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1 Introduction

These are additional notes on categories and functors for this course. Some of the notes are cut-
and-pasted from previous courses I taught about basic algebraic objects (semigroups, monoids,
groups, acts and actions, associative rings, commutative rings, and modules), elementary language
of category theory, and adjoint pairs of functors. Much of the notes are exercises working through
the basic results about these definitions.

2 Algebraic Objects

Definition 2.1. A semigroup is a pair (G, m) of a set G and a binary relation,
m:GxG - @G,

such that m is associative, i.e., the following diagram commutes,

mxIdg

GxGxG — GxG

IdGij( lm .

GxG@ —— (
The binary operation is equivalent to a set function,
L,:G - Homgets(G,G), g+~ Ly,

such that for every g,¢’ € G, the composition Ly o Ly equals L,y 4y, Where m(g,g’) is defined to
equal Ly(g’). When no confusion is likely, the element m(g,g’) is often denoted g-¢'.

For semigroups (G, m) and (G’,m’) a semigroup morphism from the first to the second is a set
map

u:G -G,

such that the following diagram commutes,

GxG 2% Grx G

G —— G
The set of semigroup morphisms is denoted Homgemigroups((G,m), (G’,m")).

Definition 2.2. For a semigroup (G, m), an element e of G of is a left identity element, resp.
right identity element, if for every g € G, g equals m(e, g), resp. g equals m(e,g). An iden-
tity element is an element that is both a left identity element and a right identity element.
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A monoid is a triple (G, m,e) where (G,m) is a semigroup and e is an identity element. For
monoids (G, m,e) and (G’,m’,e') a monoid morphism from the first monoid to the second is a
semigroup morphism that preserves identity elements. The set of monoid morphisms is denoted

HomMonoidS((G7 m, 6)7 (GI7 mlv el))'

Example 2.3. For every semigroup (G, m), the opposite semigroup is (G, m°PP), where m°PP(g, g')
is defined to equal m(g’, g) for every (g,¢') € GxG. A left identity element of a semigroup is equiv-
alent to a right identity element of the opposite semigroup. In particular, the opposite semigroup
of a monoid is again a monoid.

Example 2.4. For every set I and for every collection (G, Mgy )aer of semigroups, for the Cartesian
product set G :=[],.; G, With its projections,

pr, : G = G,,

there exists a unique semigroup operation m on G such that every projection is a morphism of
semigroups. Indeed, for every «, the composition

pro,om:GxG - Gy,

equals m, o (pr, x pr,). There exists an identity element e of (G, m) if and only if there exists an
identity element e, of (G4, m,) for every a, in which case e is the unique element such that pr,(e)
equals e, for every a € [.

Example 2.5. For every set S, the set Homgegs(.5,.5) of set maps from S to itself has a structure
of monoid where the semigroup operation is set composition, (f,g) = fog, and where the identity
element of the monoid is the identity function on S. For every semigroup (G, m), a left act of
(G,m) on S is a semigroup morphism

p:(G,m) - (Homgets(S, S),0).

For every ordered pair ((S,p),(T,m)) of sets with left G-acts, a left G-equivariant map from
(S,p) to (T, m) is a set function u : S — T such that u(p(g)s) equals 7(g)u(s) for every g € G and
for every s e S.

For each set S, a right act of G on S is a semigroup morphism p from (G,m) to the opposite
semigroup of Homgets(.5,.5). Note, this is equivalent to a left act of the opposite semigroup G°PP
on S. For every ordered pair ((S,p),(T,7)) of sets with a right G-act, a right G-equivariant
map is a set function v : .S — T such that u(sp(g)) equals u(s)w(g) for every g € G and for every
s € S. Note, this is equivalent to a left G°PP-equivariant map.

For an ordered pair ((G,m), (H,n)) of semigroups, for each set S, a G — H-act on S is an ordered
pair (p,7) of a left G-act on S, p, and a right H-act on S, m, such that (p(g)s)m(h) equals
p(g)(sm(h)) for every g € G, for every h € H, and for every s € S. This is equivalent to a left act
on S by the product semigroup of G and H°PP. A G — H-equivariant map is a map that is left
equivariant for the associated left act by G x HPP.
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For every monoid (G, m,e), a left action of (G, m,e) on S is a monoid morphism from (G, m,e)
to Homgets(S,.S). There is a category G — Sets whose objects are pairs (5, p) of a set S and a left
action of (G,m,e) on S, whose morphisms are left G-equivariant maps, and where composition
is usual set function composition. A right action is a monoid morphism from (G, m,e) to the
opposite monoid of Homgets(.S,5). There is a category Sets — G whose objects are pairs (.9, p) of a
set S and a right action of (G,m,e) on S, whose morphisms are left G-equivariant maps, and where
composition is usual set function composition. Finally, for every ordered pair ((G,m,e), (H,n, f))
of monoids, a G- H-action on S is a G- H act (p, ) such that each of p and 7 is an action. There
is a category G — H — Sets whose objects are sets together with a G — H-action, whose morphisms
are G — H-equivariant maps, and where composition is usual set function composition.

Definition 2.6. A semigroup (G,-) is called left cancellative, resp. right cancellative, if for
every f,g,h in G, if f-g equals f-h, resp. if g- f equals h- f, then g equals h. A semigroup is
cancellative if it is both left cancellative and right cancellative. A semigroup is commutative
if for every f,g € G, f-g equals g- f, i.e., the identity function from G to itself is a semigroup
morphism from G to the opposite semigroup. For an element f of a monoid, a left inverse, resp.
right inverse, is an element ¢ such that ¢- f equals the identity, resp. such that f - g equals the
identity. An inverse of f is an element that is both a left inverse and a right inverse. An element
f is invertible if it has an inverse.

Definition 2.7. A group is a monoid such that every element is invertible. The map that associates
to each element the (unique) inverse element is the group inverse map, i : G - G. If the
monoid operation is commutative, the group is Abelian. A monoid morphism between groups
is a group homomorphism, and the set of monoid morphisms between two groups is denoted
Homgroups((G,m,e), (G',m’,¢e’')). If both groups happen to be Abelian, this is also denoted
Homy, 04 ((G,m,e),(G',m’,e")). In this case, this set is itself naturally an Abelian group for the
operation that associates to a pair (u,v) of group homomorphisms the group homomorphism u - v

defined by (u-v)(g) =m/(u(g),v(g))-

Definition 2.8. An associative ring is an ordered pair ((A4, +,0), L, ) of an Abelian group (A, +,0)
and a homomorphism of Abelian groups,

Le: A— Homz moa(A,A), ar (Ly,: A—> A)

such that for every a,a’ € A, the composition L, o L, equals L., where a-a’ denotes L,(a’). The
set map L, is equivalent to a biadditive binary operation,

tAxA-> A (a,d)=a-d,

that is also associative, i.e., for every a,a’,a” in A, the element (a-a’)-a” equals a- (a’-a”). In
particular, (A,-) is a semigroup. For associative rings (A, +,0,-) and (A’,+/,0’,"), a ring homo-
morphism from the first to the second is a set function that is simultaneously a morphism of
Abelian groups from (A, +,0) to (A’,+’,0") and a morphism of semigroups from (A,-) to (A’,-).
For every associative ring (A, +,0,-), the opposite ring is (A, +,0,-°PP),
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Definition 2.9. An associative, unital ring is an associative ring such that the multiplication
semigroup has an identity element, i.e., there exists a multiplicative identity. An unital ring
homomorphism is a ring homomorphism that preserves multiplicative identities. For associative,
unital rings (A, +,0,-,1) and (A’,+/,0’,-,1’), the set of unital ring homomorphisms from the first to
the second is denoted Homunitairings ((4, +,0,-,1), (A", +/,0,-/,1")), or just Homuynitairings (A, A")
if the identities and operations are understood. In particular, a commutative, associative,
unital ring is an associative unital ring such that the multiplication monoid is commutative. The
set of unital ring homomorphisms between two commutative, associative, unital rings is denoted

HomCommUnitalRings (A, A’) .

Definition 2.10. For every Abelian group (F,+,0), the Abelian group Homy_meaq(F, F') of group
homomorphisms from the group to itself has a structure of associative, unital ring where the multi-
plication operation is composition, and where the identity element is the identity homomorphism.
For every associative ring (R, +,0,-), a (not necessarily unital) left module structure on F' for
the associative ring R is a morphism of associative rings from R to Homz_mea(F, F'). A (not neces-
sarily unital) right module structure is a morphism of associative rings from R to the opposite
ring of Homg_mea(F, F). For every associative, unital ring (R,+,0,-,1), a (unital) left module
structure on F for the associative unital ring R is a morphism of associative unital rings from R
to Homy_moa(F, F'). A (unital) right module structure on F' for R is a morphism of associative
unital rings from R to the the oppsite ring of Homy_meaq(F, F'). For every left module structure on
F of R, the opposite module is the equivalent right module structure on F' of the opposite ring
of R.

For left R-modules F' and F”,
L.: R - Homy moa(F,F), L,:R - Homg mea(F', F'),
a left R-module morphism from F' to F” is a group homomorphism,
¢:(F,+,0) > (F',+',0"),
such that for every r € R, the following composition functions are equal,
¢poL., L. op:F —F'

ie., ¢(r-x) equals r ¢(x) for every r € R and for every x € F. For right R-modules G and G,
a right R-module morphism from G to G’ is a left R°PP-module morphism from the opposite
module G°PP to the opposite module (G')°PP.

3 Categories

Definition 3.1. A category A consists of (i) a “recognition principle” or “axiom list” (possibly
depending on auxiliary sets) for determining whether a specified set a is an object of this category,
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(ii) an assignment, for every ordered pair (a,a’) of objects of A, of a specified set Hom 4(a,a’), and
(iii) an assignment, for every ordered triple (a,a’,a’) of objects of A, of a specified set function

—o—:Homy(a',a") x Hom4(a,a’) » Homy(a,a”), (g,f)=gef,

such that, for every object a of A, there exists an element Id, € Hom 4(a,a) that is a left-right
identity for o, and such that for every ordered 4-tuple (a,a’,a”,a’") of objects of A and for every
ordered triple

(g, f,e) e Homy(a",a"") x Homy(a',a") x Homy4(a,a'),

the elements go (foe) and (go f)oe in Homy(a,a) are equal, i.e., o is associative. The elements
of Hom 4(a,a’) are morphisms from a to a’ in A. The set function — o — is composition in A.

Definition 3.2. For a category A, for an ordered pair (a,a’) of objects of A, for an ordered pair
of elements
(97 f) € HomA(a, a,) X HOH’IA(GI, (1),

if the composition go f € Hom 4(a,a) equals Id,, then g is a left inverse of f in A and f is a right
inverse of g in A. If g is both a left inverse of f and a right inverse of f, then ¢ is an inverse of
fin A. An isomorphism in A is a morphism in A that has an inverse in A.

Definition 3.3. For a category A, an initial object, respectively a terminal object (or final
object), is an object a such that for every object a’, the set Hom 4(a, a’), resp. the set Hom 4(a’, a),
is a singleton set. An object that is simultaneously an initial object and a terminal object is called
a zero object.

Example 3.4. The category Sets has as objects all sets. For every ordered pair of sets, the
associated set of morphisms in Sets is defined to be the set of all set functions from the first set
to the second set. The composition in Sets is usual composition of functions. A set function has a
left inverse, respectively a right inverse, an inverse, if and only if the set function is injective, resp.
surjective, bijective. The empty set is an initial object. Every singleton set is a final object.

Example 3.5. For every category A, for every object a of A, there is a monoid H? := Homy(a, a)
whose semigroup operation is the categorical composition and whose monoid identity element is
the categorical identity morphism of a. This is the A-momnoid of the object a. For every ordered
pair (a,a’) of objects of A, the set H% := Homy(a,a') the categorical composition defines a set
map,
HY x H% x H* - HY, (u', f,u) — o fou.

This is a HY — Hg-action on HY. This is the A-action of H% — H* on HY. Finally, for every
ordered triple (a,a’,a') of objects, the composition binary operation,

I
H% x H% - H°,,

. " . . . ! . " !

is a H, — Hg-equivariant map that is H¢-balanced, i.e., for every u” € H¢,, for every g € H¢,, for
!

every u' € HZ,, for every f e H?, and for every u € H?, we have,

u'o(gof)=(u"og)ef, (gou)of=go(uof), (gof)ou=go(fou)

This is the A-equivariant binary operation.
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Example 3.6. For every monoid, there is a category with a single object whose unique categorical
monoid is the specified monoid. Every category with a single object is (strictly) equivalent to such
a category for a monoid (unique up to non-unique isomorphism).

Example 3.7. For every monoid (G, m,e), for every set S together with a left G-action p, there
is an associated category, sometimes denoted [(S, p)/G], whose objects are the elements of S, and
such that for every ordered pair (s,s’) € S x S the set of morphisms is

Gy ={g€Glp(g)s = 5"}
For every ordered triple (s,s’,s"”) € S xS xS, the semigroup operation defines a binary operation,
Gi:/ X Gil i Gz//, (g,,g) g g,g

The morphism of an element g € G%, is left invertible, respectively right invertible, invertible, in this
category if and only if the element g of the monoid is left invertible, resp. right invertible, invertible.
This category has an initial object if and only if the left G-action is left G-equivariantly isomorphic
to the left regular representation of the monoid G on itself, in which case every invertible element
is an initial object. For the left regular representation, the category has a final object if and only
if the monoid is a group (every element is invertible), in which case every object is both initial and
final.

Example 3.8. For every ordered pair of monoids (G, G"), for every ordered pair (M, M') where
M is a set with a specified G’ — G-action and where M is a set with a specified G — G’-action, for
every ordered pair of biequivariant and balanced binary operations,

OMI7M:M,XM—>G’ OM,M’:GXM,%GG
that are associative, i.e., for all f, f1, fo € M and for all f’, f], f5 € M’,
(fl O M, M f’) “fa=f1- (f' oM M f2)» (f1, oMM f) ’ fé = f1' : (f oM, M’ f2,)7

there is a category A with precisely two objects a and a’ such that the categorical monoid G equals
G, such that the categorical monoid GZ; equals G’, such that the categorical G'~G-set G% equals M,
such that the categorical G — G’-set G¢ equals M’ and such that the composition binary relations
are the specified binary operations oy a and o . Every category with precisely two objects is
(strictly) equivalent to such a category for some datum as above, (G, G, M, M’ oy m, o).

Example 3.9. Continuing the previous example, let (S, 5’) be an ordered pair of sets, let
P G - HomSets(Sa 5)7 IO, : G, - HomSets(S,7 S,)u

be an ordered pair of left actions so that Homges(S,S’) has an induced G’ - G action and
Homgets(57,S) has an induced G — G’ action. Let

s M - HomSets(Su S,)a ,LL, : M, - HomSets(S,7S)7

8
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be an ordered pair of a G’ — G equivariant map and a G — G’ equivariant map that are compatible
with the composition maps, i.e., for every f € M and for every f’' e M’,

w (f)oulf)=p(f onrnn ), p(f)op'(f") =o' (f orsner f1).

There is a category [(S, S, p, p', p, i) [(G,G", M, M’ opp ar, onr )] whose objects are elements s of
S and elements s” of S’, such that for every pair of elements (s1,s2) € S xS, resp. (s],s5) € 5" x 5",

the morphisms are G3}, resp. (G’ 2:1, as in [(S, p)/G], resp. as in [(S,p")/G'], and such that for
every s € S and for every s’ € S, the morphisms from s to s, resp. the morphisms from s’ to s,
are those elements m of M with pu(m)s = s, resp. those elements m’ of M’ with u/(m')s’ = s. The

compositions are defined in the evident way.

Example 3.10. For every monoid M, for the associated category A with one object a whose
monoid of self-morphisms equals M, the category HomA has objects (a,a, f) for every f e M. For
an ordered pair (f,g) € M x M, the set of morphisms from (a,a, f) to (a,a,g) equals the set of
ordered pairs (q,q') € M x M such that g-q equals ¢’ - f.

Example 3.11. For every semigroup (G, m), for every set S with a left G-act p on S, the iden-
tity function from S to itself is a left G-equivariant map from (S, p) to (S,p). Also, for every
ordered triple ((S,p),(T,7),(U,\)) of sets with a left G-act, the composition of each left G-
equivariant map from (S,p) to (7, 7) with a left G-equivariant map from (7',7) to (U,\) is a
left G-equivariant map from (S, p) to (U,A). Thus, there is a category G — Act whose objects
are sets with a left G-act, (S, p), where for every ordered pair ((S,p), (T, 7)) of sets with a left
G-act, Homg_act((S, p), (T,m)) is the subset of Homgets(S,T") of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Act - G
whose objects are sets with a right G-act, (S, p), where for every ordered pair ((S,p), (7, 7)) of sets
with a right G-act, Homaci—c((S, p), (T, 7)) is the subset of Homgets(S,7T") of right G-equivariant
maps, and where composition is the usual set function composition. Finally, for every ordered pair
((G,m),(H,n)) of semigroups, there is a category G — H — Act whose objects are sets S with
a G — H-act, whose morphisms are GG — H-equivariant maps, and where composition is usual set
function composition.

Example 3.12. For every monoid (G,m,e), for every set S with a left G-action p on S, the
identity function from S to itself is a left G-equivariant map from (S, p) to (S, p). Also, for every
ordered triple ((S,p),(T,7),(U, X)) of sets with a left G-action, the composition of each left G-
equivariant map from (9, p) to (7, 7) with a left G-equivariant map from (7, 7) to (U, \) is a left
G-equivariant map from (5, p) to (U, \). Thus, there is a category G — Sets whose objects are
sets with a left G-action, (S, p), where for every ordered pair ((S,p), (T, 7)) of sets with a left
G-action, Homg_gets((S, p), (T, 7)) is the subset of Homgets (.S, T") of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Sets - G
whose objects are sets with a right G-action, (.5, p), where for every ordered pair ((S,p),(T,))
of sets with a right G-action, Homgets_((S, p), (T, 7)) is the subset of Homgets(S,7") of right G-
equivariant maps, and where composition is the usual set function composition. Finally, for every

9
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ordered pair ((G,m,e),(H,n, f)) of monoids, there is a category G — H — Sets whose objects are
sets S with a G — H-action, whose morphisms are G — H-equivariant maps, and where composition
is usual set function composition.

Example 3.13. The category Semigroups, respectively Monoids, Groups, Rings, UnitalRings,
CommUnitalRings, has as objects all semigroups, respectively all monoids (semigroups that have
an identity element), all groups, all associative, unital rings, all associative, commutative, unital
rings. For every ordered pair of objects, the set of morphisms in each of these categories is the set
of all set maps between the objects that preserve the algebraic operations (and identity elements,
when these are part of the structure). Composition is usual composition of set maps. In each of
these categories, a morphism is an isomorphism if and only if it is a bijection, in which case the
set-theory inverse of the bijection is also the inverse in the category. Each of these categories has a
terminal object consisting of any object whose underlying point set is a singleton set. The trivial
object is also an initial object, hence a zero object, in Monoids and Groups. The commutative,
unital ring Z is an initial object in UnitalRings and CommUnitalRings.

Example 3.14. For every associative, unital ring A, the category A — mod, resp. mod - A, is
the category whose objects are left A-modules, resp. right A-modules, and whose morphisms are
homomorphisms of left A-modules, resp. of right A-modules. Composition is usual composition of
set functions. The zero module is both an initial object and a terminal object, i.e., a zero object.

Definition 3.15. For a commutative, unital ring R, an R—mod enriched category is a category
A together with a specified structure of (left-right) R-module on each set of morphisms such that
each composition set map is R-bilinear.

Definition 3.16. For every category A, the arrow category of of A is the category A~ whose
objects are ordered triples (ag,a, f) of objects ag and a; of A and an element f € Homy(ag,a;),
such that for every ordered pair ((ag, a1, f), (ag,a, f')) of objects the set of morphisms is

HOHl_AH((CL(),CLl,f), (ag,a’l, f,)) = {(QO>Q1) € HOHl_A(CL[),CL{)) x HOHl_A(CLl,all)Lf’ °do=q1° f}?

and for every ordered triple of objects, ((ao, a1, f), (ag,ay, f'), (af,ay, f"")), for every morphism
(g0, q1) from (ag, a1, f) to (aj,al, f'), and for every morphism (qj, ¢;) from (ay,al, f') to (ay,af, f"),
the composition (g, q]) o (qo,q1) is defined to be (gf © qo,q] © q1)-

Definition 3.17. For every category, the opposite category has the same objects, but the set of
morphisms from a first object to a second object in the opposite category is defined to be the set of
morphisms from the second object to the first object in the original category. With this definition,
composition in the opposite category is defined to be composition in the original category, but
in the opposite order. For every object, the associated categorical monoid of that object in the
opposite category equals the opposite monoid of the categorical monoid in the original category.
For every ordered pair of objects, the categorical biaction for the opposite category is the opposite
biaction of the categorical biaction of the original category.

10
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Example 3.18. For every commutative, unital ring R, for every category enriched over R — mod,
every categorical monoid has an associated structure of an associative, unital, central R-algebra
such that the algebra product is the monoid operation. Conversely, for every central R-algebra,
there is a category enriched over R-mod with precisely one object whose central R-algebra of
self-morphisms is the specified central R-algebra. Also, for the opposite category enriched over
R - mod, every central R-algebra of self-morphisms of an object is the opposite central R-algebra
of that in the original category.

Example 3.19. For every commutative, unital ring R, for every category A enriched over R—mod,
for every ordered pair (a,a’) of objects of A with the associated central R-algebra structures on
the monoids H? and H g,’ , categorical composition defines an associated structure of R-central
H¢ — Ho-bimodule on HY inducing the categorical H% — H2-action. Also, for every ordered triple
(a,a’,a') of objects of A, the composition binary operation defines an R-central H g,’,' — H2-bimodule
homomorphism,
H @ por He — Hi.

Conversely, for every ordered pair of central R-algebras (H, H'), for every ordered pair (S,T) of
an R-central H'— H bimodule S, i.e., a left H' ® g H°PP-module, and an R-central H — H' bimodule
T, for every ordered pair of balanced bimodule homomorphisms,

ors:T®p S—>H, osr:SegT ~ H,

that are associative, there is a category A enriched over R — mod with precisely two objects a
and a’ such that the categorical central R-algebra H? equals H, such that the categorical central
R-algebra H g,’ equals H’, such that the categorical R-central H’' — H bimodule H? equals S, such
that categorical R-central H — H' bimodule H? equals T', and such that the composition binary
operationss are the specified binary operations og r and op .

Also, for the opposite category enriched over R — mod, the R-central algebras of self-morphisms
of an object are replaced by their opposites, and the opposite of the R-central H' — H bimodule
structure on HY is the categorical R-central H°PP — (H')°PP bimodule structure of the opposite
category.

Example 3.20. For every partially ordered set (S,<), there is a category whose objects are the
elements of S, and such that for every ordered pair (s,s’) € S xS, the set of morphisms is empty
unless s < s’; in which case the set of morphisms is a singleton set. There is a unique composition
law consistent with these sets of morphisms. The opposite category is the category associated to
the opposite partially ordered set (.S,>).

Definition 3.21. For a category A, a subcategory of A is a category B such that every object
of B is an object of A, such that for every ordered pair (b,0") of objects of B, the set Homgp(b, ")
is a subset of Hom4(b,0’), and such that for every ordered triple (b,b’,0") of objects of B, the
composition in B is the restriction of composition in 4. A subcategory B of A is full if for every
ordered pair (b,") of objects of B, the subset Homp(b,d") equals all of Hom 4(b,b").
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Similarly, for a commutative, unital ring R and a category A enriched over R — mod, an R — mod
enriched subcategory is a subcategory B of A such that every subset Homp(b,d") of Hom 4(b, ")
is an R-submodule.

Example 3.22. For every monoid M, for the associated category with one object whose categorical
monoid equals M, the subcategories are precisely the categories with one object associated to
the submonoids of M. For every commutative, unital ring R, for every R-central algebra A, for
the associated category enriched over R — mod that has precisely one object whose categorical
central R-algebra equals A, the R — mod enriched subcategories are precisely those associated to
R-subalgebras of A. For every partially ordered set (5,<), the subcategories of the associated
category are precisely the categories of pairs (T,<7) of a subset T of S and a partial ordering <
on T such that the inclusion map is order-preserving, (7, <r) — (5,<). The subcategory is full if
and only if <7 is the restriction of < to T'.

4 Functors

Definition 4.1. For every pair of categories A and B, a covariant functor F' from A to B is
defined to be a rule that associates to every object a of A an object F'(a) of B and that associates
to every ordered pair of objects (a,a’) of A a set map

Foor - Homy(a, a’) > Homg(F(a), F(a)),

such that for every object a of A, F, ,(Id,) equals Idr(,), and such that for every triple of objects
(a,a’,a") of A,

Foar(9° 1) = Fuar(9) © Fau(f), ¥(g.) € Homy(a',a”) x Homa(a,a').

The functor is faithful, resp. fully faithful, if every set map F, . is injective, resp. bijective.
The functor is essentially surjective if every object of B is isomorphic to F'(a) for an object of
A. The functor is an equivalence if it is fully faithfuly and essentially surjective.

A contravariant functor from A to B is a covariant functor from the opposite category A°PP to

B.

Definition 4.2. For every triple of categories A, B and C, for every covariant functor F' from A to
B and for every covariant functor G from B to C, the composition functor G o F' from A to C is
the covariant functor associating to every object a of A the object G(F'(a)) of C, and associating
to every ordered pair of objects (a,a’) of A, the composition set map,

Gra),F(a) © Foo s Homy(a,a") - Homp(F(a), F(a"))Home(G(F (a)), G(F(a"))).

For every category A, the identity functor from A to A is the rule associating every object to
itself, and sending each set of morphisms to itself by the identity set map.
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Definition 4.3. For every triple of categories A, B, C, for every pair of covariant functors, F': A - C
and G : B - C, the comma category, F' | G, has as objects ordered triples (a,b,u) of an object
a of A, an object b of B, and a C-morphism u : F(a) - G(b). For an ordered pair of objects,
((a,b,u),(a’,b',u")), a morphism in the comma category is an ordered pair (g,7) of ¢ € Hom4(a,a’)
and r € Homg(b, 0’) such that o F'(q) equals G(r)ou in Home(F'(a), G(0')). Composition is defined
in the evident way. In particular, the arrow category of C is the comma category when A equals B
equals C and each of F' and G is the identity functor on C. In general, there is a domain functor or
source functor, F' | G — A, associating to every object (a,b,u) the A-object a and associating to
every morphism (g¢,7) the A-morphism q. There is also a codomain functor or target functor,
F | G - B, associating to every object (a,b,u) the B-object b and associating to every morphism
(q,r) the B-morphism r. Finally, there is an arrow functor, F' | G - C~ associating to every
object (a,b,u) the C~-object (F(a),G(b),u) and associating to every morphism (q,r) the C~-
morphism (F(q),G(r)).

Definition 4.4. For a category A, a full subcategory is skeletal if every object of A is isomorphic
to an object of the subcategory. If there exists a skeletal subcategory whose objects are indexed
by a set, then A is a small category. If the objects of A form a set, then A is a strictly small
category.

Example 4.5. Let FinSets be the full subcategory of Sets whose objects are the finite subsets.
Let B be the full subcategory whose objects are the subsets [1,n] = {1,...,n} of Zs; for every
integer n > 0. Then B is a strictly small category that is a skeletal subcategory of FinSets, but
FinSets is not a strictly small category.

Example 4.6. For every partially ordered set (5,<) and for every partially ordered set (7,<), a
functor from the associated category of (.5,<) to the associated category of (7', <) is equivalent to
a order-preserving function from S to T'. Such a functor is always faithful. It is full if and only if
the function is strict, i.e., for every (s,s’) € S x S, the image pair (¢,t") € T x T satisfies ¢t < ¢ if
and only if s < s’. The functor is essentially surjective if and only if the set function is surjective.

Example 4.7. For every pair of categories A and B, for every covariant functor F' from A to B, the
opposite functor F°PP from the opposite category A°PP to the opposite category BOPP associates
to every object a of A°PP the object F'(a) of B°PP, and associates to every ordered pair (a,a’) of
objects of A°PP the set function Fy, , of (a’,a). For a triple of categories A, B and C, for covariant
functors F' : A —» B and G : B - C, the functor (G o F))°PP is the composition G°PP o F°PP  and
the opposite functor of the identity functor is the identity functor of the opposite category. The
opposite functor is faithful, respectively full, essentially surjective if and only if the original functor
is faithful, resp. full, essentially surjective. Finally, the opposite functor of F°PP is the original
functor F.

Example 4.8. For every set a, denote by P(a) the power set of a, i.e., the set whose elements are
all subsets of a. For every set map f:a — a/, define P, o (f) to be the set map from P(a) to P(a’)
associating to every subset b of a the image subset f(b) of a’. Similarly, define P*-¢(f) to be the
set map from P(a’) to P(a) that associates to every subset b’ of b the preimage subset fPre(b')
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of a. This defines a covariant functor P, from Sets to itself and a contravariant functor P* from
Sets to itself. These functors preserve the full subcategory FinSets, but they do not preserve the
skeletal subcategory B.

Example 4.9. There is a forgetful functor from Groups to Sets that forgets the group structure.
Similarly, there is a forgetful functor from R - mod to Groups that remembers only the additive
group structure on the R-module. Similarly, there is a forgetful functor from Rings to Z-mod that
remembers only the additive group structure. There is a forgetful functor from UnitalRings to
Rings. All of these are faithful functors. The category CommUnitalRings is a full subcategory
of UnitalRings.

Example 4.10. For every ordered pair of monoids, the covariant functors between the associated
categories are naturally equivalent to the morphisms of monoids. For every commutative, unital
ring R, for every ordered pair of central R-algebras, the covariant functors between the associ-
ated categories that are R-linear on sets of morphisms are naturally equivalent to the R-algebra
homomorphisms between these central R-algebras.

Definition 4.11. For every category A and for every object a of A, the Yoneda covariant
functor of a is the covariant functor,

h®: A — Sets, h%(a’)=Homy(a,a").

For every ordered pair of objects (a’,a”), for every morphism g € Homy(a’,a"), and for every
element f € h®(a’), i.e., for every morphism f € Hom 4(a,a’), composition defines an element g o f
in h%(a’). This defines a set function,

s g - Hom 4(a’,a") - Homgets (A (a'), h*(a")), g~ (f~ go f).

a

In particular, h% , sends the identity morphism of a’ to the identity set function of h%(a’). Also,
since composition is associative, the set maps h? ., respect composition. Altogether, this defines a
covariant functor.

Similarly, the Yoneda contravariant functor of a” is the contravariant functor,
hov : A — Sets, hgr(a") =Homy(a',a").
Each set map hZ}fL, is defined by sending g € Hom 4(a, a’) to the set map
har(a) > har(a), g go .

Example 4.12. For every partially ordered set (.9, <), for the associated category, for every element
a € S, the Yoneda functor h, associates to each element a’ the empty set unless a’ < a, in which
case it associates a singleton set. Similarly, the Yoneda functor A associates to each element a the
empty set unless a’ < a.
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5 Natural Transformations

Definition 5.1. For categories A and B, for covariant functors ' and G from A to B, a natural
transformation from F' to GG is a rule # that associates to every object a of A an element 6, €
Homgp(F(a),G(a)) such that for every ordered pair of objects (a,a’) of A, for every element
f e Hom4(a,a’), the following compositions of morphisms in B are equal,

ea’oF(f):G(f)oea-

For covariant functors, F', G and H from A to B, for natural transformations from F to G and
from G to H, the (vertical) composite natural transformation from F' to H is defined in the
evident way. Also, for every functor F', the identity natural transformation from F' to itself is
defined in the evident way. An invertible natural transformation (with respect to composition of
natural transformations and the identity natural transformations) is called a natural equivalence
or natural isomorphism. This holds if and only if 6, is an invertible morphism for every object
a, in which case the inverse natural transformation associates to a the inverse of 6,,.

For every natural transformation 6 between covariant functors F,G : A — B, for every natural
transformation 6’ between covariant functors F’, G’ : B — C, the horizontal composition natural
transformation, or Godement product, is the natural transformation 6 0’ : F’ o F - G' o G
associating to every object a of A the C-morphism,

elG(a) °c FI,?(a),G(a)(Qa) =(0%0), = G}“(a),a(a)(ea) ° 92“((1)-

This is associative in 6 and 6’. For every covariant functor I : B — C, the I-pushforward
natural transformation, 1,0 = 0 * Id;, is the natural transformation between the composition
functors I o F,1 oG : A - C associating to every object a of A the morphism Ip(,) c(a)(f.) in
Home(I(F(a)),I(G(a))). Similarly, for every covariant functor F : D - A, the E-pullback
natural transformation, £*0 = Idg * 6, is the natural transformation between the composi-
tion functors F'o E/,G o E': D — B that associates to every object d of D the morphism 0 in
Homg(F(E(d)),G(E(d))). Of course the Godement product can be expanded in terms of push-
forward, pullback and vertical composition,

G*0'o (F'),0=0+0 =G.00F*0.

In particular,
L.(E*(0)) = (Idg * 0) » Id; = Idg * (0 = Id;) = E*(1.(0)).

Example 5.2. For every partially ordered set (5,<), for every partially ordered set (7T,<), for
every pair of order-preserving functions,

F,.G:(5,2) - (T,=),

there exists a natural transformation from F to G if and only if F'< G, i.e., F(s) < G(s) for every
s € S. In this case, the natural transformation is unique. Notice that F' < F, and if both F' < G
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and G < H for order-preserving functions F', GG, and H, then also F' < H, reflecting composition
of natural transformations. If F' < (G, then the natural transformation is a natural equivalence
if and only if the set functions are equal. For order-preserving functions [ : (T,<) — (U,<’) and

E:(R,<") - (5,2),if F <G, thenalso [oF <’ [oG and FoE < GoFE, reflecting the I-pushforward
and E-pullback of the natural transformation.

Example 5.3. For categories A and B, for covariant functors F' and G from A to B, for every
natural transformation 6 from F' to (G, the opposite natural transformation 6°PP from G°PP to
Forp associates to every object a of A the element 6, in Homp(F(a), G(a)) = Hompe (G(a), F'(a)).
The natural transformation 6 is a natural equivalence if and only if #°PP is a natural equivalence.
The opposite natural transformation of #°PP is the original natural transformation #. The opposite
natural transformation is compatible with vertical composition and Godement product.

Example 5.4. Let F': A - C and G : B - C be covariant functors, and let F' | G be the comma
category with its domain functor, s: F' | G - A, and its codomain functor ¢ : F' | G — B. For the
composite functors, F'os,Got: F | G — C, there is a natural transformation,

O:Fos=Got, Ogpu =u.
For every category D, for every functor E: D — F | G, there is a triple (S,7T,n) of functors,
S=soE:D->A, T=toE:D-B,

and a natural transformation 1 = E*6 from F' oS to G oT. Conversely, for every natural transfor-
mation (S,7,n) as above, there is a unique functor F : D - F' | G such that so E (strictly) equals
S, such that t o E (strictly) equals 7', and such that E*6 equals 7.

Example 5.5. As a special case of the preceding, for every category A, for every category D, a
covariant functor to the arrow category,

E:D- A",
is (strictly) equivalent to an ordered pair (S,7") of covariant functors,
S:D->A, T:D- A,
and a natural transformation n: S5 = T.

Example 5.6. For every set a, denote by 6, : a > P(a) the set function that associates to every
element x € a the singleton set of x. This defines a natural transformation from the identity functor
of Sets, resp. FinSets, to the covariant functor P,.

Example 5.7. For every category A, for every covariant functor F : A — Sets, for every object a
of A, for every element t € F'(a), for every object a’ of A, for every element f € Hom4(a,a’), denote
by f.(t) the element of F(a’) that is the image of ¢ under F, ,,(f). This defines a set function,

to:h?(a') > F(a'), [ f(1).
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This is a natural transformation 7 from the covariant functor he to F. Every natural transformation
from he to F' is of the form ¢ for a unique element ¢ € F'(a).

Similarly, for every contravariant functor G : A°P — Sets, for every element ¢t € G(a), for every
object a’ of A, and for every element f € Homy(a’,a), denote by f*(t) the element of G(a’) that
is the image of t under G*-¢(f). This defines a set function,

' ha(a’) > G(d), [ f(2).

This is a natural transformation  from the contravariant functor h, to G. Every natural transfor-
mation from h, to G is of the form ¢ for a unique element t € F'(a).

Definition 5.8. For a category A and for a covariant functor F': A — Sets, a representation
of F is a pair (a,t) of an object a of A and an element ¢ € F'(a) such that the associated natural
transformation 7 : h, = F is a natural equivalence. If there exists a representation, then F is a
representable functor. Similarly, a representation of a contravariant functor is a represen-
tation of the associated covariant functor from A°PP to Sets, and the contravariant functor is a
representable functor if there exists a representation.

Example 5.9. For a covariant functor F': A — B, for every object a of A, let 0, : F'(a) - G(a) be
an isomorphism in B. For every ordered pair (a,a’) of objects of A, denote by G, . the unique set
map,

Gy Homy(a,a’") - Homg(G(a),G(a')),

such that for every u € Homy(a,a’), the composite G, (u) o 0, equals 6, o F, o(u). The rule
associating to every object a of A the object G(a) of B and associating to every ordered pair (a,a’)
of objects of A the set map G, is a covariant functor G : A — B, and the rule associating to every
object a of A the isomorphism 6, in B is a natural equivalence between F' and G. In this sense, a
rule that covariantly associates to every object of A an object of B only up to unique isomorphism
in B defines a “natural equivalence class” of covariant functors.

Example 5.10. As an explicit example of the preceding, let R : B - A be a fully faithful, essentially
surjective covariant functor, i.e., an equivalence of categories. Also assume that A is strictly small.
For every object a of A, since R is essentially surjective, there exists an object b of and an
isomorphism, a - R(b). Using the Axiom of Choice, let b= L(a) and 6, : a - R(L(a)) be such a
choice of object and isomorphism for every object a of A. For every ordered pair (a,a’) of objects,
since R is fully faithful, there exists a unique bijection of sets,

La,a’ : HOIIIA(CL, Cl,) - HOIHB(R((Z), R(CL,)), Ur-v= La,a'(u)

such that the composition R(v)o#f, equals 6, ou for every u in Hom4(a, a’). This defines a covariant
functor L : A — B and a natural equivalence 6 : Id4 = Ro L. Since R is fully faithful, also L is fully
faithful.

Again using that R is fully faithful, there is a unique natural equivalence n : L o R = Idp such
that the R-pullback R*n equals the inverse natural isomorphism of the R-pushforward R.6. In
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particular, L is essentially surjective. Thus, L is also an equivalence of categories. For a given
equivalence R from a category A to a strictly small category B, the extended datum of functors
and natural transformations, (L, R,0,n) as above, is unique up to unique natural equivalence in R.

6 Adjoint Pairs of Functors

Let A and B be categories.

