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MAT 552 PROBLEM SET 7

This problem set focuses on the tensor algebra and its important quotients, the
symmetric algebra and the exterior algebra. In addition to their familiar properties,
these each carry a structure of “graded Hopf algebra”. (Nota bene. A graded
Hopf algebra is not quite the same as a Hopf algebra whose structure morphisms
respect the gradings). For a Lie algebra, the universal enveloping algebra is another
quotient of the tensor algebra that has a structure of Hopf algebra. This Hopf
algebra structure is the key ingredient in one proof of the Poincaré-Birkhoff-Witt
Theorem.

Problems.

Problem 1. (Universal property of tensor algebra.) For every field k, for every
k-vector space V , for every integer n ≥ 0, inductively define the k-vector space
Tnk (V ) by the rule,

T 0
k (V ) = k, Tn+1

k (V ) = V ⊗k Tnk (V ).

For every integer n, denote by βV,n the universal k-bilinear operation,

βV,n : V × Tnk (V )→ Tn+1
k (V ).

Define T •k (V ) to be the Z≥0-graded k-vector space,

T •k (V ) :=
⊕
n≥0

Tnk (V ), qV,n : Tnk (V ) ↪→ T •k (V ).

Denote by βV the unique k-bilinear operation

βV : V × T •k (V )→ T •k (V ),

such that for every n ≥ 0, the composition βV ◦ (IdV × qV,n) equals qV,n+1 ◦ βV,n.

(a) For n = 0, show that βV,0(v, 1) equals v for all v ∈ V , and this gives the
(standard) identification of V with T 1

k (V ). Via this identification, prove that βV
extends to a unique k-bilinear pairing,

βT (V ) : T •k (V )× T •k (V )→ T •k (V ),

whose restriction to T 1
k (V )× T •k (V ) equals βV , such that βT (V ) is associative, and

such that 1 ∈ T 0
k (V ) is a left-right multiplicative identity for this operation. Thus,

with this unique k-bilinear pairing, T •k (V ) is a unital, associative k-algebra, the
tensor k-algebra of V . Also check that the given direct sum decomposition of
T •k (V ) makes T •k (V ) into a Z≥0-graded k-algebra, i.e., βT (V ) maps Tmk (V )×Tnk (V )

to the summand Tm+n
k (V ) for every m,n ∈ Z≥0.

(b) For every associative k-algebra,

(A, b : A×A→ A),

a k-bilinear operation,

αV : V ×A→ A,
1
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is right A-associative if αV (v, b(a, a′)) equals b(αV (v, a), a′) for every v ∈ V and
for every a, a′ ∈ A. In this case, prove that αV extends to a unique k-bilinear
pairing,

αT (V ) : T •k (V )×A→ A,

whose restriction to T 1
k (V ) × A equals αV , such that this operation is both left

T •k (V )-associative and right A-associative, and such that 1 ∈ T 0
k (V ) acts as the

identity on A. This is the universal property of T •k (V ) among associative k-algebras
(that are not necessarily unital).

(c) If A is unital, then prove that every right A-associative k-bilinear operation αV
is equivalent to a k-linear transformation,

α̃V : V → A,

by the rule α̃V (v) = αV (v, 1). Moreover, prove that the induced k-linear transfor-
mation,

α̃T (V ) : T •k (V )→ A, t 7→ αT (V )(t, 1),

is the unique homomorphism of unital, associative k-algebras whose restriction to
T 1
k (V ) = V equals the k-linear transformation α̃V . This is the universal property

of T •k (V ) among unital, associative k-algebras.

(d) Define Js ⊂ T •k (V ) to be the left-right ideal generated by all elements qV,2(v⊗
w − w ⊗ v) for v, w ∈ V . The symmetric k-algebra of V , Sym•k(V ), is defined
to be the quotient of T •k (V ) by the left-right ideal Js. Prove that this is also a
Z≥0-graded, associative, unital k-algebra,

Sym•k(V ) =
⊕
n≥0

Symn
k (V ), rV,n : Symn

k (V ) ↪→ Sym•k(V ),

and the quotient map is a morphism of Z≥0-graded, associative, unital k-algebras,

sV,n : Tnk (V ) � Symn
k (V ), n ∈ Z≥0.

Prove that is an isomorphism on the degree 0 and degree 1 summands,

sV,0 : k
∼=−→ Sym0

k(V ), sV,1 : V
∼=−→ Sym1

k(V ).

(e) Prove that Sym•k(V ) is a commutative k-algebra, i.e., for every pair of elements
u, v ∈ Sym•k(V ), the product v · u equals u · v. For every associative k-algebra
A that is commutative and for every right A-associative k-bilinear operation αV ,
prove that the k-bilinear pairing αT (V ) factors uniquely as a composition of sV ×IdA
and a k-bilinear pairing,

αSym(V ) : Sym•k(V )×A→ A.

Prove that this pairing restricts on Sym1
k(V )× A as αV , prove that this pairing is

left Sym•k(V )-associative and right A-associative, and prove that 1 ∈ Sym0
k(V ) acts

as the identity on A. This is the universal property of Sym•k(V ) among associative,
commutative k-algebras.

(f) If the associative, commutative k-algebra A above is also unital, formulate and
prove the universal property of Sym•k(V ) among associative, unital, commutative
k-algebras.

(g) Define Ja ⊂ T •k (V ) to be the unique left-right ideal generated by all elements
qV,2(v ⊗ v) for v ∈ V . The exterior k-algebra of V ,

∧•
k(V ), is defined to be the
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quotient of T •k (V ) by the left-right ideal Ja. Prove that this is also a Z≥0-graded,
associative, unital k-algebra,

•∧
k

(V ) =
⊕
n≥0

n∧
k

(V ), tV,n :

n∧
k

(V ) ↪→
•∧
k

(V ),

and the quotient map is a morphism of Z≥0-graded, associative, unital k-algebras,

eV,n : Tnk (V ) �
n∧
k

(V ), n ∈ Z≥0.

Prove that is an isomorphism on the degree 0 and degree 1 summands,

sV,0 : k
∼=−→ Sym0

k(V ), sV,1 : V
∼=−→ Sym1

k(V ).

