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Math 18.726 Lecture Summaries

Homework. These are the problems from the assigned Problem Set which can be completed using
the material from that date’s lecture.

Lecture 1. Feb. 8 Sheaves
Lecture 2. Feb. 13 Locally ringed spaces
Lecture 3. Feb. 15 Affine schemes and Proj
Lecture 4. Feb. 21 Properties of morphisms
Lecture 5. Feb. 22 Fiber products and separatedness
Lecture 6. Feb. 27 Valuative criteria
Lecture 7. Mar. 1 Proper morphisms
Lecture 8. Mar. 6 Chow’s lemma
Lecture 9. Mar. 8 Quasi-coherent sheaves
Lecture 10. Mar. 10 Modules and quasi-coherent sheaves
Lecture 11. Mar. 15 Quotients and Proj
Lecture 12. Mar. 20 Projective morphisms and divisors
Lecture 13. Mar. 22 More projective morphisms and divisors
Lecture 14. Apr. 3 Ample and very ample divisors
Lecture 15. Apr. 5 Homological algebra
Lecture 16. Apr. 10 Compatibility of derived functors
Lecture 17. Apr. 12 Cohomology of quasi-coherent sheaves on an affine scheme
Lecture 18. Apr. 19 Čech cohomology
Lecture 19. Apr. 24 Comparison of Čech and sheaf cohomology
Lecture 20. Apr. 26 Cohomology of invertible sheaves on projective space
Lecture 21. May 1 Duality for projective space
Lecture 22. May 3 Ext and Serre duality I
Lecture 23. May 8 Serre duality II
Lecture 24. May 10 Lefschetz theorems; relative differentials
Lecture 25. May 15 Dualizing and canonical sheaves; the theorem on formal functions
Lecture 26. May 17 Zariski’s Main Theorem

Lecture 1. February 8, 2006

Homework. Problem Set 1 Part I: (a), (b), (c), (e); Part II: Problems 2 and 3.

Stated “highlights”, i.e., the most important theorems, from the first half of the semester. Discussed
glueing lemma and how it leads to the notion of sheaves. Defined sheaves. Stated problem of
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sheafification. Defined stalks of sheaves of sets. Used stalks to construct sheafification of presheaves
of sets. Proved Proposition II.1.1: a morphism sheaves of sets is an isomorphism if and only if every
associated map of stalks is an isomorphism.

Fun problem 1. Let k be an algebraically closed field whose characteristic is not 2. Let (u, v, w) be
a general triple of elements in k, i.e., uvw(u+v+w) is nonzero. In P2, how many conics are tangent
to the 5 lines L1 = V(x), L2 = V(y), L3 = V(z), L4 = V(x+y+z) and L5 = V(ux+vy+wz)? What
is the equation of this line? Use the equation to find the number of conics tangent to L1, . . . , L4

and containing [x0, y0, z0] for any triple such that x0y0z0(x0 + y0 + z0) is nonzero.

Lecture 2. February 13, 2006

Homework. Problem Set 1 Part I: (d); Part II: Problem 1.

Sheaves of Abelian groups form an Abelian category. Associated to a continuous map f : X → Y ,
there are functors,

f∗ : SheavesX → SheavesY ,

f−1 : SheavesY → SheavesX .

These functors form an adjoint pair.

Defined locally ringed spaces. Associated to every commutative ring A a locally ringed space
Spec A. Stated the universal property of Spec A.

Partial answer to Fun Problem 1. Using duality between conics in P2 and conics in the dual
P2 of lines, observed the tangency conditions correspond to linear conditions on the dual conic.
Thus there exists a unique conic tangent to L1, . . . , L5. At request of students, left the remaining
parts of the problem until next lecture.

Fun Problem 2. Let k be a finite field and let f(x, y, z) be a quadratic, homogeneous polynomial
with coefficients in k. Show that f has a nonzero solution in k3. This is tricky! It is best to start
with k = F2, F3, and maybe F5. Given a point p in P2, how many conics with coefficients in k
contain p? How many smooth conics contain p? How many smooth conics are there in total in
P2? How many points are contained on a smooth conic? What happens when you compare these
numbers?

Lecture 3. February 15, 2006

Homework. Problem Set 2
The scheme Spec A associated to a commutative ring has a universal property. There is a ring

isomorphism
i : A→ OSpec A(Spec A).

For every locally ringed space (T,OT ), this determines a map of sets

θT : HomLRS(T, Spec A)→ HomRings(A,OT (T ))
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by associating to a morphism (f, f#) : (T,OT )→ (Spec A,OSpec A) the composite map of commu-
tative rings

A
i−→ OSpec A(Spec A)

f#

−→ OT (T ).

The universal property is that θT is a bijection for every (T,OT ).
One of the key steps in the proof is the observation that for locally ringed spaces (S,OS) and

(T,OT ), a morphism of ringed spaces (f, f#) : (S,OS) → (T,OT ) is a morphism of locally ringed
spaces if and only if for every open subset U of T and every element a ∈ OT (U), the inverse image
f−1(D(a)) equals D(f#a).

Defined Proj of a graded ring S. Sketched why it is a scheme. Discussed generic points and the
full embedding of the category of varieties into the category of schemes.

Lecture 4. February 21, 2006

Homework. Problem Set 2
Discussed open subschemes and quasi-compactness. Proved affine schemes are quasi-compact.

Defined the property of being locally Noetherian. Proved for every Noetherian ring A, Spec A is
locally Noetherian. Proved a scheme is locally Noetherian if and only if it has a covering by open
affine schemes Spec A with A Noetherian.

Defined a number of properties of morphisms: affine, quasi-affine, locally finite type, finite type,
locally finitely presented, finitely presented, finite and quasi-finite. Proved f : X → Y is affine if
and only if there exists a covering of Y by open affine schemes Yi such that each f−1(Yi) is also
affine. Thus, affineness is local on the target. The same is true for quasi-compact, locally finite
type, finite type, locally finitely presented, finitely presented, finite and quasi-finite.

Defined fiber products. Asserted fiber products exist in the category of locally ringed spaces.
Proved a fiber product of affine schemes exists and is affine.

Fun Problem 3. From János Kollár’s colloquium. Compute the group of automorphisms of the
Klein quartic curve, i.e., the zero set in P2 of the quartic polynomial,

x3y + y3z + z3x.

Lecture 5. February 22, 2006

Homework. Problem Set 3
Finished the proof that fiber products of schemes exist in the category of locally ringed spaces

and are schemes.
Defined closed immersions and the associated ideal sheaves. Mentioned the quasi-coherence

property of this sheaf. Explained the universal property of open immersions and closed immersions.
Defined locally closed immersions.

Stated that each of the following properties is stable under base change: quasi-compact, affine,
quasi-affine, open, closed and locally closed immersions, locally finite type, finite type, locally
finitely presented, finitely presented, finite, and quasi-finite.

Defined the diagonal morphism, quasi-separated and separated morphisms. Proved the diagonal
morphism is a locally closed immersion. Proved affine morphisms are separated.
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Stated properties of quasi-separatedness and separatedness: Immersions are separated. (Quasi-
)separatedness is stable under base change. (Quasi-)separatedness is local on the target. A composi-
tion of (quasi-)separated morphisms is (quasi-)separated. If a composition g◦f is (quasi-)separated,
then f is (quasi-)separated. Proved a few of these properties.

Fun Problem 4. Find the equations of all lines contained in the quadric Q in P3 with homogeneous
quadratic equation,

X3X0 −X1X2 = 0.

How many such lines intersect a general line L in P3 not contained in Q?

Lecture 6. February 27, 2006

Homework. Problem Set 3
Notion of specialization and generization. The image of a quasi-compact morphism is closed if

and only if it is stable under specialization. Definition of valuation rings. Basic existence result:
The set of local rings in a fixed field partially ordered by domination has maximal elements, which
are valuation rings. Thus, for every scheme X and pair of points (xη, x0) such that x0 is contained
in the closure of {xη}, there is a valuation ring R contained in the residue field k(xη) dominating
the local ring OX,x0/pη. This defines a morphism Spec R → X whose generic point η maps to xη

and whose closed point 0 maps to x0.
Using this, one gets a valuative criterion for closedness of f(X). The image of a quasi-compact

morphism f : X → Y is closed if and only if for every valuation ring R and every commutative
diagram

Spec K(R)
gη−−−→ Xy yf

Spec R
gR−−−→ Y

the image of gR is contained in f(X). This in turn quickly implies the first version of the valuative
criterion of separatedness. A quasi-separated morphism f : X → Y is separated if and only if for
every valuation ring R and every commutative diagram

Spec K(R)
gK−−−→ X

i

y y∆f

Spec R
gR−−−→ X ×Y X

the image of gR is contained in ∆(X). Indeed, we already know ∆f is a locally closed immersion,
so f is separated if and only if ∆f (X) is closed. Since f is quasi-separated, by definition ∆f is
quasi-compact. And then we apply the valuative criterion for closedness of the image.

For every local domain R, for every locally ringed space X, and for every morphism of locally
ringed spaces g : Spec R → X, there is an induced datum (xη, x0, φ), of the image xη of the
prime ideal (0) of R, the image x0 of the maximal ideal mR of R, and the induced field extension
φ : k(xη)→ K(R). This last map comes from the induced map of stalks g#

( 0) : OX,xη → R. Since
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this is a local homomorphism, it induces the map φ of residue fields. By construction the triple
(xη, x0, φ) satisfies the conditions that x0 is contained in {xη}, and the image under φ of OX,x0/pxη

is dominated by the local ring R. Altogether, this defines a set map,

HomLRS(Spec R,X)→ {(xη, x0, φ)|xη ∈ X, x0 ∈ {xη}, φ : k(xη)→ K(R), φ(OX,x0) dominated by R}.

If X is a scheme, this is a bijection of sets. Using this, it follows that if g1, g2 : Spec R→ X are two
morphisms which agree as set maps and whose composition with Spec K(R)→ Spec R agree, then
g1 equals g2. Using this, it follows that for the map gR in the last paragraph, if the image of gR is
contained in the image of ∆, then the two compositions π1 ◦ gR and π2 ◦ gR are equal. Therefore
there is a morphism hR : Spec R→ X such that g equals ∆ ◦ hR.

This gives rise to the more common version of the valuative criterion of separatedness. A quasi-
compact morphism of schemes f : X → Y is separated if and only if for every valuation ring R and
every commutative diagram

Spec K(R)
gK−−−→ X

i

y yf

Spec R
gR−−−→ Y

there is at most one morphism h : Spec R→ X such that h ◦ i equals gK and f ◦ h equals gR.

Fun Problem 5. Find the equations of all lines contained in the hypersurface X in P3 with
homogeneous cubic equation,

X3
0 +X3

1 +X3
2 +X3

3 = 0.

Assume the base field does not have characteristic 2 or 3.

Lecture 7. March 1, 2006

Homework. Problem Set 4
There is an equivalent characterization of separated that is sometimes useful. A scheme X is

separated if and only if for every pair of open affine U, V of X, U ∩ V is affine and the induced
map of rings OX(U) ⊗OX(X) OX(V ) → OX(U ∩ V ) is surjective. Using this, it is easy to see that
the line with doubled origin is not separated.

Definition of properness: separated, finite type and “universally closed”. Given a property P
of morphisms, a morphism f : X → Y is said to satisfy P universally if for every base change
f ′ : X ′ → Y ′, f ′ has property P . Thus a morphism is universal closed if every base change
morphism f ′ is closed, i.e., sends closed subset to closed subsets.

Closed immersions are proper. Composition of proper morphisms is proper. If g is separated
and g ◦ f is proper, then f is proper. Properness is stable under base change. Properness is local
on the target.

There is a valuative criterion for properness similar to the valuative criterion of separatedness.
A finite type, quasi-separated morphism f : X → Y is proper if and only if for every valuation ring
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R and every commutative diagram

Spec K(R)
gK−−−→ X

i

y yf

Spec R
gR−−−→ Y

there exists one and only one morphism h : Spec R→ X such that h ◦ i equals gK and f ◦ h equals
gR.

A projective morphism is proper. There are other ways to do this, but the valuative criterion
gives a very quick argument. There is a unique morphism π : An+1

Z − 0→ Pn
Z whose restriction to

D(xi) factors through D+(xi) and is given by π∗Zi,j = xj/xi (where (Zi,j|j 6= i) are the standard
coordinates on D+(xi)). Given a valuation ring R and a morphism gK : Spec K → Pn

Z, there
exists a morphism h : Spec K → An+1

Z − 0 such that g = h ◦ π. The induced map of rings
h∗ : Z[x0, . . . , xn]→ K does not map every element xi to 0 (by construction). Thus, the minimum
of the valuations v(h∗(xi)) is a finite number. Up to rechoosing coordinates, assume that v(h∗(x0))
is minimum. Define a ring homomorphism

ψ : OPn(D+(x0)) = Z[Z0,1, Z0,2 . . . , Z0,n]→ K

by ψ(Z0,j) = h∗(xj)/h
∗(x0). By construction, v(ψ(Z0,j)) is nonnegative for every j = 1, . . . , n.

Therefore, ψ factors through the valuation ring R. The induced morphism gR : Spec R →
D+(x0) ↪→ Pn

Z is the unique morphism whose restriction to Spec K equals gK . Therefore Pn
Z is

proper.
From the properties of proper morphisms, it follows that every projective morphism is proper.

