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MAT 552 PROBLEM SET 8

This problem uses Cartan’s criterion to check that the special linear Lie algebra is
semisimple. The remainder of the problem set is devoted to Levi’s Theorem: every
Lie algebra is a semidirect product of its solvable radical and its semisimple part.
For completeness, there are some exercises on bimodules and derivations. This is
used to define the semidirect product of Lie algebras, and it will be used further in
the next problem set about Ado’s Theorem.

Problems.

Problem 1.(The Killing form on sln.) Recall the root decomposition of g = sln
from lecture. The diagonal matrices form a maximal Abelian subalgebra hn. For
the induced adjoint representation of this Abelian subalgebra on all of sln, there is
a direct sum decomposition,

g = n− ⊕ hn ⊕ n+ =

⊕
α∈Φ−

n

gα

⊕ h′n ⊕

⊕
α∈Φ+

n

gα


where Φn ⊂ h∨n is the set of roots, and where Φ+

n and Φ−n are the subsets of positive
and negative roots. Precisely, Φ+

n equals {αi,j |1 ≤ i < j ≤ n}, where αi,j ∈ is
the linear functional that is the difference χi − χj between the (i, i)-entry and the
(j, j)-entry of a diagonal matrix, and Φ−n equals −Φ+

n , where −αi,j equals αj,i. For
every α = αi,j , the root space gα is spanned by the elementary matrix Xα that has
(i, j)-entry equal to 1 and all other entries equal to 0.

(a) Since h′n is Abelian and since every gα is 1-dimensional, conclude that for every
X ∈ h′n,

adX ◦ adX : g→ g

has trace equal to

BK(X,X) =
∑
α∈Φ

〈α,X〉2 = 2
∑
α∈Φ+

〈α,X〉2.

(b) Since the trace of X equals 0, compute that

BK(X,X) = 2
∑

1≤i<j≤n

(
χi(X)2 − 2χi(X)χj(Y ) + χj(Y )2

)
=

−4
∑

1≤i<j≤n

χi(X)χj(X) + 2(n− 1)
∑

1≤i≤n

χi(X)2 =

−2

 ∑
1≤i≤n

χi(X)

2

+ 2n
∑

1≤i≤n

χi(X)2 = 2nTrCn(X ◦X).

(c) For every diagonalizable element of Matn×n, there exists a basis such that the
element is in hn. Thus, every diagonalizable element X of sln is conjugate to an
element of h′n. For such elements, conclude that BK(X,X) = 2nTrCn(X ◦X).
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(d) Finally, since the subset of diagonalizable elements in sln is dense, conclude
that BK(X,X) equals 2nTrCn(X ◦X) for every X in sln. Thus, the Killing from
BK = Bad equals a positive scalar multiple of the invariant symmetric form Bstd

of the standard representation of sln on Cn.

(e) For every matrix X, for the matrix Xss from the proof of Cartan’s Solvability
Criterion, the trace of Xss equals the complex conjugate of the trace of X. Thus,
if X is in sln, so is Xss. Since TrCn(X ◦Xss) equals 0 if and only if X is nilpotent,
conclude that the kernel of the Killing form consists only of nilpotent matrices.
By the Jordan canonical form, there exists a basis of Cn such that the nilpotent
matrix X has nonzero entries only on the main superdiagonal, and these equal 0 or
1. For the transpose matrix X†, compute TrCn(X ◦X†). Conclude that the kernel
of the Killing form is trivial, and thus sln is a semisimple Lie algebra by Cartan’s
Semisimplicity Criterion.

Problem 2. (Bimodules.) Let k be a field, either k = R or k = C. Let
(A,mA : A × A → A) and (B,mB : B × B → B) be associative k-algebras, not
necessarily unital. For a k-vector space M , an A-B-bimodule structure on M is a
pair of k-bilinear operations,

L : A×M →M, R : M ×B → B,

such that the induced k-linear maps,

L̃ : A→ Homk(M,M), L̃a(y) = L(a, y),

R̃ : B → Homk(M,M), R̃b(x) = R(x, b),

are homomorphisms of associative k-algebras and such that for every a ∈ A and for
every b ∈ B,

L̃a ◦ R̃b = R̃b ◦ L̃a.
If A and B are unital, an A-B-bimodule structure is unital if both L̃ and R̃ are ho-
momorphisms of associative, unital k-algebras, i.e., they also send the multiplicative
identity to the multiplicative identity.