(h) Assume that the characteristic is different from 2. Prove that the Z≥0-graded,
associative k-algebra

∧•
k(V ) is graded commutative, i.e., for every pair of homo-

geneous elements u ∈
∧m
k (V ) and v ∈

∧n
k (V ), the product v∧u equals (−1)mnu∧v.

For every Z≥0-graded associative k-algebra A• that is graded commutative and for
every right A•-associative k-bilinear operation that is homogeneous of degree +1,

(αV,n : V ×An → An+1)n≥0,

prove that the k-bilinear pairing αT (V ) factors uniquely as a composition of eV ×IdA
and a k-bilinear pairing,

α∧
(V ) :

•∧
k

(V )×A• → A•.

Prove that this pairing restricts on
∧1
k(V ) × A• as αV , prove that this pairing is

left
∧•
k(V )-associative and right A•-associative, and prove that q ∈

∧0
k(V ) acts

as the identity on A•. This is the univeral property of
∧•
k(V ) among Z≥0-graded

associative, graded commutative k-algebras. Formulate and prove the analogous
universal property when A• is also unital. (Challenge problem. Formulate the
correct analogue in characteristic 2.)

Problem 2. (Functoriality of tensor algebras and direct sum decompositions.)
Prove that the tensor algebra, the symmetric algebra, and the exterior algebra are
each covariant in V , and thus the graded components give k-linear representations
of GLk(V ) and SLk(V ).

(a) For every short exact sequence of k-vector spaces,

0→ U
ι−→ V

π−→W → 0,

for every integer n ≥ 0, prove that the induced morphisms

Tnk (ι) : Tnk (U)→ Tnk (V ), Symn
k (ι) : Symn

k (U)→ Symn
k (V ),

n∧
k

(ι) :

n∧
k

(U)→
n∧
k

(V ),

are injective, and prove that the induced morphisms

Tnk (π) : Tnk (V )→ Tnk (W ), Symn
k (π) : Symn

k (V )→ Symn
k (W ),

n∧
k

(π) :

n∧
k

(V )→
n∧
k

(W ),

are surjective.
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(a) Denote by Iπ the left-right ideal that is the kernel of the morphism T •k (π) of
Z≥0-graded, associative, unital k-algebras. For every integer r ≥ 0, denote by Irπ
the left-right ideal generated by r-fold products of elements of Iπ, so I0

π = T •k (V ),
I1
π = Iπ, etc. Prove that every two-sided ideal Irπ is a homogeneous ideal, i.e.,

Irπ =
⊕
n≥0

Irπ,n, Irπ,n := Irπ ∩ Tnk (V ).

Describe the components Irπ,n and prove that the multiplication map gives a k-
isomorphism of the associated subquotients,

Irπ,n/I
r+1
π,n
∼=

⊕
Σ⊂{1,...,n},#Σ=r

T rk (U)⊗k Tn−rk (W ).

In particular, this is zero if r > n, so this decreasing filtration is exhaustive on each
graded component Tnk (V ). Finally, prove that these k-isomorphisms assemble into
an isomorphism of the Z≥0-graded, associative, unital k-algebra

Gr•πTk(V ) :=
⊕
r≥0

Irπ,n/I
r+1
π,n ,

with the free product of T •k (U) and T •k (W ), i.e., the coproduct in the category of
Z≥0-graded, associative, unital k-algebras.

(b) For every integer r ≥ 0, denote by Irs,π, resp. Ire,π, the image of Irπ in Sym•k(V ),

resp. in
∧•
k(V ). Prove that the k-isomorphisms above give k-isomorphisms of

associated subquotients,

Irs,π,n/I
r+1
s,π,n

∼= Symr
k(U)⊗k Symn−r

k (W ),

Ire,π,n/I
r+1
e,π,n

∼=
r∧
k

(U)⊗k
n−r∧
k

(W ).

Prove that these assemble into an isomorphism of the Z≥0-graded, associative,
commutative, unital k-algebra

Gr•πSymk(V ) :=
⊕
r≥0

Irs,π,n/I
r+1
s,π,n,

and the tensor product of Z≥0-graded, associative, commutative, unital k-algebras
Symk(U) ⊗k Symk(W ). Similarly, prove that these assemble into an isomorphism
of the Z≥0-graded, associative, graded commutative, unital k-algebra

Gr•π
∧
k

(V ) :=
⊕
r≥0

Ire,π,n/I
r+1
e,π,n,

and the tensor product of Z≥0-graded, associative, graded commutative, unital
k-algebras

∧
k(U)⊗k

∧
k(W ).

(c) When V equals k, prove that the surjection T •k (V ) → Sym•k(V ) is an isomor-
phism, and compute that every graded piece is 1-dimensional. Similarly, prove that∧n
k (k) is zero for every n ≥ 2. Combine this with the previous isomorphisms and

induction on the dimension of V to prove that for every V of finite dimension m,
for every n ≥ 0, the graded component Tnk (V ) has dimension mn, the graded com-

ponent Symn
k (V ) has dimension

(
m+n−1

n

)
, and the graded component

∧n
k (V ) has

dimension
(
m
n

)
.
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(d) With V of finite dimension m as above, for every ordered k-basis (x1, . . . , xm) of
V , prove that one k-basis of Symn

k (V ) consists of the monomials xn1
1 · · ·x

ni
i · · ·xnm

m

for all (n1, . . . , nm) ∈ Zm≥0 with n1 + · · · + nm = n. Similarly, prove that one

k-basis of
∧n
k (V ) for n ≤ m consists of the elements xi1 ∧ · · · ∧ xin for subsets

{i1, . . . , in} ⊂ {1, . . . ,m} of size n with the usual ordering i1 < · · · < in.

Problem 3. (Representations of the special linear group.) This problem continues
the previous problem. Let V be a k-vector space of finite dimension m.