Definition 6.1. An adjoint pair of (covariant) functors between A and B is a pair of (covariant)
functors,

L:A—->B, R:B— A,

be (covariant) functors, and a pair of natural transformations of functors,
0:1d4 = RL, 6(a):a - R(L(a)),

n: LR =1dg, n(b): L(R(b)) > b,
such that the following compositions of natural transformations equal Idg, resp. 1dy,

(+r): RZ RLRE'R,

Lof

(+1): LS LRL"S R.

For every object a of A and for every object b of B, define set maps,
HE(a,b) : Homp(L(a),b) - Hom(a, R(b)),

(L(a) 5 b) (a ), R(L(a)) 29 R(b)) ,

and
HE(CL, b) : HOI’HA(G,, R(b)) - HOIHB(L(CL), b)7
(a %> RO)) > (L(a) 2 L(R@®) " b).
Adjoint Pairs Exercise.

(i) For L, R, 6 and n as above, the conditions (*g) and (%) hold if and only if for every object a
of A and every object b of B, H:(a,b) and H}(a,b) are inverse bijections.
(ii) Prove that both H%(a,b) and Hf(a,b) are binatural in a and b.

(iii) For functors L and R, and for binatural inverse bijections Hf(a,b) and HF(a,b) between the
bifunctors
Hompg(L(a),b),Homy(a, R(b)) : A x B — Sets,
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prove that there exist unique ¢ and 7 extending L and R to an adjoint pair such that H5 and HF
agree with the binatural inverse bijections defined above.

(iv) Let (L, R,60,n) be an adjoint pair. Let a (covariant) functor
R:B— A,
and natural transformations,
g: [dy = EoL,?)’: Lo R = Idg,

be natural transformations such that (L,ﬁ,a,ﬁ) is also an adjoint pair. For every object b of B,
define I(b) in Homg(R(b), R(b)) to be the image of Id, under the composition,

Homp (6(b),b) HE(R(b),b)
- 5 -

Homgp(b,b) Hompg(L(R(D)),b) Homg(R(b), R(b)).

Similarly, define J(b) in Homg(R(b), R(b)), to be the image of Id, under the composition,

Homp (9(b),b) HE(R(b),b)
—

Homp(b, ) Homgp(L(R(b)),b) Homp(R(b), R(b)).

Prove that I and J are the unique natural transformations of functors,
I:R=R, J:R=R,

such that @ equals (I o L) o, 0 equals (Jo L) o8, 7 equals o (Lo I), and 7 equals 7o (Lo J).
Moreover, prove that I and J are inverse natural isomorphisms. In this sense, every extension
of a functor L to an adjoint pair (L, R,6,n) is unique up to unique natural isomorphisms (7, .J).
Formulate and prove the symmetric statement for all extensions of a functor R to an adjoint pair

(L, R,0,n).
v) For every adjoint pair (L, R, 0,n), prove that also (R°PP, LoPP 7noPP_(oPP) is an adjoint pair.
Ui Ui

(vi) Formulate the corresponding notions of adjoint pairs when L and R are contravariant functors
(just replace one of the categories by its opposite category).

Exercise on Composition of Adjoint Pairs. Let A, B, and C be categories. Let
L':A-B,R:B- A,
be (covariant) functors, and let
0':Idy = R'L', n: L'R' = 1dp,
be natural transformations that are an adjoint pair of functors. Also let

L":B-C,R":C—- B,
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be (covariant) functors, and let
0" :1dg = R"L", 0" : L"R" = 1d¢,
be natural transformations that are an adjoint pair of functors. Define functors
L:A-C, R:C—-> A
by L=L"o L', R=R'o R". Define the natural transformation,
f:1dy = Ro L,
to be the composition of natural transformations,
Iy 2 Rol S RoR Lo L.
Similarly, define the natural transformation,

n:LoR=1Idg,

to be the composition of natural transformations,

LIIOTIIORII ,r]I/
L// o L/ o R/ o R// = L// o R// = Idc

Prove that L, R, 6 and n form an adjoint pair of functors. This is the composition of (L', R',0",1")
and (L", R",0" . n"). If A equals B, if L' and R’ are the identity functors, and if §” and 7’ are the
identity natural transformations, prove that (L, R,6,n) equals (L”, R" 0" n"). Similarly, if B equals
C,if L and R" are the identity functors, and if 8” and 1" are the identity natural transformations,
prove that (L, R,6,n) equals (L', R’,0',n"). Finally, prove that composition of three adjoint pairs
is associative.

7 Adjoint Pairs of Partially Ordered Sets

Partially Ordered Sets Exercise. Let (5,<) and (7, <) be partially ordered sets, and consider
the associated categories. For an order-preserving function,

L:(5,2)~>(T,=),
prove that there exists an order-preserving function,
R:(T.2) > (5,)

extending (uniquely) to an adjoint pair of functors (L, R,0,n) if and only if for every element ¢ of
T, there exists an element s of S (necessarily unique) such that

L HreT|r<t}={oeS|o<s}.

In particular, conclude that L is injective and strict, i.e., the associated functor is fully faithful.
Formulate and prove a similar criterion for an order-preserving function R from (7', <) to (.5,<) to
admit a left adjoint.
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8 Adjoint Pair between a Category and its Pointed Cate-
gory

Definition 8.1. A pointed set is an ordered pair (5,s) of a set S and an element s of the set
S. For pointed sets (5,s) and (S’,s’), the set of morphisms of pointed sets is the subset of
Homges (.S, S”) of set functions that map s to s'.

Notation 8.2. For every set S, denote by S the subset of the power set P(S) whose elements are
{S} and all singleton sets. Thus, S contains the image of the set function fg : S — P(S) from
Example . For every set function u : S - S, define @: S - S’ to be the unique set function
that maps {S} to {S’} and such that @o fg equals s o u. For every pointed set (S, s), define
Nes.s) (S, {S}) = (S,s) to be the unique function of pointed sets such that 7s ) o fs equals the
identity function on S.

Pointed Sets Exercise.

(i) Prove that the rules above define a category PtdSets of pointed sets together with a faithful
functor PtdSets — Sets associating to every pointed set (S,s) the set S and restricting to the
inclusion from the set of morphisms of pointed sets from (.S, s) to (S, s’) inside the set of all set
functions from S to s’. This is the forgetful functor.

(ii) Prove that the rule associating to every set S the ordered pair (S,{S}) and associating to
every set function u: S — S’ the set function u defines a faithful functor from Sets to PtdSets.

(iii) Prove that the rule associating to every set S the set function fg : S — S defines a natural
transformation from the identity functor on Sets to the composition of the above functors, Sets —
PtdSets — Sets.

(iv) Prove that the rule associating to every pointed set (5, s) the set function n(s : (S, {S}) -
(S, s) is a natural transformation to the identity functor on PtdSets from the composition of the
above functors PtdSets — Sets - PtdSets.

(v) Prove that these functors and natural transformations define an adjoint pair of functors.

Semigroups and Monoids Exercise. Modify the construction of the previous exercise to con-
struct an adjoint pair of functors between Semigroups and Monoids whose right adjoint functor is
the (faithful) forgetful functor from Monoids to Semigroups that “forgets” the specified identity
element of the monoid (since identity elements in a monoid are unique, this functor is faithful).

Definition 8.3. A category is a category with an initial object, respectively a category with
a terminal object, a pointed category, if it has an initial object, resp. if it has a terminal
object, it has an object that is simultaneously an initial object and a terminal object, i.e., if it has
a zero object. A functor between categories that both have an initial object, respectively a terminal
object, a zero object, is a initial preserving, resp. terminal preserving, a pointed functor, if
it maps each initial object to an initial object, resp. if it maps each terminal object to a terminal
object, resp. if it maps each zero object to a zero object.
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Definition 8.4. A trivial category is a pointed category such that every object is a zero object
(i.e., there are objects, and every Hom set is a singleton set). A terminal category is a trivial
category that has a unique object; every object of a trivial category gives a skeletal subcategory
that is a terminal category.

Definition 8.5. For every category C, for every set 0, the associated category Cp inix With initial
object 0 is the category whose objects consist of 0 together with ordered pairs (A, 0) for all objects
A of C. For every object of Ci,, the set of morphisms from 0 to that object is a singleton set. For
every pair of objects A and B of C, the set of morphisms of Cp it from (A,0) to (B,0) is the set of
morphisms of C from A to B. For every object A of C, the set of morphisms in Cy it from (A,0)
to 0 is the empty set. There is a rule F¢ that associates to every object A of C the object (A,0)
of Cpinit and, for every pair of objects A and B of C, identifies the set of morphisms of C from A
to B to the set of morphisms of Cy it from (A,0) to (B,0). There is a unique composition rule on
Co,init that makes Cpiniy @ category in such a way that Fg is a fully faithful functor.

Adjointness property of the associated category with initial object. Show that the object
0 of Cpinit is an initial object. Show that for every functor G : C - B to a category B and for
every initial object b of B, there exists a unique functor Gy g init : Cinit = B that is initial preserving,
that sends the initial object 0 of Cg it to b, and such that Gpginit © F' equals G. Show that for
every initial object b’ of B, there is a unique natural equivalence Gy p 0 init * Gb,0,init = Gpr.0,init Such
that Gy p0mit © F' equals the identity natural equivalence of G to itself. In this sense, (=)o nit iS
a 2-functor from the 2-category of categories to the 2-category of categories with initial objects
with morphisms being natural equivalence classes of initial preserving functors, and (=), is “left
adjoint” to the faithful (but not full) functor from the 2-category of categories with initial objects
to the 2-category of categories (not necessarily having an initial object).

Associated category with a terminal object. For a category C, define Cyterm to be the
opposite category of the associated category with initial object of the opposite category CoPP, i.e.,
((€CoPP) g init )°PP. Formulate the analogues of the above for the associated functor Fj term : C = Co term-

Definition 8.6. For every category C that has a terminal object, for every terminal object 0, the
associated category C, with final object (0,Id) is the category whose objects are all ordered
pairs (A, f) of an object A of C and a morphism f:0 — A of C. For every pair of such ordered pairs,
(A, f) and (A’, f"), the set of morphisms of Cy from (A, f) to (A’, f’) is the set of all morphisms
of C g: A - A’ such that go f equals f’. There is a rule ®¢ o that associates to every object (A, f)
of Cy the object A of C and that associates to every morphism of Cy, g : (A, f) = (A4’, f'), the
morphism g : A - A’ of C. There is a unique composition rule on Cy that makes Cy a category in
such a way that ®¢ is a faithful functor (usually not full).

Adjointness property of the associated category with zero object. Show that (0,1dg) is a
zero object of Cy. Show that for every terminal-preserving functor G : B — C from a category with
a zero object b to a category with a terminal object 0, there exists a unique zero-preserving functor
Gop : B = Cy such that &¢ oo Goy equals G. In this sense, the rule associating to a category with
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a terminal object C the category with zero object Cy is right adjoint to the fully faithful 2-functor
from the 2-category of categories with zero object and zero-preserving functors to the 2-category
of categories with terminal object and terminal-preserving functors.

9 Adjoint Pairs of Free Objects

Definition 9.1. A concrete category is a category, A, together with a faithful functor, R: A —
Sets, the forgetful functor of the concreted category. A left adjoint of R is a free functor for the
specified concrete category. For concrete categories (A, R) and (A’, R'), a functor of concrete
categories is a functor F' : 4 - A’ together with a natural equivalence 6 : R = R’ o F'| cf. the
articles of Porst.

Remark 9.2. If there exists a free functor L for R, then the natural equivalence # in a functor of
concrete categories is uniquely determined by its value on the object L({*}) for any singleton set
{#}. for a given functor F': 4 - A’, there is at most one natural equivalence ¢ such that (R,0)
is a functor of concrete categories. Thus, there is a unique concrete equivalence of the concrete
category of sets extending the identity functor, but the extensions of the identity functor on the
concrete category of groups has two elements (the identity extension and the extension given by
group inversion).

Notation 9.3. For every nonnegative integer n, denote by [1,n] the set {k € Z.o|k < n}, which has
precisely n elements. For every ordered pair (n/,n’) of nonnegative integers, denote by @y and
Qs the following set maps,

Qo [0 ] = [0+ 0], ke k,

Qo 2 [0] = [0 +0"], ke +k.
For every set ¥ and for every ordered pair of set functions,
]SS s
denote by my n(f’, f") the unique set function

f : [n, + n”] i E, f ] q;lljnll = f,, f o q;{17n11 = ”.

Denote the unique set function [0] - X by Oyx. For every element o € 3, denote by tx, the unique
set function [1] — ¥ with image {o}.

Notation 9.4. For every set X, denote by F(X) the set of all ordered pairs (n, f) of an integer
n >0 and a set map f:[n] - X. For every set function u: ¥ — II, denote by F'(u): F(X) — F(II)
the set function (n, f) = (n, f ou). Denote by pry; : F((¥) — Zso the set map that sends (n, f) to
n. Denote by my the following binary operation,

my: F(E) x F(X) > F(X), (0, ), (", f") = (0" +n" mepa (f, 7).
Denote by ¢x, the following set map,

1N —>F(X), o~ ([1],tss).
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Free Monoids Exercise.

(i) Prove that the rule associating to every monoid (G,m,e) the set G and associating to every
monoid morphism the same set map defines a faithful functor Monoids — Sets. This is the
forgetful functor of the concrete category of monoids.

(ii) For every set X, prove that (F(X), mx, ([0],0x)) is a monoid. For this monoid structure, for
every set map u : ¥ — II, prove that F'(u) is a monoid morphism. Prove that this defines a covariant
functor Sets - Monoids.

(iii) Prove that the rule associating to every set ¥ the set function ¢y is a natural transformation
from the identity functor on Sets to the composition of the two functors above, Sets - Monoids —
Sets.

(iv) For every monoid (G,m,e) and for every set function j: 3 — G, use induction on the integer
n >0 to prove that there exists a unique morphism of monoids,

J:F (%) -G,

such that 7 o 5 equals j.

(v) For every monoid (G, m, e), for the identity set map Idg : G — G, prove that the rule associating
to (G, m, e) the monoid morphism Idg : F/(G) - G is a natural transformation to the identity func-
tor on Monoids from the composition of the two functors above, Monoids - Sets — Monoids.

(vi) Check that these functors and natural transformations define an adjoint pair of functors. The
monoid F'(X) is the free monoid on X.

(vii) Also check that for the functor Sets -~ Monoids that associates to every set the additive
monoid Zso and associates to every set function the identity morphism of Zq, the rule associating
to every set ¥ the monoid morphism pr, 5, : F/(X) — Zs is a natural transformation from the free
monoid functor to this functor. Also, check that this equals the composition of the free monoid
functor with the natural transformation from the identity functor on Sets to the “constant” functor
from Sets to itself associating to every set the singleton {1} and associating to every set function
the identity set function on {1} (since this singleton is a final object in Sets, there is a unique
natural transformation from the identity functor to this constant functor).

Notation 9.5. For every set X, denote by F,o(X) c F(X) the inverse image under pry; of the
subset Z.o c Zsg. For every set function u : ¥ — II, define F.q(u) to be the restriction of F'(u) to
F.o(X), which is a set function with image contained in F.q(II).

Free Semigroups Exercise.

(i) Since Zsg is a subsemigroup of Z,, (although not a submonoid), check that also F1o(X) is a
subsemigroup of F'(X) for every set.

(ii) Also check that Flg(u) is a morphism of semigroups for every set function u : 3 — II.
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(iii) Check that these rules define a functor from Sets to Semigroups. Check that the natural
transformations of the previous exercise modify to define an adjoint pair of functors between Sets
and Semigroups whose right adjoint functor is the forgetful functor.

(iv) Double-check that the composite of this adjoint pair with the adjoint pair between Semigroups
and Monoids is naturally equivalent to the adjoint pair between Sets and Monoids from the pre-
vious exercise.

Notation 9.6. For every set ¥, denote the Cartesian product ¥ x {+1}, respectively 3 x {-1}, by
Y., resp. 2_, with the corresponding bijections,

j2,+ DI Z-H jE,— DI 2—7 j2,+(0) = (0_7 +1)> jE,—(U) = (07 _1)

For every set function u : ¥ — II, denote by u, Uwu_ the unique set function from >, uX_ to IT, uIl_
whose composition with js ,, resp. with js _, equals ji, o u, resp. equals ji - owu. Denote by
Asc F(X,uX_ ) x F(X, uX_), the subset whose elements are the following ordered pairs,

(f-(ieju)(o)-(iojs-)(0)-g,f (icjs-)(0)-(iojus)(0)-9), [geF(E,u¥), ogek.

Denote by ~x to be the weakest equivalent relation on F'(3, uX_) generated by the relation Ay.
Denote the quotient by this equivalence relation by

gs - F(Z+ u E—) g FGroups(Z)-
Denote the composition gs, o7 o jx ;. by

Z.Groups,E DY FGroups(Z)-

[Free Groups Exercise.|

(i) For an equivalence relation ~ on a semigroup (G, m) with quotient ¢ : G — H, check that there
exists a semigroup structure on H for which ¢ is a morphism of semigroups if and only if there
exists a left act of G on H for which ¢ is a morphism of left G-acts if and only if there exists a
right act of G on H for which ¢ is a morphism of right acts if and only if ~ satisfies the following:
for every g,¢’,9" € G, if g~ ¢’, then also g-¢” ~¢g'-¢g"” and also ¢" - ¢’ ~g" - g.

(ii) For a monoid (G, m,e), check that every surjective morphism of semigroups u : G - G’ is a
morphism of monoids. Conclude that for an equivalence relation ~ on GG, the quotient is a morphism
of monoids if and only if it is a morphism of semigroups.

(iii) Check that the rule associating to each set ¥ the monoid F'(3, u3_) and associating to each
set function w : ¥ — II the monoid morphism F'(u,uUu_) is a functor from Sets to Monoids. Check
that the functions 7o js, , and 7o jx _ are natural transformations from the identity functor on Sets
to the composite of this functor with the forgetful functor Monoids — Sets. Check that the rule
associating to every set 3 the set F(X, uX_) x F(3, uX_) and associating to every set function
w: X — II the set function

Flusuu )x Fluyuu): F(E,uX ) x F(X,uX. ) —» F(II, ull) x F(IT, ull.)
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is a functor from Sets to itself. Check that this function sends Ay to Apg. Conclude that the
rule associating to every set ¥ the subset Ay and associating to every set function u : ¥ — II the
restriction of F'(u, Uu_) x F(u, Uu_) is a subfunctor of the previous functor. Conclude that the
rule associating to every set Y the equivalence relation ~y is also a subfunctor.

(iv) For every set X, check that the equivalence relation ~y satisfies the condition necessary for
the quotient map to be a monoid morphism. Conclude that there is a unique pair of a functor
Sets - Monoids and a natural transformation to this functor from the free monoid functor
F(X,uX_) associating to every set ¥ the monoid Fgroups(2X) and the quotient monoid morphism
ds.

(v) Check that each of the monoid generators i(js +(0)) and i(js (o)) of the free monoid F'(3, u
¥_) map under gy, to an invertible element of Fgroups(X). Conclude that the functor Fgroups from
Sets to Monoids factors through the full subcategory Groups of Monoids. Thus, Fgroups 1S @
functor from Sets to Groups.

(vi) Check that the rule associating to every set X the set function igroupsx is a natural transfor-
mation from the identity functor to the composition of the forgetful functor with the functor above,
Sets — Groups — Sets. Similarly, modify the definition of 7y to obtain a natural transformation
from the composition Groups - Sets - Groups to the identity functor on Groups. Prove that
these functors and natural transformations define an adjoint pair whose right adjoint functor is the
(faithful) forgetful functor Groups — Sets. The group Fgroups(X) is the free group on the set
3.

(vii) For every monoid (G, m,e), denote by N(g m.e) the fiber over e of the natural transformation,

Denote by Ngroups,(G,m.e) the normal subgroup of Fgroups(G) generated by the image under
qo F(jg+) of Nigme). Check that this is functorial in (G,m,e) and that the quotient group
FGroups(G) /[ Naroups,(G,m.,e) define a left adjoint functor to the (fully faithful) forgetful functor from
Groups to Monoids. This left adjoint functor is the group completion functor. Double-check
that the composite of the group completion functor with the free monoids functor is naturally
equivalent to Fgroups-

(viii) For categories B, C, for functors
L":B-C, R":C—- B,
and for natural transformations
0" :1dg= R"oL", n":L"o R" = Idg,

such that (L”, R",0" ,n") is an adjoint pair, the adjoint pair is reflective if R" is fully faithful. In
this case, prove that there exists a unique binatural transformation

HE,(b,b') : Home(L"(R" (b)), ") - Home (b, '),
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such that the composition with R",

HE, (b,b")

Home (L"(R" (b)), ')~ Home (b, b') 2> Homs(R" (b), R" (1)),
equals HE,(R(b),b"). In particular, taking &' = L”(R"(b)), denote the image of Idy by
?7""/b/ . b N L//(R//(b)).

Prove that 7} is an inverse to 7 : L”(R"(b)) = b. Thus, for a reflective adjoint pair, n” is a natural
isomorphism. Conversely, if 1" is a natural isomorphism, prove that the adjoint pair is reflective,
i.e., R" is fully faithful. In particular, for the group completion, conclude that the group completion
of the monoid underlying a group is naturally isomorphic to that group.

Free Abelian Groups Exercise. Denote by
® :7Z - mod - Groups

the full subcategory of Groups whose objects are Abelian groups. For every group (G, -, e), denote
by [G,G] the normal subgroup of G generated by all commutators

9. h]=g-h-g ' !

for pairs g, h € G. Denote by
QG G~ L(G)7

the group quotient associated to the normal subgroup [G,G] of G. Prove that L(G) is an Abelian
group. Moreover, for every Abelian group (A, -, e), prove that the set map

HE : Homg_pea(L(G), A) - Homgroups(G, ®(A)), v vobg,
is a bijection. In particular, for every group homomorphism,
u:G-> G,

the composition fgou : G - L(G") is a group homomorphism, and thus there exists a unique group
homomorphism,

L(u) : L(G) - L(G"),
such that HE(L(u)) o f¢g equals O ou. Prove that the rule G —» L(G), u~ L(u) defines a functor,

L : Groups — Z — mod.
This functor is called Abelianization. Prove that G — 65 is a natural transformation,

0 : Idgroups = ® o L.
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For every Abelian group A, prove that [A, A] is the identity subgroup, and thus the quotient
homomorphism,

Opa): R(A) > O(L(D(A))),

is an isomorphism. Thus there exists a unique group homomorphism, just the inverse isomorphism
of 9@( A)s
na: L(®(A)) ~ A,

such that Og(ay o ®(n4) equals the Idg(a). Prove that A+ 7, is a natural isomorphism,
n: Lod— IdZ—mod'

Prove that (L, ®,0,n) is an adjoint pair.

Factorization Exercise. Let A, B, and C be categories. Let
R:B-A R":C-B,
be fully faithful functors. Denote the composition R’ o R" by

R:C— A

(1) If there exist extensions to reflective adjoint pairs (L', R’,0",n"), (L",R",0",n"), prove that
there is also an extension to a reflective adjoint pair (L, R, 0,7).

(ii) If there exists an extension of R to a reflective adjoint pair (L, R, #,7n), prove that there exists an
extension (L”, R" 0" n'"). Give an example demonstrating that R’ need not extend to a reflective
adjoint pair (for instance, consider the full subcategory of Abelian groups in the full subcategory
of solvable groups in the category of all groups).

(iii) A monoid (G, e) is called left cancellative, resp. right cancellative, if for every f, g, h in
G, if f-gequals f-h, resp. if g- f equals h- f, then g equals h. A monoid is cancellative if it is
both left cancellative and right cancellative. A monoid is commutative if for every f,ge G, f-g¢
equals ¢g- f. A commutative monoid is left cancellative if and only if it is right cancellative if and
only if it is cancellative. Denote by

LCanMonoids, RCanMonoids, CanMonoids, CommMonoids, CommCanMonoids € Monoids

the full subcategories of the category of all monoids whose objects are left cancellative monoids,
resp. right cancellative monoids, cancellative monoids, commutative monoids, commutative can-
cellative monoids. In each of these cases, prove that the fully faithful inclusion functor R extends
to a reflective adjoint pair. Use (ii) to conclude that for every inclusion functor among the full
subcategories listed above, there is an extension of the inclusion functor to a reflective adjoint pair.

(iv) In particular, prove that the group completion adjoint pair

(L : Monoids — Groups, R : Groups - Monoids, 6,7)
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factors as the composition of the reflective adjoint pair
(L' : Monoids -~ CanMonoids, R’ : CanMonoids —~ Monoids, ¢, 1),
and the restriction to CanMonoids of the group completion adjoint pair
(L” - L o RI R" 9// T]”)

Similarly, prove that the composition of the Abelianization functor and the group completion
functor
(L : Monoids - Z - mod, R : Z — mod - Monoids, 0, 7),

factors through the reflection to the full subcategory of commutative, cancellative monoids,

(L' : Monoids - CommCanMonoids, R’ : CommCanMonoids -~ Monoids, §',7").

Adjointness of Tensor and Hom Exercise. Let A and B be unital, associative rings, and let
¢ : A - B be a morphism of unital, associative rings.

(i) For every left B-module,
(N,mpy:BxN - N),

prove that the composition
oxIdn mMB,N

AxN ——> BxN ——> N,

makes the datum
(Nympyo(¢pxIdy): Ax N> N),

an R-module. For every morphism of left B-modules,
u: (N, mB,N) - (N',mB,N'),

prove that also
u: (N, mB7N o) (¢ X IdN)) d (N/,mBer @) (¢ X IdNI))

is a morphism of left A-modules. Altogether, prove that the association (N,mpn) ~ (N,mpn o
(¢ xIdy)) and u ~— w is a faithful functor

R4 : B -mod - A -mod.

In particular, in the usual manner, for every unital, associative ring C' and for every B -C-bimodule
N, prove that R4s(N) is naturally an A — C-bimodule.

(ii) Formulate and prove the analogous results for right modules, giving a faithful functor
R? :mod - B - mod - A.

For every C' — B-bimodule N, prove that R?(NN) is naturally a C — A-bimodule. In particular for
the B — B-bimodule N = B, R?(B) is naturally a B — A-bimodule.
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For every left A-module M, denote L,(M) = R?(B)®4 M. For every morphism of left A-modules,
w: M — M,

denote by Lg(u) = Idgsp) ® u,
Ly(u) : Lg(M) — Lo(M"),

the associated morphism of left B-modules. Prove that the associations M — L,(M) and u = Ly(u)
define a functor
Ly:A-mod - B -mod.

(iv) Denote by 1p the multiplicative unit in B. For every left A-module M, prove that the

composition
1p XId]\,{ ﬂB,M

M —— BxM—— B, M,

is a morphism of left A-modules,
On 2 M — Ry(Lg(M)),

i.e., for every a € A and for every m e M,
Bem(lp,a-m)=Ppyu(lp-¢(a),m)=Beu(d(a)-1p,m).
Prove that the association M ~ 60,; defines a natural transformation

0 : IdA—mod = R¢ o L¢.

(v) For every left B-module (N,mp x), for the induced right A-module structure on R?(B) and
left A-module structure on N, prove that

mp.nN - BxN->N
is A-bilinear, i.e., for every a € A, for every b e B, and for every n € N,
mp.n (b, ¢(a) -n)=mpn(b-d(a),n).

Thus, by the universal property of tensor product, there exists a unique homomorphism of Abelian
groups,
my:B®s N —-> N,

such that my o Bp n equals mp n. Prove that my is a morphism of left B-modules, i.e., for every
b,b’' € B and for every n e N,

mN(b : BB,N(blyn)) = mN(ﬁB,N(b : b’,n)) = mB,N(b b, n) = mB,N(ba mB,N(blan))~
Prove that the association N —» my defines a natural transformation

m: ng o ng = IdB—mod-
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(vi) Prove that (Lg, Rs,0,m) is an adjoint pair of functors. In particular, even though Ry is
faithful, the natural transformation m is typically not a natural isomorphism. Conclude that one
cannot weaken the definition of reflective adjoint pair from “fully faithful” to “faithful”.

(vii) Prove the analogues of the above for right modules. Also, taking A to be Z, and taking
¢ :7Z — B to be the unique ring homomorphism, obtain an adjoint pair
(L":Z-mod - B-mod, R": B-mod - Z -mod, §",n")
whose composition with the adjoint pair
(L' : CommCanMonoids - Z — mod, R’ : Z - mod - CommCanMonoids, ¢, ")
is an adjoint pair (L, R,6,n) extending the forgetful functor

R: B -mod - CommCanMonoids.

Composing this adjoint pair further with the other adjoint pairs above gives, in particular, an
adjoint pair (F,®,4,7n) extending the forgetful functor

®: B -mod — Sets.

The functor F' : Set - B — mod and the natural transformation 7 is called the “free B-module”.
Use the usual functorial properties to conclude that F' naturally maps to the category of B — B-
bimodules.

Free Central A-algebras and Free Commutative Central A-algebras Exercise. Let A be
an associative, unital ring that is commutative. Recall that a central A-algebra is a pair (B, ¢)
of an associative, unital ring B and a morphism of associative, unital rings, ¢ : A - B, such that
for every a € A and every b e B, ¢(a)-b equals b- ¢(a), i.e., p(A) is contained in the center of B.
In particular, the identity map

IdB : R¢(B) - R¢(B),

is an isomorphism of A — A-bimodules making B into a left-right A-module.
For central A-algebras (B,¢) and (B’,¢’), a morphism of central A-algebras is a morphism of

associative, unital rings, ¢ : B — B’ such that i o ¢ equals ¢’. In particular, ¥ is a morphism of
left-right A-modules.

(i) Prove that the usual composition and the usual identity maps define a faithful (but not full!)

subcategory
R: A - algebra - A -mod

whose objects are central A-algebras and whose morphisms are morphisms of central A-algebras.
The rest of this problem extends this to an adjoint pair that is a composition of two other (more
elementary) adjoint pairs.
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(ii) Let n > 2 be an integer. Let M, ..., M, be (left-right) A-modules. For every A-module U, a
map
v Myx---x M, - U,

is an n-A-multilinear map if for every i = 1,...,n, for every choice of
M = (M, M1, Mg, e, M) € My X oo Mg x Mgy x oo x My,
the induced map
Vs - M’L - U; m; = r)/(mla sy TG, T T4 1 - - 7mn)7

is a morphism of A-modules. Prove that there exists a pair (T (M, ..., M,),Bu,...m,,) of an A-

module T'(Mj, ..., M,) and an n-A-multilinear map

.....

Baty,...vy 2 My x - x My, = T(My,...,M,),
such that for every n- A-multilinear map = as above, there exists a unique A-module homomorphism,
w:T(M,...,M,) - U,

such that wo By, a, equals 7. For n =3, prove that Sus a, a4 factors through

,,,,,

Bty aiy x Idagy + My x My x Mz — (My ® 4 My) x M.
Prove that the induced map
Banemy s - (My ®a M) x Mz — T(My, My, M),
is A-bilinear. Conclude that there exists a unique A-module homomorphism,
w: (M ®4 My) ®4 Mz — T (M, My, M3).

Prove that this is an isomorphism of A-modules. Similarly, prove that there is a natural isomorphism

of A-modules,
M ®4 (MQ ®a Mg) - T(Ml, MQ,Mg).

Conclude that there is a natural isomorphism of A-modules,
(M1 ® A Mg) ® 4 M3 = M1 ® A (M2 ®a Mg),

i.e., tensor product is associative for A-modules. Iterate this to conclude that there are natural
isomorphisms between all the different interpretations of M; ® 4 --- ® 4 M,,, and each of these is
naturally isomorphic to T'(Mj, ..., M,). (All of this is also true in the case of M; that are A; ;- A;-
bimodules with n-(A;);-multilinearity defined appropriately.)

(iii) Let B be an A-algebra. A Z,-grading of B is a direct sum decomposition as an A-module,

B= @nzana
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such that for every pair of integers n,p > 0, the restriction to the summands B, and B, of the
multiplication map,
mp: B, x B, > B

factors through B,,,. The induced A-bilinear map is denoted
mpBmn,p - Bn x Bp - Bn+p-

In particular, notice that this means that By is an A-subalgebra of B, and every direct summand
B, is a By — Bp-bimodule. Finally, for every triple of integers n,p,r > 0, the following diagram

commutes,
mEB,n,pxldp,

B, x B, x B, Bpip x B,
ldg, XmB,p,rl JmB,nw,r
B, x Bp+r Bn+p+r

mpBn,p+r

Prove that a Z.-graded A-algebra is equivalent to the data ((B,)nez, , (MBnp) (np)ez. <z, ) satisfying
the conditions above.

(iv) For Z,-graded A-algebras ((By)nez., (MBnp)mp)ez.xz.) and ((B))nez, (M np) (np)ezoxz, )s &
morphism of Z,-graded A-algebras is a morphism of A-algebras,

Y:B->D,
such that for every integer n >0, ¢)(B,,) is contained in B!. The induced A-linear map is denoted
Wy B, > BY.
In particular, vy is a morphism of A-algebras. Relative to 1y, every map v, is a morphism of

By — By-bimodules. Finally, for every pair of integers n,p > 0, the following diagram commutes,

¢n><¢p
B, x B, —— B x B,

mB,n,pJ lmB’,‘n,p

/
Bn+p 1/)—) Bn+p
n+p

Prove that a morphism of Z,-graded A-algebras is equivalent to the data (v, )nez, satisfying the
conditions above. Prove that composition of morphisms of Z,-graded A-algebras is a morphism of
Z,-graded A-algebras. Prove that identity maps are morphisms of Z,-graded A-algebras. Conclude
that there is a faithful (but not full!) subcategory,

L":7Z,—- A-algebra -~ A - algebra,

whose objects are Z,=graded A-algebras and whose morphisms are morphisms of Z,-graded A-
algebras. Prove that this extends to an adjoint pair (L, R",0" . n") where

R": A -algebra —» Z, — A - algebra,
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associates to an associative, unital A-algebra (C,m¢) the Z,-graded A-algebra,

((Cnezs (Manp) (np)ezixz,) = ((Chnez, s (M) (np))-

Thus Cj equals C' as an A-algebra, and the Cy-algebra @,,C,, is equivalent as a Z,-graded C-algebra
to C[t] = C ®z Z[t], where Z[t] is graded in the usual way.

(v) Let M be an A-module. For every integer n > 1, denote
TH(M)=T(My,...,.M,)=M®"=M®4--®4 M,
with the universal n-A-multilinear map,
By M TH(M).

Similarly, denote TQ(M) = A. For every pair of integers n,p > 0, the composition,

M™ ><Mp Mn+p T"*P(M)

is n-A-multilinear, resp. p-A-multilinear in the two arguments separately. Thus the composition

factors as

M v BBy < () S Ty (),

where )7 is A-bilinear. Finally, for every triple of integers n,p,r > 0, associativity of tensor

products implies that the following diagram commutes,

XId’V‘
TH(M) % T5(M) x T5(M) ——2% (0 s 7(M)
IdTg(M)X“A/} l Lulr]c;p,r
TR(M) < TH™" (M) — Ty (M)
M

Thus, the data ((T% (M ))mez,, (13} ) (np)ez,xz, ) defines a Z,-graded A-algebra, denoted T4 (M) and
called the tensor algebra associated to M. For every Z,-graded A-algebra

B = ((Bn)n€Z+> (mB,n,p)(n,p)eZ+xZ+),
for every integer n, inductively define the A-module morphism
Mg Th(B1) = Bn,

by 1o+ A = By is the usual A-algebra structure map ¢, 1, : T4(B1) — By is the usual identity
morphism on By, and for every n > 0, assuming that 7}, is defined,

771"3,n+1 :TX+1(Bl) =B1®a TX(B) - Bn+17
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is the unique A-module homomorphism whose composition with the universal A-bilinear map,
By By xTH(B) = By®4Th(B),
equals the A-bilinear composition

ldp, xnB,n MB1n
Bl X Bn - Bn+1-

B1 X TZ(BI)

Use associativity of tensor product (and induction) to prove that for every pair of integers n,p > 0,
the following diagram commutes,

’ ’
nB,anB,p

T3(By) xTj(B1) —— B.x B,

n,p
HB; l JmB,zL,p

T;pr(Bl) - Biip
B,n+p

Conclude that (77}3’71)7162+ is a morphism of Z,-graded A-algebras,
ng:Ta(By) - B.

(vi) Denote by
R :7Z, - A-algebra - A -mod

the functor that associates to a Z,-graded A-algebra ((By)nez,, (MBnp)np)ez,xz,) the A-module
B and that associates to a morphism (¢, )nez, of Z,-graded A-algebras the A-module v;. For
every A-module M, denote by

Opr = M — R (Ta(M))
the identity morphism M — Ti(M). Prove that this defines an adjoint pair (74, R',6’,n"). Com-

posing with the adjoint pair (L", R",0"” ,n") gives an adjoint pair (L" o T4, R,0,n) extending the
faithful (but not full!) forgetful functor

R:A-algebra - A-mod, B+~ B.

10 Adjoint Pairs for Lawvere Theories

Definition 10.1. For a concrete category A with its forgetful functor R : A - Sets, for a category
B, an A-object of B is a triple (b, F',#) of an object b of B, a contravariant functor F' : BP? - A, and
a natural equivalence of set-valued contravariant functors on B, 6 : h, = R o I'. The contravariant
functor F' is the Yoneda contravariant functor associated to the A-object of B. For A-objects of
B, (b, F,0) and (', F’,0"), a morphism of A-objects of B from the first triple to the second triple
is a pair (u:b—>V,v: F' = F) of a B-morphism u and a natural transformation of contravariant
functors v such that (Fov)of’ equals #oh, as natural transformations from hy to RoF. Composition
is defined in the evident way, and the identity of (b, F,0) is (Idy, Idg).
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Remark 10.2. Because R is faithful, for every B-morphism u : b — ', there is at most one morphism
(u,v) from the A-object (b, F,#) to the morphism (b, F’,0"). Thus, the rule associating to each
morphism (u,v) of A-objects of B the B-morphism u gives an identification of the morphisms
(u,v) with a subset of the set of B-morphisms; in particular, the morphisms (u,v) from (b, F,0)
to (b, F’,6") form a set. Using axioms on inaccessible cardinals or Grothendieck universes, one
can also deal with the foundational issues around the objects. Altogether, this gives a category
of A-objects of B, denoted A — B, together with a covariant, faithful functor, L -B: A-B - B,
sending (b, F,6) to b and sending (u,v) to u.

The Yoneda Functor of an A-Object. Formulate and prove the analogue of Problem [for the
Yoneda contravariant functors associated to A-objects of B.

Definition 10.3. Assume now that A has a terminal object and all finite products. A Lawvere
theory for A is a category T' with a terminal object and all finite products together with an A-object
(zp, Fr,07) in T such that for every category B having a terminal object and all finite products,
every A-object of B is equivalent to the A-object of B associated to (br, Fr,07) for a functor
Gu,re) T — B that is unique up to natural equivalence and satisfying the following minimality
condition: every object of T" equals the n-fold self product of x7, 27., for some nonnegative integer
n.

