MAT 543 Representation Theory Jason Starr

MAT 543 FALL 2025 PROBLEM SET 4

Problem 1. For every homomorphism f of associative, unital C-algebras from A
to B, for every quasi-idempotent element a in A, i.e., a-a = na for a scalar n in
C, prove that also f(a) is quasi-idempotent. Moreover, for every sequence of quasi-
idempotent elements (a1,...,a,) of A that is orthogonal, i.e., a;a; = 0 for i # j,
prove that also (f(a1),..., f(a,)) is orthogonal. In particular, for every finite group
I" and for every subgroup II, for the orthogonal sequence of central idempotents
a; = ar,(v;,p,) of C[II] associated to the irreducible II-representations, the images
in C[I'] form an orthogonal sequence of idempotents in C[I']. Thus, for the sequence
of group homomorphisms x from II to C*, the elements ar , = ZpEH Xx(p)b,-1 in
C[I'] form an orthogonal sequence of quasi-idempotents.

p

Problem 2. Prove that for every finite group I', for every normal subgroup II,
and for every I'-orbit of irreducible representations of II, the sum over this orbit
of the images in C[I'] of the central quasi-idempotents in C[II] is a central quasi-
idempotent in C[I'] that corresponds to the induced representation from II to T

Definition 0.1. For every finite group T, pairs (II, x) and (IT', x’) of a subgroup of T
and a group homomorphism to C* from that subgroup are semiorthogonal if and
only if both the product map from IT x II’ to its image IT-II' in T is a bijection, and,
for every element g in '\ (IT-I1"), there exists an element p’ = gpg~! of (gIlg—1)NIT'
such that x(p) is not equal to x'(p’). Stated differently, for each element g of T',
there exists no element p’ = gpg~! of (gllg—*) NI’ with x(p) # x'(p') if and only
if there exists an element (p,p’) of II x IT" with g = pp’, and this is unique.

Problem 3. For semiorthogonal pairs (I, x) and (II',x’), for the image quasi-
idempotents ar,, and agy ,/, prove that the product ¢,y ) = am,xom y is
the unique element ¢ of C[I'], normalized so that the coefficient of b, equals 1,
satisfying the following absorption identities,

Vp e II, ¥p' € I, by - c-by = x(p)X' (p')c.

More precisely, for every element c¢ satisfying the absorption identities whose coeffi-
cient of b, equals 1, prove that for every element g = pp’ in II-TI’, the coefficient of
b, in ¢ equals the coefficient x(p)~'x/(p") ™! of by in ¢y, (1,/)- Also prove that
for every element g in I' \ (II - IT"), for every element p’ = gpg~! in (gIlg—*) NI’
such that x(p) is not equal to x/(p’), the coeflicient of b, in x(p) ~'b, - ¢ equals the
coefficient of b, in X'(p’) "¢ by if and only if the coefficient of by in ¢ equals 0.

Problem 4. Continuing the previous problem, since every element of cC[I']c
satisfies the absorption identities, prove that these elements are scalar multiples
of ¢ = cary),ar,y)- In particular, ¢ is a quasi-idempotent with scalar factor
n = N(1,y),1r,y) equal to an algebraic integer (even a sum of roots of unity of
order dividing #TI").

Problem 5. Continuing the previous problem, for the basis (by)ger of C[['], the
coefficient of b, in the product c¢ - by equals the coefficient 1 of b, in c. For the
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C-linear endomorphism of right multiplication by ¢, the matrix representative with
respect to this basis has every diagonal entry equal to 1. Thus, the trace equals
#I'. On the other hand, since ¢ - ¢ equals nc, the minimal polynomial m(t) of this
endomorphism divides t2 — nt. So, if n equals 0, then the minimal polynomial
divides 2. Since the irreducible factors of the characteristic polynomial equal the
irreducible factors of the minimal polynomial, the characteristic polynomial also
equals t#1', implying that the trace equals 0. Conclude that the algebraic integer
n is nonzero, and is even a positive integer divisor of #I.

