
18.725 PROBLEM SET 8

Due date: Wednesday, November 24 in lecture. Late work will be accepted only
with a medical note or for another Institute-approved reason. You are strongly
encouraged to work with others, but the final write-up should be entirely your own
and based on your own understanding.

Read through all the problems. Write solutions to the “Required Problems”, 1, 2,
3, and 4. There will be more problems posted soon, and you will be asked to do 1
more problem to a total of 5.

Required Problem 1: Recall from Definition 14.12 that a regular morphism of
varieties F : (X,OX) → (Y,OY ) is projective if for every open affine U ⊂ Y there
exists a projective variety Z, and a closed immersion i : F−1(U) → U × Z such
that the restriction morphism F : F−1(U) → U equals prU ◦ i. To be precise, this is
the definition of weakly projective. A regular morphism of varieties F : (X,OX) →
(Y,OY ) is strongly projective if there exists a projective variety Z and a closed
immersion i : X → Y × Z such that F = prY ◦ i.
Let X be a quasi-projective variety and denote by j : X ↪→ Pn

k a locally closed im-
mersion. Let F : (X,OX) → (Y,OY ) be a regular morphism of algebraic varieties.
Prove the following are equivalent,

(i) F is weakly projective,
(ii) F is proper,
(iii) the graph morphism F × j : X → Y × Pn

k has closed image, and
(iv) F is strongly projective.

Solution:(i)⇒(ii) Corollary 24.17 proves that every weakly projective morphism
is proper.

(ii)⇒(iii) The variety Pn
k is separated, i.e., the constant morphism Pn

k → P0
k is

separated. By Lemma 14.5, separated morphisms satisfy base-change, so prY :
Y ×Pn

k → Y is separated. The composition of F × j and prY is F , which is proper
by hypothesis. By Prop. 24.14, F × j is proper, in particular it is closed. Therefore
(F × j)(X) ⊂ Y × Pn

k is closed.

(iii)⇒(iv) Here is one argument (not the shortest one). By hypothesis, (F ×
j)(X) ⊂ Y × Pn

k is a closed subset. To prove that F × j is a closed immersion,
it suffices to prove that F × j : X → (F × j)(X) is an isomorphism. Consider
the projection prPn

k
: (F × j)(X) → Pn

k . The composition of prPn
k

and F × j is
j, so prPn

k
((F × j)(X)) ⊂ j(X). The induced set map prPn

k
: (F × j)(X) → j(X)

is a regular morphism by the universal property of the induced SWF structure.
Because j is a locally closed immersion, j : X → j(X) is an isomorphism. Therefore
j−1 ◦ prPn

k
: (F × j)(X) → X is a regular morphism. It is straightforward that this

is an inverse of F × j : X → (F × j)(X), proving that F × j : X → Y × Pn
k is a

closed immersion. Because prY ◦ (F × j) = F , this factorization of F proves F is
strongly projective.

(iv)⇒(i) This is obvious.
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Required Problem 2 In each of the following cases, X is an irreducible affine
variety and L/k(X) is a finite algebraic field extension. In each case compute the
associated normalization F : Y → X, i.e., write down the equations defining F in
some affine space and the coordinates of the morphism F . In all cases, char(k) = 0.

(a) X = V(y2 − x3) ⊂ A2
k, L = k(X).

Solution: Denote A = k[X] and denote by B the integral closure of A in L. Let
b = y/x ∈ L. Then b2 = y2/x2 = x3/x2 = x. So b satisfies the monic polynomial
t2− x, i.e., b ∈ B. Moreover x = b2 and y = bx = b3. So k[X] = k[x, y] ⊂ k[b] ⊂ B.
Therefore the integral closure of k[X] in L is the integral closure of k[b] in L. But
since k[b] ∼= k[t] is a UFD, it is already integrally closed by Gauss’s Lemma. Thus
B = k[b]. So Y = A1

k and F : A1
k → X by b 7→ (b2, b3) is the normalization.

(b) X = V(yp−xq) ⊂ A2
k, p and q are relatively prime positive integers, L = k(X).

Solution: Denote A = k[X] and denote by B the integral closure of A in L.
Because p and q are relatively prime, by the division algorithm there exist integers
r, s such that rp+ sq = 1. Let b = xrys ∈ L. Then bp = xpryps. Because yp = xq,
this is bp = xpr+qs = x1 = x. Similarly, bq = xqryqs = ypr+qs = y1 = y. Since b
satisfies the monic polynomial tp − x, b ∈ B. And x, y ∈ k[b], so k[X] ⊂ k[b] ⊂ B.
Because k[b] ∼= k[t] is a UFD, k[b] is integrally closed by Gauss’s Lemma. Thus
B = k[b]. So Y = A1

k and F : A1
k → X by b 7→ (bp, bq) is the normalization.

(c) X = A1
k, L = k(X)[t]/〈t2 + (1/x)t+ 1〉,

Solution: Denote A = k[X] = k[x] and denote by B ⊂ L the integral closure of
A. Let u = xt ∈ L. Then,

u2 = x2t2 = x2(−(1/x)t− 1) = −xt− x2 = −u− x2.

Since u satisfies the monic polynomial f(y) = y2 + y + x2, u is in B. Of course
k[X][u] ⊂ B is isomorphic to C = k[x, y]/〈y2 + y + x2〉. The claim is that C
is integrally closed. To prove this, it suffices to prove that the Jacobian ideal of
y2 + y+x2 is the unit ideal in C, because then V(y2 + y+x2) is even smooth. The
Jacobian ideal is 〈2y + 1, 2x〉. But,

1 = (2y + 1)(2y + 1) + (2x)(2x)− 4(y2 + y + x2),

so 〈2y + 1, 2x〉C is all of C. Therefore Y = V(y2 + y + x2) ⊂ A2
k, and F : Y → X

is F (a, b) = a.

(d) X = V(y2 − x2(x− z)) ⊂ A3
k, L = k(X),

Solution: Denote A = k[X] and denote by B the integral closure of A in L. Let
b = y/x. Then b2 = y2/x2 = (x − z). Since b satisfies the monic polynomial
t2 − (x − z), b ∈ B. Moreover, y = bx and z = x − b2, so k[X] ⊂ k[x, b] ⊂ B.
But k[x, b] ∼= k[x, y] is a UFD, hence integrally closed by Gauss’s Lemma. Thus
the integral closure of k[X] is B = k[x, b]. Therefore Y = A2

k and F : Y → X is
F (a, b) = (a, ab, a− b2).

