Def. For every morphism of locally ringed spaces, $f: X \to S$, the diagonal ideal sheaf $\Delta_{X/S}$ is the kernel of the surjective morphism of sheaves of commutative unital rings $\Delta^+_X: \Delta^+_X(\mathcal{O}_{X,x}) \to \mathcal{O}_X$.

The two splittings, $\Delta^-_{X/S}(\mathcal{O}_{X,x}) \cong \mathcal{O}_X = \Delta^+_{X/S}(\mathcal{O}_{X,x}) \cong \mathcal{O}_X$, give $\Delta^+_{X/S}(\mathcal{O}_{X,x})$ a structure of \mathcal{O}_X-free \mathcal{O}_X algebra that is an isomorphism.

For every integer $l \geq 0$, the functor $\mathcal{O}_{X/S}: \mathcal{O}_X$-mod \to \mathcal{O}_X-mod associates to every left \mathcal{O}_X-module E the left \mathcal{O}_X-module,

$$\mathcal{O}_{X/S}(E) := (\Delta^+_{X/S}(\mathcal{O}_{X,x})/\Delta^+_{X/S}(\mathcal{O}_{X,x})) \otimes_{\mathcal{O}_X} E.$$

This is functor contravariant in the S-scheme X, and compatible with arbitrary base change of S.

In particular, the **Atiyah sequence** is the short exact sequence (locally split), $0 \to \Omega_{X/S} \otimes_{\mathcal{O}_X} E \to \mathcal{O}_{X/S}(E) \to E \to 0$.

For a quasi-coherent \mathcal{O}_S-module F, for $X = \text{Proj}(\mathcal{F})$, the **Atiyah** sequence of $\mathcal{O}_{\text{Proj}(\mathcal{F})}(1)$ is the Euler sequence twisted by $\mathcal{O}_{\text{Proj}(\mathcal{F})}(1)$, i.e., $\mathcal{O}_{\text{Proj}(\mathcal{F})}(1)$ equals f^*F and the Atiyah sequence is

$$0 \to \Omega_{X/S} \otimes_{\mathcal{O}_X} \mathcal{O}(1) \to f^*F \to \mathcal{O}_{\text{Proj}(\mathcal{F})}(1) \to 0$$

For every S-scheme $g: Y \to S$ and S-morphism $h: Y \to \text{Proj}(\mathcal{F})$, the Atiyah sequence of $h^*\mathcal{O}_{\text{Proj}(\mathcal{F})}(1)$ fits into a push-out diagram:

$$0 \to \Omega_{Y/S} \to \mathcal{O}_{Y/S}(f^*(\mathcal{O}(1))) \to h^*\mathcal{O}(1) \to 0$$

If g is smooth, then $\Omega_{Y/S}$ is locally free of finite rank, and the transpose is

$$0 \to f^*\mathcal{O}(-1) \to \mathcal{O}_{Y/S}(f^*(\mathcal{O}(1))) \to \Omega_{Y/S} \otimes_{\mathcal{O}_S} f^*\mathcal{O}(1(-1)) \to 0$$

$$0 \to f^*\mathcal{O}(-1) \to g^*f^*(\mathcal{O}(1)) \to \Omega_{Y/S} \otimes_{\mathcal{O}_S} f^*\mathcal{O}(1(-1)) \to 0$$
If \(F \) is locally free of finite rank and \(g \) is smooth, these are all locally free \(O_F \)-modules of finite rank. The transpose is
\[
0 \to h^* O_F \to g^* F \to h^* U(1) \to 0
\]
and
\[
0 \to \Omega_{Y/S} \otimes_{O_F} h^* O_F \to P_{Y/S}(h^* U(1)) \to h^* U(1) \to 0
\]
The morphism of projective space bundles over \(P_{S F} \),
\[
P_{P_{S F}}(\Omega_{P_{S F}} \otimes O_{P_{S F}}(-1)) \to P_{S F}(F^*) = P_{S F} \times_S P_{S F}
\]
is the universal hyperplane, i.e., the partial flag bundle \(\text{Flag}(1, n-1, S) \).
The pullback of this bundle over \(Y \) is the “incidence scheme” of hyperplanes intersecting \(Y \). The zero scheme of the composite,
\[
\pi^* (\Omega_{Y/S} \otimes_{O_F} h^* O_F \otimes O_{P_{S F}}(-1)) \to h^* (\Omega_{Y/S} \otimes_{O_F} O_{P_{S F}}(-1)) \to h^* O_{P_{S F}}(+1)
\]
is the scheme of “tangent hyperplanes” to \(Y \).