(a) Check that an A-B-bimodule structure on M is equivalent to a module structure
for the k-algebra A⊗kB (usual product structure, not the Z-graded variant). Thus
the usual operations for modules over an algebra all make sense: direct sum, direct
product, kernel, cokernel, etc.

(b) As usual, for a right B-module (M,RM : M×B →M) and for a left B-module
(N,LN : B ×N → N), denote by

βM,B,N : M ×N →M ⊗B N,
the universal biadditive map that is B-balanced, i.e., for every x ∈ M , for every
b ∈ B, and for every y ∈ N ,

βM,B,N (RM (x, b), y) = βM,B,N (x, LN (b, y)).

For associative k-algebras A, B, and C, for an A-B-bimodule (M,LM , RM ), and
for a B-C-bimodule (N,LN , RN ), check that the following maps are B-balanced
biadditive maps,

βM,B,N◦(LM (a,−)×IdN ) : M×N →M×N →M⊗BN, (x, y) 7→ βM,B,N (LM (a, x), y),

βM,B,N◦(IdM×RN (−, c)) : M×N →M×N →M⊗BN, (x, y) 7→ βM,B,N (x,RN (y, c)).
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By universality, deduce that there exist unique additive maps,

LM⊗BN (a,−) : M ⊗B N →M ⊗B N,
RM⊗BN (−, c) : M ⊗B N →M ⊗B N,

such that LM⊗BN (a,−) ◦ βM,B,N equals βM,B,N ◦ (LM (a,−)× IdN ) and such that
RM⊗BN (−, c) ◦ βM,B,N equals βM,B,N ◦ (IdM × RN (−, c)). Deduce that there are
binary maps,

LM⊗BN : A× (M ⊗B N)→M ⊗B N,
RM⊗BN : (M ⊗B N)× C →M ⊗B N.

Check that these binary maps form an A-C-bimodule structure on M ⊗C N .

(c) As usual, denote by −⊗B − the bifunctor,

−⊗B − : Mod−B ×B −Mod→ Z−Mod, (M,N) 7→M ⊗B N,
(µ : M →M ′, ν : N → N ′) 7→ µ⊗ ν : M ⊗B N →M ′ ⊗B N ′.

For the A-C-bimodule structure defined above, prove that this bifunctor “restricts”
to a bifunctor,

−⊗B − : A−Mod−B ×B −Mod− C → A−Mod− C.
Also, for every associative k-algebra D, for the trifunctors,

(−⊗B −)⊗C − : A−Mod−B ×B −Mod−C ×C −Mod−D → A−Mod−D,
−⊗B (−⊗C −:A−Mod−B ×B −Mod− C × C −Mod−D → A−Mod−D,

check that there is a natural equivalence,

θA,B,C,D : (−⊗B −)⊗C − ⇒ −⊗B (−⊗C −).

Formulate and prove the evident higher associativity compatibility for θA,B,C,D.

(d) For every associative algebra (B,mB : B×B → B), the left regular module
structure and the right regular module structure are defined by

La(c) = mB(a, c), Rb(c)−mB(c, b).

Check that these define a structure of B-B-bimodule on B, called the regular
bimodule structure. For every B-C-bimodule N , check that the induced B-C-
bimodule structure on B ⊗B N is naturally isomorphic to N as a B-C-bimodule.
Similarly, for every A-B-bimodule M , check that the induced A-B-bimodule struc-
ture on M ⊗B B is naturally isomorphic to M as an A-B-bimodule.

(e) For every homomorphism of associative algebras,

f : B → A, mA(f(b), f(b′)) = f(mB(b, b′)) ∀b, b′ ∈ A,
for every A-A-bimodule (M,L : A×M →M,R : M ×A→ A), define,

Lf : B ×M →M, Lf (b,m) := L(f(b),m),

Rf : M ×R→M, Rf (m, b) := R(m, f(b)).

Check that this is a structure of B-B-bimodule on M , sometimes denoted Mf . For
A-A-bimodules M and N , check that every morphism of A-A-bimodules from M
to N is also a morphism of B-B-modules, Mf → Nf . Finally, giving A and B
their regular bimodule structures, check that the B-B-bimodule morphisms from
B to Af are isomorphic to the B-B-submodule ZA(f(B)) of A of all elements that
centralize f(B).
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(f) For every associative algebra (B,mB : B × B → B), for the associated Lie
algebra structure,

[a, b]B := mB(a, b)−mB(b, a),

check that the left regular representation is a Lie algebra representation,

L[a,b] = La ◦ Lb − Lb ◦ La,
and similarly for the right regular representation. Finally, the usual adjoint repre-
sentation is defined by,

adB : B → Homk(B,B), adB,a : b 7→ mB(a, b)−mB(b, a).

