MAT 543 FALL 2025 PROBLEM SET 7

Problem 1. (The \mathbb{C} -Lie algebra of derivations.) For every associative \mathbb{C} -algebra $(A, \cdot : A \times A \to A)$ and for every A-A-bimodule $(M, A \times M \xrightarrow{L} M, M \times A \xrightarrow{R} M)$ with $a \cdot (m \cdot b) = (a \cdot m) \cdot b)$, i.e., L(a, R(m, b)) = R(L(a, m), b), for every $(a, b) \in A \times A$ and for every $m \in M$, a \mathbb{C} -derivation of associative algebras from A to M is a \mathbb{C} -linear map θ from A to M such that every element (a, b) of $A \times A$ satisfies the *Leibniz rule*,

$$\theta(a \cdot b) = \theta(a) \cdot b + a \cdot \theta(b).$$

Prove that the subset $\mathrm{Der}_{\mathbb{C}}((A,\cdot,M))$ of $\mathrm{Hom}_{\mathbb{C}}(A,M)$ of all \mathbb{C} -derivations from A to M is a \mathbb{C} -vector subspace. In particular, a \mathbb{C} -derivation of associative algebras from A to itself is a derivation from A to A with its regular representation A-A-bimodule structure. **Prove** that the corresponding subspace $\mathrm{Der}_{\mathbb{C}}(A,\cdot)$ of the associative \mathbb{C} -algebra $\mathrm{End}_{\mathbb{C}}(A)$ is a \mathbb{C} -Lie subalgebra (for the usuall commutator bracket on the associative algebra).

Problem 2.(Derivations of \mathbb{C} -Lie algebras.) For every \mathbb{C} -Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$ and for every \mathfrak{g} - \mathfrak{g} -birepresentation $(M, \mathfrak{g} \times M \xrightarrow{L} M, M \times \mathfrak{g} \xrightarrow{R} M)$ (or, equivalently, for every bimodule for the universal enveloping algebra $U_{\mathbb{C}}(\mathfrak{g})$ of \mathfrak{g}), a \mathbb{C} -derivation of Lie algebras from \mathfrak{g} to the birepresentation M is a \mathbb{C} -linear map θ from \mathfrak{g} to M such that every element (X,Y) of $\mathfrak{g} \times \mathfrak{g}$ satisfies the *Lie algebra birepresentation Leibniz rule*,

$$\theta([X,Y]) = \theta(X) \cdot Y - X \cdot \theta(Y).$$

Prove that every \mathbb{C} -Lie algebra derivation from \mathfrak{g} to M extends uniquely to an associative algebra derivation from $U_{\mathbb{C}}(\mathfrak{g})$ to M. In particular, by the previous problem, the \mathbb{C} -vector subspace $\mathrm{Der}((\mathfrak{g},[\cdot,\cdot]),U_{\mathbb{C}}(\mathfrak{g}))$ is a \mathbb{C} -Lie algebra. A **derivation of a** \mathbb{C} -Lie algebra to itself is a \mathbb{C} -Lie algebra derivation θ from \mathfrak{g} to $U_{\mathbb{C}}(\mathfrak{g})$ such that $\theta(\mathfrak{g})$ is contained in the image subspace $\mathfrak{g} \stackrel{\iota_{\mathfrak{g}}}{\hookrightarrow} U_{\mathbb{C}}(\mathfrak{g})$. **Prove** that the \mathbb{C} -vector subspace of these is a \mathbb{C} -Lie subalgebra $\mathrm{Der}(\mathfrak{g},[\cdot,\cdot])$ of the \mathbb{C} -Lie algebra $\mathrm{Der}(\mathfrak{g},[\cdot,\cdot]),U_{\mathbb{C}}(\mathfrak{g}))$. **Prove** also that a derivation of \mathfrak{g} to itself is equivalent to a \mathbb{C} -linear endomorphism θ of \mathfrak{g} such that every element (X,Y) of $\mathfrak{g} \times \mathfrak{g}$ satisfies the Lie algebra Leibniz rule,

$$\theta([X,Y]) = [\theta(X),Y] + [X,\theta(Y)].$$

Finally, **prove** that the adjoint representation defines a morphism of \mathbb{C} -Lie algebras $\mathrm{ad}^{\mathfrak{g}}$ from \mathfrak{g} to $\mathrm{Der}_{\mathbb{C}}(\mathfrak{g},[\cdot,\cdot])$.

