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MAT 543 FALL 2025 PROBLEM SET 4

Problem 1. For every homomorphism f of associative, unital C-algebras from A
to B, for every quasi-idempotent element a in A, i.e., a ·a = na for a scalar n in
C, prove that also f(a) is quasi-idempotent. Moreover, for every sequence of quasi-
idempotent elements (a1, . . . , ar) of A that is orthogonal, i.e., aiaj = 0 for i 6= j,
prove that also (f(a1), . . . , f(ar)) is orthogonal. In particular, for every finite group
Γ and for every subgroup Π, for the orthogonal sequence of central idempotents
ai = aΠ,(Vi,ρi) of C[Π] associated to the irreducible Π-representations, the images
in C[Γ] form an orthogonal sequence of idempotents in C[Γ]. Thus, for the sequence
of group homomorphisms χ from Π to C×, the elements aΠ,χ :=

∑
p∈Π χ(p)bp−1 in

C[Γ] form an orthogonal sequence of quasi-idempotents.

Problem 2. Prove that for every finite group Γ, for every normal subgroup Π,
and for every Γ-orbit of irreducible representations of Π, the sum over this orbit
of the images in C[Γ] of the central quasi-idempotents in C[Π] is a central quasi-
idempotent in C[Γ] that corresponds to the induced representation from Π to Γ.

Definition 0.1. For every finite group Γ, pairs (Π, χ) and (Π′, χ′) of a subgroup of Γ
and a group homomorphism to C× from that subgroup are semiorthogonal if and
only if both the product map from Π×Π′ to its image Π ·Π′ in Γ is a bijection, and,
for every element g in Γ\(Π·Π′), there exists an element p′ = gpg−1 of (gΠg−1)∩Π′

such that χ(p) is not equal to χ′(p′). Stated differently, for each element g of Γ,
there exists no element p′ = gpg−1 of (gΠg−1) ∩ Π′ with χ(p) 6= χ′(p′) if and only
if there exists an element (p, p′) of Π×Π′ with g = pp′, and this is unique.

Problem 3. For semiorthogonal pairs (Π, χ) and (Π′, χ′), for the image quasi-
idempotents aΠ,χ and aΠ′,χ′ , prove that the product c(Π,χ),(Π′,χ′) = aΠ,χaΠ′,χ′ is
the unique element c of C[Γ], normalized so that the coefficient of be equals 1,
satisfying the following absorption identities,

∀p ∈ Π, ∀p′ ∈ Π′, bp · c · bp′ = χ(p)χ′(p′)c.

More precisely, for every element c satisfying the absorption identities whose coeffi-
cient of be equals 1, prove that for every element g = pp′ in Π ·Π′, the coefficient of
bg in c equals the coefficient χ(p)−1χ′(p′)−1 of bg in c(Π,χ),(Π′,χ′). Also prove that

for every element g in Γ \ (Π · Π′), for every element p′ = gpg−1 in (gΠg−1) ∩ Π′

such that χ(p) is not equal to χ′(p′), the coefficient of bgp in χ(p)−1bp ·c equals the
coefficient of bp′g in χ′(p′)−1c · bp′ if and only if the coefficient of bg in c equals 0.

Problem 4. Continuing the previous problem, since every element of cC[Γ]c
satisfies the absorption identities, prove that these elements are scalar multiples
of c = c(Π,χ),(Π′,χ′). In particular, c is a quasi-idempotent with scalar factor
n = n(Π,χ),(Π′,χ′) equal to an algebraic integer (even a sum of roots of unity of
order dividing #Γ).

Problem 5. Continuing the previous problem, for the basis (bg)g∈Γ of C[Γ], the
coefficient of bg in the product c · bg equals the coefficient 1 of be in c. For the
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C-linear endomorphism of right multiplication by c, the matrix representative with
respect to this basis has every diagonal entry equal to 1. Thus, the trace equals
#Γ. On the other hand, since c · c equals nc, the minimal polynomial m(t) of this
endomorphism divides t2 − nt. So, if n equals 0, then the minimal polynomial
divides t2. Since the irreducible factors of the characteristic polynomial equal the
irreducible factors of the minimal polynomial, the characteristic polynomial also
equals t#Γ, implying that the trace equals 0. Conclude that the algebraic integer
n is nonzero, and is even a positive integer divisor of #Γ.

