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MAT 543 FALL 2025 PROBLEM SET 1

Parts of these problem are also covered in Dummit and Foote. Please focus on
those parts of the problems that are new to you.

For every associative, unital ring R, for every left, respectively right, R-module M ,
the moduleM is simple if (and only if) the unique nonzero submodule is the entire
module. A module is semisimple if (and only if) it is a direct sum of finitely many
simple submodules (the zero module is an empty direct sum). Since the kernel,
respectively image, of a morphism of R-modules is an R-submodule, we have the
following.

Lemma 0.1 (Schur). For simple (right) R-modules M and N , the Abelian group
Hommod−R(M,N) is zero unless M is isomorphic to N . Moreover, the associative,
unital ring Hommod−R(M,M) (under composition) is a division algebra, i.e., every
nonzero element is invertible.

For every nonzero, associative, unital ring R, the ring R is left semisimple, re-
spectively right semisimple, if (and only if) R is semisimple as a left R-module,
resp. as a right R-module. This is equivalent to the condition that every finitely
generated left R-module, resp. right R-module, is semisimple. Similarly, R is sim-
ple if it has no nonzero two-sided ideals. A simple ring is left semisimple if and only
if it s right semisimple if and only if it is a matrix algebra over a division algebra
D, i.e., HomD−mod(M,M) for M a nonzero, finite free, left D-module.

Theorem 0.2 (Wedderburn – Artin). For every associative, unital ring R, for
every simple right R-module M , for the natural left module structure on M by
the division algebra DM := Hommod−R(M,M), the induced homomorphism R →
RM := HomDM−mod(M,M) is a surjection whose kernel is the annihilator of M in
R. For every nonzero, right semisimple ring R, for every finite collection (Mi)i∈I

of representatives of the distinct isomorphism classes of simple right R-submodules
of R, the induced homomorphism of associative, unital rings R →

∏
i∈I RMi

is an
isomorphism.

Of course the analogous theorem holds for left modules and left semisimple rings.
One corollary of the theorem is that every left semisimple ring is also right semisim-
ple (since both are nonzero, finite products of matrix algebras over division alge-
bras). Thus, these rings are called semisimple.

For every field F, for every semisimple, associative, unital F-algebra R, the di-
mension of R as an F-vector space is finite if and only if the dimension of each
simple right R-submodule M is finite. In that case, the division F-algebra DM is
an F-subalgebra of the simple F-algebra HomF(M,M). In particular, again DM

has finite F-dimension.

Since every finite field extension of F is a division F-algebra with finite F-dimension,
the field F is algebraically closed if every finite-dimensional, division F-algebra is
isomorphic to F as an F-algebra. Conversely, over an algebraically closed field
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F, the reduced norm of every F-division algebra of finite F-dimension > 1 has
a nonzero root. This contradicts the hypothesis that this is a division algebra.
Therefore, every division F-algebra with finite F-dimension over an algebraically
closed field F is isomorphic to F itself as an F-algebra.

Thus, for every algebraically closed field, for every semisimple F-algebra R with
finite F-dimension, for each simple right R-submodule M of R, the division F-
algebra DM is F itself. Therefore the factor ring RM is the matrix F-algebra
HomF(M,M).

Corollary 0.3 (Wedderburn – Artin). For every algebraically closed field F, for
every semisimple F-algebra with finite F-dimension, for every collection {Mi}i∈I of
representatives of the distinct isomorphism classes of simple, right R-submodules of
R, the induced homomorphism of associative, unital F-algebras is an isomorphism,

R
∼=−→

∏
i∈I

HomF−mod(Mi,Mi).

Finally, Maschke’s Theorem gives the following.

Theorem 0.4 (Maschke). For every field F, for every finite group Γ such that
the integer #Γ is invertible in F, the associated F-algebra is semisimple; namely,
F[Γ] :=

⊕
g∈Γ Fbg with F-bilinear multiplication extending the rule (bg,bh) 7→

bg·h.