Chow’s Lemma says that every separated, finite type morphism is “close” to being quasi-projective.
Let f : X → Y be a separated, finite type morphism of quasi-compact schemes. Chow’s Lemma
says that there exists a projective, birational morphism g : X ′ → X such that the composition
f ◦ g : X ′ → Y is quasi-projective. The morphism f is proper if and only if the morphism f ◦ g
is proper. On the other hand, a quasi-projective morphism is proper if and only if it is projective.
Therefore, f is proper if and only if f ◦ g is projective. For morphisms of finite type schemes over
a field, this is the basis for an “improved” version of the valuative criterion of properness that uses
normal curves in place of valuation rings.

Fun Problem 6. Let d be an integer ≥ 3. Let k be a field whose characteristic is larger than d.
Find the equations of all lines contained in the hypersurface X in P3 with homogeneous equation,

Xd
0 +Xd

1 +Xd
2 +Xd

3 = 0.

Lecture 8. March 6, 2006

Homework. Problem Set 4
We completed the proof of Chow’s lemma. We used this to prove that for a separated morphism

of finite type schemes over a field, f : X → Y , the morphism f is proper if and only if it satisfies
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the following curve criterion: for every normal curve C over the field, for every dense open subset
U of C, for every commutative diagram

U
gU−−−→ X

i

y yf

C
gC−−−→ Y

there exists at least one morphism h : C → X such that h ◦ i equals gU and f ◦ h equals gC (which
by separatedness will turn out to be unique). In other words, in the usual valuative criterion, the
role of Spec R is replaced by C and the role of Spec K(R) is replaced by U .

It was not discussed in class, but one can also use this to get a curve criterion for separatedness.
Let f : X → Y be a morphism of finite type schemes over a field. The diagonal morphism
∆X/Y : X → X ×Y X is a separated morphism of finite type schemes over a field. Applying the
curve criterion to ∆X/Y , f is separated if and only if it satisfies the following curve criterion: for
every normal curve C over the field, for every dense open subset U of C, for every commutative
diagram

U
gU−−−→ X

i

y yf

C
gC−−−→ Y

there exists at most one morphism h : C → X such that h ◦ i equals gU and f ◦ h equals gC .
This then gives a slightly better curve criterion for properness. Let f : X → Y be a morphism

of finite type schemes over a field (not assumed to be separated). The morphism f is proper if and
only if it satisfies the following curve criterion: for every normal curve C over the field, for every
dense open subset U of C, for every commutative diagram

U
gU−−−→ X

i

y yf

C
gC−−−→ Y

there exists one and only one morphism h : C → X such that h ◦ i equals gU and f ◦ h equals gC .
Defined (pre-)sheaves of OX-modules. Explained the functor

(̃−) : OX(X)−modules → Sheaves of OX −modules.

Proved the universal property of this construction: For every OX(X)-module M and every sheaf
of OX-module F , the following natural map is a bijection

HomOX−mod(M̃,F)→ HomOX(X)−mod(M,F(X)).

Defined a sheaf of OX-modules to be quasi-coherent if for every point p of X there exists an
open subset p ∈ U such that the following natural map of sheaves of OU -modules is an isomorphism

F̃(U)→ F|U .
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Stated the theorem, to be proved in the next lecture, that if X is an affine scheme and F is a
quasi-coherent sheaf on X, then the following natural map of sheaves is an isomorphism

F̃(X)→ F .

It follows that the Abelian category of quasi-coherent sheaves on X is equivalent to the Abelian
category of OX(X)-modules.

Fun Problem 7. This problem is taken from Joe Harris’s book, “Algebraic geometry, a first
course”. Let k be a field and let n be a positive integer. Let P0, . . . , Pn be degree d, homogeneous
polynomials in the variables X0, . . . , Xn such that there is no common zero of P0, . . . , Pn in Pn

k and
such that the following degree (d+ 1) homogeneous polynomial is the zero polynomial

X0P0 +X1P1 + · · ·+XnPn.

(i) Working by induction on n (by setting one of the coordinates Xi equal to 0), prove that d
equals 1.

(ii) For each i = 1, . . . , n, expand Pi as follows

Pi(X0, . . . , Xn) = ai,0X0 + · · ·+ ai,jXj + · · ·+ ai,nXn.

Prove that the matrix (ai,j) is an invertible, skew-symmetric matrix.

(iii) If char(k) is not 2 and n is even, prove there is no sequence of polynomials P0, . . . , Pn as
above.

Bonus problem. If char(k) equals 2 and n is even, do there exist P0, . . . , Pn as above? Can you
write one down?

Lecture 9. March 8, 2006

Homework. Problem Set 5
The category of OX-modules is an Abelian category. Additionally, there are 2 bifunctors asso-

ciating to a pair (F ,G) of OX-modules the OX-module HomOX
(F ,G), respectively F ⊗OX

G. The
first is called the sheaf Hom, the second is called the tensor product.

The universal property of sheaf Hom is that for every open subset U of X, there is an isomor-
phism of OX(U)-modules,

HomOX(U)(F|U ,G|U) ∼= HomOX
(F ,G)(U).

Morevoer, this isomorphism is bifunctorial in (F ,G), is compatible with restriction, etc.
The universal property of the tensor product is that for every triple of OX-modules (E ,F ,G),

there is a canonical isomorphism of OX(X)-modules,

HomOX
(E ,HomOX

(F ,G)) ∼= HomOX
(E ⊗OX

F ,G).
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Moreover, this isomorphism is functorial in each of E ,F ,G, etc.
Associated to every morphism of locally ringed spaces f : X → Y , there are covariant functors,

f∗ : OX −modules→ OY −modules

f ∗ : OY −modules→ OX −modules.

The functor f∗ is just as before. The functor f ∗ is defined by f ∗G := f−1G ⊗f−1OY
OX . These two

functors satisfy a basic adjointness condition. For every OY -module F and every OX-module G,
there is a canonical isomorphism of OX(X)-modules,

HomOX
(f ∗F ,G) ∼= HomOY

(F , f∗G).

Moreover, this isomorphism is functorial in each of F , G, etc. In particular, this determines an
isomorphism,

HomOY
(F , f∗G) ∼= f∗HomOX

(f ∗F ,G).

Let f : X → Y be a morphism of locally ringed spaces and let M be an OY (Y )-module. The
induced map f ∗ : OY (Y )→ OX(X) determines an OX(X)-module,

N := M ⊗OY (Y ) OX(X).

The induced map M → N determines a map of OX-modules,

f ∗(M̃)→ Ñ .

This is an isomorphism. Moreover, this isomorphism is compatible with further pullback. It follows
that for every quasi-coherent OY -module F , the pullback f ∗F is quasi-coherent.

For every morphism of affine schemes f : Spec A→ Spec B associated to a ring homomorphism
φ : B → A, for every A-module N , there is a canonical isomorphism,

f∗(Ñ) ∼= M̃,

where M equals N as an Abelian group, and where the B-module action is defined by φ : B → A
and the A-module action on N .

For every pair of OX-modules (E ,F), applying adjointness of HomOX
(•, •) and • ⊗OX

• to the
identity map

HomOX
(E ,F)→ HomOX

(E ,F),

there is an associated map
mE,F : HomOX

(E ,F)⊗OX
E → F .

This map is functorial in E , F , etc. In the case that F = OX , if the map mE,OX is an isomorphism,
the sheaf E is called an invertible sheaf. It is straightforward to see this holds if and only if E is
locally isomorphic to OX .
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Let L be an invertible sheaf. For every global section σ of L, define D(σ) to be the maximal
open subscheme on which the induced map

σ|D(σ) : OD(σ) → L|D(σ)

is an isomorphism. Taking powers, for every nonnegative integer n, there is an induced isomorphism,

σn|D(σ) : OD(σ) → L⊗n|D(σ).

Let F be an OX-module. Inverting this isomorphism gives an isomorphism,

IdF ⊗ σ−n|D(σ) : F ⊗OX
L⊗n|D(σ) → F|D(σ).

Taking sections, this defines a morphism of OX(X)-modules,

φF ,n : F ⊗OX
L⊗n(X)→ F(D(σ)).

This morphism is functorial in F and is compatible with σ, i.e., the composition,

F ⊗OX
L⊗n(X)

Id⊗σ−−−→ F ⊗OX
L⊗(n+1)(X)

φF,n+1−−−−→ F(D(σ)),

equals φF ,n. Therefore the collection of maps (φF ,n)n≥0 is a compatible family of OX(X)-module
homomorphisms. By the universal property of the colimit, there is an induced OX(X)-module
homomorphism,

φF : lim←−
n

F ⊗OX
L⊗n(X)→ F(D(σ)).

The basic theorem is that if F is quasi-coherent and X is a quasi-compact scheme, then φF is
injective. If F is quasi-coherent and X is quasi-compact and quasi-separated scheme, then φF is
a bijection. In particular, applying this in the case when L equals OX , if X is quasi-compact and
quasi-separated scheme, for every quasi-coherent OX-module F and every element f of OX(X),
the following map is an isomorphism

F(X)f → F(D(f)).

Fun Problem 8. Let Fq be a finite field, and let X be a scheme over Fq. If the fiber product
Spec Fq ×Spec Fq X is isomorphic to P1

fq
as a scheme over Fq, prove that X is isomorphic to P1

Fq
.

Lecture 10. March 13, 2006

Homework. Problem Set 5
Warning: Even if E and F are quasi-coherent OX-modules, the sheaf Hom HomOX

(E ,F) need
not be quasi-coherent. For a similar reason, given a morphism f : Y → X, the natural morphism
of OY -modules,

f ∗HomOX
(E ,F)→ HomOY

(f ∗E , f∗F),

need not be an isomorphism.
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There are 2 remarks. First of all, the functor ⊗ is better behaved: E ⊗OX
F is quasi-coherent if

E and F are, and the natural map f ∗(E⊗OX
F)→ f ∗E⊗OY

f ∗F is an isomorphism. Secondly, if E is
a quasi-coherent OX-module that is locally finitely presented, then HomOX

(E ,F) is quasi-coherent
and f ∗HomOX

(E ,F) is canonically isomorphic to HomOY
(f ∗E , f∗F). This motivates the notion of

locally finitely presented OX-modules, which are also called coherent in the textbook. It is clear
that for every morphism f : Y → X, the functor f ∗ sends locally finitely presented OX-modules to
locally finitely presented OY -modules.

Recall the theorem from the last lecture: if X is a quasi-compact, quasi-separated scheme,
F is a quasi-coherent OX-module, and f is an element of OX(X), the induced map of OX(X)f -
modules, F(X)f → F(D(f)), is a bijection. In particular, every affine scheme is quasi-compact and
quasi-separated. Moreover, the basic open sets D(f) form a basis for the topology. Therefore, for
every affine scheme X and every quasi-coherent OX-module F , the induced map of quasi-coherent
OX-modules,

F̃(X)→ F ,

is an isomorphism. This determines an equivalence of categories,

{ quasi-coherent OX −modules} ↔ {OX(X)−modules}.

This is an equivalence of Abelian categories. But it is stronger than that. The induced functor from
OX(X)-modules to OX-modules is an exact functor, i.e., it sends short exact sequences to short
exact sequences. Moreover, the image category is an exact category: given a short exact sequence
of OX-modules,

0 −−−→ F ′ −−−→ F −−−→ F ′′ −−−→ 0

if any 2 of the sheaves are quasi-coherent, so is the third. In fact, each of these statements can be
checked locally on X. Since every scheme is locally isomorphic to an affine scheme, it follows that
the category of quasi-coherent sheaves is an exact subcategory of the category of OX-modules for
every scheme X.

A more serious consequence is that for every short exact sequence of OX-modules,

0 −−−→ F ′ −−−→ F −−−→ F ′′ −−−→ 0

if X is affine and F ′ is quasi-coherent, then the induced map F(X)→ F ′′(X) is surjective. We will
see later that for every short exact sequence of sheaves of Abelian groups, so long as X is affine
and F ′ is quasi-coherent, then F(X)→ F ′′(X) is surjective.

The affine scheme Gm := Spec Z[t, t−1] admits morphisms, m : Gm×Gm → Gm, i : Gm → Gm,
e : Spec Z→ Gm defined via the following ring homomorphisms,

m∗ : Z[t, t−1]→ Z[t, t−1]⊗ Z[t, t−1], t 7→ t⊗ t,

i∗ : Z[t, t−1]→ Z[t, t−1], t 7→ t−1,

e∗ : Z[t, t−1]→ Z, t 7→ 1.
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The datum (Gm,m, i, e) satisfy the analogous axioms for a group, multiplication map, inverse map,
identity element. More precisely, for every scheme T , the maps m, i, e induce maps on the set,

Gm(T ) := HomLRS(T,Gm)

making this set into a group. For this reason the datum (Gm,m, i, e) is called a group scheme. To
be perfectly explicit, the group Gm(T ) is naturally isomorphic to the multiplicative group OT (T )∗,
of invertible elements in the ring OT (T ). For this reason Gm is called the multiplicative group.

Given a base scheme B, a group scheme G over B and a B-scheme X, an action of G on X over
B is a morphism of B-schemes, µ : G×B X → X such that for every B-scheme T the induced map

µ : HomB−sch(T,G)× HomB−sch(T,X)→ HomB−sch(T,X)

is an action of the group G(T ) := HomB−sch(T,G) on the set X(T ) := HomB−sch(T,X).
For an affine scheme X = Spec S, an action of Gm on X is equivalent to a ring homomorphism,

µ∗ : S → S[t, t−1],

satisfying the axiom above. Define Sd to be the subset of S of elements a such that µ∗(a) = atd.
The axiom above is equivalent to the condition that the subgroups (Sd)d∈Z make S into a Z-graded
ring.

