MAT 543 FALL 2025 PROBLEM SET 2 **Problem 1.** For every finite group Γ , prove that every 1-dimensional irreducible \mathbb{C} -linear representation of Γ is isomorphic to (\mathbb{C}, ρ) for a unique group homomorphism $\rho: \Gamma \to \mathbb{C}^{\times}$, which factors uniquely through the quotient homomorphism to the Abelianization, $\Gamma \twoheadrightarrow \Gamma^{ab} := \Gamma/[\Gamma, \Gamma]$. Thus, they are all "pulled back" from Γ^{ab} . **Problem 2.** For every finite Abelian group Γ , prove that every irreducible \mathbb{C} -linear Γ -representation is 1-dimensional. Conclude that the set of isomorphism classes of irreducible, \mathbb{C} -linear Γ -representations naturally has the structure of the Abelian group $\widehat{\Gamma} := \operatorname{Hom}_{\mathbf{Group}}(\Gamma, \mathbb{C}^{\times})$ with valuewise multiplication. This is the **Pontrjagin dual group** of Γ . **Problem 3.** For every finite Abelian group of the form $\prod_{\lambda \in \Lambda} \mathbb{Z}/n_{\lambda}\mathbb{Z}$, check that the following pairing into \mathbb{C}^{\times} gives an isomorphism with the Pontrjagin dual group, $$\prod_{\lambda \in \Lambda} \mathbb{Z}/n_{\lambda} \mathbb{Z} \times \prod_{\lambda \in \Lambda} \mathbb{Z}/n_{\lambda} \mathbb{Z} \to \mathbb{C}^{\times}, \quad ((\overline{a_n})_{\lambda \in \Lambda}, (\overline{b_{\lambda}})_{\lambda \in \Lambda}) \mapsto \exp\left(2\pi\sqrt{-1}\sum_{\lambda \in \Lambda} \frac{a_{\lambda}b_{\lambda}}{n_{\lambda}}\right).$$ **Problem 4.** For every group Γ with finite order ℓ , for every \mathbb{C} -linear representation (V, ρ) of finite dimension $n \geq 1$, for every integer $d \geq 0$, prove that induced Γ-action commutes with the natural action of the symmetric group \mathfrak{S}_d on the tensor product $V^{\otimes d}$. Thus, every \mathfrak{S}_d -isotypic component of $V^{\otimes d}$ is also a Γ-subrepresentation. In particular, this gives Γ-subrepresentations $(\bigwedge_{\mathbb{C}}^d V, \bigwedge_{\mathbb{C}}^d \rho)$ and $(\operatorname{Sym}_{\mathbb{C}}^d V, \operatorname{Sym}_{\mathbb{C}}^d \rho)$. **Problem 5.** Continuing the previous problem, for each element g of Γ , for the characteristic polynomial of $\rho(q)$, $$\det_V(t\operatorname{Id}_V - \rho(g)) = (t - \zeta_1) \cdots (t - \zeta_n) = t^n + \cdots + (-1)^d \sigma_d(\zeta_1, \dots, \zeta_n) t^{n-d} + \cdots + (-1)^n \sigma_n(\zeta_1, \dots, \zeta_n),$$ check that the trace of $\bigwedge_{\mathbb{C}}^d \rho(g)$ equals $\sigma_d(\zeta_1, \ldots, \zeta_n)$. Deduce that, for every integer $d \geq 1$, there exists a degree-d, \mathbb{Z} -coefficient, homogeneous polynomial $p_d(s_1, \ldots, s_d)$, such that for every Γ , for every (V, ρ) , and for every element g of Γ , the trace of the endomorphism $\rho(g^d)$ equals $$\zeta_1^d + \dots + \zeta_n^d = p_d(\sigma_1(\zeta_1, \dots, \zeta_n), \dots, \sigma_n(\zeta_1, \dots, \zeta_n)).$$ Prove also that the polynomial homomorphism (p_1, \ldots, p_n) of $\mathbb{Q}[s_1, \ldots, s_n]$ has an inverse polynomial homomorphism, say (q_1, \ldots, q_n) . Deduce that each q_d is a homogenous, \mathbb{Q} -coefficient, degree-d polynomial in (s_1, \ldots, s_d) such that $$\operatorname{trace}_{\bigwedge^d V}(\bigwedge_{\mathbb{C}}^d \rho(g)) = q_d(\operatorname{trace}_V(\rho(g)), \dots, \operatorname{trace}_V(\rho(g^d)).$$ Check the following cases, $$p_1(s_1) = s_1, \ p_2(s_1, s_2) = s_1^2 - 2s_2, \ p_3(s_1, s_2, s_3) = s_1^3 - 3s_1s_2 + 3s_3,$$ $q_1(s_1) = s_1, \ q_2(s_1, s_2) = (s_1^2 + s_2)/2, \ q_3(s_1, s_2, s_3) = (s_1^3 + 3s_1s_2 + 2s_3)/6.$ **Problem 6.