(a) For every nonzero element of Symn
k (V ), prove that there exists an ordered k-

basis (x1, . . . , xm) of V with respect to which the element has nonzero coefficient
of xn1 . For the maximal torus T ⊂ SLk(V ) corresponding to this basis, prove that
the smallest T -invariant k-subspace of Symn

k (V ) that contains the element also
contains the element xn1 . Conclude that the smallest SLk(V )-invariant k-subspace
also contains xn for every x ∈ V . Using the multinomial expansion, conclude
that also this k-subspace contains every monomial xn1

1 · · ·xnm
m whose multinomial

coefficient in (t1x1 + · · · + tmxm)n is nonzero. Assuming that the characteristic
of the field k is > n, e.g., as in the case of k = R and k = C, show that the
SLk(V )-invariant k-subspace equals all of Symn

k (V ). Conclude that Symn
k (V ) is an

irreducible k-linear representation of SLk(V ) for every integer n ≥ 0. (This fails if
the characteristic of k is positive and less than n.)

(b) Similarly, for every integer n with n ≤ m, for every nonzero element of
∧n
k (V ),

prove that there exists an ordered k-basis (x1, . . . , xm) of V with respect to which
the element has nonzero coefficient of x1∧ · · ·∧xn. For the corresponding maximal
torus T , prove that the smallest T -invariant k-subspace of

∧n
k (V ) that contains

this element also contains the element x1 ∧ · · · ∧ xn. Conclude that the smallest
SLk(V )-invariant k-subspace contains xi1 ∧ · · · ∧xin for every subset {i1, . . . , in} ⊂
{1, . . . ,m} of size n with the usual ordering i1 < · · · < in. Conclude that

∧n
k (V )

is an irreducible k-linear representation of SLk(V ) for every integer 0 ≤ n ≤ m.
(Note that this holds with no hypothesis on the characteristic of k.)

(c) For the natural action of Sn on V n = V × · · · × V by permuting factors, prove
that there exists a unique k-linear action of Sn on Tnk (V ) such that the following
set map is Sn-equivariant,

V n = V × · · · × V → V ⊗k · · · ⊗k V = Tnk (V ), (v1, . . . , vn) 7→ v1 ⊗ · · · ⊗ vn.

(d) Let k[Sn]→ A be a morphism of associative, unital k-algebras. Show that the
induced left k[Sn]-module,

SA(V ) := A⊗k[Sn] T
n
k (V ),

is functorial in V , hence defines a k-linear (left) representation of SLk(V ). When k
has characteristic 0 or positive characteristic p > n, for the simple algebra factors
k[Sn] → Aλ = Homk(Vλ, Vλ) associated to an irreducible k-linear (left) represen-
tation Vλ of Sn, the corresponding functor Sλ is a Schur functor. The two most
familiar examples are the symmetric power Symn

k (V ) corresponding to the trivial
1-dimensional representation of Sn and the exterior power

∧n
k (V ) corresponding

to the sign representation, i.e., the 1-dimensional representation whose associated
group homomorphism to {−1,+1} ⊂ k× is the sign homomorphism.
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(e) In every characteristic, prove that there are unique k-linear actions of Sn on
Symn

k (V ) and
∧n
k (V ) such that sV,n and eV,n are morphisms of k-linear represen-

tations of Sn.

(f) Assuming that k has characteristic 0 or positive characteristic p > n, prove that
there exist morphisms of k-linear representations of Sn,

s∗V,n : Symn
k (V )→ Tnk (V ), v1 · · · vn 7→

1

n!

∑
σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n),

e∗V,n :

n∧
k

(V )→ Tnk (V ), v1 ∧ · · · ∧ vn 7→
1

n!

∑
σ∈Sn

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n),

such that sV,n ◦ s∗V,n and eV,n ◦ e∗V,n equal the identity maps. For this reason, often
the symmetric algebra and exterior algebra are considered as Z≥0-graded k-vector
subspaces of the tensor algebra.

Nota bene. The maps s∗V and e∗V do not respect the product structures on the
respective algebras.

Problem 4. (Hopf algebra structure on the tensor algebra.) Please read Problem
4 from Problem Set 5 about the Hopf algebra structure on the group k-algebra of a
finite group Γ. This problem explains the construction of the Hopf algebra structure
on the tensor algebra, T •k (V ), which then induces a Hopf algebra structure on the
symmetric algebra. When the k-vector space is a Lie k-algebra, this also induces
a Hopf algebra structure on the universal enveloping algebra. The exterior algebra
has a structure of “graded Hopf algebra”. It is typically not a Hopf algebra (“graded
Hopf algebras” are not the same as Hopf algebras with a grading), and the quotient
map from the tensor algebra to the exterior algebra typically does not respect the
comultiplication structure.

(a) For associative, unital k-algebras A and B, prove that there is a unique structure
of associative, unital k-algebra on the tensor product A⊗k B such that both of the
following k-linear maps are morphisms of associative, unital k-algebras,

α : A→ A⊗k B, a 7→ a⊗ 1,

β : B → A⊗k B, b 7→ 1⊗ b,
and the images strictly commute, i.e., α(a) · β(b) equals β(b) · α(a) for every
a ∈ A and for every b ∈ B. Prove that the triple (A ⊗k B,α, β) is universal (i.e.,
initial) among all triples (R,α′, β′) of an associative, unital k-algebra R, and a pair
of morphisms of associative, unital k-algebras,

α′ : A→ R, β′ : B → R,

such that α′(a) · β′(b) equals β′(b) · α′(a) for every a ∈ A and for every b ∈ B.
Finally, if A and B are Z≥0-graded, associative, unital k-algebras, prove that there
exists a unique Z≥0-grading of A ⊗k B such that both α and β are morphisms of
Z≥0-graded, associative, unital k-algebras.

(b) Prove that there exists a unique morphism of associative, unital k-algebras,

τA,B : A⊗k B → B ⊗k A,
6
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permuting α and β. Check that τA,B ◦ τB,A equals the identity. In particular,
when B equals A, this defines an automorphism of order 2 of associative, unital
k-algebras,

τA : A⊗k A→ A⊗k A.
If A and B are Z≥0-graded, check that also τA,B respects the induced Z≥0-gradings.

