
18.725 SOLUTIONS TO PROBLEM SET 3

Required Problem 1: Let V be a quasi-affine algebraic set and let U ⊂ V be a
closed subset. For every quasi-affine algebraic set T and every function F : T → U ,
prove F is regular iff the induced function F : T → V is regular (this has already
been used implicitly a few times in the course; do not simply quote the result from
someplace it was used).

Solution: The simplest solution for this problem solves the next problem as well.
The argument is in the following lemmas and proposition.

Lemma 0.1. For every quasi-affine algebraic subset T ⊂ Am
k and every regular

function g ∈ OT (T ) which is everywhere nonzero, the function 1/g : T → A1
k is

also regular.

Proof. It suffices to prove for every point p ∈ T , 1/g is regular at p. Because g is
regular at p, there exist polynomials s, u ∈ k[y1, . . . , ym] such that u(p) 6= 0 and
such that the restriction of g to T ∩D(u) equals the restriction of s/u to T ∩D(u).
Because g is nonzero, the restriction of s to T ∩ D(u) is nonzero. Therefore p is
contained in T ∩D(su), and the restriction of 1/g equals u/s = u2/su, i.e., 1/g is
regular at p. �

Lemma 0.2. For every inclusion of quasi-affine algebraic subsets U ⊂ V ⊂ An
k ,

the inclusion mapping i : U → V is a regular morphism.

Proof. It suffices to prove for every regular function g : V → A1
k and every p ∈ U ,

the function g◦i is regular at p. Because g is regular at i(p), there exist polynomials
h, s ∈ k[x1, . . . , xn] such that s(p) 6= 0 and the restriction of g to V ∩D(s) equals
h/s. The restriction of g ◦ i to U ∩D(s) equals h/s, i.e., g ◦ i is regular at p. �

Proposition 0.3. For every inclusion of quasi-affine algebraic sets U ⊂ V ⊂ An
k ,

for every quasi-affine algebraic subset T ⊂ Am
k , and for every mapping F : T → U ,

F is a regular morphism of quasi-affine algebraic sets iff i◦F is a regular morphism
of quasi-affine algebraic sets.

Proof. By the second lemma i is a regular morphism. If F is a regular morphism,
then i ◦ F is a regular morphism because the composition of regular morphisms is
a regular morphism.

Assume i ◦ F is a regular morphism. To prove F is a regular morphism, it suffices
to prove for every regular function g ∈ OU (U) and every p ∈ T , g ◦ F is regular at
p. Because g is regular at F (p), there exist polynomials h, s ∈ k[x1, . . . , xn] such
that s(F (p)) 6= 0 and such that the restriction of g to U ∩D(s) equals h/s. Since
i ◦ F is regular, W := (i ◦ F )−1(V ∩ D(s)) is open and h ◦ i ◦ F and s ◦ i ◦ F are
regular functions on T . By the second lemma, the inclusion j : W → T is a regular
morphism so that h′ := h◦ i◦F ◦ j and s′ := s◦ i◦F ◦ j are regular functions on W .
Since s′ is everywhere nonzero, the first lemma implies 1/s′ is a regular function
on W . Therefore the product h′/s′ = h′ · (1/s′) is a regular function on W . The
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restriction of g ◦ F to W equals the regular function h′/s′, in particular g ◦ F is
regular at p. �

Required Problem 2: Let V be a quasi-affine algebraic set and let U ⊂ V be an
open subset. For every quasi-affine algebraic set T and every function F : T → U ,
prove F is regular iff the induced function F : T → V is regular (this has already
been used implicitly a few times in the course; do not simply quote the result from
someplace it was used). Not to be written up: Conclude that for every subset
U ⊂ V that is a quasi-affine algebraic set and every F : T → U , F is regular iff the
induced function F : T → V is regular.

Solution: See the solution of the last problem.

Required Problem 3: Let V be a quasi-affine algebraic set. By Problem 2 on
Problem Set 2, there exists a product (V × V, π1, π2) for (V, V ) in the category of
quasi-affine algebraic sets. Define ∆V : V → V × V to be the unique morphism
such that π1 ◦ ∆V = π2 ◦ ∆V = IdV . Prove the image of ∆V is a Zariski closed
subset of V × V . (Hint: First consider the case that V = An

k .)

Solution: Let V ⊂ An
k be a quasi-affine algebraic set. Then ∆V (V ) ⊂ V ×V equals

the intersection (V × V ) ∩∆An
k
(An

k ) inside An
k × An

k . So to prove ∆V (V ) ⊂ V × V
is relatively closed, it suffices to prove that ∆An

k
(An

k ) ⊂ An
k × An

k is closed.

A product for (An
k , An

k ) is (A2n
k , π1, π2),

π1(a1, . . . , an, an+1, . . . , a2n) = (a1, . . . , an),
π2(a1, . . . , an, an+1, . . . , a2n) = (an+1, . . . , a2n)

Denote by z1, . . . , zn, zn+1, . . . , z2n the standard coordinates on A2n
k . Then ∆An

k
(An

k ) ⊂
A2n

k equals V(〈zn+1 − z1, . . . , zn+i − zi, . . . , z2n − zn〉), which is a closed subset.

Required Problem 4: Consider the action of Gm on X = A3
k by mX(λ, (a1, a2, a3)) =

(λ−1a1, a2, λa3).

(a) Determine the associated grading of k[X] = k[x1, x2, x3], and in particular write
a finite set of generators of the k-subalgebra k[X]0 ⊂ k[X].

Solution: For every integer d,

k[X]d = span
{

xd1
1 xd2

2 xd3
3 |(d1, d2, d3) ∈ Z3, d3 − d1 = d

}
.

In particular the k-subalgebra k[X]0 ⊂ k[X] is generated by x2 and x1x3. More
precisely, k[X]0 is isomorphic to the polynomial algebra k[y1, y2] where y1 7→ x2

and y2 7→ x1x3. For every d > 0, k[X]d is a free k[X]0-module generated by xd
3.

For every d < 0, k[X]d is a free k[X]0-module generated by xd
1 (neither of these

modules were asked for).