Problem 3.(Semidirect products.) For every \mathbb{C} -Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$, for every \mathbb{C} -Lie algebra $(\mathfrak{h}, [\cdot, \cdot])$, and for every morphism ϕ of \mathbb{C} -Lie algebras from \mathfrak{h} to $\mathrm{Der}_{\mathbb{C}}(\mathfrak{g})$, **prove** that the following operation on the product \mathbb{C} -vector space $\mathfrak{g} \times \mathfrak{h}$ defines a \mathbb{C} -Lie algebra, the semidirect product Lie algebra,

$$[(X, x), (Y, y)]_{\mathfrak{g}, \mathfrak{h}, \phi} := ([X, Y]_{\mathfrak{g}} + \phi_x(Y) - \phi_y(X), [x, y]_{\mathfrak{h}}).$$

The \mathbb{C} -Lie ideal $\mathfrak{g} \times \{0\}$ is identified with \mathfrak{g} . The quotient \mathbb{C} -Lie algebra by this \mathbb{C} -Lie ideal is identified with \mathfrak{h} , which is also identified with the \mathbb{C} -Lie subalgebra

 $\{0\} \times \mathfrak{h}$. The adjoint action of the semidirect product Lie algebra on the Lie ideal \mathfrak{g} restricts on the \mathbb{C} -Lie subalgebra \mathfrak{h} to the Lie algebra homomorphism ϕ . Finally, **prove** that for every \mathbb{C} -vector space V, the restriction map gives a bijection between representations on V of the semidirect product \mathbb{C} -Lie algebra and ordered pair of a representation of \mathfrak{g} on V and a representation of \mathfrak{h} on V that normalizes the \mathfrak{g} -representation via ϕ , i.e., for every $X \in \mathfrak{g}$, for every $x \in \mathfrak{H}$, and for every $v \in V$,

$$x \cdot (X \cdot v) - X \cdot (x \cdot v) = \phi_x(X) \cdot v.$$

Problem 4. (Levi's Theorem, I.) Let \mathfrak{g} be a finite dimensional \mathbb{C} -Lie algebra with trivial center whose solvable radical \mathfrak{r} is a nonzero Abelian Lie algebra. Also assume that the adjoint action of \mathfrak{g} on \mathfrak{r} is an irreducible representation of $\mathfrak{g}_{ss} = \mathfrak{g}/\mathfrak{r}$.

(a) Prove that the adjoint representation is faithful, so that \mathfrak{g} is a Lie subalgebra of the Lie algebra $\mathfrak{gl}(\mathfrak{g})$ associated to the associative (unital) algebra $\mathrm{End}_{\mathbb{C}}(\mathfrak{g})$.

(b) Define $\mathfrak a$ to be the subspace of $\operatorname{End}_{\mathbb C}(\mathfrak g)$ of linear endomorphisms of $\mathfrak g$ with image contained in $\mathfrak r$ and whose restriction to $\mathfrak r$ is a $\mathbb C$ -multiple of $\operatorname{Id}_{\mathfrak r}$. Define $\mathfrak b \subset \mathfrak a$ to be the subspace of such linear endomorphisms whose restriction to $\mathfrak r$ is the zero map. Prove that $\mathfrak a$ and $\mathfrak b$ are associative $\mathbb C$ -subalgebras of the associative $\mathbb C$ -algebra $\operatorname{End}_{\mathbb C}(\mathfrak g)$ (neither of these subalgebras is unital). Thus, the commutator bracket on each of these subalgebras realizes each as a Lie subalgebra of $\operatorname{End}_{\mathbb C}(\mathfrak g)$. Also check that $\mathfrak b$ is an Abelian Lie ideal in $\mathfrak a$, and the quotient Lie algebra is 1-dimensional (hence Abelian).

(c) Define $L_{\mathfrak{g}}$ to be the restriction to \mathfrak{g} of the left regular representation of $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ on itself, i.e., for every $X \in \mathfrak{g}$ and for every $\phi \in \operatorname{End}_{\mathbb{C}}(\mathfrak{g})$, the element $L_{\mathfrak{g}}(X) \cdot \phi$ in $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ equals

$$L_{\mathfrak{g}}(X) \cdot \phi : \mathfrak{g} \to \mathfrak{g}, \ Y \mapsto \operatorname{ad}_X \circ \phi(Y) = [X, \phi(Y)]_{\mathfrak{g}}.$$

Prove that the commutator of ad_X and ϕ in $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ equals

$$[\mathrm{ad}_X, \phi]_{\mathfrak{gl}(\mathfrak{g})} : \mathfrak{g} \to \mathfrak{g}, \ Y \mapsto [X, \phi(Y)]_{\mathfrak{g}} - \phi([X, Y]_{\mathfrak{g}}).$$

(d) Now consider the restriction to \mathfrak{g} of the adjoint representation of $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ on itself,

$$\operatorname{ad}':\mathfrak{g}\to\operatorname{End}_{\mathbb{C}}(\operatorname{End}_{\mathbb{C}}(\mathfrak{g})),\ \operatorname{ad}'_X(\phi):=[\operatorname{ad}_X,\phi]_{\operatorname{End}_{\mathbb{C}}(\mathfrak{g})}.$$

For every element X of \mathfrak{g} , prove that ad'_X is a \mathbb{C} -derivation from the \mathbb{C} -Lie algebra $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ to itself.

