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MAT 543 FALL 2025 PROBLEM SET 5

Problem 1. For every integer n ≥ 1, for every partition µ = (µ1, . . . , µm) of the
integer n, define the µ-power sum polynomial to be the homogeneou, degree-n,
symmetric polynomial in m variables (each of degree 1),

pµ(t1, . . . , tn) =

n∏
k=1

pk(t1, . . . , tn)mk(µ) =

n∏
k=1

(tk1 + · · ·+ tkn)mk(µ),

where mk(µ) is the multiplicity of k in µ,

mk(µ) = #{1 ≤ i ≤ m|µi = k}.
For every finite-dimensional, C-linear representation (V, ρ) of Sn, define the asso-
ciated symmetric polynomial in (t1, . . . , tn) to be,

pV,ρ(t1, . . . , tn) =
1

#Sn

∑
σ∈Sn

traceV (ρ(g))p[g](t1, . . . , tn),

where [g] denotes the cycle type of g (or, equivalently, the conjugacy class of g).
Use the Frobenius formula to prove that the associated symmetric polynomial of
each Specht module Vλ is the Schur polynomial,

Sλ(t1, . . . , tn) = det[t
µj+n−j
i ]1≤i,j≤n/det[tn−ji ]1≤i,j≤n.

Since the Schur polynomials Sλ of partitions λ of n give a free Z-basis of the Z-
module Λn of homogeneous, degree-n, symmetric polynomials in (t1, . . . , tn) with Z-
coefficients, deduce that the function p sending every representation to its associated
symmetric polynomial extends to an isomorphism of Z-modules from the module
R(Sn) of virtual representations of Sn to the module Λn.

Problem 2. Recall that each Kostka number Kλ,µ is the (nonnegative integer)
multiplicity of the Specht modules Vλ in the representation Uµ of Sn induced from
the trivial representations of any Young subgroup of shape µ. Use the known
identities of the Kostka numbers to prove that the symmetric function of Uµ is
the product Hµ1

· · ·Hµm
, where Hd is the complete symmetric polynomial of

degree-d, i.e., the sum (with coefficient 1) of every monomial in (t1, . . . , tn) of degree
d. Deduce that, under Schur-Weyl duality, the representation Uµ of Sn corresponds
to the following representation of SLC(W ),

⊗mk=1Symµk(W ).

Problem 3. For every pair of integersm,n ≥ 1, for every C-linear Sm-representation
(U, σ), and for every C-linear Sn-representation (V, ρ), the C-linear Sm+n-representation
induced from the representation of a Young subgroup Sm ×Sn of (U ⊗C V, σ � ρ)
is denoted (U, σ) ◦ (V, ρ), the outer product of (U, σ) and (V, ρ), as a represen-
tation of Sm+n. Prove that this defines a Z-bilinear map from R(Sm) × R(Sn)
to R(Sm+n). Moreover, prove that the symmetric function p(U,σ)◦(V,ρ) equals the
product of symmetric functions pU,σ ·pV,ρ. Deduce that the maps p assemble into an
algebra isomorphism from the algebra R := ⊕∞n=0R(Sn) (with outer product as the
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multiplication law) to the ring Λ = ⊕∞n=0Λn of symmetric functions. Finally, prove
that restriction of representations from Sm+n to each Young subgroup Sm × Sn

altogether gives a coproduct on R that makes R into a Z-graded Hopf algebra.

Problem 4. For every partition λ of m, for every partition µ of n, for the Specht
module Vλ of Sm, for the Specht module Vµ of Sn, define each Littlewood-
Richardson coefficient Nν

λ,µ, for every partition ν of m+n, to be the multiplicity
of the Specht module Vν of Sm+n in Vλ ◦ Vµ. Use the previous results to prove
that also Nν

λ,µ is the coefficient of the Schur polynomial Sν in the expansion of the
product Sλ ·Sµ of Schur polynomials as a Z-linear combination of Schur polynomials
of degree m+ n.

Problem 5. Prove Pieri’s Rule: for every partition λ of m, for every partition
µ of n ≥ m, the multiplicity of the Specht module Vµ in the Sn-representation
induced from a representation of the Specht module Vλ of the subgroup Sm equals
0 unless the Young diagram of µ contains the Young diagram of λ, and then the
multiplicity equals the number of ways to arrange the integers from m + 1 to n
in the complement of Young diagrams (the skew diagram) so that the integers
increase both in every row and every column (that happens to contain two or more
boxes of the skew diagram).

Problem 6. Use the Schur character formula to deduce a formula for the dimension
of each Schur functor Sλ(W ) in terms of the dimension of W and the partition λ.

Problem 7. As a left representation of GLC(W ), the C-subalgebra of HomC(W⊗n,W⊗n)
of morphisms of Sn-representations from W⊗n (with trivial action) to W⊗n with
the natural action of GLC(W ), equals Symn(HomC(W,W )) = Symn(HomC(U,W ))
as a C-vector space where U is a copy of W with trivial action of GLC(W ). By
Schur-Weyl duality, this also equals the following finite direct product of simple
algebras, ∏

λ`n

HomC(Sλ(W ),Sλ(W )).

By taking characters for a maximal torus in GLC(W ), deduce an identity of sym-
metric functions. For n = 1, 2 and 3, check directly that this identity holds.

Problem 8. Use Schur-Weyl duality to reinterpret each Littlewood-Richardson co-
efficient Nν

λ,µ as the multiplicity of the Schur function Sν(W ) in the tensor product

of GLC(W )-representations, Sλ(W )⊗C Sµ(W ).

Problem 9. Combine this with Pieri’s Rule to prove that Sλ(W )⊗C Symn(W ) is
isomorphic to the direct sum of Sν(W ) over all partitions ν whose Young diagram
is obtained from the Young diagram of λ by adding n boxes, no two in the same
column.

Problem 10. Read more about these ideas, and their direct reinterpretation via
counting problems for Young diagrams and Young tableau, either in the textbook
(especially Appendix A), or in some other source.
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