(c) Now consider the case when B equals A equals the Z≥0-graded, associative,
unital k-algebra T •k (V ). Define ∆V,1 to be the k-linear transformation from V to
the first graded piece of T •k (V )⊗k T •k (V ) given by

∆V,1 : V → (V ⊗k k)⊕ (k ⊗k V ), v 7→ v ⊗ 1 + 1⊗ v.

Denote the morphism of Z≥0-graded, associative, unital k-algebras restricting as
∆V,1 on T 1

k (V ) = V by

∆V : T •k (V )→ T •k (V )⊗k T •k (V ).

Prove that the following two morphisms of Z≥0-graded, associative, unital k-algebras
are equal,

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

∆V ⊗IdT (V )−−−−−−−−→ T •k (V )⊗k T •k (V )⊗k T •k (V ),

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

IdT (V )⊗∆V−−−−−−−−→ T •k (V )⊗k T •k (V )⊗k T •k (V ).

Thus, the map ∆V is coassociative.

(d) For the associative, unital k-algebra that equals k itself, for the zero homomor-
phism from V to k, denote by

εV : T •k (V )→ k,

the unique morphism of associative, unital k-algebras whose restriction to T 1
k (V ) =

V equals the zero homomorphism. Prove that the following compositions both
equal the identity map,

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

εV ⊗IdT (V )−−−−−−−→ k ⊗k T •k (V ) = T •k (V ),

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

IdT (V )⊗εV−−−−−−−→ T •k (V )⊗k k = T •k (V ).

Thus, εV is a left-right counit for the comultiplication ∆V .

(e) Denoting the algebra multiplication on T •k (V ) by∇V and denoting the k-algebra
map by ηV : k → T •k (V ), check that (T •k (V ),∇V , ηV ,∆V , εV ) forms a bialgebra.
Explicitly, this means that each of the following diagrams commute,

T •k (V )⊗k T •k (V )
∆V ◦∇V−−−−−→ T •k (V )⊗k T •k (V )

∆V ⊗∆V

y x∇V ⊗∇V

T •k (V )⊗k T •k (V )⊗k T •k (V )⊗k T •k (V ) −−−−−−−−−−−−→
IdT (V )⊗τV ⊗IdT (V )

T •k (V )⊗k T •k (V )⊗k T •k (V )⊗k T •k (V )

.

T •k (V )⊗k T •k (V )
∇V−−−−→ T •k (V )

εV ⊗εV
y yεV

k ⊗k k −−−−→∼= k

.

7
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k
∼=−−−−→ k ⊗k k

ηV

y yηV ⊗ηV
T •k (V ) −−−−→

∆V

T •k (V )⊗k T •k (V )

.

k
Id−−−−→ k

ηV

y xεV
T •k (V ) −−−−→

IdT (V )

T •k (V )

.

More briefly, it means that (T •k (V ),∇V , ηV ) is an associative, unital k-algebra, and
both of the following maps are morphisms of associative, unital k-algebras,

εV : T •k (V )→ k, ∆V : T •k (V )→ T •k (V )⊗k T •k (V ),

where T •k (V )⊗k T •k (V ) is the algebra structure where the two factors strictly com-
mute with each other. Equivalently, it means that (T •k (V ),∆V , εV ) is a coasso-
ciative, counital k-coalgebra and the morphisms ηV and ∇V are morphisms of
coassociative, counital k-algebras.

(f) For every associative, unital k-algebra (A,∇A : A× A → A), define Aop to be
the k-vector space A with the following k-bilinear operation,

∇op
A : A×A→ A, ∇op

A (a1, a2) := ∇A(a2, a1).

Prove that this is also an associative, unital k-algebra with the same left-right
identity as in (A,∇A). Check that the following k-bilinear pairing,

αA : (A⊗k Aop)×A→ A, (a⊗c, b) 7→ a ·b ·c = ∇A(a,∇A(b, c)) = ∇A(∇A(a, b), c).

defines a structure of left A⊗k Aop-module on A. Prove that this is equivalent to
a structure of right Aop ⊗k A-module on A (another name for such a structure is a
A−A-bimodule). Check that the multiplication is a map of left A⊗kAop-modules,

∇A : A⊗Aop → A, a⊗ c 7→ a · c = ∇A(a, c),

and check that the multiplication is also a map of right Aop ⊗k A-modules,

∇A : Aop ⊗A→ A, c⊗ a 7→ c · a.

(g) Denote by SV the unique morphism of Z≥0-associative, unital k-algebras,

SV : T •k (V )→ T •k (V )op,

whose restriction to T 1
k (V ) = V maps to the summand T 1

k (V ) and equals −IdV
(the negative of the identity map). This is the antipode map. Prove that both
of the following compositions equal ηV ◦ εV as k-linear maps from the Z≥0-graded
k-vector space T •k (V ),

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

SV ⊗IdT (V )−−−−−−−→ T •k (V )⊗k T •k (V )
∇V−−→ T •k (V ),

T •k (V )
∆V−−→ T •k (V )⊗k T •k (V )

IdT (V )⊗SV−−−−−−−→ T •k (V )⊗k T •k (V )
∇V−−→ T •k (V ).

Together with the previous operations, the antipode SV makes T •k (V ) into a Hopf
k-algebra. Hint. For the upper commutative square, for A = T •k (V ), first check
that the right A-module structure on A induced from the right Aop ⊗ A-module
structure via (SV ⊗ IdT (V )) ◦ ∆V restricts to a right action on A by V = T 1

k (V )
8
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as an action by k-derivations, (a, v) 7→ v ⊗ a− a⊗ v, which annihilate the span of
1. Next, for the natural right module structure of Aop ⊗k A on itself, check that
∇V sends the generator 1 to the element 1 ∈ A that is annihilated by each of these
derivations. Conclude that the upper composition annihilates the left-right ideal of
T •k (V ) generated by V = T 1

k (V ).

(h) For a Hopf k-algebra (A,∇, η,∆, ε, S), a left-right ideal I ⊂ A (for the mul-
tiplication ∇ on A) is a Hopf ideal if all of the following hold. The kernel of ε
contains I. The image of I under the antipode map is contained in I. The image
of I under ∆ is contained in the k-subspace,

(I ⊗k A) + (A⊗k I) ⊆ A⊗k A.