(e) Check that $\mathfrak a$ and $\mathfrak b$ are $\mathfrak g$ -subrepresentations of the $\mathfrak g$ -representation on $\operatorname{End}_{\mathbb C}(\mathfrak g)$ determined by ad'.

Problem 5. (Levi's Theorem, II.) This problem continues the previous problem.

(a) Check that for every $X \in \mathfrak{g}$ and for every $\phi \in \mathfrak{a}$, the element $\operatorname{ad}'_X(\phi)$ is contained in \mathfrak{b} . Conclude that the induced \mathfrak{g} -representation on the quotient $\mathfrak{a}/\mathfrak{b}$ is the trivial 1-dimensional \mathfrak{g} -representation.

(b) Check that the image under $\operatorname{ad}^{\mathfrak{g}}$ of \mathfrak{r} is a \mathfrak{g} -subrepresentation of \mathfrak{b} , i.e., \mathfrak{b} contains the element $\phi = \operatorname{ad}_X$ for every $X \in \mathfrak{r}$.

(c) Check that on the associated quotient spaces $\mathfrak{a}/\mathrm{ad}^{\mathfrak{g}}(\mathfrak{r})$ and $\mathfrak{b}/\mathrm{ad}^{\mathfrak{g}}(\mathfrak{r})$, the \mathfrak{g} -representation restricts as the zero representation on the Lie subalgebra \mathfrak{r} of \mathfrak{g} . Thus, the natural short exact sequence of \mathfrak{g} -representations,

$$0 \to \mathfrak{a}/\mathrm{ad}^{\mathfrak{g}}(\mathfrak{r}) \to \mathfrak{b}/\mathrm{ad}^{\mathfrak{g}}(\mathfrak{r}) \to \mathfrak{a}/\mathfrak{b} \to 0,$$

is actually a short exact sequence of \mathfrak{g}_{ss} -representations.

(d) Finally, use complete reducibility and triviality of the representation $\mathfrak{a}/\mathfrak{b}$ to conclude that there exists $\phi \in \mathfrak{a} \subset \operatorname{Hom}(\mathfrak{g},\mathfrak{r})$ restricting as the identity on \mathfrak{r} such that for every $X \in \mathfrak{g}$,

$$[\mathrm{ad}_X, \phi]_{\mathfrak{gl}(\mathfrak{g})} = \mathrm{ad}_{-\psi(X)},$$

for a unique linear map $\psi \in \text{Hom}(\mathfrak{g},\mathfrak{r})$. Thus, for every $(X,Y) \in \mathfrak{g} \times \mathfrak{g}$,

$$\phi([X,Y]_{\mathfrak{g}}) = [X,\phi(Y)]_{\mathfrak{g}} + [\psi(X),Y]_{\mathfrak{g}}.$$

Define \mathfrak{g}' to be the kernel of ψ .

(e) Check that $\psi(X)$ equals 0 if and only if, for every $Y \in \mathfrak{g}$,

$$\phi([X,Y]_{\mathfrak{g}}) = [X,\phi(Y)]_{\mathfrak{g}}.$$

For $X_1, X_2 \in \mathfrak{g}$, since

$$[[X_1, X_2]_{\mathfrak{g}}, Y]_{\mathfrak{g}} = [X_1, [X_2, Y]_{\mathfrak{g}}]_{\mathfrak{g}} - [X_2, [X_1, Y]_{\mathfrak{g}}]_{\mathfrak{g}},$$

deduce that for every $(X_1, X_2) \in \mathfrak{g} \times \mathfrak{g}$.

$$\phi([[X_1,X_2]_{\mathfrak{g}},Y]_{\mathfrak{g}}) = \phi([X_1,[X_2,Y]_{\mathfrak{g}}]_{\mathfrak{g}}) - \phi([X_2,[X_1,Y]_{\mathfrak{g}}]_{\mathfrak{g}}) =$$

$$[X_{1},\phi([X_{2},Y]_{\mathfrak{g}})]_{\mathfrak{g}} - [X_{2},\phi([X_{1},Y]_{\mathfrak{g}})]_{\mathfrak{g}} = [X_{1},[X_{2},\phi(Y)]_{\mathfrak{g}}]_{\mathfrak{g}} - [X_{2},[X_{1},\phi(Y)]_{\mathfrak{g}}]_{\mathfrak{g}} = [[X_{1},X_{2}]_{\mathfrak{g}},\phi(Y)]_{\mathfrak{g}}.$$

Thus, also $[X_1, X_2]_{\mathfrak{g}}$ is in \mathfrak{g}' . Conclude that \mathfrak{g}' is a Lie subalgebra of \mathfrak{g} .

