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MAT 552 PROBLEM SET 2

Problem 1. (Standard parabolics, partial flag manifolds, and Bruhat
decomposition for An−1-type.) In this problem, work through the various parts
for the simply connected, simple, complex Lie group SLn(C) for a representative
collection of pairs (n,Γ).

As in the previous problem set, let (SLn(C), T ′n, B
′
n) be the special linear complex

Lie group with its standard maximal torus and standard Borel. Thus, for the usual
direct sum decomposition into 1-dimensional subspaces,

V = Cn =

n⊕
i=1

C · ei =

n⊕
i=1

Li,

the torus T ′n is the subgroup of G = SLn(C) mapping every Li back to itself, and
B′n is the subgroup of SLn(C) that preserves every subspace in the standard flag,

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · ⊂ Fn−1 ⊂ Fn = V, Fj =

j⊕
i=1

Li.

Denote by Tn[2] the elementary Abelian 2-group of 2-torsion elements in Tn. One
lift Wn ⊂ NG(T ′n)/Tn[2] of the Weyl group NG(T ′n)/T ′n is determined by the stan-
dard pinning (e1, . . . , en), i.e., the ordered bases of the 1-dimensional subspaces
(L1, . . . , Ln) up to simultaneous (invertible) scalar. The inverse image of Wn in
NG(T ′n) consists of matrices A such that for every basis vector ei, the product A ·ei
equals ±ej for some basis vector ej . This group is generated by the positive simple
reflections {si : 1 ≤ i ≤ n − 1}, where si maps ei to ei+1 and maps ei+1 to −ei,
leaving fixed all other basis vectors.

The set ∆ = ∆(SLn(C), T ′n, B
′
n) of positive simple roots is in natural bijection with

this set of positive simple reflections, namely {αi : 1 ≤ i ≤ n− 1},

αi = χn,i − χn,i+1, si(β) = β − 〈β, α∨i 〉αi, i ∈ {1, . . . , n− 1}.

For simplicity, identify ∆ with the set of integers {1, . . . , n − 1}. Nota bene.
Denote by w0 ∈Wn the unique element of maximal length, i.e., the unique element
with w0(ej) = en−j for every j ∈ ∆. The outer automorphism ι(g) = w0(g†)−1w−1

0

of SLn(C) preserves B′n and T ′n, yet permutes ∆ by the rule ι(j) = n − j. Thus,
this enumeration of the roots depends on an additional choice.

Let Γ be a subset of ∆ = {1, . . . , n− 1},

Γ ⊂ {1, . . . , n− 1}, Γ = {j1, . . . , jd}, 0 < j1 < · · · < jd < n.

By convention, set j0 = 0 and jd+1 = n. Denote by PΓ the subgroup of SLn(C)
that preserves every subspace Fj for j ∈ Γ.

(a) For the standard enumeration α = αi, i = 1, . . . , n− 1, of positive simple roots
in ∆(SLn(C), T ′n, B

′
n), check that the root group

U−α = fn,−α(U+) = sαUαs
−1
α ,
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is contained in PΓ if and only if i is contained in Γ. Similarly, check that siPΓs
−1
i

equals PΓ if and only if i ∈ Γ. These reflections give generators for the subgroup
Wn,Γ ⊂ Wn of all elements w that preserve PΓ, i.e., wPΓw

−1 equals PΓ. Finally,
check that PΓ is generated as a closed Lie subgroup of SLn(C) by B′n and by the
root groups U−α for i ∈ Γ, and also it is generated by the conjugates siBs

−1
i for

i ∈ Γ.

Thus, for a general triple (G,T,B) of a connected, reductive, complex Lie group
G, a maximal torus T , and a Borel containing B, for every subset Γ of ∆(G,T,B),
we could define PΓ to be the closed Lie subgroup generated by B and the root
groups U−α for α ∈ Γ, and this also equals the closed Lie subgroup generated by all
conjugates sBs−1 for all positive simple reflections s ∈ W = NG(T )/T associated
to α ∈ Γ.