Conversely, given a Z-graded ring S, there is an induced ring homomorphism S → S[t, t−1]
sending a to atd for every integer d and every a in Sd. The induced morphism µ : Gm ×X → X is
an action. Therefore, an action of Gm on X is precisely the same thing as a Z-grading of S.

Associated to a ring S together with a Z≥0-grading (which is just a particular type of Z-grading),
the Proj construction will turn out to be a very good attempt to construct the quotient of Spec S
by the associated action of Gm.

Fun Problem 9. LetX be a finite type, affine scheme over a field k. Prove that every non-constant
morphism of k-schemes, f : A1

k → X, is a finite morphism.

Lecture 11. March 15, 2006

Homework. Problem Set 6
Let P be a property of morphisms. A morphism f : X → Y satisfies P universally, respectively

uniformly, if for every morphism Y ′ → Y , resp. every flat morphism Y ′ → Y , the pullback
morphism Y ′ ×Y X → Y ′ satisfies P . A morphism g : Z → Y is flat if for every point z of Z, the
induced map of stalks

g#
z : OY,g(z) → OZ,z

is flat, i.e., OZ,z is a flat module over OY,g(z). Although it might seem surprising at first, this is one
of the most important properties of morphisms in algebraic geometry.

Let B be a base scheme and let G be an group scheme over B. Let X and Y be B-schemes, and
let µX : G×B X → X and µY : G×B Y → Y be actions of G on X and Y over B. A morphism of
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B-schemes f : X → Y is G-equivariant if the following diagram is commutative,

G×B X
IdG×f−−−−→ G×B Y

µX

y yµY

X
f−−−→ Y

Equivalently, for every B-scheme T , the induced map f(T ) : X(T )→ Y (T ) is compatible with the
action of the group G(T ), where, as usual X(T ) = HomB−sch(T,X), etc.

For every B-scheme Y , there is a trivial action of G on Y by µY = prY : G×B Y → Y . If f is
G-equivariant for the trivial action of G on Y , then f is called G-invariant. A categorical quotient
is a G-invariant morphism f : X → Q such that for every B-scheme Y , the following set map is a
bijection,

• ◦ f : HomB−sch(Q, Y )→ {h ∈ HomB−sch(X, Y )|h is G− invariant}.

The morphism f : X → Q is a uniform categorical quotient if for every flat morphism Q′ → Q, the
induced map Q′ ×Q X → Q′ is a categorical quotient of Q′ ×Q X with its induced action of G.

Let S be a Z-graded ring. The subgroup S0 is a subring of S. The induced map Spec S →
Spec S0 is a uniform categorical quotient of the induced action of Gm on Spec S. However, this is
often very far from a “good quotient”. As an example, consider the graded ring S = Z[x0, . . . , xn]
with deg(x0) = · · · = deg(xn) = 1. Then S0 is simply Z, so the uniform categorical quotient is the
constant morphism An

Z → Spec Z. On the other hand, there are very many distinct orbits in An
Z.

The problem is entirely caused by the closed subscheme of Spec S on which Gm acts as the
identity. Assume that S is graded in nonnegative degrees. Define S+ to be the ideal ⊕d>0Sd. Then
the closed subscheme on which Gm acts as the identity is precisely V(S+), the set of prime ideals
containing S+. Define U to be Spec S − V(S+). This is a Gm-invariant open subscheme. Thus
there is an induced action of Gm on U .

Moreover, because S+ is generated by homogeneous elements, U is covered by basic open subsets
D(a) as a ranges over all homogeneous elements of S of positive degree. The open subset D(a)
is Gm-invariant, thus has an induced action of Gm. For every homogeneous element a, define
πa : D(a) → D+(a), the open subset of Proj(S), as follows. The open subset D+(a) is isomorphic
to the affine scheme of the ring (S[1/a])0 and D(a) is isomorphic to the affine scheme of the ring
S[1/a]. The natural inclusion (S[1/a])0 ↪→ S[1/a] induces the morphism πa. Moreover, by the
above, πa is a uniform categorical quotient. Using this fact, it is easy to see that π−1

a (D+(ab))
equals D(ab) and the restrictions of πa and πb to D(ab) are equal. Therefore, by the glueing
lemma, there is a unique morphism π : U → Proj(S). Because locally it is a uniform categorical
quotient, using the glueing lemma, π is a uniform categorical quotient of the action of Gm on U .

However, the map π is much better than a typical uniform categorical quotient. It is, in fact,
what is known as a good quotient. Given a base scheme B, an affine group scheme G over B (i.e.,
a group scheme over B that is an affine scheme over B) and an action µ : G ×B X → X of G on
a scheme X over B, a G-invariant B-morphism f : X → Q is a good quotient if it satisfies the
following properties.
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(i) The morphism f is a uniform categorical quotient.

(ii) For every algebraically closed field k and every morphism q : Spec k → Q, the fiber product
Spec k ×Q X is a single orbit of Spec k ×B G.

(iii) For every morphism Q′ → Q (not necessarily flat), the pullback map Q′ ×Q X → Q′ is a
submersion, i.e., a subset U of Q′ is open if and only if its inverse image in Q′ ×Q X is open.

(iv) The induced morphism f# : OQ → (f∗OX)G is an isomorphism of sheaves.

Just to make the last condition clear, the action µX determines a dual map of sheaves of OQ-
algebras,

µ∗X : f∗OX → f∗OX ⊗OB
OG

with the obvious meaning, i.e., because G is affine over B, it comes from a quasi-coherent OB-
algebra OG and f∗OX ⊗OB

OG is the tensor product of f∗OX with the pullback to Q of OG. The
G-invariant subsheaf (f∗OX)G is the subsheaf of sections a of f∗OX such that µ∗X(a) = a ⊗ 1.
Because the morphism f is G-invariant, f# factors through (f∗OX)G.

Note that condition (ii) says what the points of Q must be, condition (iii) says what the open
subsets of Q must be, and condition (iv) says what the sheaf of Q must be. Therefore there is
a unique map of ringed spaces (f, f#) : X → Q roughly satisfying (ii), (iii) and (iv). However,
typically Q is not even a locally ringed space, much less a scheme (much less a uniform categorical
quotient, etc.).

The beautiful fact is that if S is a Z≥0-graded algebra, then the morphism π : Spec S−V(S+)→
Proj(S) is a good quotient of the action of Gm. This can be proved using a small amount of flat
descent.

There is an even stronger property than being a good quotient. With notation as above, a
G-invariant morphism f : X → Q is a G-torsor over Q if f is quasi-compact, surjective and flat
and the following map is an isomorphism of schemes,

(µX , prX) : G×B X → X ×Q X.

Using a small amount of flat descent, it turns out that f is a G-torsor over Q if there exists a
quasi-compact, surjective, flat morphism Q′ → Q such that Q′ ×Q X → Q′ is a G-torsor over Q′.
For one direction, simply take Q′ → Q to be f : X → Q, then it follows from the definition that
Q′×Q X is isomorphic to G×B Q

′ as a Q′-torsor. In this sense, a G-torsor over Q is a scheme over
Q with an action of G×B Q over Q which is “locally” isomorphic to G×B Q, where “locally” is in
the “fpqc topology”.

Let S be a Z≥0-graded algebra. When is π : Spec S − V(S+)→ Proj(S) a Gm-torsor? It turns
out this holds if and only if S is generated by S1 as an S0-algebra. In this case U is covered by
sets of the form D(a) for a in S1. As above, there is a morphism πa : D(a) → D+(a) that is a
uniform categorical quotient. But in fact, there is a Gm-equivariant isomorphism (sa, πa) : D(a)→
Gm ×D+(a). This is equivalent to an isomorphism of rings,

(sa, πa)
∗ : (S[1/a])0[t, t

−1]→ S[1/a].
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The restriction to the subalgebra (S[1/a])0 must be the map π∗a from above, i.e., the inclusion. The
new component is that t maps to a. The inverse map sends every homogeneous element b of S[1/a]d
to (b/ad)td. It is easy to check these give inverse isomorphisms of graded algebras. Thus (sa, πa) is
a Gm-equivariant isomorphism. This proves that Zariski locally over Proj(S), the morphism π is a
Gm-torsor. Therefore π is a Gm-torsor.

This has some consequences for quasi-coherent sheaves on Proj(S). Let M be a graded S-

module. The associated quasi-coherent sheaf M̃ on Spec S has an action of Gm. To be precise,
there is an isomorphism of the sheaves pr∗Spec SM̃ and µ∗M̃ on Gm × Spec S. To give such an
isomorphism is equivalent to giving an isomorphism of the S[t, t−1]-modules,

ψ : M [t, t−1]→M [t, t−1]

intertwining the module structure on pr∗Spec SM̃ and the module structure on µ∗M̃ , i.e., for every
homogeneous element ad in Sd, for every element m of M ,

ψ(adm) = ψ(ad •pr m) = ad •µ ψ(m) = adψ(m)td.

As with actions of Gm on S, there is a bijection between the set of structures of graded module on
the S-module M and the set of such isomorphisms ψ. Given a grading, define ψ : Me → M [t, t−1]
by me 7→ met

e. This extends uniquely to an isomorphism ψ : M [t, t−1] → M [t, t−1] satisfying the
intertwining condition above.

Because U is fixed by Gm, the restriction M̃U has an action of Gm. Because π is Gm-invariant,
π∗(M̃ |U) has an action of Gm lifting the trivial action on Proj(S). It turns out this is precisely the
same thing as a Z-grading by quasi-coherent subsheaves. The Gm-invariant subsheaf is precisely
the 0th graded piece. Define M̃ on Proj(S) to be (π∗(M̃ |U))Gm . This is a quasi-coherent sheaf that
is naturally isomorphic to the sheaf constructed in the textbook.

In the other direction, for every quasi-coherent sheaf G on Proj(S), π∗G is a quasi-coherent sheaf
on U with an action of Gm: the pullback µ∗π∗G is canonically isomorphic to pr∗Uπ

∗G because π ◦ µ
equals π ◦ prU (because π is Gm-invariant). Because π : U → Proj(S) is a Gm-torsor, for every
quasi-coherent OU -module F with an action of Gm, the induced map,

π∗([π∗F ]Gm)→ F

is an isomorphism of quasi-coherent sheaves with an action of Gm. Define Γ∗(G) to be π∗G(U).
This is a graded OX(U)-module.

For every graded S-module M , the natural induced map M → Γ∗(M̃) is a map of graded
S-modules that induces an isomorphism of quasi-coherent sheaves on U . Also, for every quasi-
coherent sheaf G on Proj(S), the induced map (Γ∗(G))∼ → G is an isomorphism of quasi-coherent
sheaves. Together, these operations determine an equivalence of categories,

{Quasi-coherent sheaves on Proj(S)} ↔ {Graded OU(U)−modules}/equiv.

where two morphisms of graded modules φ1, φ2 : M → N are equivalent if they induced the same
morphism of quasi-coherent sheaves on U .

15

http://www-math.mit.edu/~jstarr/18.726/index.html
mailto:jstarr@math.mit.edu


18.726 Algebraic geometry Jason Starr
Spring 2006

There are 2 very important theorems about these operations. If S is generated by S1 as an
S0-algebra and S is Noetherian (which is equivalent to saying S0 is Noetherian and S1 is a finite S0-
module), then the equivalence above induces an equivalence between coherent sheaves on Proj(S)
and finitely presented OU(U)-modules. In particular, this implies that for every coherent sheaf G,
there is a finitely generated S0-module M , an integer d, and a surjection of quasi-coherent sheaves,

(M ⊗S0 S[−d])∼ → G.

This is essentially equivalent to saying the sheaf S̃[1] is an ample sheaf.
The second important theorem is that, with the hypotheses above, for every coherent sheaf G

on Proj(S), the S0-module G(Proj(S)) is a finite S0-module.

Lecture 12. March 20, 2006

Homework. Problem Set 6
Given a scheme B and a quasi-coherent sheaf of OB-algebras, A, there is a relative Spec,

π : Spec B(A) → B. This is an affine morphism together with an isomorphism of quasi-coherent
sheaves of OB-algebras, A → π∗OSpec B(A). By adjointness, this determines a map of quasi-coherent
sheaves of algebras, φ : π∗A → OSpec B(A). The pair

(π : Spec B(A), φ)

has a universal property. For every pair (f : T → B,ψ) of a morphism of locally ringed spaces
f : T → B and an map of quasi-coherent sheaves of algebras ψ : f ∗A → OT , there is a unique
morphism g : T → Spec B(A) such that π ◦ g = f and g∗φ equals ψ (in the obvious sense). This
is the universal property of the relative Spec. Observe that when B is itself an affine scheme, this
reduces to the usual universal property of the affine scheme Spec B(A).

An important special case is when A is the symmetric algebra SymOB
(F) of a quasi-coherent

sheaf F on B. Then, by the universal property of the symmetric algebra, a map of quasi-coherent
sheaves of algebras ψ : f ∗A → OT is equivalent to map of quasi-coherent sheaves ψ1 : f ∗F → OT .
Therefore the pair (Spec B(A), φ1) has the following universal property. For every pair (f : T →
B,α) of a morphism f of locally ringed spaces and a map of quasi-coherent sheaves α : f ∗F → OT ,
there exists a unique morphism g : T → Spec B(A) such that π ◦ g = f and g∗φ1 equals α (in the
obvious sense).

