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MAT 543 FALL 2025 PROBLEM SET 7

Problem 1. (The C-Lie algebra of derivations.) For every associative C-

algebra (A, : Ax A — A) and for every A-A-bimodule (M, Ax M L, M,MxA EiN
M) with a - (m -b) = (a-m)-b), ie., L(a,R(m,b)) = R(L(a,m),b), for every
(a,b) € A x A and for every m € M, a C-derivation of associative algebras
from A to M is a C-linear map 6 from A to M such that every element (a,b) of
A x A satisfies the Leibniz rule,

O(a-b)=0(a) - b+a-6(b).

Prove that the subset Derc((4, -, M) of Homc (A, M) of all C-derivations from A to
M is a C-vector subspace. In particular, a C-derivation of associative algebras
from A to itself is a derivation from A to A with its regular representation A-
A-bimodule structure. Prove that the corresponding subspace Derc(A,-) of the
associative C-algebra End¢(A) is a C-Lie subalgebra (for the usuall commutator
bracket on the associative algebra).

Problem 2.(Derivations of C-Lie algebras.) For every C-Lie algebra (g, [, ])

and for every g-g-birepresentation (M, g x M Lom ,Mxg RNy Vs ) (or, equivalently,
for every bimodule for the universal enveloping algebra Uc(g) of g), a C-derivation
of Lie algebras from g to the birepresentation M is a C-linear map 6 from g to
M such that every element (X,Y") of g x g satisfies the Lie algebra birepresentation
Leibniz rule,
(X, Y])=0(X) Y - X -0(Y).

Prove that every C-Lie algebra derivation from g to M extends uniquely to an
associative algebra derivation from Uc(g) to M. In particular, by the previous
problem, the C-vector subspace Der((g, [-,]), Uc(g)) is a C-Lie algebra. A deriva-
tion of a C-Lie algebra to itself is a C-Lie algebra derivation 0 from g to Uc(g)

such that 0(g) is contained in the image subspace g N Uc(g). Prove that the
C-vector subspace of these is a C-Lie subalgebra Der(g, [-,+]) of the C-Lie algebra
Der((g,[-,:]), Uc(g)). Prove also that a derivation of g to itself is equivalent to a
C-linear endomorphism 6 of g such that every element (X,Y") of g x g satisfies the
Lie algebra Leibniz rule,

O([X,Y]) = [0(X), Y]+ [X,0(Y)].

Finally, prove that the adjoint representation defines a morphism of C-Lie algebras
ad® from g to Derc(g, [, ])-

Problem 3.(Semidirect products.) For every C-Lie algebra (g, [, -]), for every C-
Lie algebra (b, [-,]), and for every morphism ¢ of C-Lie algebras from b to Derc(g),
prove that the following operation on the product C-vector space g x hh defines a
C-Lie algebra, the semidirect product Lie algebra,

(X, 2), (Vs 9)an.0 := (X, Y]g + ¢ (Y) = ¢y (X), [, yly)-
The C-Lie ideal g x {0} is identified with g. The quotient C-Lie algebra by this
C-Lie ideal is identified with §, which is also identified with the C-Lie subalgebra
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{0} x h. The adjoint action of the semidirect product Lie algebra on the Lie ideal
g restricts on the C-Lie subalgebra b to the Lie algebra homomorphism ¢. Finally,
prove that for every C-vector space V, the restriction map gives a bijection between
representations on V of the semidirect product C-Lie algebra and ordered pair of
a representation of g on V and a representation of h on V that normalizes the
g-representation via ¢, i.e., for every X € g, for every x € §), and for every v € V,

(X -v)— X (z-v) = ¢ (X) 0.

Problem 4. (Levi’s Theorem, I.) Let g be a finite dimensional C-Lie algebra
with trivial center whose solvable radical t is a nonzero Abelian Lie algebra. Also
assume that the adjoint action of g on t is an irreducible representation of gy = g/t.

(a) Prove that the adjoint representation is faithful, so that g is a Lie subalgebra
of the Lie algebra gl(g) associated to the associative (unital) algebra Endc(g).

