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MAT 552 PROBLEM SET 5

Problems. This problem set completes the analytic proof of the Peter-Weyl The-
orem. It is intended for those students with some background in Hilbert spaces and
functional analysis.

Here is a quick reminder of the basics of complex Hilbert spaces including the
statement of the spectral theorem. A complex Hilbert space is a Hermitian in-
ner product space (V, ) whose associated metric space is complete (all Cauchy
sequences converge). For Hermitian inner product spaces (V, () and (W,7), a
bounded linear transformation (resp. a compact linear transformation)
is a C-linear transformation,
T:V > W,
sending closed balls in (V, ) to bounded (resp. compact) subsets of W. The

operator norm, ||T,,, of T is the supremum of the 7-lengths of all elements in
the T-image of the closed unit ball of (V, 3).

If the domain and target are complex Hilbert spaces, then the Closed Graph Theo-
rem implies that T is bounded if and only if the graph of T is closed. In this case,
there exists a unique bounded linear transformation,

" (W,y) = (V. B),
such that for every v € V' and for every w € W,

Y(w, T(v)) = BT (w), v).
This is the adjoint of T'. Note that |||, equals [T,

The operation of adjoint makes B((V, 8), (V, 8)) and B((W,~), (W,~)) into (unital)
C*-algebras. Together with the operations sending T' to T* o T € B((V, 8), (V. )),
resp. to T o T* € B((W,~),(W,7)), also B((V, ), (W,~)) is a right Hilbert C*-
module, resp. left Hilbert C*-module, for these respective C*-algebras. An operator
T € B((V, 8),(V,3)) is normal, resp. self-adjoint, if T commutes with T, resp.
if T equals T*.

By the Open Mapping Theorem, if V and W are complete, then every surjec-
tive bounded linear transformation is an open mapping. If T is also injective,
then T is a homeomorphism whose inverse is also a bounded operator. Denote by
Inv((V, ), (W,v)) the set of all bounded linear operators from V' to W having a
two-sided inverse that is also a bounded linear operator. Denote Inv((V, 8), (V, 3))
by GL¢(V,B); this is the group (and open subset) of invertible elements in the
C-algebra B((V, 8), (V, 8)).

For every nonzero Hilbert space (V) and for every bounded operator T from
(V, B) to itself, the spectrum of T is

spec(T) :={A € C|\Idy — T ¢ GL¢(V, 8)}.
This is a compact subset of C. The resolvent function,
R(:T) : C\ spec(T) = GLe(V, ), R(xT) = (T — #1dy) Y,
1


http://www.math.stonybrook.edu/~jstarr/M552s22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 552 Lie Groups and Lie Algebras Jason Starr
Stony Brook University Spring 2022
Problem Set 5

is a holomorphic map to B((V, 8), (V, 3)). By Liouville’s theorem, the spectrum is
nonempty.

For every polynomial function in one variable z,
f(2) =ag+ a1z + a2’ + - + aqz?,
the associated bounded operator f(7T') is defined by,
f(T) =aldy + a1T + asT oT+---+aq(To---oT).

Every bounded continuous function f on spec(7') is a uniform limit of a sequence
of polynomial functions f,,. The operators f,(T") converge to a bounded operator
f(T) independent of the choice of convergent sequence of polynomials (f,,). Denote
C°(spec(T'),C) the C-vector space of bounded continuous functions on spec(T).
There is a well-defined C-linear map,

subsy : C%(spec(T),C) — B((V,B), (V, B)).

For every f(z) € C%(spec(T),C), denote by Er s the kernel of f(T) as a closed
C-linear subspace of V. For every closed subset ¥ C spec(T'), denote by Er s the
intersection of Er ; over all f(z) that vanish on X.

Hypothesis 0.1. The operator T' € B((V, 8), (V, 8)) is self-adjoint.

Then the C-linear map subsp is a homomorphism of commutative, unital C*-
algebras, i.e., it sends function multiplication to composition, and it sends complex
conjugation of functions to the adjoint operator.

Lemma 0.2 (Real spectrum, orthogonal eigenspaces). The spectrum of every self-
adjoint operator T is real. If ¥,0 C spec(T') are disjoint closed subsets, then Epx
and ET o are pairwise orthogonal closed subspaces.