(b) Find an affine algebraic set Y and a morphism F : X → Y such that F ∗ :
k[Y ] → k[X] is injective with image k[X]0. Prove that F (mX(λ, p)) = F (p) for
every λ ∈ Gm and every p ∈ X.

Solution: Let Y = A2
k and let F = (x2, x1x3). Then F ∗ : k[y1, y2] → k[x1, x2, x3]

is y1 7→ x2, y2 7→ x1x3. By the last part, the image of F ∗ is k[X]0 and F ∗ :
k[Y ] → k[X]0 is an isomorphim of k-algebras. Because the coordinates of F are
Gm-invariant, F is Gm-invariant.
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Problem 5: For the morphism F in Problem 4, write down all elements q ∈ Y
such that F−1(q) is not a single orbit of Gm, and for each element q write the
decomposition of F−1(q) as a union of Gm-orbits.

Solution: Let p = (a1, a2, a3) ∈ X be a point such that a1, a3 6= 0. Let p′ =
(b1, b2, b3) ∈ X be a point such that F (p′) = F (p). Then b2 = a2 and b1b3 = a1a3.
In particular, b1, b3 6= 0. So λ := b3/a3 is nonzero and b1 = (a3/b3)a1 = λ−1a1. So
(b1, b2, b3) = mX(λ, (a1, a2, a3)). Therefore the fiber of F containing p is a single
orbit. So if q = (c1, c2) ∈ Y is a point such that c2 6= 0, then F−1(q) is a single
orbit.

On the other hand, suppose that c2 = 0. Then F−1(q) = {(a1, c1, 0)|a1 ∈ k} ∪
{(0, c1, 0)} ∪ {(0, c1, a3)|a3 ∈ k} is a union of 3 Gm-orbits.

Problem 6: Let F : X → Y be a regular morphism of quasi-affine algebraic sets.
Let (X × Y, π1, π2) be a product of (X, Y ) in the category of quasi-affine algebraic
sets. Define ΓF : X → X×Y , the graph morphism of F , to be the unique morphism
such that π1 ◦ΓF = IdX and π2 ◦ΓF = F . Prove the image of ΓF is a Zariski closed
subset of X × Y . (Hint: Can you use Problem 3?)

Solution: Consider the morphism G = (F ◦ π1) × π2 : X × Y → Y × Y . The
inverse image under G of ∆Y (Y ) ⊂ Y × Y is {(p, q) ∈ X × Y |F (p) = q}, i.e.,
precisely ΓF (X). By Problem 3, ∆Y ⊂ Y × Y is closed. Because G is continuous,
ΓF (X) = G−1(∆Y (Y )) is closed.

Problem 7. A weighted projective space: Consider the action of Gm on
X = A3 by mX(λ, (a0, a1, a2)) = (a0, λa1, λ

2a2). Define V = X − V(x1, x2), and
define F : V → P3

k by F (a0, a1, a2) = [a2
1, a2, a0a

2
1, a0a2].

(a) Prove that F is a well-defined function on V .

Solution: Define G : X → A4
k by G(a0, a1, a2) = (a2

1, a2, a0a
2
1, a0a2). Because

it is a polynomial mapping, G is a regular morphism. If p = (a0, a1, a2) ∈ V ,
then either a1 6= 0 or a2 6= 0. Therefore either a2

1 6= 0 or a2 6= 0. So G(p) 6= 0.
Therefore there is a well-defined mapping G|V : V → A4

k − {0}. By Problem 2,
this mapping is a regular morphism. And π : A4

k → P3
k is a regular morphism.

Therefore F = π ◦G|V : V → P3
k is a well-defined regular morphism.

(b) Prove that every nonempty fiber of F is an orbit.

Solution: Let q = [b0, b1, b2, b3] be an element of P3
k, and let p = (a0, a1, a2) and

p′ = (a′0, a
′
1, a

′
2) be points in F−1(q). If b1 = 0, then a2 = a′2 = 0. Thus a1, a

′
1 6= 0.

Define λ = a′1/a1. Then ((a′1)
2, 0, a′0(a

′
1)

2, 0) = λ2(a2
1, 0, a0a

2
1, 0). In particular,

a′0 = λ2(a1/a′1)
2a0 = a0. So (a′0, a

′
1, 0) = mX(λ, (a0, a1, a2)). So if b1 = 0, then

F−1(q) is an orbit.

Similarly, if b0 = 0, then a1 = a′1 = 0, thus a2, a
′
2 6= 0. Let λ ∈ k be such

that a′2/a2 = λ2. Then (0, a′2, 0, a′0a
′
2) = λ2(0, a2, 0, a0a2); in particular, a′0 =

λ2(a2/a′2)a0 = a0. So (a′0, 0, a′2) = mX(λ, (a0, 0, a2)). So if b0 = 0, then F−1(q) is
an orbit.

Now assume b0, b1 6= 0. Then a1, a
′
1 6= 0. Define λ = a′1/a1. Then ((a′1)

2, a′2, a
′
0(a

′
1)

2, a′0a
′
2) =

λ2(a2
1, a2, a0a

2
1, a0a2). Therefore a′2 = λ2a2 and a′0 = λ2(a1/a′1)

2a0 = a0. So
(a′0, a

′
1, a

′
2) = mX(λ, (a0, a1, a2)). So F−1(q) is an orbit.
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(c) Find the ideal of the Zariski closure of Image(F ) and give an element in the
Zariski closure of Image(F ) that is not in Image(F ).

Solution: Let y0, y1, y2, y3 be the standard homogeneous coordinates on P3
k. Then

the Zariski closure of Image(F ) is V = V(y0y3 − y1y2). The complement V −
Image(F ) is {[0, 0, 0, 1], [0, 0, 1, 0]}.
Problem 8: This problem gives another example of an affine group variety. Let
n ≥ 1 be an integer and choose coordinates on An2

k of the form xi,j , 1 ≤ i, j ≤ n.
Define the determinant polynomial det ∈ k[xi,j |1 ≤ i, j ≤ n] in the usual way,

det =
∑

σ∈Sn

sgn(σ)
n∏

i=1

xi,σ(i),

where sgn : Sn → {+1,−1} is the unique nontrivial group homomorphism. Define
GLn ⊂ An2

k to be D(det). Define m : GLn ×GLn → An2

k to be m((ai,j), (bi,j)) =
(ci,j), where ci,j =

∑n
h=1 ai,hbh,j . Define e ∈ GLn to be the unique element such

that xi,j(e) = 1 iff i = j and is 0 otherwise.