Required Problem 3 Let X be a variety. A rank r subbundle of X ×An
k is a pair

(E, φ) of a rank r vector bundle E on X together with a morphism of Abelian cones
on X, φ : E → X × An

k such that for every point p ∈ X, the corresponding map
φp : Ep → An

k is injective, where Ep denotes the fiber of E over p. An equivalence
of rank r subbundles, ψ : (E1, φ1) → (E2, φ2) is a morphism of Abelian cones on X,
ψ : E1 → E2 such that φ2 ◦ ψ = φ1. For every regular morphism F : Y → X and
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every rank r subbundle of X × An
k , (E, φ), the pullback subbundle is defined to be

(Y ×X E,F ∗φ) where F ∗φ : Y ×X E → Y × An
k is prY × (prAn

k
◦ φ ◦ prE).

(i) Prove that F ∗φ is injective on fibers.

Solution: For every y ∈ Y , the fiber of Y ×X E over y is the fiber of E over
x = F (y), and the fiber of Y × An

k is just An
k , which is the fiber of X × An

k over x.
The fiber of F ∗φ over y, i.e., F ∗φ : {y} ×Y (Y ×X E) → {y} ×Y (Y × An

k ), is the
fiber of φ over x, which is injective by hypothesis.

(ii) Prove that if (E1, φ1) and (E2, φ2) are equivalent rank r subbundles of X×An
k ,

then (Y ×X E1, F
∗φ1) and (Y ×X E2, F

∗φ2) are equivalent rank r subbundles of
Y × An

k .

Solution: Let ψ : E1 → E2 be a morphism of Abelian cones such that φ2 ◦ψ = φ1.
Then F ∗ψ : Y ×X E1 → Y ×X E2 is a morphism of Abelian cones. Because F ∗

is a functor, F ∗φ2 ◦ F ∗ψ = F ∗φ1. Therefore (Y ×X E1, F
∗φ1) is equivalent to

(Y ×X E2, F
∗φ2).

(iii) Let G : Z → Y be a regular morphism. For every rank r subbundle of X×An
k ,

(E, φ), prove that (Z×X E, (F ◦G)∗φ) is equivalent to (Z×Y (Y ×X E), G∗(F ∗φ)).

Solution: The point is that the canonical isomorphism Z×X E → Z×Y (Y ×X E)
is an isomorphism of vector bundles over Z. This is straightforward and left to the
reader.

Together, (i)–(iii) prove the existence of a contravariant functor,

Grass(r, n) : k −Varieties → Sets,

where Grass(r, n)(X) is the set of equivalence classes of rank r subbundles ofX×An
k ,

and where Grass(r, n)(F ) : Grass(r, n)(X) → Grass(r, n)(Y ) is the set map that
sends the equivalence class [(E, φ)] to the equivalence class [(Y ×X E,F ∗φ)]. This
functor is called the Grassmann functor.

Required Problem 4: This problem proves the existence of a universal object
for the Grassmann functor, i.e., a k-variety Grass(r, n) together with a rank r
subbundle of Grass(r, n)×An

k , (E, φ), such that for every variety X and every rank
r subbundle (E′, φ′), there is a unique morphism F : X → Grass(r, n) such that
F ∗(E, φ) is equivalent to (E′, φ′).

(i) For every r-tuple i = (i1, . . . , ir) of integers satisfying 1 ≤ i1 < · · · < ir ≤ n,
define Ui ⊂ Hom(Ar

k,An
k ) to be the closed subvariety of n × r matrices such that

for every k, l = 1, . . . , r,

Aik,l =
{

1, k = l,
0, k 6= l

Denote by φi : Ui × Ar
k → Ui × An

k the morphism given by the matrix A. Prove
that (Ui × Ar

k, φi) is a rank r subbundle.

Solution: It is clear that this morphism is linear on fibers, thus it is a morphism of
Abelian cones. Let IdUi : χi : Ui × An

k → Ui × Ar
k be the morphism defined below.

The composition (IdUi
×χi) ◦φi is the identity morphism. Therefore φi is injective

on fibers.

(ii) Let i be an r-tuple as above. Denote by χi : An
k → Ar

k the projection of An
k

onto the coordinates xik
, k = 1, . . . , r. Let X be a variety and let (E, φ) be a rank r
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subbundle of X×An
k such that composition of φ with IdX ×χi : X×An

k → X×Ar
k

is an isomorphism. Prove there exists a unique morphism F : X → Ui such that
F ∗(Ui × Ar

k, φi) is equivalent to (E, φ).

Solution: There is only one idea in this solution, which is to convert the morphism
φ into an n × r matrix whose entries are elements of OX(X), and then use this
matrix to define a morphism X → Homk(Ar

k,An
k ) whose image is contained in Ui.

However, the details are a bit tedious. Lemmas are used to organize the details.

Lemma 0.1. Let X and Y be abstract algebraic varieties and let (X×Y, prX , prY )
be a fiber product. The induced k-algebra homomorphism, pr#X ⊗ pr#Y : OX(X) ⊗k

OY (Y ) → OX×Y (X × Y ), is an isomorphism.

Proof. The first case is when X and Y are affine algebraic varieties. Then this
follows from Cor. 13.9.

The second case is where X is general and Y is affine. Let (Xα)α∈A be an open
affine covering of X, and for every pair α, α′ ∈ A, let (Xα,α′,γ)γ∈Aα,α′ be an open
affine covering of Xα ∩Xα′ . By the gluing lemma, there is an exact sequence,

0 → OX(X) →
∏
α∈A

OX(Xα) →
∏

(α,α′)∈A×A,γ∈Aα,α′

OX(Xα,α′,γ).

Because tensor product of k-vector spaces preserves exact sequences, there is an
exact sequence,

0 → OX(X)⊗kOY (Y ) →
∏
α∈A

OX(Xα)⊗kOY (Y ) →
∏

(α,α′)∈A×A,γ∈Aα,α′

OX(Xα,α′,γ)⊗kOY (Y ).