(f) Finally, since \mathfrak{r} is an Abelian Lie algebra, check that for every $X \in \mathfrak{r}$ and for every $Y \in \mathfrak{g}$,

$$[X,Y]_{\mathfrak{g}} = [\psi(X),Y]_{\mathfrak{g}}.$$

Since the adjoint representation is faithful, conclude that also ψ is an element of $\mathfrak a$ that restricts as the identity on $\mathfrak r$. Therefore the kernel $\mathfrak g'$ is a complementary subspace to $\mathfrak r$ in $\mathfrak g$. Altogether, for every complex Lie algebra $\mathfrak g$ of finite dimension whose solvable radical is Abelian and gives an irreducible representation of $\mathfrak g_{ss}$ via the adjoint action, the Lie algebra is the semidirect product of the kernel $\mathfrak g'\cong\mathfrak g_{ss}$ and of the solvable radical.

Problem 6. (Levi's Theorem, III.) Now for every finite dimensional \mathbb{C} -Lie algebra \mathfrak{g} prove that \mathfrak{g} is a semidirect product of its solvable radical \mathfrak{r} and its semisimple part $\mathfrak{g}_{ss} := \mathfrak{g}/\mathfrak{r}$ by induction on the dimension of \mathfrak{g} .

If either \mathfrak{r} or \mathfrak{g}_{ss} is trivial, the result holds tautologically. Thus, assume that both of these are nontrivial.

If \mathfrak{r} is solvable but not Abelian, then for the quotient of \mathfrak{g} by the nonzero commutator Lie ideal $[\mathfrak{r},\mathfrak{r}]_{\mathfrak{g}}$, conclude that there is a Lie subalgebra of the quotient that is isomorphic to \mathfrak{g}_{ss} . The inverse image of this Lie subalgebra in \mathfrak{g} is proper in \mathfrak{g} (thus has smaller dimension), and it has the same semisimple part. Use the induction hypothesis to conclude that there is a Lie subalgebra \mathfrak{g}' complementary to \mathfrak{r} inside this proper Lie subalgebra that maps isomorphically to \mathfrak{g}_{ss} . Thus, Levi's Theorem holds in this setting.

Finally, if \mathfrak{r} is Abelian, yet the adjoint action of \mathfrak{g}_{ss} on \mathfrak{r} is reducible, then the quotient of \mathfrak{g} by a proper, nonzero subrepresentation of \mathfrak{r} has smaller dimension, thus has a Levi subalgebra. The inverse image in \mathfrak{g} of this Levi subalgebra is a proper Lie subalgebra of \mathfrak{g} that has the same semisimple part. Once again use the induction hypothesis to conclude that there exists a Levi subalgebra in \mathfrak{g} .

Problem 7.(Lie's Theorem.) Let \mathfrak{g} be a finite-dimensional \mathbb{C} -Lie algebra, let \mathfrak{h} be a \mathbb{C} -Lie ideal in \mathfrak{g} , and let (V, ρ) be a \mathbb{C} -linear representation of \mathfrak{g} of finite dimension. Let λ denote a morphism of \mathbb{C} -Lie algebras from \mathfrak{h} to the unique 1-dimensional \mathbb{C} -Lie algebra,

$$\lambda: \mathfrak{h} \to \mathbb{C}, \quad X \mapsto \langle \lambda, X \rangle \in \mathbb{C}.$$

For every integer $r \geq 0$, denote by $V^r_{\mathfrak{h},\lambda}$ the simultaneous kernel in V over all $X \in \mathfrak{h}$ of the \mathbb{C} -linear endomorphisms $(\rho_X - \langle \lambda, X \rangle \mathrm{Id}_V)^{1+r}$. The subspace $V^0_{\mathfrak{h},\lambda}$ is the \mathfrak{h} -eigenspace of V with weight λ . The nondecreasing sequence of \mathbb{C} -subspaces $(V^r_{\mathfrak{h},\lambda})_{r=0,1,\dots}$ stabilizes to the \mathfrak{h} -generalized eigenspace $V^{\mathrm{gen}}_{\mathfrak{h},\lambda}$ of V.