(b) For the standard transitive action of SLn(C) = SL(V ) on the following partial
flag manifold, check that the stabilizer of the partial flag (Fj)j∈Γ equals PΓ, and
thus the partial flag variety is SLn(C)-equivariantly biholomorphic to SLn(C)/PΓ,

Flag(Γ;V ) = {(Ej)j∈Γ ∈
∏
j∈Γ

GrassC(j, V ) : ∀(j, k) ∈ Γ× Γ s.t. j ≤ k, Ej ⊂ Ek}.

Also check that the complex dimension of the partial flag manifold equals

m =

d∑
e=1

(je+1 − je)je.

(c) For every w ∈ Wn, check that the double coset C(w) := PΓwPΓ in SLn(C)
depends only on the double coset [w] ∈ Wn,P \Wn/Wn,P . Check that the image
E(w) := C(w)/PΓ in the partial flag manifold SLn(C)/PΓ contains the following
flag,

(Fwj )j∈Γ, Fwj :=

j∑
i=1

Lw(i).

Moreover, check that E(w) is the following subset of the partial flag manifold,

E(w) = {(Ej)j∈Γ ∈ Flag(Γ;V )|∀j ∈ Γ,∀i = 1, . . . , n, dim(Ej∩Fi) = dim(Fwj ∩Fi)}.

Check that the closure E(w) is the following (Zariski) closed subset of Flag(Γ;V ),

E(w) := {(Ej)j∈Γ ∈ Flag(Γ;V )|∀j ∈ Γ,∀i = 1, . . . , n, dim(Ej∩Fi) ≥ dim(Fwj ∩Fi)}.

Check that the relative complement E(w) \ E(w) is a (Zariski) closed subset of
E(w), so that E(w) is a (Zariski) open subset of E(w). Thus, altogether, E(w) is
a (Zariski) locally closed subset of Flag(Γ;V ). Finally, as a complex manifold with
an action of the root groups Uα ∼= C, check that E(w) is isomorphic to a product
of additive groups C × · · · × C = C`, for some integer ` = `Γ([w]) ≥ 0. Thus, the
collection of locally closed subsets (E(w))[w] give a partition of Flag(Γ;V ) into cells
of (real) dimension 2`Γ([w]) for the finitely many elements [w] ∈Wn,Γ\Wn/Wn,Γ.

(d) For a representative set of choices of (n,Γ), check for every [w] ∈Wn,Γ\Wn/Wn,Γ

that the nonnegative integer `Γ([w]) from the previous part equals the Coxeter
length `(w) of a double coset representative w having least length. As usual,
the Coxeter length is the least word length of a representation of w as a word
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in the simple reflections (si)i=1,...,n−1 generating Wn. Also, determine the par-
tial order on double cosets determined by the inclusion partial order on closures,
E([w]) ⊂ E([w′]). This is the Bruhat order on Wn,Γ\Wn/Wn,Γ relative to ∆.

(e) Since the cells in the cellular decomposition all have even dimension, conclude
that the differentials in the cellular chain complex are all zero. Thus, the elements
[E(w)], as [w] ranges over Wn,Γ\Wn/Wn,Γ, give a Z-basis of the cellular homology
H∗(Flag(Γ;Cn);Z). Each basis element [E(w)] is homogeneous of degree 2`Γ([w]).
For a representative set of choices of (n,Γ), use this to compute the even Betti
numbers of Flag(Γ;Cn) (the odd Betti numbers are all zero). Check that the Betti
numbers are unimodular and symmetric, as implied by Poincaré duality for the
connected, closed, complex manifold Flag(Γ;Cn).

(f) For the Poincaré dual classes in cohomology,

PD[E(w)] ∈ H2m−2`(Flag(Γ;Cn)),

for every triple [w], [w′], [w′′] ∈Wn,Γ\Wn/Wn,Γ, the Littlewood-Richardson co-

efficient c
[w]
[w′],[w′′] is defined as the structure constants of the cup product pairing

in cohomology,

PD[E(w′)] ^ PD[E(w′′)] =
∑
[w]

c
[w]
[w′],[w′′]PD[E(w)].