If \(g \) is unramified, the composite is surjective, and the zero scheme \(\text{Flag} \) is a projective space subbundle of \(C \) equal to the rank of \(\Omega_{Y/S} \otimes_{O_F} h^* O_F \otimes O_{P_{S F}}(-1) \), i.e., the relative dimension of \(Y/S \).

Thus, the codimension of the zero scheme in \(P_{Y}(g^* F^*) \) equals \(1 + \dim(Y/S) \).

Assuming that \(h \) is quasi-compact and quasi-separated, the image in \(P_{S F}/S \) of this zero scheme is constructible and every irreducible, locally closed subset has fiber dimension over \(S \) strictly less than \(\dim(h) \).

Thus the open complement of the closure of the image is dense in every fiber of \(P_{S F}/S \). This is the maximal open subscheme over which \(Y_{x_{P_{S F}}} \text{Flag}(1, n-1, F) \) is smooth.
1. Criterion for a cohomological/homological F-functor to be universal: \((\{F^i\}, \{F^0\})\) is universal if \(\forall i \geq 0\), \(\mathbb{Q} F^i\) is effaceable/injective, i.e., \(\forall \text{ object } M, F\) injection \(M \xrightarrow{w} N\) s.t. \(F^i(w) = 0\). An object \(M\) is \(F\)-acyclic if \(\forall i > 0, F^i(M) = 0\). If every object \(M\) has an injection into an \(F\)-acyclic object then \(F\) is effaceable, thus universal.

Example. Let \(B\) be a flat \(A\)-algebra. Then every projective \(B\)-module is \(A\)-flat. Thus, for every \(A\)-module \(M\) and \(B\)-module \(N\), \(\text{Tor}_p^B(\mathbb{Q} \otimes_A M, N) \cong \text{Tor}_p^A(M, \mathbb{Q} \otimes_A N)\).

2. Left adjoint functors preserve right exactness, colimits & projective objects. Right adjoints preserve left exactness, limits (= inverse limits) and injective objects.

Applications.

1. \(R\text{-mod}\) has enough injective objects.
2. \(\mathbb{A}^n\text{-mod}\) \(\mathcal{O}_X\text{-mod}\) has enough injectives.

3. Injective objects of \(\mathcal{O}_X\text{-mod}\) are flasque.

Given \(v \subset u\), since \(i_v^! \mathcal{O}_V \to i_u^! \mathcal{O}_U\) is injective,

\[\text{Hom}(i_v^! \mathcal{O}_V, F) \to \text{Hom}(i_u^! \mathcal{O}_U, F)\] is surjective.
Prop. 2.5. Flasque sheaves are \mathcal{O}_X-cyclic.

Proof: Let F be flasque. Let $0 \to F \to I \to G \to 0$ be a monomorphism to an injective \mathcal{O}_X-module.

By earlier argument, G is flasque & $\mathcal{I}(X) \to G(X)$ is surjective. Since $H^i(X, I) = 0$, then $H^i(X, F) = 0$.

But then, since G is flasque, $H^i(X, G) = 0$. ... \(\square \)

Consequence \Rightarrow Prop. 2.6. $H^p(X, -): \mathcal{O}_X \text{-mod} \to \Gamma(X, \text{Ab}_X) \to \mathbb{Z}$ agrees with $\mathcal{O}_X \text{-mod} \to \text{Ab}_X \xrightarrow{H^p(X, -)} \mathbb{Z} \text{-mod}$.

Vanishing thm. of Groth. X Noether of dim n $\implies X$ has cd $\leq n$.

Lemma 2.8. X Noether $\implies \text{colim}_t$ of flasques is flasque.

