
18.725 SOLUTIONS TO PROBLEM SET 5

Read through all the problems. Write solutions to the “Required Problems”, 1, 2,
3, and 4, together with 2 others of your choice to a total of 6 problems. One or two
more optional problems may be added to the problem set soon.

Required Problem 1: Let F : (X,OX) → (Y,OY ) be a dominant, separated
morphism of irreducible algebraic varieties, i.e., F (X) ⊂ Y is dense. The morphism
F is generically finite if the induced map of fields of fractions, F# : k(Y ) → k(X),
is a finite, algebraic field extension. The next two problems prove the following
proposition. This proposition reduces to the case that (X,OX) and (Y,OY ) are
affine varieties.

Proposition 0.1. For every generically finite morphism F : (X,OX) → (Y,OY ),
there exists a dense open subset U ⊂ Y such that F : F−1(U) → U is a finite
morphism.

(a) Prove it suffices to consider the case when (Y,OY ) is an affine variety.

Solution: Assume the proposition is true when Y is affine. Let Y be an arbitary
irreducible variety. Let U ⊂ Y be a nonempty open affine subset. Because Y is
irreducible, U is dense. Because F is dominant, F−1(U) is dense. The restriction F :
F−1(U) → U is a dominant, separated morphism of irreducible algebraic varieties.
And the induced morphisms k(Y ) → k(U), k(X) → k(F−1(U)) are isomorphisms,
i.e., the extension k(F−1(U))/k(U) is isomorphic to k(X)/k(Y ). Therefore F :
F−1(U) → U is generically finite. By hypothesis, there exists a dense open subset
V ⊂ U such that F : F−1(V ) → V is finite. Because V is relatively open in an
open subset of Y , V is an open subset of Y . Because V is dense in U and U is
dense in Y , V is dense in Y . So the proposition holds for Y .

(b) Prove the following lemma.

Lemma 0.2. Let F : (X,OX) → (Y,OY ) be a separated morphism. If Z ⊂ X is
a locally closed subset such that F |Z : (Z,OZ) → (Y,OY ) is proper, then Z ⊂ X is
closed.

Sketch: Prove ∆X/Y : X → X ×Y X is closed and π1 : X ×Y Z → X are closed.
Deduce that ∆X/Y |Z : Z → X ×Y Z is closed, thus Z = π1(∆X/Y |Z(Z)) ⊂ X is
closed.

Solution: Because F is separated, ∆X/Y : X → X×Y X is a closed morphism. So
the restriction, ∆X/Y : ∆−1

X/Y (X ×Y Z) → X ×Y Z is a closed morphism. But this
is precisely ∆X/Y |Z : Z → X ×Y Z, in particular ∆X/Y (Z) ⊂ X ×Y Z is relatively
closed. Because F |Z : Z → Y is proper, the base-change by F : X → Y is a closed
morphism. The base-change is precisely, π1 : X ×Y Z → X. Therefore the image
under π1 of the closed subset ∆X/Y (Z) is closed, i.e., Z ⊂ X is closed.

(c) Back to the proposition, let V ⊂ X be a dense open such that F |V : V → Y
is finite. By Required Problem 4(c) from Problem Set 4, F |V is proper. Use
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(b) to prove V ⊂ X is open and closed, thus all of X. Deduce it suffices to
prove the proposition after replacing X by a dense open affine W ⊂ X (with
V = W ∩ F−1(U)).

Solution: By (b), V ⊂ X is open and closed, thus all of X. Let W ⊂ X be a dense
open affine. By a similar argument to (a), F |W : W → Y is separated, dominant
and generically finite. Assume the proposition holds for F |W , i.e., there exists a
dense open subset U ⊂ Y such that F |W : (F |W )−1(U) → U is finite. Define
V = (F |W )−1(U) = W ∩ F−1(U). By the argument above, V ⊂ F−1(U) is open
and closed, thus all of F−1(U). Therefore F : F−1(U) → U is finite.

Required Problem 2: This is the follow-up to Required Problem 1. You may
assume all parts of that problem. Thus F : (X,OX) → (Y,OY ) is a generically
finite morphism of affine varieties. Let a1, . . . , an ∈ k[X] be generators for k[X]
as a k-algebra. Because k(X)/k(Y ) is an algebraic extension, each ai satisfies
a polynomial equation with coefficients in k[Y ]. Clearing denominators, each ai

satisfies a polynomial equation fi(t) with coefficient in k[Y ],

fi(t) = ci,di
tdi + · · ·+ ci,1t+ ci,0,

where each ci,di 6= 0. Define c = c1,d1 · · · cn,dn . Prove that for U = D(c) ⊂ Y and
F−1(U) = D(F#(c)) ⊂ X, F : F−1(U) → U is a finite morphism.

Solution: The coordinate ring of F−1(D(c)) = D(F#c) is generated as a k-algebra
by a1/1, . . . , an/1 and 1/F#c. Of course 1/F#c satisfies the monic polynomial over
k[D(c)], t− 1/c. For every i = 1, . . . , n, define c′i = c/ci,di =

∏
j 6=i cj,dj . Then ai/1

satisfies the monic polynomial equation over k[D(c)],

gi(t) = tdi + (c′i/c)ci,di−1t
di−1 + · · ·+ (c′i/c)ci,1t+ (c′i/c)ci,0.

Therefore each of the generators a1/1, . . . , an/1 and 1/F#c are integral over k[D(c)].
By standard commutative algebra, this implies that k[F−1(D(c))] is an integral
extension of k[D(c)]. By Prop. 14.18, F : F−1(D(c)) → D(c) is a finite morphism.

Required Problem 3: Let F : (X,OX) → (Y,OY ) be a quasi-compact, separated
morphism of algebraic varieties. For every p ∈ X, denote Xp = F−1(F (p)). For
every integer e ≥ 0, define Ue(X,F ) = {p ∈ X|dim(Xp, p) ≤ e}. In this problem,
you will prove the following proposition of Chevalley. This problem has many parts.
Do the parts you can; it will be graded generously.