In particular, for every open subset U ofB, the set of morphisms s : U → Spec B(A) such that π◦
s equals the inclusion is canonically bijective to the set of maps of quasi-coherent sheaves FU → OU .
In other words, the set is canonically bijective to the OU(U)-module HomOB

(F ,OB)(U). Thus the
sheaf of sections of π is canonically bijective to the sheaf HomOB

(F ,OB). This is sufficiently close
to the original definition of the vector bundle associated to a sheaf to motivate the notation E(F)
for Spec B(A). However, this certainly need not be a vector bundle! It has become conventional to
call E(F) the Abelian cone associated to F .

It must be said that the original convention for the vector bundle, i.e., preceding EGA, Hartshorne,
etc., was such that the sheaf of sections of E(F) is isomorphic to the sheaf F . However, there need
not be any Abelian cone with this property. There is an Abelian cone with this property precisely
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when F is locally free of finite rank. In this case, the classical vector bundle associated to F is the
Abelian cone,

Eclassical(F) := E(HomOB
(F ,OB)).

In fact, the Abelian cone E(F) is so much more useful than the classical vector bundle, that the
new convention is used more often than the original convention.

For the discussion from the previous lecture, a very important case is E(L) where L is an
invertible sheaf. Then locally E(L) is isomorphic to A1 × B. There is a natural scaling action of
Gm on this rank 1 vector bundle. The zero section 0 : B → E(L) is the unique section pulling

back φ1 to the zero map L 0−→ OB. Locally on B, this just corresponds to {0} ×B in A1 ×B. The
complement of the zero section is an open subscheme T ⊂ E(L) which is preserved by the Gm-
action. Zariski locally on B, this action is isomorphic to the left regular action of Gm on Gm ×B.
Therefore T → B is a Gm-torsor. The algebra π∗OT is the quasi-coherent sheaf of OB-algebras,

π∗OT = ⊕d∈ZL⊗d,

where we define L⊗(−d) := HomOB
(L⊗d,OB) for d positive. Clearly this is locally isomorphic to

OB[t, t−1] as a graded algebra of quasi-coherent sheaves. This is another way to see that T is a
Gm-torsors.

Conversely, given a Gm-torsor π : T → B, the algebra A := π∗OT is a graded algebra of quasi-
coherent sheaves. Define L to be the degree 1 graded subsheaf. In the case above, this will precisely
recover the invertible sheaf we started with. In the general case, one can prove by flat descent that
L is an invertible sheaf, the induced map L → A extends uniquely to a map of graded algebras of
quasi-coherent sheaves,

⊕d∈ZL⊗d → A,
and the induced map T → E(L) is an isomorphism onto the complement of the zero section.

Together these 2 maps determine a bijection between the category of Gm-torsors over B and the
category of invertible sheaves on B. In particular, the Gm-torsor π : Spec S − V(S+) → Proj(S)

determines an invertible sheaf O(1) on Proj(S). This is isomorphic to the sheaf (̃S[1]).
For a scheme X, a morphism f : X → Proj(S) determines a Gm-torsor T = X ×Proj(S) U → X

and a morphism from T to the affine scheme Spec S factoring through the open subset U . This
may sound convoluted, but using the universal property of E(L), the universal property of Spec S
and the universal property of an open immersion, it translates into a very natural condition. A
morphism f : X → Proj(S) is equivalent to a triple (g,L, φ) of a morphism g : X → Spec S0, an
invertible sheaf L on X, and a surjection φ : S1⊗S0OX → L such that the induced map of algebras,

SymS0
(S1)⊗S0 OX → ⊕d≥0L⊗d,

factors through the quotient algebra S ⊗S0 OX . Such triples are up to equivalence where (g,L′, φ′)
is equivalent to a triple (g,L′′, φ′′) if and only if there exists an isomorphism ψ : L′ → L′′ such that
φ′′ = ψ ◦ φ′.

This becomes particularly simple when S = SymS0
(S1). In this case Proj(S) is usually denoted

PS0(S1). The universal property is that a morphism f : X → PS0(S1) is equivalent to a triple
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(g,L, φ) as above, where there is no additional condition on φ. The most important case is when
S0 equals Z and S1 is the finite free Z-module with basis given by variables X0, . . . , Xn. In this case
S is simply the polynomial ring Z[X0, . . . , Xn]. The Proj scheme is denoted Pn

Z. And the universal
property is that a morphism f : X → Pn

Z is equivalent to a pair (L, φ) of an invertible sheaf L on
X and a surjection of quasi-coherent sheaves,

φ : O⊕(n+1)
X → L.

Because of this universal property, it is imperative to understand pairs (L, σ) of an invertible
sheaf L and a section σ of L. Indeed, the image under φ of the variables X0, . . . , Xn are sections
σ0, . . . , σn. The geometric objects corresponding to such a pair are Weil divisors and Cartier
divisors.

Let X be a scheme. A prime Weil divisor is an integral, closed subscheme D of X such that the
local ring OX,ηD

has pure dimension 1. Equivalently, D does not equal any irreducible component of
X, and the only integral closed subschemes of X strictly containing D are irreducible components
of X. A Weil divisor is a formal finite Z-linear combination of prime Weil divisors. It is effective if
every coefficient is nonnegative. The set of all Weil divisors forms a free Abelian group generated
by the set of all prime Weil divisors. The notation for a Weil divisor is usually,

n1[D1] + · · ·+ nr[Dr].

It turns out this is much more useful when X is an integral, separated, Noetherian scheme that
is regular in codimension 1. This precisely says that for every prime Weil divisor D on X, the local
ring OX,ηD

is a discrete valuation ring. The fraction field is, of course, K(X) := OX,ηX
. Denote the

valuation by vD. This then determines a homomorphism of Abelian groups,

(•) : K(X)∗ → ⊕DZ · [D]

where K(X)∗ is the multiplicative group of nonzero elements of K(X), where ⊕DZ · [D] is notation
for the group of Weil divisors, and where

(f) :=
∑
D

vD(f)[D].

It is straightforward to see that this is a finite sum, i.e., for all but finitely many D, vD(f) equals
0. A Weil divisor is called principal if it is in the image of this map.

It is straightforward to check that the kernel of (•) is OX(X)∗, the group of invertible elements
in OX(X). The cokernel is denoted by Cl(X), and called the divisor class group of X. Altogether
this gives an exact sequence of Abelian groups,

1 −−−→ OX(X)∗ −−−→ K(X)∗ −−−→ ⊕DZ · [D] −−−→ Cl(X) −−−→ 0.

A basic result in commutative algebra states that a Noetherian integral domain A is a unique
factorization domain if and only if its class group is zero, i.e., Cl(Spec A) is (0).
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Closely related are Cartier divisors. Let X be a scheme. Denote by K the sheaf of total rings
of fractions, i.e., the sheafification of the presheaf associating to every open affine U the total ring
of fractions of OX(U). An effective Cartier divisor is a sub-OX-module L of K that contains the
subsheaf OX and is an invertible OX-module.

How do such things arise? Let L be any invertible sheaf and let σ be a section of L such
that the open subset D(σ) contains every generic point of X, i.e., the generic point of every
irreducible component of X. The induced isomorphism OD(σ) → L|D(σ) determines an isomorphism
K|D(σ) → K⊗OD

L|D(σ). The inverse naturally extends to an injective sheaf map L ↪→ K such that

the composition OX
σ−→ L → K is the usual inclusion. This determines a 1-to-1 bijection between

effective Cartier divisors on X and equivalence classes of pairs (L, σ) of an invertible sheaf L and
a section σ such that D(σ) contains every generic point of X.

Assume now that X is an integral, separated, Noetherian scheme that is regular in codimension
1. Given an effective Cartier divisor L ⊂ K there is an associated effective Weil divisor defined as
follows. For every prime Weil divisor D of X, there exists an open affine U of X intersecting D and
a trivialization L|U ∼= OU . Then the restriction of the section σ is equivalent to an element f of
OU(U). Define vD(L) = vD(f). Changing the choice of trivialization multiplies f by an element u
that is invertible on U . Therefore vD(u) = 0 so that vD(uf) = vD(f). Therefore the integer vD(L)
is independent of the choice of open subset U and the choice of trivialization. Moreover, it is easy
to see that vD(L) is nonzero if and only if D is an irreducible component of the support of the
cokernel of σ : OX → L. Since this is a closed subset of a Noetherian scheme, it has only finitely
many irreducible components. Therefore the sum,∑

D

vD(L)[D]

is an effective Weil divisor.
We will see next time that if X is regular, i.e., all local rings OX,p are regular, then every

effective Weil divisor comes from a Cartier divisor, and the Cartier divisor is unique. Thus, the
Weil divisor associated to a pair (L, σ) is a “geometric” version of the “algebraic” object (L, σ).

Lecture 13. March 22, 2006

Homework. Problem Set 7
Defined general Cartier divisors and equivalent reformulations. Proved that if X is integral,

every invertible sheaf comes from a Cartier divisor. Defined the map from Cartier divisors to
Weil divisors assuming condition (*). Proved that if X is normal, this map is injective (modulo a
mistake corrected in the problem set). Proved that if X is locally factorial, this map is bijective.
In particular this holds if X is regular. Computed the Picard group of Pn

k is Z (for n > 0).
Recalled the universal property of projective space. Used the computation of Pic(Pn

k) to prove
the automorphism group of Pn

k equals PGLn+1,k. Defined ample and very ample invertible sheaves.
Recalled Serre’s theorem that a very ample invertible sheaf is ample. Stated the theorem that some
tensor power of an ample invertible sheaf is very ample.

Lecture 14. April 3, 2006
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Homework. Problem Set 7
Hints for Problem Set 7, Part I. (a). Let R be a DVR and let vR : K(R)∗ → Z be the
associated valuation (in particular, vR(π) equals 1 for every uniformizer π). Let f be a nonzero
element of R. What is the relation between the following 2 integers

length(R/fR) and vR(f)?

This is essentially the only thing being asked in this problem.

(b). The sketch in Hartshorne is perfectly adequate. Here is a slightly different perspective. First
change coordinates as follows (this isn’t really necessary)

xnew = x+ y
ynew = x− y
znew = −8z

The equation of X in the new coordinates is,

f(x, y, z) = (x+ y)3 − xyz = 0.

The reason for the coordinate change is that this equation is a nodal plane cubic no matter what
the characteristic of k (the previous equation only worked if the characteristic is not 2).

Now let ν : P1 → P2 be the morphism

[T0, T1] 7→ [x, y, z] = [T 2
0 T1, T0T

2
1 , (T0 + T1)

3].

You should check that ν(P1) equals X. Denote by Z the unique singular point [0, 0, 1] of X. Denote
by 0 the point [1, 0] of P1 and denote by∞ the point [0, 1] of P1. As usual, denote Gm = P1−{0,∞}.
Then ν−1(X − {Z}) equals Gm and the induced morphism ν : Gm → X − {Z} is an isomorphism.
Of course ν(0) and ν(∞) equal Z. Thus ν is the normalization of X.

There is a short exact sequence of OX-modules,

0 −−−→ OX
ν#

−−−→ ν∗ν
∗OX

δ−−−→ OZ −−−→ 0.

The map δ sends a section s of OP1(ν−1(U)) to the section s(∞)− s(0) of the skyscraper sheaf OZ ,
assuming Z is in U . For every invertible sheaf L, tensoring the sequence above by L gives a short
exact sequence of OX-modules,

0 −−−→ L −−−→ ν∗ν
∗L δL−−−→ L⊗OZ −−−→ 0.

For every k-point t of P1, there is an evaluation map,

et : H0(P1, ν∗L)→ ν∗L ⊗Ot.

Moreover, there is a canonical isomorphism,

ft : ν∗L ⊗Ot → L⊗Oν(t).
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In particular, because ν(0) equals ν(∞) equals Z, there are 2 canonically defined maps,

f0 ◦ e0, f∞ ◦ e∞ : H0(P1, ν∗L)→ L⊗OZ .

For every invertible sheaf L, the map H0(δL) induced by δL on global sections is simply the differ-
ence, δL = f∞ ◦ e∞ − f0 ◦ e0.

Using our classification of invertible sheaves on P1, ν∗L is isomorphic to OP1(d) for some unique
integer d, the degree of L. If L has degree 0 then ν∗L is isomorphic to OP1 , and thus H0(P1,L)
is isomorphic to H0(P1,OP1). In other words, dimkH

0(P1,L) equals 1. In this case, ft ◦ et is an
isomorphism for every k-point t of P1. In particular, each of f∞ ◦ e∞ and f0 ◦ e0 is an isomorphism
with the same 1-dimensional domain and target. Therefore, there exists a unique element λ of
k∗ = Gm(k) such that f∞ ◦ e∞ equals λ · (f0 ◦ e0). This determines a map,

Λ : CaCl0(X)→ Gm(k), L 7→ λ.

The map Λ is a group homomorphism (you should check this).
Since H0(δL) equals f∞ ◦e∞−f0 ◦e0, which is (λ−1) ·f0 ◦e0, the map H0(δL) is an isomorphism

if λ 6= 1, and is the zero map if λ = 1. Thus the kernel of H0(δL), namely H0(X,L), is zero if
λ 6= 1, and is 1-dimensional if λ equals 1. Morevoer, when λ equals 1, any nonzero global section of
L pulls back to a generator of ν∗L ∼= OP1 , and thus is already a generator of L. Since Λ(L) equals
1 if and only if L is isomorphic to OX , Λ is an injective group homomorphism.