Lawvere Theory for a Concrete Category with a Free Functor. If there exists a left adjoint
L : Sets - A of R, then show that there is a Lawvere theory whose underlying category T equals
the opposite category of the full subcategory of A obtained by evaluating L on the sets [1,n]
from Notation In particular, conclude that there exists a Lawvere theory for monoids, for
semigroups, for groups, for Abelian groups, for central A-algebras, and for commutative central A-
algebras. When a Lawvere theory exists, use this to give another solution of the previous problem.

11 Adjoint Pairs of Limits and Colimits

Limits and Colimits Exercise. Mostly we use the special cases of products and coproducts. The
notation here is meant to emphasize the connection with operations on presheaves and sheaves such
as formation of global sections, stalks, pushforward and inverse image. Let 7 be a small category.
Let C be a category. A 7-family in C is a (covariant) functor,

F:1—C.

Precisely, for every object U of 7, F(U) is a specified object of C. For every morphism of objects
of ,r:U -V, F(r): F({U) - F(V) is a morphism of C. Also, F(Idy) equals Idzy. Finally, for
every pair of morphisms of 7, r: U -V and s: V - W, F(s) o F(r) equals F(sor).

For every pair F, G of r-families in C, a morphism of T-families from F to G is a natural transfor-
mation of functors, ¢ : F = G. For every object a of C, denote by

a :7—->C

36


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

the functor that sends every object to a and that sends every morphism to Id,. For every morphism
in C, p:a — b, denote by

ET:QT:>Z—)T

the natural transformation that assigns to every object U of 7 the morphism p:a — b. Finally, for
every object U of 7, denote

'U,F)=FU), I'(U,0O)=6(U),

and for every morphism r: U — V of 7, denote

I'(r,F)=F(r).

(i) (Functor Categories and Section Functors) For 7-families F, G and #, and for morphisms of
r-families, 6 : F - G and n: G — H, define the composition of # and n to be the composite natural
transformation no @ : F - H. Prove that with this notion, there is a category Fun(7,C) whose
objects are T-families F and whose morphisms are natural transformations. Prove that

*,:C—>Fun(r,C), a~a,, prp,

is a functor that preserves monomorphisms, epimorphisms and isomorphisms. For every object U
of 7, prove that
F(Uv _) : Fun(T,C) - Cu F = F(U7f)7 0 F(Uve)v

is a functor. For every morphism r: U - V of 7, prove that I'(r,-) is a natural transformation
F(Ua _) = F(V7 _)'

(ii) (Adjointness of Constant / Diagonal Functors and the Global Sections Functor) If C has an
initial object X, prove that (+ ,I'(X,-)) extends to an adjoint pair of functors. More generally,
a limit of a T-family F (if it exists) is a natural transformation n: a_ = F that is final among all
such natural transformations, i.e., for every natural transformation 6 : b_ = F, there exists a unique
morphism ¢:b — a in C such that 6 equals not_. For a morphism ¢ : F - G, for limits n:a_= F
and 0 :b_= G, prove that there exists a unique morphism f :a — b such that o P equals ¢ on.
In particular, prove that if a limit of F exists, then it is unique up to unique isomorphism. In
particular, for every object a of C, prove that the identity transformation 60, :a. — a_ is a limit of
a

(iii) (Adjointness of Constant / Diagonal Functors and Limits) For this part, assume that every
T-family has a limit; a category C is said to have all limits if for every small category 7 and for
every 7T-family F, there is a limit. Assume further that there is a rule I', that assigns to every F
an object T';(F) and a natural transformation 7z : T',(F) — F that is a limit. (Typically such a
rule follows from the “construction” of limits, but such a rule also follows from some form of the
Axiom of Choice.) Prove that this extends uniquely to a functor,

I, :Fun(r,C) - C,
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and a natural transformation of functors

n-*,0 F‘r = IdF‘un(T,C)~

Moreover, prove that the rule sending every object a of C to the identity natural transformation
6, is a natural transformation 0 : Ide = I'; o x . Prove that (x_,I',0,n) is an adjoint pair of
functors. In particular, the limit functor I', preserves monomorphisms and sends injective objects
of Fun(7,C) to injective objects of C.

(iiii) (Adjointness of Colimits and Constant / Diagonal Functors) If C has a final object O, prove
that (I'(O, -), *.) extends to an adjoint pair of functors. More generally, a colimit of a T-family F (if
it exists) is a natural transformation 6 : F = a_ that is final among all such natural transformations,
i.e., for every natural transformation 7 : 7 = b_, there exists a unique morphism h:a - b in C
such that h_o 0 equals . For a morphism ¢ : 7 — G, for colimits § : F = a_ and n: G = b,
prove that there exists a unique morphism f : a - b such that fT o f equals o ¢. In particular,
prove that if a colimit of F exists, then it is unique up to unique isomorphism. In particular, for
every object a of C, prove that the identity transformation 6, : a_ — a_ is a colimit of a_. Finally,
repeat the previous part for colimits in place of limits. Deduce that colimits (if they exist) preserve
epimorphisms and projective objects.

(v)(Functoriality in the Source) Let = : 0 — 7 be a functor of small categories. For every r-family
F, define F, to be the composite functor F o z, which is a o-family. For every morphism of 7-
families, ¢ : F — G, define ¢, : F, - G, to be ¢ oz, which is a morphism of o-families. Prove that
this defines a functor

*+, : Fun(7,C) - Fun(o,C).

For the identity functor Id, : 7 — 7, prove that *jq_ is the identity functor. For y: p o a functor
of small categories, prove that x,,, is the composite %, o *,. In this sense, deduce that *, is a
contravariant functor in x.

For two functors, x,z; : 0 - 7 and for a natural transformation n : z = x;, define F,, : F, = F,,
to be F(n(V)) : F(x(V)) - F(x1(V)) for every object V of o. Prove that F, is a morphism
of o-families. For every morphism of 7-families, ¢ : 7 — G, prove that ¢,, o F,, equals G, o ¢,.
In this sense, conclude that =, is a natural transformation *, = x,.. For the identity natural
transformation Id, : x = x, prove that %14, is the identity natural transformation of *,. For a
second natural transformation m : z; = z1, prove that F,,., equals F,, o F,. In this sense, deduce
that =, is also compatible with natural transformations. In particular, if (x,y,6,7n) is an adjoint
pair of functors, prove that (,, *,, *g, *,) is an adjoint pair of functors.

(vi)(Fiber Categories) The following notion of fiber category is a special case of the notion of 2-
fiber product of functors of categories. Let x : ¢ — 7 be a functor; this is also called a category
over T. For every object U of 7, a o, p-object is a pair (V,r : z(V) - U) of an object V of o
and a 7-isomorphism r : (V) - U. For two objects o, y-objects (V,r) and (V',7") of o, v, a
ozu-morphism from (V,r) to (V’,r") is a morphism of o, s : V' — V', such that r’ o z(s) equals
r. Prove that Idy is a o, y-morphism from (V,r) to itself; more generally, the o, ;-morphisms
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from (V,r) to (V,r) are precisely the o-morphisms s : V' — V such that z(s) equals Id,,. For
every pair of o, y-morphisms, s: (V,r) - (V',r") and s’ : (V',r") - (V",r"), prove that s’ o s is
a o, p-morphism from (V,r) to (V”,r"). Conclude that these rules form a category, denoted o, ¢ .
Prove that the rule (V,r) » V and s~ s defines a faithful functor,

(I):t,U ‘02U — O,

and 7 : (V) — U defines a natural isomorphism 0, ;y: x o ®, y = U,, - Finally, for every category
o', for every functor ¢’ : 0’ — o, and for every natural isomorphism ¢’ : x 0 &’ = U_,, prove that
there exists a unique functor F': 0’ - 0,y such that ®" equals ®, o F' and ¢’ equals 0,0 F. In
this sense, (P, v, 0, ) is final among pairs (®,60") as above.

For every pair of functors x,x; : ¢ — 7, and for every natural isomorphism n : x = w1, for every
0, v-object (Viry:x1(V) - U), prove that (V,r ony : (V) - U) is an object of 0, ;. For every
morphism in o,, i, s: (V,r1) - (V',7]), prove that s is also a morphism (V,r1ony) - (V' 7 ony/).
Conclude that these rules define a functor,

OnU *0x,U = Og,U-

Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that o, 1 is functorial in n, i.e., for a second natural isomorphism m : 1 = x2, prove that
Omon,U €qUAlS 0y, 17 © Oy 17

For every pair of functors, x : ¢ - 7 and y : p - 7, and for every functor z : ¢ — p such that z
equals y o z equals x, for every o, -object (V,r), prove that (z2(V'),r) is a p, py-object. For every
o, p-morphism s : (V,r) - (V’,r"), prove that z(s) is a p,p-morphism (z(V),r) - (z(V’),r’).
Prove that z(Idy) equals Id.(y), and prove that z preserves composition. Conclude that these
rules define a functor,

RU *O0zU = Py,U-

Prove that this is functorial in z: (Id,)y equals Id,, ,, and for a third functor w : 7 — 7 and
functor 2’ : p - 7 such that y equals w o 2/, then (2’0 z)y equals z[; o zy. For an object (W,ry)
of pyu, for each object (V,rv),q: Z(V) = W) of (02,0):,wry), define the associated object of
o.w to be (V,q). For an object ((V'/,7v+),q' : Z(V') = W) of (02,0):,(W,rw), for every morphism
s:(V,ry) - (V' ry/) such that g equals ¢’ o z(s), define the associated morphism of o, y to be s.
Prove that this defines a functor

RU(Wyrw) * (0$7U)ZU,(W,TW) > Oz W-

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z, 2, : ¢ - p such that x equals both y o z and y o 2z, and
for a natural transformation m : z = 2z, for every object (V,r : (V) - U) of 0,1, prove that
my is a morphism in p,y from (z(V'),r) to (21(V),r). Moreover, for every morphism in o, p,
s: (V,r) — (V',r"), prove that my o z(s) equals z;(s) o my. Conclude that this rule is a natural
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transformation my : zy = (21)y. Prove that this is functorial in m. If m is a natural isomorphism,
prove that also my is a natural isomorphism, and the strict equivalence (my)w,, ) is compatible
with the strict equivalence my,. Finally, prove that m — my is compatible with precomposition
and postcomposition of m with functors of categories over 7.

(vii)(Colimits and Limits along an Essentially Surjective Functor) Let z : ¢ — 7 be a functor of
small categories. Prove that every fiber category o, ;s is small. Next, assume that z is essentially
surjective, i.e., for every object U of 7, there exists a o, y-object (V,r). Let y: 7 — ¢ be a functor,
and let a : Id, = y o x be a natural transformation. Prove that this extends to an adjoint pair of
functors (z,y, a, §) if and only if for every object V' of o, the morphism z(ay ) : 2(V) = z(y(x(V)))
is an isomorphism and (y(z(V')),z(ay)™!) is a final object of the fiber category o, ;). (Conversely,
up to some form of the Axiom of Choice, there exists y and o extending to an adjoint pair if
and only if every fiber category o,y has a final object.) For every adjoint pair (x,y,«, ), also
(%*y, *2, *a, *3) 1s an adjoint pair. More generally, no longer assume that there exists y and «, yet
let L, be a rule that assigns to every object F of Fun(c,C) an object L,(F) of Fun(7,C) and a
natural transformation,

9}-3?%*10[;1‘(.7),

of objects in Fun(o,C). For every object U of 7, this defines a natural transformation
ef,x,U :Fo CI):L’,U = Lx(F) OQUI Ul

of objects in Fun(o, ,C). Assume that each (L.(F)(U),0r, ) is a colimit of F o ®, ;. Prove
that this extends uniquely to a functor,

L, :Fun(o,C) - Fun(r,C),
and a natural transformation
050 : IdFun(cr,C) = %z 0 L:r:

Moreover, for every G in Fun(7,C), the identity morphism,
ldg:Goxo®yy >Gol, .

factors uniquely through a C-morphism L,(Gox)(U) - G(U). Prove that this defines a morphism
ng : L:(Gox) -G in Fun(7,C). Prove that is a natural transformation,

n: Lx O *gp = IdFun(T,C)'

Prove that (L., *,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o @,y admits a colimit, then there exists a I'* and 6 as above.)

Next, as above, let x : ¢ - 7 be a functor of small catgories that is essentially surjective. Let
y : T = sigma be a functor, and let 5 : y o x = Id, be a natural transformation. Prove that
this extends to an adjoint pair of functors (z,y,«, ) if and only if for every object V of o, the
morphism z(5,) : z(y(z(V'))) - z(V') is an isomorphism and (y(z(V')),z(8,)) is an initial object
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of the fiber category o, (v). (Conversely, up to some form of the Axiom of Choice, there exists y
and [ extending to an adjoint pair if and only if every fiber category o, s has an initial object.) For
every adjoint pair (y,x,a,beta) also (%4, %y, *q, *g) is an adjoint pair. More generally, no longer
assume that there exists y and 3, yet let R, be a rule that assigns to every object F of Fun(o,C)
an object R,(F) of Fun(7,C) and a natural transformation,

Ng %z 0 Re(F) = F,
of objects in Fun(o,C). For every object U of 7, this defines a natural transformation
NFaeu: Re(F)olU, = Fod,y,

of objects in Fun(o, ;7,C). Assume that each (R, (F)(U),nz ) is a limit of Fo®, ;. Prove that
this extends uniquely to a functor,

R, : Fun(o,C) —» Fun(r,C),

and a natural transformation,
- *g0 Rz = IdF‘un(J,C)-

Moreover, for every G in Fun(7,C), the identity morphism,
Idg:Q’OQ%U :>go(1;oCI)x7U,

factors uniquely through a G(U) - C-morphism R,(Goxz)(U). Prove that this defines a morphism
0g:G - R, (Gox) in Fun(7,C). Prove that this is a natural transformation,

0: IdFun(’r,C) = Rcc O *gz.

Prove that (x,, R,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o @,y admits a colimit, then there exists a R, and 7 as above.)

(viii) (Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let z : 0 > 7 be an embedding of a full subcategory (thus, z is essentially surjective if and
only if z is an equivalence of categories). In this case, the functor

*+, : Fun(7,C) - Fun(o,(C)

is called restriction. Assume further that o is upper (a la the theory of partially ordered sets) in
the sense that every morphism of 7 whose source is an object of ¢ also has target an object of o.
Assume that C has an initial object, ®. Let G be a o-family of objects of C. Also, let ¢ : G - H
be a morphism of o-families. For every object U of 7, if U is an object of o, then define ,G(U) to
be G(U), and define ,¢(U) to be ¢(U). For every object U of 7 that is not an object of o, define
+G(U) to be ®, and define , ¢(U) to be Idg. For every morphism r: U — V if U is an object of
o, then r is a morphism of ¢. In this case, define ., G(r) to be G(r). On the other hand, if U is
not an object of o, then G(U) is the initial object ®. In this case, define , G(r) to be the unique

41


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

morphism ,G(U) - ,G(V). Prove that ,G is a 7-family of objects, i.e., the definitions above are
compatible with composition of morphisms in 7 and with identity morphisms. Also prove that
» ¢ is a morphism of 7-families. Prove that , Idg equals Id, g. Also, for a second morphism of
o-families, ¢ : H — Z, prove that (¢ o ¢) equals ;)0 ,¢. Conclude that these rules form a functor,

+* :Fun(o,C) - Fun(r,C).

Prove that (,*, *,) extends to an adjoint pair of functors. In particular, conclude that *, preserves
epimorphisms and , * preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every 7-family F, for every
object U of 7, define 0x(U) : F(U) - *F(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s): F(T) - F(U),
for all morphisms s: 7T — U with V' not in o (possibly empty, in which case 0£(U) is the identity
on F(U)). In particular, if U is not in o, then 2 F(U) is zero. For every morphism r:U -V in T,
prove that the composition 8£(V') o F(r) equals *F(r) o §£(U) for a unique morphism

TF(r):*FU) ->*F(V).

Prove that * F(Idy) is the identity morphism of # F(U). Prove that r — * F(r) is compatible
with composition in 7. Conclude that * F is a 7-family, and 6 is a morphism of 7-families. For
every morphism ¢ : F — & of 7-families, for every object U of 7, prove that 0¢(U) o ¢(U) equals
p(U) 0 0x(U) for a unique morphism

To(U):*F(U) »*EU).

Prove that the rule U » *¢(U) is a morphism of 7-families. Prove that #Idz is the identity on
z F. Also prove that ¢ — * ¢ is compatible with composition. Conclude that these rules define a
functor

?%:Fun(7,C) - Fun(r,C).

Prove that the rule F ~ 0 is a natural transformation Idgun(rcy = **. Prove that the natural
morphism of 7-families,

CF = ((FF)),

is an isomorphism. Conclude that there exists a unique functor,
+*: Fun(7,C) - Fun(o,C),

and a natural isomorphism #* = ,(*%). Prove that (*%, .*,0) extends to an adjoint pair of functors.
In particular, conclude that , * preserves epimorphisms and ** preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that o is upper, assume that
o has an initial object, W, and assume that there is a functor

Y:T >0
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and a natural transformation 6 : Id, = zoy, such that for every object U of 7, the unique morphism
W, - y(U) and the morphism 0y : U - y(U) make y(U) into a coproduct of W, and U in 7. For
simplicity, for every object U of o, assume that 0y : U - y(U) is the identity Idy (rather than
merely being an isomorphism), and for every morphism r: U — V in o, assume that y(r) equals r.
Thus, for every object V of o, the identity morphism y(V') - V defines a natural transformation
n:yox = 1d,. Prove that (y,z,0,n) is an adjoint pair of functors. Conclude that (%, *,, *g, *,)
is an adjoint pair of functors. In particular, conclude that *, preserves monomorphisms and *,
preserves epimorphisms.

(ix)(Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that I'(0, -) is an equivalence of categories. For
an arbitrary category 7, for the unique natural transformation 7:7 — 0, prove that *; equals the
composite *_oI'(0,-) so that *_is an example of this construction. In particular, for every functor
xr:0 - T, prove that (a ), equals a,. If n:a_ = F is a limit of a 7-family F, and if 0: b, = F,
is a limit of the associated o-family F,, then prove that there is a unique morphism A :a — b in
C such that 7, equals o P If there are right adjoints I'; of *_and I', of *_, conclude that there
exists a unique natural transformation

Ip:Tr=>T5o0x%,
so that ng, o T, (F) equals (nr).. Repeat this construction for colimits.

(x)(Limits / Colimits of a Concrete Category) Let o be a small category in which the only mor-
phisms are identity morphisms: identify o with the underlying set of objects. Let C be the category
Sets. For every o-family F, prove that the rule

[, (F):= H (U, F)
Uex

together with the morphism
nr To(F) = F,

nF(V)=pry: [[T(U,F) - T(V, F),

Uex
is a limit of F. Next, for every small category 7, define o to be the category with the same objects
as 7, but with the only morphisms being identity morphisms. Define x : ¢ — 7 to be the unique
functor that sends every object to itself. Define I';(F) to be the subobject of T',(F,) of data
(fv)ues such that for every morphism r : U — V, F(r) maps fy to fy. Prove that with this
definition, there exists a unique natural transformation nz : I'.(F )T = F such that the natural

transformation I',(F )g = [',(F,) = F, equals (n£),. Prove that nr is a limit of F. Conclude
that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

®:R-S5—-mod — Sets

sends products to products. Let F be a 7-family of R — S-modules. Prove that the defining
relations for I';(® o F) as a subset of I';(® o F) are the simultaneous kernels of R — S-module
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homomorphisms. Conclude that there is a natural R — S-module structure on I',(® o F), and use
this to prove that R —S-mod has all limits.

(xi)(Functoriality in the Target) For every functor of categories,
H:C-1D,

for every T-family F in C, prove that H o F is a 7-family in D. For every morphism of 7-families in
C, p:F =G, prove that H o ¢ is a morphism of 7-families in D. Prove that this defines a functor

H, :Fun(7,C) - Fun(7,D).

For the identity functor Id¢, prove that (Idc). is the identity functor. For I : D — £ a functor of
categories, prove that (I o H), is the composite I, o H,. In this sense, deduce that H, is functorial
in H.

For two functors, H,I : C - D, and for a natural transformation N : H = I, for every 7-family F
in C, define N, (F) to be
NoF:HoF =1oF.

Prove that N,(F) is a morphism of 7-families in D. For every morphism of 7-families in C,
¢ F - G, prove that N, (G) o H.(¢) equals I.(¢) o N.(F). In this sense, conclude that N, is
a natural transformation H, = I.. For the identity natural transformation Idy : H = H, prove
that (Idy), is the identity natural transformation of H,. For a second natural transformation
M : 1= J, prove that (Mo N), equals M, o N,. In this sense, deduce that (=), is also compatible
with natural transformations.

(xii)(Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if
for every pair of objects U and V there exists a pair of morphisms, r: W - U and s : W - V|
and for every pair of morphisms, r,s:V — U, there exists a morphism ¢ : W — V such that r ot
equals sot (both of these are automatic if the category has an initial object X'). Assume that the
category C has limits for all categories 7 with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category 7, define 7 to be the small category whose objects are
finite full subcategories o of 7, and whose morphisms are inclusions of subcategories, p c o, of 7.
Prove that 7 is cofiltering. Let F be a 7-family in C. For every finite full subcategory o c 7, denote
by F, the restriction as in (f) above. By hypothesis, there is a limit 7, : F(¢) = F,. Moreover, by

(g), for every inclusion of full subcategories p c o, there is a natural morphism in C, F(p) - F(o),
and this is functorial. Conclude that F is a 7-family in C. Since 7T is filtering, there is a limit

—_

Ng:az=F.

7

Prove that this defines a limit nra, = F.

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
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(not necessarily commutative) rings, the category of commutative rings, and the category of R—S-
bimodules (where R and S are associative, unital rings).

(xiii) (bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R - S-bimodules (where R and S are
associative, unital rings).

Practice with Limits and Colimits Exercise. In each of the following cases, say whether the
given category (a) has an initial object, (b) has a final object, (c¢) has a zero object, (d) has finite
products, (e) has finite coproducts, (f) has arbitrary products, (g) has arbitrary coproducts, (h)
has arbitrary limits (sometimes called inverse limits), (i) has arbitrary colimits (sometimes called
direct limits), (j) coproducts / filtering colimits preserve monomorphisms, (k) products / cofiltering
limits preserve epimorphisms.

(i) The category Sets whose objects are sets, whose morphisms are set maps, whose composition
is usual composition, and whose identity morphisms are usual identity maps.

(ii) The opposite category SetsP.

(iii) For a given set S, the category whose objects are elements of the set, and where the only
morphisms are the identity morphisms from an element to that same element. What if the set is
the empty set? What if the set is a singleton set?

(iv) For a partially ordered set (S,<), the category whose objects are elements of S, and where
the Hom set between two elements x, y of S is a singleton set if x <y and empty otherwise. What
if the partially ordered set (S,<) is a lattice, i.e., every finite subset (resp. arbitrary subset) has
a least upper bound and has a greatest lower bound?

(v) For a monoid (M,-,1), the category with only one object whose Hom set, with its natural
composition and identity, is (M,-,1). What is M equals {1}?

(vi) For a monoid (M,-,1) and an action of that monoid on a set, p: M xS - S, the category
whose objects are the elements of S, and where the Hom set from x to y is the subset M, , = {m €
M|m-x =y}. What if the action is both transitive and faithful, i.e., S equals M with its left regular
representation?

(vii) The category PtdSets whose objects are pairs (5, sg) of a set S and a specified element s
of S, i.e., pointed sets, whose morphisms are set maps that send the specified point of the domain
to the specified point of the target, whose composition is usual composition, and whose identity
morphisms are usual identity maps.

(viii) The category Monoids whose objects are monoids, whose morphisms are homomorphisms of
monoids, whose composition is sual composition, and whose identity morphisms are usual identity
maps.
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(ix) For a specified monoid (M,-, 1), the category whose objects are pairs (5, p) of a set S and an
action p: M xS - S of M on S, whose morphisms are set maps compatible with the action, whose
composition is usual composition, and whose identity morphisms are usual identity maps.

(x) The full subcategory Groups of Monoids whose objects are groups. Does the inclusion functor
preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms, resp.
epimorphisms?

(xi) The full subcategory Z—-mod of Groups whose objects are Abelian groups. Does the inclusion
functor preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms,
resp. epimorphisms?

(xii) The full subcategory FiniteGroups of Groups whose objects are finite groups. Are coprod-
ucts, resp. products, in the subcategory also coproducts, resp. products, in the larger category
Groups? Does the inclusion functor preserve monomorphisms, resp. epimorphisms?

(xiii) The full subcategory Z — mody,, of Z — mod consisting of torsion Abelian groups, i.e., every
element has finite order (allowed to vary from element to element). Are coproducts, resp. products,
preserved by the inclusion functor? Are monomorphisms, resp. epimorphisms preserved?

(xiv) The category Rings whose objects are associative, unital rings, whose morphisms are ho-
momorphisms of rings (preserving the multiplicative identity), whose composition is the usual
composition, and whose identity morphisms are the usual identity maps. Hint. For the coproduct
of two associative, unital rings (R’,+,0,,1") and (R",+,0,-",1"), first form the coproduct R’ & R"
of (R, +,0) and (R",+,0) as a Z-module, then form the total tensor product ring Ty (R'@® R") as in
the previous problem set. For the two natural maps ¢': R’ = T;(R'@R") and ¢" : R" < T} (R'®R")
form the left-right ideal I c T (R’ ® R") generated by ¢’'(1’) -1, ¢"(1") =1, ¢'(" " ') = ¢'(+") - ¢' ('),
and ¢"(r" " s") = q"(r") - q"(s") for all elements 7/, s’ € R" and r”,s" € R". Define

p:TH (R ®R") > R,

to be the quotient by /. Prove that poq¢’: R” - R and poq¢” : R” - R are ring homomorphisms
that make R into a coproduct of R’ and R".

(xv) The full subcategory CommRings of Rings whose objects are commutative, unital rings.
Does the inclusion functor preserve coproducts, resp. products? Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvi) The full subcategory NilCommRings of CommRings whose objects are commutative,
unital rings such that every noninvertible element is nilpotent. Does the inclusion functor preserve
coproducts, resp. products? (Be careful about products!) Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvii) Let R and S be associative, unital rings. Let R —mod, resp. mod - .S, R—.S —mod, be the
category of left R-modules, resp. right S-modules, R — S-bimodules. Does the inclusion functor
from R -5 -mod to R - mod, resp. to mod - .5, preserve coproduct, products, monomorphisms
and epimorphisms?
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(xviii) Let (I,<) be a partially ordered set. Let C be a category. An (I, <)-system in C is a datum

c=((ci)ier, (fij)ijyerxt,izi)

where every ¢; is an object of C, where for every pair (4,7) € I x I with ¢ < j, ¢;; is an element of
Home(¢;,¢;), and satisfying the following conditions: (a) for every i € I, ¢;; equals Id,,, and (b) for
every triple (4,7,k) € I with i < j and j <k, ¢jj o ¢;j equals ¢; ;. For every pair of (I, <)-systems
in C, c=((ci)ier, (¢ij)izj) and ¢’ = ((¢})ier, (¢} ;)i<j), a morphism g: ¢ — ¢’ is defined to be a datum
(gi)ier of morphisms g; € Home(c;, ¢}) such that for every (i,7) € I x I with ¢ < j, g; 0 ¢;; equals
c; ;°Gi- Composition of morphisms g and ¢’ is componentwise g/og;, and identities are Id, = (Id, )e;-
This category is Fun((/,<),C), and is sometimes referred to as the category of (I, <)-presheaves.
Assuming C has finite coproducts, resp. finite products, arbitrary coproducts, arbitrary products,
a zero object, kernels, cokernels, etc., what can you say about Fun((/,<),C)?

(xix) Let C be a category that has arbitrary products. Let (I, <) be a partially ordered set whose
associated category as in (iv) has finite coproducts and has arbitrary products. The main example
is when I = {1 is the collection of all open subsets U of a topology on a set X, and where U <V if
U 2 V. Then coproduct is intersection and product is union. Motivated by this case, an covering
of an element i of I is a collection j = (Ju)aeca Of elements j, of I such that for every «, i < j,, and
such that 7 is the product of (ju)aea in the sense of (iv). In this case, for every (a,f) € A x A,
define j, 3 to be the element of I such that j, < j, 3, such that jg < j, g, and such that j, s is a
coprodcut of (ja,73). An (I,=)-presheaf ¢ = ((¢;)ier, (¢ij)i<j) is an (I, <)-sheaf if for every element
i of I and for every covering j = (ja)aca, the following diagram in C is ezact in a sense to be made
precise,

/
4q L
i~ Jle. 3" I1 s
acA (a,B)eAx A

For every a € A, the factor of ¢,
PIy0q: ¢ = Cjy,s

is defined to be ¢; ;,. For every (o, ) € A x A, the factor of p/,

Progop [T e, > ¢
yeA
is defined to be ¢;, j, , o pr,. Similarly, pr, 5o p” is defined to be ¢, ;. , o prg. The diagram above
is exact in the sense that ¢ is a monomorphism in C and ¢ is a fiber product in C of the pair of
morphisms (p’,p”). The category of (I, <) is the full subcategoryof the category of (I, <)-presheaves
whose objects are (I, <)-sheaves. Does this subcategory have coproducts, products, etc.? Does the
inclusion functor preserve coproducts, resp. products, monomorphisms, epimorphisms? Before
considering the general case, it is probably best to first consider the case that C is Z — mod, and
then consider the case that C is Sets.
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12 Adjoint Pairs and Yoneda Functors

Adjoint Pairs and Representable Functors. Let A be a category, and let B be a strictly small
category. Let L: A — B be a covariant functor. For every object b of B, assume that the following
contravariant functor from A to Sets is representable,

Hompg(L(-),b) : A°PP — Sets.

Prove that there exists an adjoint pair (L, R, 6,7). Using the opposite adjoint pair (R°PP, LOPP 7°PP_(oPP)
formulate and prove the analogous result for a contravariant functor R from a category A to a
strictly small category B.

The Yoneda Functor as an Adjoint Functor. Let A be a strictly small category, so that there is
a well-defined category Sets™ of set-valued covariant functors from A with natural transformations
as morphisms (independent of axioms on inaccessible cardinals or Grothendieck universes). As
in Example || for every ordered pair (a,a’) of objects of A, composition in A enriches the set
H¢ := Hom 4 (a,a’) with an H% — Ho-action. For every set S together with a right Hé-action, define
Hf,’a to be the set of right H2-equivariant maps from S to HZ,,

H5" = Homgespra (S, HY).

This is compatible with postcomposition by A-morphisms in H g,’,. Altogether, this defines a co-

variant, set-valued functor,
WS A > Sets, hS(a) = H5*,

the Yoneda functor of a and S. Prove that the rule that associates to a set with right H2-action
the covariant functor A% is itself a functor,

h™": Sets — H* - Sets™.

Conversely, for every set-valued functor F' on A, the set F(a) is enriched with a right HZ-action.
Prove that the rule associating to each set-valued functor F' on A the set F'(a) with its right
Hg-action is itself a functor,

—(a) : Sets™ - Sets — H?.

Prove that these two functors are adjoint, i.e., there is a binatural bijection
Homgets_ 2 (S, F(a)) 2 Homgg 4 (R57, F).
In particular, when S equals H¢ with its right regular action this gives the usual Yoneda bijection,
F(a) 2 Homga(h?, F).
Specializing further, when F' equals the Yoneda functor h¢’, this gives a binatural bijection,

HY = Homg,, 4 (h®, h7).

a
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Deduce that the rule,
h:A- Sets?, aw~ h?,

is an equivalence of the category A with a full subcategory of the functor category Sets™. Formulate
and prove the analogous result for the contravariant Yoneda functors. Finally, if you know the
axioms about inaccessible cardinals or the notion of Grothendieck universes, formulate a version of
this for categories that are not necessarily strictly small.

13 Preservation of Exactness by Adjoint Additive Functors

Exactness and adjoint pairs. Let A4 and B be Abelian categories. Let (L, R,6,7n) be an adjoint
pair of additive functors
L:A-B, R:B— A

(a) For every short exact sequence in A,

: 0 A, B p 0,

for every object B in B, prove that the induced morphism of Abelian groups,
Hom4(pa, R(B)) : Hom4 (A", R(B)) - Hom4(A, R(B)),

is a monomorphism. Conclude that also the associated morphism of Abelian groups,
Homp(L(pa), B) : Homp(L(A"), B) -~ Homp(L(A), B),

is a monomorphism. In the special case that B equals Coker(L(p4)), use this to conclude that B
must be a zero object. Conclude that R preserves epimorphisms.

(b) Prove that the following induced diagram of Abelian groups is exact,

Hom (A", R(B)) —2 Homa(A, R(B)) —2> Homa(A', R(B))

Conclude that also the following associated diagram of Abelian groups is exact,

Homp(L(A"), B) —— Homp(L(A), B) —— Homp(L(A"), B)-
In the special case that B equals Coker(L(gq4)), conclude that the induced epimorphism B — L(A")
is split. Conclude that L is half-exact, hence right exact.
(c) Use similar arguments, or opposite categories, to conclude that also R is left exact.

(d) In case R is exact (not just left exact), prove that for every projective object P of A, also
L(P) is a projective object of B. Similarly, if L is exact (not just right exact), prove that for every
injective object I of A, also R([) is an injective object of A.
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14 Derived Functors as Adjoint Pairs

Problem 0.(The Cochain Functor of an Additive Functor) Let A and B be Abelian categories.
Denote by Ch(A), respectively Ch(B), the associated Abelian category of cochain complexes of
objects of A, resp. of objects of B.

Let
F-A-B

be an additive functor. There is an induced additive functor,
Ch(F'): Ch(A) - Ch(B)
that associates to a cochain complex
A® = ((A")ez, () A" > A™ ) ez),
in A the cochain complex

F(A®) = (F(A"))nez, (F(d3) : F(A") > F(A™))uez).-

(a) Prove that F is half-exact, resp. left exact, right exact, exact, if and only if Ch(F") is half-exact,
resp. left exact, right exact, exact.

(b) Prove that the functor Ch(F') induces natural transformations,
0% i B"oCh(F) = Fo B, 07.,: FoZ" = Z"o Ch(F).
Thus, for the functor A" = A® /B"(A*®), there is also an induced natural transformation,

. :" o Ch(F) = Fo.

(c) Assume now that F' is right exact (half-exact and preserves epimorphisms). Denote by

the usual natural transformation of functors Ch(A) - A. Conclude the existence of a unique
natural transformation

Opp:FoH"= H"oCh(F),
such that for every A® in Ch(A), the following diagram commutes,

F(zn(A%) =5 p(HR(A%)

92,Z<A'>J le’;,HM') .
ZM(Ch(F)(A%)) —— H"(Ch(F)(A*))
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Finally, for every short exact sequence in Ch(A),

A

u

X: 0 K*

0,

such that also F'(X) is a short exact sequence in Ch(B) (this holds, for instance, if ¥ is term-by-term
split), prove that the following diagram commutes,

FHMQY) —25 (v (K*))
@) |esh,
HI(P(Q) s > B (F()

(d) Assume now that F is left exact (half-exact and preserves monomorphisms). Denote by
q": H"(A*) = A" = A"/B"(A"*),

the usual natural transformation of functors Ch(A) - A. Conclude the existence of a unique
natural transformation

Oy p:H"oCh(F)= FoH",
such that for every A® in Ch(A), the following diagram commutes,

H"(Ch(F)(A*)) —— Ch(F)(4%)"
ez,F(Avl lemA')_

ChR)(A)  ——  F(A)

Finally, for every short exact sequence in Ch(A),

S0 Ke 2, g 2

0,

such that also F'(X) is a short exact sequence in Ch(B) (this holds, for instance, if ¥ is term-by-term
split), prove that the following diagram commutes,

Op(x)

HM(F(Q7) —=> H™I(F(K"))
9Z,F(Q')l l%f%(ffi)

F(H™Q*)) o F(H™(K®))

Preservation of Direct Sums Exercise. Let A be an additive category. Let A; and Ay be
objects of A. Let (¢ : Ay = A, g2 : Ay > A) be a coproduct (direct sum) in A. Define p; : A > A,
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to be the unique morphism in A such that p; o ¢; equals Id4, and p; o ¢o is zero. Similarly define
p2: A - Aj to be the unique morphism in A such that ps o ¢y is zero and py o g2 equals Id 4,. Prove
that gy op; + g9 0 ps equals Id 4 both compose with ¢; to equal ¢;, and thus both are equal. Conclude
that (p1: A — Ay, py: A— As) is a product in A.

Now let B be a second additive category, and let
F:A-B

be an additive functor. Define B; = F/(4;) and B = F(A). Prove that F(p;) o F(g;) equals Idp, if
j =1 and equals 0 otherwise. Also prove that Idg equals F'(q;)o F'(p1)+F(g2)oF (p2). Conclude that
both (F(q): By = B,F(q2) : By > B) is a coproduct in B and (F(p1) : B - By, F(p2) : B — Bs)
is a product in B. Hence, additive functors preserve direct sums. In particular, additive functors
send split exact sequences to split exact sequences.

Preservation of Homotopies Exercise. Let A be an Abelian category. Let A® and C*® be
cochain complexes in Ch(A). Let f*: A* - C* be a cochain morphism. A homotopy from f* to 0
is a sequence (s™: A" - C"1),,z such that for every n € Z,

fr=dytos™+s"ody.
In this case, f* is called homotopic to 0 or null homotopic. Cochain morphisms g°®, h*: A® - C* are
homotopic if f* = g*— h* is homotopic to 0.

(a) Prove that the null homotopic cochain morphisms form an Abelian subgroup of Homey 4y (A®, C*).
Moreover, prove that the precomposition or postcomposition of a null homotopic cochain morphism
with an arbitrary cochain morphism is again null homotopic (the null homotopic cochain morphisms
form a “left-right ideal” with respect to composition).

(b) If f* is homotopic to 0, prove that for every n € Z, the induced morphism,
H"(f*): H"(A®) > H"(C*),

is the zero morphism. In particular, if Id 4« is homotopic to 0, conclude that every H"(A*®) is a zero
object.

(c) For a short exact sequence in A

i 0 K—21-4-2,0 0,
considered as a cochain complex A® in A concentrated in degrees —1, 0, 1, prove that a homotopy
from Id 4. to O is the same thing as a splitting of the short exact sequence.

(d) Let B be an Abelian category. Let F': A — B be an additive functor. This induces an additive
functor

Ch(F) : Ch(A) - Ch(B).
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If F is half-exact, resp. left exact, right exact, exact, prove that also Ch(F') is half-exact, resp. left
exact, right exact, exact. Prove that Ch(F') preserves homotopies. In particular, if g* and h*® are
homotopic in Ch(A), then for every integer n € Z, H*(Ch(F)(g*)) equals H"(Ch(F")(h*)).