Proposition 0.3. For every integer e ≥ 0, Ue(X,F ) ⊂ X is an open subset.

(a) Prove it suffices to consider the case where (Y,OY ) is affine and (X,OX) is
affine.

Solution: For every open subset V ⊂ Y and every open subset W ⊂ F−1(V ),
denoting F |W : W → V , Wp = Xp ∩ W is an open subset, thus dim(Wp, p) =
dim(Xp, p). Therefore Ue(W,F |W ) = Ue(X,F ) ∩W . Let Vα be a covering of Y by
open affine subsets. For every α, let (Wα,β) be a covering of F−1(Vα) by open affine
subsets. If each Ue(Wα,β , F |W ) ⊂ Wα,β is open, then each Ue(Wα,β , F |W ) ⊂ X is
open, and therefore,

Ue(X,F ) = ∪(α,β)(Ue(X,F ) ∩Wα,β) = ∪(α,β)Ue(Wα,β , F |W ),

is an open subset of X.

(a) Prove the following simple lemma from topology.
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Lemma 0.4. Let U ⊂ X be a topological space such that for every closed subset
C ⊂ X containing X − U and intersecting U , there is a nonempty relatively open
subset O ⊂ C contained in U ∩ C. Then U ⊂ X is open.

Hint: For the closure C of X − U , prove C ∩ U = ∅, hence U = X − C is open.

Solution: Denote by C the closure of X −U in X. This certainly contains X −U .
If C ∩ U 6= ∅, then by hypothesis there exists a nonempty relatively open subset
O ⊂ C contained in U ∩ C. Let D = C − O. This is relatively closed in C which
is closed in X. Thus D is a closed subset of X. And D contains X − U . Thus
C ⊂ D. But, by construction, D is propertly contained in C. This contradiction
proves C ∩ U = ∅. So C = X − U , i.e., U = X − C is an open subset of X.

(b) Let Z ⊂ X be a closed set containing X − Ue(X,F ). Prove Ue(Z,F |Z) =
Ue(X,F ) ∩ Z. Combined with (a), reduce Proposition 0.3 to the proposition.

Proposition 0.5. For every integer e ≥ 0, if Ue(X,F ) ⊂ X is nonempty, it
contains a nonempty open subset of X.

Sketch: Denote V = X − Z. For every p ∈ X and every irreducible component
T ⊂ Xp containing p, if T ∩ V is nonempty, prove dim(T ) ≤ e. Conclude if
p ∈ Ue(Z,F |Z), every irreducible component of Xp has dimension ≤ e.

Solution: For every p ∈ X and every irreducible component T ⊂ Xp, if there exists
q ∈ T ∩ V , then T ⊂ Xq is an irreducible component passing through q. Because
q ∈ V ⊂ Ue(X,F ), dim(T, q) ≤ e. By Corollary 18.6, dim(T ) ≤ e, in particular
dim(T, p) ≤ e.

Let p ∈ Ue(Z,F |Z) and let T ⊂ Xp be an irreducible component. If T intersects V ,
by the last paragraph dim(T, p) ≤ e. If T ∩ V = ∅, then T ⊂ Z and thus T ⊂ Zp.
By hypothesis, dim(Zp, p) ≤ e, thus dim(T, p) ≤ e. Since this holds for every
irreducible component T of Xp containing p, dim(Xp, p) ≤ e, i.e., p ∈ Ue(X,F ).

Assume Proposition 0.5. Then, for every closed subset Z ⊂ X containing X −
Ue(X,F ), if Z ∩ Ue(X,F ) = Ue(Z,F |Z) is nonempty, it contains a nonempty open
subset of Z. By Lemma 0.4, Ue(X,F ) is an open subset, i.e., Proposition 0.3 holds.
Therefore it suffices to prove Proposition 0.5.

(c) By considering the restriction of F to each irreducible component of X, reduce
Proposition 0.5 to the case that X and Y are irreducible and F is dominant.

Solution: This is straightforward.

(d), e = 0 If U0(X,F ) is nonempty, use Corollary 17.4 to prove dim(X) = dim(Y ),
thus k(X)/k(Y ) is algebraic. Assuming Required Problem 2, prove U0(X,F ) con-
tains a nonempty open subset of X. Deduce Proposition 0.3 for e = 0.

Solution: Because F is a dominant morphism of irreducible varieties, there is
an induced map F# : k(Y ) → k(X). Let p ∈ U0(X,F ). By Corollary 17.4,
dim(X, p) ≤ dim(Y, F (p)). Thus tr.degk(k(X)) ≤ tr.degk(k(Y )) by Corollary 18.5,
i.e., F# is an algebraic field extension. Since it is also a finitely generated field
extension, it is a finite algebraic field extension, hence F is a generically finite
morphism. By Required Problem 2, there exists a dense open subset V ⊂ Y such
that F : F−1(V ) → V is finite. Therefore F−1(V ) ⊂ X is a nonempty open subset
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contained in U0(X,F ). Together with (a), (b) and (c) this proves Proposition 0.3
for e = 0.

(e), e > 0 Let p ∈ Ue(X,F ). Let f1, . . . , fe ∈ mpOXp,p be a system of parameters.
There exists an open subset p ∈ V ⊂ X and elements g1, . . . , ge ∈ OX(V ) whose
images in OXp,p are f1, . . . , fe. Define G = (g1, . . . , ge) : V → Ae

k, and consider
F × G : V → Y × Ae

k. Prove p ∈ U0(X,F × G) ⊂ Ue(X,F ). Assuming (d) which
proves Proposition 0.3 for e = 0, prove Ue(X,G) contains an open subset of X,
thus proving Proposition 0.3.