Check that this is also a Lie algebra representation (this is the Jacobi identity for
this Lie algebra).

Problem 3. (Derivations.) For every associative k-algebra (A,mA : A×A→ A)
and for every A-A-bimodule (M,L : A ×M → M,R : M × A → M), denote the
direct sum of the regular A-A-bimodule and M by

A⊕ (M · ε) = A⊕M.

The symbol ε is just a placeholder. When confusion is unlikely, this is just denoted
A⊕M · ε.
(a) Check that the following k-bilinear operation is a structure of associative k-
algebra on A⊕M · ε,
(A⊕M · ε)×(A⊕M · ε)→ A⊕M ·ε, (a+xε, b+yε) 7→ mA(a, b)+(L(a, y) +R(x, b)) ε.

Check that the inclusion of the summand A is a homomorphism of associative
k-algebras,

i : A→ (A⊕M · ε) , i(a) = a+ 0ε.

Finally, check that projection to the summand A is a homomorphism of associative
k-algebras,

r : (A⊕M · ε)→ A, r(a+ xε) = a.

(b) For every left A-module (M̃, L̃ : A×M̃ → M̃), with its left and right operations
a compatible structure of left module for A⊕M · ε is a structure of left module,

L̃M : (A⊕M · ε)× M̃ → M̃,

such that L̃iM equals L̃. Check that every compatible structure of left module for
A⊕M · ε is of the form

L̃M (a+ xε, y) = L̃(a, y) + L̃ε(x, y),

for a unique A-balanced map

L̃ε : M ×N → N,

that is also left A-linear, i.e., for every x ∈M , for every a ∈ A, and for every y ∈ N ,

L̃ε(R(x, a), y) = L̃ε(x, L(a, y)), L̃(a, L̃ε(x, y)) = L̃ε(L(a, x), y),

and such that for every x, x′ ∈M and for every y ∈ Y ,

L̃ε(x, L̃ε(x
′, y)) = 0.

Conversely, given L̃ε as above, prove that this defines a compatible structure of left
module for A⊕M · ε. Formulate and prove the analogous results for right modules
and for bimodules.
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(c) For every associative k-algebra (B,mB : B × B → B), for every morphism
of associative k-algebras, f : B → A, a compatible morphism of associative
k-algebras to A⊗M · ε is a morphism of associative k-algebras,

fM : B → A⊕M · ε,
such that r ◦ fM equals f . Check that every compatible morphism is of the form

fM,φ(b) = f(b) + φ(b)ε,

for a unique k-linear map,

φ : B →M,

such that for every b, b′ ∈ B,

φ(mB(b, b′)) = R(φ(b), f(b′)) + L(f(b), φ(b′)).

Such a k-linear map φ is called an k-derivation from B to Mf . (When f equals the
identity map from A to itself, this is a k-derivation from A to M .) Conversely, check
that for every k-derivation from B to Mf , the map fM,φ is a compatible morphism.
Denote by Derk(B,Mf ) the set of all k-derivations from B to Mf . Check that the
A-A-bimodule structure on Mf induces a natural structure of ZA(f(B))-ZA(f(B))-
bimodule structure on Derk(B,Mf ).

(d) For an associative subalgebra R of B, a k-derivation from B to Mf is an R-
derivation if the kernel of the derivation contains R. Check that a k-derivation
is an R-derivation if and only if the compatible morphism of associative k-algebras
restricts on R as i ◦ f . Conclude that the subset DerR(B,Mf ) of R-derivations
is a ZA(f(B))-ZA(f(B))-bimodule in Derk(B,Mf ) that is also naturally a R-R-
bimodule.

(e) For every pair φ, ψ ∈ DerR(B,B), check that the following R-module homo-
morphism from B to itself is an R-derivation,

[φ, ψ]Der(B,B)(b) = φ(ψ(b))− ψ(φ(b)).

Check that this operation makes DerR(B,B) into a Lie algebra.

Problem 4. (Derivations and Lie algebras.) This proble continues the previous
problem. Now assume that A is unital.

(a) For every k-vector space V , and for every pair of k-linear transformations,

f1 : V → A, φ1 : V →M,

prove that there exists a unique pair of morphisms of associative, unital k-algebras,

f : T •k (V )→ A, fM : T •(V )→ A⊕M · ε,
whose restrictions to T 1

k (V ) = V equal f1 and f1⊕φ1 ·ε. Conclude that there exists
a unique derivation φ from T •k (V ) to Mf whose restriction to T 1

k (V ) equals V .