Prop. 2.9. X Noether $\implies H^p(X, \lim_i F_i) = \lim_i H^p(X, F_i)$.

Lemma 2.10. In general, for a closed embedding $Y \subseteq X$, $H^p(X, i_* F) = H^p(Y, F)$.

Reason: it is exact & sends flasques to flasques.

Pf of thm 1. Reduction 1. Suffices to prove the result when X is irreducible.
Base case. \(\dim X = 0 \), known.

Reduction 2. Every sheaf is a filtered colimit of ines of \(\Phi_i ! \mathbb{Z}_u \rightarrow \mathbb{F} \). So suffices to prove result for ines.

Reduction 3. Using L.E.S., reduce to \(\mathbb{F} = \text{et} \) of \(i_u ! \mathbb{Z}_u \). \(0 \rightarrow \mathbb{L} \rightarrow i_u ! \mathbb{Z}_u \rightarrow \mathbb{F} \rightarrow 0 \).

Reduction 4. There exists \(\xi \mathbb{Z}_x \rightarrow \mathbb{L} \) inj.

whose cohom has support strictly \(\subset X \). Induction reduces to the case \(\mathbb{F} = i_u ! \mathbb{Z}_u \).

Final step. \(0 \rightarrow i_u ! \mathbb{Z}_u \rightarrow \mathbb{L}_x \rightarrow i_u ^* \mathbb{Z}_x \rightarrow 0 \)

Since \(\dim Y < \dim X \), \(H^p (X, i_u ^* \mathbb{Z}_x) = 0 \) for \(p \geq n \) \(\Rightarrow \) \(H^q (X, i_u ! \mathbb{Z}_u) = H^q (X, \mathbb{Z}_x) \).

Since \(X \) is irre. \(\mathbb{L}_x \) is flasque. So \(H^q (X, i_u ! \mathbb{Z}_u) = 0 \) for \(q > n \).

Cohom on an affine scheme. B-1 Prop. 5.6, if \(\mathbb{A}^n X \) is affine \& \(\mathbb{F} \) is \(q \)-coh, then \(H^r (X, \mathbb{F}) = 0 \). What about higher cohomology? There is a bootstrap method induction argument.
using Čech cohomology. But it uses spectral sequences, which we will try to avoid. So we will stick to the Noetherian case and give a more direct argument.

Goal. Prove injective objects in the category of q-cohom sheaves are flasque, if X is Noetherian.

Reason. Then the same sort of argument as before proves all $H^i(X, F) = 0$.

Before proving this:

Then 3.7. (Serre's criterion for affineness) Let X be a q-cpct scheme. TEA

(i) X is affine
(ii) $H^0(X, F) = 0$ for all q-coht F
(iii) $H^i > 0 (X, I) = 0$ for all q-coht I in \mathcal{O}_X.

PF: $(i) \implies (ii) \implies (iii)$.

$(iii) \implies (i)$, $0 \to I_{Y_{up}} \to I_Y \to I(p) \to 0$

\exists $f \in I_Y$ not in $I_{Y_{up}}$. So $p \in D(f) \subset X - Y = U$. So $X_f = U_f$ is affine. q-cpctness filters.
Rash idea: I inj. $\Rightarrow I$ is divisible. $\Rightarrow I \rightarrow I$ soc.

Lem. 3.2: I inj. $\Rightarrow \Gamma_n(I)$ inj.

$\exists J$ s.t. $A \rightarrow J$, by Noeth.

$\exists \psi : \mathcal{C} \rightarrow \mathcal{D}$ such that $\psi(b) = 0$.

Then $\forall \theta : \mathcal{C} \rightarrow \mathcal{D}$, $\psi(\theta(b)) = 0$.

$\exists N$ such that $\forall \theta : \mathcal{C} \rightarrow \mathcal{D}$, $\psi(\theta(a^N b)) = 0$.

$L \rightarrow L \cap 2^N \rightarrow J$.

$A \rightarrow A/2^N \rightarrow J$.

$J \rightarrow J/2^N \rightarrow \cdots$.

$L \rightarrow L/2^N \rightarrow L/2^N \rightarrow \cdots \rightarrow L$, \cdots.