Solution: By Krull’s Hauptidealsatz, Theorem 17.1, there exists a system of pa-
rameters f1, . . . , fe ∈ mpOXp,p. There exists an open affine subset p ∈ V ⊂ X and
elements g1, . . . , ge ∈ OX(V ) germs at p are f1, . . . , fe. Define G = (g1, . . . , ge) :
V → Ae

k and consider F ×G : V → Y ×Ae
k. By construction, F ×G(p) = (F (p), 0).

Of course (F×G)−1(F (p), 0) = F−1(F (p))∩G−1(0), i.e., F−1(F (p))∩V(g1, . . . , ge).
Because f1, . . . , fe ∈ mpOXp,p is a system of parameters, mp ⊂ OXp

(V ∩Xp) is a
minimal prime over 〈g1, . . . , gp〉OXp(V ∩Xp). By the ideal-variety correspondence,
{p} is an irreducible component of (F ×G)−1(F (p), 0), i.e., p ∈ U0(V, F ×G). By
(d), U0(V, F ×G) ⊂ V is open, thus it is nonempty and open. Let q ∈ U0(V, F ×G).
By Corollary 17.4 applied to G : (F−1(F (q)), q) → (Ae

k, G(q)), dim(Xq, q) ≤ e, i.e.,
q ∈ Ue(X,F ). Thus U0(V, F ×G) ⊂ Ue(X,F ) is a subset that is a nonempty open
subset of X. Together with (a), (b) and (c), this proves Proposition 0.3.

Required Problem 4: Before solving this problem, read through Problem 5
(although you don’t have to solve it). Let X be an algebraic variety. Let n ≥ 0 be
an integer.

Definition 0.6. An Abelian cone ζ is a vector bundle of rank n on X if for every
point p ∈ X there exists an open subset p ∈ U ⊂ X such that π−1(U) is isomorphic
to U × An as an Abelian cone over U .

(a) Let ζ = (π : E → X,+, ·, 0) be a vector bundle of rank n on X and let
F : Y → X be a regular morphism. Denote EY := Y ×X E, and πY : EY → Y
is the projection. Prove there are “natural” choices of +, ·, and 0 such that (πY :
EY → Y,+, ·, 0) is a vector bundle of rank n on Y . This is the pullback vector
bundle, denoted F ∗ζ. Indicate why F ∗ is a functor from the category of vector
bundles on X to the category of vector bundles on Y (but you don’t have to prove
this). Of course the same is true for Abelian cones as well – prove this if you prefer.

Solution: Comparing universal properties, the following morphisms are inverse
isomorphisms,

(prY ◦ pr1)× ((prE ◦ pr1)× (prE ◦ pr2)) : (Y ×X E)×Y (Y ×X E)
→ Y ×X (E ×X E),

(prY × (pr1 ◦ prE×XE))× (prY × (pr2 ◦ prE×XE)) : Y ×X (E ×X E)
→ (Y ×X E)×Y (Y ×X E).

Denote the first morphism by α. Define +Y : EY ×Y EY → EY to be the compo-
sition of α with,

prY × (+X ◦ prE×XE) : Y ×X (E ×X E) → Y ×X E.

Similarly, define ·Y : A1
k × EY → EY to be,

prY × (·X ◦ (prA1
k
× prE)) : A1

k × Y ×X E → Y ×X E.
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Finally, define 0Y : Y → EY to be,

IdY × (0X ◦ F ) : Y → Y ×X E.

By definition, each of +Y , ·Y and 0Y is compatible with projection to Y . Moreover,
for every y ∈ Y the fiber over y of (πY : EY → Y,+Y , ·Y , 0Y ) is canonically
isomorphic to the fiber over F (y) of (π : E → X,+X , ·X , 0X), which by hypothesis
is the canonical structure on An

k for some n ≥ 0. Thus (πY : EY → Y,+Y , ·Y , 0Y )
is an Abelian cone.

Let φ : E1 → E2 be a homomorphism of Abelian cones on X. Define F ∗φ :
Y ×X E1 → Y ×X E2 to be prY × (φ ◦ prE1

). By definition, this is compatible with
projection to Y . Moreover, for every y ∈ Y the restriction of F ∗φ to the fiber over
y agrees with the restriction of φ to the fiber over F (y), from which it immediately
follows that F ∗φ is compatible with +Y , ·Y and 0Y for Y ×X E1 and Y ×X E2.
(N.B.: This argument would not be sufficient if Y and X were schemes. Then more
diagram-chasing would be involved.)

Together ζ 7→ F ∗ζ and φ 7→ F ∗φ define a functor from the category of Abelian
cones over X to the category of Abelian cones over Y . Moreover, for every n ≥ 0,
the variety F ∗(X ×An

k ) = Y ×X (X ×An
k ) is canonically isomorphic to Y ×An

k and
this isomorphism is an isomorphism of Abelian cones over Y .

Now suppose that E is a vector bundle of rank n on X. For every p ∈ Y , there
exists an open subset F (p) ∈ V ⊂ X such that E|V is isomorphic to V × An

k .
Therefore F ∗E|F−1(V ) = (F |V )∗(E|V ) is isomorphic to (F |V )∗(V × An

k ), which is
canonically isomorphic to F−1(V )×An

k . Therefore F ∗E is a vector bundle of rank
n on Y .

(b) Given a second regular morphism G : Z → Y , prove there is a natural iso-
morphism of functors from the category of vector bundles on X to the category of
vector bundles on Z, θG,F (ζ) : G∗F ∗ζ → (F ◦G)∗ζ. Given a third regular morphism
H : W → Z, prove that,

θH,G◦F (ζ) ◦H∗(θG,F (ζ)) = θH◦G,F (ζ) ◦ θH,G(F ∗ζ).

Solution: There are canonical inverse isomorphisms,

prZ × (prE ◦ prY×XE) : Z ×Y (Y ×X E) → Z ×X E,
prZ × ((G ◦ prZ)× prE) : Z ×X E → Z ×Y (Y ×X E).