- (a) Prove that each \mathbb{C} -subspace $V_{\mathfrak{h},\lambda}^r$ is an \mathfrak{h} -subrepresentation of V.
- (b) For every $Y \in \mathfrak{g}$, since $ad_Y(X)$ is in \mathfrak{h} for every $X \in \mathfrak{h}$, use the identity,

$$\rho_Y \circ \rho_X - \rho_X \circ \rho_Y = \rho_{\mathrm{ad}_Y(X)},$$

to conclude that ρ_Y maps $V_{\mathfrak{h},\lambda}^r$ to $V_{\mathfrak{h},\lambda}^{1+r}$. Conclude that $V_{\mathfrak{h},\lambda}^{\mathrm{gen}}$ is a \mathfrak{g} -subrepresentation.

- (c) Prove that Lie's Theorem is equivalent to Lie's Lemma: each eigenspace $V^r_{\mathfrak{h},\lambda}$ is a \mathfrak{g} -subrepresentation of V. Also show that this is equivalent to the claim that for every λ with $V^{\mathrm{gen}}_{\mathfrak{h},\lambda}$ nonzero (i.e., for each \mathfrak{h} -weight of the representation), for every $X \in \mathfrak{h}$ and for every $Y \in \mathfrak{g}$, the pairing $\langle \lambda, \mathrm{ad}_Y(X) \rangle$ is zero.
- (d) For a nonzero element v in $V_{\mathfrak{h},\lambda}^0$, prove that the smallest ρ_Y -stabilized \mathfrak{h} -subrepresentation W that contains v has a basis of the form $(\rho_Y^0(v),\ldots,\rho_Y^{m-1}(v))$ for some positive integer m.
- (e) Check that W is a generalized eigenspace of $\rho_{\mathrm{ad}_Y(X)}$ with eigenvalue $\langle \lambda, \mathrm{ad}_Y(X) \rangle$, so that the trace of $\rho_{\mathrm{ad}_Y(X)}$ on W equals $m\langle \lambda, \mathrm{ad}_Y(X) \rangle$. However, since $\rho_{\mathrm{ad}_Y(X)}$ equals a commutator of $\mathbb C$ -linear endomorphisms of W, namely $\rho_Y \circ \rho_X \rho_X \circ \rho_Y$, conclude that the trace equals 0. Since the characteristic of $\mathbb C$ equals 0, conclude that $\langle \lambda, \mathrm{ad}_Y(X) \rangle$ is zero, proving Lie's Lemma (and thus Lie's Theorem).
- (f) Finally, if \mathfrak{h} is solvable, use induction along the lower central series to prove that for every Jordan-Hölder filtration of (V, ρ) by \mathfrak{g} -subrepresentations, every simple factor is an \mathfrak{h} -eigenspace for some weight λ , and thus every \mathbb{C} -subspace of the representation is a \mathfrak{h} -subrepresentation. This is equivalent to Lie's Theorem.

Problem 8.(Engel's Theorem.) Consider the following assertion (the weak form of Engel's Theorem). A finite-dimensional \mathbb{C} -linear representation V of a \mathbb{C} -Lie algebra \mathfrak{g} is a **nilpotent representation** if the image of \mathfrak{g} in $\mathrm{End}_{\mathbb{C}}(V)$ is contained in the nilpotent cone of $\mathrm{End}_{\mathbb{C}}(V)$, i.e., every image element is a nilpotent linear transformation of V.

Theorem 0.1 (Weak Engel's Theorem). For every finite-dimensional, nilpotent representation of a \mathbb{C} -Lie algebra, the \mathbb{C} -Lie algebra annihilates a nonzero vector.

Obviously this is a property only of the image of \mathfrak{g} in $\operatorname{End}_{\mathbb{C}}(V)$, which is a \mathbb{C} -Lie algebra of finite dimension. Thus, it suffices to prove the result for finite-dimensional \mathbb{C} -Lie algebras that have a faithful, finite-dimensional \mathbb{C} -linear representation.