** Continuing the previous problem, for every \mathfrak{S}_d -isotypic component of $V^{\otimes d}$, for every g in Γ , the trace of g on that subrepresentation is a symmetric, degree-d, homogeneous, \mathbb{Z} -coefficient polynomial evaluated on the eigenvalues ζ_1, \ldots, ζ_n , thus a homogeneous, \mathbb{Q} -coefficient, degree-d polynomial in the traces of $\rho(g), \ldots, \rho(g^d)$. In particular, deduce that for every integer $d \geq 1$, there exists a degree-d, \mathbb{Z} -coefficient, homogeneous polynomial $r_d(s_1, \ldots, s_d)$ such that, for every finite group Γ , for every finite-dimensional, \mathbb{C} -linear Γ -representation (V, ρ) , for every g in Γ , we have, $$\operatorname{trace}_{\operatorname{Sym}^d V}(\operatorname{Sym}_{\mathbb{C}}^d \rho(g)) = r_d(\operatorname{trace}_V(\rho(g)), \dots, \operatorname{trace}_V(\rho(g^d))).$$ Check the following cases, $$r_1(s_1) = s_1, \ r_2(s_1, s_1) = (s_1^2 + s_2)/2, \ r_3(s_1, s_2, s_3) = (s_1^3 + 3s_1s_2 + 2s_3)/6.$$ **Problem 7.** Let Γ be a finite group. Recall from Exercise 10(b) on Problem Set 1, for every *irreducible* \mathbb{C} -linear Γ -representation V of finite dimension $n \geq 1$, and for every conjugacy class C in Γ , the element $\mathbf{b}_C := \sum_{g \in G} \mathbf{b}_g$ acts on V as a scalar ρ_C . The finite free \mathbb{Z} -submodule $$\operatorname{Center}(\mathbb{Z}[\Gamma]) := \bigoplus_{C} \mathbb{Z} \cdot \mathbf{b}_{C}$$ of the \mathbb{C} -algebra $\mathbb{C}[\Gamma]$ is a \mathbb{Z} -subalgebra, and thus the \mathbb{Z} -linear transformation of multiplication by \mathbf{b}_C on this finite free \mathbb{Z} -submodule has a characteristic polynomial with integer coefficients. Since ρ_C also satisfies this characteristic polynomial, the complex number ρ_C is actually an algebraic integer. Taking traces, $$\operatorname{trace}_V(\widetilde{\rho}(\mathbf{b}_C)) = \dim_{\mathbb{C}} V \cdot \rho_C = n\rho_C,$$ so that the trace is n times an algebraic integer, and likewise for the inverse conjugacy class. Of course, for each g in C, since $\rho(g)$ can be diagonalized with root of unity eigenvalues, also $\operatorname{trace}_V(\rho(g))$ is an algebraic integer, as is $\operatorname{trace}_V(\rho(g^{-1}))$. Since trace is additive and conjugacy-invariant, choosing one representative g_C in each conjugacy class C, we have $$\sum_{g \in C} \operatorname{trace}_{V}(\rho(g)) \operatorname{trace}_{V}(\rho(g^{-1})) = \operatorname{trace}_{V}(\widetilde{\rho}(\mathbf{b}_{C})) \operatorname{trace}_{V}(\rho(g^{-1}_{C})) = n \cdot \rho_{C} \cdot \operatorname{trace}_{V}(\rho(g^{-1}_{C})).$$ By the Schur orthogonality relations, we also have, $$\#\Gamma = \sum_{g \in \Gamma} \operatorname{trace}_V(\rho(g)) \operatorname{trace}_V(\rho(g^{-1})) = \sum_C \operatorname{trace}_V(\widetilde{\rho}(\mathbf{b}_C)) \operatorname{trace}_V(\rho(g_C^{-1})) = n \cdot \sum_C \rho_C \cdot \operatorname{trace}_V(\rho(g_C^{-1})).$$ Thus, $\#\Gamma/n$ is an algebraic integer that is also an element of \mathbb{Q} , i.e., it is an element of \mathbb{Z} . Finally, deduce Burnside's theorem: for every finite group Γ , for every irreducible, \mathbb{C} -linear Γ -representation (V, ρ) , the dimension of V divides $\#\Gamma$. **Problem 8.** For every finite cyclic group, for every subgroup, for every character of the subgroup, determine the irreducible decomposition of the induced representation of the entire cyclic group. **Problem 9.** For every finite dihedral group, for its normal, index 2 cyclic subgroup, explicitly compute induction and restriction of \mathbb{C} -linear representations. **Problem 10.** For the symmetric group on 4 letters and its subgroup of the symmetric group on 3 letters, explicitly compute induction and restriction of \mathbb{C} -linear representations.