Finally, for every λ in Gm(k), the invertible sheaf L = OX(ν(λ) − ν(1)) has image Λ(L) = λ.
Therefore Λ is also surjective, thus an isomorphism of groups.

(c) Associated to every commutative diagram of locally free resolutions,

0 −−−→ E1
α−−−→ E0

β−−−→ F −−−→ 0

φ1

y φ0

y y=

0 −−−→ E ′1
α′−−−→ E ′0

β′−−−→ F −−−→ 0

there is a short exact sequence of locally free OX-modules,

0 −−−→ E1
(α,φ1)†−−−−→ E0 ⊕ E ′1

(φ0,−α′)−−−−−→ E ′0 −−−→ 0.

By Exercise II.5.16, there are isomorphisms,

r′0∧
E ′0 ⊗

r1∧
E1 ∼=

r0+r′1∧
(E0 ⊕ E ′1) ∼=

r0∧
E0 ⊗

r′1∧
E ′1.

This gives isomorphisms,
r′0∧
E ′0 ⊗ (

r′1∧
E ′1)∨ ∼=

r0∧
E0 ⊗ (

r1∧
E1)∨.

Therefore the determinant of F is the same for each of these resolutions.
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In the general case, if there are two resolutions but not necessarily a commutative diagram of
resolutions, form the third resolutions,

0 −−−→ Ker(β, β′) −−−→ E0 ⊕ E ′0
(β,β′)−−−→ F −−−→ 0.

There is a commutative diagram,

0 −−−→ E1
α−−−→ E0

β−−−→ F −−−→ 0

φ1

y (Id,0)†

y y=

0 −−−→ Ker(β, β′) −−−→ E0 ⊕ E ′0
(β,β′)−−−→ F −−−→ 0.

And similarly for the second resolution. Use the previous paragraph to deduce the determinant
of the first and second resolutions are each isomorphic to the determinant of the third resolution,
hence isomorphic to one another.

Lecture. Spent the entire lecture proving the important theorem that for a finitely presented,
quasi-separated morphism f : X → Spec A, an invertible sheaf L is f -very ample if and only if it
is ample. Generalized this to the case that the target is quasi-compact, but not necessarily affine.
This is the last lecture specifically on material from Chapter II. The students are responsible for
the remaining material from Section 7. The material in Section 8 will be discussed as it arises in
Chapter III.

Lecture 15. April 5, 2006

Homework. Problem Set 8
Some good references for homological algebra are “Homological algebra” by Cartan and Eilen-

berg, “An introduction to homological algebra” by Charles Weibel, “Sur quelques points d’algèbre
homologique” by Grothendieck (in the Tohoku Math. Journal), and “Des catégories dérivées des
catégories abéliennes” by J.-L. Verdier.

For every Abelian category A there is a notion of cochain complexes of objects in A, namely a
pair

A = ((Ap)p∈Z, (d
p
A)p∈Z)

of a sequence (Ap)p∈Z of objects of A and a sequence dp
A : Ap → Ap+1 of morphisms in A such that

for every p, dp+1
A ◦ dp

A is the zero map. Sometimes the object Ap is called the p-cochains of A. The
morphism dp

A is called the pth differential of A. A morphism of cochain complexes u : A → B is a
sequence (up : Ap → Bp)p∈Z of morphisms in A such that for every p,

dp
B ◦ u

p = up+1 ◦ dp
A.

There are obvious notions of identity morphism, composition of morphisms, addition and subtrac-
tion of morphisms (with the same domain and target), zero morphisms, etc. Together these notions
form an Abelian category Ch•(A) of cochain complexes of objects in A.

Let m be either an integer or −∞, let n be either an integer or +∞, and assume m ≤ n. A
complex A is said to be concentrated in degrees m ≤ p ≤ n if Ap = 0 for p outside this range.
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The complexes concentrated in degree m ≤ p ≤ n form a full subcategory of Ch•(A) denote by
Ch[m,n](A), resp. Ch≤n(A) if m = −∞ and Ch≥m(A) if n = +∞. These categories are not
necessarily preserved by [+1] and [−1], although there are obvious conditions on m ≤ n and r ≤ s
insuring [+1], resp. [−1], sends Ch[m,n](A) into Ch[r,s](A).

This category Ch•(A) has many important extra structures. There is a translation functor

[+1] : Ch•(A)→ Ch•(A), A[+1] = ((Ap+1)p∈Z, (−dp+1
A )p∈Z); u[+1] = (up+1)p∈Z.

This is an exact additive functor which has an inverse functor [−1] (which is also an exact additive
functor). For every integer p there is a cohomology functor

hp : Ch•(A)→ A, hp(A) = Ker(dp
A)/Image(dp−1

A ).

It is an exercise to check that for every morphism u : A → B, there is a unique morphism
hp(u) : hp(A)→ hp(B) such that the following diagram commutes,

Ker(dp
A)

φp

−−−→ Bp/Image(dp−1
B )

nat

y xnat

hp(A)
hp(u)−−−→ hp(B)

where nat denotes the natural monomorphism, resp. epimorphism. The cohomology functor is
additive. It is typically not exact, but it is half-exact, i.e., for every short exact sequence of
complexes,

0 −−−→ A′ u−−−→ A
v−−−→ A′′ −−−→ 0,

the following diagram is exact in the middle,

hp(A′)
hp(u)−−−→ hp(A)

hp(v)−−−→ hp(A′′).

There are obvious natural isomorphisms of functors,

hp ◦ [+1]⇒ hp+1 : Ch•(A)→ A, hp(A[+1]) = hp+1(A), hp(u[+1]) = hp+1(u).

In addition to the notion of isomorphism of cochain complexes, there is the notion of quasi-
isomorphism, or qism for short: for every pair of integers m ≤ n, a morphism of complexes
u : A → B is a quasi-isomorphism in degrees m ≤ p ≤ n if for every integer m ≤ p ≤ n the
induced morphism hp(u) is an isomorphism. It is a quasi-isomorphism in degrees m ≤ p ≤ ∞,
resp. −∞ ≤ p ≤ n, resp. in all degrees, if for every m ≤ n it is a quasi-isomorphism in degrees
m ≤ p ≤ n. Compositions and translations of quasi-isomorphisms are quasi-isomorphisms.

There is a strong analogy between Abelian categories and rings: the elements of the rings
being analogous to the morphisms of the Abelian category: indeed, for every Abelian category
A and every object C of A, the set of all endomorphisms of C is a ring. For this analogy, the
class of all quasi-isomorphisms is roughly an analogue of a multiplicative subset of the ring: the
self-quasi-isomorphisms of C• is a multiplicative subset of the ring of endomorphisms of C•.
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Given a morphism of complexes u : A → B, a null homotopy or cochain contraction of u is a
sequence of morphisms (sp : Ap+1 → Bp)p∈Z such that for every integer p,

up = dp−1
B ◦ sp−1 + sp ◦ dp

A.

If there exists a null homotopy of φ, φ is called null homotopic. For the analogy with rings, the
class of all null homotopic morphisms is analogous to an ideal. Indeed, for every morphism of
complexes v : B → B′′, the sequence (vp ◦ sp : Ap+1 → (B′′)p)p∈Z is a null homotopy of v ◦ u. And
for every morphism t : A′ → A, the sequence (sp ◦ tp+1 : (A′)p+1 → Bp)p∈Z is a null homotopy of
u ◦ t. Analogous to the notion of congruence modulo an ideal, a pair of morphisms of complexes
u1, u2 : A → B are called homotopic if u2 − u1 is null homotopic, and a homotopy from u1 to u2

is a null homotopy of u2 − u1. A pair of morphisms of complexes u : A → B, v : B → A is a
homotopy equivalence if v ◦ u is homotopic to IdA and u ◦ v is homotopic to IdB. Null homotopies
are compatible with translation. Part of the importance of null homotopies is that if u is null
homotopic, then for every integer p, the morphism hp(u) is the zero morphism. In particular, it
follows that homotopy equivalences are quasi-isomorphisms.

There are a few other important notions that were not discussed in lecture. Most important is
the mapping cone. Given a morphism of cochain complexes u : A → B, the mapping cone is the
complex Cone(u) whose terms are

Cone(u)p = Ap+1 ⊕Bp

and whose differentials are
dp

Cone : Ap+1 ⊕Bp → Ap+2 ⊕Bp+1,

dp
Cone =

(
−dp+1

C 0
up+1 dp

D

)
There is a natural short exact sequence of complexes,

0 −−−→ B
v−−−→ Cone(u)

w−−−→ A[+1] −−−→ 0

where v = v(u) and w = w(u) are defined by

vp = (0, IdBp)†, wp = (IdAp+1 , 0).

There are several important properties of the mapping cone. First note that, term-by-term, the
short exact sequence above is split. However, it is not necessarily split as a short exact sequence
of complexes, i.e., the term-by-term splittings do not necessarily commute with the differentials.
Indeed, a sequence of morphisms

κ : Cone(u)→ B, κp = (sp, IdBp) : Ap+1 ⊕Bp → Bp

commutes with the differentials if and only if (sp)p∈Z is a null homotopy of u, i.e., the null homotopies
of u are in natural bijection with the splittings of the exact sequence above.
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Second, the mapping cone Cone(u) is exact if and only if u is a quasi-isomorphism. This is an
exercise in diagram-chasing.

Third, for every pair of morphisms of complexes,

A
u−−−→ B

t−−−→ C,

such that t ◦ u = 0, there is a morphism of complexes t̃ : Cone(u)→ C given by

(t̃)p : Ap+1 ⊕Bp → Cp, (t̃)p = (0, tp).

If the pair of morphisms comes from an exact sequence,

0 −−−→ A
u−−−→ B

t−−−→ C −−−→ 0,

then t̃ is a quasi-isomorphism.
Fourth, there is a natural isomorphism of Cone(u)[+1] with Cone(−u[+1]). Finally, there is a

morphism

i = i(u) : A[+1]→ Cone(v(u)), ip : Ap+1 → Bp+1 ⊕ Ap+1 ⊕Bp, ip = (−up+1, IdAp+1 , 0),

whose composition with w̃(u) : Cone(v(u))→ A[+1] is the identity IdA[+1]. And there is a homotopy
(sp) from i ◦ w̃ to IdCone(v(u)),

sp : Bp+2 ⊕ Ap+2 ⊕Bp+1 → Bp+1 ⊕ Ap+1 ⊕Bp

sp =

 0 0 IdBp+1

0 0 0
0 0 0

 .

Thus i(u) and w̃(u) give a homotopy equivalence of Cone(v(u)) and A[+1].
Let F : A → B be a half-exact additive functor of Abelian categories. The basic problem of

homological algebra is that F is not necessarily exact. One solution to this problem (if it exists)
is the notion of a universal (cohomological) δ-functor (a better solution is given by δ-functors of
triangulated categories). A δ-functor from A to B is a datum ((F p)p∈Z, (δ

p)p∈Z) of a sequence of
half-exact additive functors F p : A → B together with a sequence of assignments δp to every short
exact sequence in A,

Σ :0 −−−→ A′ u−−−→ A
v−−−→ A′′ −−−→ 0,

of morphisms in B,
δp
Σ : F p(A′′)→ F p+1(A′),

satisfying the following two axioms.

(i) For every short exact sequence Σ in A, the following is a long exact sequence in B,

. . . −−−→ F p(A′)
F p(u)−−−→ F p(A)

F p(v)−−−→ F p(A′′)
δp
Σ−−−→ F p+1(A′) −−−→ . . .
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(ii) For every commutative diagram of short exact sequences in A,

Σ :0 −−−→ A′ uA−−−→ A
vA−−−→ A′′ −−−→ 0

αΣ

y α′

y α

y yα′′

Θ :0 −−−→ B′ uB−−−→ B
vB−−−→ B′′ −−−→ 0

for every integer p, the following diagram is commutative,

F p(A′′)
δp
Σ−−−→ F p+1(A′)

F p(α′′)

y yF p+1(α′)

F p(B′′)
δp
Θ−−−→ F p+1(B′)

Let m ≤ n be integers. A δ-functor is concentrated in degrees m ≤ p ≤ n, resp. m ≤ p ≤ ∞,
−∞ ≤ p ≤ n, if for every p not in this range, F p is the zero functor. A morphism of δ functors,
θ : F ⇒ G is a collection of additive natural transformations (θp : F p ⇒ Gp)p∈Z such that for every
short exact sequence Σ in A and every integer p,

δp
G,Σ ◦ θ

p(A′′) = θp+1(A′) ◦ δp
F,Σ.

Let m be an integer and let n be either an integer ≥ m or else +∞. A universal cohomological
δ-functor concentrated in degrees m ≤ p ≤ n is a δ-functor F : A → B concentrated in degrees
m ≤ p ≤ n such that for every δ-functor G : A → B concentrated in degrees m ≤ p ≤ n and every
additive natural transformation θm : Fm ⇒ Gm, there exists a unique morphism θ : F ⇒ G of
δ-functors whose mth term is θm. The typical case is when m = 0 and n = +∞; if the range is not
specified, it is 0 ≤ p ≤ +∞ by default.

Similarly, let n be an integer and let m be either an integer ≤ n or else −∞. A universal
homological δ-functor concentrated in degrees m ≤ p ≤ n is a δ-functor G : A → B concentrated in
degrees m ≤ p ≤ n such that for every δ-functor F : A → B concentrated in degrees m ≤ p ≤ n and
every additive natural transformation θn : F n ⇒ Gn, there exists a unique morphism θ : F ⇒ G of
δ-functors whose nth term is θn. The typical case is when m = −∞ and n = 0; if the range is not
specified, it is −∞ ≤ p ≤ 0 by default.