(b) Define a to be the subspace of Endc(g) of linear endomorphisms of g with
image contained in v and whose restriction to v is a C-multiple of Id,. Define b C a
to be the subspace of such linear endomorphisms whose restriction to v is the zero
map. Prove that a and b are associative C-subalgebras of the associative C-algebra
Endc(g) (neither of these subalgebras is unital). Thus, the commutator bracket on
each of these subalgebras realizes each as a Lie subalgebra of Endc(g). Also check

that b is an Abelian Lie ideal in a, and the quotient Lie algebra is 1-dimensional
(hence Abelian).

(c) Define Ly to be the restriction to g of the left regular representation of Endc(g)
on itself, i.e., for every X € g and for every ¢ € Endc(g), the element Ly(X) - ¢ in
Endc(g) equals

Ly(X)-¢:g—9, Yiradyod(Y)=[X, oY)l
Prove that the commutator of adx and ¢ in Endc(g) equals

[adX7¢]g[(g) ‘g—9, Y [X7¢(Y)]g - ¢([X7 Y]g)

(d) Now consider the restriction to g of the adjoint representation of Endc¢(g) on
itself,

ad’: g — Endc(Ende(9)), adx(¢) := [adx, dlende(o)-

For every element X of g, prove that ad’y is a C-derivation from the C-Lie algebra
Endc(g) to itself.

(e) Check that a and b are g-subrepresentations of the g-represenation on Endc(g)
determined by ad’.

Problem 5. (Levi’s Theorem, II.) This problem continues the previous problem.

(a) Check that for every X € g and for every ¢ € a, the element ad’y (¢) is contained
in b. Conclude that the induced g-representation on the quotient a/b is the trivial
1-dimensional g-representation.

(b) Check that the image under ad® of v is a g-subrepresentation of b, i.e., b contains
the element ¢ = adx for every X € t.
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(c) Check that on the associated quotient spaces a/ad?(r) and b/ad®(t), the g-
representation restricts as the zero representation on the Lie subalgebra v of g.
Thus, the natural short exact sequence of g-representations,

0 — a/ad?(xr) — b/ad®(x) = a/b — 0,
is actually a short exact sequence of ggs-representations.

(d) Finally, use complete reducibility and triviality of the representation a/b to
conclude that there exists ¢ € a C Hom(g, t) restricting as the identity on t such
that for every X € g,

[adx, Plgi(g) = ad—y(x),
for a unique linear map ¢ € Hom(g, t). Thus, for every (X,Y) € g x g,

d)([X? Y]g) = [Xa ¢(Y)}Q + [w(X)v Y]Q
Define g’ to be the kernel of .
(e) Check that 1(X) equals 0 if and only if, for every Y € g,
For X, X, € g, since
[[Xla X2]97Y]g = [le [X27Y]9]9 - [X2’ [Xlﬂ Y]Q]B’
deduce that for every (X7, X2) € g X g,
d)([[Xl:XQ]Ea Y]E) = ¢([X17 [X27Y]9]9) - ¢([X2a [le Y]E}Q) =

[X1>¢([X2ay]g)]g - [X27¢([X17Y]g)]g = [Xh [X27¢(Y)]g]g - [XZa [X1a¢(y)]g]g =
[[X1, Xa]g, 9(Y)]g-
Thus, also [X7, Xs]g is in g’. Conclude that g’ is a Lie subalgebra of g.

(f) Finally, since v is an Abelian Lie algebra, check that for every X € v and for
every Y € g,
(X, Y] = [(X), Y.

Since the adjoint representation is faithful, conclude that also v is an element of
a that restricts as the identity on tv. Therefore the kernel g’ is a complementary
subspace to t in g. Altogether, for every complex Lie algebra g of finite dimension
whose solvable radical is Abelian and gives an irreducible representation of ggs via
the adjoint action, the Lie algebra is the semidirect product of the kernel g’ = g
and of the solvable radical.

Problem 6. (Levi’s Theorem, III.) Now for every finite dimensional C-Lie
algebra g prove that g is a semidirect product of its solvable radical v and its
semisimple part gss := g/t by induction on the dimension of g.

If either ¢ or gg is trivial, the result holds tautologically. Thus, assume that both
of these are nontrivial.

