MAT 552 PROBLEM SET 3

Problem 1. For a Lie group (G, m, e), recall that our sign convention for the associated bracked on the Lie algebra $\mathfrak{g} := T_e G$ is,

$$[X,Y]_{\mathfrak{g}} := \frac{1}{2} \left(\frac{d}{ds} \frac{d}{dt} \operatorname{Exp}_{G}(sX) \cdot \operatorname{Exp}_{G}(tY) \cdot \operatorname{Exp}_{G}(-sX) \cdot \operatorname{Exp}_{G}(-tY) \right|_{s=t=0}.$$

For C^{∞} vector fields A and B on a C^{∞} manifold M with associated flows Φ_s^A and Φ_t^B , review the computation of the Lie bracket of the vector fields in terms of the commutator of these flows. In particular, review the sign convention,

$$[A,B]_M:=\frac{1}{2}\left(\frac{d}{ds}\frac{d}{dt}\Phi^B_{-s}\circ\Phi^A_{-t}\circ\Phi^B_s\circ\Phi^A_t\right|_{s=t=0}.$$

For $X \in \mathfrak{g}$ with its G-left invariant exponential flow,

$$\Phi_{G,t}^X: G \to G, \quad g \mapsto g \cdot \operatorname{Exp}_G(tX),$$

check that the two sign conventions disagree by a factor of -1.

Problem 2. For a finite dimensional Lie algebra $(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$, define $\operatorname{Aut}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$ to be the subgroup of the Lie group $GL(\mathfrak{g})$ of all linear automorphisms $\Lambda:\mathfrak{g}\to\mathfrak{g}$ such that for every $X, Y \in \mathfrak{g}$,

$$[\Lambda(X), \Lambda(Y)]_{\mathfrak{g}} = [X, Y]_{\mathfrak{g}}.$$

Similarly, define $\mathrm{Der}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$ to be the linear subspace of the Lie algebra $\mathfrak{gl}(\mathfrak{g})$ of all linear endomorphisms $\lambda: \mathfrak{g} \to \mathfrak{g}$ such that for every $X, Y \in \mathfrak{g}$,

$$\lambda([X,Y]_{\mathfrak{g}}) = [\lambda(X),Y]_{\mathfrak{g}} + [X,\lambda(Y)]_{\mathfrak{g}}.$$

- (a) Check that $\operatorname{Aut}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$ is a closed Lie subgroup of the Lie group $\operatorname{GL}(\mathfrak{g})$. Find an example where this is not a normal subgroup.
- (b) Check that $\mathrm{Der}(\mathfrak{g},[\bullet,\bullet]_{\mathfrak{g}}$ is a Lie subalgebra of the Lie algebra $\mathfrak{gl}(\mathfrak{g}).$ Find an example where this is not a Lie ideal.
- (c) Inside the Lie algebra $\mathfrak{gl}(\mathfrak{g})$ of the Lie group $\mathbf{GL}(\mathfrak{g})$, check that the Lie subalgebra associated to the closed Lie subgroup $\operatorname{Aut}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$ equals $\operatorname{Der}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$.
- (d) For every $X \in \mathfrak{g}$ and for every $\lambda \in \operatorname{Der}(\mathfrak{g}, [\bullet, \bullet]_{\mathfrak{g}})$, check that

$$[\lambda, \operatorname{ad}_X^{\mathfrak{g}}]_{\mathfrak{gl}(\mathfrak{g})} = \operatorname{ad}_{\lambda(X)}^{\mathfrak{g}}.$$

(e) Conclude that the adjoint morphism of Lie algebras,

$$ad^{\mathfrak{g}}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}),$$

factors through the Lie subalgebra of derivations.

Problem 3. This exercise is for those readers that know about affine algebraic groups G over \mathbb{C} with the corresponding finitely generated, commutative, unital \mathbb{C} -algebra $\mathbb{C}[G]$ of polynomial maps from G to \mathbb{C} and its comultiplication,

$$m^*: \mathbb{C}[G] \to \mathbb{C}[G] \otimes_{\mathbb{C}} \mathbb{C}[G].$$

(Please note: even though the notation appears similar, typically this is not the \mathbb{C} -group algebra of G, which is typically a noncommutative \mathbb{C} -algebra.)

For a \mathbb{C} -vector space V, a \mathbb{C} -linear coaction of G on V is a \mathbb{C} -linear map,

$$\phi: V \to V \otimes_{\mathbb{C}} \mathbb{C}[G],$$

such that the composition with evaluation at e,

$$\mathrm{Id}_V \otimes \mathrm{ev}_e : V \otimes_{\mathbb{C}} \mathbb{C}[G] \to V \otimes_{\mathbb{C}} \mathbb{C} = V$$

is the identity map on V, and such that the composition of ϕ with the following two C-linear maps are equal,

$$\phi \otimes \operatorname{Id}_{\mathbb{C}[G]} : V \otimes_{\mathbb{C}} \mathbb{C}[G] \to (V \otimes_{\mathbb{C}} \mathbb{C}[G]) \otimes_{\mathbb{C}} \mathbb{C}[G],$$

$$\operatorname{Id}_{V} \otimes m^{*} : V \otimes_{\mathbb{C}} \mathbb{C}[G] \to V \otimes_{\mathbb{C}} (\mathbb{C}[G] \otimes_{\mathbb{C}} \mathbb{C}[G]).$$