Problem 6. For every C-vector space V with associated C-algebra EndC(V ) of
C-linear endomorphisms, prove that every cyclic left ideal in EndC(V ) is the left
annihilator Ann(U) = {T |T (U) = {0}} for a unique subspace U . If V has infinite
dimension, prove that the finite rank endomorphisms form a left ideal that is not
cyclic. On the other hand, if V has finite dimension, prove that every left ideal is a
cyclic left ideal, and the cyclic generators are precisely those elements c in the left
ideal that have minimal kernel (with respect to inclusion). Prove that an element c
of EndC(V ) is a square-zero element if and only if Image(c) is a subspace of Ker(c).
Finally, prove that an element c is quasi-idempotent and non-nilpotent (i.e., the
scalar factor is nonzero) if and only if both V is the direct sum of Image(c) and
Ker(c) and the restriction of c to Image(c) is a nonzero scalar multiple of the the
identity.

Problem 7. For every finite-dimensional C-vector space V , for every pair of left
ideals Ann(U) and Ann(U ′), prove that every morphism of left EndC(V )-modules
from Ann(U) to Ann(U ′) equals right multiplication by an element x of EndC(V )
such that x(U ′) is a subspace of U . Prove that there exists such a morphism that is
injective, respectively surjective, bijective, if and only if we have dim(U) ≥ dim(U ′),
resp. dim(U) ≤ dim(U ′), dim(U) = dim(U ′). Conclude that the minimal nonzero
left ideals are precisely the ideals Ann(U) for U a codimension-one subspace U of
V , and these are precisely the left ideals that are simple left EndC(V )-modules.

Problem 8. For every finite-dimensional C-vector space V , for every nonzero
element c of EndC(V ), prove that the cyclic left ideal EndC(V ) · c is a minimal
nonzero left ideal if and only if the subspace c ·EndC(V ) · c equals the span of c. In
this case, for the unique scalar n (possibly zero) such that c · c equals nc, deduce
that the trace of right multiplication by c on EndC(V ) equals ndimC (EndC(V ) · c).
In particular, n is nonzero if and only if this trace is nonzero.

Problem 9. Finally, generalize the previous problem to a semisimple C-algebra A
that is a product of finitely many finite-dimensional matrix C-algebras: for every
nonzero element c in A, the left ideal A · c is a minimal nonzero left ideal (i.e., a
left ideal that is a simple left module) if and only if the subspace c ·A · c equals the
span of c. In this case, c · c equals nc where the trace of right multiplication by c
on A equals ndimC(A · c).

Problem 10. In particular, using the Wedderburn-Artin theorem, Schur’s lemma
and Maschke’s theorem, for every finite group Γ and for pairs (Π, χ) and (Π′, χ′)
that are semiorthogonal, prove that the quasi-idempotent element c(Π,χ),(Π′,χ′) gives
an irreducible C-linear Γ-representation V(Π,χ),(Π′,χ′) := C[Γ] · c(Π,χ),(Π′,χ′) and the
nonzero algebraic integer n(Π,χ),(Π′,χ′) is actually a positive integer that satisfies

n(Π,χ),(Π′,χ′)dimCV(Π,χ),(Π′,χ′) = #Γ.
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For every integer n ≥ 1, for the group C-algebra C[Sn] :=
⊕

σ∈Sn
Cbσ, for each

partition λ = (λ1 ≥ · · · ≥ λ` ≥ 1) of length ` and of size λ1 + · · ·+λ` = n, the dual
partition is the unique partition λ∗ = (λ∗1 ≥ · · · ≥ λ∗`∗ ≥ 1) of length `∗ = λ1 such
that for every j = 1, . . . , λ1 we have λ∗j = min{i ≥ 0|∀i′ ≥ i λi′ ≤ j}, i.e., for each
(i, j) with 1 ≤ i ≤ ` and with 1 ≤ j ≤ λ1, we have j ≤ λi if and only if i ≤ λ∗j .
Since the number of such pairs (i, j) equals the size n of λ, this also equals the size
of the dual partition λ∗. For each Young tableau T = (ti,j)1≤i≤`,1≤j≤λi of shape λ,
the dual Young tableau of shape λ∗ is T ∗ = (t∗i,j = tj,i). The ordered partition of
{1, . . . , n} determined by (λ, T ) (unique up to reordering by a symmetry of λ) is

Σλ,T = (Σ(λ,T ),1, . . . ,Σ(λ,T ),`), Σ(λ,T ),i = {ti,j |1 ≤ j ≤ λi}.
The ordered partition of the dual Young tableau (λ∗, T ∗) is

Σ′λ,T = Σλ∗,T∗ = (Σ′(λ,T ),1, . . . ,Σ
′
(λ,T ),`∗), Σ′(λ,T ),j = {ti,j |1 ≤ i ≤ λ∗j}.