But also (Xα × Y )α∈A is an open affine covering of X × Y . Using the first case,
the sequence above is the exact sequence from the gluing lemma, i.e., OX(X) ⊗
OY (Y ) → OX×Y (X × Y ) is an isomorphism.

The final case where X is arbitrary and Y is arbitrary is proved by precisely the
same argument as above, where now the second case is used in place of the first
case. �

Corollary 0.2. For every variety X and every finite-dimensional k-vector space
V , the natural k-algebra homomorphism OX(X)⊗k Sym∗(V ∨) → OX×AV (X×AV )
is an isomorphism.

For the next lemma, let V and W be finite-dimensional k-vector spaces and let
Homk(V,W ) be the associated k-vector space of linear transformations. Denote by
θV,W : Homk(V,W )× V → W the unique set map (T, v) 7→ T (v). For every linear
functional x on W , x◦θV,W is a polynomial in linear functions on Homk(V,W )×V ,
namely,

x ◦ θV,W =
r∑

i=1

Tx,vi
◦ prHomk(V,W ) · yi ◦ prV ,

where (y1, . . . , yr) is any basis for V ∨ with dual basis (v1, . . . ,vr), and where Tx,vi
:

Homk(V,W ) → k is T 7→ y(T (vi)). Because x ◦ θV,W is always a polynomial func-
tion, by the universal property of affine varieties, θV,W : AHomk(V,W )×AV → AW
is a regular morphism. There is an induced map of vector bundles on AHomk(V,W ),

θ̃V,W := prHom(V,W ) × θV,W : AHomk(V,W )× AV → Homk(V,W )× AW.
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Lemma 0.3. For every variety X and every map of vector bundles φ : X ×AV →
X × AW , there is a unique morphism F : X → AHomk(V,W ) such that F ∗θ̃V,W

equals φ.

Proof. Consider prAW ◦φ : X×AV → AW . By the universal property of affine vari-
eties, this is equivalent to the k-algebra homomorphism k[AW ] → OX×AV (X×AV ).
By Lemma 0.1, OX×AV (X × AV ) is canonically isomorphic to OX(X) ⊗k k[AV ].
Let (v1, . . . ,vr) be a basis for V with dual basis (y1, . . . , yr) and let (w1, . . . ,wn)
be a basis for W with dual basis (x1, . . . , xn). Because φ is linear on fibers, for
every i = 1, . . . , n, (pr

ÅW
◦ φ)#(xi) =

∑r
j=1 ai,jyj , for elements ai,j ∈ OX(X).

By the universal property of affine varieties, there is a unique morphism F : X →
AHomk(V,W ) such that for every 1 ≤ i ≤ n and 1 ≤ j ≤ r, F#(Txi,vj

) = ai,j . It
is straightforward to check this is the unique regular morphism such that F ∗θ̃V,W

equals φ. �

Lemma 0.3 solves the problem, after a simple reduction of the original problem
about rank r subbundles up to equivalence to a problem about morphismsX×Ar

k →
X×An

k up to equality. As used in (i), observe that the composition of φi and IdUi
×χi

is the identity morphism. For every morphism F : X → Ui, denote by

αF : X × Ar
k → X ×Ui (Ui × Ar

k),

the canonical isomorphism. Then for every morphism F : X → Ui, (X×Ar
k, F

∗φi ◦
αF ) is a rank r subbundle of X×An

k with the additional property that (IdX ×χi)◦
(F ∗φ ◦ αF ) is the identity morphism.

Denote by ξ : X×Ar
k → E the inverse of (IdX×χi)◦φ. Then φ◦ξ : X×Ar

k → X×An
k

is the unique morphism such that both
(i) (X × Ar

k, φ ◦ ξ) is a rank r subbundle equivalent to (E, φ), and
(ii) (IdX × χi) ◦ (φ ◦ ξ) is the identity morphism X × Ar

k → X × Ar
k.

By Lemma 0.3, there is a unique morphism F : X → Homk(Ar
k,An

k ) such that
F ∗φi ◦ αF equals φ ◦ ξ. Because (Id× χi) ◦ φ ◦ ξ is the identity, the image of F is
contained in Ui. Therefore F : X → Ui is the unique morphism such that F ∗φi◦αF

equals φ ◦ ξ. By the previous paragraph, F : X → Ui is the unique morphism such
that (X × Ar

k, F
∗φi ◦ αF ) is equivalent to (E, φ).

(iii) For every pair of r-tuples (i, j), define Ui,j ⊂ Ui to be the open set where
the r × r submatrix (Ajk,l) is invertible, i.e., the distinguished open affine of the
determinant of this r×r matrix. Restricting (Ui, φi) to Ui,j , prove the composition
of φi with Id×χj is an isomorphism. Deduce existence of a morphism ui,j : Ui,j →
Uj,i.

Solution: Denote by D ∈ k[Ai,j |1 ≤ i ≤ n, 1 ≤ j ≤ r] the determinant of the r× r
matrix (Ajk,l|1 ≤ k, l ≤ r). Then

OUi
(Ui,j) = k[Ai,j |1 ≤ i ≤ n, 1 ≤ j ≤ n][1/D]/〈Aik,l − δk,l〉.

By Cramer’s rule, for every 1 ≤ k, l ≤ r there exists Bk,l ∈ OUi(Ui,j) such that the
matrix (Bk,l) is an inverse of the matrix (Ajk,l). By the universal property of affine
varieties, there exists a unique regular morphism, prAr

k
◦ B̃i,j : Ui,j × Ar

k → Ar
k,

such that for every 1 ≤ k ≤ r, (prAr
k
◦ B̃i,j)#(yk) =

∑r
l=1Bk,lyl. Denote by B̃i,j

the morphism prUi,j
× (prAr

k
◦ B̃i,j) : Ui,j ×Ar

k → Ui,j ×Ar
k. This is a morphism of
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Abelian cones and is the inverse of (Id× χj) ◦ φi (restricted to Ui,j). By (ii), there
exists a unique regular morphism ui,j : Ui,j → Uj such that

Ãj ◦ ((ui,j ◦ prUi,j
)× prAr

k
) = Ãi|Ui,j

◦ B̃i,j

In other words,
u∗i,jφj ◦ αui,j

= φi|Ui,j
◦ B̃i,j .