For a few cases of (n,Γ), write out these structure constants.

Problem 2. (Borel’s Theorem on the cohomology ring of complete flag
manifolds.) The graded polynomial Z-algebra Z[x1, . . . , xn] on n homogeneous
variables xi of degree 1 is the graded symmetric algebra on its degree 1 part,

Z[x1, . . . , xn]1 = Xn = Z · x1 ⊕ · · · ⊕ Z · xn, Z[x1, . . . , xn] = Sym•Z(Xn).

Denote by X0
n ⊂ Xn the free Abelian subgroup of those linear combinations a1x1 +

· · · + anxn such that a1 + · · · + an equals 0. Denote by Z[x1, . . . , xn]0 the graded
polynomial Z-subalgebra of Z[x1, . . . , xn] that is the symmetric algebra on X0

n. In
particular, the following composite Q-algebra homomorphism is an isomorphism,

Q[x1, . . . , xn]0 ↪→ Q[x1, . . . , xn] � Q[x1, . . . , xn]/〈σ1〉,

where for every r = 1, . . . , n, the rth symmetric polynomial is defined by

σr(x1, . . . , xn) =
∑

1≤i1<···<ir≤n

xi1 · · ·xir .

(a) Review the statement of the first fundamental theorem of Sn-invariants that for
the standard action of the symmetric group Sn on the graded polynomial Q-algebra
Q[x1, . . . , xn], the ring of Sn-invariants is the graded polynomial Q-subalgebra,

Q[x1, . . . , xn]Sn = Q[σ1, . . . , σn],

where each σi is homogeneous of degree i.

(b) Identifying Xn as the character lattice X∗(Tn) of the standard maximal torus
Tn in GLn(C), check that the induced map of symmetric Z-algebras,

Sym•ZX
∗(Tn)→ Sym•ZX

∗(T ′n)
3
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is identified with the following homomorphism of graded Z-algebras, compatibly
with the natural action of Wn

∼= Sn,

Z[x1, . . . , xn]→ Z[x1, . . . , xn]/〈σ1〉.
Thus, up to tensoring with Q, identify the symmetric Q-algebra on X∗(Tn), resp. on
X∗(T ′n), with the graded polynomial Q-algebra Q[x1, . . . , xn], resp. with Q[x1, . . . , xn]0,
compatibly with the Wn-action.

(c) For every r = 1, . . . , n−1, show that there exists a unique homogeneous element

fr ∈ Sym•Q(X∗(T ′n))Wn ,

of degree 1+r corresponding to σ1+r in Q[x1, . . . , xn]/〈σ1〉. The elements f1, . . . , fn−1

are the fundamental invariants with degree deg(fi) = 1 + i.

(d) For a few small values of n, check that each Betti number b2e of the complete
flag variety SLn(C)/B′n equals the Betti number be of the graded Q-algebra,

Sym•Q(X∗(T ′n))/〈f1, . . . , fn−1〉 ∼= Q[x1, . . . , xn]/〈σ1, σ2, . . . , σ2〉.

Theorem 0.1 (Chevalley-Shephard-Todd). For every finite dimensional vector
space V over a characteristic 0 field k, for every k-linear action of a finite group
G on V , inside the graded k-algebra k[V ] of polynomial functions on V , the graded
k-algebra of G-invariant polynomials, k[V ]G, is regular if and only if the group G
is generated by elements g that act on V by quasi-reflections, i.e., the G-invariant
subspace of V has codimension ≤ 1. In this case, k[V ]G is a polynomial k-algebra
whose generators are homogeneous elements, and k[V ] is a finite, free module over
k[V ]G.