Here is the canonical example of a δ-functor. For every integer p, let hp : Ch•(A) → A be the
cohomology functor from above. For every short exact sequence of complexes

Σ : 0 −−−→ A′ u−−−→ A
u′′−−−→ A′′ −−−→ 0

the morphism of complexes ũ′′ : Cone(u) → A′′ is a quasi-isomorphism, i.e., the following is an
isomorphism,

hp(ũ′′) : hp(Cone(u))→ hp(A′′).

Also, associated to the morphism of complexes w(u) : Cone(u)→ A′[+1], there is a morphism,

hp(w(u)) : hp(Cone(u))→ hp(A′[+1]) = hp+1(A′).

26

http://www-math.mit.edu/~jstarr/18.726/index.html
mailto:jstarr@math.mit.edu


18.726 Algebraic geometry Jason Starr
Spring 2006

Therefore, there is a unique morphism,

δp
Σ : hp(A′′)→ hp+1(A′)

such that δΣ ◦ hp(ũ′′) = hp(w(u)).
Because the cone construction is functorial in u and the association t 7→ t̃ is functorial in t, δp

Σ

satisfies Axiom (ii) of a δ-functor. It remains to check Axiom (i), i.e, it remains to prove exactness
of the complex,

. . . −−−→ hp(A′)
hp(u)−−−→ hp(A)

hp(v)−−−→ hp(A′′)
δp
Σ−−−→ hp+1(A′) −−−→ . . .

Because hp is half-exact and Σ is a short exact sequence, the long exact sequence is exact at hp(A).
Again because hp is half-exact, exactness of the following exact sequence gives exactness at hp(A′′),

0 −−−→ A
v(u)−−−→ Cone(u)

w(u)−−−→ A′[+1] −−−→ 0.

Finally, using the quasi-isomorphism w̃(u) : Cone(v(u)) → A′[+1], exactness at hp+1(A′) follows
from exactness of the following sequence

0 −−−→ Cone(u)
v(v(u))−−−−→ Cone(v(u))

w(v(u))−−−−→ A[+1] −−−→ 0.

For every integer m, the restriction of this δ-functor to the full subcategory Ch≥m(A) is a
universal cohomological δ-functor concentrated in degrees p ≥ m. Similarly, for every integer n,
the restriction of this δ-functor the full subcategory Ch≤n(A) is a universal homological δ-functor
concentrated in degrees p ≤ n.

Let F : A → B be an additive functor. There are the obvious exact, fully faithful functors
A → Ch•(A) and B → Ch•(A) sending an object M to M [0] = ((Cp), (dp)) where Cp = 0 except
for C0 = M , and all dp are zero. These functors are called the inclusion functors. There is a unique
additive functor Ch•(F ) : Ch•(A) → Ch•(B) compatible with the inclusion functors and F and
also compatible with the translation functors. Note that the failure of F to preserve short exact
sequences is precisely the same as the failure of Ch•(F ) to preserve quasi-isomorphisms. However,
since F preserves split exact sequences, Ch•(F ) preserves exact sequences that are split term-by-
term. Also Ch•(F ) preserves identity morphisms and homotopies. Therefore Ch•(F ) preserves
homotopy equivalences. In particular, it sends homotopy equivalences to quasi-isomorphisms.

Denote by Ch≥0(F ) the restriction of Ch•(F ) to the full subcategories Ch≥0(A) and Ch≥0(B).
For every object A of A, let A[0] → I be an injective resolution. By standard lemmas of homo-
logical algebra, an injective resolution is unique up to homotopy equivalence, and the homotopy
equivalence is unique up to a null homotopy. Thus the object F (I) in Ch≥0(B) is well-defined
up to homotopy equivalence and null homotopy. Therefore the cohomology groups hp(F (I)) are
well-defined in M , up to unique isomorphism, i.e., for any other injective resolution I ′, there are
canonical isomorphisms hp(F (I)) ∼= hp(F (I ′)). These objects, essentially well-defined, are called
the right derived functors of F ,

RpF (M) := hp(F (I)).
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Given a short exact sequence of objects of A,

Σ :0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

and given injective resolutions M ′[0] → I ′ and M ′′[0] → I ′′, the horseshoe lemma of homological
algebra asserts there exists a commutative diagram of short exact sequences of complexes,

Σ : 0 −−−→ M ′[0] −−−→ M [0] −−−→ M ′′[0] −−−→ 0y y y y
ΣI :0 −−−→ I ′ −−−→ I −−−→ I ′′ −−−→ 0

It follows that the lower exact sequence is split term-by-term and that M [0] → I is an injective
resolution. Therefore, the complex of complexes,

F (ΣI) :0 −−−→ F (I ′) −−−→ F (I) −−−→ F (I ′′) −−−→ 0

is an exact sequence split term-by-term. In particular, it is exact. Therefore, since h = ((hp), (δp))
is a δ-functor, the following is also a δ-functor from A to B concentrated in degrees ≥ 0,

R•F = ((RpF )p∈Z, (δ
p
F )p∈M), RpF (M) := hp(F (I)), δp

F,Σ := δp
h,F (ΣI).

Moreover, by essentially the same proof as for h, RF is a universal cohomological δ-functor con-
centrated in degrees p ≥ 0. The terms of this δ-functor are called the right derived functors of F .
In particular R0F equals the original functor F .

In general, i.e., without the hypothesis that A has enough injective objects, if there exists a
universal cohomological δ-functor ((F p), (δp)) concentrated in degrees p ≥ 0 and with F 0 = F , then
it is unique up to unique isomorphism. When it exists, it is called a right satellite of F . Thus,
when A has enough injective objects, the construction of the right derived functors proves that F
has a right satellite, any of which is canonically isomorphic to the right derived functors.

There is an exactly similar construction of left derived functors. The main examples of derived
functors are as follows.

(i) For every Abelian category A and every object M of A, if they exist, the right satellites of
the functor,

F : A → Ab, F (N) = HomA(M,N),

are called the Ext groups, denoted Extp
I(M,N). Even when A does not have enough injective

objects, the Ext groups often exist (one can use Yoneda Ext, for instance).

(ii) Similarly, for every object N of A, the right satellites of the contravariant additive functor,

G : A → Ab, G(M) = HomA(M,N),

are also called the Ext groups, Extp
II(M,N). One of the basic results from homological

algebra is that in almost every case, these two definitions of Ext groups agree and together
make Extp(M,N) into a bi-δ-functor. In particular, this holds if A has enough projective and
injective objects (but also under much weaker hypotheses).
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(ii) Let R be a (not necessarily commutative) ring and let R − mod be the category of left R-
modules. Let M be a right R-module and let M⊗R : R − mod → Ab be the right exact
functor N 7→ M ⊗R N . The category R −mod has enough projective objects (e.g., the free
modules). Therefore the left derived functors of F exist. They are called Tor groups, and are
denote by TorI,R

n (M,N) = L−nF (N).

(iii) As with Ext, there are also left derived functors TorII,R
n (M,N) of the right exact functor

M 7→M⊗RN . As with Ext, there are canonical isomorphism TorI,R
n (M,N) ∼= TorII,R

n (M,N).
Together these make TorR

n (M,N) into a bi-δ-functor.

(iv) In this class, the most important example is the following. Let X be a topological space, and
let OX be a sheaf of rings on X (but (X,OX) is not necessarily a locally ringed space). Denote
by OX −mod the category of sheaves of left OX-modules. There is a left-exact functor,

Γ(X,−) : OX −mod→ Γ(X,OX)−mod, F 7→ Γ(X,F).

As we will see, this category has enough injective objects. The right derived functors are the
sheaf cohomologies,

Hp(X,F) := RpΓ(X,−)(F).

Of course OX − mod is an additive subcategory of Abelian sheaves and Γ(X,F) − mod is
an additive subcategory of Ab. Therefore, it is a priori possible that the sheaf cohomologies
change when we change the sheaf of rings. We will see this does not happen: the underlying
Abelian group of the Γ(X,OX)-module Hp(X,F) is canonically isomorphic to the sheaf co-
homology of F considered as an Abelian sheaf. This is why OX is not part of the notation
for the sheaf cohomology.

Lecture 16. April 10, 2006

Homework. Problem Set 8
Stated criterion: A δ-functor is universal if the higher terms are “effaceable”/”eraseable”. Stated

definition of an F -acyclic object. Combined with effaceable criterion to show that derived functor
cohomology may be computed using F -acyclic resolutions. Did an example with Tor (the left
derived functors of tensor product) to deduce that for a flat A-algebra B, for every A-module M
and every B-module N , TorB

p (B⊗AM,N) is canonically isomorphic to TorA
p (M,N) as A-modules.

Explained that left adjoint functors preserve right exactness, colimits and projective objects.
Also right adjoint functors preserve left exactness, limits (i.e., inverse limits) and injective objects.
Used this to show that the category of OX-modules has enough injectives. Proved that injective
OX-modules are flasque. Used this to prove flasque sheaves are acyclic for higher sheaf cohomology.
Thus sheaf cohomology may be computed using flasque resolutions. Also it follows that sheaf co-
homology defined as derived functors on the category of OX-modules agrees with sheaf cohomology
defined as derived functors on the category of Abelian sheaves.

Skipped Grothendieck’s vanishing theorem (reading the proof is a homework problem).

Lecture 17. April 12, 2006
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Homework. Problem Set 9
Showed that Proposition II.5.6 implies that for every quasi-coherent sheaf F on an affine scheme,

H1(X,F) = 0. Used this to prove Serre’s criterion for affineness: a quasi-compact scheme X is
affine if and only if for every quasi-coherent ideal sheaf I, H1(X, I) = 0.

Stated the stronger result that for every quasi-coherent sheaf F on an affine scheme, Hp(X,F) =
0 for every p > 0. Began the proof under the additional hypothesis that X is Noetherian: showed
that it suffices to prove injective quasi-coherent sheaves are flasque.

Showed that for every Noetherian ring A, for every a ∈ A, and for every injective A-module
I, the kernel of I → I[1/a] is an injective A-module (using the Krull Intersection Theorem). Also
proved that every injective module over a Noetherian ring is divisible, i.e., I → I[1/a] is surjective.

Lecture 18. April 19, 2006

Homework. Problem Set 10
Finished the proof that an injective quasi-coherent sheaf on an affine Noetherian scheme is

flasque. Deduced the result that every injective quasi-coherent sheaf on any Noetherian scheme
(not necessarily affine) is flasque. Thus the derived functors of global sections on the category of
quasi-coherent sheaves on a Noetherian scheme agree with the derived functors on the category of
Abelian sheaves, i.e., agree with sheaf cohomology.

For a topological space X, defined the category of open coverings of X, associated to every open
covering the associated simplicial object in the category of open coverings (roughly the nerve), and
used this to define the set of Čech cochains associated to a sheaf, resp. object of Čech cochains
for a more general sheaf. Observed this is a cosimplicial set, resp. cosimplicial object. For a sheaf
of objects in an Abelian category (e.g., for an Abelian sheaf), defined the Čech complex to be the
associated cochain complex of this cosimplicial object.

If the indexing set is well-ordered, defined the reduced Čech complex and stated the fact that
the natural map from the Čech complex to the reduced Čech complex is a quasi-isomorphism. Thus
the smaller reduced complex may be used for computations.

Defined the Čech cohomology of a sheaf relative to a covering. Observed the Čech complex,
and thus the Čech cohomology, is functorial for refinements of coverings. Used this to define the
(absolute) Čech cohomology of a sheaf to be the limit over all refinements of the Čech cohomology
relative to the covering.

Computed the example of the Čech cohomology of ZX on the circle X with respect to a standard
covering. Observed it agrees with the singular cohomology of the circle.

Stated results to be proved next time.

(i) If X is an open subset of the covering, there is an explicit homotopy proving the Čech complex
is acyclic.

(ii) Using this, the complex of Čech sheaves is a resolution of a sheaf.

(iii) The Čech complex of sheaves of a flasque sheaf is a flasque resolution. Therefore, for a flasque
sheaf, the higher Čech cohomology is zero.
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(iv) Using this, there is a well-defined, natural transformation from Čech cohomology to sheaf
cohomology. But it is not always true that Čech cohomology gives a δ-functor.

(v) For a sheaf whose higher sheaf cohomology vanishes on all opens of the nerve of the covering,
the map from Čech cohomology to usual cohomology is an isomorphism.

(vi) A slight variation of this argument will allow us to prove that for every affine scheme X (not
necessarily Noetherian) the higher sheaf cohomology of every quasi-coherent sheaf is zero.

Lecture 19. April 24, 2006

Homework. Problem Set 10
Proved that if X is one of the open sets in the covering, the associated Čech complex is acyclic.

Therefore the complex of Čech sheaves is a resolution of the original sheaf. Every resolution admits
a morphism to any injective resolution, unique up to homotopy. Applying global sections and taking
cohomology, one obtains natural transformations from Čech cohomology to sheaf cohomology. Also,
for a flasque sheaf, the complex of Čech sheaves is a flasque resolution, hence computes sheaf
cohomology, i.e., the natural tansformations are bijections for a flasque sheaf. Since the higher
sheaf cohomology of a flasque sheaf vanishes, also the higher Čech cohomology of a flasque sheaf
vanishes (for any open covering).

Taking a monomorphism of a given sheaf into a flasque sheaf and examining terms, we concluded
that for every sheaf F the following map is a bijection,

Ȟ1(X,F)→ H1(X,F).