Putting the pieces together gives the following.

Corollary 0.5. For every algebraically closed field F, for every finite group Γ such
that #Γ is invertible in F, for every finite set {(Vi, ρi)}i∈I of irreducible F-linear
Γ-subrepresentations of F[Γ] representing (uniquely) every isomorphism class, the
induced homomorphism F[Γ] →

∏
i∈I HomF(Vi, Vi) is an isomorphism of associa-

tive, unital F-algebras and of F-linear Γ-representations. In particular, #I equals
the F-dimension of the center of F[Γ], i.e., the number #Γ/inner(Γ) of conjugacy

classes of Γ. Also, the sum
∑

i∈I (dimF(Vi))
2
equals the F-dimension of F[Γ], i.e.,

#Γ.

Problem 1. Check that the F-bilinear operation on F[Γ] defined above is asso-
ciative, and thus (F[Γ], ∗) is an F-associative algebra. Moreover, for the identity
element e of the group Γ, check that be is a multiplicative identity in F[Γ].

Problem 2. Check that the center of F[Γ] is the F-vector subspace Class(Γ,F)
of all elements

∑
g∈Γ αgbg such that the coefficients αg are constant on conjugacy

classes.

Problem 3. Prove that for every γ ∈ Γ, the element bγ is a (left-right) multiplica-
tively invertible element of F[Γ], i.e., an element of the multiplicative group F[Γ]×

of (left-right) multiplicatively invertible elements. Check that the induced set map,

bΓ : Γ → F[Γ]×, γ 7→ bγ ,

is a morphism of groups.

Problem 4. Conversely, for every F-associative algebra (A, ·), for every morphism
of groups to the multiplicative group A× of (A, ·),

ρ : Γ → A×,
2
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prove that there is a unique morphism of F-associative unital algebras,

ρ̃ : (F[Γ], ∗) → (A, ·),

such that ρ̃ ◦ bΓ equals ρ.

Problem 5. For every finite dimensional F-vector space V and for every F-linear
Γ-representation,

ρ : Γ → GL(V,F),

conclude that there exists a unique morphism of F-associative unital algebras,

ρ̃ : (F[Γ], ∗) → HomF(V, V ),

such that ρ̃◦bΓ equals ρ. Conclude that finite dimensional F-linear Γ-representations
are equivalent to left F[Γ]-modules having finite dimension as an F-vector space.

Problem 6. For every morphism of groups,

ψ : Γ → ∆,

prove that there exists a unique morphism of F-associative unital algebras,

F[ψ] : F[Γ] → F[∆],

such that F[ψ] ◦ bΓ equals b∆ ◦ ψ. Thus, the rule ψ 7→ F[ψ] sends compositions to
compositions and identity morphisms to identity morphisms. Also, the composition
of F[ψ] with each F-linear representation,

σ : ∆ → GL(V,F),

is a F-linear representation of Γ,

σ ◦ ψ : Γ → GL(V,F),

sometimes called the restriction representation (typically only when ψ is injec-
tive).

Altogether, this defines a covariant functor from the category of groups to the
category of F-associative unital algebras sending every group Γ to the F-associative
unital algebra F[Γ] and sending every morphism of groups ψ to the morphism of
F-associative unital algebras F[ψ].

By the theorems above for the algebraically closed field C of characteristic 0, for
every finite group Γ, for every finite collection {(Vi, ρi)}i∈I of representatives of the
distinct isomorphism class of irreducible C-linear Γ-representations, the associated
homomorphism is an isomorphism,

C[Γ]
∼=−→

∏
i∈I

HomC(Vi, Vi).

Of course HomC−mod(Mi,Mi) is isomorphic as a C-algebra to the algebra of ni×ni-
matrices with entries in C, where ni is the C-dimension of Vi.