(e) By definition, every Weyl group is generated by reflections. Conclude that for
every triple (G,T,B) of a connected, semisimple complex Lie group G, a rank-r
maximal torus T , and a Borel subgroup B containing T , for the natural action of
the Weyl group W = NG(T )/T on the graded Q-algebra Sym•Q(X∗(T ) ⊗ Q), the
graded Q-subalgebra of W -invariants is itself a graded polynomial Q-algebra

Sym•Q(X∗(T )⊗Q)W ∼= Q[f1, . . . , fr]

for homogeneous elements fi of degrees 1 + di, with 1 = d1 ≤ · · · ≤ dr. These are
the fundamental invariants. They will recur at the end of the semester when we
prove the Harish-Chandra isomorphism.

Theorem 0.2 (Borel’s Theorem). Associated to the natural isomorphism X∗(T )→
H2(G/B;Z), the induced map of graded Q-algebras,

Sym•Q(X∗(T )⊗Q)→ H∗(G/B;Q),

is surjective with kernel ideal equal to the complete intersection ideal generated by
f1, . . . , fr. In particular, if G is simple, then the kernel of the following cup-product
map has Q-dimension 1 and is spanned by the W -invariant f1,

Sym2
Q(X∗(T )⊗Q)→ H4(G/B;Q).

In particular, the complex dimension of G/B equals d1 + · · ·+ dr, since that is the
top degree of a nonzero graded component modulo a complete intersection ideal
with generators of degrees (1 + d1, . . . , 1 + dr). Also, since the Bruhat cells indexed
by the Weyl group W also form a Z-module basis for H∗(G/B;Z), the order of W
equals (1 + d1) · · · (1 + dr).
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(f) For two or three choices of n, check Borel’s theorem in An−1-type, and identify
each cohomology class PD[E(w)] as an element in the ring Q[x1, . . . , xn]/〈σ1, . . . , σn〉.

Problem 3. (Abelian fundamental groups of Lie groups and exponential

maps of Abelian Lie groups.) For every connected Lie group T̃ , for every
closed Lie subgroup N that is normal, but not necessarily connected, consider the

conjugation action of T̃ on the discrete group N/N0.

(a) Prove that the conjugation action of T̃ on N/N0 is trivial. In particular, if N0

equals {e}, so that N is a discrete, closed, normal subgroup of T̃ , prove that N is

contained in the center of T̃ .

(b) Next, when (T, e) is a connected Lie group, for the universal covering group,

φ : (T̃ , ẽ)→ (T, e),

apply the previous part to π1T := Ker(φ) to conclude that π1T is a subgroup of

the center of G̃. In particular, conclude that the fundamental group π1T of every
connected Lie group (T, e) is an Abelian group, i.e., the following Hurewicz map is
an isomorphism,

π1T → H1(T ;Z).

Theorem 0.3 (Hopf). Not only for connected Lie groups, but also for every path
connected, homotopy-associative H-space G, the fundamental group is Abelian.
Moreover, for every commutative, unital ring R such that every cohomology group
H∗(G;R) is a finitely generated, free R-module, the graded cohomology R-algebra
H∗(G;R) is a graded commutative Hopf R-algebra. The dual Hopf R-algebra is the
Pontryagin algebra structure on the homology.

There is a classification of graded commutative Hopf algebras in characteristic 0
due to Hopf and Leray. The extension over perfect characteristic p fields is due to
Borel.

Theorem 0.4 (Hopf, Leray). For a characteristic 0 field k, every graded commu-
tative Hopf algebra with finite dimensional graded components and that is connected
(i.e., the negatively graded components are zero) is isomorphic to the tensor product
k-algebra of a symmetric k-algebra on finitely many generators in even degrees and
an exterior k-algebra on finitely many generators in odd degrees.

Corollary 0.5 (Hopf). For every connected Lie group G, the graded cohomology Q-
algebra H∗(G;Q) is isomorphic to an exterior algebra on finitely many generators
in odd degrees (2d1+1, . . . , 2dr+1), i.e., G is Q-cohomologically a product of spheres
of odd dimensions (2d1 + 1, . . . , 2dr + 1).

