is as in Problem 3(b). For every finite dimensional k-vector space N, denote by $T^{1}(\chi, N)$ the k-vector space,

$$
T^{1}(\chi, N)=\operatorname{Hom}_{k-\bmod }\left(T_{1}(\chi), N\right)
$$

This is evidently covariant in N. For every commutative diagram in $\widehat{C}_{\Lambda, k}$,

where ϕ is an infinitesimal extension in $C_{\Lambda, k}$ with $\operatorname{kernel} \operatorname{Ker}(\phi)=N$, by formal smoothness of

$$
(R, \rho) \rightarrow(R, \rho) \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket,
$$

there exists an R-algebra homomorphism,

$$
b:(R, \rho) \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket \rightarrow(A, \alpha)
$$

such that $\phi \circ b$ equals $\beta^{\prime} \circ \psi$. The restriction of b to I is a $R \widehat{\otimes}_{\Lambda} \Lambda \llbracket M \rrbracket$-module homomorphism,

$$
I \rightarrow N .
$$

Since ϕ is an infinitesimal extension, this factors uniquely through the surjection,

$$
I \rightarrow I / \mathfrak{m} \cdot I
$$

Denote by

$$
o_{\chi, \phi, \beta, \beta^{\prime}} \in T^{1}(\chi, N)
$$

the induced k-linear transformation,

$$
T_{1}(\chi) \rightarrow N
$$

(a)(Functoriality.) Check that $o_{\chi, \phi, \beta, \beta^{\prime}}$ is independent of the choice of lift b. Also check that this is functorial for diagrams $\left(\chi, \phi, \beta, \beta^{\prime}\right)$ with χ held fixed.
(b)(Liftings and obstructions.) Check that there exists a lift of β^{\prime} to a morphism $\left(R^{\prime}, \rho^{\prime}\right) \rightarrow(A, \alpha)$ making all diagrams commute if and only if the obstruction element $o_{\chi, \phi, \beta, \beta^{\prime}}$ is zero. Finally, by considering the diagrams

as the nonnegative integer e grows, conclude that there exists a diagram such that the obstruction

$$
o_{\chi, \phi, \beta, \beta^{\prime}}: T_{1}(\chi) \rightarrow N
$$

is injective. Thus, the maximal rank of $o_{\chi, \phi, \beta, \beta^{\prime}}$ over all diagrams equals the k vector space dimension of $T_{1}(\chi)$.
For pointed functors,

$$
F, F^{\prime}: C_{\Lambda, k} \rightarrow \text { Sets },
$$

and a natural transformation $\eta: F^{\prime} \Rightarrow F$, an infinitesimal deformation over η is a datum

$$
\zeta=\left(\phi:(A, \alpha) \rightarrow\left(A^{\prime}, \alpha^{\prime}\right), \beta, \beta^{\prime}\right)
$$

of an infinitesimal extension ϕ in $C_{\Lambda, k}$ with $\operatorname{kernel} \operatorname{Ker}(\phi)=N$, an element $\beta \in$ $F(A, \alpha)$, and an element $\beta^{\prime} \in F^{\prime}\left(A^{\prime}, \alpha^{\prime}\right)$ such that the images of β and β^{\prime} are equal in $F\left(A^{\prime}, \alpha^{\prime}\right)$. For an infinitesimal deformation over η,

$$
\widetilde{\zeta}=\left(\widetilde{\phi}:(\widetilde{A}, \widetilde{\alpha}) \rightarrow\left(\widetilde{A}^{\prime}, \widetilde{\alpha}^{\prime}\right), \widetilde{\beta}, \widetilde{\beta}^{\prime}\right)
$$

a morphism of infinitesimal extension over η from ζ to $\widetilde{\zeta}$ is a commutative diagram in $C_{\Lambda, k}$,

such that $F(u)$ maps β to $\widetilde{\beta}$ and such that $F^{\prime}\left(u^{\prime}\right)$ maps β^{\prime} to $\widetilde{\beta^{\prime}}$. Note that $\left(u, u^{\prime}\right)$ defines an induced map,

$$
\operatorname{Ker}\left(u, u^{\prime}\right): \operatorname{Ker}(\phi) \rightarrow \operatorname{Ker}(\widetilde{\phi})
$$