Preservation of Translation Exercise. Let A be an Abelian category. For every integer m, for
every cochain complex A® in Ch(A), define T™(A*) = A*[m] to be the cochain complex such that
Tm(A*)r = Am*nand with differential

d?”m(AO) Tm(Ao)n _ Tm(Ao)nJrl
equal to (-1)™d7u ™. For every cochain morphism
f. : A. N O.,
define
T (fe)r=Tm (A" > Tm(C*)"
to be fm*. Finally, for every homotopy s* from ¢g® — h® to 0, define

Tm(s*)" = (~1)ms™*n,

(a) Prove that 7™ : Ch(A) — Ch(A) is an additive functor that is exact. Prove that 70 is the
identity functor. Also prove that T oT* equals T™*¢. Prove that not only are 7™ and T-™ inverse
functors, but also (7™,7-™) is an adjoint pair of functors (which implies that also (7-™,7™) is
an adjoint pair). Finally, if s* is a homotopy from ¢* — h* to 0, prove that 7™(s*) is a homotopy
from T™(g*) —=T™(h*) to 0.

(b) Via the identification T™(A*)" = A™*"_ prove that the subfunctor Zm(T™(A*)) is naturally
identified with Z™*"(A*). Similarly, prove that the subfunctor B*(7™(A*)) is naturally identified
with Bm*n(A*). Thus, show that the epimorphism (7™(A*))" — T™(A*) is identified with the
epimorphism A™" — A, Finally, use these natural equivalences to deduce a natural equivalence
of half-exact, additive functors Ch(A) — A,

Lm,n : Hm+n = HTL o Tm

(c) For a short exact sequence in Ch(A),

YK 1 A 2 —— 0,

for the associated short exact sequence,

T(q%) T(p*)

S[+1]=T(2): T(K*) —2% 74y —2% 17(Q*) —— 0,
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prove that the following diagram commutes,

_sn+l

Hn+1(@o) 6_53) H”+1(K')

L"(Q')l JL”“(K')
H(T(@D) S — HI(T(K)

Iterate this to prove that for every m € Z, 63, . is identified with (=1)mogtm.

(d) For every integer m, define
esm : Ch®™(A) = Ch(A)

to be the full additive subcategory whose objects are complexes A® such that for every n < m, A®
is a zero object. (From here on, writing A = 0 for an object A means “A is a zero object”.) Check
that Ch®™(A) is an Abelian category, and es,, is an exact functor. For every integer m, define the
“brutal truncation”

Osm i Ch(A) - Ch*™(A),
to be the additive functor such that for every object A*

(02 A%) _{ 0, n<m

and for every morphism u®: A* - C*,

(un )" = { fr, m2m,

, n<m
Check that oy, is exact and is right adjoint to es,,. For the natural transformation,

Mom * €>m © O>m = IdCh(.A)7

check that the induced natural transformation,

o (A*)" + (sm(A))" - A7,

is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,
A™ > Am
Check that the induced natural transformation
2" (1om(A®)) : Z™(05m(A%)) > Z" (A7),
is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,

B (1:m(A%)) : B"(0:m(A%)) > B"(A%),
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is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,
H" (11:m (A%)) : H"(05m (A®)) > H"(A%),
is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,

Zm(A%) > H"(A*).

Check that for every integer ¢, there is a unique (exact) equivalence of categories,
T/, - Ch*™ () » Ch™ (A),

such that TY, o 0y, equals 0sp,m 0 T, and TY. Check that (T%,, T, ) is an adjoint pair of functors,

l+m
so that also (T ,T7) is an adjoint pair of functors.

(d)bis Similarly, define the “good truncation”
Tom : Ch(A) > Ch™™(A),

to be the additive functor such that for every object A®

A" n>m,
(TZmA.)n = ﬁu n=m,
0, n<m
and for every morphism u®: A* - C*,
fn7 n > m?
(Tme.)n = f?TL7 n=m,
0, n<m

Check that 7, is right exact and is left adjoint to es,,. For the natural transformation
Om = Idcnca)y = €m © Tom,
check that the induced morphism,
ZM(0a) : 2" (A) > 2" (1:m (A7),
is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,
Z"(A®%) - H"(A*).
Check that the induced natural transformation,
B"(0as) : B"(A*) = B"(12m(A%)),
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is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,

—n

0A0 . A —> TZm(A.)
is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,
H"(040) : H'(A%) = H" (7 (A%)),

is zero for n < m, and it is the identity for n > m.

Finally, e.g., using the opposite category, formulate and prove the corresponding results for the full
embedding,
eem : Ch*"(A) — Ch(A),

whose objects are complexes A® such that A" is a zero object for all n > m. In particular, note that
although the sequence of brutal truncations,

nZTVL(A.) GSmfl(A.)

0 — UZm(A.) A. Ugm_l(A.) — 0

is exact, the corresponding morphisms of good truncations,
Ker(0.,(A%)) = 7am(A*), Tem(A®) - Coker(nen(A%)),

are not isomorphisms; in the first case the cokernel is H™(A*)[m], and in the second case the kernel
is H™(A*)[m]. However, check that the natural morphisms,

Tem-1(A*) =22 Ker(Bym (A*),

Coker(nem-1(A%)) — 7, (A%):

are quasi-isomorphisms. (One reference slightly misstates this, claiming that the morphisms are
isomorphisms, which is “morally” correct after passing to the derived category.)

(e) Beginning with the cohomological §-functor (in all degrees) Ch(A) — A,
H* = ((Hn)nﬁza (511)”62)7
the associated cohomological é-functor,
H*oT" = ((H" 0T )ne, (6" 0 T*)nez),

the cohomological d-functor
Ho+£ — ((Hn+€)neZ7 ((5n+f)n€Z)7

and the equivalence,
L£70 . HE - HO OTK,
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prove that there exists a unique natural transformation of cohomological -functors,
92 . H.+£ - H'OTE, (9? . Hn+€ = HnOTZ)neZ,

and that 0} = (-1)"0n.

(e)bis The truncation 7, H* in degrees > m is obtained by replacing H™ by the subfunctor Z™.
Check that 6, restricts to a natural transformation v, ,, H**¢ - 75, H* o T*. Assuming that 7, H*
is a universal cohomological d-functor in degrees > m, conclude that also 7w, H® is a universal
cohomological d-functor in degrees > ¢+ m. Also, formulate and prove the corresponding result for
the universal d-functors 7. H*® and 7, H®.

(f) Let B be an Abelian category. Let F': A — B be an additive functor. This induces an additive
functor
Ch(F') : Ch(A) - Ch(B).
Prove that Ch(F") o T4 equals Tz o Ch(F').
Compatibility with Automorphisms Exercise. Let A be an Abelian category. Let

$: 0 Ko 25 A 25 Q0 — 0

be a short exact sequence in Ch(A). Let
u.:K.ﬁK., U':Q‘%Q.

be isomorphisms in Ch(.A).
(a) Prove that the following sequence is a short exact sequence,

v®op
Ao

q*ou

Zu‘ﬂ}‘ : 0 K Q. 0-

(b) Prove that the following diagrams are commutative diagrams.

Swtdg: 0 —— K* " A* 5 Q° 0

aJ J JIdA JmQ ,

Stagidg : 0 — K* —— A* —— Q* 0

Suetdg : 0 N 0
S

Spee: 0 Ko I qe 2 (e 0

o7
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(c) Use the commutative diagram of long exact sequences associated to a commutative diagrams
of short exact sequences to prove that

5§ — HTHl('LL.) Od” OH”(U'),

u®,v®
for every integer n.

Compatibility with Natural Transformations of Additive Functors. Let A and B be
Abelian categories.

(a) For additive functors,
F.G:A-B,

let
a:F=3G,

be a natural transformation. For every cochain complex A® in Ch(A), prove that
(aan : F(A™) = G(A™) ) nez
is a morphism of cochain complexes in Ch(B),

Ch(a)(A*) : Ch(F)(A*) - Ch(G)(A%).

(b) Prove that the rule A* —» Ch(a)(A*®) is a natural transformation
Ch(a) : Ch(F) = Ch(G).

Moreover, for every morphism u® : C* - A* in Ch(A), and for every homotopy (s": C™ - A1),z
from u® to 0, prove that also Ch(a)(A®) o Ch(F")(s*) equals Ch(G)(s*) o Ch(a)(C"*).

(c) For the identity natural transformation Idg : F' = F, prove that Ch(Idr) is the identity
natural transformation Ch(F') = Ch(F"). Also, for every pair of natural transformations of additive
functors A - B,

a: =G, f:E=F,

for the composite natural transformation a o 3, prove that Ch(ao ) equals Ch(«) o Ch(8). In this
sense, Ch is a “functor” from the “2-category” of Abelian categories to the “2-category” of Abelian
categories.

Derived Functors as Adjoint Pairs Exercise. Let A and B be Abelian categories. Let F :
A — B be an additive functor. Assume that A has enough injective objects. Thus, every object A
admits an injective resolution in Ch(.A),

A[0] - 0 A 0
| Lo
I 0 p A,
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which is functorial up to null homotopies (in particular, any two injective resolutions are homotopy
equivalent). Moreover, for every short exact sequence in A,

Y: 0 K—2154-2,0 0,
there exists a diagram of injective resolutions with rows being short exact sequences in Ch(.A),

q[0] p[0]

x[0]: 0 —— KI0] A[0] Q0] —— 0

N R

q p

Is: 0 — I}, —— I} —— [ é —> 0
whose associated short exact sequences in A,
In: 0 Ip —— Iy —— I 0,

are automatically split. Moreover, this diagram of injective resolutions is functorial up to homotopy,
i.e., for every commutative diagram of short exact sequences in A,

i 0 K—21-4-250Q 0
I
S0 R 41-7.0 0

there exists a commutative diagram in Ch(A),

q

[E: 0 [K [A IQ —> 0
[g: 0 [I? T [A‘ ” I@ — 0

compatible with the morphisms e_, and the cochain morphisms »* making all diagrams commute
are unique up to homotopy.

As proved in lecture, there is an associated cohomological d-functor in degrees >0, R*F, with
R'F:A—- B, R'F(A)=H"(Ch(F)(A®)).

For every short exact sequence in A,

2: 0 K15 A4-"5Q 0,
the corresponding complex in B, Ch(B5),

Ch(F)(Ig): 0 — Ch(F)(Iy) 20 cn(r)(ry) 2% cn(r)(1y) —— 0.
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has associated complexes in B,

Ch(F)(Is)": 0 — F(I3) —2% p(r7) Z22% p(13) —— 0,

being split exact sequences (since the additive functor F' preserves split exact sequences), and hence
Ch(F)(Ix) is a short exact sequence in B. The maps 0%, . are the connecting maps determined
by the Snake Lemma for this short exact sequence,

0n(ry(rey - H"(C(F)(13)) » H™ ™ (Ch(F)(I}))-
Associated to €, there are morphisms in B

F(eq): F(A) > R°F(A).

(a) Let G: A — B be an additive functor. Let
a:F =3,

be a natural transformation. For every object A of A and for every injective resolution € : A[0] — I,
there is an induced morphism in Ch(B),

Ch()(I3) : Ch(F)(I3) - Ch(G)(13)-

This induces morphisms,
R"a(A): R"F(A) - R"G(A),

given by,
H™(Ch() (%)) : H"(Ch(F)(I})) - H"(Ch(G)(I3})).

For every n, prove that A~ R"a(A) defines a natural transformation
R"a: R"F = R"G.

Moreover, prove that this natural transformation is a morphism of d-functors, i.e., for every short
exact sequence,

i 0 K—21-4-2,0 0,

for every integer n, the following diagram commutes,

0%
R"F(Q) _feE R™IF(K)

R"a(Q)l lR”“a.(K)
R'G(Q) —— R™G(K)
.

(b) Prove that the morphisms F'(e4) form a natural transformation, pp : F' — ROF.
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(c) Prove that ROF is a left-exact functor. Assuming that F' is left-exact, prove that pr is a natural
equivalence of funcors. In particular, conclude that prop : ROF - R°(RYF’) is a natural equivalence
of functors.

(d) For every half-exact functor,

G:A-B,

and for every natural transformation,
v: F =@,

prove that the two natural transformations,
R%yopp,pgoy: F = RG,

are equal. In particular, if G is left-exact, so that pg is a natural equivalence, conclude that there
exists a unique natural transformation,

7:RF =G,

such that v equals 7 o pp.

(e) Now assume that A and B are small Abelian categories. Thus, functors from A to B are well-
defined in the usual axiomatization of set theory. Let Fun(A,B) be the category whose objects
are functors from A to B and whose morphisms are natural transformations of functors. Let
AddFun(A, B) be the full subcategory of additive functors. Let

e : LExactFun(A, B) —» AddFun(A, B),

be the full subcategory whose objects are left-exact additive functors from A to B. Prove that the
rule associating to F' the left-exact functor ROF and associating to every natural transformation
a: "= @ the natural transformation R%x: ROF = RYG is a left adjoint to e.

(f) With the same hypotheses as above, denote by Fun;"(A,B) the category whose objects are
cohomological -functors from A to B concentrated in degrees > 0,

T. = ((Tn : A g B)neZ, (551“)7&2),
and whose morphisms are natural transformations of d-functors,
a®: S =T (a":S"=T") ez

Denote by
(-)°: Funz(A, B) - LExactFun(A, B),

the functor that associates to every cohomological -functor, T, the functor, 7°, and that as-
sociates to every natural transformation of cohomological d-functors, u® : S* — T, the natural
transformation u° : S° - T°. Denote by

R : LExactFun(A, B) - Fun3" (A, B),
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the functor that associates to every left-exact functor, F', the cohomological d-functor, R*F, and
that associates to the natural transformation, o : F' = (G, the natural transformation of cohomo-
logical d-functors, R*«: R*F = R*G. Prove that R is left adjoint to (-)°.

(g) In particular, for n > 0, prove that RY(R"F) is the zero functor. Thus, for every m > n,
R™(R"F) is the zero functor.

Right Derived Functors and Filtering Colimits Exercise. Let B be a cocomplete Abelian
category satisfying Grothendieck’s condition (AB5). Let I be a small filtering category. Let C* :
I - Ch*(B) be a functor.

(a) For every n € Z, prove that the natural B-morphism,
colim H"(C*(i)) - H™(colim C*(1)),
iel iel
is an isomorphism. Prove that this extends to a natural isomorphism of cohomological §-functors.

This is “commutation of cohomology with filtered colimits”.

(b) Let A be an Abelian category with enough injective objects. Let F': I x A — B be a bifunctor
such that for every object i of I, the functor F; : A — B is additive and left-exact. Prove that
Foo(=) = colims F;(-) also forms an additive functor that is left-exact. Also prove that the
natural map

colim R"(F;) - R"(Fu)

is an isomorphism. This is “commutation of right derived functors with filtered colimits”.

15 Constructing Injectives via Adjoint Pairs

Projective / Injective Objects and Adjoint Pairs Exercise. Recall that for a category C,
for every object X of C, there is a covariant Yoneda functor,

h* :C - Sets, B+~ Hom¢(X,B),
and for every object Y of C, there is a contravariant Yoneda functor,
hy : C°P? — Sets, A+~ Hom¢(A,Y).

An object X of C is projective if the Yoneda functor h* sends epimorphisms to epimorphisms.
An object Y of C is injective if the Yoneda functor hy sends monomorphisms to epimorphisms.
The category has enough projectives if for every object B there exists a projective object X and
an epimorphism X — B. The category has enough injectives if for every object A there exists
an injective object Y and a monomorphism from A to Y.

(a) Check that this notion agrees with the usual definition of projective and injective for objects
in an Abelian category.
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(b) For the category Sets, assuming the Axioms of Choice, prove that every object is both projec-
tive and injective. Deduce the same for the opposite category, Sets’’.

(c) Let C and D be categories. Let (L, R,6,n) be an adjoint pair of covariant functors,
L:C-D, R:D-C.
For every object d of D, prove that
n(d) : L(R(d)) - d,
is an epimorphism. For every object ¢ of C, prove that
0:c— R(L(c)),

is a monomorphism. Thus, if every L(R(d)) is a projective object, then C has enough projective
objects. Similarly, if every R(L(c)) is an injective object, then C has enough injective objects.

(d) Assuming that R sends epimorphisms to epimorphisms, prove that L sends projective objects
of C to projective objects of D. Thus, if every object of C is projective, conclude that D has
enough projective objects. More generally, assume further that R is faithful, i.e., R sends distinct
morphisms to distinct morphisms. Then conclude for every epimorphism X — R(D) in C, the
associated morphism L(X) — D in D is an epimorphism. Thus, if C has enough projective objects,
also D has enough projective objects.

Similarly, assuming that L sends monomorphisms to monomorphisms, prove that R sends injective
objects of D to injective objects of C. Thus, if every object of D is injective, conclude that there are
enough injective objects of C. More generally, assume further that L is faithful. Then conclude for
every monomorphism L(C) - Y in D, the associated morphism C' - R(Y") in C is a monomorphism.
Thus, if D has enough injective objects, also C has enough injective objects.

(e) Let S and T be associative, unital algebras. Let C be the category Sets. Let D be the category
S —T -mod of S —T-bimodules. Let

R:S-T -mod — Sets

be the forgetful functor that sends every S — T-bimodule to the underlying set of elements of the
bimodule. Prove that R sends epimorphisms to epimorphisms and R is faithful. Prove that there

exists a left adjoint functor,
L:Sets > S —-T —mod,

that sends every set 3 to the corresponding S —T-bimodule, L(X) of functions f: 3 - S®; T that
are zero except on finitely many elements of ¥. Since Sets has enough projective objects (in fact
every object is projective), conclude that S —7T — mod has enough projective objects.

(e) Let S, T and U be associative, unital rings. Let B be a T'— U-bimodule. Let C be the Abelian
category of S —T-bimodules, let D be the Abelian category of S —U-bimodules, let L be the exact,

additive functor,
L:S-T-mod—S-U-mod, L(A)=A®r B,
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and let R be the right adjoint functor,
R:S-U-mod—S-T-mod, R(C)=Hompyeav(B,C).

Prove that if B is a flat (left) T-module, resp. a faithfully flat (left) 7-module, then L sends
monomorphisms to monomorphisms, resp. L sends monomorphism to monomorphisms and is
faithful. Conclude, then, that R sends injective objects of S — U — mod to injective objects of
S —T —mod, resp. if S—U - mod has enough injective objects then also S -7 —mod has enough
injective objects.

(f) Continuing as above, for every ring homomorphism U — T', prove that the induced T'-U-module
structure on 7' is faithfully flat as a left T-module. Thus, given rings A and II, define S = A, define
T =11, and define U to be Z with its unique ring homomorphism to 7". Conclude that if there exist
enough injective objects in A — mod, then there exist enough injective objects in A — II — mod.

(g) For the next step, define 7" and U to be A, define B to be A as a left-right T-module, and define
S to be Z. Conclude that if there are enough injective Z-modules, then there are enough injective
A-modules, and hence there are enough injective A — II-bimodules. Thus, to prove that there are
enough A —II-bimodules, it is enough to prove that there are enough Z-modules.

Enough Injective Modules Exercise. Let A be an Abelian category that has all small products.
An object Y of A is an injective cogenerator if Y is injective and for every pair of distinct
morphisms,

u,v: A" > A,
in A, there exists a morphism w: A - Y such that wowu and w o v are also distinct.

(a) Let C be the category Sets®®. For an object Y of A, define L to be the Yoneda functor
hy : A— Sets™, hy(A) =Homa(A,Y).
Similarly, define the functor,
R:Sets’™ - A, L(X) ="Homgets(X,Y)”,

that sends every set 3 to the object R(X) in A that is the direct product of copies of Y indexed
by elements of ¥. Prove that L and R are an adjoint pair of functors.

(b) Assuming that A has an injective cogenerator Y, prove that L sends monomorphisms to
monomorphisms, and prove that L is faithful. Conclude that A has enough injective objects.

(c) Now let S be an associative, unital ring (it suffices to consider the special case that S is Z). Let
A be mod - S. Use the Axiom of Choice to prove Baer’s criterion: a right S-module Y is injective
if and only if for every right ideal J of S, the induced set map

Homyoq-5(5,Y) = Homyeq-s(J,Y)
is surjective. In particular, if S is a principal ideal domain, conclude that Y is injective if and only

if Y is divisible.
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(d) Finally, defining S to be Z, conclude that Y = Q/Z is injective, since it is divisible. Finally,
for every Abelian group A and for every nonzero element a of A, conclude that there is a nonzero
Z-module homomorphism Z-a — Q/Z. Thus, for every pair of elements a’,a” € A such that
a = a' —a" is nonzero, conclude that there exists a Z-module homomorphisms w : A - Q/Z such
that w(a’) —w(a") is nonzero. Conclude that Q/Z is an injective cogenerator of Z. Thus mod - Z
has enough injective objects. Thus, for every pair of associative, unital rings A, II, the Abelian
category A —IT — mod has enough injective objects.

Enough Injectives / Projectives in the Cochain Category Exercise. Let S be an associa-
tive, unital ring. Prove that Ch*’(S) has enough injective objects, and prove that Ch=’(S) has
enough projective objects.

16 The Koszul Complex via Adjoint Pairs

Exterior Algebra CDGA as an Adjoint Pair Exercise. Let R be a commutative, unital ring.
An associative, unital, graded commutative R-algebra (with homological indexing) is a triple

A = ((A”)"EZ’ (mpvq : AP x Aq - Ap+q)p7qu, (5 ‘R — AO))

of a sequence (A, )nez of R-modules, of a sequence (my, 4)pqez of R-bilinear maps, and an R-module
morphism € such that the following hold.

(i) For the associated R-module A = @,z A, and the induced morphism m : A x A - A whose
restriction to each A, x A, equals m,,, (4,m,e(1)) is an associative, unital, R-algebra.

(ii) Forevery p,q €Z, for every a, € A, and for every a, € A,, my,(ay, a,) equals (=1)P4m,, ,(a,, a,).
(a) Prove that the R-submodules of A,

AzO = @An7 ASO = @Ana

n>0 n<0

are both associative, unital R-subalgebras. Moreover, prove that the R-submodule,

A>0 = @Arw resp. A<0 = @Ana

n>0 n<0
is a left-right ideal in A.q, resp. in A.

(b) For associative, unital, graded commutative R-algebras A, and B,, a graded homomorphism
of R-algebras is a collection

f- = (fn 1Ay~ Bn)nz()

such that for the unique R-module homomorphism f: A - B whose restriction to every A, equals
fn, f is an R-algebra homomorphism. Prove that such f, is uniquely reconstructed from the
homomorphism f. Prove that Id4 comes from a unique graded homomorphism Id4,. Prove that
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for a graded homomorphism of R-algebras, g, : B, - C,, the composition go f arises from a unique
graded homomorphism of R-algebras, A, — C,. Using this to define composition of homomorphisms
of graded R-algebras, prove that composition is associative and the identity morphisms abe are
left-right identities for composition. Conclude that these notions form a category R — GrComm of
associative, unital, graded commutative R-algebras. Prove that the rule A, » A, f, — f defines a
faithful functor

R - GrComm — R — Algebra.

Give an example showing that this functor is not typically full.

(c) Let A, be an associative, unital, graded commutative R-algebra. Prove that R is commutative
(in the usual sense) if and only if A, is a zero module for every even integer n. Denote by R—Comm
the category of associative, unital R-algebras S that are commutative. Denote by Z — R — Comm
the faithful (but not full) subcategory whose objects are triples,

Se = ((Sn)nez, (Mp,g = Sp X Sq = Sprg)pgez (€1 > S50))

as above, but such that the multiplication is commutative rather than graded commutative, i.e.,
Myp(Sqs Sp) = My g(8p, S4). Prove that there is a functor,

Veven : 2 = GrComm — Z — R — Comm,

((An)nez, (Mg : ApxAg > Apig)pgez, (€1 R~ Ag)) = ((Azn)nez, (Map,2q + Azpx Aog = As(prg))pgezs (€1 B~ Ag =
and f,: Ae > B. maps t0 vey(f) = (fon)nez- Also prove that there is a left adjoint to vVeyen,

Weven : Z — R — Comm - R — GrComm,
where Weyen (Se)2n equals S, where Weyen(S.), is the zero module for every odd p, where
Agp x Azq = Az(prg)

is my, for S,, and where R - Aj is e : R - Syp. For a morphism f, : S, - T, in Z - R — Comm,
Weven (fo) 18 the unique morphism whose component in degree 2n equals f,, for every n € Z.

(d) Let e be an odd integer. For every associative, unital, graded commutative R-algebra A, define
ve(A,) to be the collection

((Ane)neZ7 (mpe,qe : Ape X Aqe g A(p+q)e)p,q€Z7 e:R— AO = AOe)'

Prove that v.(A,) is again an associative, unital, graded commutative R-algebra. For every mor-
phism of associative, unital, graded commutative R-algebras, f, : As - B,, the collection v.(f.) =
(fne)nez is a morphism of associative, unival, graded commutative R-algebras, v.(As) = ve(B,).
Prove that this defines a functor,

Ve : R — GrComm — R — GrComm.
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This is sometimes called the Veronese functor (it is closely related to the Veronese morphism of
projective spaces). If e is positive, prove that the induced morphism v.(Asg) = v.(As), resp.
Ve(Ago) = ve(As), is an isomorphism to (ve(As))so, resp. to (ve(As))<o. Similarly, if e is negative
(e.g., if e equals —1), this defines an isomorphism to (v.(A.))<o, resp. to (ve(A.))so. Prove that vy
is the identity functor. For odd integers d and e, construct a natural isomorphism of functors,

Ud,e * Ud © Ve = Ude,

prove that v4; and vy, are identity natural transformations, and prove that these natural iso-
morphisms are associative: vge r © (Vge © v5) equals vger o (vg 0 vep) for all odd integers d, e and

£l

(e) For every associative, unital, graded commutative R-algebra A,, for every odd integer e, define
w, : R — GrComm — R - GrComm,

where w,(As)ne equals A, for every integer n, and where w.( A, ), is a zero module if e does not m.
For every morphism f, : A, = B,, define w.(f.) to the be the unique morphism whose component
in degree en equals f,, for every n € Z. Prove that w, is a functor. For the natural isomorphism,

Qe(A.) : Ao - Ue(er(A.)), (An i’ An)nEZ
and the natural monomorphisms
We(B-) : we(ve(BO)) - Bn (Bne i’ Bne)neZa

prove that (we,ve,0e,7e) is an adjoint pair.
(f) For every integer n > 0, recall from Problem 5(iv) of Problem Set 1, that there is a functor,

A : R-mod - R-mod, M+~ A\(M).
R R

In particular, there is a natural isomorphism
0
e(M): R~ \(M),
R
and there is a natural isomorphism,
1
O(M): M — /};(M)

By convention, for every integer n < 0, define A%R(M) to be the zero module. For every pair of
integers ¢, > 0, prove that the natural R-bilinear map

!/
T

®: M® x M® — M®W@) ((my®--®m,),(m,®-@m.))»m®..m,em e ®m
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factors uniquely through an R-bilinear map,

q+r

A AT < A(M) > A(M).
R R R

Prove that A%L(M) is an associative, unital, graded commutative R-algebra. For every R-module
homomorphism ¢ : M — N, prove that the associated R-module homomorphisms,

A(@) : A(M) > A(N),
R R R
define a morpism of associative, unital, graded commutative R-algebras,
A(@) : A(M) > A(N).
R R R

Prove that for every R-module homomorphism 1 : N - P, A% (1 o ¢) equals AR(¥)) o AR(d). Also
prove that A%R(Idas) is the identity morphism of A%L(M).

(g) An associative, unital, graded commutative R-algebra A, is (strictly) 0-connected, resp. weakly
0-connected, if the inclusion A,y — A is an isomorphism and the R-module homorphism € is an
isomorphism, resp. an epimorphism. If R is a field, prove that every weakly 0-connected algebra is
strictly 0-connected. Denote by

R - GrCommy, resp. R - GrComml,

the full subcategory of R — GrComm whose objects are the 0-connected algebras, resp. the weakly
O-connected algebras. Prove that ve.e, restricts to a functor,

R - GrCommsg —» Z, - R — Comm,

where Z, — R — Comm is the full subcategory of Z — R — Comm of algebras graded in nonnegative
degrees such that R — Sy is an isomorphism. For e an odd positive integer, prove that v, and w,
restrict to an adjoint pair of functors,

Ve : R — GrCommsg - R — GrCommy,

w, : R — GrCommg - R — GrCommy.

For every odd positive integer e, define a functor
®, : R - GrCommsy - R —mod,

that sends A, to A. and sends f, to f.. Of course, for every odd positive integer d, ®. o vy is
naturally isomorphic to &4, and &4, o w, is P.. By the previous part, there is a functor

/\ : R—mod - R - GrCommy
R
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that sends every module M to the 0-connected, associative, unital, graded commutative R-algebra
(AR(M))nso. Moreover, there is a natural transformation,

0 : Idemod = (I)l o /\
R
Prove that this extends uniquely to an adjoint pair of functors

(/;\@1,6,77)-

Using the natural isomorphisms ®, o vy = &4 and P4, 0 wy = ., prove that there is also an adjoint
pair of functors

('LUe ° Qa (I)ea 9) 776)'

The Koszul Complex CDGA as an Adjoint Pair. Let R be a commutative, unital ring. A
(homological, unital, associative, graded commutative) differential graded R-algebra is a pair

((On)n627 (/\ : C’p X C1q - Cp+q)p,q€Z7 (6 ‘R — CO): (dn : Cn - n—l)neZ)7

of an associative, unital, graded commutative R-algebra C, together with R-linear morphisms
(dy)nez such that d,_1 o d,, equals 0 for every n € Z, and that satisfies the graded Leibniz identity,

dpiq(cp ncy) = dp(cp) Acg+ (=1)Pep ndy(cy),

for every p,q € Z, for every c, € C,, and for every ¢, € C,. A morphism of differential graded
R-algebras,
Qbo : Oo g Ao,

is a morphism @, = (¢, )nez that is simultaneously a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras.

(a) For morphisms of differential graded R-algebras, ¢, : Co = A,, s : Dy - C,, prove that the
composition of 1, o ¢, of graded R-modules is both a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras. Thus, it is a composition
of morphisms of differential graded R-algebras. With this composition, prove that this defines a
category R — CDGA of differential graded R-algebras.

(b) For every associative, unital, graded commutative R-algebra A,, for every integer n, define
dp(ayn : An =~ An_1 to be the zero morphism. Prove that this gives a differential graded R-algebra,
denoted E(A,). For every morphism f, : A, - B, of associative, unital, graded commutative R-
algebras, prove that f, : E(A.) - E(B,) is a morphism of differential graded R-algebras, denoted
E(f.). Prove that this defines a functor

F:R-GrComm — R - CDGA.
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For every differential graded R-algebra C,, prove that the subcomplex Z,(C,) is a differential
graded R-subalgebra with zero differential, and the inclusion,

n(C.): B(Z.(CL)) = C,

is a morphism of differential graded R-algebras. Also, for every morphism ¢, : C, - D, of differential
graded R-algebras, prove that the induced morphism Z,(f,) : Z,(C,) - Z,(D,) is a morphism of
associative, unital, graded commutative R-algebras. Prove that this defines a functor

Ze: R-CDGA - R - GrComm.

For every associative, unital, graded commutative R-algebra A.,, the inclusion Z,(E(A.)) - E(A.)
is just the identity map, whose inverse,

0(A.): Ae > ZJ(E(AL)),

is an isomorphism. Prove that (E, Z,,0,n) is an adjoint pair of functors. Finally, prove that the
subcomplex B,(C,.) c Z,(C,) is a left-right ideal in the associative, unital, graded commutative
R-algebra Z,(C,). Conclude that there is a unique structure of associative, unital, graded commu-
tative R-algebra on the cokernel H,(C,) such that the quotient morphism Z,(C,) - H.(C,) is a
morphism of differential graded R-algebras. Prove that altogether this defines a functor,

H:R-CDGA - R - GrComm.

(c) A differential graded R-algebra C, is (strictly) 0-connected, resp. weakly 0-connected, if the
underlying associative, unital, graded commutative R-algebra is 0O-connected, resp. weakly O-
connected. Denote by R — CDGA,g, resp. R— CDGAL, the full subcategory of R — CDGA whose
objects are the 0-connected differential graded R-algebras, resp. those that are weakly 0-connected.
Prove that the functors above restrict to functors,

E: R-GrCommsy - R-CDGA,,,

Zs: R—CDGA,y - R - GrComms,
such that (E, Z,0,n) is still an adjoint pair. Similarly, show that H restricts to a functor

H:R-CDGA,; - R - GrComml,.

(d) Denote by R - CDGA[g 1 the full subcategory of R - CDGA, whose objects are 0-connected
differential graded R-algebras C, such that C), is a zero object for n > 1. Prove that every such
object is uniquely determined by the data of an R-module C'; and an R-module homomorphism
dec1 : C1 — Cp = R, and conversely such data uniquely determine an object of R—CDGA[g ;. Prove
that for such algebras C, and D,, every morphism ¢, : Cy - D, of differential graded R-algebras is
uniquely determined by an R-module homomorphism ¢, : Cy - D; such that dp; o ¢; equals d¢ 1,
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and conversely, such an R-module homomorphism uniquely determines a morphism of differential
graded R-algebras. Conclude that there is a functor

0'[0’1] R- CDGAZ() - R- CDGA[OJ],

that associates to every O-connected differential graded R-algebra C, the algebra oy 17(C,) uniquely
determined by the R-module homomorphism dc; @ C7 - Cp = R and that associates to every
morphism ¢, : Cs - D, of O-connected differential graded R-algebras the morphism,

10,11(®%) : 010,11(Ce) = 0p0,17( Do),
uniquely determined by the morphism ¢, : C} - D;y.

(e) For every R-module M and for every R-module homomorphism ¢ : M — R, prove that there
exists a unique sequence of R-module homomorphisms,

(darsn s NCM) = A (M) )so.
R R

such that d; equals ¢ and such that (AR(M),dns) is a O-connected differential graded R-algebra.
It may be convenient to begin with the case of a free R-module P and a morphism ¢ : P - R, in
which case every AL(P) is also free and the R-module homomorphisms d,, is uniquely determined
by its restriction to a convenient basis. Given a presentation M = P/K such that 1 factors uniquely
through ¢ : M — R, prove that the associative, unital, graded commutative R-algebra A%L(M) is the
quotient of A%(P) by the left-right ideal generated by K c P = AR(P). Also prove that dp, maps
this ideal to itself, i.e., the ideal is differentially-closed. Conclude that there is a unique structure
of differential graded algebra on the quotient AL(M) such that the quotient map is a morphism of
differential graded R-algebras.

(f) Prove that the construction of the previous part defines a functor,

/\ tR- CDGA[OJ] - R- CDGAZ()
R

Prove that for every object (¢: M — R) of R~ CDGA([g ], the morphism
1
0(M,¢): M — \(M)
R

is a natural isomorphism

0 :1dr-cpcag,; = o110 /\-
R

Similarly, for every object 0-connected differential graded R-algebra C,, prove that the natural
transformation from Problem 10(g),

n(C.): /}}(cl) R
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is compatible with the differential on A%(C}) induced by d¢; : Cy — Cp = R, i.e., n(C,) is a natural
transformation,

n: /\ 0070,1] = Idr-cDaAL,-

Conclude that (A%, 070,17,6,7) is an adjoint pair of functors. For every ¢: M — R in R—CDGA[q1)
the associated 0- complete differential graded R-algebra structure on A%L(M) is called the Koszul
algebra of ¢ : M - R and denoted K,(M, ¢).

(g) For every R-module M, and for every R-submodule M’ of M, denote by F! c AL(M) the
left-right ideal generated by M’ c¢ M = AR(M). For every integer n < 0, denote by F" c AR(M)
the entire algebra. For every integer n > 1, denote by F™ the left-right ideal of A%(M) generated
by the n-fold self-product F''----- F'l. For every pair of nonnegative integers p, ¢, prove that the
ideal F?- F7 equals FP*4, In particular, prove that there is a natural epimorphism,

>

q
(Fi) ®r N = Fyig.

Denote the quotient M /M’ by M", and denote by ¥ the short exact sequence,

u v

: 0 — M’ M M" —— 0.

For every nonnegative integer ¢, prove that the R-module morphism,
q q q
AW): A(M) - \N(M"),
R R R
is an epimorphism whose kernel equals F}}. Conclude that the composite epimorphism
r ! A P p p+1
Q(M ) ®r Q(M) = Fpiq = Fyig/Fpig
factors uniquely through an R-module epimorphism
" / A " +1
CSpg - /}}(M ) ®r /};(M ) > Fpigl Fiq

In case there exists a splitting of X, prove that every epimorphism cs, ,, , is an isomorphism. On the
other hand, find an example where ¥ is not split and some morphism ¢y, , , is not a monomorphism
(there exist such examples for R = C[z,y]).

(h) Continuing the previous problem, assume that M” is isomorphic to R as an R-module (or,
more generally, projective of constant rank 1), so that ¥ is split. For every nonnegative integer p,
conclude that there exists a short exact sequence,

1 -1
AR (u) Csip,1

Ep,l ) —— /\p+1(M/) p+1(M) %(M') O M!" — 0’
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that is split. Check that this is compatible with the product structure and, thus, defines a short
exact sequence of graded (left) A%(M)-modules,

. . AR (u)

Ag(E): 0 —— AR(M') —— ——
(i) Now, let ¢ : M - R be an R-module homomorphism. Denote by ¢’ : M’ - R the restriction
¢ o u. These morphisms define structures of differential graded R-algebra, K.(M,¢) on AR(M),
and K,(M',¢") on AR(M'). Moreover, the morphism A%(u) above is a morphism of differential
graded R-modules,

N(M) —=— AR(M’) @r M"[+1] —— 0.

K(u): KJ(M',¢") > Ko(M, ¢).
Prove that the induced morphism
cst Ko (M, ¢) » K (M',¢') @ M"[+1]

is a morphism of cochain complexes. Moreover, for a choice of splitting s : M" — M, for the induced
morphism ¢"” : M" - R, ¢"" = ¢ o s, for the induced morphism of cochain complexes,

ldw, () @ 0" Ko(M',¢") @ M" - K (M, ¢'),
prove that there is a unique commutative diagram of short exact sequences,

Taeer: 0 —— KJ(M',¢") — Cone(Id ® ¢") —=> K (M',¢') @ M"[+1] —— 0

T : :

071
K(D) 0 — K(M,¢) =Y k(M) -2 KJ(M,)ogM' — 0.

q1d®¢ 1d®¢

(j) With the same hypotheses as above, conclude that there is an exact sequence of homology
(remember the shift [+1] above is cohomological),

Ho(Ko(M',¢')) @ M" 222 Hy(Ku(M',¢')) 22 Hy(KJ (M, 6)) — 0,

e, Hy(KJ (M,9)) 2 Hy(K(M,0))]o(M") - Hy(K.(M,¢)) as a quotient algebra of R. Also, for
every n > 0, conclude the existence of a short exact sequence of Koszul homologies,

0 K, (M',¢') @ RfIm(¢") = K, (M, ) — Ky (M, M"Y tm(grmy = 0,
where for every R-module N, Ny 47y denotes the submodule of elements that are annihilated by the
ideal Im(¢") c R. As graded modules over the associative, unital, graded commutative R-algebra
K.(M' ¢") = H. (K. M',¢")), this is a short exact sequence,
! / I w” ! !/ 14
0~ K.(M',¢) © RITm(¢") 2> K.(M, ) ~ K.y (M, ¢/ M"Yy — 0,

As a special case, if K,(M’,¢") is acyclic, and if the morphism

14 / 17 Id ¢
Ho(K.(M',¢")) ®@p M" —— 2

is injective, conclude that also K.(M, ¢) is acyclic.