For the quotient algebra homomorphism A → A/I, check that there is a unique
structure of Hopf k-algebra on A/I making this quotient homomorphism a mor-
phism of Hopf k-algebras if and only if the ideal is a Hopf ideal.

(i) For the tensor algebra considered as a Z≥0-graded k-vector space, check that
the Hopf k-algebra structures are homogeneous operations of degree 0. Also check
that ∆V is cocommutative, i.e., the composition τ ◦ ∆V equals ∆V . Prove that
the quotient of a Hopf k-algebra A by a Hopf ideal is commutative, resp. cocom-
mutative, if A is commutative, resp. cocommutative. For a Hopf k-algebra with a
Z≥0-grading such that all structures are homogeneous operations of degree 0, for
a Hopf ideal that is a homogeneous ideal, prove that the quotient algebra has a
Z≥0-grading making the quotient map homogeneous of degree 0 and such that all
Hopf algebra structures are homogeneous of degree 0. Finally, if A is connected,
i.e., the graded piece A0 equals k, check that also the quotient is connected.

(j) For every pair `,m ∈ Z≥0, denote by ∆`,m
V the graded component of ∆V ,

∆`,m
V : T `+mk (V )→ T `k(V )⊗k Tmk (V ).

Denote by P`,m the set with
(
`+m
m

)
elements that consist of ordered partitions (A,B)

of {1, . . . , `+m} into subsets A and B of respective cardinalities ` and m, say

A = (1 ≤ a1 < · · · < a` ≤ `+m), B = (1 ≤ b1 < · · · < bm ≤ `+m).

Prove the formula,

∆`,m
k (v1 ⊗ · · · ⊗ v`+m) =

∑
(A,B)∈P`,m

(va1 ⊗ · · · ⊗ va`)⊗ (vb1 ⊗ · · · ⊗ vbm) .

If the characteristic k equals 0 or p > `+m, check the following identity,

∆`,m
k (s∗V,`+m(v1 · · · v`+m)) =

∑
(A,B)∈P`,m

s∗V,`(vA)⊗ s∗V,m(vB),

vA := va1 · · · va` , vB := vb1 · · · vbm .
Thus, the image of ∆`,m

k ◦ s∗V,`+m is contained in the image of

s∗V,` ⊗ s∗V,m : Sym`
k(V )⊗k Symm

k (V ).

Problem 5. (Hopf algebra structure on the symmetric algebra.) Recall that Js is
defined to be the left-right kernel ideal of the morphism of Z≥0-graded, associative,
unital k-algebras,

s : T •k (V )→ Sym•k(V ).
9
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(a) Check that the graded left-right ideal Js ⊂ T •k (V ) is a Hopf ideal that is
homogeneous. Deduce that there exists a unique structure of Hopf k-algebra on
Sym•k(V ) for which sV is a morphism of Hopf k-algebras, and every Hopf structure
on Sym•k(V ) is homogeneous of degree 0. Also, deduce that this Hopf k-algebra
structure is cocommutative and connected. The symmetric algebra is also commu-
tative.

(b) For this Hopf k-algebra structure, check that the antipode map equals the
unique morphism of Z≥0-graded associative, unital k-algebras from Sym•k(V ) to
itself (the same as the opposite algebra since the algebra is commutative) that
restricts on Sym1

k(V ) = V as −IdV .

(c) Via the isomorphism of Z≥0-graded, associative, unital k-algebras from the
previous problems,

Sym•k(V )⊗k Sym•k(V ) ∼= Sym•k(V ⊕ V ),

check that ∆ naturally corresponds to the unique morphism of Z≥0-graded asso-
ciative, unital k-algebras

Sym•k(V )→ Sym•k(V ⊕ V ),

functorially associated to the diagonal embedding of V in V ⊕ V . If you know al-
gebraic geometry, check that the Hopf k-algebra structure on Sym•k(V ) for a finite
dimensional k-vector space V equals the Hopf k-algebra structure on the coordi-
nate k-algebra of the dual k-vector space V ∨ considered as a commutative group
k-variety with group operation equal to the usual vector addition. (Challenge
problem. If we instead identify a 3-dimensional vector space V ∨ as the group of
upper triangular, unipotent 3× 3 matrices, how does the Hopf k-algebra structure
on the commutative k-algebra Sym•k(V ) “deform”?)

(d) Check that ∇ ◦ ∆ is the unique morphism of Z≥0-graded associative, unital

k-algebras from Sym•k(V ) to itself that restricts on Sym1
k(V ) = V as 2IdV . If k has

characteristic 0 or positive characteristic p > `+m, check that ∇◦∆`,m equals the
map that restricts on Sym1

k(V ) = V as
(
`+m
m

)
.

(e) Assuming that k has characteristic 0 or positive characteristic p > n, check
that the following composite

∆`,m
V ◦ s∗V,n : Symn

k (V )→ Tnk (V )→ T `k(V )⊗k Tmk (V ),

equals the bigraded component of the composite for the Hopf k-algebra structure
on Sym•k(V ),

(s∗V,` ⊗ s∗V,m) ◦∆`,m : Symn
k (V )→ Sym`

k(V )⊗k Symm
k (V )→ T `k(V )⊗k Tmk (V ).

Problem 6. (Graded Hopf algebra structure on the exterior algebra.) Let A = A•
and B = B• be Z≥0-graded associative, unital k-algebras. As in Problem 4(a),
form the tensor product A ⊗k B with the k-linear maps α : A → A ⊗k B and
β : B → A⊗k B.