As a particular instance of the corollary, if K is a connected Lie group that is
compact, so that Poincaré duality holds, then the real dimension of G equals r +
2(d1 + · · ·+dr), since that is the top degree such that the corresponding component
of the exterior algebra is nonzero. Also, the sum of the Betti numbers equals 2r. If
K is the compact real form of a simply connected, semisimple, complex Lie group
G, and if for a Borel subgroup B of G the intersection B ∩K is a rank-r maximal
torus in K, then the quotient K/(B∩K) equals G/B. Thus, the complex dimension
of G/B equals d1 + · · ·+ dr (for the second time).
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The corollary follows from the two theorems: since H∗(G;Q) has nonzero graded
components for only finitely many degrees (all nonnegative), this is a connected,
graded commutative Q-Hopf algebra, and the symmetric Q-algebra factor must
equal Q (or else there would be nonzero components in infinitely many degrees).

Problem 4 (Exponential maps in the Abelian case.) Let T be a connected
Lie group that is Abelian. Denote the Lie algebra by h. Denote the universal
covering of T by

φ : (T̃ , ẽ)→ (T, e).

(a) Prove that the Lie group exponential map,

ExpT̃ : (h, 0)→ (T̃ , ẽ),

is an isomorphism. Conclude that there is a canonical isomorphism of the discrete
group H1(T ;Z) with a closed Abelian subgroup of the Lie algebra h.

(b) When T is a linear complex torus ∼= Gm(C)r, the canonical isomorphism above
defines an isomorphism of C-vector spaces,

Symd
C(t∨)→ Symd

Q(X∗(T )⊗Q)⊗Q C.
Check that all of the maps are compatible with the natural actions of the automor-
phism group of the Lie group, Aut(T, e). In particular, when a Weyl group W acts
on (T, e) by conjugation, the isomorphism above is W -equivariant, hence defines
an isomorphism of C-algebras of W -invariants,

Sym•C(t∨)W → Symd
Q(X∗(T )⊗Q)W ⊗Q C.

This simplifies the computation of the fundamental invariants.

Problem 5 (Low homotopy groups of special linear groups.) Let V be a
real or complex vector space of dimension n + 1 ≥ 2. Let SL(V ) ∼= SLn+1 be
the corresponding real or complex Lie group, let v ∈ V \ {0} be an element, and
consider the induced standard left action,

Lv : SL(V )→ V \ {0}.

(a) Show that this action is surjective, i.e., the orbit of v equals all of V \{0}. Show
that the stabilizer subgroup H of v is isomorphic, as a Lie group, to a semidirect
product of a special linear group SL(W ) ∼= SLn with W ∼= V/span(v) and a
product of copies of the additive group (which are contractible). Thus, the long
exact sequence of homotopy groups is

· · · → πk+1(V \ {0})→ πk(SL(W ))→ πk(SL(V ))→ πk(V \ {0})→ . . .

→ π3(V \{0})→ π2(SL(W ))→ π2(SL(V ))→ π2(V \{0})→ π1(SL(W ))→ π1(SL(V ))→ π1(V \{0}).

(b) When the field is R, so that Rn \ {0} is homotopy equivalent to a sphere Sn−1,
use the long exact sequence of homotopy sequences of a fiber bundle to conclude
that for every k ≤ n − 2, the following induced map of homotopy groups is an
isomorphism,

πk(SLn(R))→ πk(SLn+1(R).

Thus, the relative homotopy group πk(SLn+1(R),SLn(R)) is zero for k ≤ n− 2. If
you know about relative homotopy groups, also conclude that the following induced
map of homotopy groups is surjective,

πn−1(SLn+1(R))→ πn−1(SLn+1(R),SLn(R)).
6

http://www.math.stonybrook.edu/~jstarr/M552s19/index.html
mailto:jstarr@math.stonybrook.edu


MAT 552 Lie Groups and Lie Algebras
Stony Brook University
Problem Set 2

Jason Starr
Spring 2019

In fact, Bott periodicity states that in this “stable range”, the homotopy groups
πk(SL(R)) are periodic in k with period 8,

πk(SL(R)) =

 {0}, k ≡ 2, 4, 5, 6 ( mod 8),
Z/2Z, k ≡ 0, 1 ( mod 8),
Z, k ≡ 3, 7 ( mod 8)

(c) If you know the Hurewicz theorem, use the previous part to conclude that the
relative homology groups Hk(SLn+1(R),SLn(R);Z) are zero for k ≤ n− 2 and the
following map of homology groups is surjective,

Hn−1(SLn+1(R);Z)→ Hn−1(SLn+1(R),SLn(R);Z).