If v is solvable but not Abelian, then for the quotient of g by the nonzero commutator
Lie ideal [v,t]q, conclude that there is a Lie subalgebra of the quotient that is
isomorphic to gss. The inverse image of this Lie subalgebra in g is proper in g (thus
has smaller dimension), and it has the same semisimple part. Use the induction
hypothesis to conclude that there is a Lie subalgebra g’ complementary to t inside
this proper Lie subalgebra that maps isomorphically to gss. Thus, Levi’s Theorem
holds in this setting.
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Finally, if ¢ is Abelian, yet the adjoint action of gss on v is reducible, then the
quotient of g by a proper, nonzero subrepresentation of v has smaller dimension,
thus has a Levi subalgebra. The inverse image in g of this Levi subalgebra is a
proper Lie subalgebra of g that has the same semisimple part. Once again use the
induction hypothesis to conclude that there exists a Levi subalgebra in g.

Problem 7.(Lie’s Theorem.) Let g be a finite-dimensional C-Lie algebra, let
h be a C-Lie ideal in g, and let (V,p) be a C-linear representation of g of finite
dimension. Let A denote a morphism of C-Lie algebras from h to the unique 1-
dimensional C-Lie algebra,

A:h—=C, X—(\X)eC.

For every integer r > 0, denote by Vi, the simultaneous kernel in V" over all X € b
of the C-linear endomorphisms (px — (A, X)Idy ). The subspace Vho,)\ is the
h-eigenspace of V with weight A. The nondecreasing sequence of C-subspaces
(Vi A)r=0,1,... stabilizes to the h-generalized eigenspace Vi*{" of V.

(a) Prove that each C-subspace V{, is an h-subrepresentation of V.
(b) For every Y € g, since ady (X) is in b for every X € b, use the identity,
Py ©PX — PX CPY = Pady (X)>
to conclude that py maps Vy' to V;}\LT. Conclude that Vi>}" is a g-subrepresentation.

(c) Prove that Lie’s Theorem is equivalent to Lie’s Lemma: each eigenspace Vi is
a g-subrepresentation of V. Also show that this is equivalent to the claim that for
every A with ngin nonzero (i.e., for each h-weight of the representation), for every

X € b and for every Y € g, the pairing (A, ady (X)) is zero.

(d) For a nonzero element v in Vho)\, prove that the smallest py-stabilized b-

subrepresentation W that contains v has a basis of the form (p$ (v), ..., p5 ! (v))
for some positive integer m.

(e) Check that W is a generalized eigenspace of p,q, (x) with eigenvalue (A, ady (X)),
so that the trace of p,q, (x) on W equals m(}, ady (X)). However, since paq, (x)
equals a commutator of C-linear endomorphisms of W, namely py o px — px © py,
conclude that the trace equals 0. Since the characteristic of C equals 0, conclude
that (A, ady (X)) is zero, proving Lie’s Lemma (and thus Lie’s Theorem).

() Finally, if b is solvable, use induction along the lower central series to prove that
for every Jordan-Holder filtration of (V,p) by g-subrepresentations, every simple
factor is an h-eigenspace for some weight A, and thus every C-subspace of the
representation is a h-subrepresentation. This is equivalent to Lie’s Theorem.

Problem 8.(Engel’s Theorem.) Consider the following assertion (the weak form
of Engel’s Theorem). A finite-dimensional C-linear representation V' of a C-Lie
algebra g is a nilpotent representation if the image of g in End¢ (V) is contained
in the nilpotent cone of End¢(V), i.e., every image element is a nilpotent linear
transformation of V.

Theorem 0.1 (Weak Engel’s Theorem). For every finite-dimensional, nilpotent

representation of a C-Lie algebra, the C-Lie algebra annihilates a nonzero vector.
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Obviously this is a property only of the image of g in End¢(V'), which is a C-Lie
algebra of finite dimension. Thus, it suffices to prove the result for finite-dimensional
C-Lie algebras that have a faithful, finite-dimensional C-linear representation.

(a) For a Lie algebra g as above, for every g-subrepresentation W of V, prove
that the images of g in both gl(W) and gl(V/W) are contained in the nilpotent
cones. Up to replacing g by its image in U = gl(V'), assume that the action on V'
is faithful. For the adjoint action of g on U = gl(V), check that the image of g is
contained in the nilpotent cone of gl(U). In particular, the adjoint image of g in
gl(g) is contained in the nilpotent cone, so that g is a nilpotent Lie algebra. In the
not necessarily faithful case, the quotient of g by the kernel of the representation is
a nilpotent Lie algebra.

(b) If g has dimension 0 or 1, prove the weak form of Engel’s Theorem.