(a) Prove the image of m is contained in GLn.

Solution: By standard linear algebra, the polynomial det(m((xi,j), (yi,j))) is the
polynomial det((xi,j))·det((yi,j)). Therefore the pullback of det by m is everywhere
nonzero. So the image of m is contained in GLn.

(b) Prove there exists a regular morphism i : GLn → GLn such that for every
A ∈ GLn, m(A, i(A)) = e.

Solution: This is precisely Cramer’s rule, or cofactor expansion, from linear alge-
bra: cofactor expansion expresses each entry of the inverse matrix as a ratio whose
numerator is a polynomial in the entries, and whose denominator is the determi-
nant.

(c) Prove the regular morphism det : GLn → Gm is a group homomorphism.

Solution: This is the same linear algebra fact used in (a).

Problem 9: Assume char(k) 6= 2. A projective plane conic is a proper closed
subset C ⊂ P2

k of the form V(a2,0,0X
2
0 + a1,1,0X0X1 + a1,0,1X0X2 + a0,2,0X

2
1 +

a0,1,1X1X2 + a0,0,2X
2
2 ). Determine the analogue of Problem 6 from Problem Set 1

for projective plane conics, and solve the corresponding problem. How does your
answer compare to the answer to Problem 6 from Problem Set 1?

Problem 10: Let d ≥ 1 be an integer and assume that char(k) does not divide d.
Define µd ⊂ A1

k to be V(xd − 1).

(a) Prove this is a subgroup of Gm.

Solution: This is a closed subset of Gm. It is necessary to prove that m−1(µd)
contains µd × µd, e is in µd and i−1(µd) contains µd. First of all, m∗(xd − 1) =
(yz)d−1 = (yd−1)(zd−1)+(yd−1)+(zd−1), where y, z are coordinates on the two
factors of Gm×Gm. Therefore m∗(xd−1) is zero on µd×µd, i.e., µd×µd ⊂ m−1(µd).
Secondly 1d − 1 = 0, so 1 ∈ µd. Finally, i∗(xd − 1) = (1/x)d − 1 = −(xd − 1)/xd.
So i∗(xd − 1) is zero on µd, i.e., µd ⊂ i−1(µd).

(b) Let n ≥ 0 be an integer, and restrict the standard action of Gm on An
k − {0}

to an action of µd on An
k − {0}. Prove the Veronese morphism from Problem 9 on
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Problem Set 2 is a quotient of this action in the sense that every nonempty fiber is
an orbit under µn.

Let F : An
k − {0} → AN

k − {0} be the Veronese morphism. First of all, for every
p = (a0, . . . , an) ∈ An

k , for every λ ∈ µd, and for every i = (i0, . . . , in) with∑
j ij = d, F ∗Zi(λ · p) =

∏
j(λaj)ij = λd

∏
j a

ij

j = F ∗z(p). Therefore F is constant
on fibers of this action.

Let p = (a0, . . . , an) and q = (b0, . . . , bn) be elements of An
k − {0} such that

F (p) = F (q). There exists 0 ≤ j ≤ n such that aj 6= 0. Then bd
j = F ∗Zdej

(q) =
F ∗Zdej (p) = ad

j 6= 0. So bj 6= 0. Define λ = (bj/aj). Since bd
j = ad

j , λd = 1, i.e.,
λ ∈ µd. For every 0 ≤ i ≤ n,

bib
d−1
j = F ∗Zei+(d−1)ej

(q) = F ∗Zei+(d−1)ej
(p) = aia

d−1
j .

Thus bi = (aj/bj)d−1ai = (1/λ)d−1ai. Because λd = 1, (1/λ)d−1 = λ. Therefore
q = mX(λ, p) for λ ∈ µd, i.e., the fiber of F containing p is an orbit for the action
of µd.

Difficult Problem 11: Problem 10 from Problem Set 2. (I’ve decided this is rather
difficult after all.) For every pair of integers n, d ≥ 0, define N =

(
n+d

d

)
, and define

the affine Veronese mapping F : An
k → AN

k as follows. Let x1, . . . , xn be coordinates
on An

k and let zi1,...,in
be coordinates on AN

k where (i1, . . . , in) runs through all n-
tuples of nonnegative integers with i1+· · ·+in = d. Then F ∗zi1,...,in

= xi1
1 xi2

2 . . . xin
n .

Find an ideal I ⊂ k[zi1,...,in
] such that V(I) = Image(F ). (Hint: The generators

of I are homogeneous degree 2 binomials.)

Solution: Denote by Σn,d ⊂ (Z≥0)n the collection of n-tuples i = (i1, . . . , in) such
that i1 + · · · + in = d. Denote by A the polynomial k-algebra with coordinates
zi, i ∈ Σn,d. Denote by I ⊂ A the homogeneous ideal,

I = 〈zi1
zi2

− zi3
zi4
|i1, i2, i3, i4 ∈ Σn,d, i1 + i2 = i3 + i4〉.

Clearly F ∗I = 0, so Image(F ) ⊂ V(I). Define G : An
k → V(I) to be the induced

regular morphism. Proving Image(F ) = V(I) is tricky. There are other solutions –
shorter solutions – than the following.

Order the elements i ∈ Σn,d as follows: i ≥ j if either i = j, or if iα > jα for the
smallest 1 ≤ α ≤ n such that iα 6= jα. Denote monomials in A by,

zb =
∏

i∈Σn,d

z
b(i)
i .

Order the monomials as follows: zb ≥ zc if either b = c or if b(i) > c(i) for
the largest i ∈ Σn,d such that b(i) 6= c(i). Denote by (e1, . . . , en) the standard
generators for Zn. For every i ∈ (Z≥0)n, for every pair of integers 1 ≤ l ≤ m ≤ n,
denote i(l,m) =

∑m
k=l ikek.