- (a) For every \mathbb{C} -vector space V, for every \mathbb{C} -linear coaction ϕ , and for every \mathbb{C} subspace W of V, prove that there exists a unique minimal \mathbb{C} -vector subspace $W' \subset V$ such that the image $\phi(W)$ is contained in the subspace $W' \otimes_{\mathbb{C}} \mathbb{C}[G]$.
- (b) Use the axioms of a coaction to prove that (W')' equals W'. Thus, the restriction of ϕ to W' defines a \mathbb{C} -linear coaction of G on W'.
- (c) If W is a finite dimensional \mathbb{C} -vector space, prove that also W' is finite dimensional sional. Conclude that V is an increasing union of finite dimensional \mathbb{C} -subspaces on which ϕ restricts to a coaction.
- (d) In particular, setting V equal to the \mathbb{C} -vector space $\mathbb{C}[G]$ with the coaction m^* , for every finite subset $S \subset \mathbb{C}[G]$ of \mathbb{C} -algebra generators, conclude that there is a finite dimensional \mathbb{C} -vector subspace $W' \subset \mathbb{C}[G]$ containing S and such that ϕ restricts to a coaction on W'.
- (e) For every finite dimensional \mathbb{C} -vector space V with a \mathbb{C} -linear coaction ϕ , define the following map,

$$\rho: G \to \mathbf{GL}(V), \quad q \mapsto (v \mapsto (\mathrm{Id}_V \otimes \mathrm{ev}_q)(\phi(v))).$$

Prove that this is a \mathbb{C} -linear action of G on V. These are precisely the "algebraic representations" of the algebraic group G.

(f) For every finite dimensional \mathbb{C} -vector subspace W' of $\mathbb{C}[G]$ that contains a set of \mathbb{C} -algebra generators of $\mathbb{C}[G]$, prove that the corresponding \mathbb{C} -linear action of Gon W' is faithful. Thus, every affine algebraic group is a closed algebraic subgroup of GL(W') for some finite dimensional \mathbb{C} -vector space W'. This is an explicit form of Lie's Third Theorem for affine algebraic groups.

Problem 4. Let (G, m, e) be a Lie group. For every integer n, denote by $\mathcal{O}_{G,e}/\mathfrak{m}^{n+1}$ the finite dimensional vector space of germs of analytic functions on G at e up to order n. For every $g \in G$, denote by $Ad_{q,n}$ the induced linear map

$$\mathcal{O}_{G,e}/\mathfrak{m}^{n+1} \to \mathcal{O}_{G,e}/\mathfrak{m}^{n+1},$$

induced by the conjugation map near the fixed point e,

$$\operatorname{Ad}_g: G \to G, \operatorname{Ad}_g(h) = ghg^{-1}, \operatorname{Ad}_g(e) = e.$$

(a) Prove that this gives a Lie group morphism

$$\operatorname{Ad}_n: G \to \mathbf{GL}_{\mathbb{C}}(\mathcal{O}_{G,e}/\mathfrak{m}^{n+1}).$$

- (b) When G is a complex Lie group, prove that this is a morphism of complex Lie groups.
- (c) When G is a compact, complex Lie group, what does the maximum modulus principle imply about this holomorphic map from G to the affine \mathbb{C} -space $\mathbf{Mat}_{\mathbb{C}}(\mathcal{O}_{G,e}/\mathfrak{m}^{n+1})$?
- (d) Conclude that every connected, compact, complex Lie group G is commutative. These are usually called "compact complex tori". Use the same argument to prove that every \mathbb{C} -linear representation of G on a finite dimensional \mathbb{C} -vector space is a direct sum of copies of the trivial representation.

Problem 5. For $\mathbf{SL}_n(\mathbb{C})$ with its standard maximal torus T, standard Borel, standard pinning, etc., use the derivatives of the standard basis T of cocharacters to write an explicit basis of the Cartan subalgebra $\mathfrak{h} = \mathrm{Lie}(T)$ inside $\mathfrak{sl}_n(\mathbb{C})$. Also use the pinning to write out a \mathbb{C} -basis for each root space of $\mathfrak{sl}_n(\mathbb{C})$. Combine these to form a basis for $\mathfrak{sl}_n(\mathbb{C})$. For each pair of basis vectors, explicitly compute the Lie bracket of those two elements of $\mathfrak{sl}_n(\mathbb{C})$ as a linear combination of the basis vectors. Write this out explicitly when n=2 and n=3. Are the coefficients contained in the subfield \mathbb{R} of \mathbb{C} ?

Problem 6. Use the previous problem to prove that the real Lie algebra of $\mathbf{SL}_n(\mathbb{R})$ is a real form of the complex Lie algebra of $\mathbf{SL}_n(\mathbb{C})$. Also repeat the problem for the subgroup $\mathbf{SU}(n,\mathbb{R})$ of $\mathbf{SL}_n(\mathbb{C})$. Use this to check that $\mathfrak{su}(n,\mathbb{R})$ is also a real form of $\mathfrak{sl}_n(\mathbb{C})$. Finally, explicitly check that there is an isomorphism from $\mathfrak{su}(2,\mathbb{R})$ to $\mathfrak{so}_3(\mathbb{R})$ that complexifies to the isomorphism of complex Lie algebras associated to the isomorphism of complex Lie groups $\mathbf{PGL}_2(\mathbb{C}) \to \mathbf{SO}_3(\mathbb{C})$ discussed in lecture.