Denote the first morphism by θG,F (E). In fact this is defined for every morphism
π : E → X, not just for the projection morphism of an Abelian cone. For every
pair π1 : E1 → X, π2 : E2 → X and every morphism φ : E1 → E2 such that
π2 ◦ φ = π1, define F ∗φ = prY × (φ ◦ prE1

) : Y ×X E1 → Y ×X E2 as above. By
definition, θG,F (E2) ◦G∗(F ∗φ) equals,

(prZ × (prE2
◦ prY×XE2

)) ◦ (prZ × ((prY × (φ ◦ prE1
)) ◦ prY×XE1

)),

which equals prZ × (φ ◦ prE1
◦ prY×XE1

). On the other hand, this equals,

(prZ × (φ ◦ prE1
)) ◦ (prZ × (prE1

◦ prY×XE1
)).

Therefore θG,F (φ) is a natural transformation of functors.

To prove that,

θH,G◦F (ζ) ◦H∗(θG,F (ζ)) = θH◦G,F (ζ) ◦ θH,G(F ∗ζ),
5



observe that both equal prW × (prE ◦ prY×XE ◦ prZ×Y (Y×XE)).

(c) For every integer n ≥ 0, let X = Pn
k , let ζ be the trivial vector bundle of rank

n+ 1, i.e., Pn
k × An+1

k , and denote,

E = {([a0, . . . , an], (b0, . . . , bn)) ∈ Pn
k×An+1

k |for every 0 ≤ i < j ≤ n, ajbi−aibj = 0}.

Prove that E is a sub-Abelian cone of ζ and is, in fact, a vector bundle of rank 1
on X. This is the tautological rank 1 subbundle on Pn

k .

Solution: Given a variety X and an Abelian cone π1 : E1 → X, to prove a
subvariety E2 ⊂ E1 is a sub-Abelian cone, it suffices to prove the following,

(i) 0(X) ⊂ E2,
(ii) +(E2 ×X E2) ⊂ E2, and
(iii) ·(A1

k × E2) ⊂ E2.

Let E1 = Pn
k × An+1

k and let E2 = E. In this case, Pn
k × {0} clearly satisfies the

defining equations of E, so 0(Pn
k ) ⊂ E. For every element p = [a0, . . . , an] ∈ Pn

k ,
the fiber of E over p is just

{(λa0, . . . , λan) ∈ An+1
k |λ ∈ A1

k}.

This is clearly stable under addition of pairs of elements and stable under scalar
multiplication. Thus E ⊂ Pn

k × An+1
k satisfies (i), (ii) and (iii), i.e., it is a sub-

Abelian cone.

For every integer i = 0, . . . , n, there is a morphism φn : D+(xi) × A1
k → E|D+(xi)

defined by,

([a0, . . . , an], λ) 7→ ([a0, . . . , an], (λa0/ai, . . . , λan/ai)).

It is straightforward to check this is an isomorphism of Abelian cones. Therefore,
since the sets D+(xi) cover Pn

k , E is a vector bundle of rank 1 on Pn
k .

Problem 5, Abelian cones: Let X be an algebraic variety.

Definition 0.7. An Abelian cone over X is a datum ζ = (π,+, ·, 0) of a regular
morphism of algebraic varieties π : E → X, a regular morphism + : E ×X E → E,
denoted (e1, e2) 7→ e1+e2, a regular morphism · : A1

k×E → E, denoted (λ, e) 7→ λ·e,
and a regular morphism 0 : X → E, denoted x 7→ 0x, satisfying the following
axioms.

(i) For every (e1, e2) ∈ E ×X E, π(e1 + e2) = π(e1) = π(e2); for every e ∈ E
and λ ∈ A1

k, π(λ · e) = π(e); and for every x ∈ X, π(0x) = x.
(ii) For every x ∈ X, denoting Ex = π−1(x), there exists an integer n ≥ 0

(depending on x) such that the datum (Ex,+, ·, 0x) is isomorphic to the
standard datum (An,+, ·, 0).

The variety E is called the total space, the morphism π is the projection, and the
morphism 0 is the zero section. If ζ, η are Abelian cones over X, a homomorphism
of cones from ζ to η is a regular morphism F : Eζ → Eη such that πη ◦ F = πzeta,
such that F (e1 + e2) = F (e1) + F (e2), and such that F (λ · e) = λ · F (e), for every
e1, e2, e and λ.

(a) For every integer n ≥ 0, for E = X × An
k and π = π1 : X × An

k → X, prove
there is a “natural” choice of +, · and 0 so that (π,+, ·, 0) is an Abelian cone. This
is called the trivial vector bundle of rank n.
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Solution: Let F : X → A0
k be the unique morphism. The datum (π : An

k →
A0

k,+, ·, 0) is an Abelian cone over A0
k, where +, · and 0 are the usual morphisms.

By Problem 4(a), there is a natural structure of vector bundle on F ∗An
k = An

k ×X.

Let ζ be an Abelian cone overX. The sheaf of sections of ζ is the sheaf of sets Esec on
X whose sections over each open U ⊂ X are the regular morphisms s : U → π−1(U)
such that π ◦ s = IdU . The sheaf of functionals of ζ is the sheaf of sets Efunc

on X whose sections over each open U ⊂ X are the Abelian cone morphisms
F : π−1(U) → U × A1

k.

(b) Prove that for every open subset U ⊂ X, the morphisms + and · naturally
determine a structure of OX(U)-module on Esec(U) and Efunc(U), and for every
inclusion V ⊂ U , the restriction maps Esec(U) → Esec(V ) and Efunc(U) → Efunc(V )
are homomorphisms of OX(U)-modules. Such a sheaf is called a sheaf of OX-
modules.