- (a) For a Lie algebra $\mathfrak g$ as above, for every $\mathfrak g$ -subrepresentation W of V, prove that the images of $\mathfrak g$ in both $\mathfrak g\mathfrak l(W)$ and $\mathfrak g\mathfrak l(V/W)$ are contained in the nilpotent cones. Up to replacing $\mathfrak g$ by its image in $U=\mathfrak g\mathfrak l(V)$, assume that the action on V is faithful. For the adjoint action of $\mathfrak g$ on $U=\mathfrak g\mathfrak l(V)$, check that the image of $\mathfrak g$ is contained in the nilpotent cone of $\mathfrak g\mathfrak l(U)$. In particular, the adjoint image of $\mathfrak g$ in $\mathfrak g\mathfrak l(\mathfrak g)$ is contained in the nilpotent cone, so that $\mathfrak g$ is a nilpotent Lie algebra. In the not necessarily faithful case, the quotient of $\mathfrak g$ by the kernel of the representation is a nilpotent Lie algebra.
- (b) If g has dimension 0 or 1, prove the weak form of Engel's Theorem.

Now, by way of induction, assume that \mathfrak{g} has dimension >1, and assume the weak Engel's Theorem is true for all Lie subalgebras that have strictly smaller dimension than the dimension of \mathfrak{g} .

- (c) For every proper Lie subalgebra $\mathfrak h$ of $\mathfrak g$ containing the kernel of ρ that is maximal among proper Lie subalgebras of $\mathfrak g$ containing the kernel of ρ , conclude that the adjoint action of $\mathfrak h$ on $\mathfrak g$ is nilpotent and preserves $\mathfrak h$. Thus the induced representation of $\mathfrak h$ on $\mathfrak g/\mathfrak h$ is nilpotent. By the induction hypothesis, conclude that there exists an element X of $\mathfrak g \setminus \mathfrak h$ such that the adjoint action of $\mathfrak h$ on X has image contained in $\mathfrak h$, i.e., $[X,\mathfrak h] \subset \mathfrak h$. Deduce that $\mathfrak h + \operatorname{span}(X)$ is a Lie subalgebra of $\mathfrak g$ containing the kernel of ρ and that strictly contains $\mathfrak h$. Since $\mathfrak h$ was maximal among proper Lie subalgebras, deduce that $\mathfrak h + \operatorname{span}(X)$ equals $\mathfrak g$. Thus, $\mathfrak h$ is a subspace of $\mathfrak g$ of codimension 1, and it is a Lie ideal.
- (d) Continuing the previous part, use the induction hypothesis to conclude that there exists a nonzero vector w of V that is annihilated by \mathfrak{h} . If also w is annihilated by the action of X, deduce that v=w satisfies the weak form of Engel's Theorem. If w is not annihilated by the action of X, deduce that $v=X\cdot w$ satisfies the weak form of Engel's Theorem. Thus, the weak form of Engel's Theorem holds by induction on the dimension of \mathfrak{g} .
- (e) Use the weak form of Engel's Theorem and induction on the dimension of V to conclude the strong form of Engel's Theorem:

Theorem 0.2 (Engel's Theorem). Every finite-dimensional, nilpotent representation of a \mathbb{C} -Lie algebra \mathfrak{g} admits a maximal flag of \mathbb{C} -linear subspaces that are \mathfrak{g} -subrepresentations whose associated graded 1-dimensional \mathfrak{g} -representations are each trivial.

There is a slightly sharper version, as follows. Now let \mathfrak{g} be a finite-dimensional Lie algebra, let \mathfrak{n} be a Lie ideal in \mathfrak{g} , and let (V, ρ) be a nonzero, finite-dimensional \mathfrak{g} -representation whose restriction to \mathfrak{n} acts nilpotently on V. By the weak form of Engel's Theorem, the annihilator $V^{\mathfrak{n}}$ in V of \mathfrak{n} is nonzero. Of course $V^{\mathfrak{n}}$ is a \mathfrak{n} -subrepresentation of the \mathfrak{n} -representation V (the "invariant subrepresentation").

(f) Since \mathfrak{n} is a Lie ideal in \mathfrak{g} , prove that $V^{\mathfrak{n}}$ is, in fact, a \mathfrak{g} -subrepresentation of V. By considering the induced action of \mathfrak{g} on the quotient $V/V^{\mathfrak{n}}$ and using induction on the dimension of V, conclude the following variant of Engel's Theorem.

Corollary 0.3. For every finite-dimensional representation (V, ρ) of a Lie algebra $\mathfrak g$ and for every Lie ideal $\mathfrak n$ of $\mathfrak g$ that acts nilpotently on V, for every Jordan-Hölder filtration of (V, ρ) by $\mathfrak g$ -subrepresentations, every simple factor is a trivial $\mathfrak n$ -subrepresentation.