(a) Prove that there is a unique structure of associative, unital k-algebra on A⊗kB
such that α and β are morphisms of associative, unital k-algebras, and the images
graded commute, i.e., for every `,m ∈ Z≥0, for every a ∈ A`, and for every
b ∈ Bm,

βm(b) · α`(a) = (−1)`·mα`(a) · βm(b).
10
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Prove that the triple (A ⊗k B,α, β) is universal (i.e., initial) among all triples
(R,α′, β′) of an associative, unital k-algebra R, and a pair of morphisms of asso-
ciative, unital k-algebras

α′ : A→ R, β′ : B → R,

such that β′m(b) · α′`(a) = (−1)`·mα′`(a) · β′m(b) for every `,m ∈ Z≥0 and for every
(a, b) ∈ A` × Bm. If either A or B has nonzero graded components only in even
degrees, check that this algebra structure is the same as the algebra structure from
the previous exercise.

(b) For k-vector spaces V and W , for the natural inclusions

α′1 : V → V ⊕W, β′1 : W → V ⊕W,
by the universal property of the exterior algebra, these extend uniquely to mor-
phisms of Z≥0-graded, associative, unital, graded commutative k-algebras,

α′ :

•∧
k

(V )→
•∧
k

(V ⊕W ), β′ :

•∧
k

(W )→
•∧
k

(V ⊕W ),

whose restrictions to the degree 1 graded summands equal α′1 and β′1 respectively.
By the universal property in (a), there is a unique morphism of associative, unital
k-algebras,

e•V,W :

•∧
k

(V )⊗k
•∧
k

(W )→
•∧
k

(V ⊕W ),

such e•V,W ◦ α equals α′ and such that e•V,w ◦ β equals β′. Check that e•V,W is
an isomorphism of Z≥0-graded associative, unital, graded commutative k-algebras.
Check that this is compatible with the isomorphism from Problem 2(b).

(c) This exercise is for those that know about the Künneth formula in algebraic
topology. Let X and Y be topological spaces. Denote the product topological space
by

(X × Y, χ : X × Y → X, υ : X × Y → Y ).

Since cohomology H∗(−; k) is a contravariant functor from the category of topo-
logical spaces to the category of Z-graded, associative, unital, graded commutative
cohomology algebras, there are induced pullback maps,

H∗(χ; k) : H∗(X; k)→ H∗(X × Y ; k), H∗(υ; k) : H∗(Y, k)→ H∗(X × Y ; k).

By the universal property in (a), there is an induced morphism of Z≥0-graded,
associative, unital, graded commutative algebras, for the product from (a),

H∗(X; k)⊗k H∗(Y ; k)→ H∗(X × Y ; k).

The Künneth Theorem states that this morphism of Z-graded, associative, unital,
graded commutative algebras is an isomorphism (but this is only valid with the
product from (a), not for the strictly commuting product).

(d) For Z-graded associative, unital k-algebras A and B, check that there is a
unique Z≥0-grading on A⊗kB making both α and β into morphisms of Z≥0-graded,
associative, unital k-algebras. For the graded commuting product on A ⊗k B and
B ⊗k A from (a), prove that there exists a unique morphism of associative, unital
k-algebras

τ ′A,B : A⊗k B → B ⊗k A,
11
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permuting α and β. Note that this does not usually equal the morphism from
Problem 4(b). The two are related as follows,

τ ′A,B(a` ⊗ bm) = (−1)`·mτA,B(a` ⊗ bm) = (−1)`·mbm ⊗ a`,

and thus they are equal if either A or B has nonzero graded components only in
even degrees. Check that τ ′A,B is an isomorphism of Z≥0-graded associative, unital

k-algebras, and τ ′B,A ◦ τ ′A,B equals the identity.

(e) If A and B are each graded commutative, check that also A ⊗k B is graded
commutative.

(f) Now consider the case of (b) when W equals V . For the natural diagonal
inclusion,

∆′1 : V → V ⊕ V, ∆′1 = α′1 + β′1,

by the universal property of the exterior algebra, this extends uniquely to a mor-
phism of Z≥0-graded, associative, unital, graded commutative k-algebras,

∆′V :

•∧
k

(V )→
•∧
k

(V ⊕ V )

whose restriction to the degree 1 graded summands equal ∆′1. Thus, there ex-
ists a unique morphism of Z≥0-graded, associative, unital, graded commutative
k-algebras,

∆e,V :

•∧
k

(V )→
•∧
k

(V )⊗k
•∧
k

(V ),

such that eV,V ◦∆e,V equals ∆′V . Check that ∆ is a coassociative comultiplication
that is graded cocommutative. Since k, concentrated in degree 0, is a Z≥0-graded
associative, unital, graded commutative k-algebra, prove that the morphism εV :
T •k (V )→ k factors uniquely through a morphism of Z≥0-graded associative, unital,
graded commutative k-algebras,

εe,V :

•∧
k

(V )→ k.

Altogether, (
∧•
k(V ),∇e,V , ηe,V ,∆e,V , εe,V ) is a Z≥0-graded k-bialgebra. Moreover,

it is graded commutative and graded cocommutative. Once more, because the
graded commuting product is different from the strictly commuting product, a
Z≥0-graded k-bialgebra is not the same as a k-bialgebra with a Z≥0-grading such
that all bialgebra operations are homogeneous of degree 0; these notions are the
same, however, if the only nonzero components for the grading occur in even degree.

(g) Since
∧•
k(V ) is graded commutative, the product for the opposite algebra in

the category of Z≥0-graded k-algebras is the same as the usual product. Define the
antipode map Se,V to be the identity map. Check the analogue of the identities
from Problem 4(g) for S. Together with the previous operations, the antipode
Se,V makes

∧•
k(V ) into a Z≥0-graded Hopf k-algebra.

(h) By way of caution, check that the projection from T •k (V ) to
∧•
k(V ), which is a

morphism of Z≥0-graded associative, unital k-algebras, preserves the comultiplica-
tion ∆ only if dim(V ) ≤ 1.

12
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Problem 7. (Filtered algebras.) A Z≥0-filtered k-algebra is a pair (A, (FnA)n≥0)
of an associative, unital k-algebra A and an increasing, exhaustive filtration of A
by k-subspaces,

{0} = F−1A ⊆ F0A ⊆ · · · ⊆ FnA ⊆ Fn+1A ⊆ · · · ⊆ A, ∪∞n=0FnA = A,

such that for every m,n ∈ Z≥0, the image of FmA× FnA under the multiplication
map is contained in Fm+nA. For filtered k-algebras (A,F•A) and (B,E•B), a
morphism of filtered k-algebras is a morphism of associative, unital k-algebras,

f : A→ B,

such that for every n ∈ Z≥0, the f -image of FnA is contained in EnB.