(b) Now let (g, [•, •]g) be a k-Lie algebra. Let M be a bimodule for the universal
enveloping algebra Uk(g). This is equivalent to giving a left k-linear g-representation
on M and a right k-linear g-representation on M ,

L : g×M →M, R : M × g→M,

such that for every X,Z ∈ g and for every y ∈M ,

L(X,R(y, Z)) = R(L(X, y), Z).
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Check that the following binary operation is also a left k-linear g-representation on
M ,

adL,R : g×M →M, (X, y) 7→ L(X, y)−R(y,X).

This is the adjoint representation of (L,R). Conclude that there is an associated
left module structure for Uk(g). (This is the module structure associated to the
bimodule structure via the comultiplication of the Hopf algebra structure).

(c) Via the quotient homomorphism, q : T •k (g) → Uk(g), also Mq is a bimodule
for T •k (g). Let f1 : g → T •k (g) be the inclusion to T 1

k (g). For every k-linear
transformation,

φ1 : g→M,

prove that the induced compatible morphism of associative k-algebras,

fM : T •k (g)→ Uk(g)⊕M · ε,

factors through q : T •k (g) → Uk(g) if and only if φ1 is a Lie algebra derivation
with respect to the bimodule structure (L,R), i.e., for every X,Y ∈ g,

φ1([X,Y ]g) = adL,R(X,φ1(Y ))− adL,R(Y, φ1(X)).

Conclude that the k-derivations of Uk(g) to the Uk(g)-bimodule M are the same as
the k-linear Lie algebra derivations from g to the g-bimodule M .

(d) Now let M equal Uk(g) with its regular Uk(g)-bimodule structure. Assume

that φ1 factors through the k-subspace g
i−→ Uk(g). Check that φ1 is a Lie algebra

derivation of this bimodule if and only if, for every X,Y ∈ g,

φ1([X,Y ]g) = [φ1(X), Y ]g + [X,φ1(Y )]g.

This is the usual definition of a Lie algebra derivation from g to g. Thus, the Lie
algebra k-derivations from Uk(g) to itself that map i(g) to i(g) are the usual Lie
algebra k-derivations from g to g.

(e) In the k-Lie algebra of all k-derivations from Uk(g) to itself, check that the k-
subspace of Lie algebra k-derivations from g to g is a k-Lie subalgebra, Derk(g, g).

(f) For every k-Lie algebra h and for every morphism of k-Lie algebras,

θ : h→ Derk(g, g),

θz([X,Y ]g) = [θz(X), Y ]g + [X, θz(Y )]g, θ[z,w]h = θz ◦ θw − θw ◦ θz,
define the semidirect product Lie bracket on g× h by

[(X, z), (Y,w)]g,h,θ := ([X,Y ]g + θz(Y )− θw(X), [z, w]h).

Check that this defines a k-Lie algebra structure on g×h. Check that the k-subspace
g×{0} ∼= g is a Lie ideal whose induced Lie algebra structure is the given Lie algebra
structure on g. Check that the k-subspace {0} × h ∼= h is a Lie subalgebra that is
isomorphic to the given Lie algebra structure. Finally, check that the restriction to
{0} × h of the adjoint action of the Lie algebra on the Lie ideal g× {0} is θ. This
is the semidirect product of g and h via θ.

Problem 5. (Levi’s Theorem, I.) Let g be a finite dimensional complex Lie
algebra with trivial center whose solvable radical r is a nonzero Abelian Lie algebra.
Also assume that the adjoint action of g on r is an irreducible representation of
gss = g/r.
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(a) Prove that the adjoint representation is faithful, so that g is a Lie subalgebra
of the Lie algebra gl(g) associated to the associative (unital) algebra Hom(g, g).

(b) Define a to be the subspace of gl(g) of linear endomorphisms of g with image
contained in r and whose restriction to r is a C-multiple of Idr. Define b ⊂ a to be
the subspace of such linear endomorphisms whose restriction to r is the zero map.
Check that a and b are associative subalgebras of the associative algebra Hom(g, g)
(neither of these subalgebras is unital). Thus, the commutator bracket on each
of these subalgebras realizes each as a Lie subalgebra of gl(g). Also check that b
is an Abelian Lie ideal in a, and the quotient Lie algebra is 1-dimensional (hence
Abelian).

(c) Define Lg to be the restriction to g of the left regular representation of gl(g)
on itself, i.e., for every X ∈ g and for every φ ∈ Hom(g, g), the element Lg(X) · φ
in Hom(g, g) equals

Lg(X) · φ : g→ g, Y 7→ adX ◦ φ(Y ) = [X,φ(Y )]g.