Problem 6. For every C-vector space V with associated C-algebra Endc (V') of
C-linear endomorphisms, prove that every cyclic left ideal in End¢(V) is the left
annihilator Ann(U) = {T|T(U) = {0}} for a unique subspace U. If V has infinite
dimension, prove that the finite rank endomorphisms form a left ideal that is not
cyclic. On the other hand, if V' has finite dimension, prove that every left ideal is a
cyclic left ideal, and the cyclic generators are precisely those elements c¢ in the left
ideal that have minimal kernel (with respect to inclusion). Prove that an element ¢
of End¢(V) is a square-zero element if and only if Image(c) is a subspace of Ker(c).
Finally, prove that an element ¢ is quasi-idempotent and non-nilpotent (i.e., the
scalar factor is nonzero) if and only if both V is the direct sum of Image(c) and
Ker(c) and the restriction of ¢ to Image(c) is a nonzero scalar multiple of the the
identity.

Problem 7. For every finite-dimensional C-vector space V', for every pair of left
ideals Ann(U) and Ann(U’), prove that every morphism of left End¢(V)-modules
from Ann(U) to Ann(U’) equals right multiplication by an element z of Endc(V)
such that (U’) is a subspace of U. Prove that there exists such a morphism that is
injective, respectively surjective, bijective, if and only if we have dim(U) > dim(U"),
resp. dim(U) < dim(U’), dim(U) = dim(U’). Conclude that the minimal nonzero
left ideals are precisely the ideals Anun(U) for U a codimension-one subspace U of
V', and these are precisely the left ideals that are simple left End¢(V')-modules.

Problem 8. For every finite-dimensional C-vector space V', for every nonzero
element ¢ of Endc(V), prove that the cyclic left ideal Endc(V) - ¢ is a minimal
nonzero left ideal if and only if the subspace ¢-End¢ (V) - ¢ equals the span of ¢. In
this case, for the unique scalar n (possibly zero) such that ¢ - ¢ equals ne, deduce
that the trace of right multiplication by ¢ on End¢ (V) equals ndime (Endc(V) - ¢).
In particular, n is nonzero if and only if this trace is nonzero.

Problem 9. Finally, generalize the previous problem to a semisimple C-algebra A
that is a product of finitely many finite-dimensional matrix C-algebras: for every
nonzero element ¢ in A, the left ideal A - ¢ is a minimal nonzero left ideal (i.e., a
left ideal that is a simple left module) if and only if the subspace ¢- A - ¢ equals the
span of c¢. In this case, ¢ - ¢ equals nc where the trace of right multiplication by ¢
on A equals ndimg (A - ¢).

Problem 10. In particular, using the Wedderburn-Artin theorem, Schur’s lemma
and Maschke’s theorem, for every finite group I' and for pairs (II, x) and (IT', /)
that are semiorthogonal, prove that the quasi-idempotent element ¢y ), (v /) gives
an irreducible C-linear T'-representation Vi), vy := C[I'] - €115, (117 5y and the
nonzero algebraic integer n i), (1/,y) 18 actually a positive integer that satisfies

”<H,x>,<nf,x'>dim©‘2f<n,x>,<nux/> =#I


http://www.math.stonybrook.edu/~jstarr/M534f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr

For every integer n > 1, for the group C-algebra C[&,] := D, g, Cby, for each
partition A = (A; > --- > Ay > 1) of length ¢ and of size A\; +- - -+ Ay = n, the dual
partition is the unique partition \* = (A} > --- > Aj. > 1) of length £* = A; such
that for every j = 1,..., A1 we have A} = min{i > 0|Vi" > i \i» < j}, i.e, for each
(4,7) with 1 < ¢ < £ and with 1 < j < Ay, we have j < ); if and only if ¢ < AT
Since the number of such pairs (4, j) equals the size n of A, this also equals the size
the dual Young tableau of shape A\* is T = (t:,j =t;i) Tlileio;diergd partition of
{1,...,n} determined by (A, T) (unique up to reordering by a symmetry of ) is