Definition 0.4. A segment is an r-tuple (i1 ≥ · · · ≥ ir) of elements of Σn,d. A
strict segment is an r-tuple (i1 > · · · > ir). For every segment (i1 ≥ · · · ≥ ir), the
reduced segment is the unique strict segment (j

1
, . . . , j

s
) such that {i1, . . . , ir} =

{j
1
, . . . , j

2
}. For every monomial zb, the associated segment is the unique segment

(i1 ≥ · · · ≥ ir) such that zb = zi1
· · · · · zir

, and the associated reduced segment is
the reduced segment of the associated segment. A strict segment i1 > · · · > ir is
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minimal form if either r = 1 or if r ≥ 2, and if there exists a sequence of integers
1 ≤ l(1) < · · · < l(r − 1) < m(r − 1) ≤ · · · ≤ m(1) ≤ n such that,

(i) i1 = ir(1, l(1)) + el(1) + i1(m(1), n),
(ii) for 1 ≤ j ≤ r, ij = ir(1, l(j)) + el(j) + ij(m(j),m(j − 1)),
(iii) and ir = ir(1,m(r − 1)).

A segment, resp. a monomial, is minimal form if its reduced segment is minimal
form.

Lemma 0.5. Let (i1, . . . , ir) be a strict segment, and for every 1 ≤ j < k ≤ r,
define l(j, k) to be the largest integer such that (ij)(1, l(j, k)) = (ik)(1, l(j, k)), and
define m(j, k) > l(j, k) to be the largest integer such that ij = (ij)(1, l(j, k)) +
(ij)(m(j, k), n). The segment is minimal form iff for every 1 ≤ j < k ≤ r, both

(i) ij,l(j,k) = ik,l(j,k) + 1,
(ii) and ik(m(j, k) + 1, n) = 0.

Proof. If the segment is minimal form, it is clear (i) and (ii) hold. On the other
hand, suppose (i) and (ii) hold. For each 1 ≤ k ≤ r − 1, define l(k) = l(k, r) and
m(k) = m(k, r). For 1 ≤ j < k ≤ r − 1, because ij > ik, l(j) < l(k). Because
ik(m(j, k) + 1, n) = 0, m(k) ≤ m(j, k) ≤ m(j). Because the total degree of ir
and the total degree of ir−1 agree, there exists l(r − 1) < α ≤ m(r − 1) such that
ir,α 6= 0. Therefore 1 ≤ l(1) < · · · < l(r − 1) < m(r − 1) ≤ · · · ≤ m(1) ≤ n. The
axioms for a minimal form segment follow in a straightforward way from (i) and
(ii). �

Proposition 0.6. For every integer r ≥ 1, for every monomial zb ∈ Ar there exists
a minimal form monomial zc ∈ Ar such that zb − zc ∈ Ir.

Proof. The proof is by induction on r, and for each r, induction with respect to
the ordering on the monomials in Ar. The base case is r = 1 which is trivial: every
monomial zb ∈ A1 is minimal form. By way of induction, assume r > 1 and assume
the result is known for all smaller values of r. The proof for r is by induction on
the monomials in Ar. The smallest monomial is zb = zr

den
. The reduced segment

is (den), which is minimal form, and zb − zb ∈ Ir. By way of induction, suppose
zb > zr

den
, and suppose the result is known for all smaller monomials in Ar. If

zb is minimal form, then zb − zb ∈ Ir, which proves the result for zb. Therefore
assume that zb is not minimal form. Let (i1, . . . , is) be the reduced segment of
zb. By the lemma there are 2 cases: either there exists 1 ≤ j < k ≤ r such that
ij,l(j,k) − ik,l(j,k) ≥ 2 or there exists 1 ≤ j < k ≤ r such that ik(m(j, k) + 1, n) 6= 0
(or both).

In the first case, because
∑

α ij,α = sumαik,α, there exists α > l(j, k) such that
ik,p > 0. Define i′j = ij − el(j,k) + eα, i′k = ik + el(j,k) − eα. These are elements
of Σn,d. Let za be the unique monomial such that zb = za(zij

zik
), and define

zb′
= za(zi′j

zi′k
). Because ij > i′j , i

′
k, also zb > zb′

. Because ij + ik = i′j + i′k,

zij
zik

− zi′j
zi′k

∈ I2; hence zb − zb′ ∈ Ir. By the induction hypothesis, there

exists a minimal form monomial zc ∈ Ar such that zb′ − zc ∈ Ir. Therefore
zb − zc = (zb − zb′

) + (zb′ − zc) is in Ir, which proves the result for zb.

In the second case, there exists α > m(j, k) such that ik,p > 0. Define i′j =
ij − em(j,k) + eα and i′k = ik + em(j,k) − eα. These are elements of Σn,d. Let
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za be the unique monomial such that zb = za(zij
zik

), and define zb′
= za(zi′j

zi′k
).

Because ij > i′j , i
′
k, also zb > zb′

. Because ij +ik = i′j +i′k, zij
zik

−zi′j
zi′k

∈ I2; hence

zb − zb′ ∈ Ir. By the induction hypothesis, there exists a minimal form monomial
zc ∈ Ar such that zb′ − zc ∈ Ir. Therefore zb − zc = (zb − zb′

) + (zb′ − zc) is in
Ir, which proves the result for zb. So in both cases, the result holds for zb, i.e., the
proposition holds by induction. �

Proposition 0.7. For every integer r ≥ 1, for every pair of minimal form mono-
mials zb, zc ∈ Ar, if F ∗zb = F ∗zc, then zb = zc.

Proof. The proof is by induction on r. For r = 1, the result is trivial. By way of
induction, assume r > 1 and the result is known for r−1. Let zb be a minimal form
monomial, let (i1 > · · · > is) be the reduced segment, and let zb = ze1

i1
· · · · · zes

is
.