These operations define a category $\operatorname{Inf}_{\eta}$ of infinitesimal extensions over η. There is a functor,

$$
\text { Ker : } \operatorname{Inf}_{\eta} \rightarrow k-\bmod _{0}, \quad \zeta \mapsto \operatorname{Ker}(\phi), \quad\left(u, u^{\prime}\right) \mapsto \operatorname{Ker}\left(u, u^{\prime}\right)
$$

There is also a constant functor,

$$
\underline{k}: \operatorname{Inf}_{\eta} \rightarrow k-\bmod _{0}, \quad \zeta \mapsto k, \quad\left(u, u^{\prime}\right) \mapsto \operatorname{Id}_{k}
$$

A preobstruction theory for η is a k-linear functor,

$$
O: k-\bmod _{0} \rightarrow k-\bmod
$$

and a natural transformation of functors $\operatorname{Inf}_{\eta} \rightarrow k-\bmod$,

$$
o: \underline{k} \Rightarrow O \circ \text { Ker. }
$$

Every k-linear functor O is additive, and thus is of the form

$$
O(N) \cong O(k) \otimes_{k} N
$$

for a k-vector space $O(k)$. Since every k-linear transformation from k to a k-vector space is uniquely determined by the image of $1 \in k$, the natural transformation is equivalent to a functorial assignment to every infinitesimal deformation ζ over η of an element,

$$
o_{\zeta} \in O(\operatorname{Ker}(\phi))
$$

A preobstruction theory for η is an obstruction theory if for every infinitesimal extension ζ over η, the element o_{ζ} vanishes if and only if there exists $\widehat{\beta} \in F^{\prime}(A, \alpha)$ that maps to both $\beta \in F(A, \alpha)$ and $\beta^{\prime} \in F^{\prime}\left(A^{\prime}, \alpha^{\prime}\right)$.
(c)(The T^{1} obstruction theory.) For a morphism $\chi:(R, \rho) \rightarrow\left(R^{\prime}, \rho^{\prime}\right)$ in $\widetilde{C}_{\Lambda, k}$, for the associated natural transformation $h_{C}^{\chi}: h_{C}^{\left(R^{\prime}, \rho^{\prime}\right)} \Rightarrow h_{C}^{(R, \rho)}$, check that $T^{1}(\chi, N)$ and the elements $o_{\chi, \phi, \beta, \beta^{\prime}}$ define an obstruction theory for h_{C}^{χ}. Moreover, using the last part, prove that every obstruction theory O for h_{C}^{χ} is induced by a k-linear transformation $T^{1}(k) \rightarrow O(k)$ that is injective.
(d)(Criterion for flatness.) Read in a commutative algebra book about the Local Flatness Theorem, e.g., Mat89, Theorem 22.5 and Corollary, pp. 176-177]. For the maximal ideal \mathfrak{m}_{R} of R, conclude that the k - k-complete algebra $R^{\prime} / \mathfrak{m}_{R} \cdot R^{\prime}$
has Krull dimension at least $\operatorname{dim}_{k} T_{0}(\chi)-\operatorname{dim}_{k} T^{1}(\chi, k)$. Also conclude that when equality holds, the local homorphism χ is flat (even a formally LCI morphism). Combined with the previous part, conclude that for every obstruction theory O for h_{C}^{χ}, the Krull dimension is at least $\operatorname{dim}_{k} T_{0}(\chi)-\operatorname{dim}_{k} O(k)$, and that when equality holds, the local homomorphism χ is flat (even a formally LCI morphism).

Problem 5(The Standard Obstruction Theory for the Hilbert Scheme.) As in Problem 3 let X_{Λ} be a scheme that is projective and flat over Spec Λ. Let Z_{0} be a closed subscheme of the fiber $X_{0}=X \times_{\text {Spec } \Lambda}$ Spec k. Denote by $\operatorname{Hilb}_{X_{\Lambda} / \Lambda, Z_{0}}$ the pointed functor on $C_{\Lambda, k}$ that associates to every (A, α) the set of closed subschemes Z_{A} of $X \times_{\text {Spec } \Lambda} \operatorname{Spec} A$ that are A-flat and whose base change $Z_{A} \times$ Spec A Spec k equals Z_{0}. Denote by

$$
\eta: \operatorname{Hilb}_{X_{\Lambda} / \Lambda, Z_{0}} \rightarrow h_{C}^{\Lambda}
$$

the tautological natural transformation of pointed functors.
Denote by \mathcal{I}_{0} the ideal sheaf of Z_{0} on X_{0}, and denote by $\mathcal{O}_{Z_{0}}$ the quotient by this ideal sheaf, i.e., the structure sheaf of Z_{0} considered as a coherent $\mathcal{O}_{X_{0}}$-module. The k-linear functor of the standard obstruction theory is

$$
O: k-\bmod \rightarrow k-\bmod , \quad O(N)=\operatorname{Ext}_{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, N \otimes_{k} \mathcal{O}_{Z_{0}}\right)
$$