It = (Bor)1s-- 200 S = il <J < A
The ordered partition of the dual Young tableau (A\*,T*) is
A =S = (Sl Dour) e ) Souryy = il << st
For the partition Xy 7 of {1,...,n}, the corresponding Young subgroup of &, is

M :={pe&ulVi=1,.... p(Cn 1)) = Za1)i) -
The dual Young subgroup is

hr = Tyee = {B € GalVj = Lo 0 ¥/ (Say 1) = Slarys } -

Proposition 0.2. For every integer n > 1, for every partition A of n, for every
Young tableau T' of shape A, fhe pairs (Ilx 7, triv) and (II) 7, sgn) are semiorthog-
onal.

Proof. The partitions X r and E')\’T are semiorthogonal in the sense that the in-
tersection of each partition set of Xy 1) ; with a partition set of Z’(/\)T))j is either
empty, if j > A;, i.e., i > \;, or is a singleton set {¢; ;}. Thus, the unique element
of &,, that preserves both ordered partitions is the identity permutation. So the
multiplication map from Il r x H’)\7T to Iy 7 - H’/\7T is injective.

To complete the proof, we claim that for every element g of &,, such that for
every unordered pair {t1,t2} of elements of {1,...,n}, either ¢; and ¢5 belong to
two different partition sets of Xy 7 or the elements g(t1) and g(t2) belong to two
different partition sets of Ei\yT, then there exist (unique) elements p of II) 7 and
p' of Iy 7 such that g equals pp’. Assuming the claim, then for every g that is
not in Iy 7 - H’/\)T, there exists a transposition p = (t1,t2) in II\ p such that the
transposition p’ = gpg~" = (g(t1), g(t2)) is also in IT} ;. Since triv(p) equals 1 and
sgn(p’) equals —1, this proves that the pairs are semiorthogonal.

The claim is proved by induction on the number of rows and columns of A. Of
course if A has a unique row or a unique column, then one of II, r, H’/\7T is the
trivial group and the other element is all of G,,, so that every element g of G,, is
uniquely decomposable as pp’. By way of induction, assume that the numbers of
rows and columns of A are both greater than 1, and assume the result is proved
for smaller n and also for n with partitions that have smaller numbers of rows and
columns.

Let g be an element as above. Then, in particular, for the elements ¢; ; of X 1) 1,

the elements g(t1,1),...,9(t1,»,) are contained in different columns of A\. Thus, for

each j =1,..., Ay, either the identity permutation moves g(¢1 ;) into the first row,

or there is a transposition in H’/\7T that moves g(¢1 ;) into the first row. The product
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of these elements of IT} ;- (which commute with each other) is an element p’ of IT), ;-
that permutes all of the elements g(t; ;) into the first row. Then there exists a
permutation p of the first row, that permutes these elements into the correct order,
and p is an element of II\ 7. After modifying g by multiplying by these elements, we
may assume that g is as above and preserves the first row of the tableau. Of course
the remaining elements of the tableau form a set of strictly smaller size than n. By
the induction hypothesis, this modified elements is in IT A,T'H/)\,T' Thus, multiplying
by p and p’ appropriately, we deduce that also g is an element of IIy 1 - H’A7T. ([l

Thus the C-linear &,,-subrepresentations V) r = C[S,] - car are irreducible of
dimension n!/ny . By a simpler version of the proof above, we proved in lecture
that the quasi-idempotents are orthogonal for distinct partitions A. Thus, the num-
ber of such pairwise non-isomorphic representations V r produced by varying the
partitions A equals the number of partitions of n, and this equals the number of
conjugacy classes of &,,. Therefore, for every integer n > 1, the irreducible C-linear
G&,,-representations (V))a-n give a complete set of pairwise nonisomorphic repre-
sentatives of the isomorphism classes of all irreducible C-linear &,,-representations.
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