Also, if H1(Uσ,F) vanishes for every σ = (σ0, . . . , σp), then for every short exact sequence,

0 −−−→ F −−−→ G −−−→ H −−−→ 0,

there is a long exact sequence of Čech cohomology, compatible with the long exact sequence of
sheaf cohomology via the natural transformations above. In particular, using the case that G is
flasque and using low degree terms, Ȟ1(U,F)→ H1(X,F) is a bijection.

There are two further conclusions. First, if H i(Uσ,F) = 0 for all 0 < i < p, then H1(Uσ,H) = 0
for all 0 < i < p − 1. Also Ȟj(U,H) = Ȟj+1(U,F) and also Hj(X,H) = Hj+1(X,F). Thus,
working by induction on p, it follows that H i(U,F)→ H i(X,F) is a bijection for every i < p.

One can do better if the condition on cohomology vanishing holds not just for a single covering
U, but for a “cofinal collection” of coverings, i.e., every covering has a refinement by one in the
collection. In this case, the compatibilities give isomorphisms Ȟj(X,H) → Ȟj+1(X,F). But we
know that Ȟ1(X,H) = H1(X,H). Therefore also Ȟ2(X,F) = H2(X,F). Note the only hypothesis
was that H1(Uσ,F) = 0 for all σ and for all coverings U in a cofinal collection. Suppose for the
moment that all higher Čech cohomology of quasi-coherent sheaves on an affine scheme are known
to be zero. Then this proves that both H1 and H2 of a quasi-coherent sheaf on an affine scheme
are zero. But then H1(Uσ,H) is zero for every Uσ in an affine covering. Thus, for the same
reason, H3(X,F) = H2(X,H) = Ȟ2(X,H) = Ȟ3(X,F). This is zero by assumption. Therefore
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H1(Uσ,H) = H2(Uσ,H) both vanish, and one can continue in this manner to conclude that all
higher sheaf cohomology of F vanish.

Thus, finally, to prove vanishing of all higher sheaf cohomology of a quasi-coherent sheaf on
an affine scheme, it suffices to construct a cofinal collection of coverings such that all higher Čech
cohomology vanishes for each covering. Let X = Spec A, let the sheaf be M̃ for an A-module M .
The cofinal coverings will be finite coverings by distinguished open affines (D(a1), . . . , D(ar)).

Since cohomology of the Čech complex equals the cohomology of the reduced Čech complex, we
can compute this complex, which is∏

i0
M [1/ai0 ] −−−→

∏
i0<i1

M [1/ai0ai1 ] −−−→ . . .

Observe this is just the tensor product of M with the complex∏
i0
A[1/ai0 ] −−−→

∏
i0<i1

A[1/ai0ai1 ] −−−→ . . .

This is a complex of flat A-modules. Therefore, if this complex is acyclic, the same is true after
tensoring with M . Thus, to prove the theorem, we are reduced to proving the complex is acyclic
for M = A.

Because the localization A[1/a] is the filtering direct limit (= colimit) of free A-modules A〈1/aN〉
with basis 1/aN , the Čech complex is a filtering colimit of the following complexes,∏

i0
A〈1/aN

i0
〉 −−−→

∏
i0<i1

A〈1/aN
i0
aN

i1
〉 −−−→ . . . .

This is precisely the Koszul complex associated to the sequence (aN
1 , . . . , a

N
r ), except that the final

term in the Koszul complex has been truncated. The claim is that the Koszul complex is exact,
and thus the complex above is acyclic.

If the Koszul complex is exact at all places, then the ideal 〈aN
1 , . . . , a

N
r 〉A = A. Of course this

holds in our case because D(aN
1 ), . . . , D(aN

r ) cover Spec A. When (aN
1 , . . . , a

N
r ) generate the unit

ideal, the general theory of Koszul complex gives that the Koszul complex of (aN
1 , . . . , a

N
r ) is exact if

and only if the Koszul complex of (b1, . . . , bs) is exact for any (and hence every) sequence (b1, . . . , bs)
generating the unit ideal, cf., Corollary 17.10 of Eisenbud’s “Commutative algebra”. Consider the
sequence (b1, . . . , bs) = (1). The associated Koszul complex is

. . . −−−→ 0 −−−→ A
IdA−−−→ A −−−→ 0 −−−→ . . .

which is clearly exact. Therefore the Koszul complex for (aN
1 , . . . , a

N
r ) is exact. Taking limits, the

Čech complex is acyclic. This completes the proof of vanishing of the higher sheaf cohomology of
any quasi-coherent sheaf on any affine scheme.

Lecture 20. April 26, 2006

Homework. Problem Set 11
Let A be a commutative ring, let P be a projective A-module of constant, finite rank r, and let

φ : P → A be an A-module homomorphism. Let
∧• P denote the (A-multilinear) exterior algebra

of P ,
•∧
P = ⊕r

k=0

k∧
P.
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There is a unique A-module homomorphism d :
∧• P →

∧• P satisfying,

(i) for every p ∈ P =
∧1 P , dp = φ(p) inside A =

∧0 P ,

(ii) for every pair of homogeneous elements α, β ∈
∧• P of degrees a and b respectively, d(α∧β) =

(dα) ∧ β + (−1)aα ∧ (dβ).

In fact, the map d is defined on “pure tensors” by

d(p0 ∧ · · · ∧ pk) =
k∑

l=0

(−1)lφ(pl)p0 ∧ · · · ∧ pl−1 ∧ pl+1 ∧ · · · ∧ pk.

The map d makes
∧• P into a cochain complex, where the cohomological degree of

∧k P is
−k. This complex is the (homological) Koszul complex. It is functorial in φ: given φ : P → A
and ψ : P ′ → P , there is an induced morphism K(ψ) : K(φ ◦ ψ)→ K(φ) of cochain complexes of
A-modules.

It is always the case that h0(K(φ)) = A/Image(φ). Thus, K(φ) is exact only if φ is surjective.
In fact, if φ is surjective, then K(φ) is exact. Let q ∈ P be an element such that φ(q) = 1. There
is a unique A-module homomorphism s :

∧•A→
∧•A such that

(i) s(1) = q,

(ii) for every pair of homogeneous elements α, β ∈
∧• P of degrees a and b respectively, s(α∧β) =

(sα) ∧ β + (−1)aα ∧ (sβ).

In fact, the map s is defined on “pure tensors” by

s(p0 ∧ · · · ∧ sk) =
k∑

l=0

(−1)lp0 ∧ · · · ∧ pl−1 ∧ q ∧ pl ∧ · · · ∧ pk.

The claim is that ds+ sd = Id. Because both d and s satisfy the graded Leibniz rule, it suffices to
check on elements of degree 0 and 1. In each of these cases, it is straightforward to verify.

One of the most important results about Koszul complexes is the following. Let P = A⊕r and
let φ : P → A be the map (c1, . . . , cr) 7→ c1a1+· · ·+crar. The Koszul complex K(φ) is acyclic if and
only if the sequence (a1, . . . , ar) is regular. Recall, a complex C is acyclic if the only nonvanishing
cohomology is h0(C) – in this case h0(K(φ)) = A/〈a1, . . . , ar〉. And a sequence (a1, . . . , ar) is
regular if a1 is a nonzerodivisor, and for every i = 2, . . . , r, the image of ai in A/〈a1, . . . , ai−1〉
is a nonzerodivisor. Using this, it follows that the property of being regular is invariant under
permutation, and also invariant under replacing (a1, . . . , ar) by powers (ae1

1 , . . . , a
er
r ) with e1, . . . , er

positive.
Let A be a commutative ring, let P be a free A-module of finite rank r, and denote S = Sym•

AP .

Let P = ProjS. Denote by π : P → Spec A the obvious morphism. There is a surjection π∗P̃ →
O(1), and this gives the universal property of P. Using this, for every nonnegative integer d, there
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is a map Symd
AP → H0(P,O(d)). One of the basic facts about cohomology of coherent sheaves on

projective space is that this map is an isomorphism.
To compute the cohomology of O(d) on P for every integer d, first form the affine scheme

A = SpecS. Denote by U the open subscheme whose complement has ideal S+, the irrelevant ideal.
Denote by ρ : U → P the usual Gm-torsor. Recall that ρ∗OU = ⊕d∈ZO(d). Because ρ is affine,
Hq(P, ρ∗OU) is canonically isomorphic to Hq(U,OU) for every integer q. Using a Čech covering,
it will be clear that Hq(P,⊕dO(d)) is canonically isomorphic to ⊕dH

q(P,O(d)). Therefore, to
compute the cohomology of all invertible sheaves on P, it suffices to compute the cohomology
Hq(U,OU), remembering the grading induced by the Gm-action.

Let x0, . . . , xr−1 be an ordered basis for P . Denote by U = (D(x0), . . . , D(xr−1)) the associated
open covering of U . This is an open affine covering. Denote by U′ = (D+(x0), . . . , D+(xr−1)) the
associated open covering of P. This is also an open affine covering. Therefore the reduced Čech
cohomology of any quasicoherent sheaf with respect to each of these coverings equals the sheaf
cohomology. The reduced Čech complex for OU , respectively ρ∗OU , is

Č(U,OU)k =
∏

0≤i0<···<ik≤r−1

S[1/(xi0 . . . xik)]

with differential d the usual map. The grading of the terms in this complex associated to the
Gm-action is the usual grading. In particular, because the indexing set of the product is finite, it
equals a direct sum,

Č(U,OU)k = ⊕0≤i0<···<ik≤r−1S[1/(xi0 . . . xik)].

From this it follows that the Čech cohomology of ⊕dO(d) is the direct sum of the Čech cohomologies
of the summands O(d).

One can compute the Čech cohomology above directly. But one can also realize this complex
as a limit of complexes

Č(U,OU) = lim←−
N

ČN ,

ČN,k = ⊕0≤i0<···<ik≤r−1S〈1/(xi0 · · ·xik)
N〉.

Here S〈e〉 is just shorthand for the free S-module of rank 1 with basis element being the symbol
e. The basis element of ČN,k maps to the element 1/(xi0 · · ·xik)

N inside Č(U,OU)k. Also, the
differential map d on ČN,k is the obvious differential. And the grading is the usual grading where
the symbol 1(xi0 · · ·xik)

N has degree −N(k + 1).
The point is that ČN is closely related to a Koszul complex. Denote by Pn the graded, free

S-module generated by the symbols xN
0 , . . . , x

N
r−1, and let φN : PN → S be the map sending the

symbol xN
i to the element xN

i of S. The complex ČN is related to K(φN) by,

ČN,k = HomS(K(φN)k+1, S),

compatibly with the differentials and the natural gradings. On the other hand, Koszul complexes
are self-dual,

K(φN) ∼= HomS(K(φN),
r∧
PN)[r],
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compatibly with the gradings. Using this, ČN is isomorphic to the brutal truncation of the shifted
Koszul complex,

ČN,k
∼= (K(φN)[−r + 1]⊗S HomS(

r∧
PN , S))≥0.

Because (x0, . . . , xr−1) is a regular sequence in S, also (xN
0 , . . . , x

N
r−1) is a regular sequence. Therefore

K(φN) is acyclic. For the moment assume that r > 1. Then it follows that ČN has precisely two
nonvanishing cohomologies,

h0(ČN,k) = S〈1〉,

hr−1(ČN,k) = h0(K(φN))⊗S HomS(
r∧
PN , S) = S/〈xN

0 , . . . , x
N
r−1〉 ⊗S HomS(

r∧
PN , S).

As a graded S-module the second cohomology is canonically isomorphic to

hr−1(ČN,k) ∼= HomA(S/〈xN
0 , . . . , x

N
r−1〉,HomA(

r∧
P,A)),

where
∧r P has degree r and HomA(

∧r P,A) has degree −r. In particular, for every integer d the
dth graded piece stabilizes for N ≥ d. The final answer is that, for r > 1, for every integer d,

H0(P,O(d)) = Ȟ0(U′,O(d)) = Sd,
Hr−1(P,O(d)) = Ȟr−1(U′,O(d)) = HomA(S−d−r,HomA(

∧r P,A)),
Hq(P,O(d)) = Ȟq(U′,O(d)) = (0), q 6= 0, r − 1.

Something special happens when r = 1. In this case, the reduced Čech complex has only one
term S[1/x0]. Therefore, for every integer d, there is one nonvanishing cohomology,{

H0(P,O(d)) = P⊗d,
Hq(P,O(d)) = (0) q 6= 0.

For d < 0, P⊗d is defined to be HomA(P−d, A).
Of course when r = 0, P is the empty scheme. Thus all cohomologies are identically zero.

Lecture 21. May 1, 2006

Homework. Problem Set 11
Last time the Čech complex of ⊕dO(d) on projective space P ∼= Pr−1

A was shown to be (a
truncation of a shift of) a limit of Koszul complexes K(φN). The first Koszul complex that arises,
K(φ1), is very natural and can be used to give a reformulation of the theorem.

Let ψ : π∗P̃ → O(1) be the universal invertible quotient. Twisting by O(−1) gives a surjective

morphism of coherent sheaves φ : π∗P̃ ⊗O(−1)→ OP. Just as with a morphism from a projective
module to A, there is a Koszul complex associated to this map, K(φ). Moreover, ρ∗K(φ) is the

restriction to U of the complex K̃(φ1) of coherent sheaves on A associated to the Koszul complex
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K(φ1) of S-modules. Thus, K(φ) is nothing more than the sheafified version of K(φ1), taking the
gradings into account. The terms in the complex are,

K(φ)k = π∗
k̃∧
P ⊗O(−k)

for k = 0, . . . , r, and the differentials are,

dk : K(φ)k → K(φ)k−1, d((p0∧ · · ·∧ pk)⊗ g) =
k∑

l=0

(−1)l(p0∧ · · ·∧ pl−1∧ pl+1∧ · · ·∧ pk)⊗ (ψ(pl)g),

where p0, . . . , pk are elements of P , and g is a local section of O(−k).
Because φ is surjective, K(φ) is exact. For every k, denote

Ωk
π := Ker(dk−1) = Image(dk).