Proof. For the polynomial py(z) = z — A and associated norm-squared polynomial
||p||2 (2) := pa(2) - pA(Z), observe

pa(2) - pa(Z) = Im(N)? + (2 — Re(N))2.
Thus, for a self-adjoint operator T,

(T — \dy) o (T — Mdy)* = Im(\)?Idy + (T — Re(M)Idy)? > Im()\)*Idy .

Combined with the open mapping theorem, this implies that T'— Aldy is invertible
whenever Im(A) is nonzero.

Next, by Urysohn’s Lemma, there exist bounded, continuous, nonnegative real-
valued functions f(z) and g(z) such that f vanishes on X, such that g vanishes on
0, and such that f + g equals 1. Thus, for every v € Er x and for every w € Er g,

(v, 0) = ((/(T) + 9(T))v,w) = {f(T)v,w) + {g(T)v, w) =
{(f(T)v,w) + (v, g(T)w) = (0,w) + (v,0) = 0.

For every v € V, denote by subsz, the following C-linear map,

subsz,, : C'(spec(T),C) =V, f(z) — f(T)v.
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The linear functional,
/ (T Coape(T),©) = €, J(2) o (bsral ), ) = (1T )
spec(T

defines a positive Borel measure drr,, on spec(T’) that is even a Radon measure. De-
note by L?(spec(T),dnr,,) the corresponding Lebesgue space of square-integrable
functions on spec(T) with respect to dmy,.

Theorem 0.3 (Spectral Theorem for Self-Adjoint Operators). For every nonzero
complex Hilbert space (V,3), for every bounded, self-adjoint operator T on (V,f3),
for every v € V, the C-linear map subsr, extends to an isometric embedding of
Hilbert spaces,

subst.,, : L* (spec(T), dnr.,) =V,

whose image is the smallest closed, T-stable subspace of V' containing v.

Theorem 0.4 (Spectral Theorem for Self-Adjoint Compact Operators). Further,
T is compact if and only if spec(T) \ {0} contains no accumulation points, if the
eigenspace of each A € spec(T)\{0} has finite dimension, and, together with Ker(T),
these eigenspaces span a dense subspace of V.

Corollary 0.5. A bounded, self-adjoint operator on a monzero complex Hilbert
space is a scalar multiple of the identity if and only if the spectrum is a singleton
set.

Proof. If T equals AIdy for a real number A, then spec(T") equals {A}. Conversely,
assume that spec(T") equals {\}. For every nonzero vector v € V, since A—z restricts
to zero on spec(T) = {\}, the restriction of this polynomial in L?(spec(T), drr.,)
is zero. Thus, AIdy — T acts as the zero operator on v, i.e., T(v) = Av. Since this
holds for every v € V', the operator T equals Aldy . ([l

Problem 1. (Schur’s Lemma, Part 1.) For a Lie group G, a unitary represen-
tation in a complex Hilbert space (V, ) is a continuous group homomorphism to
the group of unitary (i.e., norm-preserving) C-linear automorphisms of (V, 8) with
its norm topology,

p:G—=UV,pB).
This representation is irreducible if the only closed, p(G)-invariant subspaces of
V are V and {0}.

(a) For unitary G-representations (V, 3, p) and (W,~, o), for every bounded mor-
phism of G-representations,

S: V=W, Sop,=0408, Vgeq,
prove that also the adjoint S* is a bounded morphism of G-representations.
(b) Also prove that the kernel of S and the kernel of S* are closed subrepresen-
tations. Similarly, the orthogonal complements of Ker(S*) and Ker(S) are closed

subrepresentations. These orthogonal complements equal the closures of the images
of S and S*.

(c) Check that T := S* o S is a bounded, self-adjoint operator on (V,3) that is a
morphism of G-representations.

(d) Now assume that (V, 3, p) and (W,~, o) are both irreducible unitary represen-
tations. If T is surjective, conclude that S* is an isomorphism, and thus also the
3


http://www.math.stonybrook.edu/~jstarr/M552s22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 552 Lie Groups and Lie Algebras Jason Starr
Stony Brook University Spring 2022
Problem Set 5

adjoint S = (S*)* is an isomorphism. Thus, to prove Schur’s Lemma for unitary
representations, it suffices to prove that every bounded, self-adjoint morphism from
an irreducible unitary representation (V p) to itself equals a multiple of the identity
operator.