Let F ∗zb = xf1
1 · · · · ·xfn

n . Then r divides fα for 1 ≤ α < l(1), and fl(1) ≡ e1 modulo
r. Thus l(1), i1(1, l(1)) and e1 are uniquely determined by F ∗zb. Moreover, m(1)
is the least integer such that,

e1(
l(1)∑
α=1

i1,α) +
n∑

α=m(1)+1

fα < de1,

for every m(1) < α ≤ n, e1i1,α = fα, and finally,

i1,m(1) = d−

 l(1)∑
α=1

i1,α

−

 n∑
α=m(1)+1

i1,α

 .

Therefore i1 is uniquely determined by F ∗zb. Let zb′
and zc′

be the unique monomi-
als such that zb = zb′

zi1
, zc = zc′

zi1
. Then F ∗(zb′

) = F ∗(zc′
), and zb′

, zc′ ∈ Ar−1

are minimal form monomials. By the induction hypothesis, zb′
= zc′

. Therefore
zb = zc, which proves the proposition by induction. �

Corollary 0.8. For every integer r ≥ 1 and every pair of monomials zb, zc ∈ Ar

such that F ∗zb = F ∗zc, zb − zc ∈ Ir. Also G∗ : A/I → k[x1, . . . , xn](d) is an
isomorphism; in particular I is a prime ideal.

Proof. By the first proposition, there exist minimal form monomials zb′
, zc′ ∈ Ar

such that zb − zb′
, zc − zc′ ∈ Ir. Therefore F ∗zb′

= F ∗zb and F ∗zc′
= F ∗zc. So,

by the hypothesis, F ∗zb′
= F ∗zc′

. By the second proposition, zb′
= zc′

. Therefore
zb − zc = (zb − zb′

) + (zc′ − zc) ∈ Ir.

By the first proposition, a k-basis for A/I consists of the images of the minimal
form monomials, and a k-basis for k[x1, . . . , xn](d) consists of all monomials of
degree divisible by d. The propositions together prove G∗ maps the basis for A/I
bijectively to the basis for k[x1, . . . , xn](d). �

It remains to prove F (An
k ) = V(I). Clearly the vertex is in F (An

k ). Let p ∈ V(I)
be an element other than the vertex. Then there exists a monomial zb such that
zb(p) 6= 0. By the second proposition, modulo I, (zb)d is congruent to

∏n
α=1 zfα

deα
.

So for some α, zdeα
(p) 6= 0. Clearly F (An

k ) and V(I) are Gm-invariant. So, after
7



scaling, assume zdeα
(p) = 1. For every 1 ≤ β ≤ n, define aβ = z(d−1)eα+eβ

(p). For
every i ∈ Σn,d, by the corollary,

zd−1
deα

zi ≡
n∏

β=1

(z(d−1)eα+eβ
)iβ .

Therefore,

zi(p) =
n∏

β=1

a
iβ

β .

In other words, p = F (a1, . . . , an). So V(I) = Image(F ).

Difficult Problem 12: Problem 11 from Problem Set 2. For every integer n ≥ 2,
define N =

(
n
2

)
and define F : A2n

k → AN
k as follows. Let x1,1, . . . , x1,n, x2,1, . . . , x2,n

be coordinates on A2n
k and let zi,j , 1 ≤ i < j ≤ n be coordinates on AN

k . Then
F ∗zi,j = x1,ix2,j − x1,jx2,i. The image of this morphism is the affine cone over the
Grassmannian Grass(2, n). Find an ideal I ⊂ k[zi,j ] such that V(I) = Image(F ).
(Hint: Interpret elements of A2n

k as 2 × n matrices; interpret elements of AN
k as

elements of the exterior square of the n-space, which also give anti-symmetric n×n
matrices, and take Pfaffians of appropriate 4× 4-submatrices of this n× n-matrix.
The generators are homogeneous degree 2 trinomials.)

Solution: This problem requires a bit of multilinear algebra. It is less confusing
if coordinates are suppressed when possible. Therefore denote by V the k-vector
space An

k . Denote by
∧2

V the exterior square of V , i.e., there is an alternating,
bilinear map F : V × V →

∧2
V, (v1, v2) 7→ v1 ∧ vw, which is universal with

this property. Up to choosing appropriate coordinates, the mapping F above is
the universal alternating, bilinear map. Denote by V ∨ the dual vector space to V .
There is an alternating, bilinear map F ′ : V ×V → Hom(V ∨, V ) by F ′(v1, v2)(χ) =
χ(v1)v2 − χ(v2)v2 for every χ ∈ V ∨. By the universal property, there is a unique
linear map T :

∧2
V → Hom(V ∨, V ) such that T ◦ F = F ′. Given w ∈

∧2
V ,

denote by Tw : V ∨ → V the associated linear map.

Lemma 0.9. An element w ∈
∧2

V is in F (V × V ) iff Tw has rank ≤ 2.

Proof. First it is shown that Tw has rank ≤ 2 for every w ∈
∧2

V . Let (v1, v2) ∈
V . If (v1, v2) is not linearly independent, then F (v1, v2) = 0. Therefore assume
(v1, v2) is linearly independent. Extend this to an orderd basis (v1, v2, . . . , vn). Let
x1, . . . , xn be the dual ordered basis for V ∨. Then Tv1∧v2(x1) = v2, Tv1∧v2(x2) =
−v1, and Tv1∧vw(xα) = 0 for 2 < α ≤ n. Therefore Tv1∧v2 has rank 2.