(g) For a finite-dimensional \mathbb{C} -linear representation (V,ρ) of a Lie algebra \mathfrak{g} , and for Lie ideals \mathfrak{m} and \mathfrak{n} that both act nilpotently on V, for the flag of \mathfrak{g} -subrepresentations as above such that \mathfrak{n} acts trivially on the associated graded \mathfrak{g} -representations, conclude that the \mathfrak{m} -action on each associated graded \mathfrak{g} -representation is nilpotent. Thus, there exists a flag of \mathfrak{g} -subrepresentations of each associated graded \mathfrak{g} -subrepresentations, such that \mathfrak{m} also acts trivially on the new associated graded \mathfrak{g} -subrepresentations. Conclude that there exists a refinement of the original flag to a flag of \mathfrak{g} -subrepresentations of V such that the action of $\mathfrak{m}+\mathfrak{n}$ on each associated graded \mathfrak{g} -representation is trivial. Altogether, this proves the following.

Corollary 0.4. For every finite dimensional representation of a Lie algebra \mathfrak{g} , for every pair of Lie ideals, \mathfrak{m} and \mathfrak{n} , that both act nilpotently on the representation, also the Lie ideal $\mathfrak{m} + \mathfrak{n}$ acts nilpotently on the representation. Thus, there exists a maximal Lie ideal of \mathfrak{g} that acts nilpotently on the representation.

The maximal Lie ideal of \mathfrak{g} that acts nilpotently on a given finite-dimensional representation (V, ρ) is the **nilradical of the representation**, $\operatorname{nil}_{\rho}(\mathfrak{g})$.

- (h) In particular, apply this to the adjoint representation $(\mathfrak{g}, \mathrm{ad}_{\mathfrak{g}})$ to conclude that there exists a flag of Lie ideals in \mathfrak{g} whose associated graded Lie algebras are each trivial representations when restricted to the nilradical of the Lie algebra, $\mathrm{nil}(\mathfrak{g}) = \mathrm{nil}_{\mathrm{ad}}(\mathfrak{g})$.
- (i) Let (V, ρ) be a finite-dimensional representation of a finite-dimensional Lie algebra \mathfrak{g} such that the associated representation $V/V^{\mathfrak{g}}$ of the quotient Lie algebra $\mathfrak{g}/\mathrm{nil}_{\rho}(\mathfrak{g})$ is nilpotent. Use induction on the dimension of V to prove that $\mathrm{nil}_{\rho}(\mathfrak{g})$ equals all of \mathfrak{g} . Conclude the following corollary.

Corollary 0.5. A \mathbb{C} -Lie algebra acts nilpotently on a finite-dimensional \mathbb{C} -linear representation if the \mathbb{C} -Lie algebra is the sum of a \mathbb{C} -Lie ideal and a \mathbb{C} -Lie subalgebra, each of which act nilpotently on the representation.

Problem 9.(Jordan canonical form via polynomials). For every \mathbb{C} -vector space V of finite dimension $d \geq 1$, for every \mathbb{C} -linear endomorphism X of V, by the Fundamental Theorem of Algebra the characteristic polynomial of X factors into a product of powers of distinct monic linear factors,

$$\det_V(t\mathrm{Id}_V - X) = (t - \lambda_1)^{e_1} \cdots (t - \lambda_\ell)^{e_\ell}, \ e_i \in \mathbb{Z}_{\geq 1}, \ e_1 + \cdots + e_\ell = d,$$

for a finite collection $\{\lambda_1, \dots, \lambda_\ell\}$ of pairwise distinct complex numbers. The morphism of associative, unital \mathbb{C} -algebras,

$$\operatorname{ev}_X^V : \mathbb{C}[t] \to \operatorname{End}_{\mathbb{C}}(V), \quad c_r t^r + \dots + c_1 t + c_0 \mapsto c_r X^r + \dots + c_1 X + c_0 \operatorname{Id}_V,$$

factors through the quotient $\mathbb{C}[t]/\det_V(t\mathrm{Id}_V-X)$ by the Cayley-Hamilton theorem. Use the Chinese Remainder Theorem to **prove** that the image of ev_X^V consists of all \mathbb{C} -linear endomorphisms Y of V such that for every $i=1\ldots,\ell$, both Y maps the generalized eigenspace $V_i:=\mathrm{Ker}(\lambda_i\mathrm{Id}_V-X)^{e_i}$ to itself, and the restriction of Y to V_i equals some polynomial (possibly depending on i) applied to the restriction of X to