(iv) Prove the image of ui,j is contained in Uj,i and that ui,j and uj,i are inverse
isomorphisms.

Solution: The open subscheme Uj,i ⊂ Uj is the largest open subset over which
(Id× χi) ◦ φj is an isomorphism. So to prove the image of ui,j is contained in Uj,i,
it suffices to prove the following is an isomorphism,

(Id× χi) ◦ u∗i,jφj ◦ αui,j
.

By (iii), this equals
(Id× χi) ◦ φi|Ui,j ◦ B̃i,j .

By (i), (Id × χi) ◦ φi is the identity morphism. Therefore the morphism above is
B̃i,j , which is an isomorphism by construction. So the image of ui,j is contained in
Uj,i.

Moreover, u∗i,jφj is equivalent to φi|Ui,j
and u∗j,iφi is equivalent to φj |Uj,i

. By
Problem 3(ii) and (iii), u∗i,ju

∗
j,iφi|Ui,j

is equivalent to φi|Ui,j
. By the uniqueness in

(i), ui,j ◦ uj,i = IdUi,j
. By symmetry, also uj,i ◦ ui,j = IdUj,i

. So these are inverse
isomorphisms.

(v) Prove the collection ((Ui), (Ui,j), (ui,j)) satisfies the gluing lemma for varieties.
Denote the associated variety by ιi : Ui ↪→ Grass(r, n).

Solution: Given i, j and k, Uj,i∩Uj,k ⊂ Uj,i is the largest open subset where (Id×
χk)◦φj is an isomorphism. By the same sort of argument as in (iii), u−1

i,j (Uj,i∩Uj,k)
is the largest open subset of Ui,j where (Id× χk) ◦ φi is an isomorphism, i.e.,

u−1
i,j (Uj,i ∩ Uj,k) = Ui,j ∩ Ui,k.

Moreover, the restriction to Ui,j ∩ Ui,k of both uj,k ◦ ui,j and ui,k are morphisms
that pullback φk to a rank r bundle equivalent to φi. Therefore by the uniqueness
in (i), these morphisms are equal. So the datum satisfies the hypothesis for the
gluing lemma for morphisms.

(vi) Prove there exists a unique rank r subbundle of Grass(r, n)×An
k , (E, φ), such

that for every i, (ιi)∗(E, φ) is equivalent to (Ui × Ar
k, φi).

Solution: For every i, define Ei ⊂ ιi(Ui)×Ar
k to be the image of ((ι◦prUi

)×prAr
k
)◦

φi. This is the closed subvariety V(yi−
∑r

k=1Aik,jyj , 1 ≤ i ≤ n), and the restriction
of Id × χi is an isomorphism Ei → ιi(Ui) × Ar

k. Because of (ii), the restrictions
of Ei and Ej to ιi(Ui,j) = ιj(Uj,i) are equal as subvarieties of U × An

k . Therefore
there is a unique closed subvariety E ⊂ Grass(r, n)×An

k whose restriction to every
ιi(Ui)×An

k is Ei. Denote by φ : E → Grass(r, n)×An
k the inclusion morphism. By

construction, this is a subbundle such that for every i, (ιi)∗(E, φ) is equivalent to
(Ui × Ar

k, φi).
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(vii) Use (ii) to prove that Grass(r, n) and (E, φ) have the universal property.

Solution, Uniqueness: Let X be a variety, let (EX , φX) be a rank r subbundle
of X ×An

k , and let F1, F2 : X → Grass(r, n) be morphisms such that the pullbacks
by F1 and F2 of (E, φ) are both equivalent to (EX , φX). By construction ιi(Ui) ⊂
Grass(r, n) is the largest open subset over which (Id × χi) ◦ φ is an isomorphism.
Therefore, both F−1

1 (Ui) and F−1
2 (Ui) are equal to the largest open subset of X

over which (Id×χi) ◦φX is an isomorphism. Denote this open subset by Xi. Then
ι−1
i ◦F1|Xi

and ι−1
i ◦F2|Xi

are both morphisms such that the pullback of (Ui×Ar
k, φi)

are equivalent to the restriction to Xi of (EX , φX). By the uniqueness in (ii), these
two morphisms are equal. Therefore the restriction of F1 and F2 to Xi are equal
for every i, i.e., F1 = F2.

Existence: Suppose that there exists an open covering (Xα) of X, and for every
α there exists a morphism Fα : Xα → Grass(r, n) with the property. By the
uniqueness above, the datum (Xα, Fα) satisfies the hypotheses for the gluing lemma
for morphisms, and thus there exists a morphism F : X → Grass(r, n) such that for
every α, F |Xα

= Fα. Then, to construct an equivalence ψ : X ×Grass(r,n) E → EX ,
again by the gluing lemma it suffices to construct an equivalent ψα over Xα for
every α, which follows from the property of Fα. Therefore it suffices to prove there
exists an open covering (Xα) of X, and for every α prove there exists a morphism
Fα : Xα → Grass(r, n) with the property for the restriction to Xα of (EX , φX).

In particular, X is covered by open subsets over which EX is trivial. Therefore, by
the previous paragraph, it suffices to consider the case when EX = X × Ar

k.

For every i, the morphism (Id × χi) ◦ φX : X × Ar
k → X × Ar

k is equivalent to an
r× r matrix whose entries are elements of OX(X). The determinant is an element
Di ⊂ OX(X). Define Xi ⊂ X to be the open subset where Di is nonzero. For
every i, there is a morphism F ′

i : Xi → Ui as in (ii), and Fi = ιi ◦ F ′
i : Xi →

Grass(r, n) satisfies the property for the restriction of (EX , φX) to Xi. So, by the
same argument as in the last paragraph, it suffices to prove that the open subsets
(Xi|i) cover X.

For every p ∈ X, the fiber φX : {p} ×X (X × Ar
k) → {p} ×X (X × An

k ) is an
injective map of vector spaces. In other words, the matrix of the induced linear
transformation Ar

k → An
k has rank r. Thus some r × r minor is nonzero, i.e., there

exists i such that Di is nonzero at p. Therefore p ∈ Xi, i.e., (Xi|i) is an open
covering of X.