Solution: First consider Esec(U). For every pair of sections s1, s2 ∈ Esec(U), the
morphism s1 + s2 := + ◦ (s1 × s2) is a section in Esec(U). For every element
f ∈ OX(U) and every section s ∈ Esec(U), the element f · s := · ◦ (f × s) is a
section in Esec(U). In particular, define s1 − s2 := s1 + (−1 · s2). The restriction
of 0 to U is a section in Esec(U). It remains to prove the axioms for an OX(U)-
module: associativity, commutativity and cancellation for addition, distributivity
of scalar multiplication and addition in OX(U) and in Esec(U), and distributivity
of scalar multiplication and multiplication in OX(U). Each of these is implied by
a corresponding axiom for the morphisms +, · and 0, e.g., distributivity of scalar
multiplication and addition in Esec(U) is commutativity of the following diagram,

A1
k × (E ×X E)

(·◦pr1◦prE×E)×(·◦pr2◦prE×E)
−−−−−−−−−−−−−−−−−−−−→ E ×X E

IdA1
k
×+

y y+

A1
k × E

·−−−−→ E

Every such compatibility is an equality of morphisms compatible with projection
to the base X. To prove the morphisms are equal, it suffices to restrict to the fiber
over every point in X and check equality of the restrictions. But then the corre-
sponding axiom for (An

k ,+, ·, 0) implies equality of the restrictions. Thus Esec(U) is
an OX(U)-module.

For Efunc(U), given elements F1, F2 ∈ Efunc(U), define F1+F2 to be the composition
of ∆E/X : E → E×XE, of π×((F1◦pr1)×(F2◦pr2)) : E×XE → X×(A1

k×A1
k), and

of pr1× (+ ◦pr1) : X × (A1
k ×A1

k) → X ×A1
k. Given f ∈ OX(U) and F ∈ Efunc(U),

define f ·F to be the composition of F : E → X×A1
k, of pr1×((f ◦pr1)×pr2) : X×

A1
k → X×(A1

k×A1
k), and of pr1×(·◦pr2) : X×(A1

k×A1
k) → X×A1

k. Finally, define
0 : E → X×A1

k to be the composition of π : E → X and IdX×0 : X → X×A1
k. As

above, the axioms for an OX(U)-module reduce to equality of certain morphisms
compatible with projection to X. Equality can be checked after restriction to fibers
over points of X. And then equality follows from the corresponding axiom for An

k .
Thus Efunc(U) is an OX(U)-module.

For every inclusion V ⊂ U , it is clear that the addition and scaling maps and the
zero element are compatible with restriction.
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(c) Let F : Eζ → Eη be a homomorphism of Abelian cones over X. Prove there
are induced homomorphisms of sheaves of OX -modules, F∗ : Eζ,sec → Eη,sec and
F ∗ : Eη,func → Eζ,func.

Solution: For every open subset U ⊂ X, define F∗(U) : Eζ,sec(U) → Eη,sec(U)
by mapping an elements s : U → Eζ to F ◦ s : U → Eη. Similarly, define F ∗ :
Eη,func(U) → Eζ,func(U) by mapping an element φ : U ×X Eη → U × A1

k to φ ◦
(pr1 × (F ◦ pr2)) : U ×X Eζ → U × A1

k. The axioms for F∗ and F ∗ to be OX(U)-
module homomorphisms are dealt with in a similar manner to (b). And these maps
are clearly compatible with restriction for every inclusion V ⊂ U . Thus they are
homomorphisms of sheaves of OX -modules.

(d) Let X = A1
k, let ξ be the trivial vector bundle of rank 1, X × A1

k, whose total
space is just A2

k. Denote by E ⊂ A2
k the closed subvariety V(xy). Prove that E is

a sub-Abelian cone of ζ. Denote this by η.

Solution: Quite generally, let ζ = (πζ : Eζ → X,+ζ , ·ζ , 0ζ) be an Abelian cone over
X. Let F ⊂ Eζ be a closed subvariety. If +ζ(F ×X F ) ⊂ F and if ·ζ(A1

k × F ) ⊂
F , then η := ((πζ)|F : F → X, (+ζ)|F×XF , (·ζ)|A1

k×F ) is an Abelian cone over
X: the induced Abelian subcone. In the case above, denote F = V(xy). For
every ((a, b1), (a, b2)) ∈ F ×X F , +((a, b1), (a, b2)) = (a, b1 + b2) and a(b1 + b2) =
ab1 + ab2 = 0 + 0 = 0. Therefore (a, b1 + b2) ∈ F . Similarly, for every c ∈ A1

k,
·(c, (a, b)) = (a, cb) and a(cb) = c(ab) = c0 = 0. Therefore (a, cb) ∈ F . So η is an
Abelian subcone.

(e) Denote by ζ the trivial vector bundle on X of rank 0, i.e., X ×A0
k, and denote

by F : ζ → η the unique homomorphism of Abelian cones over X. Prove that F∗ is
an isomorphism, but F ∗ is not an isomorphism. Because the sheaves of functionals
“detect” homomorphisms of Abelian cones that sheaves of sections do not detect,
they are used more often in algebraic geometry (sheaves of sections are frequently
used for vector bundles, especially in other branches of geometry, but rarely used
for Abelian cones that are not vector bundles).

Solution: Let U ⊂ X be any open subset. Let s : U → U×X F be any morphisms.
The subset V = U∩D(x) ⊂ U is open, and s|V is a morphism to V(y) ⊂ D(x)×A1

k,
i.e., s|V is a morphism to D(x) × {0}. Therefore s|V = 0V . Moreover V ⊂ U is
dense because X is irreducible and, of course, F is separated. Therefore s = 0U . In
particular, F∗(U) : Eζ,sec(U) → Eη,sec(U) is an isomorphism for every open U ⊂ X,
i.e., F∗ is an isomorphism of sheaves of OX(U)-modules.