For the partition Σλ,T of {1, . . . , n}, the corresponding Young subgroup of Sn is

Πλ,T :=
{
p ∈ Sn|∀i = 1, . . . , ` p(Σ(λ,T ),i) = Σ(λ,T ),i

}
.

The dual Young subgroup is

Π′λ,T := Πλ∗,T∗ =
{
p′ ∈ Sn|∀j = 1, . . . , `∗ p′(Σ′(λ,T ),j) = Σ′(λ,T ),j

}
.

prop-semi
Proposition 0.2. For every integer n ≥ 1, for every partition λ of n, for every
Young tableau T of shape λ, fhe pairs (Πλ,T , triv) and (Π′λ,T , sgn) are semiorthog-
onal.

Proof. The partitions Σλ,T and Σ′λ,T are semiorthogonal in the sense that the in-

tersection of each partition set of Σ(λ,T ),i with a partition set of Σ′(λ,T ),j is either

empty, if j > λi, i.e., i > λj , or is a singleton set {ti,j}. Thus, the unique element
of Sn that preserves both ordered partitions is the identity permutation. So the
multiplication map from Πλ,T ×Π′λ,T to Πλ,T ·Π′λ,T is injective.

To complete the proof, we claim that for every element g of Sn such that for
every unordered pair {t1, t2} of elements of {1, . . . , n}, either t1 and t2 belong to
two different partition sets of Σλ,T or the elements g(t1) and g(t2) belong to two
different partition sets of Σ′λ,T , then there exist (unique) elements p of Πλ,T and

p′ of Π′Λ,T such that g equals pp′. Assuming the claim, then for every g that is

not in Πλ,T · Π′λ,T , there exists a transposition p = (t1, t2) in Πλ,T such that the

transposition p′ = gpg−1 = (g(t1), g(t2)) is also in Π′λ,T . Since triv(p) equals 1 and

sgn(p′) equals −1, this proves that the pairs are semiorthogonal.

The claim is proved by induction on the number of rows and columns of λ. Of
course if λ has a unique row or a unique column, then one of Πλ,T , Π′λ,T is the
trivial group and the other element is all of Sn, so that every element g of Sn is
uniquely decomposable as pp′. By way of induction, assume that the numbers of
rows and columns of λ are both greater than 1, and assume the result is proved
for smaller n and also for n with partitions that have smaller numbers of rows and
columns.

Let g be an element as above. Then, in particular, for the elements t1,j of Σ(λ,T ),1,
the elements g(t1,1), . . . , g(t1,λ1) are contained in different columns of λ. Thus, for
each j = 1, . . . , λ1, either the identity permutation moves g(t1,j) into the first row,
or there is a transposition in Π′λ,T that moves g(t1,j) into the first row. The product
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of these elements of Π′λ,T (which commute with each other) is an element p′ of Π′λ,T
that permutes all of the elements g(t1,j) into the first row. Then there exists a
permutation p of the first row, that permutes these elements into the correct order,
and p is an element of Πλ,T . After modifying g by multiplying by these elements, we
may assume that g is as above and preserves the first row of the tableau. Of course
the remaining elements of the tableau form a set of strictly smaller size than n. By
the induction hypothesis, this modified elements is in Πλ,T ·Π′λ,T . Thus, multiplying

by p and p′ appropriately, we deduce that also g is an element of Πλ,T ·Π′λ,T . �

Thus the C-linear Sn-subrepresentations Vλ,T = C[Sn] · cλ,T are irreducible of
dimension n!/nλ,T . By a simpler version of the proof above, we proved in lecture
that the quasi-idempotents are orthogonal for distinct partitions λ. Thus, the num-
ber of such pairwise non-isomorphic representations Vλ,T produced by varying the
partitions λ equals the number of partitions of n, and this equals the number of
conjugacy classes of Sn. Therefore, for every integer n ≥ 1, the irreducible C-linear
Sn-representations (Vλ)λ`n give a complete set of pairwise nonisomorphic repre-
sentatives of the isomorphism classes of all irreducible C-linear Sn-representations.
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