Problem 5: In this problem, do at least 2 of the parts (but you don’t have to do
all the parts). Recall for every integer r ≥ 0, every vector space V and every vector
space W , an alternating, r-multilinear map is a map T : V r →W such that,

(i) for every i = 1, . . . , r, and for every (r−1)-tuple v = (v1, . . . ,vi−1,vi+1,vr) ∈
V r−1, the map Tv : V → W , v 7→ T (v1, . . . ,vi−1,v,vi+1, . . . ,vr), is a k-
linear map, and

(ii) for every 1 ≤ i < j ≤ r, for every r-tuple v = (v1, . . . ,vr) ∈ V r, T (v) = 0
if vi = vj .

A pair (
∧r(V ), τ) of a k-vector space

∧r(V ) and an alternating, r-multilinear map
τ : V r →

∧r(V ) is an rth exterior power of V if for every alterating, r-multilinear
map T : V r → W , there exists a unique k-linear map L :

∧r(V ) → W such that
7



T = L ◦ τ . If the rth exterior power of V exists (which it does!), it is unique up to
unique isomorphism.

Let V be a finite-dimensional k-vector space and let B = (v1, . . . ,vn) be an ordered
basis for V . Define

∧r(V ) to be the free k-vector space with finite basis denoted
B(r) = (vi|i ∈ Σn,r) where Σn,r is the finite set,

Σn,r = {i = (i1, . . . , ir)|1 ≤ i1 < · · · < ir ≤ n}.
Define τ : V r →

∧r(V ) to be the unique alternating, r-multilinear map such that
for every i ∈ Σn,r, τ(vi1 , . . . ,vir

) = vi.

(i) Prove that (
∧r(V ), τ) is an rth exterior power of V .

Solution: This is a standard result of multilinear algebra.

(ii) Let L : V1 → V2 be a k-linear map of vector spaces, let (
∧r(V1), τ1) be an

rth exterior power of V1 and let (
∧r(V1), τ2) be an rth exterior power of V2. Prove

there exists a unique k-linear map
∧r(L) :

∧r(V1) →
∧r(V2) such that

∧r(L)◦τ1 =
τ2 ◦ (Lr).

Solution: The map τ2 ◦ (Lr) : V r
1 →

∧r(V2) is r-multilinear and alternating. By
the universal property, there exists a unique k-linear map

∧r(L) :
∧r(V1) →

∧r(V2)
such that

∧r(L) ◦ τ1 = τ2 ◦ (Lr).

(iii) Let
∧r be a rule that assigns to every k-vector space V an rth exterior

power (
∧r(V ), τ). Prove there exists an associated covariant functor

∧r : k −
Vector spaces → k − Vector spaces which associates to every vector space V the
vector space

∧r(V ) and which associates to every k-linear map L : V1 → V2 the
k-linear map

∧r(L), i.e., check this rule respects identity morphisms and composi-
tion of k-linear maps. Remark: The only issue in defining such a functor is that
the rth exterior power is not unique – it is only unique up to unique isomorphism.
This is not a serious issue (there is a canonical choice which is a quotient vector
space of the free vector space with basis V r).

(iv) In the same manner as Problem 8 from Problem Set 5, extend the notion of
exterior power to vector bundles.

Solution: There are different solutions to this problem: each produces the same
answer, but each emphasizes a different property of the answer. Here is one solution.

Let E,E′ be Abelian cones over X. Denote by E(r) the r-fold fiber product E(r) =
E ×X E ×X · · · ×X E.

Definition 0.4. An alternating, r-multilinear morphism of Abelian cones from E
to E′ is a regular morphism T : E(r) → E′ such that,

(i) prX ◦ T : E(r) → X equals prX : E(r) → X, i.e., T is compatible with
projection to X, and

(ii) for every x ∈ X, denoting by E|x = {x} ×X E and E′|x = {x} ×X E′ the
induced k-vector spaces, T |x : (E|x)r → E′|x is an alternating, r-multilinear
map of k-vector spaces.

Definition 0.5. Let E be a vector bundle over X. An rth exterior power of E is
a pair (

∧r(E), τ) of a vector bundle
∧r(E) over X together with an alternating,

r-multilinear morphim of Abelian cones, τ : E(r) →
∧r(E), such that for every

element x ∈ X, the restriction τ |x is an rth exterior power of E|x.
8



Lemma 0.6. Let E be a vector bundle over X, and let (
∧r(E), τ) be an rth exterior

power of E. For every morphism F : Y → X, (Y ×X

∧r(E), F ∗τ ◦ αF ) is an rth

exterior power of Y ×X E, where αF : (Y ×X E)(r) → Y ×X E(r) is the canonical
isomorphism.

Proof. This is straightforward. �

In particular, if V is a k-vector space and (
∧r(V ), τ) is an rth exterior power, then

for X = A0
k and E = AV , the pair (A(

∧r(V )),Aτ) is an rth exterior power of E.
By the lemma, for every variety X, (X × A(

∧r(V )), IdX × Aτ) is an rth exterior
power of X × AV over X.

Let E be an Abelian cone over X with corresponding sheaf of sections Esec. In
particular, Esec(X) is an OX(X)-module in a natural manner. For every finite-
dimensional vector space V , setting E = X × AV , the OX(X)-module Esec(X) is
canonically isomorphic to OX(X)⊗k V .

Let V be a finite-dimensional k-vector space and let E be an Abelian cone over
X. For every morphism of Abelian cones, ψ : X × AV → E, there is an induced
map of OX(X)-vector spaces ψ∗ : OX(X)⊗k V → Esec(X). By adjointness, this is
equivalent to a map of k-vector spaces, ψ∗ : V → Esec(X).

Lemma 0.7. For every finite-dimensional k-vector space, V , and every Abelian
cone over X, E, the following induced map is an isomorphism,

HomAb. cone(X × AV,E) → Homk−Vect. sp.(V, Esec(X)).

Proof. Injectivity: Let ψ : X × AV → E be a morphism of Abelian cones such
that ψ∗ is the zero map. For every v ∈ V , there is a unique global section sv :
X → AV whose projection to AV is the constant morphism with image v. By
hypothesis, ψ ◦ sv is the zero map. Therefore, for every x ∈ X, for every v ∈ V ,
ψ(x, v) = 0x ∈ {x} × E, i.e., ψ is the zero morphism.