 V_i . In particular, for every $i=1,\ldots,\ell$, both the endomorphism $X_{\mathrm{ss},i}$, respectively the endomorphism $X_{\mathrm{nil},i}$ are in the image, where $X_{\mathrm{ss},i}$ and $X_{\mathrm{nil},i}$ restrict on V_j as zero for every $j\neq i$, and where $X_{\mathrm{ss},i}$ restricts on V_i as $\lambda_i \mathrm{Id}_{V_i}$, resp. where $X_{\mathrm{nil},i}$ restricts on V_i as the restriction of $X-\lambda_i \mathrm{Id}_V$. Deduce that also the sums $X_{\mathrm{ss}}:=X_{\mathrm{ss},1}+\cdots+X_{\mathrm{ss},\ell}$ and $X_{\mathrm{nil}}:=X_{\mathrm{nil},1}+\cdots+X_{\mathrm{nil},\ell}$ are in the image. Of course X_{ss} is semisimple, X_{nil} is nilpotent, X equals the sum of these two, and X_{ss} commutes with X_{nil} ; this is the **Jordan canonical form** decomposition of X. Similarly, each projection pr_i from V to V_i is in the image (since its restriction to each V_j is zero for $j\neq i$ and its restriction to V_i equals Id_{V_i}). Finally, the operator $\overline{X}_{\mathrm{ss}}:=\overline{\lambda}_1\mathrm{pr}_1+\cdots+\overline{\lambda}_\ell\mathrm{pr}_\ell$ is in the image.

Problem 10.(Cartan's solvability criterion.) For every \mathbb{C} -vector space V of finite dimension d, recall the \mathbb{C} -Lie algebra homomorphism,

$$\operatorname{ad}^V:\operatorname{End}_{\mathbb{C}}(V)\to\operatorname{End}_{\mathbb{C}}(\operatorname{End}_{\mathbb{C}}(V)),\ X\mapsto (\operatorname{ad}_X^V:Y\to X\circ Y-Y\circ X).$$

For every element X of $\operatorname{End}_{\mathbb{C}}(V)$, **prove** that the semisimple part of ad_X^V equals $\operatorname{ad}_{X_{\operatorname{ss}}}^V$, and the characteristic polynomial of this endomorphism depends only on the characteristic polynomial of X (and on d, the degree of that polynomial). Thus this endomorphism is the evaluation on ad_X^V of a polynomial of $\operatorname{degree} \leq d^2$ that only depends on the characteristic polynomial of X. Also the nilpotent part of ad_X^V , namely $\operatorname{ad}_{X_{\operatorname{nil}}}^V$, equals the evaluation on ad_X^V of such a polynomial. Most pertinently, the endomorphism $\operatorname{ad}_{X_{\operatorname{ss}}}^V$ equals the evaluation on ad_X^V of such a polynomial whose constant coefficient equals 0. Thus, for every element Y of $\operatorname{End}_{\mathbb{C}}(V)$, in the smallest \mathbb{C} -Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(V)$ containing both X and Y, there exist elements Z and W such that $[X_{\operatorname{ss}},Y]$ equals $[X,Z]_{\mathfrak{g}}$ and $[\overline{X}_{\operatorname{ss}},Y]$ equals $[X,W]_{\mathfrak{g}}$. This gives the following important result.

Theorem 0.6 (Cartan's solvability criterion, I). A \mathbb{C} -Lie subalgebra \mathfrak{g} of $End_{\mathbb{C}}(V)$ is solvable if, for every element X of the commutator ideal $[\mathfrak{g},\mathfrak{g}]$ and for every element Y of \mathfrak{g} , the trace of the endomorphism $X \circ Y$ equals 0.

Proof. For every commutator [Y',Y] in $[\mathfrak{g},\mathfrak{g}]$, for every element X of \mathfrak{g} , the trace of $\overline{X}_{\mathrm{ss}} \circ [Y',Y]$ equals the trace of $[\overline{X}_{\mathrm{ss}},Y] \circ Y'$, using the invariance of the trace under cyclic invariance of factors in a composition. By the previous exercise, $[\overline{X}_{\mathrm{ss}},Y]$ equals [X,Z] for some $Z \in \mathfrak{g}$. Thus, the the trace of $\overline{X}_{\mathrm{ss}} \circ [Y',Y]$ equals the trace of $[X,Z] \circ Y'$ for elements X,Y' and Z of \mathfrak{g} , and this equals 0 by the hypothesis. In particular, if X itself is in $[\mathfrak{g},\mathfrak{g}]$, i.e., a sum of finitely many commutators $[Y_i,Y_i']$ for elements Y_i and Y_i' of \mathfrak{g} , then it follows that the trace of $\overline{X}_{\mathrm{ss}} \circ X$ equals 0. Of course this can happen if and only if every eigenvalue of X equals 0, i.e., if and only if X is nilpotent. So the hypotheses imply that the \mathbb{C} -Lie ideal $[\mathfrak{g},\mathfrak{g}]$ is nilpotent, by Engel's theorem. Thus \mathfrak{g} is solvable.