Now, by way of induction, assume that g has dimension > 1, and assume the weak
Engel’s Theorem is true for all Lie subalgebras that have strictly smaller dimension
than the dimension of g.

(c) For every proper Lie subalgebra b of g containing the kernel of p that is max-
imal among proper Lie subalgebras of g containing the kernel of p, conclude that
the adjoint action of h on g is nilpotent and preserves . Thus the induced rep-
resentation of h on g/h is nilpotent. By the induction hypothesis, conclude that
there exists an element X of g\ h such that the adjoint action of h on X has image
contained in b, i.e., [X,h] C h. Deduce that h + span(X) is a Lie subalgebra of g
containing the kernel of p and that strictly contains h. Since h was maximal among
proper Lie subalgebras, deduce that h + span(X) equals g. Thus, b is a subspace
of g of codimension 1, and it is a Lie ideal.

(d) Continuing the previous part, use the induction hypothesis to conclude that
there exists a nonzero vector w of V' that is annihilated by . If also w is annihilated
by the action of X, deduce that v = w satisfies the weak form of Engel’s Theorem.
If w is not annihilated by the action of X, deduce that v = X - w satisfies the
weak form of Engel’s Theorem. Thus, the weak form of Engel’s Theorem holds by
induction on the dimension of g.

(e) Use the weak form of Engel’s Theorem and induction on the dimension of V' to
conclude the strong form of Engel’s Theorem:

Theorem 0.2 (Engel’s Theorem). FEvery finite-dimensional, nilpotent represen-
tation of a C-Lie algebra g admits a maximal flag of C-linear subspaces that are
g-subrepresentations whose associated graded 1-dimensional g-representations are
each trivial.

There is a slightly sharper version, as follows. Now let g be a finite-dimensional
Lie algebra, let n be a Lie ideal in g, and let (V, p) be a nonzero, finite-dimensional
g-representation whose restriction to n acts nilpotently on V. By the weak form
of Engel’s Theorem, the annihilator V" in V' of n is nonzero. Of course V" is a
n-subrepresentation of the n-representation V' (the “invariant subrepresentation”).

(f) Since n is a Lie ideal in g, prove that V" is, in fact, a g-subrepresentation of V.
By considering the induced action of g on the quotient V/V" and using induction
on the dimension of V| conclude the following variant of Engel’s Theorem.
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Corollary 0.3. For every finite-dimensional representation (V, p) of a Lie algebra
g and for every Lie ideal n of g that acts nilpotently on V', for every Jordan-
Hélder filtration of (V,p) by g-subrepresentations, every simple factor is a trivial
n-subrepresentation.

(g) For a finite-dimensional C-linear representation (V, p) of a Lie algebra g, and for
Lie ideals m and n that both act nilpotently on V, for the flag of g-subrepresentations
as above such that n acts trivially on the associated graded g-representations,
conclude that the m-action on each associated graded g-representation is nilpo-
tent. Thus, there exists a flag of g-subrepresentations of each associated graded
g-subrepresentations, such that m also acts trivially on the new associated graded
g-subrepresentations. Conclude that there exists a refinement of the original flag to
a flag of g-subrepresentations of V' such that the action of m+n on each associated
graded g-representation is trivial. Altogether, this proves the following.

Corollary 0.4. For every finite dimensional representation of a Lie algebra g, for
every pair of Lie ideals, m and n, that both act nilpotently on the representation,
also the Lie ideal m + n acts nilpotently on the representation. Thus, there exists a
mazimal Lie ideal of g that acts nilpotently on the representation.

The maximal Lie ideal of g that acts nilpotently on a given finite-dimensional
representation (V, p) is the nilradical of the representation, nil,(g).

(h) In particular, apply this to the adjoint representation (g,adg) to conclude
that there exists a flag of Lie ideals in g whose associated graded Lie algebras are
each trivial representations when restricted to the nilradical of the Lie algebra,
nil(g) = nilaa(g)-

(i) Let (V,p) be a finite-dimensional representation of a finite-dimensional Lie al-
gebra g such that the associated representation V/V? of the quotient Lie algebra
g/nil,(g) is nilpotent. Use induction on the dimension of V' to prove that nil,(g)
equals all of g. Conclude the following corollary.