Problem 7. (Hopf algebra structure on the group algebra.) The trace
(sometimes called the counit) of C[Γ] is defined to be

TrΓ : C[Γ] → C,
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zg.
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The comultiplication is defined to be

∆Γ : C[Γ] → C[Γ]⊗C C[Γ],
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zg(bg ⊗ bg).

The antipode is defined to be

SΓ : C[Γ] → C[Γ],
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zgbg−1 .

Check that these operations (together with the usual unital, associative C-algebra
operations above) make C[Γ] into a Hopf C-algebra. Precisely, check all of the
following.

(a) The comultiplication is coassociative, i.e., the following two compositions are
equal,

C[Γ] ∆Γ−−→ C[Γ]⊗C C[Γ] ∆Γ⊗Id−−−−→ (C[Γ]⊗C C[Γ])⊗C C[Γ],

C[Γ] ∆Γ−−→ C[Γ]⊗C C[Γ] Id⊗∆Γ−−−−→ C[Γ]⊗C (C[Γ]⊗C C[Γ]) .

(b) The counit is a left-right coidentity, i.e., the following two compositions both
equal the identity map,

C[Γ] ∆Γ−−→ C[Γ]⊗C C[Γ] TrΓ⊗Id−−−−−→ C⊗C C[Γ] = C[Γ],

C[Γ] ∆Γ−−→ C[Γ]⊗C C[Γ] Id⊗TrΓ−−−−−→ C[Γ]⊗C C = C[Γ].

(c) The unital, associative C-algebra structure and the counital, coassociative C-
coalgebra structure satisfy the axioms of a bialgebra, i.e., each of the following
diagram commute.

C[Γ]⊗C C[Γ] ∆Γ◦(−∗−)−−−−−−−→ C[Γ]⊗C C[Γ]

∆⊗∆Γ⊗∆Γ

y x(−∗−)⊗(−∗−)

C[Γ]⊗C C[Γ]⊗C C[Γ]⊗C C[Γ] −−−−−−−−−−−−→
pr1⊗pr3⊗pr2⊗pr4

C[Γ]⊗C C[Γ]⊗C C[Γ]⊗C C[Γ]

.

C[Γ]⊗C C[Γ] (−∗−)−−−−→ C[Γ]

TrΓ⊗TrΓ

y yTrΓ

C⊗C C −−−−→∼=
C

.

C
∼=−−−−→ C⊗C C

be

y ybe⊗be

C[Γ] −−−−→
∆Γ

C[Γ]⊗C C[Γ]

.

C Id−−−−→ C

be

y xTrΓ

C[Γ] −−−−→
Id

C[Γ]

.
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(d) The antipode S satisfies the axioms of a Hopf algebra, i.e., the following
diagram commutes.

C[Γ]⊗C C[Γ] SΓ⊗Id−−−−→ C[Γ]⊗C C[Γ]

∆Γ

x y−∗−

C[Γ] TrΓ(−)be−−−−−−→ C[Γ]

∆Γ

y x−∗−

C[Γ]⊗C C[Γ] Id⊗SΓ−−−−→ C[Γ]⊗C C[Γ]

.

(e) For every pair (U, σ) and (V, ρ) of left modules over a Hopf C-algebra R, for
every element r ∈ R with

∆R(t) =
∑
α

sα ⊗ rα,

there is an associated left R-module structure on U ⊗C V defined by

(σ ⊗ ρ)(t) · (u⊗ v) :=
∑
α

(σ(sα) · u)⊗ (ρ(rα) · v) .