Surjectivity: Let L : V → Esec(X) be a map of k-vector spaces. Let (v1, . . . ,vn)
be an ordered basis of V . For every i = 1, . . . , n, let si : X → E be the global
section which is L(vi). Because E is an Abelian cone, there is a multiplication
morphism m : A1

k ×E → E. Composing this with the morphism prA1 × (si ◦ prX) :
A1

k ×X → A1
k ×E, and using the canonical isomorphism A1

k ×X ∼= X ×A1
k gives a

morphism X ×A1
k → E, denoted s̃i. The n-fold fiber product of X ×A1

k over X is
canonically isomorphic to X×An

k . Via the basis (v1, . . . ,vn), X×An
k is canonically

isomorphic to X × AV . Therefore there is an induced morphism

s̃1 × · · · × s̃n : X × AV → E ×X · · · ×X E.

Composing with the addition map E ×X · · · ×X E → E gives a morphism ψ :
X × AV → E. It is straightforward to check this is a morphism of Abelian cones
and ψ∗ = L. �

Lemma 0.8. For every X and every finite-dimensional vector space V , the rth

exterior power of X × AV , (X × A
∧r(V ),Aτ), has the universal property: For

every Abelian cone E and every r-multilinear, alternating morphism of Abelian
cones T : (X × AV )(r) → E, there is a unique morphism of Abelian cones L :
X × A

∧r(V ) → E such that L ◦ τ = T .
9



Proof. Uniqueness: Let L : X × A
∧r(V ) → E be a morphism of Abelian cones

such that L ◦ τ = T . For every x ∈ X, conside the morphism T |x : V r ∼= (X ×
AV )(r)|x → E|x. This is an r-multilinear, alternating map of k-vector spaces. And
the induced map of k-vector spaces L|x :

∧r(V ) ∼= (X × A
∧r(v))|x → E|x is a

map of k-vector spaces such that L|x ◦ τ |x = T |x. Because
∧r(V ) is an rth exterior

power of V , there is a unique such map L|x. Since this holds for every x ∈ X,
there is at most one morphism of Abelian cones L : X × A

∧r(V ) → E such that
L ◦ τ = T .

Existence: Let (v1, . . . ,vn) be an ordered basis for V . For every i ∈ Σn,r, let
T ◦ si : X → E be the global section obtained by composing T with the global
section si = svi1

×· · ·×svir
: X → (X×AV )(r). There is a unique map of k-vector

space
∧r(V ) → Esec(X) such that for every i ∈ Σn,r, vi 7→ T ◦ si. By Lemma 0.7,

there is a unique morphism L : X × A
∧r(V ) → E such that L∗ is this map of

k-vector spaces. By construction, for every i ∈ Σn,r, L◦ τ ◦si = L◦svi = T ◦si. So
for every x ∈ X, the induced map L|x :

∧r(V ) → E|x is the unique map of k-vector
spaces such that L|x ◦ τ |x = T |x. Since this holds for every x ∈ X, L ◦ τ = T . �

Lemma 0.9. (i) For every finite-dimensional vector space V and every rth

exterior power (E, T ) of X×AV , there is a unique isomorphism of Abelian
cones L : X × A

∧r(V ) → E such that L ◦ τ = T .
(ii) For every vector bundle E on X, every rth exterior power (

∧r(E), τ) of E
satisfies the universal property from Lemma 0.8.

(iii) For every vector bundle E on X, there exists an rth exterior power (
∧r(E), τ).

Proof. (i): By Lemma 0.8, there is a unique morphism of Abelian cones L : X ×
A

∧r(V ) → E such that L ◦ τ = T . At issue is whether L is an isomorphism.
This can be checked locally. For every x ∈ X, there is an open neighborhood of
x over which E is trivial. Thus, without loss of generality, assume E = X × AN

k

for some integer N . Choosing an ordered basis for V , also X ×
∧r(V ) ∼= X × AM

k

for some integer M . By Lemma 0.3, the morphism L is equivalent to a morphism
F : X → AHomk(kM , kN ). Using Cramer’s rule, etc., the morphism L is an
isomorphism near x iff the image F (x) is contained in the open subset (possibly
empty) of isomorphisms. Thus L is an isomorphism near x iff L|x is an isomorphism.

By hypothesis, T |x : V r → E|x is an rth exterior power of V , therefore L|x is an
isomorphism since exterior powers are unique up to unique isomorphism.

(ii): By the gluing lemma for morphisms, this can be proved locally on X. Locally
on X, E is isomorphic to X×AV . By Lemma 0.8 and (i), every rth exterior power
of X × AV satisfies the universal property.

(iii): Because of (ii), rth exterior powers are unique up to unique isomorphism.
Therefore, by the gluing lemma for varieties, it suffices to prove there exists an
rth exterior power locally on X. Locally on X, E is isomorphic to X × AV and
(X × A

∧r(V ),Aτ) is an rth exterior power of X × AV . �

Problem 6: Let n, r ≥ 0 be integers. Define N =
(
n
r

)
. Let X be a variety.

(i) Using Problem 5(i) and (iv), give an isomorphism of the rth exterior power of
X × An

k with X × AN
k .
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(ii) Applying (i) and Problem 5(iii) to the Grassmannian Grass(r, n), define a
tautological rank 1 subbundle of Grass(r, n) × AN

k ,
∧r(φ) :

∧r(S) → Gras(r, n) ×
AN

k . Combined with Problem 7 from Problem Set 5, deduce existence of a regular
morphism F : Grass(r, n) → PN−1. This is the Plücker embedding.

(iii) For every i ∈ Σn,r, denote by xi the corresponding coordinate on AN
k . Prove

that F−1(D+(xi)) equals ι(Ui). Conclude that F is an affine morphism.

Solution: By construction, D+(xi) ⊂ PN−1
k is the maximal open subset over which

the composition of the tautological rank 1 subbundle E1,N ↪→ PN−1
k ×AN

k with the
projection to the xi coordinate, PN−1

k × AN
k → PN−1

k × A1
k is an isomorphism. By

construction, Ui ⊂ Grass(r, n) is the maximal open subset over which the com-
position of the tautological rank r subbundle Er,n ↪→ Grass(r, n) × An

k with the
projection Id× χi : Grass(r, n)× An

k → Grass(r, n)× Ar
k is an isomorphism.