Corollary 0.5. A C-Lie algebra acts nilpotently on a finite-dimensional C-linear
representation if the C-Lie algebra is the sum of a C-Lie ideal and a C-Lie subal-
gebra, each of which act nilpotently on the representation.

Problem 9.(Jordan canonical form via polynomials). For every C-vector
space V of finite dimension d > 1, for every C-linear endomorphism X of V', by the
Fundamental Theorem of Algebra the characteristic polynomial of X factors into
a product of powers of distinct monic linear factors,

detv(ﬂdv —X) = (t— )\1)61 -"(t—)\e)ee, e; € ZZD er+---+ey :d,

for a finite collection {A1,...,\;} of pairwise distinct complex numbers. The mor-
phism of associative, unital C-algebras,

ev}/( :Clt] = Ende(V), ¢t"+---+ect+co— e X"+ -+ X + ¢oldy,

factors through the quotient C[t]/dety (tIdy — X) by the Cayley-Hamilton theorem.

Use the Chinese Remainder Theorem to prove that the image of ev consists of all

C-linear endomorphisms Y of V such that for every ¢ = 1...,¢, both Y maps the

generalized eigenspace V; := Ker(\;Idy — X)) to itself, and the restriction of Y to V;

equals some polynomial (possibly depending on i) applied to the restriction of X to
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Vi. In particular, for every i = 1,...,¢, both the endomorphism X ;, respectively
the endomorphism Xy ; are in the image, where Xg; and Xyj; restrict on Vj
as zero for every j # 4, and where X, restricts on V; as A;Idy,, resp. where
Xnil,; restricts on V; as the restriction of X — A;Idy. Deduce that also the sums
Kes = Xgs,1 + -+ Xgs o and Xy = Xypji1 + -+ - + Xnie are in the image. Of
course X, is semisimple, X, is nilpotent, X equals the sum of these two, and
X5 commutes with X,;; this is the Jordan canonical form decomposition of X.
Similarly, each projection pr; from V to V; is in the image (since its restriction to
each Vj is zero for j # ¢ and its restriction to V; equals Idy;). Finally, the operator
X = lerl + -4+ Xgprg is in the image.

Problem 10.(Cartan’s solvability criterion.) For every C-vector space V of
finite dimension d, recall the C-Lie algebra homomorphism,

ad" : Ende(V) = Ende(Ende(V)), X = (ad% :Y = X oY —Y 0 X).

For every element X of Endc(V), prove that the semisimple part of ad;/( equals
ady(ss, and the characteristic polynomial of this endomorphism depends only on the
characteristic polynomial of X (and on d, the degree of that polynomial). Thus
this endomorphism is the evaluation on ady( of a polynomial of degree < d? that
only depends on the characteristic polynomial of X. Also the nilpotent part of ad‘)/(,
namely :aud;/(m17 equals the evaluation on ady( of such a polynomial. Most pertinently,
the endomorphism ad%‘s equals the evaluation on ady( of such a polynomial whose

constant coefficient equ;ds 0. Thus, for every element Y of End¢(V), in the smallest
C-Lie subalgebra of Endc(V) containing both X and Y, there exist elements Z and

W such that [X,Y] equals [X, Z]g and [X, Y] equals [X, W], This gives the
following important result.

Theorem 0.6 (Cartan’s solvability criterion, I). A C-Lie subalgebra g of Endc(V)
is solvable if, for every element X of the commutator ideal [g,g] and for every
element Y of g, the trace of the endomorphism X oY equals 0.

Proof. For every commutator [Y', Y] in [g, g], for every element X of g, the trace of

Xsso[Y,Y] equals the trace of [X g, Y] oY’ using the invariance of the trace under
cyclic invariance of factors in a composition. By the previous exercise, [Xgs, Y]
equals [X, Z] for some Z € g. Thus, the the trace of X o [Y', Y] equals the trace
of [X,Z] oY for elements X, Y' and Z of g, and this equals 0 by the hypothesis.
In particular, if X itself is in [g, g], i.e., a sum of finitely many commutators [¥;, Y]
for elements Y; and Y/ of g, then it follows that the trace of X o X equals 0. Of
course this can happen if and only if every eigenvalue of X equals 0, i.e., if and only
if X is nilpotent. So the hypotheses imply that the C-Lie ideal [g, g] is nilpotent,
by Engel’s theorem. Thus g is solvable. (I
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