Check that for the comultiplication ∆Γ defined above, this equals the structure σ⊗ρ
of Γ-representation on U ⊗C V as defined in lecture. Also, check that the trivial
representation (i.e., the left-right identity for the tensor product operation on C-
linear left Γ-representations) is the unique representation such that the associated
trace on C[Γ] equals TrΓ.
(f) Similarly, for every left module (V, ρ) over R, define a left R-module on the
dual C-vector space V ∨ of C-linear functional χ on V by

(t · χ)(v) := χ(S(t) · v).
Check that for the antipode SΓ defined above, this equals the structure of Γ-
representation on V ∨ as defined in lecture. Thus, the “extra structures” on C-linear
Γ-representations are explained by the Hopf algebra structure on C[Γ]. Conversely,
these extra structures uniquely determine the Hopf algebra structures ∆Γ, TrΓ, and
SΓ on the group C-algebra C[Γ].
(g) Finally, check that the comultiplication is cocommutative, i.e., ∆ equals its
postcomposition with the involution

pr2 ⊗ pr1 : C[Γ]⊗C C[Γ] → C[Γ]⊗C C[Γ], a1 ⊗ a2 7→ a2 ⊗ a1.

For every Hopf C-algebra that is cocommutative and that is finite dimensional as a
C-vector space, there is an associated group Γ consisting of all grouplike elements b
such that ∆(b) equals b⊗b. Moreover, the Hopf C-algebra is canonically isomorphic,
as a Hopf C-algebra, to the group C-algebra of the group Γ of grouplike elements.

In particular, we can recover the finite group Γ from the structure of the group
C-algebra C[Γ] as a Hopf algebra. Using the next exercise, we can recover this from
the C-linear category of finite-dimensional C-linear representations of Γ together
with the extra structures of tensor products and duals of such representations. This
is a first instance of Tannaka(-Krein) duality.

Problem 8. (A universal property of the group algebra as a represen-
tation.) As in the previous problem, let C[Γ] be the group C-algebra of a finite
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group Γ. Give C[Γ] its natural structure of C-linear (left) G-representation, i.e.,
(g,bh) 7→ bg·h.

(a) Prove the following claim from lecture. For every C-linear Γ-representation
(V, ρ), the following C-linear map is an isomorphism,

HomRepC
Γ
(C[Γ], (V, ρ)) → V, (T : C[Γ] → V ) 7→ T (be).

Also, show that this isomorphism is natural in (V, ρ). Stated in terms of category
theory, there is a fiber functor,

F : RepCΓ → C−Vect, (V, ρ) 7→ V, HomRepC
Γ
((U, σ), (V, ρ)) ↪→ HomC(U, V ).

This is a covariant functor, and it is represented by C[Γ].

(b) Invert the isomorphism above to get a C-linear map,

V
∼=−→ HomRepC

Γ
(C[Γ], (V, ρ)) ⊆ HomC(C[Γ], V ).

Use adjointness of Hom and tensor product to obtain an associated C-linear map,

C[Γ]⊗C V → V.

Prove that this C-linear map is a morphism of C-linear G-representations for the
following structures of C-linear G-representation,

C[Γ]⊗C (V, triv) → (V, ρ).

(c) Apply this in the special case that (V, ρ) equals C[Γ] itself, and deduce that the
C-linear map,

C[Γ]⊗C C[Γ] → C[Γ],
is the usual C-algebra multiplication on the group C-algebra. Thus, as a C-linear
Γ-representation, the group C-algebra is determined up to unique isomorphism by
its universal property above, and the tensor and Hom operations even recover the
structure of associative, unital C-algebra on C[Γ].

(d) By Maschke’s Theorem, every finite dimensional C-linear Γ-representation is
completely reducible. Combine this with Schur’s Lemma and (a) above to conclude
that every finite dimensional, irreducible, C-linear Γ-representation (Vi, ρi) is iso-
morphic to a C-linear subrepresentation of C[Γ] (explaining why we defined I as
we did).

(e) Use the morphism of C-linear Γ-representations from (c) to conclude that right
multiplication of C[Γ] on itself (the “right regular representation”) gives an isomor-
phism of unital, associative C-algebras,

C[Γ]opp
∼=−→ HomRepC

Γ
(C[Γ],C[Γ]).