For a map of k-vector spaces, L : kr → kn, the composition χi ◦ L : kr → kr

is an isomorphism iff the determinant of the matrix is nonzero, i.e., iff for the
induced map of k-vector spaces

∧r
L : k → kN , composition with the coordinate

xi : kN → k is an isomorphism. Therefore F−1(D+(xi)) = Ui.

Because (D+(xi)|i ∈ Σn,r) is an open affine covering of PN−1
k , and because every

F−1(D+(xi)) is an affine variety, F is an affine morphism.

Problem 7: This problem continues the previous problem, proving the Plücker
embedding is a closed immersion.

(i) Assume n ≥ r. Let i = (1, . . . , r). The variety Ui is the closed subvariety of
affine space Anr

k of n × r matrices such that the first r × r rows form the identity
matrix. Identify Ui with the affine space A(n−r)r

k of (n− r)× r matrices A via the
rule,

A↔
(
Ir×r

A

)
.

Denote the entries of A by (ai,j |1 ≤ i ≤ n − r, 1 ≤ j ≤ r). These are coordinates
on the affine space Ui. For every 1 ≤ i ≤ n− r and 1 ≤ j ≤ r, denote by k ∈ Σn,r

the r-tuple,
k = (1, . . . , j − 1, j + 1, . . . , r, r + i).

On the affine space D+(xi), the rational function xk/xi is a coordinate. Prove that
F#(xk/xi) = ai,j .

Solution: This is actually correct only up to a minus sign. The point is that
the composition of φi with the morphism Id × χk is given by an r × r matrix
whose first r − 1 rows are the coordinate vectors of the standard basis elements
e1, . . . , ej−1, ej+1, . . . , er and whose final row is the (r + i)th row of φi, namely
(ai,1, . . . , ai,r). Computing the determinant of this matrix by cofactor expansion
gives ±ai,j .

(ii) Deduce that F# : k[D+(xi)] → k[Ui] is surjective. Therefore F : Ui →
D+(xi) is a closed immersion. Argue this is true for every i ∈ Σn,r, therefore
F : Grass(r, n) → PN−1

k is a closed immersion.

Solution: The coordinate ring k[Ui] is the polynomial ring in the variables ai,j ,
1 ≤ i ≤ n − r, 1 ≤ j ≤ r. By (i), every variable is contained in the image of F .
Therefore the image of F is all of k[Ui].

11



Clearly, using the action of the symmetric group on n letters on PN−1 and Grass(r, n),
the same result holds for every i ∈ Σn,r.

Problem 8: Remark: The original formulation of this problem was wrong. Below
is the correct formulation.

Here is a way to find generators for the homogeneous ideal of the projective variety
F (Grass(r, n)) ⊂ PN−1

k . Denote by V the vector space An
k so that AN

k equals∧r(V ). Let τr : V r →
∧r(V ) be the universal alternating r-linear map. Denote by

(
∧r+1(V ), τr+1) an (r + 1)st exterior power of V .

(i) Prove there is a unique 2-multilinear map L :
∧r(V )×V →

∧r+1(V ) such that
τr+1 = L ◦ ((τr ◦ pr1,...,r) × prr+1). Using adjointness, deduce existence of a map
L̃ :

∧r(V ) → Homk(V,
∧r+1(V )) such that for every w ∈

∧r(V ) and every v ∈ V ,
L̃(w)(v) = L(w,v).

(ii) Let w be an element of
∧r(V )−{0}. Prove the image [w] ∈ P(

∧r(V )) = PN−1
k

is in F (Grass(r, n)) iff L̃(w) has rank at most n−r, i.e., iff the (n−r+1)×(n−r+1)
minors of the matrix are all zero.

Solution: First of all, suppose [w] ∈ F (Grass(r, n)). Then there exist linearly
independent vectors v1, . . . ,vr ∈ kn such that w = v1 ∧ · · · ∧ vr. There exists an
ordered basis for kn, (v1, . . . ,vr,vr+1, . . . ,vn), and,

L̃(w)(vi) =
{

v1,...,r,i, i = r + 1, . . . , n,
0, i = 1, . . . , r

Therefore L̃(w) has rank n− r.

Conversely, suppose that L̃(w) has rank ≤ n−r. Let v1, . . . ,vr be linearly indepen-
dent elements in the kernel. There exists an ordered basis for kn, (v1, . . . ,vr,vr+1, . . . ,vn).
For every i ∈ Σn,r there exists an element ci ∈ k such that,

w =
∑

i∈Σn,r

civi.

For every i ∈ Σn,r, denote by |i| the set {i1, . . . , ir}. Clearly,

w ∧ vj =
∑

i∈Σn,r,j 6∈|i|

±civi′,

where i′ ∈ Σn,r+1 is the unique element such that the set |i′| = |i| ∪ {j}. The
elements i′ are linearly independent. Since v1, . . . ,vr are in the kernel, for every
i ∈ Σn,r such that ci 6= 0, 1, . . . , r are in |i|. Since |i| has size r, this means that
ci = 0 if i 6= (1, . . . , r). Therefore w = cv1 ∧ · · · ∧ vr for some c ∈ k.

(iii) Let n = 4 and r = 2. Let (v1, . . . ,v4) be an ordered basis for V and let
(v1,2,v1,3,v1,4,v2,3,v2,4,v3,4) be an ordered basis for

∧2(V ). Denote by (x1,2, . . . , x2,4

the dual ordered basis for (
∧2(V ))∨. Let (v1,2,3,v1,2,4,v1,3,4,v2,3,4) be an ordered

basis for
∧3(V ). With respect to these ordered bases, write down the linear trans-

formation L̃ as a 4×4 matrix whose entries are linear polynomials in x1,2, . . . , x3,4.
12



Solution: With respect to the ordered basis B = (v1,v2,v3,v4) for V and the
ordered basis for

∧3(V ), C = (v1,2,3,v1,2,4,v1,3,4,v2,3,4), the matrix of L̃ is,

[L̃]C,B =


x2,3 −x1,3 x1,2 0
x2,4 −x1,4 0 x1,2

x3,4 0 −x1,4 x1,3

0 x3,4 −x2,4 x2,3

 .