Next let w ∈
∧2

V be an element such that Tw has rank ≤ 2. Let (x1, x2, . . . , xn)
be an ordered basis for V ∨ such that Tw(xα) = 0 for 2 < α ≤ n. Let (v1, . . . , vn)
be the dual ordered basis for V ∨. Then (vα ∧ vβ |1 ≤ α < β ≤ n) is a basis for∧2

V . The coefficient of vα ∧ vβ in w is simply xβ(Tw(xα)) = −xα(Tw(xβ)), which
is 0 for α, β > 2. Therefore w = λv1 ∧ v2 = (λv1) ∧ v2 for some λ ∈ k, i.e.,
w ∈ F (V × V ). �

Let (e1, . . . , en) be the standard ordered basis for V and let (x1, . . . , xn) be the
dual ordered basis for V ∨. For every w ∈

∧2
V , Tw is nonzero iff there exists

1 ≤ α1 ≤ n such that Tw(xα1) 6= 0. And this is true iff there exists 1 ≤ α2 ≤ n
such that xα2(Tw(xα1)) 6= 0. Because of the form of Tw, y(Tw(x)) = −x(Tw(y)) for

8



every x, y ∈ V vee and x(Tw(x)) = 0 for every x ∈ V ∨ (the first implies the second
if char(k) 6= 2). In particular the 2× 2 matrix xαi(Tw(xαj )), 1 ≤ i, j ≤ 2 has rank
2. Therefore Tw has rank at least 2 iff there exists 1 ≤ α1 < α2 ≤ n such that the
2× 2 matrix xαi

(Tw(xαj
)) has rank 2.

By a similar argument, Tw has rank > 2 iff there exists 1 ≤ α1 < α2 < α3 < α4 ≤ n
such that the 4 × 4 matrix xαi

(Tw(xαj
)) has rank 4. So Tw has rank ≤ 2 iff for

every 1 ≤ α1 < α2 < α3 < α4 ≤ n, the determinant of this 4 × 4 matrix is 0.
Denoting w =

∑
β1<β2

zβ1,β2eβ1 ∧ eβ2 (i.e., choosing coordinatex zβ1,β2 on
∧2

V ),
this 4× 4 matrix is,

M =


0 zα1,α2 zα1,α3 zα1,α4

−zα1,α2 0 zα2,α3 zα2,α4

−zα1,α3 −zα2,α3 0 zα3,α4

−zα1,α4 −zα2,α4 −zα3,α4 0

 .

By a somewhat tedious computation, the determinant is,

det(M) = (Qα1,α2,α3,α4)
2, Qα1,α2,α3,α4 := zα1,α2zα3,α4−zα1,α3zα2,α4+zα1,α4zα2,α3 .

Therefore Image(F ) is V(I), where I = 〈Qα1,α2,α3,α4 |1 ≤ α1 < α2 < α3 < α4 ≤ n〉.
Remark: This does not prove that I(Image(F )) = I, i.e., that I is a radical ideal.
It is not obvious, however it is true that I is a radical ideal.

Very Difficult Problem 13: Problem 14 from Problem Set 2. Prove there exists
a quasi-affine algebraic set V such that OV (V ) is not a finitely-generated k-algebra.
The examples I am aware of all have dimension ≥ 4. (Warning: This problem
would be more appropriate at the end of 18.726. I mention it now because you can
understand it, and it is a problem to keep in mind as the semester goes on.)

Solution: At this point, you can verify the following solution works. However, it
likely will appear quite arbitrary. Later in the semester, after introducing coherent
sheaves, vector bundles and divisors, it will turn out this solution is quite natural.

Assume char(k) 6= 2, and let i ∈ k be a solution of x2 + 1 = 0. The solution
uses Problem 16 and 17 from Problem Set 2 (solved below), which you should read
first. Let X, Y, Z be coordinates on A3

k and let C̃ = V(Y 2Z −X2(X − Z)) ⊂ A3
k.

This is an affine cone, so determines a Zariski closed subset C ⊂ P2
k, the nodal

plane cubic curve. Observe that C ∩D+(Z) ⊂ P2
k considered as an affine algebraic

set in A2
k is the affine nodal plane cubic from Problem 16 on Problem Set 2. Let

p = (0, 1, 0) ∈ C̃ and let (a0, b0, 1) ∈ C̃ be elements such that (b0 − ia0)/(b0 + ia0)
is not a root of unity.

Extend the coordinates X, Y, Z to a set of coordinates X, Y, Z, S, T on A5
k. Denote

by K ⊂ A5
k the Zariski closed subset V(I), where,

I =

〈 Y 2Z −X2(X − Z),
X(X − a0Z)S − (Y − b0Z)ZT,

X(Y + b0Z)S − (X2 + (a0 − 1)XZ + a0(a0 − 1)Z2)T,
(Y 2 − (a0 − 1)X2)S −X(Y − b0Z)T

〉

Denote by P ⊂ K the relatively open subset K − (V(X, Y, Z) ∪ V(S, T )). For the
quasi-affine algebraic set P ⊂ A5

k, OP (P ) is not a finitely generated k-algebra.

There is a (3Z)2-grading of k[X, Y, Z, S, T ] where deg(X) = deg(Y ) = deg(Z) =
(3, 0) and deg(S) = deg(T ) = (3, 3). This is really the same as a Z2-grading;
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the reason for the 3 will soon be clear. The ideal I is homogeneous with respect
to this grading. So there is an induced (3Z)2-grading of OP (P ). Consider the
subset S = {(i, j) ∈ (3Z)2|OP (P )(i,j) 6= {0}}. If OP (P ) is finitely generated, the
generators can be chosen to be homogeneous, and the corresponding degrees of
these generators form a finite generating set for the sub-semigroup S ⊂ (3Z)2. So
to prove OP (P ) is not a finitely generated k-algebra, it suffices to prove S is not a
finitely generated semigroup.

Let (U, V, S, T ) be coordinates on A4
k. Denote by L ⊂ A4

k the affine algebraic subset,

V(〈(U2 + V 2)(a0U + b0V )S − V (a0U
2 + b0UV + a2

0V
2)T 〉).

Denote by Q ⊂ L the relatively open subset L−(V(U, V )∪V(S, T )). There is a reg-
ular morphism FL : L → K by (U, V, S, T ) 7→ (V (U2 + V 2), U(U2 + V 2), V 3, S, T ).
This restricts to a regular morphism F : Q → P . There is a “projection” regu-
lar morphism π : P → A2

k − {(0, 0)} by (U, V, S, T ) 7→ (U, V ). There is a “sec-
tion” regular morphism σ : A2

k − {(0, 0)} → P by (U, V ) 7→ (U, V, V (a0U
2 +

b0UV + a2
0V

2), (U2 + V 2)(a0U + bV )). This determines a regular morphism τ :
Gm×(A2

k−{(0, 0)}) → P by τ(λ, (U, V )) = (U, V, λV (a0U
2+b0UV +a2

0V
2), λ(U2+

V 2)(a0U + bV )).