Problem 2. (Schur’s Lemma, Part 2.) Let (V,f,p) be an irreducible unitary
G-representation. Let T be a bounded, self-adjoint operator of (V,3) that is a
morphism of G-representations.

(a) Prove that every element of subsy(CY(spec(T),C)) is a bounded operator on
(V, B) that is a self-morphism of unitary G-representations.

(b) For a nonzero vector v € V, assume by way of contradiction that the measure
space (spec(T'),dnr,,) is not a singular measure supported at a single point. Use
Urysohn’s Lemma to find continuous functions f(z),g(z) € C%(spec(T),C) with
f(2) - g(2) = 0 and with images in L?(spec(T),drr ) that are each nonzero. Since
f(T)og(T) and g(T) o f(T) equal 0, conclude that at least one of f(T') or g(T)
has nonzero kernel, say f(T). On the other hand, since f(T)v is nonzero by the
spectral theorem, conclude a contradiction. Altogether, conclude that for every
nonzero vector v € V, the measure space (spec(T),dnr,) is a singular metric
supported at a single point A,. Repeat the proof of the corollary to conclude that
T(v) equals A, - v.

(c) For a C-linear operator on a C-vector space V, if every vector is an eigenvector

for some eigenvalue, conclude that the operator is a scalar multiple of the identity.
Thus, for T as above, conclude that there exists A € R with T' = Aldy .

Problem 3. (Eigenspaces of convolution operators.) Assume now that G is a
compact (real) Lie group with normalized Haar measure dvolg. For every g € G,
define

Ay : L*(G,dvolg) = L*(G,dvolg), (Agu)(h) :=u(g~'h),

pg : L*(G,dvolg) — L*(G,dvolg), (A\gu)(h) :=u(hg™"),
For all continuous functions u,v € C°(G,C), define the convolution function
u*v on G by

wxv(h) = / _HO))dvolis) = / (pyw)(W)o(g)dvole(g).

geG

(a) Prove that \; and p, are isometries. Prove that these define left, resp. right,
unitary representations \ : G — U(L?(G,dvolg)) and p : G°PP — U(L?*(G, dvolg)).
Prove that these commute with one another, A\;(pru) = pn(Agu).

(b) Prove that the L*° norm of u * v is bounded above by |[jul, - |[v]|,. (Hint.
Use that the group inversion preserves the Haar measure. Thus the L?-norm of
g — Agv(h) equals the L?-norm of v.)

(c) Since G is a finite measure space, L™ is a subspace of L?. Conclude that
convolution extends to a continuous C-bilinear operation,

* 1 L*(G, dvolg) x L*(G, dvolg) — L*(G,dvolg), [lu*v|ly < |luxv| < |lully ], -
In particular, for every w € L?(G, dvolg), deduce that the following operators are
bounded operators,

A\ : L*(G, dvolg) — L?*(G,dvolg), v+ w*w,
4
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pw : L2(G,dvolg) — L*(G,dvolg), u+— u*w.
For the “heuristic” Dirac delta function é4 of g € G, this gives identities,

Ag(v) = A5, (v), pg(u) = ps, (u)-

(d) For every u,v,w € L*(G,dvolg) and every g € G, check the following identities,

uklg=1lg*xu= (/ u(g)dvolg(g)> lg,
geG

(uxv)*xw=ux(v*w),
Ag(vxw) = (Ag(v)) ¥ w,  pg(uxv) =ux(pg(v)),
A(vxw) = (Ag(v)) xw, pu(u*v) =ux(py(v)).
(e) For every w € L%(G,dvolg), define w € L?(G,dvolg) by

w(g) =w(g™),
so that
ux w(h) = (u, \pw)g.
Prove that the adjoint of A,, equals Ag, and prove that the adjoint of p,, equals pg.
In particular, conclude that A\, resp. p., is self-adjoint if and only if w equals w,
e.g., py is self-adjoint for the (trace) character x of every finite-dimensional C-linear
representation of G.