— Ho(K.(M',¢))

(k) Repeat this exercise for the cohomological Koszul complexes K*(M, ¢).
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17 Adjoint Pairs of Simplicial and Cosimplicial Objects

Constant Cosimplicial Objects and the Right Adjoint. Please read the basic definitions of
cosimplicial objects in a category C. In particular, for the small category A of totally ordered finite
sets with nondecreasing morphisms, read the equivalent characterization of a (covariant) functor

C:A>C,

via the specification for every integer r > 0 of an object C" of C, the specification for every integer
r >0 and every integer ¢ =0,...,r + 1, of a morphism,

ai . Cr N Cr+1

r’ )

and the specification for every integer r > 0 and every integer ¢ = 0,...,r, of a morphism,
O-;L;+1 : CT+1 e CT?

satisfying the cosimplicial identities: for every r >0, for every 0 <1< j<r+2,

A~ j—1
a7j“+1 ° 8r - a?"+1 o ar )
for every 0<i<j<r, ' '
ol ool =0t  oglt)
r+1 r+2 — Yr+l r+29

and for every 0<i<r+1land 0<j<r,

. i1 . .
‘ Jt o077, i<7,
‘7 '_ ._ . ._ .
0),400, = Ider, i=j,i=7+1,
i1 o 7J o
Oi=j o0} i>j+1

Moreover, for cosimplicial objects C* = (CT,9¢,0!,,) and 5: = (Cr, 8,5 ,), read about the equiv-

alent specification of a natural transformation a® : C* — C* as the specification for every integer
r >0 of a C-morphism o” : C" - C" such that for every r and 1,

i r_ r+l i ~i r+l _ r i
8Tooz =a Oar? Opp10C =Q 00p,.

Finally, for every pair of morphisms of cosimplicial objects, a®, 5*: C* - C*, a cosimplicial homo-
topy is a specification for every integer r > 0 and for every integer ¢ = 0,...,r of a C-morphism,

gf’+1 : OT’+1 e CY’T’
satisfying the following cosimplicial homotopy identities: for every r >0,

0 o_ . r r r+1 _ or
gr+loar_a7 gr+loar _67
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. Oiyog ", 0<i<j<r,
g7j"+10671;: gr+1oaz 0<i:j§"’7
Jtogl 1<j+l<i<r+l.

~ i+ .
Poi - alogwl, 0<i<j5<r-1,
Gy ©00p41 = ~i—1 0< i <
girlogl,,, <jg<i LT

(a)(Constant Cosimplicial Objects) For every object C of C, define const(C') to be the rule that
associates to every integer r > 0 the object C' of C, and that associates to (r,7) the morphisms
J¢ = 1dg, o, = Ide. Prove that const(C') is a cosimplicial object of C. For every morphism of
objects a: C' - C, prove that the specification for every integer r > 0 of the morphism a: C' — C
defines a morphism of cosimplicial objects,

const(a) : const(C') — const(C).

Prove that Const(IdC) is the identity morphism of const(C). For a pair of morphisms, a: C' - C
and 8 : C » C, prove that const(8 o a) equals const(3) o const(a). Conclude that these rules

define a functor
const : C - Fun(A,C).

Prove that this is functorial in C, i.e., given a functor F': C — D, for the associated functor,
Fun(A, F) : Fun(A,C) » Fun(A, D), (C7,9;,07.,) = (F(C), F(0;), F(0,.1)),

Fun(A, F) o conste strictly equals constp o F.

(b)(Morphisms from a Constant Cosimplicial Object) For every integer r > 1 and for every pair
of distinct morphisms [0] — [r], prove that there exists a unique A-morphism F': [1] - [r] such
that the two morphisms are Fod) and Fod}. Let C* = (C",0%,0',,) be a cosimplicial object in C.
For every object A of C and for every morphism, a* : const(A) — C*, of cosimplicial objects, prove
that o : A - C? is a morphism such that 9j o a® equals 9} o a®. Prove that the morphism a® is
uniquely determined by a?, i.e., for every r > 0, and for every morphism f:[0] = [r], a": A > C"
equals C'(f)eal. Conversely, for every morphism a? : A - C such that 9joa? equals 9} oa®, prove
that the morphisms o := C(f) o a® are well-defined and define a morphism «* : const(A) - C* of

cosimplicial objects. Conclude that the set map,
Hompyn(a c)(const(A), C*) - {a” e Home (A4, C°)|) 0 a® = 95 0 o'}, a® = a?,

is a bijection. Prove that this bijection is natural in both A and in C*. In particular, conclude
that the functor,
const : C - Fun(A,C),

is fully faithful. Finally, for every pair of morphisms, a?, 5% : A - C? equalizing 9)) and 9], prove
that there exists a cosimplicial homotopy ¢%,, : A » C" from «* to 8* if and only if 5° equals af,
and in this case there is a unique cosimplicial homotopy given by ¢’,, = a" = 5.
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(c)(Equalizers in Cartesian Categories) Let A4 be the category of totally ordered sets of cardinality
< 1. Prove that a functor C*: A, — C is equivalent to the data of a pair of objects C°, C1, a pair
of morphisms 99,9 : C° - C1, and a morphism o} : C' - C° such that ¢{0d) = 009} =Idco. Let,

Z°: Fun(A.,,C) > C,

be a functor and let,
n: const o Z° = Idpun(a., ¢),

be a natural transformation such that (const, Z% n) extends to an adjoint pair of functors (const, Z°,0,7).
Prove that the natural transformation # is a natural isomorphism. Prove that for every object

C* of Fun(A,C), the morphism ne. : Z°(C*) - C° satisfies 9 o e = 9} o nes and is final among

all such morphisms. Prove that if a®, 3* : C* - C* are two morphisms of cosimplicial ob jects, and

if (gt,,:C™! > Cr) is a cosimplicial homotopy from a® to 8°, then Z%(a*) equals Z°(5*).

Assume that C has finite products. For every pair of objects N? and N' of C and for every pair
of morphisms d)),d} : N® - N1, define C° = NO, define C*' = N x N1, define 9 = (Idco,d}), define
9§ = (Idco,d}), and define of = pryo. Prove that C* is an object of Fun(A.,C), and prove that
nee + Z9(C*) - C° is an equalizer of d),d} : N - N'. In particular, if C has both finite products
and Z° prove that C has all equalizers of a pair of morphisms. For every pair of morphisms
fO:MJ - Ntand f} : MY - N'in C, for N° = M x MY, and for df = fSOpng and d} = f3 o Pryp0,
prove that the equalizer of dJ,d} : N° - N is a fiber product of f? and f3. Conclude that C has
all finite fiber products, i.e., C is a Cartesian category. Conversely, assuming that C is a Cartesian
category, then, up to some form of the Axiom of Choice, prove that there exists a functor Z° and
a natural transformation 1 such that (const, Z% n) extends to an adjoint pair of functors.

(d)(The Right Adjoint to the Constant Cosimplicial Object) Assume now that there exists a functor
Z%:Fun(A,C) - C,

and a natural transformation,
n: const o Z° = Idpun(as )

such that (const, Z% n) extends to an adjoint pair of functors. For every cosimplicial object C* :
A - C, for the equalizer n: Z°(C*) - C° of 93 and 9}, use (b) above to prove that there exists a
unique extension 7°* : const(Z%) - C* of 7 to a morphism of cosimplicial objects of C. Prove that
this defines a functor,

Z°%:Fun(A,C) - C,
and a natural transformation,

n® : const o AR Idpun(ac)s

such that (const, Z°,7*) extends uniquely to an adjoint pair of functors, (const, Z°% 7°,6). Prove
that 0 is a natural isomorphism. Prove that if o*, 5*: C* - C* are two morphisms of cosimplicial
objects, and if (¢%,, : C™!' - C") is a cosimplicial homotopy from a® to §°, then Z°(a*®) equals

Z°(6°).
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18 Topology Adjoint Pairs

Categories of Topologies on a Fixed Set Exercise. Recall from Problem 1(iv) on Problem
Set 3, for every partially ordered set there is an associated category. For a set P, form the partially
ordered set P(P) of subsets S of P. Then for objects S, S’ of the category P(P), i.e., for subsets
of P, the Hom set Homp(p)(S,S’) is nonempty if and only if S’ c S, in which case the Hom set
is a singleton set. In particular, this category has arbitrary (inverse) limits, namely unions, and it
has arbitrary colimits (direct limits), namely intersections. Moreover, it has a final object, @, and
it has an initial object, P.

Now let X be a set, and let P be P(X), so that P is a lattice. Denote by Powerx the category
from the previous paragraph. Thus, objects are subsets S ¢ P(X), and there exists a morphism
from S to S’ if and only if S’ ¢ S, and then the morphism is unique. We say that S refines S'.
There is a covariant functor

u:P(P) > P,uS={zeX|Ipe S ,xep},
and a contravariant functor
N:P(P)* - P.nS ={zeX|Vpe S ,xep}.

By convention, ug = @ and ng = X.

A topology on X is a subset 7 ¢ P(X) such that (i) @ € 7 and X € 7, (ii) for every finite subset
S cr,alsonSisin 7, and (iii) for every S c 7 (possibly infinite), the set uS is in 7. Denote by
Topy the full subcategory of Powery whose objects are topologies on X. A topological basis on
X is a subset B ¢ P(X) such that for every finite subset S of B, the set V = nS equals UBy,
where By = {U € B:U c V}. Denote by Basisx the full subcategory of Powery whose objects are
topological bases on X.

(a) Prove that Topy is stable under colimits, i.e., for every collection of topologies, there is a
topology that is refined by every topology in the collection and that refines every topology that is
refined by every topology in the collection. Prove that Topy is a full subcategory of Basisx. For
every topological basis B on X, define T (B) to consist of all elements uS for S c B. Prove that
T(B) is a topology on X. Prove that this uniquely extends to a functor

T : Basisx - Topy,

and prove that 7 is a right adjoint of the full embedding. Moreover, for every subset S c P(X),
define B(S) to consist of all elements NR for R c S a finite subset. In particular, ng = X is an
element of B(S). Prove that B(S) is topological basis on X. Prove that this uniquely extends to
a functor

B : Powerx — Basisy,

and prove that T o B is a right adjoint to the full embedding of Basisy in Powerx.
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(b) Prove that for every adjoint pair of functors, the left adjoint functor preserves colimits (direct
limits), and the right adjoint functor preserves limits (inverse limits). Conclude that Topy is stable
under limits, i.e., for every collection of topologies, there is a topology that refines every topology
in the collection and that is refined by every topology that refines every topology in the collection.

(c) Let f:Y — X be a set map. Denote by
PIP(X) > P(Y)

the functor that associates to every subset S of X the preimage subset f~1(S) of Y, and denote by
Pr:P(Y) »P(X)

the functor that associates to every subset 7" of Y the image subset f(7') of X. Prove that (P/, Py)
extends uniquely to an adjoint pair of functors. In particular, define

Powery : Powery — Powery

to be Ppy, i.e., for every subset S c P(X), Power;(S) c P(Y') is the set of all subsets f~}(U) cY
for subsets U c X that are in S. Similarly, define

.
Power’ : Powery — Powery,

to be PP’ i.e., for every subset T c P(Y), Power! (V') c P(X) is the set of all subsets U ¢ X such
that the subset f~1(U) c Y is in T. Prove that (Power/, Power;) extends uniquely to an adjoint
pair of functors. Prove that Power; and Power/ restrict to functors Top y — Topy. For a given
topology o on Y and 7 on X, f is continuous with respect to o and 7 if o refines Power;(7), i.e.,
for every T-open subset U of X, also f~!1(U) is o-open in Y. For a given topology 7 on X, for
every topology o on Y, o refines Power;(7) if and only if f is continuous with respect to o and 7.
Similarly, for a given topology o on Y, for every topology 7 on X, Power’ (o) refines 7 if and only
if f is continuous with respect to o and 7.

Adjoint Pair for the Category of Topological Spaces Exercise. A topological space is a pair
(X,7) of a set X and a topology 7 on X. For topological spaces (X,7) and (Y,0), a continuous
map is a function f : X — Y such that for every subset V' of Y that is in o, the inverse image
subset f~1(V) of X is in 7, i.e., o refines Power;(7) and 7 is refined by Power/ ().

(a) Prove that for every topological space (X, 7), the identity function Idy : X - X is a continuous
map from (X,7) to (X, 7). For every pair of continuous maps f: (X,7) - (Y,0) and g: (Y,0) —»
(Z,p), prove that the composition go f: (X,7) - (Z,p) is a continuous map. With this notion
of composition of continuous map, check that the topological spaces and continuous maps form a
category, Top.

(b) For every topological space (X, 7), define ®(X) to be the set X. For every continuous map of
topological spaces, f: (X,7) = (Y,0), define ®(f) : &(X) - &(Y) to be f: X - Y. Prove that
this defines a covariant functor,

® : Top — Sets.
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(c) For every set X, define L(X) = (X,P(X)), i.e., every subset of X is open. Prove that P(X)
satisfies the axioms for a topology on X. This is called the discrete topology on X. For every
set map, f: X - Y, prove that f: (X,P(X)) - (Y,P(Y)) is a continuous map, denoted L(f).
Prove that this defines a functor,

L : Sets - Top.

For every set X, define fx : X - ®(L(X)) to be the identity map on X. Prove that 6 is a natural
equivalence Idgets = ® o L. For every topological space (X, 7), prove that Idy is a continuous
map (X,P(X)) » (X,7), denoted n(x ). Prove that 7 is a natural transformation Lo ® = Idrsp.
Prove that (L, ®,6,n) is an adjoint pair of functors. In particular, ® preserves monomorphisms
and limits (inverse limits).

(d) For every set X, define R(X) = (X,{@,X}). Prove that {@, X} satisfies the axioms for a
topology on X. This is called the indiscrete topology on X. For every set map f: X — Y, prove
that f: R(X) - R(Y) is a continuous map, denoted R(f). Prove that this defines a functor,

R : Sets — Top.

For every set topological space (X, 7), prove that Idx is a continous map (X,7) - R(®(X,7)),
denoted a(x ). Prove that « is a natural transformation Idypep, = Ro®. For every set S, denote by
Bx : P(R(X)) - X the identity morphism. Prove that J is a natural equivalence ® o R = Idgets.
Prove that (®, R, «, ) is an adjoint pair of functors. In particular, ® preserves epimorphisms and
colimits (direct limits).

(e) Use the method of Problem 0 to prove that Top has (small) limits and colimits. Finally, prove
that the projective objects in Top are precisely the discrete topological spaces, and the injective
objects in Top are precisely the nonempty indiscrete topological spaces.

Adjoint Pair of Direct Image and Inverse Image Presheaves. Let (X, 7x) be a topological
space. As above, consider Tx as a category whose objects are open sets U of the topology, and
where for open sets U and V', there is a unique morphism from U to V if U 2 V', and otherwise
there is no morphism. Let C be a category. A presheaf on (X, 7yx) of objects of C is a functor,

AZTX—>C7

i.e., a Txy-family as in Problem 0. By Problem 0, the 7-families form a category Fun(7y,C), called
the category of presheaves of objects of C. For every continuous map f: (Y, 7y) — (X, 7x), define

f_l Tx ™ Ty,
as in Problem 1(c), i.e., U ~ f~}(U). The corresponding functor
-1 : Fun(7ry,C) - Fun(7y,C)

is called the direct image functor and is denoted f, i.e., for every presheaf F on (Y, 7y), f.F is a
presheaf on (X, 7x) given by (f.F)(U) = F(f~(U)).
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(a) Denote by o the category whose objects are pairs (U, V') of an object U of 7y and an object
V of 7y such that V' is contained in f~1(U). For objects (U,V') and (U’, V"), there is a morphism
from (U, V) to (U’, V") if and only if there is a morphism U 2 U’ in 7x and a morphism V' 2 V' in
Ty, and in this case the morphism for (U,V') to (U’,V’) is unique. Prove that this is a category.
Prove that the map on objects,

riop->71x, (UV)=U,

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following maps on objects,

lx Tx > 0y, Ur (U7 f_l(U))u

re:Tx > of, U (U @)

extend uniquely to functors, and prove that (¢x,z) and (x,rx) extend uniquely to adjoint functors,
ie., (U, f71(U)), resp. (U,@), is the initial object, resp. final object, in the fiber category (o).
Prove that the map on objects

y:op->1y, (UV)V

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following map on objects,

ly:1y =05, V> (X,V),

extends uniquely to a functor, and prove that (fy,y) extends uniquely to an adjoint functor, i.e.,
(X, V) is the initial object in the fiber category (o), v. Prove that yol, is the functor f~1:7x - 7y
from above. Find an example where y does not admit a right adjoint.

Assume now that C has colimits. Apply Problem 0(g) to conclude that there are adjoint pairs
of functors (%4, %), (*ra, *2), (%4, %ey), and (L,,*,). Compose these adjoint pairs to obtain an
adjoint pair (Ly o #,, %g, 0 %, ). Also, by functoriality of %, in z, %4, 0%, equals *,0s,, and this equals
* r-1. Thus, this is an adjoint pair (L, o %,, f.). Unwind the defintions from Problem 0(g) to check
that for every presheaf A on X and for every V' an object of 7y, L, 0 %,(A) on V is the colimit over
the fiber category (o), v of all U an object of 7x with V' ¢ f~1(U) of A(U). The functor L, o *,
is the inverse image functor for presheaves,

f:Fun(rx,C) - Fun(1y,C).

Cech Cosimplicial Object of a Covering Exercise. Let (X, 7x) be a topological space. For
every object U of Ty, prove that the topology 7y on U associated to i : U - X via Problem 1(c)
is a full, upper subcategory of 7x that has an initial object ® = U. For every U, an open covering
of U is a set 4 and a set map g : 4 - 7y such that ulmage(iy) equals U. Define o to be the
category whose objects are pairs (U, 4l) of an open U in 7x and an open covering tg : 4 — 7¢;. For
objects (U,4l) and (V,0), a o-morphism from (U, 4) to (V,0) is a pair U 2 V' of a morphism in
Tx and a refinement ¢ : 4 > Y, i.e., a set function ¢ : Y — U such that for every Vg in B, 1y(p(Vp))
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contains ty(Vp). In particular, for every object (U, 1y : 4 — 1) of o, define U = Image(1y) with its
natural inclusion ty : U < 7y . Up to the Axiom of Choice, prove that there exists a refinement
¢: (U, ) > (U,0). Thus, the open coverings with ¢ a monomorphism are cofinal in the category o.

(a)(Category of Open Coverings) For every pair of refinements, ¢ : (U, ) > (V,0) and ¢ : (V,0) >
(W,20), prove that the composition ¢ o1 : 20 — 4l is a refinement, ¢ ot : (U, ) - (W, 20). Also
prove that Idy : 4l - $l is a refinement (U, ) - (U, ). Conclude that these rules define a category
o whose objects are open coverings (U, 4l) of opens U in 7x and whose morphisms are refinements.
Define z : 0 — 7x to be the rule that associates to every (U,4l) the open U and that associates to
every refinement ¢ : (U, 4) > (V,0) the inclusion U 2 V. Prove that this is a strictly surjective
functor. Prove that the map on objects,

lr:1x -0, U (U{U}),

extends uniquely to a functor, and prove that ({z,x) extends uniquely to an adjoint pair of
functors, i.e., (U,{U}) is the initial object in the fiber category o, . Typically x does not admit
a right adjoint.

For every open covering vy : 4 - 7, for every integer r > 0, define the following set map,

Lgr+1 Zﬂﬂ—l - TU, (Uo,Ul,. . ~;U7“) = Lu(Uo) N Lu(Ul) M- ﬂLu(UT).

Let C be a category, and let A be an C-presheaf on (X, 7x). Let (U,4) be an object of 0. Recall
that for every object T of C, there is a Yoneda functor,
hy : CP? > Sets, S — Hom¢(S,T),

and this is covariant in T'. For every integer r > 0, define

hagy : CPP — Sets, S~ I hoaqs,...u,.)) (S),

(Ugyr, Uy Jettr+1
together with the projections,
(o, Nastr = RaUo,..., U ))-
For every integer r > 0, and for every integer i =0,...,r + 1, define
Ol hagy =~ hagr,

to be the unique natural transformation such that for every (Uy,...,Ur1) € U2, Ty, v, © OF
equals the composition of the projection,

T(Uo,..sUi—1,Uss1 s Ups1) * hAAl,?“ - hA(L(UOwn,Ui—l7Ui+ln,mUr+1))7
with the natural transformation of Yoneda functors arising from the restriction morphism

A(L(Uo) N---N L(Ui_l) N L(UHI) N---N L(UT+1)) - A(L(Uo) N---N L(Ur_,.l)).
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Similarly, for every ¢ =0,...,r, define

7 .
Ot hasirer = hagy,

to be the unique natural transformation such that for every (U,...,U,) e UL, w0y © 0hyy
equals the projection (. . v, | .U, UUss1,.Un)-

(b)(Cosimplicial Identities) Prove that these natural transformations satisfy the cosimplicial iden-
tities: for every r >0, for every 0 <i<j<r+2,

o

i _ o -1
r+loar_ r+1oar )
for every 0<i<j<r, .
J+

J i i
0741°0p49=0,41°0,,9,

T

and for every 0<i<r+1land 0<j<r,

. i1 . .
‘ . ool i<,
ol 00l = Id, i=ji=j+1,
di7t oo i>j+1

In the case that C is an additive category, define

r+1

d":hayy > hagee1, d' =) 0L

i=0
Prove that d™*! o d" equals 0.
(c)(Refinements and Cosimplicial Homotopies) For every refinement, ¢ : (U, ) > (V,%0), for every
integer r > 0, define

hA,qS,r : hA,il,r - hA,m,r

to be the unique natural transformation such that for every (Vp,...,V,) € U™*! the composition
T(Vo,...V;) © Pagr equals the composition of projection

T(G(V0)0(V)) * Reattr = RA((vo)n-no(12))
with the natural transformation of Yoneda functors arising from the restriction morphism
A(ep(Vo) n---nep(Vr)) = A((Vo) n---nu(V7)).

Prove that the natural transformations (h4 4, ),>0 are compatible with the natural transformations
Ji and o',,. For every pair of refinements, ¢ : (U,4) > (V,0) and ¢ : (V,0) > (W,20), for the
composition refinement ¢ o 1) : (U, L) = (W,20), prove that hy gy, equals ha .y, © ha g, and also
prove that hayq,, equals Idy, . Thus ha g, is functorial in ¢.

Let ¢ : (U, U) = (V,0) and ¢ : (U, ) > (V,0) be refinements. For every integer r > 0, for every
integer ¢ =0,...,r, define

Jagpeer P agra = hagy
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to be the unique natural transformation such that for every (Vo,..., V) € U™, 7y, v ogilj(wﬂur1
equals the composition of the projection,

(V)b (Vi),6(Vi), (Vi) * PS40 > MA@ (Vo). 0 (V). 0(V0), o 8(V)))
with the natural transformation of Yoneda functors arising from the restriction morphism
A(p(Vo) n---nup(Vy) nep(Vi) - nep(Vy)) = A(u(Vo) n---n (Vi) n---n (V).
Prove the following identities (cosimplicial homotopy identities),
991,¢,¢,r+1 ° ag,ﬂ,r =hagr 9;1,¢,¢,r+1 ° 8;1J,rxlw =hayr

i Jj-1 . .
: aA,‘B,r—l ° gA,(;ﬁ,lb,W 0<1< ] <r,
g i =] gi-l i .
gA@ﬂZJﬂ”rl © aA,ﬂ,’r’ - gA7¢7¢71”+1 © ,aA7u,7"7 0 <1= j S r?
i—1 J . .
Dro1°Ga gy LST+HI<i<r+ 1

) 7+1 . . B

gj ool _ ) Tamr ©Ga g 0<i<j<r-1,
Apbr AMr+l — i-1 b ' '

Tamr © Jagpr+1s O0<g<igr.

For the identity refinement Idy : 3l > 4, prove that gf;1 ld1drs1 €quals ai «rs1- Also prove that for
reﬁnements X8 >Wand §:T >4 g oy o €AUals hay 0 gl oo and gl cop cop e €Quals
gJA,¢,w,T+1 ° hA7€7T+1'

(d)(Functoriality in A) For every morphism of C-presheaves, o : A - A’, define

hoz,il,r : hA,U.,r - hB,il,’r:

to be the unique natural transformation whose postcomposition with each projection 7 (v,,..0,)
equals the composition of 74 (1, v,) With the natural transformation induced by the morphism

Ao, 00 P AU, ..., Uy)) = A'(«(Us, ..., Up)).

Prove that these maps are compatible with the cosimplicial operations 9 and o?,,, as well as the
operations hga 4, associated to a refinement ¢ : 4 > 20, and the cosimplicial homotopies gi" Sl
associated to a pair of refinements, ¢, : U > 0. Prove that this is functorial in . Conclude that
(up to serious set-theoretic issues), for every open cover 4, morally these rules define a functor
from the category of C-presheaves to the “category” of cosimplicial objects in the category of con-
travariant functors from C to Sets. Stated differently, to every open cover 4 there is an associated
cosimplicial object in the category Fun(C - Presh, Fun(C, Sets)) of covariant functors from the
category of C-presheaves to the category of contravariant functors C — Sets. This rule is covariant
for refinement of open covers. Moreover, up to simplicial homotopy, it is independent of the choice

of refinement.
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(e)(Coadjunction of Sections) As a particular case, for the left adjoint ¢z of x, observe that there
is a canonical refinement

nuy : lxox(U,U) > (U, ie., (UA{U}) = (U,U).

Prove that h, ), is the constant / diagonal cosimplicial object that for every r associates hu )
and with 9 and o equal to the identity morphism. Conclude that for every cover (U, 4l) in o, there
is a natural coaugmentation,

Gy hawy = hays,

that is functorial in A, functorial in (U,4) with respect to refinements, and that equalizes the
simplicial homotopies associated to a pair of refinements in the sense that
Th b1 © 9t = T © hay.

Define the functor
const : Fun(o,C) - Fun(A x 0,C)

that associates to a functor B : 0 — C the functor constp : 0 - Fun(A,C) whose value on every
(U, L) is the constant / diagonal cosimplicial object r — B(U,4l) for every r with every 9 and o*
defined to be the identity morphism. Conclude that the rule U + (r = ha()) above is the Yoneda
functor associated to const o *,(A).

(f)(Cech cosimplicial object) Assume now that C has all finite products. Thus, for every open
covering (U,4) and for every integer r > 0, there exists an object

r@A) = [I  AWon-nl),

such that ha g, equals her g 4). Use the Yoneda Lemma to prove that there are associated mor-
phisms in C,
Py g CT (U, A) » O™, A),

Tt CLH(A) = CY(A),
Cm(p,A): C"(U,A) > C"(T, A),
CTHi(p, 4, A) : CTH(81, A) - C7 (T, A),
Cr(i,a): CT(4h,A) - CT (4, A,

whose associated morphisms of Yoneda functors equal the morphisms defined above. Thus, in this
case, C* (4, A) is a cosimplicial object in C. Prove that this defines a covariant functor

C(44,-) : Fun(ry,C) - Fun(A,C).
Incorporating the role of 4, prove that this defines a functor

C': Fun(7x,C) - Fun(A x 0,C).
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Prove that this is, typically, not equivalent to the composite functor,
const o %, : Fun(7y,C) - Fun(o,C) - Fun(A x 0,C).
However, prove that the coadjunction in the last part does give rise to a natural transformation,

g:constO*x=>Cv'.

(g) Assume now that there exists a functor,
Z%:Fun(A,C) - C,

and a natural transformation,
n:consto Z% = Idpun(a )

such that (const, Z% n) extends to an adjoint pair of functors, i.e., assume that C is a Cartesian
category. Use Problem 4(d) to conclude that there exists a functor,

Z° :Fun(A x 0,C) - Fun(o,C),

and a natural transformation,
n:const o Z° = ldfun(axec)s

such that (const, Z% n) extends to an adjoint pair of functors, (const, Z% n,0) such that 6 is a
natural isomorphism. Moreover, for every A* : A x ¢ — C, for every object (U,4) of o, prove
that n: Z0(A*(Y4) - A°(Y)) is an equalizer of 93, 9] : A°(L) — AL(4l). Finally, the composition of
natural transformations, (Z%o g) o (6o x,), is a natural transformation

Z%(g) i %y = Z%0constox, = Z°0 C.

In particular, conclude that for a refinement ¢ : (U, 4t) = (V,U), the induced morphism Z 0(C*(U,A)) -
Z9(C*(20, A)) is independent of the choice of refinement.

(h) Let (U,¢: 4 — 717) be an object of 0. Let ¢ : (U, ) > (U,{U}) be a refinement, i.e., * = ¢(U) is
an element of l such that ¢(*) equals U. Thus, (U, ) admits both the identity refinement of (U, 1)
and also the composite of ¢ with the canonical refinment from (e), nygcircg. Using (c), prove that
the identity on C*(4,~) is homotopy equivalent to C'(nyy, —) o C(¢,~). On the other hand, the
refinement ¢ o ny g of (U, {U}) is the identity refinement. Thus the composite C(¢,~) o C(ny.y, )
equals the identity on C*({U},~). Prove that C*(4, A) is homotopy equivalent to the constant
simplicial object const 4y, and these homotopy equivalences are natural in A and open coverings

(U, L) that refine to (U,{U}).

Sheaves Exercise. Let (X, 7y) be a topological space. Let C be a category. A C-sheaf on (X, 7x)
is a C-presheaf A such that for every open subset U in 7y, for every open covering ¢ : ${ - 77 of U,
the associated sequence of Yoneda functors,

9?4,&1
hawy — hago = hasu,
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is exact, where the two arrows are 99 o and 4 o Stated more concretely, for every object S of
C, for every collection (sp, : S = A((Up)))vpeu of C-morphisms such that for every (Us, Uy ) € 812,
the following two compositions are equal,

«(Up) «(U1)

§ = A(u(Up)) == AWUY) nu(U)), S = A(u(U)) ==

there exists a unique morphism sy : S - A(U) such that for every Uy € 4, sy, equals AY (U0 °

A(e(Uo) ne(Uh)),

(a)(Sheaf Axiom via Cech Objects) For simplicity, assume that C is a Cartesian category that has
all small products. In particular, assume that the functors C' and Z° of the previous exercise are
defined. Prove that a C-presheaf on (X, 7y) is a sheaf if and only if the morphism

Z°(g) - *:(A) > Z°(C(A))

of objects in Fun(o,C) is an isomorphism.
(b)(Associated Sheaf / Sheafification Functor) Now assume that C has all small colimits. In
particular, assume that there exists a functor

L, : Fun(o,C) - Fun(7x,C),

such that (L,, *,) extends to an adjoint pair of functors. Using Exercise 0(g), prove that for every
open U in 7x and for every functor,
B:0-C,

L,(B)(U) is the colimit of the restriction of B to the fiber category o, ¢s. In particular, since open
coverings (U,¢: 4 — U) such that ¢ is a monomorphism are cofinal in the category o, r, it suffices
to compute the colimit over such open coverings. For every functor,

AZTX—>C,

prove that L, o x,(A) - A is a natural isomorphism. Denote by Sh : Fun(7y,C) - Fun(ryx,C)
the composite functor, )
L,0Z%0C:Fun(rx,C) - Fun(7,,C).

Prove that there exists a unique natural transformation,
sh : Idpun(r,,c) = Sh,

whose composition with the natural isomorphism above equals L,(Z%g)). For every sheaf A,
prove that
sh: A - Sh(A)

is an isomorphism.

(c)(The Associated Sheaf is a Sheaf) Let (U,¢: 4 — 77) an object of o, and let,
(L(U0)7 Ry - mUo - TL(UO)))
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be a collection of open coverings of each ((Uy). For every pair (Uy, Uy) € U2, let

(L(UO>U1)7KJU0,U1 :Q]Uo,Ul - TL(UQ,U1)))

be an open covering together with refinements

¢8 : (L(Uo)ﬂmUo) z (L(an U1)7mU0,U1)7 ¢(1] : (L(Ul)va1) z (L(U0> Ul)ﬂmUo,U1)'
Define
U = (Uy,eu B, ) U ('—'(UO,Ul)eLPmUo,Ul) ,

define
k0 - 1y,

to be the unique set map whose restriction to every Uy, equals ky, and whose restriction to every
Uy,.v, equals Ky, r,. For every Uy € 4L, define

¢U0 : (Uv k0 — 7—U) z ([’(UO)> Koy QIUo - TL(UO))?

to be the obvious refinement. For every Uj € &, define Z(Up, A) = Z0(C*(Vy,, A)). For every
(Up, Uy) € U2, define Z°(U,, Uy, A) = Z°(C* (U, v,,A)). Define

201, A) = T] 2°(Uo, A),

Uo eyl

Zl(u,A) = H ZO(U07U17A)7
(Uo,Ur )eud?

09 : 208, A) > Z (8L, A), 05 (2u) = (AQ o (20,)) v, -
Prove that the restriction morphism,
Z%(¢%) : Z°(D, A) > Z°(Z* (U, A)),
is a €-isomorphism. Conclude that Sh(A) is a sheaf. Denote by,
® : C - Sh(x ) = C - Presh(x r),
the full embedding of the category of sheaves in the category of presheaves. Thus, Sh is a functor,
Sh:C - Presh(x ;) = C = Sh(x ),

and sh is a natural transformation Id¢_presh, = ® o Sh. Conclude that (Sh,®,sh) extends to an
adjoint pair of functors.

(d)(Pushforward and Inverse Image) For a continuous map f: (X,7x) - (Y, 7y ), prove that the
composite functor,

C- Sh(X,TX) i C- PI‘eSh(X,.,-X) & C- Presh(yﬁy),
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factors uniquely through ® : C - Sh¢y., ) = C — Presh(y,,), i.e., there is a functor
fe:C=Shix ry) > C = Shyry),

such that f, o ® equals ® o f,. On the other hand, prove by example that the composite

C- Sh(yﬂ-y) i C- Presh(yﬂ,) —f_—> C- PreSh(X,Tx)
need not factor through ®. Define
f_1 :C - Sh(yﬂ-y) -C- Sh(X,Tx))

to be the composite of the previous functor with Sh: C - Presh(x ;) = C — Sh(x ;). Prove that
the functors (f71, f.) extend to an adjoint pair of functors between C — Sh(x ;) and C - Sh(y ).

Espace Etalé Exercise. Let (X,7x) be a topological space. A space over X is a continuous
map of topological spaces, f : (Y,7y) — (X, 7x). For spaces over X, f: (Y,7y) - (X,7x) and
g:(Z,77) > (X, 7x), a morphism of spaces over X from f to g is a continuous map u: (Y, 7y) -
(Z,7x) such that g owu equals f.

(a)(The Category of Spaces over X) For every space over X, f : (Y,7y) — (X, 7x), prove that
Idy : (Y,7v) — (Y,7y) is a morphism from f to f. For spaces over X, f: (Y,7v) - (X,7x),
g:(Z,17) > (X,7x) and h : (W, 1) - (X,7x), for every morphism from f to g, u: (Y,7y) -
(Z,72), and for every morphism from g to h, v : (Z,77) - (W, mw ), prove that the composition
vou:(Y,1y) —» (W, 7w) is a morphism from f to h. Conclude that these notions form a category,
denoted Top x .-

(b)(The Sheaf of Sections) For every space over X, f: (Y, 7y) — (X, 7x), for every open U of 7x,
define Secy(U) to be the set of continuous functions s : (U,7y) - (Y, 7y) such that fos is the
inclusion morphism (U, 7y) - (X, 7x). For every inclusion of Tx-open subsets, U 2 V', for every s
in Secs(U), define s|y to be the restriction of s to the open subset V. Prove that s|y is an element
of Secs(V'). Prove that these rules define a functor

Secy : Tx — Sets.

Prove that this functor is a sheaf of sets on (X, 7x).

(c)(The Sections Functor) For spaces over X, f(Y,7y) —» (X,7x) and g : (Z,72) - (X, 7x), for
every morphism from f to g, u: (Y, 7y) = (Z,72), for every 7x-open set U, for every s in Secs(U),
prove that wo s is an element of Sec,(U). For every inclusion of 7x-open sets, U 2 V, prove that
uo (s|y) equals (uo s)|y. Conclude that these rules define a morphism of sheaves of sets,

Sec,, : Secy = Secy.

Prove that Seciq, is the identity morphism of Sec;. For spaces over X, f: (Y, 7v) - (X,7x), ¢
(Z,72) = (X,7x) and h: (W, 1w ) = (X, Tx), for every morphism from f to g, u: (Y, 7y) = (Z,72),
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and for every morphism from g to h, v: (Z,77) - (W, 7w ), prove that Sec,., equals Sec, o Sec,,.
Conclude that these rules define a functor,

Sec : Top(x )~ Sets — Sh(x 7).

(d)(The Espace Etalé) For every presheaf of sets over X, F, define Esp; to be the set of pairs
(z,¢,) of an element z of X and an element ¢, of the stalk F, = colim,y F(U); such an element
is called a germ of F at x. Denote by

mr i Espr = X,

the set map sending (x, ¢, ) to x. For every open subset U of X and for every element ¢ of F(U),
define B(U, ¢) c Esps to be the image of the morphism,

¢:U— Espg, v+ ¢s.

Let (U,%) and (V,x) be two such pairs. Let (x,¢,) be an element of both B(U,v) and B(V, ).
Prove that there exists an open subset W of UnV containing = such that ¥|y equals x|y . Denote
this common restriction by ¢ € F(W). Conclude that (z,¢,) is contained in B(W,¢), and this
is contained in B(U,v¢) n B(V,x). Conclude that the collection of all subset B(U,¢) of Esps is
a topological basis. Denote by 7x the associated topology on Esp,. Prove that 7 is the finest
topology on Esp such that for every 7x-open set U and for every ¢ € F(U), the set map 5 is a
continuous map (U, 7y) - (Espz, 7). In particular, since every composition Trog is the continuous
inclusion of (U,7y7) in (X,7x), conclude that every ¢ is continuous for the topology 73 (x) on
Espr. Since 7r refines this topology, prove that

7r: (Espge,7r) > (X, 7x)

is a continuous map, i.e., 7 is a space over X.

(e)(The Espace Functor) For every morphism of presheaves of sets over X, a: F - G, for every
(z,¢,) in Espg, define Esp, (z, ¢,) to be (z,a,(¢,)), where o, : F,, - G, is the induced morphism
of stalks. For every Tx-open set U and every ¢ € F(U), prove tht the composition Esp,, o 5 equals
cm as set maps U — Espg. By construction, cm is continuous for the topology 7g. Conclude
that ¢ is continuous for the topology (Esp,)~!(7g) on Espz. Conclude that 7 refines this topology,
and thus Esp,, is a continuous function,

Esp,, : (Esps, 77) = (Espg, 7¢).