Here, for every unital, associative C-algebra A, the opposite algebra Aopp is the
same C-vector space but with multiplication defined by a•b := ba. The antipode SΓ

is a C-algebra antihomomorphism that is an involution, so that the Hopf C-algebra
C[Γ] is even involutive.

(f) Combine the isomorphism in (e) with the previous exercise and the Wedderburn
– Artin Theorem to conclude that the number #I of isomorphism classes [(Vi, ρi)]
of irreducible C-linear Γ-representations equals the number of conjugacy classes in
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Γ, that every (composite) C-bilinear pairing below is a perfect pairing of C-vector
spaces,

Hi × Vi → C[Γ] TrΓ−−→ C, Hi := HomC[Γ]((Vi, ρi),C[Γ]),
that each multiplicity mi of (Vi, ρi) in the C-linear Γ-representation C[Γ] equals the
C-vector space dimension ni = dimC(Vi), and that there is an equality of positive
integers,

#Γ =
∑
i∈I

n2i .

Problem 9. (Central idempotents of the group algebra give the irre-
ducible representations.) Inside the center Z(C[Γ]) considered as a C-algebra,
an element z is a central idempotent if z2 equals z. For each central idempotent
z, the annihilator of z is

Ann(z) := {b ∈ C[Γ]|zb = 0}.

(a) With respect to the C-algebra isomorphism

Z(ã) : Z(C[Γ]) = Z(C[Γ]opp)
∼=−→

∏
i∈I

C · IdVi
,

check that the idempotent elements correspond to those elements (aiIdVi)i∈I such
that every a2i equals ai, i.e., such that ai equals 1 or 0.

(b) For a central idempotent z, define the support, supp(z), to be the subset of I
such that ai equals 1. Check that the annihilator of z maps isomorphically to the
left-right ideal,

{(Ti)i∈I ∈
∏
i∈I

HomC(Vi, Vi)|∀i ∈ supp(z), Ti = 0}.

(c) In particular, check that the unique nonzero central idempotents with codimension-
1 annihilator in Z(C[Γ]) are the primitive idempotents ei for each i ∈ I,

ei 7→ (ajIdHj )j∈I , ai = 1, aj = 0,∀j ̸= i.

Moreover, for each i ∈ I, check that the common annihilator in C[Γ] of ej for all
j ̸= i maps isomorphically to the left-right ideal that is the factor HomC(Hi, Hi).
As a C-linear left Γ-representation, this C-algebra is a direct sum of ni copies of the
irreducible representation (Vi, ρi). Thus, we can construct the irreducible, C-linear,
Γ-representations from the full list of idempotents in Z(C[Γ]) having codimension-
1 annihilator in Z(C[Γ]) (slightly indirectly, since we have to extract one of the
irreducible factors in this direct sum of ni copies of that factor).

Problem 10. (Schur’s Orthogonality Relations and idempotents in the
group algebra.) This exercise reconstructs the primitive idempotents (and thus
the irreducible representations) in the group algebra from the information of the
irreducible characters. The key is a natural Hermitian inner product on the center
of the group algebra, together with Schur’s Orthogonality Relations.

(a) For every C-linear Γ-representation (V, ρ) and for every conjugacy class C in
Γ, check that the following C-linear operator on V is a morphism of C-linear Γ-
representations, ∑

g∈C

ρ(g) ∈ HomC(V, V ).
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(b) If (V, ρ) is a finite dimensional, irreducible C-linear Γ-representation, use Schur’s
Lemma to conclude that this morphism is a multiple of the identity, say ρCIdV .
Taking traces, deduce the identity,

ρC · dimC(V ) =
∑
g∈C

TrV (ρ(g)).

(c) Similarly, conclude that the image of the following C-linear operator is contained
in the C-linear Γ-subrepresentation of invariant elements,∑

g∈Γ

ρ(g) ∈ HomC(V, V ).