On the other hand, the defining inclusion i : U ×X F → U × A1
k is an element

of Eη,func(U). If 0 ∈ U , then the restriction of i to π−1(0) is an isomorphism. In
particulat, i 6= 0U . But F ∗(U)(i) = F ∗(U)(0U ) = 0U . So F ∗(U) is not injective,
in particular it is not an isomorphism. Thus F ∗ is not an isomorphism of sheaves
of OX(U)-modules. In fact, the stalk of Eη,func(U) at 0 ∈ X as a module over
OX,0 = k[x](x) is isomorphic to the residue field k = k[x](x)/mX,0k[x](x). The sheaf
Eη,func(U) is an example of a skyscraper sheaf.

Problem 6: Let X be a variety and let ζ = (π : E → X,+, ·, 0) be an Abelian cone
on X. For every open set U ⊂ X there is a pairing 〈−,−〉U : Efunc(U)× Esec(U) →
OX(U) which maps a pair (F, s) of a functional F : π−1(U) → U×A1

k and a section
s : U → π−1(U) to the regular function pr2 ◦ F ◦ s.
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(a) Prove 〈−,−〉U is bilinear for the action of OX(U) on each module.

(b) Prove that for every inclusion V ⊂ U , 〈F |V , s|V 〉V = (〈F, s〉U )|V . Deduce that
for every element x ∈ X, there is a pairing of stalks 〈−,−〉x : (Efunc)x × (Esec)x →
OX,x.

(c) If ζ is a vector bundle, prove that for every x ∈ X, the pairing 〈−,−〉x is
a perfect pairing, i.e., the following induced homomorphisms of OX,x-modules are
isomorphisms,

(Esec)x → HomOX,x
((Efunc)x,OX,x),

(Efunc)x → HomOX,x
((Esec)x,OX,x).

Problem 7, The universal property of projective space: Let n ≥ 0 be an
integer, and let η = (π : E → Pn,+, ·, 0) be the tautological rank 1 subbundle on
Pn

k , and let φ : E → Pn
k ×An+1

k be the inclusion. This is a homomorphism of vector
bundles on Pn

k such that for every x ∈ Pn
k , the induced map φx : Ex → An+1

k is
injective.

(a) Let X be a variety, let ζ = (π : L→ X,+, ·, 0) be a vector bundle of rank 1 on
X, and let ψ : L→ X×An+1

k be a homomorphism of vector bundles on X such that
for every x ∈ X, the induced map φx : Ex → An+1

k is injective. Let U = L− 0(X),
the complement of the zero section, and denote by G : U → Pn

k the composition,

U
φ−→ X × (An+1

k − {0}) π2−→ (An+1
k − {0})

πPn
k−−→ Pn

k .

Prove there exists a unique morphism F : X → Pn
k such that F ◦ π = G. Hint:

Use the gluing lemma to reduce to the case that L ∼= X ×A1
k and compose G with

any section disjoint from the zero section.

Solution: Denote by C = {(U,FU )} the collection of all pairs (U,FU ) of an
open subset U ⊂ X and a morphism FU : U → Pn

k such that FU ◦ ππ−1(U)

equals G|π−1(U). Because π : π−1(U) → U is surjective, if there exists a mor-
phism FU such that FU ◦ ππ−1(U) = G|π−1(U), then FU is unique. In particular,
given (U1, FU1), (U2, FU2) in C, since both FU1 |U1∩U2 and FU2 |U1∩U2 satisfy the
condition for FU1∩U2 , FU1 |U1∩U2 = FU2 |U1∩U2 , i.e., the gluing lemma applies. So
there exists an open subset V ⊂ X and a morphism FV : V → Pn

k such that
FV ◦ π|π−1(V ) = G|π−1(V ) and such that for every open subset U ⊂ X and every
FU , U is contained in V and FU = FV |U . The claim is that U = X.

Let U ⊂ X be an open subset, and assume there exists a section s : U → U ×X L
in Esec(U) such that s(U) is disjoint from 0U (U). Define ψ(U)(s) : U → An+1

k to
be the composition of s : U → U ×X L and of of prAn+1

k
◦ψ ◦pr2 : U ×X L→ An+1

k .

Because ψ is injective on fibers, (ψ(U)(s))(X) ⊂ An+1
k − {0}. Denote by πPn

k
:

(An+1
k − {0}) → Pn

k the projection. Denote by ψ(U)(s) : X → Pn
k the composition

πPn
k
◦ ψ(s). Then ψ(U)(s) ◦ π = G|π−1(U), i.e., FU = ψ(U)(s) is a morphism as in

the previous paragraph. Therefore U ⊂ V if there exists a section s ∈ Esec(U) such
that s(U) is disjoint from 0U (U).

Because L is a vector bundle, for every point p ∈ X, there exists an open set
p ∈ U ⊂ X such that U ×X L is isomorphic to U × A1

k as vector bundles over U .
In particular, since IdU × 1 : U → U ×A1

k is a section whose image is disjoint from
0U (U), there exists a sections s : U → U ×X L such that s(U) is disjoint from
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0U (U). By the last paragraph, U ⊂ V . In particular, p ∈ U for every p ∈ X, i.e.,
V = X. This proves the claim.

(b) Prove there exists a unique isomorphism θ : L→ F ∗E such that ψ = F ∗φ ◦ θ.
This is the universal property of projective space: morphisms from a variety X to Pn

k

are in natural bijective correspondence to the set of pairs (L,ψ) up to precomposing
ψ with an automorphism of L.

Solution: Define C = {(U, θU )} to be the collection of all pairs (U, θU ) of an
open subset U ⊂ X and an isomorphism θU : U ×X L → (F |U )∗E such that
ψ|U = (F |U )∗φ ◦ θU . For any two isomorphisms θU , θ

′
U : U ×X L → (F |U )∗E,

there is a unique morphism γ : U → Gm such that θ′U = γ · θU . Since ψ|U =
(F |U )∗φ ◦ θ′U = γ · ((F |U )∗φ ◦ θ′U ) = γ ·ψ|U , and since ψ|U is injective on all fibers,
γ is the constant morphism with value 1, i.e., θ′U = θU . So, for the same reason
as in (a), there is a maximal open subset V ⊂ X and a maximal isomorphism θV .
The claim is that V = X.