Prove that Espyy, equals the identity map on Espz. For morphisms of presheaves of sets over X,
a:F -G and §:G —H, prove that Espg,, equals Espg o Esp,. Conclude that these rules define
a functor,

Esp : Sets — Presh(x ) — Top(x ry)-
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(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, F, for every 7x-
open set U, for every ¢ € F(U), prove that ¢ is an element of Sec,, (U). For every 7x-open subset

U2V, prove that $|V equals ¢|y. Conclude that ¢ — 5 is a morphism of presheaves of sets over
X,

O : F - Sec o Esp(F).
For every morphism of presheaves of sets over X, o : F - G, for every 7x-open set U, for every
¢ € F(U), prove that Esp, o8z (¢) equals ay(¢), and this in turn equals g 7 o ay(¢). Conclude
that Sec o Esp(«) o 07 equals fg o . Therefore 6 is a natural transformation of functors,

0 : IdSetS—Presh(XJX) = Seco ESp

(g) (Alternative Description of Sheafification) Since SecoEsp(F) is a sheaf, prove that there exists
a unique morphism
0 : Sh(F) — Sec o Esp(F)

factoring 0. For every element t € Sec o Esp(F)(U), a t-pair is a pair (Uy, sg) of a Tx-open subset
U 2 Uy and an element sy € F(Up) such that t-1(B(Uy, sg)) equals Uy. Define i to be the set of
t-pairs, and define ¢ : 31 - 717 to be the set map (Uy, sg) = Uy. Prove that (U, : U - 77) is an
open covering. For every pair of t-pairs, (Up, sg) and (Ui, s1), for every = € Uy n Uy, prove that
there exists a 7x-open subset Uy, ¢ Uy nU; containing x such that 30|on1 equals 51|Uo,1- Prove
that this data gives rise to a section s € Sh(F)(U) such that 6(s) equals t. Conclude that 8 is
an epimorphism. On the other hand, for every r,s € F(U), if 0 ,(r;) equals 0 ,(s,), prove that
7(z) equals 3(z), i.c., rp equals s,. Conclude that every morphism 6, is a monomorphism, and
hence 6 is a monomorphism of sheaves. Thus, finally prove that 0F is an isomorphism of sheaves.
Conclude that  is a natural isomorphism of functors,

6 :Sh = Seco Esp.

(h) For every space over X, f: (Y, 7y) - (X, 7x), for every 7x-open U, for every s € Secs(U), and
for every x € U, define a set map,

Npuz:Sec(U) =Y, s s(x).

Prove that for every 7x-open subset U 2 V' that contains x, n7,v.,(s|v) equals 17y,(s). Conclude
that the morphisms 7y, factor through set maps,

Ntot (Secy) =Y, s, s(x).

Define a set map,

ny: ESpSeCf =Y, (‘r? SI) e nf,z(sﬂﬂ)'
Prove that 7 o5 equals s as set maps U — Y. Since s is continuous for 7y, conclude that 3 is
continuous for the inverse image topology (n;)~'(7v) on Espg,,. Conclude that 7g, refines this
topology, and thus 7y is a continuous map,

e (ESpSeCfsteCf) - (3/7 TY)'
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Also prove that fon; equals mse.,. Conclude that 7y is a morphism of spaces over X. Finally, for
spaces over X, f:(Y,7yv) = (X,7x) and ¢: (Z,77) = (X, 7x), and for every morphism from f to
g, u: (Y, 7v) > (Z,72), prove that uon; equals 7, o Esp o Sec(u). Conclude that f ~ 7, defines a
natural transformation of functors,

7 : Esp o Sec = IdTop(XﬁTX).

(1)(The Adjoint Pair) Prove that (Esp, Sec,6,7) is an adjoint pair of functors.

Alternative Description of Inverse Image Exercise. Let f: (Y, 7v) - (X, 7x) be a continuous
function of topological spaces. Since the category of topological spaces is a Cartesian category (by
Problem 2(e) on Problem Set 8), for every space over X, g : (Z,77) - (X,7x), there is a fiber
product diagram in Top,

*f
(Z;TZ) (X, 7x) (Y,TY) SN (Z,Tz)
| :
(Y7TY) T) (XvTX)

Denote the fiber product by f*(Z,7z).

(a) For spaces over X, g: (Z,77) - (X,7x) and h : (W, 1) - (X, 7x), for every morphism of
spaces over X, u: (Z,77) - (W, 7), prove that there is a unique morphism of topological spaces,

frus f(Z,mz2) = f*(W,mw),
such that f*ho f*u equals f*g and h*f o f*u equals uo g*f. Prove that f*Id; is the identity
morphism of f*(Z,74). For spaces over X, g : (Z,77) - (X,7x), h : (W, ) - (X,7x) and
i (M,y) - (X,7x), for every morphism from ¢ to h, u : (Z,77) — (W, 7w), and for every

morphism from h to i, v: (W, mw) — (M, 7)), prove that f*(vou) equals f*vo f*u. Conclude
that these rules define a functor,

fp : TOP(x 7y = TOP (v, ).
Prove that this functor is contravariant in f. In particular, there is a composite functor,

J5p 0 ESp(x 74y : Sets = Shix r) > Topy )

b) Consider the composite functor
( p Y
f* o SeC(Y,Ty) : TOp(Yva) - Sets — Sh(Y,TY) - Sets — Sh( X,7x)"

Prove directly (without using the inverse image functor on sheaves) that ( Jép @ ESP(x.ry)s [+ ©
Sec(y,r)) extends to an adjoint pair of functors. Use this to conclude that the composite Secy,r,)o
f§, © Espx r) 1s naturally isomorphic to the inverse image functor on sheaves of sets.
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19 The Adjoint Pair of Discontinuous Sections (Godement
Resolution)

Flasque Sheaves Exercise. Let (X,7x) be a topological space, and let C be a category. A
C-presheaf F' on (X,7y) is flasque (or flabby) if for every inclusion of 7x-open sets, U 2 V, the
restriction morphism AY : A(U) - A(V) is an epimorphism.

(a)(Pushforward Preserves Flasque Sheaves) For every continuous function f: (X, 7x) = (Y, 7v),
for every flasque C-presheaf F' on (X, 7y), prove that f,F' is a flasque C-presheaf on (Y, 7y ).

(b)(Restriction to Opens Preserves Flasque Sheaves) For every 7x-open subset U, for the continuous
inclusion i : (U,7y) = (X, 7x), for every flasque C-presheaf F' on (X, 7x), prove that i"1F is a
flasque C-presheaf. Also, for every C-sheaf F' on (X, 7x), prove that the presheaf inverse image
171 F' is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H!'-Acyclicity of Flasque Sheaves) Let A be an Abelian category realized as a full subcategory
of the category of left R-modules (via the embedding theorem). Let

0 — A 2, 4 2, gr 0

be a short exact sequence of A-sheaves on (X, 7x). Let U be a 7x-open set. Let ¢t : A”(U) - T be
a morphism in A such that ¢ o p(U) is the zero morphism. Assume that A’ is flasque. Prove that
t is the zero morphism as follows. Let a” € A”(U) be any element. Let S be the set of pairs (V,a)
of a Tx-open subset V' ¢ U and an element a € A(V') such that p(V')(a) equals a”|y. For elements
(V,a) and (V,@) of S, define (V,a) < (V,@) if V ¢ V' and @y equals a. Prove that this defines
a partial order on §. Use the sheaf axiom for A to prove that every totally ordered subset of S
has a least upper bound in §. Use Zorn’s Lemma to conclude that there exists a maximal element
(V,a) in S. For every z in U, since p is an epimorphism of sheaves, prove that there exists (W, b)
in § such that x € W. Conclude that on V n W, a|y~w — bly~w is in the kernel of p(V nW). Since
the sequence above is exact, prove that there exists unique a’ € A'(V nW) such that ¢(V nW)(a’)
equals alyaw — blyaw. Since A’ is flasque, prove that there exists ay, € A’(W) such that afy|vaw
equals a’. Define ay = b+ q(W)(ay;,). Prove that (W,aw) is in S and aly~w equals aw|yaw. Use
the sheaf axiom for A once more to prove that there exists unique (V W, aynw ) in S with ayaw|y
equals @ and ayw|w equals ay . Since (V,a) is maximal, conclude that W c V| and thus x is in V.
Conclude that V' equals U. Thus, a” equals p(U)(a). Conclude that ¢(a”) equals 0, and thus ¢ is
the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding
theorem.)

(d)(Hr-Acyclicity of Flasque Sheaves) Let C* = (C9,d{,) 420 be a complex of A-sheaves on (X, 7x).
Assume that every C9 is flasque. Let r > 0 be an integer, and assume that the cohomology sheaves
ha(C*) are zero for ¢ =0,...,r. Use (¢) and induction on r to prove that for the associated complex
in C,

C*(U) = (CUU),di(U)) g0
also h1(C*(U)) is zero for ¢ =0,...,7.
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Enough Injective A - II-modules Exercise. Let (X, 7x) be a topological space. Let A and TI
be presheaves of associative, unital rings on (X, 7y ). The most common case is to take both A and
IT to be the constant presheaf with values Z. Assume, for simplicity, that A(@) and II(@) are the
zero ring. A presheaf of A —I1-bimodules on (X, 7y) is a presheaf M of Abelian groups on (X, 7x)
together with a structure of A(U) - II(U)-bimodule on every Abelian group M (U) such that for
every open subset U 2 V| relative to the restriction homomorphisms of associative, unital rings,

AV AU) - A(V), TIY :TI(U) - TI(V),
every restriction homomorphism of Abelian groups,
MY MU) - M(V),

is a homomorphism of A(U) - II(U)-bimodules. For presheaves of A — II-bimodules on (X, 7x),
M and N, a morphism of presheaves of A — Pi-bimodules is a morphism of presheaves of Abelian
groups «: M — N such that for every open U, the Abelian group homomorphism,

a(U): M(U) = N(U),

is a homomorphism of A(U) - II(U)-bimodules.

(a)(The Category of Presheaves of A —II-Bimodules) Prove that these notions form a category
A —1II - Presh(x ;). Prove that this is an Abelian category that satisfies Grothendieck’s axioms
(AB1), (AB2), (AB3), (AB3*), (AB4) and (AB5).

(b)(Discontinuous A —II-Bimodules) A discontinuous A —II-bimodule is a specification K for every
nonempty 7x-open U of a A(U)-II(U)-bimodule K (U), but without any specification of restriction
morphisms. For discontinuous A — II-bimodules K and L, a morphism of discontinuous A — II-
bimodules a: K — L is a specification for every nonempty 7x-open U of a homomorphism «a(U) :
K(U) - L(U) of A(U) - II(U)-bimodules. Prove that with these notions, there is a category
A —1II - Disc(x,ry) of discontinuous A - II-bimodules. Prove that this is an Abelian category that
satisfies Grothendieck’s axioms (AB1), (AB2), (AB3), (AB3*), (AB4), (AB4*) and (AB5).

(c)(The Presheaf Associated to a Discontinuous A - II-Bimodule) For every discontinuous A — II-
bimodule K, for every nonempty 7x-open subset U, define

KE@W)=T] KW)

wecU

as a A(U)-II(U)-bimodule, where the product is over nonempty open subsets W ¢ U (in particular
also W = U is allowed), together with its natural projections 74, : K(U) - K(W). Also define
K (@) to be a zero object. For every inclusion of 7x-open subsets U 2 V', define

KJ: 1 KW) - T] K(W),

weU Wwev
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to be the unique morphism of A(U) - II(U)-bimodules such that for every W c V, 7}, o [?g equals
w5, Prove that K is a presheaf of A —II-bimodules. For discontinuous A - II-bimodules K and L,
for every morphism of discontinuous A — II-bimodules, o : K — L, for every 7x-open set U, define

aU): [T KW) > [] L(W)

wcU wcU

to be the unique morphism of A(U) - II(U)-bimodules such that for every W ¢ U, 7{;, o &(U)
equals W%’W. Prove that @ is a morphism of presheaves of A — II-bimodules. Prove that these
notions define a functor,

*: A-1II-Discix ) = A —II-Presh(x ).

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Cech Object of a Discontinuous A — II-Bimodule is Acyclic) For every open covering
(U,0: 4 - 117), define

ru= U Tuwyy = {W e |30 e LW c (Up)}.
Uoéu

For every discontinuous A — II-bimodule K, define

KW= ] K(W)

Wery
together with its projections my : K () - K(W). In particular, define
K () - K ()
to be the unique A(U) — II(U)-morphism such that for every W e 7y, my o 7l equals my.
For every nonempty W € 7y, define
UV = {Uy e YW < 1(Up) }.
Prove that

Cr (Y, K) = I1 [T KW

-----

if (U, ..., U,) is empty, the corresponding factor is a zero object. For every integer r > 0, for every
1=0,...,7r+1, prove that the morphism

0i:C" (U, K) - C (U, K),

is the unique A(U)-II(U)-morphism such that for every nonempty W e 7y and for every (Uy,...,U,,U.1) €
(V2 Ty U Unw © 0% equals Ty, v, ) Uiy, Unasw-  FOr every integer r > 0 and for every
1=0,...,r, prove that the morphism

011 CTH UL K) > C7(U, ),
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is the unique A(U)-II(U)-morphism such that for every nonempty W € 7 and for every (U, ..., U,) €

(MY g, vew © 0%y equals equals Ty, v, U, Ui Ui, Uniw - FOT every integer r > 0, prove

that the morphism B _
g K() > O (8, )

is the unique A(U)-II(U)-morphism such that for every nonempty W € 7 and for every (U, ..., U,) €

WY+ g oew © g7 equals .

CWRW= T KW,

(Uo,....Ur (AW )41

with its projections
vw  CT(U KW — KE(W).

.....

Define ) _ . _
o OT (U, K) - Cm (U, K)WY
to be the unique A(U)-II(U)-morphism such that for every (Uy, ..., U;) € (V)™ 7wy, o wor” .y,

equals my, . p,.w. For every integer r > 0 and for every ¢ = 0,...,r + 1, prove that there exists a
unique A(U) - II(U)-morphism

al:Cr (U, KYV - ¢, KW,

such that 9; o 77y, equals 7r’°+1 o 9!, and prove that for every (Uy,...,U,,U.1) € (UW)r+2
T, Up Ursa [W © J! equals 7TU0,,..,UH,U,+1 ..... U,..iw- For every integer r > 0 and for every i = 0,...,r,
prove that there exists a unique A(U) — II(U)-morphism

Oh O UL KW > O (4, )Y

such that o}, o}, equals 77,007, ,, and prove that for every (Uo, ..., U,) € ({V)™*, o wo
oy, equals equals T, Us1,UssUs Ussr iU W~ FOT every integer 7 > 0, prove that there exists a
unique A(U) - II(U)-morphism

g K(W) - C'T(Ll, [?)W

such that 7" ,,, o g" equals g" o my, and prove that for every (Uy,...,U,) e (UV)™* 7y vjwog”
equals Idg ). Conclude that

ma C* (8L I) — C° (81, KW

is a morphism of cosimplicial A(U)-II(U)-bimodules that is compatible with the coaugmentations
g*. Prove that these morphisms realize C*(4(, K) in the category S*A(U) - II(U) - Bimod as a
product,

C*(K) =TT C*(4, )Y

Wery
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Using the Axiom of Choice, prove that there exists a set map
¢:my~{@} > U
such that for every nonempty W e 7y, ¢(W) is an element in 4. For every integer r > 0, define
Cr (o, )V : (U, K)V - K(W)

to be mywy,...s(wyw. Prove that for every integer r > 0 and for every i = 0,...,r+1, Cr+l(¢, K)W o0
equals C" (¢, }?lw Prove that for every integer 7 > 0 and for every i = 0,...,7, C"(¢, K)V o0’ ,
equals C™1 (¢, K)W. Conclude that

C”(gb, [?)W — const g (w)

is a morphism of cosimplicial A(U) - II(U)-bimodules. Prove that C*(¢, K)W o g* equals the
identity morphism of constg ). For every nonempty W e 7y, for every integer r > 0, for every
integer i =0,...,r, define

Gpar O W)Y > (U, )Y
to be the unique A(U)~II(U)-morphism such that for every (Uy, ..., U,) € (UV)™*1, 7y, v qwogy .
equals 7y, v,.6(w),..sw)w- Prove the following identities (cosimplicial homotopy identities),

gg,T%—l ° 879 = g’f' °© CYT(¢7 [?)WJ g(;,?"-%—l ° a:+1 = Idcr(ﬂj{)wv

811;1 9%_,"17 0<i<j<r,
Thri1©0r =1 9G1°05 O<i=j<r,
Oitogl,, 1<j+l<i<r+l,

iooltL < 5 _
A 010 Gyry 0Si<y<r—1,
s i1 ] .
: O O Gy 0<g<e<r.

Conclude that ¢* and C*(¢, K)V are homotopy equivalences between C*(4, K)" and const K(W)-
Conclude that C* (4, K ) is homotopy equivalent to const R(w): In particular, prove that the associ-

ated cochain complex of C*(U, K)W is acyclic with HO(U, K)W equal to K(W). Similarly, prove
that the associated cochain complex of C*(4, K) is acyclic with HO(4, K) equal to K (1).

(e)(The Forgetful Functor to Discontinuous A - II-Bimodules; Preservation of Injectives) For every
presheaf M of A —II-bimodules on (X, 7x), define ®(M) to be the discontinuous A — II-bimodule
U~ M(U). For presheaves of A —II-bimodules, M and N, for every morphism of presheaves of
A —TI-bimodules, a: M - N, define ®(«) : (M) - ®(N) to be the assignment U — «(U). Prove
that these rules define a functor

®: A -1II - Presh(x ) = A~ Il - Disc(x ry)-
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Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For
every presheaf M of A —II-bimodules, for every 7x-open U, define

weU
to be the unique homomorphism of A(U) — II(U)-bimodules such that for every 7x-open subset
W c U, n4,00)u equals MY,. Prove that U ~ 6y is a morphism of presheaves of A-II-bimodules,

Oy : M — &(M).

For every morphism of presheaves of A —II-bimodules, a: M — N, for every 7x-open set U, prove
that ®(«) o 0y equals 0y o a. Conclude that 6 is a natural transformation of functors,

0: IdA—H—Presh(Xﬂ.X) = %0,
For every discontinuous A — II-bimodule K, for every 7x-open U, define

nxv: [T K(W) - K(U)
WeU
to be wlf,. Prove that U ~ 1k is a morphism of discontinuous A — II-bimodules. For every pair
of discontinuous A —II-bimodules, K and L, for every morphism of discontinuous A — II-bimodules,
g : K - L, prove that n o (ID(E) equals 8 ony. Conclude that 7 is a natural transformation of
functors,
nN:Po¥ = IdA—H—Disc(X,TX)-

Prove that (®,%,6,7n) is an adjoint pair of functors. Since ® preserves monomorphisms, use
Problem 3(d), Problem Set 5 to prove that ¥ sends injective objects to injective objects. Since
the forgetful morphism from sheaves to presheaves preserves monomorphisms, prove that the
sheafification functor Sh sends injective objects to injective objects. Conclude that Sh o % sends
injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every 7x-open
set U, there are enough injective A(U) - II(U)-bimodules. Using the Axiom of Choice, conclude
that A —II - Disc(x ) has enough injective objects. In particular, for every presheaf M of A —1II-
bimodules, for every open set U, let there be given a monomorphism of A(U) - II(U)-bimodules,

EUM(U)—>](U),

with I(U) an injective A(U) - II(U)-bimodule. Conclude that I is an injective presheaf of A — II-
bimodules, and the composition
M2 SN ST

is a monomorphism of presheaves of A — II-bimodules. If M is a sheaf, conclude that Sh([7) is an
injective sheaf of A —II-bimodules. Also, use (d) to prove that the composition

M 25 &) S T sw(T)
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is a monomorphism of sheaves of A —II-bimodules. (Hint: Since o, ¢ is a filtering small category,
use Problem 0 to reduce to the statement that for every open covering (U,4l), the morphism
M(U) - M(41) is a monomorphism. Realize this a part of the Sheaf Axiom for M.) Conclude that
both the category A-II-Presh(x ;) and A~II-Shx ;) have enough injective objects. In particular,
for an additive, left-exact functor F', resp. G, on the category of presheaves of A — II-bimodules,
resp. the category of sheaves of A —II-bimodules, there are right derived functors ((R"F),, (6"),),
resp. ((R"G)y, (0™),). Finally, since ¥ is exact and sends injective objects to injective objects, use
the Grothendieck Spectral Sequence (or universality of the cohomological d-functor) to prove that
(R*"F)o%is R (F o).

(g)(Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous A —II-bimodule on
X. For every Tx-open set U, prove that K(U) - Sh(K)(U) is the colimit over all open coverings
sl c 7y (ordered by refinement as usual) of the morphism

7 K(U) - K().

In particular, since every morphism K (U) - K (4) is surjective (by the Axiom of Choice), conclude
that also _ B
sh(U) : K(U) - Sh(K)(U)

is surjective. Use this to prove that Sh(K) is a flasque sheaf.

For every injective A —II-sheaf I, for the monomorphism 6; : I - Sh(®(I)), there exists a retraction
p:Sh(®(I)) — I. Also Sh(®(I)) is flasque. Use this to prove that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every Tx-open set U, prove that the
functor
I'(U,-): A =11 -Presh(x,,) > A(U) - II(U) - Bimod, M ~ M(U)

is an exact functor. Also prove that the functor
T'(U,-): A =T - Sh(x,y) = AU) - TI(U) - Bimod

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of A —II-modules admits
a resolution, € : M — I* by injective sheaves of A — II-modules that are also flasque. Conclude
that T'(U, -) extends to a universal cohomological -functor formed by the right derived functors,
((H™(U,=))n, (0"),). Finally, assume that M is flasque. Use Problem 4(d) to prove that /*(U) is
an acyclic complex of A(U) - II(U)-bimodules. Conclude that for every flasque sheaf M of A - II-
bimodules, for every n > 0, H*(U, M) is zero, i.e., flasque sheaves of A — II-bimodules are acyclic
for the right derived functors of I'(U, -).

(i) (Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Indepen-
dence of A —1II) Use (h) and the hypercohomlogy spectral sequence to prove that for every sheaf
M of A - II-bimodules, for every acyclic resolution €; : M — M®* of M by sheaves of A —II-
bimodules that are flasque, for every integer n > 0, there is a canonical isomorphism of H"(U, M)
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with h*(M*(U)). In particular, the functor T= Sho ¥ o &, the natural transformation 6 : Id =T,
and the natural transformation
Sho*onod:TT=T,

form a triple on the category A —II-Sh(x ). There is an associated cosimplicial functor,
LT A-11- Sh(X,TX) - S°A-1II- Sh(X,-rX)

and a functorial coaugmentation,
O : consty, — L3 (M).

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution
of M by flasque sheaves of A—II-bimodules, and it is canonical, depending on no choices of injective
resolutions.

Finally, let A > A and II - II be morphisms of presheaves of associative, unital rings. This induces

a functor, L
A-TI-Shxrc) > A-II-Shx ).

For every sheaf M of A —II-bimodules, and for every acyclic resolution € : M — M* of M by flasque
sheaves of A — II-bimodules, this is also an acyclic, flasque resolution of M with the associated
structure of sheaves of A - II-bimodules. For the natural map of cohomological d-functors from the
derived functors of I'(U, -) on A-II-Sh(x ;) to the derived functors of I'(U, -) on K—ﬁ—Sh(X,TX),
prove that this natural map is a natural isomorphism of cohomological §-functors. This justifies
the notation H"(U,-) that makes no reference to the underlying presheaves A and II, and yet is
naturally a functor to A(U) - II(U) - Bimod whenever M is a sheaf of A — II-bimodules.

Problem 6.(Flasque Sheaves are Cech-Acyclic) Let (X,7x) be a topological space. Let M be a
presheaf of A —II-bimodules on (X, 7x). Let U be a 7x-open set. Let (U,¢: 4 - 717) be an open
covering. For every Tx-open subset V', define (V¢ : 4 - 7/) to be the open covering ¢ (Up) =
V nu(Uy). For simplicity, denote this by (V,4y). For every integer r > 0, define C" (4, M) (V) to
be the A(V') - II(V)-bimodule C7(8ky, M). Moreover, define

O : C (W MY(V) > C W MY(V), 0ty : 7 (8, M) (V) > O (8, MY(V),

to be the face and degeneracy maps on C*(8y, M). Finally, let 7}, : M(V') - C" (84, M)(V) be the
coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of Tx-open subsets
W nV nU, the identity map Idy is a refinement of open coverings,

Al (Voo s U= 1) > (W, : 8> ).

By Problem 5(f) from Problem Set 8, C"(¢V,, M) is an associated morphism of A(V') - II(V)-
bimodules, denoted ) ) )
C (W M)+ C (8 MY(V) > C (8, M)().
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(a)(The Presheaf of Cech Objects) Prove that the rules V v C" (4, M)(V) and C" (81, M)}, define
a presheaf C" (4, M) of II - A-bimodules on U. Moreover, prove that the rules V — Y., Tesp.
V= oy, V =y, define morphisms of presheaves of A - II-bimodules,

0t (U, M) — " (U, M), O WU M) = CT (LMD, g My~ CT (U, M).

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

C*ioxA-TI- Presh(x ) = S*A -1l - Presh(y -,

compatible with cosimplicial homotopies for pairs of refinements and together with a natural trans-
formation of cosimplicial objects,

n® :consty, — C* (U, M).

(b)(The Cech Resolution Preserves Sheaves and Flasques) For every (Uy, ..., U,) in 4+, denote by
ivo,...v, * (LU, ..., Up), Tyws,...0,)) = (U, 7) the continuous inclusion map. Prove that C" (U, M)
is isomorphic as a presheaf of A —TI-bimodules to

Use Problem 4(a) and (b) to prove that C' (4, M) is a sheaf whenever M is a sheaf, and it is
flasque whenever M is flasque.

(c)(Localy Acyeclicity of the Cech Resolution) Assume now that M is a sheaf. For every Tx-open
subset V' c U such that there exists * € 4 with V' c ¢(*), conclude that (V, ) refines to (V,{V'}).
Using Problem 5(h), Problem Set 8, prove that

ny :consty gy = C* (U, M(V)

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial

object,
= Z(_l)lafw
i=0
the coaugmentation )
nv: MV) - C (M) (V)

is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of II — A-

bimodules, §
n:M|U_>Q (uaM)

is an acyclic resolution.
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Now assume that M is flasque. Prove that 7 is a flasque resolution of the flasque sheaf M|;. Using
Problem 5(i), prove that the cohomology of the complex of A(U) —II(U)-bimodules,

H™(U, M) = h"(C* (U, M), d*)

equals H*(U, M). Using Problem 5(h), prove that H°(U, M) equals M (U) and H*(U, M) is zero
for every integer n > 0. Conclude that for every flasque sheaf M of A — II-bimodules, for every
open covering (U, ), M(U) — H°(, M) is an isomorphism and H" (4L, M) is zero for every integer
n > 0.

Cech Cohomology as a Derived Functor Exercise. Let (X, 7x) be a topological space. Let U
be a Tx-open set. Let (U,v: 84 > 117) be an open covering. For every presheaf A of A-TII-bimodules,
denote by C*(4, A) the object in Ch*’(A —II - Bimod) associated to the cosimplicial object.

(a) (Exactness of the Functor of Cech Complexes; The d-Functor of Cech Cohomologies) Use Prob-
lem 5 of Problem Set 8 to prove that this is an additive functor

C* (4, =) : A =TI - Preshx ) = Ch*’(A - II - Bimod).
Prove that for every short exact sequence of presheaves of A — II-bimodules,

0 A =L 4 2, pn 0,

the associated sequence of cochain complexes,

0 —— Con, A7) S8 Geg 4y S8 cegamy —— o,

is a short exact sequence. Use this to prove that the Cech cohomology functor HO(LL, A) =
RO(C*(4, A)) is an additive, left-exact functor, and the sequence of Cech cohomologies,

H (84, A) = hr (C* (44, A)),

extend to a cohomological d-functor from A —1II - Presh(x .,y to A(U) - II(U) - Bimod.

(b)(Effaceability of Cech Cohomology) For every presheaf A of A —II-bimodules, use Problem 5(e)
and 5(f) to prove that 4 : A > ®(A) is a natural monomorphism of presheaves of A-II-bimodules.

Use Problem 5(d) to prove that for every r > 0, H7(4, ®(A)) is zero. Conclude that H" (4, -) is
effaceable. Prove that the cohomological -functor ((H7 (4, A)),, (67),) is universal. Conclude that
the natural transformation of cohomological -functors from the right derived functor of HO(4l, -)
to the Cech cohomology d-functor is a natural isomorphism of cohomological J-functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by
U:A-II- Sh(X,’Tx) - A-1II- Presh(X’TX),

the additive, fully faithful embedding (since we are already using ® for the forgetful morphism to
discontinuous A — II-bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends
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to an adjoint pair of functors (Sh,®). Recall the construction of Sh as a filtering colimit of
Cech cohomologies HO(8l,-). Since HO(8, -) is left-exact, and since A - IT - Preshy ) satisfies
Grothendieck’s condition (AB5), prove that Sh is left-exact. Use Problem 3(d), Problem Set 5
to prove that ¥ sends injective objects to injective objects. Use Problem 5(g) to prove that
every injective sheaf I of A - II-bimodules is flasque. Use Problem 6(c) to prove that W([I) is
acyclic for H*(41, ). Prove that the pair of functors ¥ and HO(4, -) satisfy the hypotheses for the
Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological
spectral sequence,

TEYT = HP (U, R (A)) = HP* (U, A).

(d)(The Derived Functors of W are the Presheaves of Sheaf Cohomologies) For every sheaf A of
A —TI-bimodules, for every integer r > 0, for every 7x-open set U, denote H"(A)(U) the additive
functor H"(U, A). In particular, H°(A)(U) is canonically isomorphic to A(U). Thus, for all 7x-
open sets, V c U, there is a natural transformation

*[v s HO(=)(U) = HO (=) (V).
Use universality to prove that this uniquely extends to a morphism of cohomological d-functors,

#7 (K () U))r, (07)r) = (H(=)(V)r, (7)),

Prove that for all 7x-open sets, W c V c U, both the composite morphism of cohomological
o-functors,

*iy o # [V = (- ()0, (87)2) = (R (=)(V))r, (07)0) = (K (=) (W), (87)),

and the morphism of cohomological d-functors,

#iw (R ()U))r, (87)r) = (- (5)(W))r, (07),),

extend the functor *|j;, o |5 = *|4, from HO(-)(U) to H°(-)(W). Use the uniqueness in the uni-
versality to conclude that these two morphisms of cohomological d-functors are equal. Prove that
((H"(=))r, (07),) is a cohomological é-functor from A —II —Sh(x -,y to A —II — Presh(x ). Use
Problem 5(h) to prove that every flasque sheaf is acyclic for this cohomological §-functor. Com-
bined with Problem 5(i), prove that the higher functors are effaceable, and thus this cohomological
d-functor is universal. Conclude that this the canonical morphism of cohomological -functors from
the right derived functors of ¥ to this cohomological §-functor is a natural isomorphism of cohomo-
logical -functors. In particular, combined with the last part, this gives a convergent, first quadrant

spectral sequence, )
"By = HP (U, HI(A)) = HP'(U, A).

This is the Cech-to-Sheaf Cohomology Spectral Sequence. In particular, conclude the existence of

monomorphic abutment maps, §
H" (M A) > H (U, A).
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as well as abutment maps,
H™(U,A) - H(U4, H"(A)).

(e)(The Colimit of Cech Cohomology with Respect to Refinement) Since Cech complexes are
compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy,
the induced refinement maps on Cech cohomology are independent of the choice of refinement. Use
this to define a directed system of Cech cohomologies. Denote the colimit of this direct system as

follows, . .
H*(U,-) = ﬁolimH’(ﬂ, -).

60‘17(]

Prove that this extends uniquely to a cohomological d-functor such that for every open covering
(U, L), the induced sequence of natural transformations,

>e|iliJ : ((HT(LLv _))m (5T)T) - ((ﬁT(U? _))m (6r)r)a

is a natural transformation of cohomological d-functors. Repeat the steps above to deduce the
existence of a unique convergent, first quadrant spectral sequence,

TEY = HY(U,H(A)) = HP (U, A),
such that for every open covering (U, 4l), the natural maps
*[is - HP (U, HI(A)) > HP(U, HA(A))

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of
monomorphic abutment maps

H"(U,A) - H"(U,A)

as well as abutment maps )
HP (U, A) > HO(U, 1 (A)),

Use the first abutment maps to define subpresheaves #7(A) of H"(A) by V = H"(V, A).

(f)(Reduction of the Spectral Sequence; H'(U, A) equals H!(U, A)) For every r > 0, prove that the
associated sheaf of H"(A) is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of
sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude
that HO(U,H"(A)) is zero. In particular, conclude that the natural abutment map,

HY(U,A) - HY(U,A)

is an isomorphism. Thus, also H1(A) - H1(A) is an isomorphism. Use this to produce a “long
exact sequence of low degree terms” of the spectral sequence,

0 H(U, A) - H*(U, A) - H' (U, H'(A)) > H3(U, A).

(g)(Sheaves that Are Cech-Acyclic for “Enough” Covers are Acyclic for Sheaf Cohomology) Let
B c 7x be a basis that is stable for finite intersection. For every open U in B, let Covy be a

103


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

collection of open coverings of U by sets in B such that Covy is cofinal with respect to refinement
in 0, p. Let A be such that for every U in B, for every (U,4) in Covy, for every r >0, H"(4, A) is
zero. Prove that H"(U, A) is zero. Use the spectral sequence to inductively prove that for every
r >0, H'(A)(U) is zero, H"(U, A) is zero and H"(A)(U) is zero. Conclude that for every open
covering (X, : 0 - B), the Cech-to-Sheaf Cohomology Spectral Sequence relative to 2 degenerates
to isomorphisms

H(0,A) - H"(X, A).

If you are an algebraic geometer, let (X, Ox) be a separated scheme, let A =11 = Oy, let B be the
basis of open affine subsets, let Covy be the collection of basic open affine coverings, and let A be
a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U, 1) of an affine
scheme, for every quasi-coherent sheaf A, H" (4, A) is zero for all 7 >0 (this is essentially exactness
of the Koszul cochain complex for a regular sequence, combined with commutation with colimits).
Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine
scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology
is computed as Cech cohomology of any open affine covering.

A Propositional calculus

The language of category theory uses the language of classes. The most common formulation of
class theory in pure mathematics is a second-order theory built on top of the first-order theory of
predicate calculus and Zermelo — Fraenkel set theory.

Every formal language has an alphabet of symbols, A. The Kleene star A* of the alphabet A is
the set of all strings of elements of A, i.e., the elements of A* are those ordered pairs whose first
entry is a nonnegative (true) integer n, the length of the string, and whose second entry is itself
an ordered n-tuple of elements of A (sometimes called a literal). Thus, for every nonempty set A,
the first projection is a surjective function from A* to the set of all nonnegative integers whose
fiber over each nonnegative integer n is (naturally bijective to) the set A of all ordered n-tuples
of elements of A.

Every formal language also has a specified subset of A* whose elements are called well-formed
formulas. In formalizing mathematics, a formal language is usually defined to be an ordered pair
of an alphabet A and of this subset of A*. Most often this subset is specified by a subset of
atomic strings and a collection of production rules for producing new well-formed formulas from
existing well-formed formulas. Then the well-formed formulas are all strings obtained by iteratively
applying the production rules to the atomic strings (this is formalized mathematically using the
Chomsky hierarchy, automata, the Chomsky-Schiitzenberger theorem, etc.).

In the formal language for propositional logic, the alphabet includes one symbol for the propositional
variable as well as the following symbols for the usual logical connectives (we use the pipe to separate
items in a list).

ple=l=1-lnrlv]<eI|(])
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When immediately preceded and succeeded by symbols other than p, the string p is p;, and, for
every (true) positive integer n, the concatenated string p,, * p is p,.1. Thus, the alphabet represents
denumerably many

A string in propositional logic is a well-formed formula (called a proposition) if and only if it can
be obtained, starting from propositional variables p,, for all (true) positive integers n, by iterated
application of the following production rules. For all well-formed formulas f and g, also the following
are well-formed formulas:

NN =@ 1= @)= AW ) v(g)

The alphabet of predicate calculus also includes a symbol ¢ for a term variable. As with the
propositional variables, when preceded and succeded by symbols other than ¢, the string ¢ is ¢y,
and, for every (true) positive integer n, the concatenated string t, =t is t,,;. The alphabet also
includes a symbol — the comma “,” — for separating term variables in a list. [HERE]

that are certain finite strings of symbols from the alphabet. In predicate calculus, there are
symbols that allow to produce wvariables. Every well-formed formula, or predicate, in predicate
calculus has a specified set of free variables whose number is a nonnegative integer called the arity.
Every predicat also has a specified set of bound variables, each bound by precisely one quantifier
(V or 3) and distinct from all free variables of the predicate. There is also a deductive system of
axioms and inference rules that iteratively produce all theorems of Zermelo — Fraenkel set theory.
Often one thinks of theorems as well-formed formulas for a second formal language structure on

the same alphabet.
The alphabet of predicate calculus includes the usual logical connectives

Many strings of elements from the alphabet are not well-formed formulas. The well-formed formu-
las are those that are obtained by iteratively applying the production rules of the formal language
to the list of atomic strings. The alphabet of zeroth-order propositional calculus includes a (count-
ably enumerated) list of propositional variables, i.e., py, pa, etc. It is common to have only one
propositional symbol in the alphabet, say p, which when repeated consecutively gives all other
propositional variables, e.g., repeated once p is p;, repeated twice pp is ps, repeated three times
ppp is ps, etc. The production rules of propositional calculus are as follows: every propositional
variable is a well-formed formula, and for all well-formed formulas f and g

With the usual (i.e., intended) meaning of the logical connectives, the well-formed formulas are
precisely those strings of elements from the alphabet that have an unambiguous (Boolean) value
of true, T, or false, 1, for each model, i.e., for each assignment to each propositional variable of a
(Boolean) value of T or L.

This formal language becomes a Hilbert system by introducing a second list of production rules —
called azioms (if they have arity 0) and inference rules (if they have arity > 0) — that are sound
for the (intended) models: i.e., for every model, every inference rule preserves the set of those
well-formed formulas that take the value T on that model (when we give each logical connective
its intended meaning). One common Hilbert system, the Lukasieweicz system, is obtained by first
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adopting modus ponens, i.e., the production rule that associates to each pair of well-formed formulas
of the form f and (f) = (g) (that both take the value T for the model) the well-formed formula
g (this also takes the value T for the model, for the intended interpretation of =, so that modus
ponens is sound). In symbols, this inference rule is as follows.

Modus Ponens for f and g. f,(f) = (9)+g

We also have three additional axiom schemata for the Lukasieweicz system (where f, g and h are
substituted with all triples of well-formed formulas, whether or not those formulas take the value
T for a particular model).