Define g1 : P ∩ D(V (a0U
2 + b0UV + a2

0V
2)) → A1

k to be the regular function
S/(V (a0U

2 + b0UV + a2
0V

2)), and g2 : P ∩ D((U2 + V 2)(a0U + bV )) → A1
k to

be the regular function T/((U2 + V 2)(a0U + bV )). The restriction of g1 equals
the restriction of g2. By the gluing lemma, there is a regular function g on P =
(P ∩D(V (a0U

2 + b0UV + a2
0V

2))) ∪ (P ∩D((U2 + V 2)(a0U + bV ))). The regular
morphism ρ : P → Gm × (A2

k − {(0, 0)}) by (U, V, S, T ) 7→ (g(U, V, S, T ), (U, V )) is
an inverse of τ , i.e., τ is an isomorphism.

There is a Z2-grading on k[U, V, S, T ] by deg(U) = deg(V ) = (1, 0) and deg(S) =
deg(T ) = (3, 3). Since the ideal of L is invariant with respect to this grading,
there is an induced Z2-grading of OQ(Q). And the k-algebra homomorphism F ∗ :
OP (P ) → OQ(Q) preserves the grading. By the same argument as in Problem 13
from PS#2, the ring of regular functions on Gm × (A2

k − {0}) is k[U, V ][λ, 1/λ].
So τ∗ is an isomorphism OP (P ) → k[U, V ][λ, 1/λ]. The Z2-grading on OP (P )
corresponds to the grading deg(U) = deg(V ) = (1, 0),deg(λ) = (0, 3).

For the same reason as in Problem 16 of PS#2, the image of F ∗ is the subalgebra
in OU (U)(3) of functions f(U, V, S, T ) such that f(iV, V, S, T ) = f(−iV, V, S, T ).
Using the isomorphism τ∗, these are the functions h(U, V, λ) such that h(iV, V, λ) =
h(−iV, V, (b0+ia0)λ/(b0−ia0)). Of course for every integer m < 0 and every integer
n, k[U, V ][λ, 1/λ](3m,n) = {0}. In particular, (3m, 3n) 6∈ S for every m < 0.

For m = 1 and every integer n, define,

Cn = 1/2((b0 + ia0)n + (b0 − ia0)n),

Dn = i/2((b0 + ia0)n − (b0 − ia0)n)

Then hn(U, V, λ) := (CnV + DnU)V 2λn ∈ k[U, V, λ](3,3n) is a nonzero function
such that hn(iV, V, λ) = hn(−iV, V, (b0 + ia0)λ/(b0 − ia0)). More generally, for
every m > 0, h(m,n)(U, V, λ) := (CnV + DnU)V 3m−1λn ∈ k[U, V, λ](3m,3n) is a
nonzero function such that h(m,n)(iV, V, λ) = h(m,n)(−iV, V, (b0 + ia0)λ/(b0− ia0)).
Therefore (3m, 3n) ∈ S for every m > 0.
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Finally, k[U, V, λ](0,3n) is the k-vector space generated by h(0,n) = λn. For n = 0,
of course λ0 = 1 satisfies h(0,0)(iV, V, λ) = h(0,0)(−iV, V, (b0 + ia0)λ/(b0 − ia0)).
Because of the hypothesis that (b0 + ia0)/(b0− ia0) is not a root of unity, for every
n 6= 0, λn 6= (b0 + ia0)nλn/(b0 − ia0)n. Therefore (0, 3n) ∈ S iff n = 0.

Altogether, this proves S = {(0, 0)} ∪ {(3m, 3n)|m,n ∈ Z, m > 0}. So each of
the elements (3, 3n) ∈ S is indecomposable, proving S is not a finitely generated
semigroup.

Problem 14: Problem 16 from Problem Set 2. Together with the next problem,
this problem gives an open subset of an affine algebraic set, itself isomorphic to an
affine algebraic set, but not a basic open affine D(s). In both problems, assume
char(k) 6= 2 and let i denote a solution of x2+1 in k. Let C ⊂ A2

k be the affine nodal
plane cubic, C = V(y2−x2(x− 1)) Let (a0, b0) ∈ C and define F : D(x− a0) → A3

k

by F (a, b) = (a, b, (b + b0)/(a− a0)).

(a) Prove there exists a regular morphism G : C−{(a0, b0)} → A3
k whose restriction

to D(x−a0) equals F . (Hint: Expand the defining equation of C in the coordinates
x− a0 and y − b0.)

Solution: Expanding the defining equation, on C,

(y+b0)(y−b0) = y2−b2
0 = (x−a0)(x+a0)(x−1)+a2

0(x−1)−b2
0 = (x−a0)((x+a0)(x−1)+a2

0).

Therefore,
(y + b0)/(x− a0) = ((x + a0)(x− 1) + a2

0)/(y − b0).
More precisely, the regular function on C − D(y − b0) by (a, b) 7→ ((a + a0)(a −
1) + a2

0)/(b − b0) restricts on C − (D(x − b0) ∪ D(y − b0)) to z ◦ F . Because
(C −D(x− a0))∪ (C −D(y− b0)) = C −{(a0, b0)}, by the gluing lemma there is a
regular function g : C − {(a0, b0)} → A1

k whose restriction to C −D(y − b0) equals
z ◦ F . Define G(a, b) = (a, b, g(a, b)).

(b) Prove the image of G is an affine algebraic subset of A3
k.