Every infinitesimal extension ζ over η is an infinitesimal extension in $C_{\Lambda, k}$,

$$
\phi:(A, \alpha) \rightarrow\left(A^{\prime}, \alpha^{\prime}\right), \quad N:=\operatorname{Ker}(\phi)
$$

and an ideal sheaf,

$$
\mathcal{I}_{A^{\prime}} \subset \mathcal{O}_{X_{A^{\prime}}}
$$

of a closed subscheme $Z_{A^{\prime}}$ of $X_{A^{\prime}}$ that is A^{\prime}-flat. Denote by $\phi_{X}^{\text {pre }}\left(\mathcal{I}_{A^{\prime}}\right)$ the inverse image in $\mathcal{O}_{X_{A}}$ of $\mathcal{I}_{A^{\prime}}$ with respect to the surjective homomorphism of sheaves of A-algebras,

$$
\phi_{X}: \mathcal{O}_{X_{A}} \rightarrow A^{\prime} \otimes_{A} \mathcal{O}_{X_{A}}=\mathcal{O}_{X_{A^{\prime}}}
$$

Denoting by \mathfrak{m}_{A} the maximal ideal of A, there is a short exact sequence of $\mathcal{O}_{X_{0}}-$ modules,

$$
o_{\zeta}: 0 \rightarrow N \otimes_{k} \mathcal{O}_{Z_{0}} \rightarrow \phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right) / \mathfrak{m}_{A} \cdot \phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right) \rightarrow \mathcal{I}_{0} \rightarrow 0
$$

This defines an element,

$$
o_{\zeta} \in \operatorname{Ext}_{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, N \otimes_{k} \mathcal{O}_{Z_{0}}\right)=O(N) .
$$

(a)(Preobstruction Theory.) Check that this defines a preobstruction theory for η, i.e., the elements o_{ζ} are covariant for morphisms of infinitesimal extensions over η.
(b)(Obstruction Theory.) For every ideal sheaf $\mathcal{I}_{A} \subset \mathcal{O}_{X_{A}}$ of an A-flat closed subscheme of X_{A} extending $\mathcal{I}_{A^{\prime}}$, check that

$$
\mathfrak{m}_{A} \cdot \phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right) \subset \mathcal{I}_{A} \subset \phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right)
$$

Check that the image of \mathcal{I}_{A} in the quotient $\phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right) / \mathfrak{m}_{A} \cdot \phi_{X}^{\mathrm{pre}}\left(\mathcal{I}_{A^{\prime}}\right)$ gives a splitting of the short exact sequence o_{ζ}. Show that this defines a bijection between ideal sheaves \mathcal{I}_{A} and splittings of o_{ζ}. Conclude that the preobstruction theory is an obstruction theory, i.e., o_{ζ} is split if and only if there exists an ideal sheaf \mathcal{I}_{A} as above.
(c)(Lower bound on the dimension.) In the special case that A^{\prime} equals k and A equals $k \oplus V$ for a 1-dimensional k-vector space V, conclude that the k-vector space $T^{0}(\eta, V)$ of ideal sheaves \mathcal{I}_{A} is naturally isomorphic to

$$
T^{0}(\eta, V) \cong \operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right) \otimes_{k} V .
$$