L1 for f and g. + (f) = ((9) = (f))

L2 for f, g and h. ~ ((f) = ((9) = (1)) = ((f) = (9)) = ((/) = (h)))
L3 for f and g.+ ((=(f)) = (=(9))) = ((9) = (1))

Since we are also using other logical connectives than just = and -, we add as axioms the definitions
of those logical connectives in terms of = and -.

Conjunction. +-((f) = (=(g9))) = ((f) A (9))

= ()~ (9)) = ~((f) = (=(9)))
Disjunction. + ((=(f)) = (9)) = ((f) v (9))

= (v (9) = ((=(f) = (9))
Reverse Implication. + ((f) = (9)) = ((9) < (f)),

= ((9) = (1) = ((f) = (9))
Logical Equivalence. + (((f) = (9)) A ((9) = (/) = ((f) = (9))
= ((f) < (9)) = (((/) = (9) » ((9) = (/)))

A theorem of this Hilbert system is a well-formed formula obtained by iteratively applying modus
ponens beginning with the axioms above. For some theorems, the iterative procedure is fairly short.
For instance, for every well-formed formula f, substituting f for g in Axiom L1 gives the following.

L1 for fand f. ~(f)=((f)=(f))

Next, substituting (f) = (f) for g in Axiom L1 gives the following.

L1 for f and (f) = (f).-+ (f) = ((f) = (/) = (/)

Substitute (f) = (f) for g and substitute f for h in Axiom L2 to get the following.

L2 for f, (f) = (f) and f.+ ((f) = ((f) = (/) = (/) = (/) = (/) = () = (/) = (/)
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Apply Modus Ponens to the previous two well-formed formulas gives the following.

Modus Ponens for L1f7(f)=>(f) and L2f7(f):>(f)7f. = ((f) = ((f) = (f))) = ((f) = (f))

Finally, apply Modus Ponens once more to the first well-formed formula and to this last well-formed

formula gives the following.
Modus Ponens. + (f) = (f)

Thus, using the syntactic procedure explained above, we have deduced the statement (f) = (f) for
every well-formed formula f. It is standard to define T to be this well-formed formula, (f) = (f).
Then define 1 to be the well-formed formula —(T).

Of course other theorems have more content and longer proofs. For instance, basic theorems about
the nonnegative integers (via some formalization of Peano arithmetic) and finite sets give the
Deduction Theorem: for every finite collection A = {Ay,..., A,} of well-formed formulas, if there is
a finite sequence of applications of the inference rules to the well-formed formulas in A and to the
Lukasieweicz axioms that leads to a proof of the well-formed formula B, then we also have a finite
sequence of applications of the inference rules to the Lukasieweicz axioms that leads to a proof of
the well-formed formula

(A1 A (Ao A (o (Api AAL) L)) = B

Conversely, Modus Ponens applied to A and this well-formed formula gives B, so that the Deduction
Theorem becomes an “if and only if” statement.

The theory of the Lukasieweicz deductive system is the set of all theorems, considered as a
(nonempty, proper) subset of the set of all well-formed formulas. By Post’s completeness theo-
rem, a well-formed formula is a theorem if and only if, for every model, the well-formed formula
takes the value T. (For beginning mathematics students, a well-formed formula is a theorem if and
only if it always gives the value T for every row in the truth table).

B Predicate calculus

First-order predicate calculus extends the propositional variables to predicate variables of arbitrary
arity (a nonnegative integer), where the propositional variables are predicate variables of arity 0. A
predicate variable of arity n immediately followed by an ordered n-tuple of term variables enclosed
by parentheses is an atomic predicate. The variables occurring in the ordered n-tuple are the free
variables of the predicate. The number of distinct free variables is the arity of the predicate. For
a propositional variable p,, of arity 0, by convention we write p, as the predicate rather than p,,().
We also have one special predicate of arity 2, equality =. This is always written in infix notation,
i.e., we always write t = s rather than = (¢,s). Every atomic predicate is a well-formed formula of
predicate calculus.

We also add the universal quantifier, V, and the existential quantifier, 3, with their usual syntax:
each of these quantifiers is immediately followed by a term variable which is then followed by a

107


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

well-formed formula (of arbitrary arity) that may, or may not, include the term variable among
its list of free variables, i.e., 3s f and Vs f, but must never include the term variable among the
bound variables of f. The bound variables of this new predicate is the set of all bound variables
of f together with s. The free variables of the new predicate is the set of all free variables of f
different from s.

One way to prevent the bound term variable s from being among the bound variables of f is to use
variable substitution. For each term variable t, for each term variable u, for each predicate f such
that either ¢ does not occur in f or such that u is not a bound variable of f, there is a predicate
f[u/t], by replacing each instance of ¢ in f with u. The free variables of f[u/t] are obtained from
the free variables of f by replacing ¢ by u (if ¢ occurs in the list of free variables of f), and the
bound variables of f[u/t] are obtained from bound variables of f by replacing ¢ by u (if ¢ occurs
in the list of bound variables of f).

Similarly, when combining well-formed formulas using the logical connectives, we substitute term
variables bounded by quantifiers so that each bound variable of one constituent well-formed formula
in the connective is not a variable occurring in the other constituent well-formed formula. Then the
free variables of the connective are those in the union of the sets of free variables of the constituents,
and likewise for the set of bound variables of the constituents (which are now disjoint sets). The
predicates are all of the well-formed formulas produced by these production rules. Each predicate
has an arity n that is a nonnegative integer together with a set of n free variables, and a set of bound
variables. Using variable substitution, we insure that no free variable is also a bound variable, and
every bound variable is bound precisely once in the predicate.

For all predicates f and g, we add the following axioms.
Universal Generalization. ~ f[t/s] = (Yu f[u/s])

Here s is any term variable that is not a bound variable of f, and ¢ and u are term variables
that first appear at the application of universal generalization (i.e., for a new term variable ¢ not
mentioned in any earlier step of a derivation, if we can derive f[t/s], then we deduce that f[u/s]
holds for all u).

Universal Instantiation. +~ (Vu f[u/s]) = f[t/s]

Here s and t are term variables that are not bound variables of f, and u is a term variable that
does not occur in f.

Existential Generalization. + p[t/s] = (Ju f[u/s])

Here s and ¢ are term variables that are not bound variables of f, and u is a term variable that
first appears at the application of existential generalization.

Existential Instantiation. + (Ju f[u/s]) = f[t/s]

Here s is a term variable that is not a bound variable of f, and v and ¢ are term variables that first
appear at the application of existential instantiation.
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For every predicate f, and for all term variables s, t and u, we add the following axioms for the
arity-2 predicate of equality.

Substitution. + (t =u) = (f[t/s] < f[u/s])

Reflexivity. —t=t
Transitivity. - ((t=u) A (u=0v)) = (t=v)
Symmetry. + (t=u) = (u=1)
Here s is a free variable of f, and ¢t and u are not bound variables of f.

For predicate calculus, a model consists of a nonempty set, called a universe, together with an
assignment to each predicate variable of arity n of a true / false valued function (Boolean function)
on the n-fold self-product of the universe. For this model, we use the usual (i.e., intended) meaning
for the equality symbol, the logical connectives, and the quantifiers. For the well-formed formulas
of arity 0, there is a well-defined true / false value of the well-formed formula for each model.
For well-formed formulas of higher arity, they are considered true if and only if they are true
once all free variables are universally quantified (this corresponds to the inference rule of universal
generalization). The axioms and inference rules of first-order predicate calculus are sound for these
models with the intended interpretation of the logical symbols (and assuming consistency of some
version of Peano arithmetic). By Godel’s Completeness Theorem, a well-formed formula of arity
0 is a theorem produced by the axioms and inference rules of predicate calculus if and only if the
Boolean value of the well-formed formula is true for every model (Godel’s Completeness Theorem
assumes consistency of an appropriate fragment of Zermelo-Fraenkel set theory).

C Zermelo-Fraenkel axioms

The only additional symbol in Zermelo-Fraenkel set theory is an arity-2 predicate written in infix
notation, x € y, read “z is an element of y” or “y contains x as an element.” Adding this predicate,
the production rules produce the well-formed formulas of set theory, i.e., the Zermelo — Fraenkel
predicates. To the axioms and inference rules of predicate calculus, we also add the following
axioms of Zermelo — Fraenkel set theory.

Axiom C.1 (Axiom of Extensionality). For every set a and for every set b, the set a equals the
set b if and only if, for every set x, the set x is an element of a if and only if z is an element of b.

Va Vb (Vo ((xea) < (xeb))) <= (a=b)

Axiom C.2 (Axiom of Regularity). For every set a such that there exists a set x that is an element
of a, there exists an element y of a such that every element of y is not an element of a.

109


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

Va ((3z (zea)) = (Fy (yea)A(Vz (zey) = =(z€a))))

Together with the other axioms, the axiom of regularity implies a strong form of foundation: there
does not exist a sequence of sets (@, )nez,, such that for every element n of Z,, the set a,.1 is an
element of the set a, (every formalization of this requires first formalizing natural numbers).

The next axiom is sometimes also called the “Axiom of Separation.” It is an axiom schema: there
is one axiom for each predicate f(s,t) in the first-order language of set theory together with an
ordered pair (s,t) of (all of) the free variables of the predicate.

Axiom C.3 (Axiom Schema of Specification). For every set b, for every set ¢, there exists a set a
whose elements are precisely those elements x of b such that the predicate f(c,x) is true.

Vb Ve Ja(Vr ((xea) < ((xeb) Ap(cx)))

In particular, assuming that the universe of sets has at least one member (which we do assume),
for the predicate p(s,t) of s equals s and t does not equal t, for each set a = @ produced by the
axiom (for any set b and for any set c¢), for every set x, the set = is not an element of @. The
Axiom of Extensionality guarantees that this empty set is unique. So (together with the tacit
axiom that the universe of sets has at least one member), the Axiom Schema of Specification gives
the existence of an empty set.

Please note, we certainly do need to guard the quantifier of x in the Axiom Schema of Specification,
restricting x to an element of the specified set b, to avoid asserting that there exists a “set whose
elements are all sets that do not include themselves as an element” (which leads to Russell’s
Paradox about whether the set is an element of itself). Also note, we do not claim that we can
recover the predicate p(s,t) from the subset of b. For one thing, different predicates can be logically
equivalent, so the best we could hope for is to recover the truth-valued function whose domain equals
b determined by the predicate. A subset a of b is equivalent to such a truth-valued function, and
every such subset arises from substitution of a for s in the specific predicate p: ¢t € s. So this
axiom schema is producing “every” subset that it should. Even though predicates are specified via
a finite string of symbols from an (at most) countable alphabet, this certainly does not imply that
we have (at most) countably many distinct subsets of b (in a given model of Zermelo — Fraenkel
set theory), since the subset ¢ can range freely. As Cantor proved, for every set b, there does not
exist a surjective function from b to the set of all subsets of b.

Axiom C.4 (Axiom of Pairing). For every set a, for every set b, there exists a set {a,b} whose
elements are precisely a and b.

Va Vb Ic Vo ((xec) < ((x=a)v(x=0)))

Please note, for every set a and for every set b, the set {a,b} equals the singleton set {a} if (and
only if) b equals a. Thus, this axiom also gives the existence of the Kuratowski ordered pair,
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(a,b) := {{a},{a,b}}, by applying the axiom to the singleton set {a} and the doubleton set {a,b}.
By the Axiom of Extensionality, for every set a, for every set b, for every set a’, for every set ¥/, the
ordered pair (a,b) equals the ordered pair (a’,?") if and only if both a equals o’ and b equals b'.

Axiom C.5 (Axiom of Union). For every set a, there exists a set b such that, for every set z, the
set x is an element of b if and only if there exists an element y of a such that x is an element of y.

Va 3b Vr ((zeb) « (Fy ((rey) A (yea))))

By the Axiom of Extensionality, the union set produced by this axiom is unique. In particular, for
every set a, for every set b, the Axiom of Union applied to the set {a,b} guarantees the existence
of a set, denoted a U b, such that, for every set x, the set x is an element of a U b if (and only if)
either x is an element of a or x is an element of b (or both).

Similar to the Axiom Schema of Specification, the next axiom schema has one axiom for each
predicate f(x,b,y) in the first-order language of set theory together with an ordered triple (x,b,y)
of (all of) the free variables of the predicate.

Axiom C.6 (Axiom Schema of Replacement). For every set b and for every set d such that, for
every element z of d there exists a unique set y satisfying f(x,b,y), then there exists a set ¢ whose
elements are precisely those sets y such that there exists an element x of d such that f(x,b,y)
holds.

Vo Vd ((Vx ((zed) = (3y p(z,b,y)) A (Vz Yw((p(x,b,2) Ap(x,b,w)) = (y=2)))) =
(e vy (Y ec) = 3z (zed) Ap(x,b,y')))))

Consider the predicate f with an ordered triple of free variables (x,b,y): the set y equals (z,b),
i.e., yequals {{z},{z,b}}. By the Axiom of Pairing, for every set a, for every set b, and for every
element x of a, there exists a unique set y satisfying the predicate p(z,b,y). Thus, the Axiom
Schema of Replacement guarantees the existence of a set, denoted a x {b}, such that for every set
y, the set y is an element of a x {b} if (and only if) there exists an element x of a such that y equals
(z,b). Moreover, by the Axiom of Extensionality, this set a x {b} is unique.

Next, consider the predicate f’ with an ordered triple of free variables (x',b',y"): y’ equals b’ x {z'}.
By the previous paragraph, for every set a’, for every set a, and for every element x of a’, there exists
a unique set a x {x} satisfying the predicate f’(z’,a,y"). Thus, the Axiom Schema of Replacement
and the Axiom of Union guarantees the existence of a set, denoted a x a’, such that for every set
x" the set z” is an element of a x a’ if (and only if) there exists an element x of a and there exists
an element x’ of a’ such that 2’ equals (a,a’). Therefore, for every set a and for every set a’, the
Axiom Schema of Replacement (together with the earlier axioms) guarantees the existence of a
Cartesian product set a x a/. By the Axiom of Extensionality, the Cartesian product set a x a’ is
unique.
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This, finally, leads to the essential meaning of the Axiom Schema of Replacement. For every
ordered triple (b,d, g(z, z,y)) of a set b, of a domain set d, and of a “function” predicate g(z, z,y)
for (b,d), i.e., such that for every element z of d there exists a unique set y such that g(x,b,y)
holds, there exists an image set ¢ for (b,d,g(z,z,y)), and also there exists a Cartesian product
set d x ¢. Finally, by the Axiom Schema of Specification, the predicate g(z,z,y) and the set b
(substituted for z) determines a subset graph(g(z,b,y)) of d x ¢ that equals the graph of a unique
set function from d onto c. Therefore, for every domain set d, for every “parameter” set b, and for
every predicate g(x,b,y) that determines a function in the “traditional” sense on the domain set d,
there exists a unique image set ¢ = codgy, and a unique surjective set function funcgy , from d to
codgp 4 such that for every element x of d, for every set y, the predicate g(x,b,y) holds if and only
if both y is an element of codg, and y equals the value of funcyy, on x. Thus, to every function
in the “traditional” sense on the domain set d, there exists a function in the set-theoretical sense
of a subset of a Cartesian product d x ¢ satisfying the “vertical line test.”

As with the Axiom Schema of Specification, the Axiom Schema of Replacement is producing all
the set-theoretical functions from d to ¢, since we can let g(x,b,y) be the predicate that z is an
element of d, that y is an element of ¢, that (x,y) is an element of b, and that b is a subset of
¢ x d such that for every element x of d, there exists a unique element y of ¢ for which (z,y) is an
element of b (i.e., b is a subset of ¢ x d that satisfies the “vertical line test”).

Axiom C.7 (Axiom of Infinity). There exists a set Zs such that (i) the empty set, &, is one
element of Zq, such that (ii) for every element n € Zo the set nu {n} is an element in Z,g, and
such that (iii) the set Zyq is a subset of every set that satisfies both (i) and (ii).

3z ((Bez)A(Vn ((nez)=(nu{n}ez))))A
(V2" (@) A (Vn' ((n"€2) = (n"u{n'} €2)))) = (Vn" (n" € 2) = (n" € 2))))

Consider the predicate g(z,b,y) with three free variables: b equals b and y equals z U {«}. This is
a predicate as in the Axiom Schema of Replacement, i.e., it can be used to define a set function,
succ (for “successor”), in the “traditional” sense for each specification of domain set. Since the
empty set contains no element {n}, the empty set can never be an element of the image set of such
a function. The empty set can be an element of the domain set, i.e., {@} can be a subset of the
domain that is disjoint from the image set. The Axiom of Infinity guarantees the existence of a
domain set for this function such that the domain set equals the disjoint union of the image set
and the singleton set {&}.

For each such domain set, the intersection of all subsets of the domain set satisfying these conditions
is a unique subset, by the Axiom Schema of Specification and the Axiom of Extensionality. So,
up to replacing any domain set as above by this unique subset, there exists a unique domain set
Zsq for succ that equals the disjoint union of the image set and the singleton set {@}, and such
that every domain set satisfying these conditions contains Z.o as a subset. For every model of
Zermelo — Fraenkel set theory, the set Z.q, the element @& of Z, (interpreted as the element 0), and
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the associated set function succ from Z,y to Zs, is a model of the (second order) axiom schema
of Peano arithmetic. So the Axiom of Infinity inteprets Peano arithmetic within Zermelo-Fraenkel
set theory. This addresses the difficulty, mentioned earlier, that many of the metamathematical
notions about this axiomatization of set theory implicitly use some formalization of the natural
numbers.

Axiom C.8 (Axiom of Power Sets). For every set b, there exists a set, denoted P(b), such that
for every set a, the set a is an element of P(b) if and only if the set a is a subset of b, i.e., if and
only if, for every set x, if x is an element of a then a is an element of b.

Vb 30 Va ((aeb') & (Vo ((vea) = (zeb))))

Really the axiom of power sets is only the first in a continuing list of axioms (e.g., “large cardinal”
axioms) considered by set theorists that allow more and more of the operations on sets that are
relevant in both mathematics and metamathematics.

The following axiom, the Axiom of Choice, is not part of the Zermelo — Fraenkel axiom system,
but it is accepted by most current mathematicians. Assuming the consistency of the Zermelo —
Fraenkel axiom system, Cohen and Godel proved the independence of the Axiom of Choice: the
Zermelo — Fraenkel axiom system remains consistent if we add the Axiom of Choice, and the
Zermelo — Fraenkel axiom system remains consistent if we add the negation of the Axiom of Choice
(obviously it is not consistent if we add both simultaneously).

Axiom C.9 (Axiom of Choice). For every set a, for every set b, for every set ¢, if ¢ is a subset of
ax b such that for every element y of b there exists an element (z,y) of ¢, then there exists a subset
d of ¢ such that for every element y of b there exists a unique element (z,y) of d.

Va Vb Ve (Vy ((yebd) = (Fz ((z,y) €c)))) =
(3d (Vw ((web) = ((3z ((z,w) ed)) A (Vv Yu ((((v,w) € d) A ((u,w) €d)) = (v=1))))))))

As discussed in all books on set theory, in the presence of the Zermelo — Fraenkel axioms, the Axiom
of Choice is equivalent to the Well-Order Principle (every set has a well-order), it is equivalent to
Zorn’s lemma, etc.

D Classes

The definition of category uses the notion of a class. Classes can be axiomatized as a first-order
theory, as done by von Neumann — Bernays — Godel or by Morse — Kelley. The approach here is a
second-order theory using the metalanguage of (first-order) Zermelo — Fraenkel set theory. This can
be formalized, for instance, by using a Gédel numbering of the well-formed formulas of (first-order)
Zermelo — Fraenkel set theory, but we prefer the verbose alternative of writing out the predicates
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of Zermelo — Fraenkel set theory. The classes produced in this way are the parametrically definable
classes. For every model of Zermelo — Fraenkel set theory, the parameterically definable classes
in that model form a model of class theory (the model most often intended in analysis, algebra,
geometry, and topology). In particular, the (Kuratowski) ordered pair (a,b) := {{a}, {a,b}} converts
predicates of higher arity into predicates of lower arity, i.e., every predicate p(ty,ts, ..., 1, 1,t,) of
arity n > 1 (with n a “true” natural number) in the first-order language of Zermelo — Fraenkel set
theory converts to the following predicate p(t) of arity 1 with unique free variable ¢,

3ty Ity ... Tty Ity (B, (B (b tn) <)) = 8) AD(Er, tay o s tn)-

Definition D.1 (Parametrically definable classes). For every ordered pair ((p(s,t),a), (p'(s',t"),a’))
of (first-order, Zermelo — Fraenkel) predicates p, respectively p’, with a specified ordered pair (s, t),
resp. (s',t"), of (all of) its free variables and of a set a, resp. o', the ordered pair (p(s,t),a) is
Lindenbaum-Tarski equivalent to (p(s’,t"),a’) if (and only if)

Vb (p'(d’,b) < p(a,b)).

Because logical equivalence is reflexive, transitive and symmetric, also Lindenbaum-Tarski equiv-
alence is reflexive, transitive and symmetric. A parametrically definable class is a Lindenbaum-
Tarski equivalence class [p(s,t),a] (i.e., we are extending the usual equality predicate a = a’ to a
predicate [p(s,t),a] = [p'(s',t'), a’] via Lindenbaum-Tarski equivalence). For every class [p(s,t),a],
a set b is a member of [p(s,t),a] if (and only if) p(a,bd) holds (i.e., we are extending the set mem-
bership predicate b € a to a predicate of membership of b in the class [p(s,t),a] as above). For
every class C, a class B is a subclass of C if (and only if) every member of B is a member of C
(i.e., we are extending the subset predicate b C ¢ to a subclass predicate).

With this definition, we have a variant of extensionality for classes.

Lemma D.2 (Extensionality). For every class B, for every class B’, the class B equals the class
B’ if and only if, for every set x, the set x is a member of B if and only if x is a member of B’.

Proof. This is just a restatement of Lindenbaum-Tarski equivalence. O

By construction we also have the axiom of class formation.

Lemma D.3 (Class Formation). For every (first-order, Zermelo — Fraenkel) predicate p(s,t) with
an ordered pair (s,t) of (all of) its free variables, for every set a, there exists a unique class C such
that, for every set b, the set b is a member of C if and only if p(a,b) holds.

Proof. The class C := [p(s,t),a] is one such class. By the previous lemma, this is unique. ]

In particular, we have a universal class.

Lemma D.4. There exists a unique class V such that every set is a member of V.
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Proof. Let p(s,t) be tautological, e.g., (s =s) A (t =t). Then for every set a, say a = @, every set
is a member of the class V:=[(s =s) A (t =t),a]. By Lemma [D.2] this class is unique. O

Also, we have a class for each set (including for the empty set). In most axiomatizations of class
theory, each set is identified with its associated class (but we prefer not to do this).

Lemma D.5. For every set a, there exists a unique class whose members are the elements of a. In
particular, for a equal to the empty set, the associated class has no members. Two sets are equal if
and only if their associated classes are equal.

Proof. The members of the class [t € s,a] are precisely the sets the elements of a. By Lemma
[D.2] this class is unique. By the Axiom of Extensionality, two sets are equal if and only if their
associated classes are equal. O

We also have a variant for classes of the axiom of foundation.

Lemma D.6 (Foundation). For every class C, there does not exist a sequence (ap)nez., of members
of C such that, for every element n of Zsq, the set a,,1 s an element of the set a,. In particular,
for every class C that has at least one member, there exists a member a of C such that for every
element of a, that element is not a member of C.

Proof. By foundation for Zermelo — Fraenkel set theory, there does not exist any sequence (@, )nez.,
of sets such that, for every element n of Z., the set a,,; is an element of the set a,. Thus, there
exists no such sequence satisfying the additional condition that every set a,, is a member of C.

For every class C that has a member, there exists a set ay that is a member of C. If there exists an
element a; of ag that is also a member of C, then this gives a finite sequence (ag, a;) of members
of C such that a; is an element of ag. If there exists an element ay of a; that is also a member
of C, then this gives a finite sequence (ag, a;,as) of member of C such that a; is an element of ag
and as is an element of a;. Continuing inductively, either there exists a sequence (ag,ay,...,a,)
of members of C such that a; is an element of ag, etc., a, is an element of a,,_; and every element
of a, is not a member of C, or there exists a sequence (a,)nez,, of members of C such that, for
every element n of Z,, the member a,,; is an element of a,,. This second case is forbidden by the
previous paragraph. Thus, there exists a member a, of C such that every element of a, is not a
member of C. ]

The axioms in the previous section define Zermelo — Fraenkel set theory, i.e., ZF, but do not include
the Axiom of Choice that gives ZFC set theory. The lemmas above verify the axioms of NBG, von
Neumman — Bernays — Godel class theory, for the model of parameterically definable classes in each
model of ZF set theory, except for the Axiom of Limitation of Size, which is essentially a global
analogue of the Axiom of Choice.

Of course there are many additional results about classes. Many of these are the analogues for
classes of well-known results for sets.
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Lemma D.7. For every class B, for every class B’, the class B equals the class B’ if and only if
both B 1s a subclass of B and B’ is a subclass of B.

Proof. Of course if B equals B’, then every member of B is a member of B’, i.e.; B is a subclass
of B/, and every member of B’ is a member of B, i.e., B’ is a subclass of B.

Conversely, if both B is a subclass of B’ and B’ is a subclass of B, then for every set x that is a

member of B, also x is a member of B’, and for every set x that is a member of B’, also x is a
member of B. By Lemma the class B equals the class B’. O

Definition D.8. The class that has every set as a member is the von Neumann class, sometimes
called the von Neumann universe or the universal class, denoted V or obget. For every set a,
the class that has as members precisely the elements of a is the class of the set a, denoted Cl,,.

Lemma D.9. The von Neumann class V is the unique class such that, for every class B, the class
B is a subclass of V. For every set a, the class Cl, is the unique class such that, for every class
B, the class Cl, is a subclass of B if and only if x is a member of B for every element x of a.

Proof. By definition of V, every set is a member of V. Thus, every class is a subclass of V. For
every class B, if also V is a subclass of B, then B equals V by Lemma [D.7, Thus, if every class is
a subclass of B, so that V is a subclass of B in particular, then B equals V. Therefore V is the
unique class such that every class is a subclass of V.

For every set a, for every class B, by the definition of subclass, the class Cl, is a subclass of B if
and only if, for every set x that is a member of Cl,, also x is a member of B. By the definition of
Cl,, this holds if and only if, for every set x that is an element of a, also x is a member of B. [

Lemma D.10. For every class B, for every class B', there exists a unique class B A B’ whose
members are those sets that are simultaneously members of B and members of B'. The subclasses
of B AB’ are precisely the classes that are simultaneously subclasses of both B and B'. For every
ordered pair (b,0") of sets, the class Cly A Cly equals Clyny . Finally, for every class B there exists
a class NB whose members are all sets x such that for every member b of B, the set x is an element
of b. In particular, for every set c, the class NCl, equals Clg..

Proof. For every class B = [p(s,t),a], for every class B’ = [p/(s',t"),a’] the class [p”(s",t"), (a,a’)]
for the following predicate has as members precisely those sets that are simultaneously members of
B and members of B'.

s 38" (p(s, ") A p' (s, t")) A (8" = (s,5")).

By Lemmal[D.2] the class BAB’ = [p”(s”,t"), (a,a’)] is the unique class whose members are precisely
those sets that are simultaneously members of B and members of B’.

By definition, a class C is a subclass of B A B’ if and only if, for every member z of C, also x is
a member of B A B’. By the definition of B A B/, for every set x, a set x is a member of B A B’ if
and only if both z is a member of B and z is a member of B’. Thus, C is a subclass of B A B’ if
and only if, for every member z of C, both z is a member of B and x is a member of B’. By the
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definition of subclass, C is a subclass of B A B’ if and only if both C is a subclass of B and C is a
subclass of B'.

For every ordered pair (b,") of sets, by the definition of Cl, for every set x, the set x is a member
of Cl, if and only if x is an element of b, and the set x is a member of Cl, if and only if x is an
element of ¢'. Thus, for every set z, the set x is a member of Cl, A Cly if and only if both z is an
element of b and x is an element of b’. By the definition of intersection, for every set x, the set x is
both an element of b and an element of ¢’ if and only if = is an element of bnd’. Thus, again using
the definition of CI, for every set z, the set x is a member of Cl, A Cl, if and only z is a member
of Clyy. By Lemma [D.2] the class Cl, A Cly equals Clyqy.

Finally, for every class B = [p(s,t),a], for the class NB := [Vt (p(s,t) = (' €t)), a] with the ordered
pair of free variables (s,t'), for every set x, the set x is a member of NB if and only if, for every
member b of B, the set z is an element of b. By Lemma [D.2] the class nB is the unique class such
that, for every set x, the set x is a member of NB if and only if, for every member b of B, the set
x is an element of b. In particular, for every set ¢, the class NCl, equals Clg.. O

Lemma D.11. For every class B, for every class B’, there exists a unique class B v B’ whose
members are those sets that are either members of B or members of B’ (or both). The classes that
have Bv B’ as a subclass are precisely the classes that both have B as a subclass and have B’ as a
subclass. For every ordered pair (b,b") of sets, the class Cl, v Cly equals Cly,y. Finally, for every
class B there exists a class uUB whose members are all sets x such that there exists a member b of
B with x an element of b. In particular, for every set c, the class UCl. equals Cl..

Proof. For every class B = [p(s,t),a], for every class B’ = [p/(s’,t'),a’], the class [p”(s",t"),a"]
with " = (a,a”) and with the following predicate has as members precisely those sets that are
either members of B or members of B’.

Js 3s" (p(s, ")y vp' (s, ")) A (s" = (s,5)).

By Lemma the class BVB' = [p”(s",t"), (a,a’)] is the unique class whose members are precisely
those sets that are either members of B or members of B’.

By definition, a class C has B v B’ as a subclass if and only if, for every member x of B v B/, also
x is a member of C. By the definition of B v B/, for every set z, a set x is a member of B v B’ if
and only if either z is a member of B or x is a member of B’. Thus, B A B’ is a subclass of C if
and only if, both every member = of B is a member of C and every member = of B’ is a member
of C. By the definition of subclass, B A B’ is a subclass of C if and only if both B is a subclass of
C and B’ is a subclass of C.

For every ordered pair (b,") of sets, by the definition of Cl, for every set x, the set x is a member
of Cl, if and only if x is an element of b, and the set x is a member of Cl if and only if x is an
element of b’. Thus, for every set x, the set x is a member of Cl, v Cly if and only if either x is an
element of b or x is an element of b’. By the definition of union, for every set x, the set x is either
an element of b or an element of ¢’ if and only if z is an element of bu b’. Thus, again using the
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definition of CI, for every set x, the set x is a member of Cl, v Cly if and only z is a member of
Clyy. By Lemma the class Cl, v Cly equals Clyy .

Finally, for every class B = [p(s,t),a], for the class UB := [3t (p(s,t) = (¢ € t)), a] with the ordered
pair of free variables (s,t"), for every set x, the set z is a member of UB if and only if there exists
a member b of B that has z as an element. By Lemma [D.2] the class UB is the unique class such
that, for every set x, the set x is a member of UB if and only if there exists a member b of B that
has = as an element. In particular, for every set ¢, the class UCl. equals Cl,.. O

Lemma D.12. For every class B, there exists a unique class -B whose members are those sets
that are not members of B. A class is a subclasses of =B if and only if every member of the class
is not a member of B. The class -(-=B) equals B. For every class B’, both -(B A B’) equals
(-B) v (-B’) and =(B v B’) equals (-B) A (-B’). Also -(nB) equals u(-B), and -(uB) equals
N(=B). For every set b, for every set V', the class Cl, A (=Cly ) equals Clyp .

Proof. For every class B = [p(s,t),a], the members of [-p(s,t),a] are precisely the sets that are
not members of B, and this class is unique by Lemma [D.2]

By definition, a class C is a subclass of =B if and only if, for every member x of C, also x is a
member of -B. By definition, for every set x, the set x is a member of -B if and only if x is not a
member of B. Therefore, C is a subclass of =B if and only if every member z of C is not a member
of B. In particular, a class C is a subclass of —(=B) if and only if every member = of C is not a
member of =B, i.e., if and only if every member z of C is a member of C. By Lemma [D.7] the
class =(-B) equals B.

For every class B = [p(s,t),a] and for every class B’ = [p/(s',t"),a’], since =(p(a,t") np'(a’,t"))
is logically equivalent to (=p(a,t”)) v (=p'(a’,t")), also the class =(B A B’) equals (-B) v (-B’).
Similarly, the class —(B v B’) equals the class (-B) A (-B’).

Since the following two predicates are logically equivalent,

- (3t (xet)Ap(a,t)),

Vi (zet) = -p(a,t),
the class =(UB) equals Nn(-B). Similarly, the class =(nB) equals u(-B).

Finally, for every set b, for every set b/, for every set z, the set x is a member of Cl, A (=Cl) if and

only if both x is an element of b and x is not an element of ¢/, i.e., if and only if x is an element of
b~ 0. Thus, the class Cl, A (=Cly) equals Cly.y by Lemma [D.2 O

Lemma D.13. For every class B, for every class B', there exists a unique class B x B’ whose
members are ordered pairs (b,b") of a member b of B and a member V' of B'. A class is a subclass
of B x B’ if and only if every member of the class is of the form (b,0) for a member b of B and a
member b of B'. For every set ¢, for every set ¢, the class Cl. x Cl. equals Cl .. .
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Proof. For every class B = [p(s,t),a], for every class B’ = [p'(s/,t'),a’], the class [p”(s",t"),a"]
with a” = (a,a") and with the following predicate has as members precisely those sets (b, ") such
that b is a member of B and such that 0’ is a member of B’.

35 35’ 3t 3t (p(s,0) v ' (s, 1)) A (5" = (5,8')) A (17 = (£,1)).

By Lemmal[D.2] the class BxB’ = [p”(s”,t"), (a,a’)] is the unique class whose members are precisely
those sets (b,0") such that b is a member of B and such that b’ is a member of B'.

By definition, a class C is a subclass of B x B’ if and only if, for every member 0" of C is also a
member of B x B’. By the definition of B x B, a set b is a member of B x B’ if and only if b”
equals (b,b") for a member b" of B and for a member b’ of B’. Thus, C is a subclass of B x B’ if
and only if every member of C equals (b,’) for a member b of B and for a member b of B'.

For every set ¢, for every set ¢/, by the definition of Cl, a set is an element of Cl. x Cl. if and only
if the set equals (b,b") for an element b of ¢ and for an element o’ of ¢/, i.e., if and only if the set is
an element of ¢ x ¢/. Therefore, by Lemma the class Cl. x Cl. equals Cl ... O

Lemma D.14. For every class R, there exists a unique subclass rel(R) of R whose members are
those members of R of the form (b,c) for a set b and for a set c. In particular, for every set r,
the class rel(Cl,) is the class of the unique mazimal subset rel(r) of r such that rel(r) is a binary
relation.

Proof. For every class R =[p(s,t),a], the class of the following predicate rel(p)(s,t), the members
of the class [rel(p)(s,t),a] are those members of R of the form (b, c) for a set b and for a set c.

Fu Fv (t=(u,v)) Ap(s, (u,v)).

By Lemma [D.2] this subclass of R is unique.

For every set r, by the Axiom Schema of Specification, there exists a unique subset rel(r) of r
consisting of those elements of r of the form (b, c) for some set b and for some set c¢. By the Axiom
Schema of Replacement, there exists a unique set active(rel(r)) and a unique set image(rel(r)) such
that rel(r) is a subset of active(rel(r)) x image(rel(r)) and each of the two projection functions are
surjective. O

Definition D.15. For every class R, the class R is a class relation if (and only if) the subclass
rel(R) equals R, i.e., if (and only if) every member of R is of the form (b,¢) for a set b and for a
set c.

Lemma D.16. For every class R, for every subclass of R, the subclass is a class relation if and
only if it is a subclass of rel(R). For every class relation R, there exists a unique class relation
RerP whose members are those sets of the form (c,b) such that (b,c) is a member of R. Also there
exists a unique class image(R) whose members are all sets ¢ such that (b,c) is a member of R for
some set b. Similarly, there exists a unique class active(R) = image((R)°PP) whose members are
all sets b such that (b,c) is a member of R for some set c. More generally, for every class relation
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R and for every class B, there exists a unique class R[B] whose members are those sets ¢ such
that there exists a member b of B for which (b,c) is a member of R. Similarly, for every class R
and for every class C, there exists a unique class RoPP[C] whose members are those sets b such
that there exists a member ¢ of C for which (b,c) is a member of R.

Proof. For every class R = [p(s,t),a], the class of the following predicate rel(p)(s,t), the members
of the class [rel(p)(s,t),a] are those members of R of the form (b, c) for a set b and for a set c.

Ju v (¢ = (u,v)) Ap(s, (u,0)).
By Lemma [D.2] this subclass of R is unique.

Similarly, for the following predicate rel(p)°PP(s,t), the members of the class [rel(p)°PP(s,t),a] are
those sets of the form (c,b) such that (b,c) is a member of R.

Ju 30 (1 = (0,0) A p(s, (1,0)).
By Lemma [D.2] this class is unique.

For the following predicate image(rel(p))(s,t), the members of the class [image(rel(p))(s,t),a] are
those sets ¢ such that (b, c) is a member of R for some set b.

Ju p(s, (u,t)).

Similarly, for the following predicate active(rel(p))(s,t), the members of the class [active(rel(p))(s,t),a]
are those sets b such that (b, c¢) is a member of R for some set c.

Jo p(s, (t,v)).
By Lemma [D.2] this class is unique.

For every class R, for every class B, the members of the class image(rel(R)) A B are those sets ¢
such that there exists a member b of B for which (b,¢) is a member of R. By Lemma this
class rel(R)[B] is unique.

Similarly, for every class R, for every class C, the members of the class CAactive(rel(R)) are those
sets b such that there exists a member ¢ of C for which (b, ¢) is a member of R. By Lemma ,
this class [C]rel(R) is unique. O

Lemma D.17. For every class R, for every set b, there exists a unique class Ry, whose members
are those sets ¢ such that (b,c) is a member of R.

Proof. For every class R = [p(s,t),a], for every set b, for following predicate rel(p)(s,t), the
members of the class [rel(p)(s,t), (a,b)] are those sets ¢ such that (b,c) is a member of R.

Fu v (s=(u,v)) Ap(u, (v,t)).

By Lemma [D.2] this subclass of R is unique. O
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Definition D.18. For every class B and for every class C, a subclass R of B x C is a relation
from B to C. In particular, for every class B, a B-class is a relation from B to the von Neumann
class V. For every B-class R, for every member b of B, the fiber class R; of R over b is the class
whose members are all sets ¢ such that (b, c) is a member of R.

Lemma D.19. For every class B, for every B-class R, for every B-class R’, the B-class R equals
R’ if and only if, for every member b of B, the fiber class Ry equals R;.