If (V, ρ) is a finite dimensional representation whose invariant subspace is zero,
conclude that ∑

C

ρC = 0, i.e.,
∑
g∈Γ

TrV (ρ(g)) = 0.

In particular, this holds if (V, ρ) is a nontrivial irreducible representation. Con-
versely, if (V, ρ) is a trivial representation (of arbitrary finite dimension), show that
the sum equals dimC(V )#Γ. Thus, since trace is additive for direct sum decompo-
sition, for a general (V, ρ), conclude the identity

1

#Γ

∑
g∈Γ

TrV (ρ(g)) = dimC(V
Γ).

(d) For every finite dimensional, C-linear, (left) Γ-representation (V, ρ), the char-
acter of this representation is the class function,

χ(V,ρ) : Γ → C, g 7→ TrV (ρ(g)).

Every ρ(g) is diagonalizable with eigenvalues ζ that are roots of unity with ζ−1 = ζ.
Conclude the identity

χ(V ∨,ρ∨)(g) = χ(V,ρ)(g
−1) = χ(V,ρ)(g).

Similarly, for representations (U, σ) and (V, ρ), use the tensor product of the eigen-
decompositions for σ(g), respectively ρ(g), to prove the identity,

χ(U⊗V,σ⊗ρ)(g) = χ(U,σ)(g)χ(V,ρ)(g).

Consequently, conclude the identity,

χHomC(U,V )(g) = χ(U,σ)(g)χ(V,ρ)(g).

Sum over g and use (c) to deduce the identity,

dimCHomRepC
Γ
((U, σ), (V, ρ)) =

1

#Γ

∑
g∈Γ

χ(U,σ)(g) · χ(V,ρ)(g).

(e) Now assume that (V, ρ) is irreducible. For every class function,

α : Γ → C,

with associated central element,

1

#Γ

∑
g∈Γ

α(g)bg−1 ,
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conclude that the associated C-linear operator on V ,∑
g∈Γ

α(g)ρ(g−1),

equals λIdV where λ satisfies the identity

λdimC(V ) =
1

#Γ

∑
g∈Γ

α(g)χ(V,ρ)(g
−1) =

1

#Γ

∑
g∈Γ

α(g)χ(V,ρ)(g).

In particular, this central element annihilates the primitive idempotent correspond-
ing to (V, ρ) if and only if the class function α is orthogonal to the class function
χ(V,ρ) with respect to the Hermitian inner product on the C-vector space of class
functions defined by

⟨α, β⟩ := 1

#Γ

∑
g∈Γ

α(g)β(g).

(f) Let (U, σ) and (V, ρ) be finite dimensional, C-linear, (left) Γ-representations.
Reinterpret (d) as an identity,

dimCHomRepC
Γ
((U, σ), (V, ρ)) = ⟨χ(V,ρ), χ(U,σ)⟩.

In particular, if (U, σ) and (V, ρ) are irreducible representations, conclude that
⟨χ(V,ρ), χ(U,σ)⟩ equals 0 unless the representations are isomorphic, in which case
⟨χ(V,ρ), χ(U,σ)⟩ equals 1. Thus, the characters of irreducible representations form
an orthonormal subset of the C-vector space of C-valued class functions with respect
to the Hermitian inner product defined above.

(g) Finally, since the dimension of the space of class functions equals the dimen-
sion of Z(C[Γ]), and since this equals the number #I of isomorphism classes of
irreducible representations, conclude that the characters of irreducible representa-
tions form an orthonormal basis for the C-vector space of C-valued class functions
with respect to the Hermitian inner product defined above. Altogether this is the
Schur orthogonality relations (sometimes also attributed to Frobenius).

(h) Deduce that for the irreducible representations (Vi, ρi) for i ∈ I with character
χi = χ(Vi,ρi), the corresponding central elements are the primitive idempotents,

ei :=
χi(e)

#Γ

∑
g∈Γ

χi(g)bg−1 .
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