Because of the graded Leibniz rule, there is a map

k∧
Ω1

π → Ωk
π.

Because the complex is exact, this map is an isomorphism. Two of the terms Ωk
π are clear: because

d−1 is the zero map, Ω0
π = OP. Because dr−1 is the zero map, Ωr−1

π = K(φ)r. This second identity
gives an interesting isomorphism,

r−1∧
Ω1

π
∼= K(φ)r = π∗

r̃∧
P ⊗O(−r).

This sheaf comes up so often it is given a special name, the dualizing sheaf,

ωπ := Ωr−1
π = π∗

r̃∧
P ⊗O(−r).

For every k there is a short exact sequence,

Σk :0 −−−→ Ωk
π −−−→ K(φ)k −−−→ Ωk−1

π −−−→ 0.

Thus there are connecting maps in cohomology, δ : Hq−1(P,Ωk−1
π )→ Hq(P,Ωk

π). Composing these
connecting maps gives a morphism,

H0(P,OP) = H0(P,Ω0
π)

δ−→ H1(P,Ω1
π)

δ−→ . . .
δ−→ Hr−1(P,Ωr−1

π ) = Hr−1(P, ωπ).

Of course there is an A-module homomorphism A→ H0(P,OP). Thus, putting all these homomor-
phisms together, there is an A-module homomorphism,

t′ : A→ Hr−1(P, ωπ).
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Although this is our main interest in K(φ), there is another aspect of K(φ) that is also very
important. The sheaf Ω1

π that is defined to be Ker(d0) is, in fact, canonically isomorphic to the sheaf
of relative differentials of π. This has not been formally defined yet. The short exact sequence Σ1

is the dual sequence of the Euler sequence typically used to present the tangent sheaf of projective
space.

For every coherent sheaf F on P, there is a map

µF : HomOP(F , ωπ)×Hr−1(P,F)→ Hr−1(P, ωπ).

This map is defined using the fact that Hr−1(P,−) is functorial. This map is A-bilinear and thus
defines an A-module homomorphism,

µF : HomOP(F , ωπ)⊗A H
r−1(P,F)→ Hr−1(P, ωπ),

or equivalently,
νF : HomOP(F , ωπ)→ HomA(Hr−1(P,F), Hr−1(P, ωπ)).

This leads to a reformulation of the theorem from last time.

(i) The A-module homomorphism t′ : A → Hr−1(P, ωπ) is an isomorphism. Denote its inverse
by t : Hr−1(P, ωπ)→ A.

(ii) If r > 1, then for every integer d the natural A-module homomorphism Sd → H0(P,O(d))
is an isomorphism. If r = 1, then for every integer d the natural A-module homomorphism
P⊗d → H0(P,O(d)) is an isomorphism.

(iii) For every integer d, the map µO(d) is a perfect pairing, i.e., νO(d) is an isomorphism.

(iv) For every integer d and every q 6= 0, r − 1, Hq(P,O(d)) = (0).

The isomorphism t in (i) is called the trace map. Actually, (iii) implies that νF is an isomorphism
for every coherent sheaf F (at least when A is Noetherian). The point is that we can find a
presentation,

O(−e)⊕M −−−→ O(−d)⊕N −−−→ F −−−→ 0

This gives a commutative diagram with exact rows

0 −−−→ HomOP(F , ωπ) −−−→ HomOP(O(−d), ωπ)⊕N −−−→ HomOP(O(−e), ωπ)⊕M

νF

y y y
0 −−−→ HomA(Hr−1(P,F), A) −−−→ HomA(Hr−1(P,O(−d)), A)⊕N −−−→ HomA(Hr−1(P,O(−e)), A)⊕M

By (iii), the second and third vertical arrows are isomorphisms. Therefore νF is also an isomorphism.
This is the most basic example of a dualizing pair. To avoid technical issues, we formulate this

only when A is a field K. In this case, for a purely s-dimensional, proper K-scheme X, a dualizing
pair is a pair (ω◦X , t) of a coherent sheaf ω◦X and a map of vector spaces t : Hs(X,ω◦X) → k
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satisfying the following universal property. For every coherent sheaf F on X, the following map is
an isomorphism,

νF : HomOX
(F , ω◦X)→ Homk(H

r−1(X,F), Hr−1(X,ω◦X))
t◦−−−→ Homk(H

r−1(X,F), k).

In other words, (ω◦X , t) represents the contravariant functor,

Homk(H
r−1(X,−), k) : CohX → k-vector spaces.

Therefore, if it exists, a dualizing pair is unique up to unique isomorphism. The main part of the
reformulation above is that Pr−1

k does have a dualizing pair, namely (ωπ, t).
There are two other consequences of the theorem from last time. First of all, by a downward

induction argument, we proved the following theorem of Serre. Assume A is Noetherian.

(i) For every coherent sheaf F on P, for every q > r − 1, Hq(P,F) = (0).

(ii) For every coherent sheaf F on P, for every q, Hq(P,F) is a finitely generated A-module.

(iii) For every coherent sheaf F on P, there exists an n0 = n0(F) such that for every n ≥ n0 and
every q > 0, Hq(P,F ⊗O(n)) = (0).

(iv) For every coherent sheaf F on P, the S-module Γ∗(F) := ⊕n≥0H
0(P,F ⊗ O(n)) is finitely

generated.

Using this, we also proved another theorem of Serre characterizing ample invertible sheaves on
proper schemes. Let X be a proper scheme over a Noetherian ring A. Let L be an invertible sheaf
on X. Then the following are equivalent.

(i) The sheaf L is ample.

(ii) For every coherent sheaf F on X, there exists n0 = n0(F) such that for every n ≥ n0 and
every q > 0, Hq(X,F ⊗ L⊗n) = (0).

Finally, we defined the Ext modules, Extq
OX

(F ,−) and Ext sheaves, ExtqOX
(F ,−), to be the

right derived functors of HomOX
(F ,−), respectively HomOX

(F ,−).

Lecture 22. May 3, 2006

Homework. Problem Set 12
Discussed basic facts about Ext and Ext. Proved that for a projective scheme X over a Noethe-

rian ring A, for every pair of coherent sheaves F ,G, there exists an integer l0 such that for every
l ≥ l0 and every integer q, the natural map,

Extq
OX

(F ,G(l))→ Γ(X,ExtqOX
(F ,G(l)))

is an isomorphism.
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LetX be an n-dimensional projective scheme over a field k. Recalled the definition of a dualizing
pair (ω◦X , t) for X. Assuming a dualizing pair exists, constructed a natural transformation of δ-
functors,

θq : Extq(F , ω◦X)→ Hn−q(X,F)∨.

The first δ-functor is universal. For X = Pn
k , used the computation of cohomology of invertible

sheaves to prove the second δ-functor is also coeffaceable, thus universal. Therefore, for projective
space, every natural transformation θq is a natural isomorphism.

Lecture 23. May 8, 2006

Homework. Problem Set 12
Began by proving one version of the Riemann-Roch theorem for curves. Let X be a proper,

reduced, connected curve over an algebraically closed field. Recall that for every coherent sheaf on
X, there are two associated integers, the rank and the degree. The arithmetic genus of X is defined
to be pa(X) = h1(X,OX). The Riemann-Roch theorem for curves states that for every coherent
sheaf F on X,

h0(X,F)− h1(X,F) = deg(F) + rank(F)(1− pa(X)).

This is proved by proving it first for torsion sheaves, next for the structure sheaf, and then for every
free OX-module of finite rank. For every coherent sheaf F with rank r, there exists a pair of short
exact sequences,

0 −−−→ K −−−→ F −−−→ T −−−→ 0,

0 −−−→ K −−−→ O⊕r
X −−−→ T ′ −−−→ 0,

Using the long exact sequence of cohomology,

χ(X,F) = χ(X,K) + χ(X, T ) = χ(X,O⊕r
X )− χ(X, T ′) + χ(X, T ).

Using the Riemann-Roch theorem for O⊕r
X , T and T ′, this gives,

χ(X,F) = r(1− pa(X)) + deg(T )− deg(T ′) = r(1− pa(X)) + deg(F).

Alternatively, one could define the degree of a coherent sheaf F to be,

deg(F) := χ(X,F) + r(pa(X)− 1),

and then use the argument above to prove it satisfies the axioms of Exercise II.6.12. Once we
have finished proving Serre duality for projective morphisms, there will be another formulation of
Riemann-Roch for locally free sheaves E on X,

h0(X,E)− h0(X,E∨ ⊗ ωX) = deg(E) + rank(E)(1− pa(X)).

Recalled the definition of a dualizing pair (ω◦X , tX) and the associated map of contravariant
δ-functors,

θi : Exti
OX

(F , ω◦X)→ Hd−i(X,F)∨,
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on a d-dimensional projective scheme X. Recalled the statement of the duality theorem for X = Pn:
there exists a dualizing pair, and the associated map of δ-functors is an isomorphism. Proved a
version of “relative duality” for closed immersions. Let ι : X → Pn is a closed immersion of
codimension c. Define ω◦X to be a coherent sheaf on X satisfying,

ι∗ω
◦
X = ExtOPn (ι∗OX , ωPn).

There exists an element,
tι ∈ Extc

OPn (ι∗ω
◦
X , ωPn)

such that the pair (ω◦X , tι) represents the functor,

CohX → k − Vector Spaces, F 7→ Extc
OPn (ι∗F , ωPn).

From duality for Pn, tι is equivalent to an element tX in

Hd(X,ω◦X)∨ ∼= Hn−c(Pn, ι∗ω
◦
X)∨ = Extc

OPn (ι∗ω
◦
X , ωPn).

The claim is that the pair (ω◦X , tX) is a dualizing pair for X. Indeed, for every coherent F on X,
by relative duality,

HomOX
(F , ω◦X) ∼= Extc

OPn (ι∗F , ωPn).

And by duality for Pn,

Extc
OPn (ι∗F , ωPn) ∼= Hn−c(Pn, ι∗F)∨ ∼= Hd(X,F)∨.

Therefore every projective scheme has a dualizing pair.
Asked the question when is the associated transformation (θi)i of δ functors an isomorphism.

Observed this is equivalent to coeffaceability of the δ-functor Hd−i(X,F)∨ (since the other δ-functor
is coeffaceable). Stated and proved the Serre duality theorem: the natural transformation (θi)i is an
isomorphism if and only if the second δ-functor is coeffaceable if and only if X is Cohen-Macaulay
and equidimensional.

Stated the fact that if X is Gorenstein and equidimensional, then ω◦X is an invertible sheaf.
Stated the result, to be proved next time, that for a reduced, local complete intersection scheme
X, the dualizing sheaf is isomorphic to the determinant of the sheaf of relative differentials ΩX/k

(which is also to be defined).

Lecture 24. May 10, 2006

Homework. Problem Set 13
Philosophical discussion of connectedness, comparison of the Zariski and “classical” topologies

on the set of closed points of a finite type scheme over C, and Hartog’s phenomenon. Stated and
sketched the proof of Hartshorne’s connectedness theorem. Stated and proved the Enriques-Severi-
Zariski lemma. Stated the theorem that an ample divisor on a projective, R0 + S2 scheme over a
field is connected. Stated the weak Lefschetz theorem for the classical topology. Explained why the
previous theorem is the π0-case. Stated the versions of the π1-case of the Lefschetz theorem from
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SGA2. Proved the surjectivity part of this version. Defined relative differentials and explained the
universal property (existence of a universal derivation).

Lecture 25. May 15, 2006

Homework. Problem Set 13
Stated the basic properties of the sheaf of relative differentials. Computed the sheaf of relative

differentials for the vector bundle and the projective bundle associated to a locally free sheaf.
Combined this with the earlier Koszul complex to deduce that the dualizing sheaf of a projective
bundle equals the canonical sheaf. Analyzed the Koszul complex associated to a regular embedding
to prove that for every reduced, pure-dimensional, local complete intersection, projective scheme
over a field, the dualizing sheaf is isomorphic to the canonical sheaf.

Defined the Hodge groups. Stated the Hodge theorem. Observed that Serre duality for the
Hodge groups is compatible with Poincare duality via the Hodge decomposition.

Stated the theorem on formal functions. Explained one consequence of Zariski’s main theorem:
a rational function on a normal variety extends to a regular morphism if and only if it extends to
a continuous function (for the Zariski or classical topology, if the variety is over C).

Lecture 26. May 17, 2006
Recalled the statement of the theorem on formal functions. Deduced the following corollary:

For a scheme X with a projective morphism of relative dimension d to an affine scheme, for every
coherent sheaf F , H i(X,F) = 0 for i > d. Defined the Stein factorization of a proper morphism
f : X → Y . Proved that if f∗OX = OY , then f has connected fibers. Deduced the connectedness
formulation of Zariski’s Main Theorem: a proper, birational morphism to a normal (Noetherian)
scheme has connected fibers. Discussed the five formulations of Zariski’s Main Theorem given in
Mumford’s The red book of varieties and schemes. Proved the theorem on formal functions.
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