(a) Check that the identity IdA is a self-morphism for every Z≥0-filtered k-algebra
(A,F•A). Also, check that every composition of morphisms of Z≥0-filtered k-
algebras is a morphism of Z≥0-filtered k-algebras. Conclude that these operations
define a category of Z≥0-filtered k-algebras.

(b) For every Z≥0-filtered k-algebra (A,F•A), for every integer n ≥ 0, consider the
following quotient k-vector space,

GrFnA := FnA/Fn−1A, ρ(A,FA),n : FnA� GrFnA.

For every pair m,n ∈ Z≥0, prove that there exists a unique k-bilinear operation,

µm,n : GrFmA×GrFnA→ GrFm+nA,

such that µm,n(ρm(a), ρn(b)) equals ρm+n(a · b) for every a ∈ FmA and for every
b ∈ FnA. Check that these maps assemble to a multiplication rule on the Z≥0-
graded k-vector space,

GrF• A :=
⊕
n≥0

GrFnA.

Check that this multiplication rule makes GrF• A into a Z≥0-graded associative,
unital k-algebra.

(c) For every morphism of Z≥0-filtered k-algebras,

f : (A,F•A)→ (B,E•A),

for every n ∈ Z≥0, prove that there exists a unique k-linear map,

GrF,En f : GrFnA→ GrEnB,

such that GrF,En f(ρA,F,n(a)) equals ρB,E,n(f(a)) for every a ∈ FnA. Prove that
these k-linear maps define a morphism of Z≥0-graded associative, unital k-algebras,

GrF,E• f : GrF• A→ GrE• B.

Also prove that GrF,E• f is surjective if and only if every f(FnA) + En−1B equals
EnB; this holds if every f(FnA) equals EnB.

(d) Check that the operation f 7→ GrF,E• f sends the identity self-morphism of

(A,F • A) to the identity self-morphism of GrF• A. Check that the operation pre-

serves compositions. Altogether, the rule associating GrF• A to every (A,F•A) and

associating GrF,E• f to every f is a covariant functor from the category of Z≥0-
filtered associative, unital k-algebras to the category of Z≥0-graded associative,
unital k-algebras.

13
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(e) For every Z≥0-filtered k-algebra, (A,F•A), and for every surjection of associa-
tive, unital k-algebras, p : A→ C, check that the induced filtration on A/I,

p∗FnC := p(FnA),

is a structure of Z≥0-filtered k-algebra on C such that p is a morphism of Z≥0-
filtered k-algebras. Moreover, for every Z≥0-filtered k-algebra (B,E•B), for every
morphism of associative, unital k-algebras, g : C → B, such that f = g ◦ p is a
morphism of Z≥0-filtered k-algebras, f : (A,F•A) → (B,E•B), prove that also
g is a morphism of Z≥0-filtered k-algebras, g : (C, p∗F•C) → (B,E•B). Also,
check that the induced morphism of Z≥0-graded associative, unital k-algebras is
surjective,

GrF• p : GrF• A� Grp∗F• C.

Finally, check that Grp∗F• C is commutative if and only if I is nearly commuting,
i.e., for every `,m ∈ Z≥0, for every a ∈ F`A, for every b ∈ FmA, the commutator
[a, b]A := a ·b−b ·a in F`+mA is contained in the k-subspace F`+mA∩I+F`+m−1A.

(f) Conversely, for every Z≥0-graded associative, unital k-algebra A•, for every
integer n, consider the following k-subspace of A•,

FnA := A≤n =

n⊕
m=0

Am ⊂ A•.

Prove that this sequence of k-subspaces makes (A•, F•A) into a Z≥0-filtered k-
algebra.

(g) For every morphism of Z≥0-graded associative, unital k-algebras,

f• : A• → B•, fn : An → Bn,

check that f• is also a morphism of the associated Z≥0-filtered k-algebras. Check
that these rules define a covariant functor from the category of Z≥0-graded asso-
ciative, unital k-algebras to the category of Z≥0-filtered k-algebras. Check that the
composition of this functor with the previous functor is naturally equivalent to the
identity functor on the category of Z≥0-graded associative, unital k-algebras.

Problem 8. (Hopf algebra structure on the universal enveloping algebra.) Let g
be a Lie k-algebra, i.e., a k-vector space together with a skew-symmetric, k-bilinear
operation,

[−,−] : g× g→ g, (X,Z) 7→ adX(Z),

that satisfies the Jacobi identity, i.e., for every X,Y ∈ g, the following k-linear
self-maps of g are equal,

adX ◦ adY − adY ◦ adX = ad[X,Y ].

As usual, denote by Ig the left-right ideal in T •k (g) generated by all elements qg,2(X⊗
Y −Y ⊗X)− qg,1([X,Y ]) for X,Y ∈ g. The universal enveloping k-algebra of
g, U(g), is defined to be the quotient of T •k (V ) by the left-right ideal Ig,

pg : T •k (g)→ U(g).

For the Z≥0-graded associative, unital k-algebra T •k (g), denote by F•Tk(g) the
associated structure of Z≥0-filtered k-algebra,

FnT
•
k (g) :=

n⊕
`=0

T `k(g), F−1T
•
k (g) := {0}.

14
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Denote by F•U(g) the associated structure of Z≥0-filtered k-algebra on the quotient
associative, unital k-algebra,

FnU(g) := pg(FnT
•
k (g)).

(a) For the morphism of Z≥0-filtered associative, unital k-algebras,

pg : (T •k (g), F•Tk(g))→ (U(g), F•U(g)),

there exists an associated morphism of Z≥0-graded associative, unital k-algebras,

GrF• pg : T •k (g)→ GrF• U(g).