Use the long exact sequence of relative homology to conclude that the pushforward
maps

Hk(SLn(R);Z)→ Hk(SLn+1(R);Z)

are isomorphisms for every k ≤ n− 2.

(d) For n = 2, conclude that SL2(R) has the homotopy type of a circle. Thus,
π1SL2(R) equals Z, and all higher homotopy groups are zero. Similarly, when n = 3,
compute that π2(R3 \ {0})→ π1(SL2(R)) is nonzero. Conclude that π1(SL3(R)) is
a finite cyclic group (possibly zero) and π2(SL3(R)) is zero. In fact, π1(SL3(R)) is
cyclic of order 2 (see the next problem).

(e) For every n ≥ 4, conclude that π2(SLn(R)) is zero and π1(SLn(R)) is cyclic

of order 2. For the universal cover S̃Ln(R), use the Hurewicz theorem to conclude
that the homology groups Hr vanish for r = 1 and r = 2. Conclude that the
following Hurewicz map is an isomorphism,

π3(SLn(R))→ H3(SLn(R);Z).

(f) Repeat these parts for the field C. Conclude that for every k ≤ 2n− 1, both of
the following pushforward maps are isomorphisms,

πk(SLn(C))→ πk(SLn+1(C)), Hk(SLn(C))→ Hk(SLn+1(C)).

In fact, by Bott periodicity, in this stable range the homotopy groups are periodic
in k ≥ 2 with period 2,

πk(SL(C)) =

{
{0}, k ≡ 0 ( mod 2),
Z, k ≡ 1 ( mod 2)

Explicitly compute that SL2(C) has the homotopy of the 3-sphere S3. For every
n ≥ 2, prove that π1(SLn(C)) and π2(SLn(C)) are zero and the following Hurewicz
map is an isomorphism,

π3(SLn(C))→ H3(SLn(C);Z).

(g) If you know about Leray spectral sequences, write the Leray spectral sequence
in homology or cohomology associated to the fibration SLn+1(C)→ Cn+1 \ {0} ∼
S2n+1. Since the homology of S2n+1 is concentrated in just 2 degrees, and since
the sum of the Betti numbers for SLn+1(C) equals 2n, which is 2 times the sum
for SLn(C), conclude that the spectral sequence degenerates (all differentials are
zero). Thus, there is an isomorphism,

H∗(SLn+1(C);Z) ∼= H∗(SLn(C);Z)⊗Z H
∗(S2n+1;Z).
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By induction, conclude that

H∗(SLn+1(C);Z) ∼= H∗(S3;Z)⊗Z H
∗(S5;Z)⊗Z · · · ⊗Z H

∗(S2n+1;Z).

Thus, by Hopf’s theorem, the degrees 1 + di for the fundamental invariants of
SLn+1(C) are 2, 3, . . . , n, n+ 1, i.e., (d1, . . . , dn) = (1, 2, . . . , n− 1, n).

Problem 6 (Gram-Schmidt and retractions to maximal compact sub-
groups.) For a (positive definite) real inner product space (VR, 〈•, •〉R), resp. for a
(positive definite) complex Hermitian inner product space (VC, 〈•, •〉C), review the
statement of the Gram-Schmidt theorem.