In fact there is no question what θ is. By base-change, the morphism θ is equivalent
to a morphism θ̃ : L → E. Recall E is a closed subvariety of Pn

k × An+1
k . Define

θ̃ : L→ Pn
k ×An+1

k to be (F ×π)× (prAn+1
k

◦ψ). By construction, the restriction of
this morphism to L− 0X(X) maps into E. Since this is a dense subset of L, all of
L maps into E. Moreover, θ : L → F ∗E is the unique morphism of Abelian cones
such that ψ = F ∗φ ◦ θ. It only remains to prove that θ is an isomorphism.

Because ψ is injective on all fibers, also θ is injective on all fibers. For every p ∈ X,
there exists an open subset p ∈ U ⊂ X and isomorphisms α : U×XL→ U×A1

k and
β : U×X F ∗E → U×A1

k. Then β−1 ◦θ|U ◦α : U×A1
k → U×A1

k is a morphism that
is injective on all fibers. In particular, precomposing with IdU × 1 : U → U × A1

k,
and then composing with the projection prA1

k
: U × A1

k → A1
k gives a morphism

γ : U → A1
k which is everywhere nonzero, i.e., γ is a morphism U → Gm. Therefore

there is a multiplicative inverse δ of γ, i.e., δ · γ = γ · δ is the constant morphism 1.
Define θ−1

U to be δ · (α−1 ◦ β) : U ×X F ∗E → U ×X L. Then it is straightforward
to check that θ−1

U ◦ (θ|U ) and (θ|U ) ◦ θ−1
U are identity morphisms. Therefore θ|U is

an isomorphism. In particular, p ∈ V for every p ∈ X, i.e., V = X.

Remark: Given two pairs (L1, ψ1), (L2, ψ2) as above, define an isomorphism of
pairs to be an isomorphism of vector bundles η : L1 → L2 such that ψ2 ◦ η =
ψ1. What we have proved is, for every pair (L,ψ) there is a unique morphism
F : X → Pn

k and a unique isomorphism θ : (L,ψ) → F ∗(E, φ). Therefore the set of
isomorphism classes of pairs (L,ψ) is in natural bijection with the set of morphisms
F : X → Pn

k . This is the universal property of projective space. It satisfies many
compatibilities: in particular this bijection is compatible with pullback by arbitrary
morphisms G : Y → X. Stated more precisely, there is a contravariant functor P :
Algebraic varieties → Sets assigning to every variety X the set of isomorphism
classes of pairs (L,ψ) on X, and assigning to every morphism G : Y → X the
induced map of sets, [(L,ψ)] 7→ P (G)[(L,ψ)] := [(G∗L,G∗ψ)]. The isomorphism
class [(E, φ)] ∈ P (Pn

k ) represents the functor P , i.e., there is an induced natural
transformation [(E, φ)] of contravariant functors,

[(E, φ)]X : HomAlg. var.(X,Pn
k ) → P (X),

(F : X → Pn
k ) 7→ F ∗[(E, φ)],
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and for every variety X this is a bijection of sets.

Problem 8: Let X be a variety, and let ζ, resp. ζ and η, be vector bundles on
X. For each of the following functors, resp. bifunctors, on the category of k-vector
spaces, define a natural analogue for ζ, resp. ζ and η, i.e., an analogous functor,
resp. bifunctor, on the category of vector bundles on X. Observe that even if X,
the total space of ζ and the total space of η are quasi-projective, it is not obvious
that the total space of each of the new vector bundles is quasi-projective (although
this turns out to be true). This is one justification of working in the larger category
of algebraic varieties.

(a) Duals, V 7→ V ∨ := Homk(V, k).

(b) Hom, (V,W ) 7→ Homk(V,W ).

(c) Tensor product, (V,W ) 7→ V ⊗k W.

Problem 9, Another definition of dimension I: Let X ⊂ Pn
k be a nonempty

projective algebraic subset.

(a) Prove that if dim(X) > 0, then for every f ∈ k[x0, . . . , xn]1 − {0}, the cor-
responding hyperplane H = V(f) ⊂ Pn

k intersects X. Hint: If X ∩ H = ∅ then
X ⊂ D(f) ∼= An

k , which, combined with universal closedness, implies X is a finite
set.

Solution: As proved some time ago, D+(f) is isomorphic to an affine space An
k as

a variety. So if X ∩H = ∅, then the inclusion i : X → D+(f) is a closed immersion.
For every coordinate function y : D+(f) → A1

k, consider A1
k as an open subvariety of

P1
k and form the composition y◦i : X → P1

k. The morphism (y◦i)×i : X → P1
k×Pn

k

is a closed immersion, because composition with pr2 is a closed immersion. Because
pr1 : P1

k ×Pn
k → P1

k is closed, it follows that (y ◦ i)(X) ⊂ P1
k is closed. On the other

hand, (y ◦ i)(X) ⊂ A1
k. Therefore (y ◦ i)(X) is a finite set, i.e., y ◦ i is constant

on every connected component of X. Since this holds for every y, i : X → An
k is

constant on every connected component of X, i.e., i(X) ⊂ An
k is a finite subset.

Since i is a closed immersion, X is a finite set. Hence dim(X) = 0. Therefore, if
dim(X) > 0, then H ∩X 6= ∅.

(b) If dim(X) = d, combine (a) with Krull’s Hauptidealsatz to conclude that for
every d hyperplanesH1, . . . ,Hd ⊂ Pn

k , the intersectionH1∩· · ·∩Hd∩X is nonempty.