Check that the commutator of adX and φ in gl(g) equals

[adX , φ]gl(g) : g→ g, Y 7→ [X,φ(Y )]g − φ([X,Y ]g).

(d) Now consider the restriction to g of the adjoint representation of gl(g) on itself,

ad′ : g→ gl(gl(g)), ad′X(φ) := [adX , φ]gl(g).

Check that every ad′X is a derivation of the Lie algebra gl(g).

(e) Check that a and b are g-subrepresentations of the g-represenation on gl(g)
determined by ad′.

Problem 6. (Levi’s Theorem, II.) This problem continues the previous problem.

(a) Check that for every X ∈ g and for every φ ∈ a, the element ad′X(φ) is contained
in b. Conclude that the induced g-representation on the quotient a/b is the trivial
1-dimensional g-representation.

(b) Check that the image under adg of r is a g-subrepresentation of b, i.e., b contains
every element φ = adX for X ∈ r.

(c) Check that on the associated quotient spaces a/adg(r) and b/adg(r), the g-
representation restricts as the zero representation on the Lie subalgebra r of g.
Thus, the natural short exact sequence of g-representations,

0→ a/adg(r)→ b/adg(r)→ a/b→ 0,

is actually a short exact sequence of gss-representations.
(d) Finally, use complete reducibility and triviality of the representation a/b to

conclude that there exists φ ∈ a ⊂ Hom(g, r) restricting as the identity on r such
that for every X ∈ g,

[adX , φ]gl(g) = ad−ψ(X),

for a unique linear map ψ ∈ Hom(g, r). Thus, for every X,Y ∈ g,

φ([X,Y ]g) = [X,φ(Y )]g + [ψ(X), Y ]g.

Define g′ to be the kernel of ψ.
(e) Check that ψ(X) equals 0 if and only if, for every Y ∈ g,

φ([X,Y ]g) = [X,φ(Y )]g.
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For X1, X2 ∈ g, since

[[X1, X2]g, Y ]g = [X1, [X2, Y ]g]g − [X2, [X1, Y ]g]g,

deduce that for every X1, X2 ∈ g,

φ([[X1, X2]g, Y ]g) = φ([X1, [X2, Y ]g]g)− φ([X2, [X1, Y ]g]g) =

[X1, φ([X2, Y ]g)]g − [X2, φ([X1, Y ]g)]g = [X1, [X2, φ(Y )]g]g − [X2, [X1, φ(Y )]g]g =

[[X1, X2]g, φ(Y )]g.

Thus, also [X1, X2]g is in g′. Conclude that g′ is a Lie subalgebra of g.
(f) Finally, since r is an Abelian Lie algebra, check that for every X ∈ r and for

every Y ∈ g,
[X,Y ]g = [ψ(X), Y ]g.

Since the adjoint representation is faithful, conclude that also ψ is an element of
a that restricts as the identity on r. Therefore the kernel g′ is a complementary
subspace to r in g. Altogether, for every complex Lie algebra g of finite dimension
whose solvable radical is Abelian and gives an irreducible representation of gss via
the adjoint action, the Lie algebra is the semidirect product of the kernel g′ ∼= gss

and of the solvable radical.

Problem 7. (Levi’s Theorem, III.) Now for every finite dimensional Lie algebra
g prove that g is a semidirect product of its solvable radical r and its semisimple
part gss := g/r by induction on the dimension of g.

If either r or gss is trivial, the result holds tautologically. Thus, assume that both
of these are nontrivial.

If r is solvable but not Abelian, then for the quotient of g by the nonzero commutator
Lie ideal [r, r]g, conclude that there is a Lie subalgebra of the quotient that is
isomorphic to gss. The inverse image of this Lie subalgebra in g is proper in g (thus
has smaller dimension), and it has the same semisimple part. Use the induction
hypothesis to conclude that there is a Lie subalgebra g′ complementary to r inside
this proper Lie subalgebra that maps isomorphically to gss. Thus, Levi’s Theorem
holds in this setting.

Finally, if r is Abelian, yet the adjoint action of gss on r is reducible, then the
quotient of g by a proper, nonzero subrepresentation of r has smaller dimension,
thus has a Levi subalgebra. The inverse image in g of this Levi subalgebra is a
proper Lie subalgebra of g that has the same semisimple part. Once again use the
induction hypothesis to conclude that there exists a Levi subalgebra in g.
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