(a) In the two respective cases, inside the Borel subgroup BR ⊂ GL(VR), resp.
inside the Borel subgroup BC ⊂ GL(VC), define B+ to be the closed real Lie
subgroup of upper triangular matrices that have only positive entries on the main
diagonal. Define SB+ to be the intersection of B+ with the special linear group,
i.e., the subset of B+ of elements with determinant equal to 1. In the respective
cases, interpret Gram-Schmidt as saying that the following multiplication map is a
diffeomorphism,

O(VR, 〈•, •〉R)×B+ → GL(VR),

SO(VR, 〈•, •〉R)× SB+ → SL(VR),

U(VC, 〈•, •〉C)×B+ → GL(VC),

SU(VC, 〈•, •〉C)× SB+ → SL(VC).

(b) Show that B+ and SB+ are contractible. Conclude that the diffeomorphisms
above define retractions of GLn(R) to the (compact) orthogonal group O(n,R),
of SLn(R) to the (compact) special orthogonal group SO(n,R), of GLn(C) to the
(compact) unitary group U(n,R), and of SLn(C) to the (compact) special unitary
group SU(n,R). Combine this with the previous exercise to write down the low
degree homotopy groups and homology groups of SU(n,R).

(c) Finally, modify the argument from lecture to prove that the conjugation action
of PSU(2,R) = SU(2,R)/µ2 · Id2×2 on the Lie algebra su(2,R) with its (minus)
determinant inner product defines an isomorphism SU(2,R)/µ2 → SO(3,R). From
this, conclude that π1SO(3,R) is cyclic of order 2, and thus also π1SL2(R) is cyclic
of order 2. This completes the missing step of the previous exercise. Use this
to complete the computation of the low degree homotopy and homology groups
of the real Lie groups SLn(R). Via the Gram-Schmidt retractions, also complete
the computation of the low degree homotopy and homology groups of the real Lie
groups SO(n,R).

(d) Read through Exercises 2.14 – 2.16 from the textbook. This explains the
modifications of the above necessary to compute the low degree homotopy groups
and homology groups of the symplectic groups Sp2n(C) and their real compact
forms, Sp(2n,R). Show that all of these have vanishing π1, π2, H1 and H2. Thus,
the Hurewicz map from π3 to H3 is an isomorphism.

Problem 7 (Triviality of the second homotopy group of a connected Lie
group.) Read through the following, and work out the details for one or two
connected Lie groups. If you are not comfortable with higher homotopy groups,
consider only the case that G is simply connected. In this case, by the Hurewicz
theorem, π2 equals the homology group H2.
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All of the connected Lie groups in the previous examples had vanishing π2. In
fact that is always true. One proof reduces to the case of a compact, connected
Lie group. Via the Abelianization homomorphism, every such Lie group surjects
onto a product of copies of the circle (which has vanishing π2), where the kernel
is a compact, connected Lie group with finite fundamental group. Using the long
exact sequence of a fibration, it suffices to prove the result for a compact, connected
Lie group with finite fundamental group. Up to passing to the (finite) universal
covering, it suffices to prove the result for compact, connected, simply connected
Lie groups.

The proof then uses the remarkable fact (proved by Borel) that every such Lie
group is the compact form of a connected, simply connected, semisimple, complex
Lie group G, which retracts onto the original Lie group. Thus the two Lie groups
are homotopy equivalent, and it suffices to prove that π2(G) is trivial.

For a Borel subgroup B of G (which Borel proved exists), the quotient complex
manifold G/B is a complex projective manifold as in the first problem. Since B is
homotopy equivalent to a product of circles, which has vanishing π2, the long exact
sequence gives

0→ π2(G)→ π2(G/B)→ π1(B).

By the Hurewicz theorem, π2(G/B) equals H2(G/B), and this is a free Abelian
group by the Bruhat decomposition of the cellular homology of G/B.

Thus, the subgroup π2(G) of π2(G/B) is also a free Abelian group. By the Hurewicz
theorem again, also H2(G) equals π2(G), and this is a free Abelian group. The rank
of this group equals the Q-dimension of the Q-vector space H2(G;Q). By Hopf’s
theorem, the homologyH∗(G;Q) with its Pontryagin product is a connected, graded
commutative, Hopf Q-algebra that is isomorphic to a graded exterior algebra on
finitely many generators of odd degree. Since G is simply connected, H1(G;Q) is
zero. Thus, all generators are in odd degree ≥ 3. Therefore H2(G;Q) is zero.