Since each map pg : FnTk(g) → FnU(g) is surjective, conclude that Gr•pg is sur-
jective. Since the Z≥0-graded associative, unital k-algebra T •k (g) is generated in

degree 1, conclude that GrF• U(g) is also generated by the images of the degree 1
elements T 1

k (g) = g.

(b) For a Z≥0-filtered k-algebra (A,F•A) such that the k-subalgebra F0A is com-
mutative and such that the k-subspace F1A generates A as an F0A-algebra, check
that a left-right ideal I ⊂ A is nearly commuting if and only if for every X,Y ∈ F1A,
the commutator [X,Y ] in F2A is contained in F2A ∩ I + F1A. Use this to prove
that the ideal Ig in T •k (g) is nearly commuting for the natural Z≥0-filtration on
T •k (g). Thus, there is a unique surjective morphism of Z≥0-graded associative,
unital, commutative k-algebras,

ps,g,• : Sym•k(g) � GrF• U(g),

that factors GrF• pg.

(c) Now assume that k has characteristic 0 or positive characteristic p > n. Identify
Symn

k (g) with the image of s∗g,n in Tnk (g). Conclude that the kernel of ps,g,n equals
the inverse image under s∗g,n of Ig ∩ Tnk (g). Therefore ps,g,n is injective if and only
if the following map is injective,

pg ◦ s∗g,≤n : FnSym•k(g)→ FnT
•
k (g)→ FnU(g).

In particular, in characteristic 0, conclude that

ps,g : Sym•k(g)→ GrF• U(g)

is an isomorphism (i.e., injective since we already know it is surjective) if and only
if the following map is injective,

pg ◦ s∗g : Sym•k(g)→ T •k (g)→ U(g).

Injectivity of this second map is the weak formulation of the Poincaré-Birhoff-Witt
Theorem.

(d) Assuming injectivity of the map pg ◦ s∗g so that also ps,g is an isomorphism,
use induction on n to prove that every map pg ◦ s∗g,≤n is also surjective. Conclude
that the map pg ◦ s∗g is an isomorphism. Isomorphism of this map is the strong
formulation of the Poincaré-Birhoff-Witt Theorem.

(e) For the Hopf k-algebra structure defined on T •k (g), check that the left-right
ideal Ig is a Hopf ideal. Conclude that there is a unique Hopf k-algebra structure
on U(g) such that pg is a morphism of Hopf k-algebras.

(f) For a k-vector space V , a left-right ideal I ⊂ T •k (V ) is of PBW type if I
is a Hopf ideal, i.e., T •k (V )/I has a structure of Hopf k-algebras such that the

15
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surjection pI : T •k (V ) → T •k (V ) is a morphism of Hopf k-algebras, if I is nearly

commuting, i.e., the associated graded k-algebra Grp∗F• (T •k (V )/I) is commutative,
and if F1T

•
k (V ) ∩ I is the zero subspace. Assuming Ado’s Theorem, prove that

F1T
•
k (g)→ U(g) is injective, so that Ig is of PBW type.

(g) Let I be a left-right ideal of PBW type. Let n > 1 be an integer. Assume that
k has characteristic 0 or positive characteristic > n. By way of induction, assume
that for every integer 1 ≤ m ≤ n − 1, also pI ◦ Fms∗V is injective. Thus, for every
m = 1, . . . , n− 1, the following composite is injective,

Fn−mSymk(V )⊗kFmSymk(V )
Fn−ms

∗
V ⊗Fms

∗
V−−−−−−−−−−→ Fn−mTk(V )⊗kFmTk(V )

pI⊗pI−−−−→ Fn−mTk(V )/I⊗kFmTk(V )/I.

Use surjectivity of the induced morphism ps,I : Sym•k(V ) → Grp∗F• (Tk(V )/I) and
induction on m to prove that for every m = 1, . . . , n− 1, also the composite

pI ◦ F≤ms∗V : FmSym•k(V )→ FmTk(V )→ FmTk(V )/I

is surjective and the following map is a bijection,

ps,I,m : Symm
k (V )→ Grp∗Fm (Tk(V )/I).

(h) With the same hypotheses as above, by way of contradiction, assume that there
exists nonzero a ∈ FnSym•k(V ) that is in the kernel of pI ◦F≤ns∗V . Use the induction
hypothesis to conclude that the component an in Symn

k (V ) is nonzero and maps

to zero in Grp∗Fn Tk(V )/I. Since p preserves the Hopf algebra structures, conclude
that also ∆(a) is in the kernel of pI ⊗ pI . By hypothesis, the components a⊗ 1 and
1⊗a map to 0⊗1 = 0 and 1⊗0 = 0. Thus, conclude that also ∆(a)−(a⊗1+1⊗a)
is in the kernel of pI ⊗ pI .
(i) Conclude that for every 1 ≤ m ≤ n − 1, also the (n − m,m)-component of

∆(s∗V,nan) maps to zero in Grp∗Fn−mTk(V )/I ⊗k Grp∗Fm Tk(V )/I. Using the induction

hypothesis, conclude that every (n −m,m)-component of ∆n−m,m(s∗V,nan) equals

0. Finally, use Problem 5(d) to conclude that an equals 0, contrary to hypothesis.
By way of induction, conclude that also pI ◦F≤ns∗V is injective. Combined with (g)
above, assuming that k has characteristic 0 and assuming Ado’s Theorem, conclude
the Poincaré-Birkhoff-Witt Theorem for Lie algebras, the induced map

pI ◦ s∗g : Sym•k(g)→ U(g)

is a bijection of Z≥0-filtered k-vector spaces.

(j) Since the adjoint g-action on Tnk (g) acts through Homk(V, V ), use Problem
3 to conclude that s∗gSym•k(g) is a g-subrepresentation. Conclude that pI ◦ s∗g
is a morphism of g-representations. Thus, by Poincaré-Birkhoff-Witt, this is an
isomorphism of g-representations. In particular, the k-subspace of invariants for
the adjoint g-action on U(g) is the isomorphic image of the the invariants for the
adjoint g-action on Sym•k(g).

Nota bene. This proof of Poincaré-Birkhoff-Witt is adapted from an answer by
David Speyer to a MathOverflow question.
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