Combined with Problem 4(d), conclude that the fiber ring of $\operatorname{Hilb}_{X_{\Lambda} / \Lambda, Z_{0}}$ modulo μ has Krull dimension at least equal to

$$
\operatorname{dim}_{k}\left(\operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right)-\operatorname{dim}_{k}\left(\operatorname{Ext}_{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right),
$$

and when equality holds, the Hilbert scheme is flat over Λ near $\left[Z_{0}\right]$. If the obstruction group vanishes, then the Hilbert scheme is formally smooth over Λ near $\left[Z_{0}\right]$.
(c)(The Local-Global Sequence.) Read about the local-global spectral sequence for Ext, and conclude the following long exact sequence of low degree terms,
$0 \rightarrow H^{1}\left(X_{0}, \operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right) \rightarrow H^{0}\left(X_{0}\right.\right.$, Ext $\left._{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right) \rightarrow H^{2}\left(X_{0}, \operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right)$
If the image of o_{ζ} in $E x t_{\mathcal{O}_{X_{0}}}^{1}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right) \otimes_{k} N$ is always zero, then Z_{0} is called locally unobstructed. In this case, the reduced obstruction groups is

$$
O_{\text {red }}(N):=H^{1}\left(X_{0}, \operatorname{Hom}_{\mathcal{O}_{x_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right) \otimes_{k} N .\right.
$$

For this reduced obstruction theory, the lower bound on the Krull dimension of the fiber ring equals

$$
\operatorname{dim}_{k} H^{0}\left(X_{0}, \operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right)-\operatorname{dim}_{k} H^{1}\left(X_{0}, \operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)\right) .
$$

If H^{1} vanishes, the Hilbert scheme is smooth over Λ near $\left[Z_{0}\right]$. When Z_{0} is 1dimensional, so that H^{q} vanishes for all $q \geq 0$, interpret the difference of dimensions as the (sheaf cohomology) Euler characteristic of the sheaf $\operatorname{Hom}_{\mathcal{O}_{x_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)$ on Z_{0}, which can be computed by Riemann-Roch.
(d)(Regular Embeddings.) The closed subscheme Z_{0} of X_{0} is a regular embedding if at every point of Z_{0} the ideal sheaf \mathcal{I}_{0} is generated by a regular sequence. In this case, prove that Z_{0} is locally unobstructed, by proving that there is always locally a lift of the regular sequence. Moreover, show that the sheaf $\operatorname{Hom}_{\mathcal{O}_{X_{0}}}\left(\mathcal{I}_{0}, \mathcal{O}_{Z_{0}}\right)$ is locally free of rank equal to the codimension of Z_{0} in X_{0}. This sheaf is usually called the normal sheaf, $N_{Z_{0} / X_{0}}$. When both Z_{0} and X_{0} are smooth over k, this sheaf is canonically isomorphic to the cokernel of the derivative map,

$$
T_{Z_{0} / k} \rightarrow T_{X_{0} / k} \otimes \mathcal{O}_{X_{0}} \mathcal{O}_{Z_{0}} .
$$

Problem 6(The Standard Obstruction Theory for the Flag Hilbert Scheme.) With notation as above, let $W_{0} \subset Z_{0}$ be a closed subscheme. The pointed flag Hilbert functor $\mathrm{fHilb}_{X_{\Lambda} / \Lambda, Z_{0}, W_{0}}$ is the pointed functor that associates to every (A, α) the set of pairs $\left(Z_{A}, W_{A}\right)$ of an A-flat closed subscheme $Z_{A} \subset X_{A}$ that reduces to Z_{0} over k and an A-flat closed subscheme $W_{A} \subset Z_{A}$ that reduces to W_{0} over k. Modify the previous exercises in this context. In particular, if Z_{0} is a regular embedding, and if W_{0} is an effective Cartier divisor in Z_{0} (i.e., a regular embedding of codimension 1), show that the pair is locally unobstructed and the reduced obstruction theory for the natural transformation,

$$
\xi: \operatorname{fHilb}_{X_{\Lambda} / \Lambda, Z_{0}, W_{0}} \rightarrow \operatorname{Hilb}_{X_{\Lambda} / \Lambda, W_{0}},
$$

has

$$
T^{0}(k)=H^{0}\left(Z_{0}, \mathcal{N}_{Z_{0} / X_{0}}\left(-\underline{W}_{0}\right)\right), \quad O_{\text {red }}(k)=H^{1}\left(Z_{0}, \mathcal{N}_{Z_{0} / X_{0}}\left(-\underline{W}_{0}\right)\right) .
$$

If Z_{0} is 1-dimensional, conclude that ξ is smooth if H^{1} vanishes, and there is a lower bound on the dimension at $\left(\left[Z_{0}\right],\left[W_{0}\right]\right)$ of the fiber of $\left[W_{0}\right]$ of the flag Hilbert scheme given by the Euler characteristic,

$$
\chi\left(Z_{0}, \mathcal{N}_{Z_{0} / X_{0}}\left(-\underline{W}_{0}\right)\right) .
$$