Problem 8 (The third homotopy group of a connected, simply connected,
simple complex Lie group.) This exercise requires the use of spectral sequences.
Please read through this exercise, but only attempt if you are comfortable with
algebraic topology.

Let G be a connected, simply connected, simple complex Lie group. Let T ⊂ G be
a maximal torus. Let B ⊂ G be a Borel subgroup that contains T .

(a) Prove that the quotient holomorphic map

G/T → G/B

is a G-equivariant map of G-homogeneous complex manifolds. Conclude that the
map is a fiber bundle. Also, the fiber over the distinguished point B/B is the quo-
tient manifold B/T , which is isomorphic to a product of additive groups C. Thus,
the fibers are connected and contractible. Conclude that the quotient holomorphic
map is a homotopy equivalence. Thus, the homotopy, homology, and cohomology
of G/T equals the same for G/B. In particular, the Bruhat decomposition for G/B
describes the homology and cohomology of G/T .

(b) Since T has the homotopy type of a product of circles, all of its higher homotopy
groups are zero. Conclude that for every n ≥ 3, the following maps of homotopy

9

http://www.math.stonybrook.edu/~jstarr/M552s19/index.html
mailto:jstarr@math.stonybrook.edu


MAT 552 Lie Groups and Lie Algebras
Stony Brook University
Problem Set 2

Jason Starr
Spring 2019

groups are isomorpisms,

πn(G)
∼=−→ πn(G/T ) = πn(G/B), n ≥ 3.

Of course we also have the sequence

0 = π2(G)→ π2(G/T )
∼=−→ π1(T )→ π1(G) = 0.

(c) Show that the conjugation action of the Weyl group W ⊂ NG(T ) on G sends
left T -cosets to left T -cosets. Conclude that there is an induced action of W on the
quotient manifold G/T such that the quotient map

q : G→ G/T

is W -equivariant. Thus, the induced maps of homotopy groups, homology groups,
and cohomology groups are W -equivariant. Moreover, the Leray spectral sequences
associated to q converging to the homology, resp. cohomology, of G are W -
equivariant.

(d) Since the conjugation action of W on G is the restriction of the conjugation
action of the entire group G on G, and since G is path connected, conclude that
every conjugation map of G to itself is homotopic to the identity map. Conclude
that the W -action on the homotopy groups, homology groups, and cohomology
groups of G are all trivial. Thus, the image of the homotopy groups, resp. homology
groups, of G in the homotopy groups, resp. homology groups, of G/T are contained
in the W -invariant subgroup.

(e) Since T has the homotopy type of a product of circles, conclude that the
homology, resp. cohomology, of the linear complex torus T with its W -action is
an exterior algebra on its degree 1 part, which equals X∗(T ), resp. which equals
X∗(T ), with its natural W -action.

(f) Write down the low degree terms of the Leray spectral sequence associated
to q. Use the vanishing of H1(G;Z) and H2(G;Z) to conclude that the following
transgression map is a W -equivariant isomorphism,

H2(G/T ;Z)→ H1(T ;Z) = X∗(T ).

Using this, conclude that H3(G;Z) is the free Abelian group that is dual to the
kernel K of the cup product map

Sym2
ZX
∗(T )→ H4(G/T ;Z),

and K is W -invariant.

(g) From Borel’s theorem, conclude that K ⊗Q is the Q-span of the fundamental
invariant F1 of degree 2.

(h) If you know about Whitehead products, conclude that the pairing

[•, •] : π2(G/T )× π2(G/T )→ π3(G/T ) = π3(G)

equals the unique nonzero W -invariant symmetric, bilinear pairing on X∗(T ) =
π2(G), at least up to nonzero scaling. Since the Weyl group acts by isometries
of X∗(T ) ⊗ R with respect to this pairing that preserve all of the fundamental
invariants, conclude that we can recover the root system of (G,T ) from the data of
the cohomology algebra H∗(G/T ;Q).
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