(iv) After performing elementary row and column operations, reduce this matrix
to a skew-symmetric matrix. The rank of a skew-symmetric matrix is always even,
therefore the 3 × 3 minors vanish iff the determinant vanishes. Prove there exists
a quadratic polynomial in x1,2, . . . , x3,4 such that the determinant of the skew-
symmetric matrix is the square of this polynomial. The polynomial is called the
Pfaffian, and generates the homogeneous ideal of F (Grass(2, 4)) ⊂ P5

k.

Solution: The columns of the new matrix are related to the columns of the original
matrix by C ′

1 = −C4, C
′
2 = C3, C

′
3 = −C2, C

′
4 = C1. This gives the row equivalent,

skew-symmetric matrix,
0 x1,2 x1,3 x2,3

−x1,2 0 x1,4 x2,4

−x1,3 −x1,4 0 x3,4

−x2,3 −x2,4 −x3,4 0

 .

The determinant of this matrix is the square of the Pfaffian, x1,2x3,4 − x1,3x2,4 +
x1,4x2,3. This is well-defined only up to ±1, but this is the standard normalization.
Observe this is essentially the same as the polynomial in Problem 11 from Problem
Set 2 (= Problem 12 from Problem Set 3).

Problem 9: Serre’s criterion says that an irreducible variety X is normal if,

(i) the singular locus of X has codimension at least 2, and
(ii) for every pair of open subset U ⊂ V ⊂ X, if V − U ⊂ V has codimension

at least 2, the restriction map is an isomorphism, ρV
U : OX(V ) → OX(U).

Here is an example of a non-normal variety that satisfies the first condition, but not
the second. Let A ⊂ k[x, y] be the set of polynomials f(x, y) such that f(1, 0) =
f(0, 1).

(i) Prove that A is a finitely generated k-subalgebra of k[x, y].

Solution: It is clear that A is a k-subalgebra. Moreover, A contains the subalgebra
k[x, y]S2 of symmetric polynomials. By a standard algebra theorem, k[x, y]S2 =
k[x + y, xy], and k[x, y] is a free module over k[x + y, xy] generated by 1 and
x. Therefore A ⊂ k[x, y] is a finitely generated module over k[x + y, xy]. So
k[x + y, xy] → A is a finitely generated ring extension, proving A is a finitely
generated k-algebra. However, this does not identify generators.

Clearly x((x+ y)− 1), x2y ∈ A. Every element in k[x, y] equals f + xg for unique
f, g ∈ k[x + y, xy]. At (1, 0), f + xg has value f(1, 0) + g(1, 0), and at (0, 1),
it has value f(0, 1) = f(1, 0). Therefore f + xg is in A iff g(1, 0) = 0, i.e., iff
g ∈ 〈(x+ y)− 1, xy〉k[x+ y, xy]. So, as a module over k[x+ y, xy], {xg|xg ∈ A} is
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generated by x((x+ y)− 1) and x2y. Therefore A is generated by,

A = k[x+ y, xy, x((x+ y)− 1), x2y] ∼= k[z1, z2, z3, z4]/I,
I = 〈z2

3 − z1(z1 − 1)z3 + (z1 − 1)2z2, z3z4 − z1z2z3 + (z1 − 1)z2
2 ,

z2
4 − z1z2z4 + z3

2 , z2z3 − z4(z1 − 1)〉.

(ii) Let X be an affine variety with k[X] ∼= A, and let F : A2
k → X be the unique

morphism such that F# induces the inclusion A ⊂ k[x, y]. Prove that F is a
birational, finite morphism that is not an isomorphism. Therefore X is not normal.

Solution: First of all x = (x2y)/xy is in the function field of A, and thus also
y = (x + y) − x is in the function field of A. So K(A) = k(x, y). Moreover x
satisfies the monic polynomial x2 − x(x+ y) + (xy) over A. So x is in the integral
closure of A. Thus also y is in the integral closure of A. So F : A2

k → X is finite
and birational. But A 6= k[x, y], so F is not an isomorphism.

(iii) Let U = A2
k − {(1, 0), (0, 1)}. Prove that F (U) ⊂ X is an open set and

F : U → F (U) is an isomorphism. In particular F (U) is smooth, and X − F (U)
is finite because the inverse image A2

k − U is finite. So the singular locus of X has
codimension 2.

Let V1 = D(x+y−1) ⊂ A2
k and let V2 = D(xy) ⊂ A2

k. Then V1∪V2 = U . Of course
F−1(D((x+ y)− 1)) = V1 and F−1(D(xy)) = V2. For F : V1 → D((x+ y)− 1), the
induced map on algebras is,

k[x+ y, xy, x(x+ y − 1), x2y][1/(x+ y − 1)] → k[x, y][1/(x+ y − 1)].

In particular, x(x+ y − 1)/(x+ y − 1) maps to x, x+ y − x(x+ y − 1)/(x+ y − 1)
maps to y, and 1/(x + y − 1) maps to 1/(x + y − 1). So the map of algebras is
an isomorphism, i.e., F : V1 → D((x + y) − 1) is an isomorphism. Similarly, for
F : V2 → D(xy), the induced map on algebras is,

k[x+ y, xy, x(x+ y − 1), x2y][1/xy] → k[x, y][1/xy].

In particular, x2y/xy maps to x, (x + y) − x2y/xy maps to y, and 1/xy maps
to 1/xy. So the map of algebras is an isomorphism, i.e., F : V2 → D(xy) is an
isomorphism. Therefore F (U) = D((x + y) − 1) ∪ D(xy) is an open subset of X
and F : U → F (U) is an isomorphism.

(iv) Prove that the restriction map OX(X) → OX(F (U)) is not an isomorphism.

Solution: Of course OX(X) = A = k[x + y, xy, x((x + y) − 1), x2y]. By the
isomorphism, OX(F (U)) = OA2

k
(U). By the same argument as in Problem 13

from Problem Set 2 (or by Serre’s criterion), OA2
k
(U) = OA2

k
(A2

k) = k[x, y]. So the
restriction map is A→ k[x, y], which is not an isomorphism.

Problem 10: In a commutative algebra textbook, read the proof that an integrally
closed, Noetherian local ring of dimension 1 is a DVR, and thus is regular. Sketch
a proof that every normal 1-dimensional variety is smooth.
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