(f) Read about Hilbert-Schmidt operators. Conclude that A\, and p,, are Hilbert-
Schmidt operator, thus they are compact. When w equals w, conclude that these
are compact self-adjoint operators. Since A, (py, (v)) equals py, (A (v)), conclude that
the eigenspaces of p,, resp. of )\, are left G-subrepresentations of L?(G,dvolg),
resp. right G-subrepresentations of L?(G,dvolg). Since the eigenspaces of a com-
pact operator for nonzero eigenvalues have finite dimension, conclude that these
eigenspaces for p,,, resp. for A\, are direct sums of finitely many irreducible left,
resp. right, G-subrepresentations that have finite dimension.

(g) A sequence (wy,),>0 of continuous, nonnegative real-valued functions on G is a
balanced Dirac sequence if each w,, equals w,, if each fg wy (g)dvolg(g) equals
1, and if for every € > 0 and every open neighborhood of e € G, for all n > 0, we
have |w,(g)| < € for all g outside the open neighborhood. Prove that there exists a
balanced Dirac sequence.

(h) For every v € C°(G,C), prove that p,,, (v) converges uniformly to v on G,
and thus converges to v in L?(G,dvolg). For every u € L?(G,dvolg), use self-
adjointness of p,, to prove that

nlglgo<pwn (u)> U>L2 - <’LL, ”U>.

Since the continuous functions are dense in L?(G, dvolg), prove that this holds for
every v € L?(G, dvolg), i.e., py, (u) converges weakly to u. In particular, if p,,, (u)
equals 0 for all n > 0, conclude that also u equals 0.

(i) Conclude that for every nonzero u € L?(G,dvolg), for all n > 0, the element

u is not in Ker(py, ). Thus, u has nonzero orthogonal projection to at least one

of the eigenspaces of p,,, with nonzero eigenvalue. Since this is a direct sum of

finitely many irreducible (left) G-subrepresentations, conclude that « has nonzero

projection to at least one irreducible (left) G-subrepresentation of finite dimension.
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Thus, the sum in L?(G, dvolg) of all irreducible (left) G-subrepresentations of finite
dimension is dense in L?(G, dvolg). This completes the proof of surjectivity in the
Peter-Weyl Theorem.

Problem 4. (Irreducible unitary representations of compact groups have finite
dimension.) Let G be a compact (real) Lie group. Let (V, §) be a nonzero complex
Hilbert space, and let p : G — U(V,3) be a unitary representation that is irre-
ducible. For any nonzero vector v € V, and for the orthogonal projection to the
span of v,

proj, : V. — span(v) C V,
consider the C-linear operator on V,

T= / Pg © PIOj, © pg_ldvolg(g).
geG

(a) Prove that T is a bounded linear operator that is a morphism of G-representations.
By Schur’s Lemma, conclude that T equals AIdy for some real number A.

(b) Compute that

(T(v),v) = / EG(prOjv o py ' (v), py t (v))dvola(g) =

/ G(projv o p;l(v),projv o p;l(v»dvolg(t).
gc

Prove that the function g — (proj, o p,*(v),proj, o p,*(f)) is continuous and
nonzero at g = e. Conclude that the integral is a positive real number, and thus
also A\ is positive.

(c) Since T is defined as a limit of Riemann sums, prove that 7" is in the closure of
the finite-rank operators, i.e., T' is a compact operator. Thus the identity operator
on V is a compact operator. Conclude that V has finite dimension. Thus, every
irreducible (left) unitary G-representation has finite dimension, and hence occurs
in the Peter-Weyl Theorem.

Problem 5. (Compact Lie groups have faithful representations of finite dimen-
sion.) Let G be a compact (real) Lie group. Let W C L?(G,dvolg) be a finite
dimensional subspace containing a system of coordinate functions of G relative to
an embedding of G as a submanifold of the real manifold C"”. Use the previous
problems to prove that there exists a unitary representation (V, 3, p) that is a finite
direct sum of irreducible unitary representations such that W is contained in the
image of VV ®c V. Since the span of the matrix entries of p contain coordinate
functions, conclude that p is injective. Thus, every compact (real) Lie group has a
faithful (unitary) representation of finite dimension.
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