Solution: Let d = dim(X). The claim is that for every integer 1 ≤ e ≤ d,
and every e hyperplanes H1, . . . ,He ⊂ Pn

k , the intersection H1 ∩ · · · ∩ He ∩ X is
nonempty. If d = e = 1, this follows from (a). Thus assume d > 1 and, by way
of induction, assume the result for d − 1. If e = 1, then again the result follows
by (a). Thus assume e > 1 and, by way of induction, assume the result for e − 1.
Let H1, . . . ,He ⊂ Pn

k be hyperplanes. By (a), Y = He ∩ X is nonempty. By
Krull’s Hauptidealsatz, either dim(Y ) = d or dim(Y ) = d − 1. In the first case,
then by induction on e, H1 ∩ · · · ∩He−1 ∩ Y is nonempty. In the second case, by
induction on d, H1 ∩ · · · ∩He−1 ∩ Y is nonempty. In either case, H1 ∩ · · · ∩He ∩X
is nonempty. So the claim is proved by induction on e and d. In particular, for
e = d, H1 ∩ · · · ∩Hd ∩X is nonempty.

Problem 10, Another definition of dimension II: This continues Problem
9, which you may now assume. If dim(X) = d, prove there exist hyperplanes
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H1, . . . ,Hd+1 ⊂ Pn
k such that H1 ∩ · · · ∩Hd+1 ∩X is empty. Deduce the following,

dim(X) = min{d ≥ 0|∃ hyperplanes H1, . . . ,Hd+1 ⊂ Pn
k s.t. H1∩· · ·∩Hd+1∩X = ∅}.

Hint: Work by induction on d. Let S ⊂ X be a finite set of elements of X
intersecting every irreducible component of X, and let H ⊂ Pn

k be a hyperplane
not intersecting S. Prove that H ∩X is either empty (if d = 0), or else has smaller
dimension than X.

Solution: The claim is that for every integer 0 ≤ e ≤ d, there exist e hyperplanes
H1, . . . ,He ⊂ Pn

k such thatH1∩· · ·∩He∩X has dimension d−e. The claim is proved
by induction on d. If d = 0, the statement is vacuous. Thus assume d > 0 and, by
way of induction, assume the claim for all smaller values of d. The claim for d is
proved by induction on e. For e = 0 the statement is vacuous. Thus assume e > 0
and, by way of induction, assume the claim for all smaller values of e. The projective
algebraic set X has finitely many irreducible components X1 ∪ · · · ∪Xr. For every
i = 1, . . . , r, let pi ∈ Xi be an element. The cones over these elements are finitely
many 1-dimensional subspaces of An+1

k . For any finite collection of 1-dimensional
subspaces, there exists a linear functions f ∈ k[x0, . . . , xn]1 that is nonzero on all of
them. So He = V(f) is a hyperplane in Pn

k such that {p1, . . . , pr}∩He = ∅. Denote
Y = He ∩ X. By Krull’s Hauptidealsatz, either dim(Y ) = d or dim(Y ) = d − 1.
But for every i = 1, . . . , r, Y ∩ Xi ⊂ Xi does not contain pi, thus Y ∩ Xi 6= Xi.
Therefore,

dim(Y ) = max{dim(Y ∩Xi)|i = 1, . . . , r} < max{dim(Xi)|i = 1, . . . , r} = dim(X),

i.e., dim(Y ) = d − 1. By the induction hypothesis for d, there exist hyperplanes
H1, . . . ,He−1 ⊂ Pn

k such thatH1∩· · ·∩He−1∩Y has dimension (d−1)−(e−1) = d−e,
i.e., H1∩· · ·∩He∩X has dimension d−e. This proves the claim for e. By induction
on e, the claim is true for d. By induction on d, the claim is true.

In particular, taking e = d, there exist hyperplanes H1, . . . ,Hd ⊂ Pn
k such that

H1 ∩ · · · ∩ Hd ∩ X has dimension 0, i.e., every irreducible component is a point.
Moreover, because it is a closed subset of Pn

k , it is quasi-compact. Therefore it is
a finite set. As used above, for every finite subset of Pn

k there exists a hyperplane
Hd+1 ⊂ Pn

k disjoint from this set. Therefore H1 ∩ · · · ∩Hd+1 ∩X = ∅.

Problem 11, An irreducible, separated variety that is not quasi-compact:
Thanks to Genya for inspiring this problem. For every integer n ≥ 0, define Un =
A2

k −{(0, 0)} with coordinates (xn, yn), for every pair of integers 0 < m < n, define
Um,n = D(xm) ⊂ Um, define Un,m = D(xn) ⊂ Un, define φm,n : Um,n → Un,m to
be (am, bm) 7→ (am, bm/a

n−m
m ), and define φn,m : Un,m → Um,n to be (an, bn) 7→

(an, a
n−m
n bn).

(a) For every pair of integers 0 ≤ m < n, prove φm,n and φn,m are inverse isomor-
phisms.

(b) Prove the datum ((Um), (Um,n), (φm,n)) satisfies the hypotheses of the gluing
lemma for varieties. Denote the associated variety by (U, (φm : Um → U)).

(c) To prove that U is separated, it suffices to prove for every pair of integers 0 ≤
m ≤ n, that φm(D(∗m))∩φn(D(−n)) is affine and OU (φm(D(∗m))∩φn(D(−n))) is
generated as a k-algebra by OUm

(D(∗m)) and OUn
(D−n), for ∗ = x, y and − = x, y.

Check this, in particular, for ∗ = y,− = y.
12



(d) Prove that all the open sets φm(D(xmym)) ⊂ U are equal. This is an irreducible
open subset that is dense in each φm(Um), thus it is dense in U . Conclude that U
is irreducible of dimension 2.

(e) Prove that U is not quasi-compact. Hint: Consider φm((0, 1)) ∈ U .

(f) You don’t have to do this part, it is just motivational. For every integer n ≥ 0,
define Fn : Un → A2

k by Fn(an, bn) = (an, a
n
nbn). Prove that the morphisms Fn

satisfy the gluing lemma for morphisms. Denote the corresponding morphism by
G : U → A2

k. Prove that G is an isomorphism over A2
k − (0, 0). What is the fiber of

G over (0, 0) ∈ A2
k?
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