Solution: There is an extra hypothesis necessary: (a0, b0) 6= (0, 0). Consider
V = V(I) ⊂ A3

k, where,

I =

〈 y2 − x2(x− 1),
(x− a0)z − (y + b0),

(y − b0)z − [(x + a0)(x− 1) + a2
0]

〉
It is straightforward that G∗I = {0}, i.e., Image(G) ⊂ V . Let (a, b, c) ∈ V(I).
Then (a, b) ∈ C. Moreover, if (a, b) = (a0, b0), then the second last equations in I
give,

0c− (b0 + b0) = 0, 0c− [(a0 + a0)(a0 − 1) + a2
0] = 0,

i.e., 2b0 = 0, a0(a0 − 1) = 0. By hypothesis char(k) 6= 2, thus b0 = 0. Plugging
into the defining equation a0 = 0 or a0 = 1. Because (a0, b0) 6= (0, 0), a0 = 1. So
2a0(a0 − 1) + a2

0 = 1 6= 0. Therefore (a, b) 6= (a0, b0). So the image of π : V → C is
C − {(a0, b0)}.
For any other point (a, b) ∈ C, there is a unique solution to the last two equations,
namely c = g(a, b). Thus V(I) = Image(G).

(c) Prove the projection π : A3
k → A2

k, π(a, b, c) = (a, b) restricts on the image of G
to an inverse morphism to G. Therefore C − {a0, b0} is an open subset of C, itself
isomorphic to an affine algebraic set.
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Solution: Again, there is another hypothesis necessary, (a0, b0) 6= (0, 0). This
was done in the solution to the last part. Because V(I) is an affine algebraic set,
C − {(a0, b0)} is isomorphic to an affine algebraic set.

Difficult Problem 15: Problem 17 from Problem Set 2. This problem continues
Problem 16; again char(k) 6= 2. Consider the morphism H : A1

k → C by H(u) =
(u2 + 1, u(u2 + 1)). Let t be a coordinate on A1

k.

(a) Prove H∗ : k[C] → k[t] maps k[C] isomorphically to the subalgebra of functions
f(t) ∈ k[t] such that f(i) = f(−i).

Solution: The image of H is not finite, so the Zariski closure is all of C. Therefore
ker(H∗) = I(Image(H)) = {0}, i.e., H∗ is injective. The generators x and y of k[C]
map to t2 + 1 and t(t2 + 1). Every polynomial f(t) ∈ k[t] has a unique expression
as,

f(t) = c0 + c1t + c2(t2 + 1) + c3t(t2 + 1) + · · ·+ c2k(t2 + 1)k + c2k+1t(t2 + 1)k + . . .

Plugging in i and −i, f(i) = f(−i) iff c1 = 0. In this case,

f = H∗(c0 + c2x + c3y + · · ·+ c2kxk + c2k+1x
k−1y + . . . ).

Therefore f(i) = f(−i) iff f ∈ Image(H∗).

(b) For (b), (c) and (d), assume (a0, b0) ∈ C − {(0, 0)}. Prove the ideal of k[t]
generated by H∗(〈x− a0, y − b0〉) is the principal ideal 〈a0t− b0〉.

Solution: Denote the ideal by J ⊂ k[t]. Because (a0, b0) 6= (0, 0), in particular
a0 6= 0. First of all, a0t − b0 = H∗y − tH∗x ∈ J . Second of all, a2

0H
∗x =

a2
0t

2 + a2
0 − a3

0 = a2
0t

2 − b2
0 = (a0t + b0)(a0t − b0) ∈ 〈a0t − b0〉. Finally, a2

0H
∗y =

a2
0(a0t− b0) + ta2

0H
∗x ∈ 〈a0t− b0〉.

(c) If there is an element s ∈ k[V ] such that V(s) = {(a0, b0)}, H∗(s) = c(a0t−b0)n

for some nonzero constant c ∈ k and integer n ≥ 1. (Hint: Consider the image of
s in k[V ][1/xy] ∼= k[t][1/(t2 + 1)]. Use this to express H∗s as c(t2 + 1)r(a0t− b0)n

for some r ≥ 0, and then use that s(0, 0) 6= 0.)

Solution: The ideal in k[t][1/(t2 +1)] generated by I equals the ideal in k[V ][1/xy]
generated by 〈x − a0, y − b0〉 under the induced isomorphism of k-algebras. So
H∗(s)/1 ∈ 〈a0t−b0〉k[t][1/(t2+1)]. Hence there are integer m,n ≥ 0 and p(t) ∈ k[t]
relatively prime to (a0t−b0) and (t2+1) such that (t2+1)mH∗(s) = p(t)(a0t−b0)n.
Because a0 6= 0, a0 − 1 6= −1. But (b0/a0)2 = a0 − 1. So (b0/a0)2 + 1 6= 0, i.e.,
a0t−b0 is relatively prime to t2+1. Since k[t] is a UFD, (t2+1)m divides p(t). Since
p(t) is relatively prime to (t2+1), this implies m = 0. Thus H∗(s) = p(t)(a0t−b0)n.
If p(t) is not a constant polynomial, it vanishes at some point other than b0/a0.
The image of this point under H is a point other than (a0, b0) at which s vanishes.
By hypothesis, s vanishes only at (a0, b0). Therefore p(t) = c for some nonzero
constant c ∈ k.

(d) Deduce that (a0i− b0)n = (−a0i− b0)n, because c(at− b)n is in the image of
H∗. Therefore for every (a0, b0) ∈ C −{(0, 0)}, if (b0− ia0)/(b0 + ia0) is not a root
of unity, then C − {(a0, b0)} is of the form D(s) for no element s ∈ k[V ] (in fact
these are equivalent conditions).
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Solution: Continuing as before, H∗s = c(a0t− b0)n for some integer n. For every
f(t) ∈ Image(H∗), by (a), f(i) = f(−i). Plugging in, this gives,

c(ia0 − b0)n = c(−ia0 − b0)n.

Because c 6= 0, it can be cancelled. Because (b0/a0)2 + 1 6= 0, as discussed above,
both sides of the equation are nonzero. So we can divide to get,

(b0 − ia0)n/(b0 + ia0)n = 1.

So if (b0 − ia0)/(b0 + ia0) is not a root of unity, then n = 0, i.e., s = c. So in this
case, there is no s ∈ k[C] such that V(s) = {(a0, b0)}. As a final point, observe
that because H : A1

k → C is surjective, there are plenty of pairs (a0, b0) ∈ C such
that (b0 − ia0)/(b0 + ia0) is not a root of unity.
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