Problem 7(Grothendieck's Π functor.) Let B_{Λ} be a projective, flat Λ-scheme. Let $\pi_{\Lambda}: X_{\Lambda} \rightarrow B_{\Lambda}$ be a projective morphism such that X_{Λ} is flat over Λ. Let $s_{0}: B_{0} \rightarrow X_{0}$ be a k-morphism that is a section of π_{0}. The pointed Grothendieck Π functor, $\Pi_{X_{\Lambda} / B_{\Lambda} / \Lambda,\left[s_{0}\right]}$ is the pointed functor that associates to every (A, α) the set of sections $s_{A}: B_{A} \rightarrow X_{A}$ of the A-morphism $\pi_{A}: X_{A} \rightarrow B_{A}$. By associating to each section the closed image, interpret this in terms of the Hilbert functor $\operatorname{Hilb}_{X_{\Lambda} / \Lambda,\left[s_{0}\left(B_{0}\right)\right] \text {. When } \pi_{0} \text { is smooth at every point in } s_{0}\left(B_{0}\right) \text {, conclude that } s_{0}, ~\left(B_{0}\right)}$ is a regular embedding with normal bundle $N_{s_{0}\left(B_{0}\right) / X_{0}}$ isomorphic to $s_{0}^{*} T_{\pi_{0}}$ (where $T_{\pi_{0}}$ is the dual of the locally free sheaf of relative differentials $\Omega_{\pi_{0}}^{1}$). Finally, if also B_{0} is a curve and if W_{Λ} is an effective Cartier divisor in B_{Λ}, conclude that there is a lower bound on the fiber dimension at $\left[s_{0}\right]$ of the restriction functor,

$$
\Pi_{X_{\Lambda} / B_{\Lambda} / \Lambda,\left[s_{0}\right]} \rightarrow \Pi_{X_{\Lambda} \times{ }_{B_{\Lambda}} W_{\Lambda} / W_{\Lambda} / \Lambda,\left[s_{W, 0}\right]}
$$

given by

$$
\chi\left(B_{0}, s_{0}^{*} T_{\pi_{0}}\left(-\underline{W}_{0}\right)\right),
$$

and the restriction is smooth at $\left[s_{0}\right]$ if $h^{1}\left(B_{0}, s_{0}^{*} T_{\pi_{0}}\left(-\underline{W}_{0}\right)\right)$ equals 0 .
Problem 8(The Hom functor.) Let B_{Λ} and Y_{Λ} be projective, flat Λ-schemes. Define X_{Λ} to be the fiber product of these, and let $\pi_{\Lambda}: X_{\Lambda} \rightarrow B_{\Lambda}$ be the projection. Let $u_{0}: B_{0} \rightarrow Y_{0}$ be a k-morphism, and let s_{0} be the graph of u_{0}. In this case, show that Grothendieck's Π functor equals the Hom scheme $\operatorname{Hom}_{\Lambda}\left(B_{\Lambda}, Y_{\Lambda}\right)$. Conclude the lower bound used in lecture for the fiber dimension of the flag Hilbert scheme over the Hilbert scheme of Y_{Λ},

$$
\chi\left(B_{0}, u_{0}^{*} T_{Y_{0} / k}\left(-\underline{W}_{0}\right)\right)=\operatorname{deg}_{B_{0}}\left(u_{0}^{*} T_{Y_{0} / k}\right)+\operatorname{dim}\left(Y_{0}\right)\left(1-p_{a}\left(B_{0}\right)-\operatorname{length}\left(W_{0}\right)\right)
$$

Finally, if B_{0} equals \mathbb{P}_{k}^{1}, if $u_{0}^{*} T_{Y_{0} / k}$ is globally generated, resp. ample, and if length $\left(W_{0}\right) \leq 1$, resp. length $\left(W_{0}\right) \leq 2$, conclude that the restriction morphism is smooth near $\left[u_{0}\right]$. In this case, the morphism u_{0} is called free, resp. very free.

References

[LS67] S. Lichtenbaum and M. Schlessinger. The cotangent complex of a morphism. Trans. Amer. Math. Soc., 128:41-70, 1967.
[Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.
[Sch68] Michael Schlessinger. Functors of Artin rings. Trans. Amer. Math. Soc., 130:208-222, 1968.

