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Problem 1. For every finite group Γ, prove that every 1-dimensional irreducible C-
linear representation of Γ is isomorphic to (C, ρ) for a unique group homomorphism
ρ : Γ → C×, which factors uniquely through the quotient homomorphism to the
Abelianization, Γ � Γab := Γ/[Γ,Γ]. Thus, they are all “pulled back” from Γab.

Problem 2. For every finite Abelian group Γ, prove that every irreducible C-
linear Γ-representation is 1-dimensional. Conclude that the set of isomorphism
classes of irreducible, C-linear Γ-representations naturally has the structure of the

Abelian group Γ̂ := HomGroup(Γ,C×) with valuewise multiplication. This is the
Pontrjagin dual group of Γ.

Problem 3. For every finite Abelian group of the form
∏
λ∈Λ Z/nλZ, check that

the following pairing into C× gives an isomorphism with the Pontrjagin dual group,∏
λ∈Λ

Z/nλZ×
∏
λ∈Λ

Z/nλZ→ C×, ((an)λ∈Λ, (bλ)λ∈Λ) 7→ exp

(
2π
√
−1
∑
λ∈Λ

aλbλ
nλ

)
.

Problem 4. For every group Γ with finite order `, for every C-linear representation
(V, ρ) of finite dimension n ≥ 1, for every integer d ≥ 0, prove that induced Γ-action
commutes with the natural action of the symmetric group Sd on the tensor product
V ⊗d. Thus, every Sd-isotypic component of V ⊗d is also a Γ-subrepresentation. In

particular, this gives Γ-subrepresentations (
∧d

C V,
∧d

C ρ) and (Symd
CV,Symd

Cρ).

Problem 5. Continuing the previous problem, for each element g of Γ, for the
characteristic polynomial of ρ(g),

detV (tIdV−ρ(g)) = (t−ζ1) · · · (t−ζn) = tn+· · ·+(−1)dσd(ζ1, . . . , ζn)tn−d+· · ·+(−1)nσn(ζ1, . . . , ζn),

check that the trace of
∧d

C ρ(g) equals σd(ζ1, . . . , ζn). Deduce that, for every integer
d ≥ 1, there exists a degree-d, Z-coefficient, homogeneous polynomial pd(s1, . . . , sd),
such that for every Γ, for every (V, ρ), and for every element g of Γ, the trace of
the endomorphism ρ(gd) equals

ζd1 + · · ·+ ζdn = pd(σ1(ζ1, . . . , ζn), . . . , σn(ζ1, . . . , ζn)).

Prove also that the polynomial homomorphism (p1, . . . , pn) of Q[s1, . . . , sn] has
an inverse polynomial homomorphism, say (q1, . . . , qn). Deduce that each qd is a
homogenous, Q-coefficient, degree-d polynomial in (s1, . . . , sd) such that

trace∧d V (

d∧
C
ρ(g)) = qd(traceV (ρ(g)), . . . , traceV (ρ(gd)).

Check the following cases,

p1(s1) = s1, p2(s1, s2) = s2
1 − 2s2, p3(s1, s2, s3) = s3

1 − 3s1s2 + 3s3,

q1(s1) = s1, q2(s1, s2) = (s2
1 + s2)/2, q3(s1, s2, s3) = (s3

1 + 3s1s2 + 2s3)/6.
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Problem 6. Continuing the previous problem, for every Sd-isotypic component
of V ⊗d, for every g in Γ, the trace of g on that subrepresentation is a symmet-
ric, degree-d, homogeneous, Z-coefficient polynomial evaluated on the eigenvalues
ζ1, . . . , ζn, thus a homogeneous, Q-coefficient, degree-d polynomial in the traces of
ρ(g), . . . , ρ(gd). In particular, deduce that for every integer d ≥ 1, there exists a
degree-d, Z-coefficient, homogeneous polynomial rd(s1, . . . , sd) such that, for ev-
ery finite group Γ, for every finite-dimensional, C-linear Γ-representation (V, ρ), for
every g in Γ, we have,

traceSymdV (Symd
Cρ(g)) = rd(traceV (ρ(g)), . . . , traceV (ρ(gd))).

Check the following cases,

r1(s1) = s1, r2(s1, s1) = (s2
1 + s2)/2, r3(s1, s2, s3) = (s3

1 + 3s1s2 + 2s3)/6.

Problem 7. Let Γ be a finite group. Recall from Exercise 10(b) on Problem Set
1, for every irreducible C-linear Γ-representation V of finite dimension n ≥ 1, and
for every conjugacy class C in Γ, the element bC :=

∑
g∈G bg acts on V as a scalar

ρC . The finite free Z-submodule

Center(Z[Γ]) :=
⊕
C

Z · bC

of the C-algebra C[Γ] is a Z-subalgebra, and thus the Z-linear transformation of
multiplication by bC on this finite free Z-submodule has a characteristic polynomial
with integer coefficients. Since ρC also satisfies this characteristic polynomial, the
complex number ρC is actually an algebraic integer. Taking traces,

traceV (ρ̃(bC)) = dimCV · ρC = nρC ,

so that the trace is n times an algebraic integer, and likewise for the inverse con-
jugacy class. Of course, for each g in C, since ρ(g) can be diagonalized with root
of unity eigenvalues, also traceV (ρ(g)) is an algebraic integer, as is traceV (ρ(g−1)).
Since trace is additive and conjugacy-invariant, choosing one representative gC in
each conjugacy class C, we have∑
g∈C

traceV (ρ(g))traceV (ρ(g−1)) = traceV (ρ̃(bC))traceV (ρ(g−1
C )) = n·ρC ·traceV (ρ(g−1

C )).

By the Schur orthogonality relations, we also have,

#Γ =
∑
g∈Γ

traceV (ρ(g))traceV (ρ(g−1) =
∑
C

traceV (ρ̃(bC))traceV (ρ(g−1
C )) = n·

∑
C

ρC ·traceV (ρ(g−1
C )).

Thus, #Γ/n is an algebraic integer that is also an element of Q, i.e., it is an
element of Z. Finally, deduce Burnside’s theorem: for every finite group Γ, for
every irreducible, C-linear Γ-representation (V, ρ), the dimension of V divides #Γ.

Problem 8. For every finite cyclic group, for every subgroup, for every character
of the subgroup, determine the irreducible decomposition of the induced represen-
tation of the entire cyclic group.

Problem 9. For every finite dihedral group, for its normal, index 2 cyclic subgroup,
explicitly compute induction and restriction of C-linear representations.

Problem 10. For the symmetric group on 4 letters and its subgroup of the sym-
metric group on 3 letters, explicitly compute induction and restriction of C-linear
representations.
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