Proof. By Lemma [D.2] the class R equals R’ if and only if, for every set x, the set x is a member
of R if and only if x is a member of R’. Since R is a B-class, every member x of R is of the form
(b,c) for a unique member b of B and for a unique set c¢. Since R’ is a B-class, every member z’
of R’ is of the form (¥',¢’) for a unique member b’ of B and for a unique set c¢. By the defining
property of Kuratowski ordered pairs, the Kuratowski ordered pair (b,c) equals (', ¢) if and only
if both b equals b’ and ¢ equals ¢’'.

Thus, the following two conditions are equivalent: (i) for every set x, the set x is a member of R
if and only if x is a member of R/; (ii) for every member b of B, for every set ¢, the Kuratowski
ordered pair (b,c) is a member of R if and only if (b, c) is a member of R’. Therefore R equals R’
if and only if, for every member b of B, the class Ry equals Rj. O

Lemma D.20. For every class B, for every class B', there exists a unique Clyg 1y-class (B, B’)
whose 0-fiber equals B and whose 1-fiber equals B, where 0 is @ and 1 is {@}. For every Clyg1y-
class R, for every class B, for every class B, the Clyg1y-class (B, B’) equals R if and only if both
B equals the fiber class Ry and B’ equals the fiber class Ry. In particular, for every class C, for
every class C', the Cly 1y-class (C,C’) equals (B,B’) if and only if both B equals C and B’ equals
C.

Proof. For every class B = [p(s,t),a] and for every class B’ = [p/(s',t"),a’], for the following
predicate p”(s”,t"), the members of the class [p”(s”,t"), (a,a’)] are those sets of the form (0,b)
for a member b of B and those sets of the form (1,¢) for a member ¢ of C.

s 3s" Ju v (8" =(s,8")) A (t" = (u,v)) A (((u=0) Ap(s,v)) v ((u=1)Ap'(s",v))).
By Lemma [D.2] this subclass of R is unique.

For every Cly1;-class R, by the previous lemma, the Clygq;-class (B,B’) equals R if and only if
both the O-fiber class B equals Ry and B’ equals R;. In particular, for every class C, for every
class C’, the Clyg13-class (B,B’) equals (C,C’) if and only if both the O-fiber B equals C and the
1-fiber B’ equals C'. O

E Morphisms and spans between classes

For defining categories, a bit more useful than class morphisms or relations is the notion of spans.
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Definition E.1. For every class B, for every class C, a (B,C)-span M is a B x C-class. For
every member b of B, for every member ¢ of C, the fiber class M? of M over (b,¢) is the fiber
class M(;0y. A B-class is a B-set if (and only if) every fiber class is a class of a set. Similarly, a
(B, C)-span is a (B, C)-set if (and only if) it is a B x C-set. Finally, for every class O, an O-Hom
span is an (O, 0)-set M, i.e., for every ordered pair (b,c) of members of O, the fiber class MY is
the class of a set.

Example E.2. For every class B, the identity relation Idg from B to itself is the class whose
members are all ordered pairs (b,b) such that b is a member of B. In particular, for every set a,
Idcy, equals Clyy, for the usual identity set relation Id, whose elements are all ordered pairs (b,b)
such that b is an element of a. For every class O, the identity O-Hom span Idg is the class
whose members are all ordered pairs ((b,b),1d,) such that b is a member of O. In particular, the
identity Cl,-Hom span is the Clyg,-class whose fiber class (Idcy, )2 has a unique member Id, if ¢
equals b is an element of @ and otherwise has no member.

Definition E.3. For every class B, a B-class F is a class morphism from B if (and only if), for
every member b of B, the fiber class F, is the class of a singleton set, i.e., there exists a unique set
¢ such that (b,¢) is a member of F. For every class B, for every class C, a class morphism from
B to C is a relation from B to C that is also a class morphism from B. The class morphism is a
class isomorphism if also, for every member ¢ of C, there exists a unique member b of B such
that (b,c) is a member of the class morphism.

Example E.4. For every class B, the identity Idg is a class isomorphism from B to itself.

Example E.5. For every class B, for every morphism of classes F from B, there is a B-class clg g
whose members are all ordered pairs (b, ¢) of a member b of B and of an element ¢ of the set F(b).

Exercise E.6. For every class B, for every morphism of classes F from B, check that clgr is a
B-set. Conversely, for every B-set D, check that there is a unique morphism of classes fungp
from B associating to every member b of B the unique set whose associated class is the fiber class
D;. Check that these two operations determine an equivalence between B-sets and morphisms of
classes from B.

Definition E.7. For every class B, for every B-class Q, for every B-class R, a B-class morphism
from Q to R is a class morphism F from Q to R such that, for every member b of B, for every
member ¢ of Qy, there exists a unique member d of Ry, such that ((b,c), (b,d)) is a member of F.
In this case, the fiber class morphism F;, from Q, to R, associated to F is the class morphism
whose members are all ordered pairs (¢,d) such that ((b,c),(b,d)) is a member of F. A B-class
morphism F from Q to R is a B-class isomorphism if and only if F is a class isomorphism from

R to Q.

In particular, for every class B, for every class C, for every (B, C)-span M, for every (B, C)-span
N, a (B, C)-span morphism from M to N is a B x C-class morphism from M to N. This is a
(B, C)-span isomorphism F from M to N if (and only if) it is a B x C-class isomorphism from
M to N.
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Example E.8. For every class B, for every B-class Q, the identity class isomorphism Idq is a B-
class isomorphism from Q to itself such that (Idq), equals Idg, for every member b of B. Similarly,
for every class B, for every class C, for every (B, C)-span M, the identity class isomorphism Idpg
is a (B, C)-span isomorphism such that (Idn)? equals Idy for every member (b,c) of B x C. In
particular, for every class O, the identity Idyq, class morphism from Ido to itself is an isomorphism
of O-Hom spans.

The notion of composition of functions and relations between sets extends to composition of mor-
phisms and relations between classes, as well as composition of spans.

Definition E.9. For every class B, for every class C, for every class D, for every relation Q from
B to C, for every relation R from C to D, a class the composition RoQ of R and Q is the class
whose members are all ordered pairs (b, d) such that there exists a member ¢ of C with both (b, ¢)
a member of Q and (¢,d) a member of R.

Definition E.10. For every class B, for every class C, for every class D, for every span M from
B to C, for every span N from C to D, the span composition N o M of N and M is the span
from B to D such that for every member (b,d) of B x D, the members of the fiber class (N o M)%
are all ordered pairs (¢, (n,m)) of a member ¢ of C and members n and m of the respective fiber
categories N§ and M.

Example E.11. For every class B, for every class C, for every span M from B to C, there is an
isomorphism of (B, C)-spans ry; from M oIdg to M, respectively Iy from Idc o M to M, sending
every member ((b,c), (b, (m,Idy))) of M oIdg to ((b,c),m), respectively sending every member
((b,¢), (¢, (Ide,m))) of Idc o M to ((b,c),m). The isomorphism ryg, respectively |y, is the right
unitor of M, resp. the left unitor of M.

Example E.12. For every class B, for every class C, for every class D, for every class E, for every
span M from B to C, for every span N from C to D, and for every span P from D to E, there is
an isomorphism of (B, E)-spans ap nxu from (P oIN) oM to P o (N o M) sending every member
((b,e), (¢, ((d,(p,n)),m))) of (PoN)oM to the member ((b,e), (d, (p, (c,(n,m))))) of Po(QoR).
In other words, for every member (b,¢e) of B x E, the induced isomorphism of fiber classes from
((PoN)oM)? to (Po(INoM))b sends (¢, ((d, (p,n)),m)) to (d,(p,(c,(n,m)))), i.e., it transposes
c and d while leaving p, n and m in the same order. The isomorphism ap nw is the associator of
P, N and M.

Example E.13. For the von Neumann class V of all sets, consider the span mor(Set) from V to
V such that for every set b and for every set ¢, the members of the fiber class over (b,c) are all
subsets of b x ¢ that are (graphs of) functions from b to ¢. In other words, for every member (b, ¢)
of V x V| the fiber class is the class of the set Fun(b,c) of all functions from b to ¢. The span
mor(Set) from V to itself, together with the usual composition law, is the category Set of all sets.

Proposition E.14. Composition of relations between classes is strictly associative, and the identity
relations are strict left-right identities for this composition. Composition of spans is associative up
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to the specified associator a, and the identity spans are left-right identities for this composition up
to the left and right unitors | and r. The associator and unitors satisfy the triangle (coherence)
identity and the pentagon (coherence) identity of monoidal categories.

There is a notion of morphisms of spans. Together with the composition, associator and unitors,
spans satisfy the axioms of (a version of) double category. Of course spans are classes that may not
be sets, so extreme care is necessary in forming any kind of category of spans.

Exercise E.15. Read about double categories. Formulate and verify the axioms of a double
category that are satisfied by the operations above for spans.

Spans admit a more general notion of morphisms that is useful in formulating natural transforma-
tions.

Definition E.16. For every ordered triple (B, C,M) of classes B and C and a span M from B to
C, for every ordered triple (B, C’,M’) of classes B’ and C’ and a span M’ from B’ to C’, a span
cell from (B,C, M) to (B’,C’',M’) is a class F = ((s(F),t(F)),Funo) of a morphism of classes
s(F) from B to B/, of a morphism of classes t(F) from C to C’, and of a morphism of classes Fo,
from M to M’ such that for every member ((b,c),m) of M, for the unique member ((¥',c’),m’)
of M’ such that (((b,c),m),((V',¢"),m")) is a member of F, also (b,b") is a member of s(F) and

(¢,c’) is a member of ¢(F).

Example E.17. For every ordered triple (B, C,M) of class B and C and a span M from B to C,
the identity span cell is (Idg,Idc, Idy).

Exercise E.18. Check that the identity span cell is a span cell.

Example E.19. For every ordered triple (B, C,M) of a span M from a class B to a class C, for
every ordered triple (B’, C’,M’) of a span M’ from a class B’ to a class C’, for every ordered triple
(B”,C",M") of a span M” from a class B” to a class C”, for every span cell F = (s(F),t(F), Fuor)
from (B,C,M) to (B’,C’,M’), and for every span cell F’ = (s(F’), s(F’),F. .) from (B’,C' M)
to (B”,C"”,M"), the composition span cell is (s(F’) o s(F),t(F’) o t(F),F! ., o Fpo) from
(B,C,M) to (B”,C",M").

Exercise E.20. Check that the composition span cell is a span cell.
Exercise E.21. Check that composition of span cells is strictly associative. Also check that identity
span cells are strict left-right identities for composition of span cells.
One advantage of relations, and more generally of spans, over morphisms is that they have opposites.

Definition E.22. For every class B, for every class C, for every relation R from B to C, the
opposite relation R°PP from C to B is the unique subclass of C x B whose members are all
ordered pairs (¢, b) such that (b,c) is a member of R.

More generally, for every span M from B to C, the opposite span M°P? from C to B is the
C x B-class such that for every member b of B and for every member ¢ of C, the fiber class (M°PP)¢
equals the fiber class M?.
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Exercise E.23. Formulate the notion of the opposite of a span cell. Check that the opposite span
of a span composite is naturally span isomorphic to the span composite of the span opposites of
the factors (in the opposite order). Read about dagger categories. Formulate and check the axioms
of a dagger category that hold for spans.

F Definition of categories

A category is a span from a class to itself whose fiber classes are required to be (classes of) sets,
and equipped with a morphism of spans to itself from the span composite of the span with itself
that is associative and unital.

Definition F.1. For every class O, a O-Hom span is a (O, O)-set M, i.e., a class in which every
member is of the form ((a,b), f) for members a and b of O and a set f, and each fiber class M
of all sets f such that ((a,b), f) is a member of M is the class of a set, the Hom set of M over
(a,b). For every clas O, for every O-Hom span M, for every O-Hom span M, a morphism of
O-Hom spans from M’ to M is a morphism of (O, O)-classes from M’ to M.

Breaking with our earlier convention, we sometimes denote the Hom set by M¢. More often it is
denoted Homo nm(a,b), or just Hom(a,b) when O and M are understood, i.e., the members of M
are sets ((a,b), f) for members a and b of O and elements f of Hom(a,b).

Example F.2. For every class O, the empty (O, O)-span M with no members is an O-Hom span,
the initial O-Hom span. For every class O, the identity Idpoxo of O x O, considered as a span
from O to itself, is an (O, O)-span, the final O-Hom span. Finally, the identity Hom span
Ido is the class whose members are all ordered pairs ((b,b),1d,) for b a member of O. This is also
called the discrete O-Hom span.

Example F.3. For every set H, let O be a class with a unique member (say @, for definiteness),
and let My be the unique Oy-Hom span whose unique Hom set is H.

Example F.4. Recall the earlier example, where O is the von Neumann class V of all sets, the
span mor(Set) from V to itself is the class of all triples ((a,b), f) of a set a, of a set b, and of a
function f from a to b. Thus, each Hom set Homy mor(set)(@,b) is the set Fun(a,b) of all functions
from a to b.

Example F.5. For another example, again let O be the von Neumann class V of all sets, but
now let the span mor(Rel) from V to itself be the class of all triples ((a,b), R) of a set a, of a set
b, and of a relation R from a to b, i.e., R is an (arbitrary) subset of a x b. Thus, each Hom set
Homvy mor(rer) (@, b) is the power set P(a x b) of a x b.

Example F.6. For every class O, for every O-Hom span M, for every O-Hom span M, for every
O-Hom span M”| for every morphism F’ of O-Hom spans from M’ to M, and for every morphism
F” of O-Hom spans from M"” to M, the fiber product M’ xg/ pppr M, or just M’ xpy M” when
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confusion is unlikely, is also an O-Hom span whose fiber class for each ordered pair (a,b) of members
of O equals the fiber product set (M) xpa (M”)g. In particular, M xg.x0 M is the O-Hom span
whose fiber class is just the product set M¢ x M for every ordered pair (a,b) of members of O.

Of course, for a Hom span (O, M), the composite span M oM from O to O is typically not a Hom
span: for all members a and ¢ of O, the members of (M o M)? are all ordered triples (b, (g, f)) of
a member b of O, of an element f of the set Hom(a,b) and of an element g of Hom(b, c). Since b
varies over members of a class (that is typically not a set), the class (M o M)? is typically not a
set. This is a Hom span if and only if O is the class of a set.

Definition F.7. A Hom span (O,M) is small if (and only if) the class O is the class of a set.

Example F.8. In the example Set, for every set a, for every set ¢, the fiber class (mor(Set) o mor(Set))?
is the class of all triples (b, (g, f)) of a set b, of a function f from a to b, and of a function g from b

to ¢. This is not the class of a set, since the class of all sets b (i.e., the von Neumann class) is not

the class of a set.

Example F.9. On the other hand, for every small Hom span (O, M), for every nonnegative integer
n, the n-fold composite of the O-Hom span is again an O-Hom span. Taking the union over all
positive integers n gives a new O-Hom span (O, M*) where the fiber class over (a,b) is the set

of strings, i.e., ordered pairs (n, (a = ag LN ai,a EER a2, .., 0p1 I, a, = b)) of a positive integer
n and an ordered n-tuple of “composable” members of M. We “complete” this by also adding a
member (0, (a = ag,ap = a)) of M* mapping to (a,a) in O x O for every member a of O.

Definition F.10. For every class O, for every Hom span M from O to itself, a (O, M)-composition
law is a span morphism o from the composition (O, 0)-span M o M to M, i.e., a morphism of
O x O-classes such that, for all members a and ¢ of O, the induced fiber morphism from (MM o M)?
to M¢ sends each member (b, (g, f)) of (M oM)? to a member go f of M2

A composition law is associative if (and only if), for all members a, b, ¢ and d of O, for every
element (h, g, f) of Hom(d, e) x Hom(c,d),Hom(b, ), the composition (hog)o f equals ho (go f)
as elements of Hom(a,e).

An associative composition law is unital if (and only if), for every member a of O, there exists
an element Id2™° of Hom(a,a) such that, for every member b of O, both the left composition
with Id2™° from Hom(b,a) to itself is the identity, and the right composition with Id®™*° from
Hom(a,b) to itself is the identity.

A category is a class O, called the class of objects, an O-Hom span M, called the class of
morphisms, the specification of the source and target morphisms from M to O sending every
member ((a,b), f) of M to the member a of O, respectively to the member b of O, and a (O, M)-
composition law o that is both associative and unital. An isomorphism in a category is a
morphism ((a,b), f) such that there exists a morphism ((b,a), g) with both go f equal to Id, and
f o g equal to Idy; in this case we denote g by f~.
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For a category C, the class O is often denoted ob(C) and its members are called C-objects
or objects of C. The class M is often denoted mor(C), each set Homo m(a,b) is denoted C¥ or
Home(a,b) and its elements are called C-morphisms from a to b. The composition law is denoted
o€, or just o when confusion is unlikely. For every object a of C, the left-right identity morphism
from a to itself is usually denoted IdaC or Id, when confusion is unlikely (this set may or may not
equal the identity function from the set a to itself, so please use caution). A category is small if
(and only if) the class of objects is (the class of) a set.

G Examples of categories

There are many elementary examples of categories, and there are many different properties that a
category can possess.

Example G.1. For every class O that has at least one member, the empty O-Hom span is not the
underlying Hom span of any category structure, since there are not identity morphisms (there are
not any morphisms at all). On the other hand, the final O-Hom span, where every Hom set is a
singleton set, has a unique composition law (since singleton sets are final objects in the category of
sets), and this composition law is associative and unital. This is the final category structure on
O. Similarly, the discrete O-Hom span (whose only morphisms are identity morphisms) also has a
unique composition law, and this is associative. It is unital by construction. This is the discrete
category structure on O.

Definition G.2. For every small class O, for every O-Hom span M, the free category on (O, M)
is the O-Hom span M* of composable strings of morphisms from M with composition law given

by concatenation, i.e., for every morphism f = (m, (ao N a1,y Aot Im, a,)) and for every
morphism g = (n, (by Dby, by s b,)) such that a,, equals by, the composition is
N Jm g1 gn
gof:= (n+m7(a0 — a1, .., Am-1 —)amab[) - bl)"wbn—l _)bn))

Of course each element (0, (ag,ap)) composes as a left-right identity.
Exercise G.3. Check that this is a small category.

Example G.4. The category Set of sets has object class obj(Set) equal to the von Neumann class
/ universal class V of all sets, has morphism class mor(Set) as above with fiber class Set; equal
to the (class of the) set Fun(a,b) of all functions f from a to b, and has the usual composition
of functions. Composition of functions is associative. The identity functions are the identity
morphisms of this category.

Example G.5. The category Rel of relations again has object class equal to V, but has morphism
class as in the second example above with fiber class Rel; equal to the (class of the) power set
P(axb) of axb. Composition is composition of relations (as defined in the previous section). The
identity functions (or their graphs) are the identity morphisms of this category.
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Example G.6. For every small category B, for every small category C, each object of the category
Spang is a (set whose associated class is a) B x C-set, i.e., a span from B to C whose fiber classes
are all (classes of) sets. The morphisms between two such spans are span cells such that the class
morphism from B to itself is the identity and the class morphism from C to itself is the identity.
Composition is composition of span cells.

Definition G.7. A category is a monoid if (and only if) the object class is the class of a singleton
set. A category is thin if (and only if) every nonempty Hom set is a singleton set. A category is
a groupoid if (and only if) every morphism is an isomorphism. A thin groupoid is a setoid. A
category is skeletal if (and only if) all isomorphic objects are equal. A skeletal setoid is a discrete
category.

There are many ways to produce new categories from given categories.

Definition G.8. For every category C = (O,M,0), the opposite category is the category
(O, Mepp oopP) where MOPP is the opposite span of M, and where, for every member ((a,b), f) of
M and for every member ((b,c),g) of M, the opposite composition is defined by

((b;a), f) o ((¢,0),9) = ((¢,;a), g o f).

Definition G.9. For every category C = (O, M, o), for every subclass O’ of O, the full subcat-
egory of C with objects class O is the category (O’,M|or,o’) where, for all members a and b
of O, the class (M]|o)¢ equals M¢, and where o is the restriction of o. More generally, a (not
necessarily full) subcategory of C consists of a subclass O’ of O and a subclass of M’ of M|o/ that
contains all identity morphisms of objects of O’ and that is stable for composition, thus defining a
restriction composition on the subcategory.

Example G.10. The category Set of sets is a non-full subcategory of the category Rel of all
relations. The category of all finite sets is a full subcategory of the category of all sets.

Example G.11. For every category C = (O, M, o), the discrete category on O is (uniquely) a
(typically not full) subcategory of C.

Example G.12. For every set H together with a binary operation e from H x H to H that is
associative and unital, there exists a monoid category B(H,e) whose unique object is, say, the set
H itself (perhaps considered as a right act over itself), and whose unique Hom set is H with e
giving the binary operation. For every category, for every object of that category, the restriction
of composition to the Hom set of that object is a monoid as above. In particular, every category
with a unique object is strongly equivalent to the category of the monoid of the unique Hom set
with its composition operation.

Example G.13. In particular, for every set S, for a category O with a unique object *, for the
O-Hom span Mg whose unique Hom set is .S, for the free category (O,MF, o), the associated
monoid is the free monoid on the set S. The unique Hom set S* is also called the free monoid
on S, and it is also the Kleene star of 5, i.e.,

S = ({0} x{Id, P u ({1} xS)u ({2} x (SxS))u ({3} x(SxSxS))u....
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Example G.14. For every monoid (H,e), the opposite category of B(H,e) is (canonically equiv-
alent to) the category of the opposite monoid (H, °PP) where a ¢°PP b is defined to equal bea for
all elements a and b of H.

Example G.15. For every monoid (H,e), the monoid is a group if and only if every element of H
is invertible. In this case, the category of the group is a skeletal groupoid. In this case, the nerve of
the small category B(H,e) is the classifying simplicial set of the (discrete) group (H,e). The
geometric realization of this simplicial set is the classifying space of (H,e). For every groupoid,
for every object * of that groupoid, the restriction of composition to the Hom set from = to itself is
a group (H,e), and the full subcategory whose unique object is * is strongly equivalent to B(H,e).
In particular, every groupoid with a unique object is strongly equivalent to B(H,e) for the unique
Hom set (H,e) with its composition operation.

Example G.16. We could “deskeletonize” the previous example by considering the category whose
objects are all right acts over the monoid (H,e) that are principal homogeneous spaces, and whose
morphisms are all morphisms of right (H,e)-acts.

Example G.17. The category of right principal homogenous spaces for (H,e), as above, is a full
subcategory of the category of all right (H,e)-acts. Another full subcategory is the category of all
right (H,e)-acts that are trivial in the sense that every element of (H, o) acts identically on the set.
This full subcategory is strongly equivalent to the category Set of all sets. Of course if (H,e) is
itself a singleton monoid, then this full subcategory equals the entire category of right (H,e)-acts,
so that this category is strongly equivalent to Set.

Example G.18. The category Monoid has as objects all ordered pairs (H,e) of a set H together
with a unital, associative binary operation e from H to itself, and has morphisms from (H,e) to
(H',e") being all functions f from H to H’ that preserve the identity and preserve the binary
operation (i.e., usual morphisms of monoids): f(ey) equals ey and f(hek) equals f(h) e’ f(k) for
all elements h, k of H. The category Monoid has a full subcategory Grp whose objects are groups.
The category Grp has a full subcategory Ab whose objects are Abelian groups. The category Ab
has a full subcategory Q—mbf M od whose objects are Abelian groups such that multiplication by n
is a bijection of the group to itself for every nonzero integer n, i.e., the Abelian group is a Q-vector
space. The category Q—Mod has a full subcategory whose objects are finite-dimensional Q-vector
spaces, etc.

Example G.19. A hybrid of the previous two examples is the category whose objects are all
ordered pairs ((H,e),(S,p)) of a monoid (H,e) together with a right H-act p: Sx H - S. The
morphisms from ((H,e),(S,p)) to ((H',e"),(S’,p’)) are all ordered pairs (f,g) of a morphism f
of monoids from (H,e) to (H’,e') together with a function g from S to S’ such that, for every
element h of H and every element s of S, the image g(p(s,h)) equals p’'(g(s), f(h)), i.e., g is a
morphism of right H-acts for the induced right H-act on S” obtained from p’ and f. This hybrid
category is an example of the “Grothendieck construction” for fibered categories (one of the basic
notions in extending from schemes to stacks).
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For Abelian monoids, respectively for Abelian groups, there is an enrichment of the Hom sets to
Abelian monoids, resp. to Abelian groups.

Definition G.20. For every Abelian monoid (H,e), for every monoid (H’,e’), the addition law
on Hompgonoid ((H',e"), (H,e)) is the binary operation that associates to every pair (f, g) of monoid
homomorphisms from (H’,e’) to (H,e) the monoid homomorphism f e g that sends every element
h' of H' to f(h') e g(h').

Example G.21. Check that the set function f e g is a monoid homomorphism. Check that the
addition law is both associative and commutative, and it has a left-right identity consisting of
the constant set function from H’ with image the singleton of the monoid identity in H. Thus
Homnonoia ((H', "), (H,e)) with this addition law is itself an Abelian monoid. If (H,e) is an
Abelian group, check that also Homygonoia((H’, "), (H,e)) is an Abelian group.

Example G.22. For the full subcategory Ab of all Abelian groups, check that the addition laws
makes composition into a biadditive map of Abelian groups

Homap((H',¢), (H, ®)) x Homap ((H",¢"), (H',")) - Homan((H", "), (H, ®)).

In particular, check that the addition law together with composition makes Homay, ((H, ), (H,e))
into an associative, unital ring, i.e., composition is a monoid structure that distributes with respect
to addition both on the left and right.

This allows a concise definition of associative, unital rings. Moreover, for each associative, unital
rings, there are (Abelian) categories of modules over that ring.

Definition G.23. An associative, unital ring (R, +,-) is an Abelian group (R, +) together with
an (injective) homomorphism of Abelian groups

Le: (R, +) > Homap((R,+),(R,+)), r+— (L,:(R,+) —> (R,+))

whose image is a submonoid under composition that is right unital, i.e., there exists a (unique)
element 1 in R with L; = Idg (so 1 is a left multiplicative identity) and also with L,(1) = r
for every element r of R (so 1 is also a right right multiplicative identity), and, for every (r,s)
in R x R, there exists a (unique) element r-s of R such that L, o L, equals L,.; (notice that
L.(s)=L.(Ls(1)) = L,.s(1) =r-s). For every associative, unital ring (R, +,-), for every associative,
unital ring (R’,+’,-), a morphism of associative, unital rings from (R,+,-) to (R’,+',-") is a set
function f from R to R’ that is simultaneously a homomorphism from the Abelian group (R, +) to
(R',+") and a homomorphism from the monoid (R,-) to the monoid (R’,-").

Exercise G.24. Check that, for every associative, unital ring (R, +,-), the identity function Idg
is a morphism of associative, unital rings from (R, +,-) to itself. Also check that the composition
function of morphisms of associative, unital rings is again a morphism of associative, unital rings.
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Definition G.25. The category of associative, unital rings, denoted Ring, has as objects all
associative, unital rings, has as morphisms the morphisms of associative, unital rings, and has the
composition from the previous exercise.

Definition G.26. For every associative, unital ring (R, +,-), the opposite product -°PP is the
binary operation on R defined by s-°PP 1 = r - s for every element (r,s) of R x R.

Exercise G.27. Check that for every associative, unital ring (R, +,), also (R, +,-°PP) is an asso-
ciative, unital ring.

Definition G.28. A commutative, associative, unital ring is an associative, unital ring
(R,+,-) such that °PP equals -, i.e., r-s equals s-r for every element (r,s) of R x R. For ev-
ery commutative, associative, unital ring (R, +,-), for every commutative, associative, unital ring
(R',+',-"), a morphism of commutative, associative, unital rings from (R, +,-) to (R',+',) is a
morphism of associative, unital rings from (R, +,-) to (R’,+',-"). The category CRing is the full
subcategory of Ring whose objects are all commutative, associative, unital rings.

Definition G.29. For every associative, unital ring (R, +,), for every Abelian group (M, +), a left
R-module structure on (M, +) is a morphism of associative, unital rings \ from (R,+,-) to the
associative, unital ring Homay, ((M, +), (M, +)), i.e., for every element r of R, the function \, from
M to itself is a group homomorphism, \; equals Id,,, and, for every element (r,s) of R x R, the
image A, equals A\, + A; and \,.; equals A\, o A\,. Stated differently, this is a biadditive map * from
R x M to M that is also a monoid homomorphism for - on R and for composition of Abelian group
homomorphisms of M, i.e., 1 * m equals m and (r-s) * m equals r * (s *m) for every element m of
M and for every element (r,s) of Rx R. For every left R-module (M, +,\), for every left R-module
(M',+";\"), a morphism of left R-modules from (M,+,\) to (M’,+',\") is a set function f from
M to M’ that is a homomorphism of Abelian groups from (M, +) to (M’,+') and that commutes
with A and )\, i.e., fo A, equals Ao f for every element r of R.

Exercise G.30. Check that the identity function from M to itself is a morphism of left R-modules
from (M, +, ) to itself. Check that the composition function of two morphisms of left R-modules
is again a morphism of left R-modules.

Definition G.31. For every associative, unital ring (R, +,-), the category of left R-modules,
denoted R — Mod, has objects that are all left R-modules, has morphisms that are all morphisms
of left R-modules, and has composition as defined above.

Exercise G.32. For every left R-module (M, +, ), for every Abelian group (M’,+"), define a left
R-module structure on Homay ((M’,+'), (M, +)) by AY (f)(m’) = A\ (f(m")) for every element r
of R, for every element m' of M’, and for every Abelian group homomorphism f from (M’,+') to
(M, +). Check that this is a structure of left R-module. For every ordered pair of left R-modules
(M, +,)) and (M',+', \"), for every Abelian group homomorphism f from (M’,+") to (M, +), check
that f is a morphism of left R-modules from (M’,+',\') to (M, +, ) if and only if A}’ (f) equals
f oAl for every element r of R. ’
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Definition G.33. For every associative, unital ring (R, +,-), for every Abelian group (M,+), a
right R-module structure on (M, +) is a morphism of associative, unital rings p from (R, +, -°PP)
to the associative, unital ring Homay ((M,+), (M, +)). Stated differently, this is a biadditive map
* from M x R to M that is also a monoid homomorphism for - on R and for composition of Abelian
group homomorphisms of M, i.e.;, m-1 equals m and m * (r-s) equals (m *r) * s for every element
m of M and for every element (r,s) of R x R. For every right R-module (M,+,p), for every
right R-module (M’ +',p"), a morphism of right R-modules from (M, +,p) to (M',+',p") is a set
function f from M to M’ that is a homomorphism of Abelian groups from (M, +) to (M’,+') and
that commutes with p and p’, i.e., f o p, equals p. o f for every element r of R.

Exercise G.34. Check that the identity function from M to itself is a morphism of right R-modules
from (M, +, p) to itself. Check that the composition function of two morphisms of right R-modules
is again a morphism of right R-modules.

Definition G.35. For every associative, unital ring (R, +,-), the category of right R-modules,
denoted Mod - R, has objects that are all right R-modules, has morphisms that are all morphisms
of right R-modules, and has composition as defined above.

Exercise G.36. For every left R-module (M, +, \), for every Abelian group (M’ +"), define a right
R-module structure on Homay((M,+), (M',+")) by pii/ (£)(m) = f(A\.(m)) for every element r
of R, for every element m of M, and for every Abelian group homomorphism f from (M,+) to
(M',+"). Check that this is a structure of right R-module. For every ordered pair of left R-modules
(M,+,\) and (M’,+', \'), for every Abelian group homomorphism f from (M, +) to (M’,+"), check
that f is a morphism of left R-modules from (M, +, ) to (M’,+',X) if and only if py5’ (f) equals
Ao f (which also equals A}/ .»(f), by definition) for every element r of R.

Exercise G.37. Formulate and prove the analogous results for a right R-module structure on
Homap ((M,+),(M’,+")) associated to a right R-module structure on (M’,+') and for a left R-
module structure on Homap ((M, +), (M’,+")) associated to a right R-module structure on (M, +).

Definition G.38. For every associative, unital ring (R, +g, r), for every associative, unital ring
(S,+s,-5), an R— S-bimodule is a quadruple (M, +, A, p) of an Abelian group (M, +) with a left
R-module structure A and a right S-module structure p such that, for every element (r,r’) of
R x R', the Abelian group homomorphism A, o p.» equals p,» o A\, i.e., the images of A and p in
Homap((M,+),(M,+)) centralize one another. For every R — S-bimodule (M, +, A, p), for every
R-S-bimodule (M',+', X', p'), a morphism of R-S-bimodules from (M, +, A, p) to (M',+', X', p') is
a set function f from M to M’ that is simultaneously a morphism of left R-modules from (M, +, \)
to (M',+',\) and a morphism of right S-modules from (M, +,p) to (M',+',p').

Exercise G.39. Check that the identity set function Id,; is a morphism of R — S-bimodules from
(M, +, )\, p) to itself. Also check that the composition function of morphisms of R — S-bimodules is
again an R — S-bimodule.

Definition G.40. For every associative, unital ring (R, +g, r), for every associative, unital ring
(S,+s,-5), the category of R - S-bimodules, denoted R — S — Mod, has objects that are all
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R — S-bimodules, has morphisms that are all morphisms of R — S-bimodules, and has composition
as defined above.

Exercise G.41. For every R — S-bimodule (M, +, A, p), for every Abelian group (M’,+"), check
that the operations A and p¥' make Homap((M',+"),(M,+)) into an R — S-bimodule. Sim-
ilarly, define an S — R-bimodule structure on Homayp ((M,+), (M’,+')). For every Abelian group
homomorphism f from an R - S-bimodule (M, +, A, p) to an R - S-bimodule (M’,+', X', p"), check
that f is a morphism of R — S-bimodules if and only if both p%’,r( f) equals /\M,’r( f) and p%cs( f)

equals )\%’,s( f) for every element r of R and for every element s of S.

Of course there are also many notions of topological space and geometric object.

Definition G.42. For every set X, a topology (of open subsets of X) is a subset 7 of the power
set P(X) of X satisfying all of the following.

(i) Both @ and X are elements of 7.
(ii) For every ordered pair (U, V) of elements of 7, also U NV is an element of 7.

(iii) For every subset I of 7, the union over all elements of I (considered as a subset of X)) is an
element of 7.

A topological space is an ordered pair (X, 7) of a set X and a topology 7 on X.

For every ordered pair ((X,7),(X’,7")) of topological spaces, a continuous map from (X, 7) to
(X’,7') is a function f from X to X’ such that for every element U’ of 7/, the preimage fP(U’)
is an element of 7.

Exercise G.43. For every topological space (X, 7), check that Idy is a continuous map from (X, 7)
to itself. Check that the composition function of continuous maps is again a continuous map. Thus,
topological spaces with continuous maps form a category, Top.

Definition G.44. For every set X, a topological basis (of open subsets of X) is a subset B of
the power set P(X) of X satisfying all of the following.

(i) The set X is the union over all elements of 5.

(ii) For every ordered pair (U, V') of elements of B, the set UnV equals the union over all elements
of B that are subset of UnV.

Occasionally, a function to P(X) whose image is a topological basis is also called a topological
basis. The topology generated by a topological basis is the subset 7(B) of P(X) of all subsets U
of X that equal the union over all elements of B that are a subset of U (thus, also @ is tautologically
an element of B).
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Exercise G.45. Check that 7(B) is a topology for X'. For every topological space (X', 7') and for
every function f from X’ to X, check that f is a continuous map from (X', 7") to (X, 7(B) if and
only if, for every element U of B, the preimage subset fP*(U) is an element of 7’.

Associated to every category there is a maximal subcategory that is a groupoid.

Definition G.46. For every category C, the core of C is the (usually non-full) groupoid sub-
category with the same objects, but whose Hom set is the subset of invertible elements in the
corresponding Hom set of C.

Example G.47. For every monoid (H,e), the core of the category of (H,e) is B(H,e)*, where
(H,e)* is the submonoid (in fact, group) of (H,e) whose elements are all invertible elements of H.
The core of Set is the the groupoid of sets whose morphisms are bijections of sets. This also equals
the core of Rel. The core of a product of categories is (canonically equivalent to) the product of
the cores of the categories.

Example G.48. In particular, in the core of the hybrid category, for every object ((H,e), (H,rg))
where (H,e) is a group and where (H,rg) is the right regular H-action on itself, the group of
automorphisms of this object is the classical notion of holomorph of the group, i.e., the semidirect
product of the group with its automorphism group.

Example G.49. For every set S together with a relation R from S to itself, consider the class of
S as a class of objects, and consider R as a span from this class to itself. An associative, unital
composition law extending this to a category is unique if it exists. In fact, this span extends to
a category if and only if R is a preorder, i.e., if and only if R is both transitive and reflexive.
In this case, the corresponding category is small and thin. Every small, thin category is strongly
equivalent to the category of a preordered set. The core of the category of a preordered set (S, R)
is (canonically equivalent to) the category of the associated Bishop set, i.e., the set S together
with an equivalence relation ~g, where a ~g b if and only if both (a,b) and (b,a) are elements of
R. The category of a preordered set is skeletal if and only if ~5 is equality, i.e., if and only if the
preorder is a partial order: a transitive, reflexive relation that is also asymmetric. Similarly, the
category of a preordered set is a groupoid if and only if the relation R is already an equivalence
relation, i.e., if and only if the transitive, reflexive relation is also symmetric. Every preordered
set is the pullback of a partial order under a surjection whose associated equivalence relation is ~g
(and this surjection to a partially ordered set is unique up to unique isomorphism). If we accept
the Axiom of Choice, there exists a subset of the original set that surjects isomorphically to the
partially ordered set, and this defines a full subcategory of the category of the preordered set that
is a skeleton.

Definition G.50. For every category C, the objects of the arrow category Arr(C) are objects
of mor(C), i.e., tuples ((s,t), f) of an ordered pair (s,t) of objects of C and a C-morphism f from
s to t. For every ordered pair of C-morphisms, say ((s,t),f) and ((s’,t'), f’) , the morphisms
of Arr(C) from ((s,t),f) to ((s',t"), f") are ordered pairs (o,7) of a C-morphism ¢ from s to
s" and a C-morphism 7 from t to ¢’ such that f’ oo equals 7o f. Composition of morphisms is
componentwise.
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Example G.51. For every monoid (H,e), for the associated monoid category, the objects of the
arrow category are elements h of H, and for every ordered pair (h,h’) of elements of H, the
morphisms from h to h’ in the arrow category are ordered pairs (o, 7) of elements of H such that
Teh equals h'ec. In particular, if (H, ) is a group, this is the same as the set of pairs (o, h'ecoh™!),
which projects under pr; as a bijection to H (where composition corresponds to e). Thus, for every
group (H,e), the arrow category of B(H,e) is weakly equivalent to B(H,e).

Example G.52. For each partially ordered set (S, R), denote by R(?) the partial order on S x S
whose elements are all elements ((s,t), (s',t")) of (S x.S) x (S x.S) such that both (s,s’) and (¢,t)
are elements of R. Denote by R(?)|x the restriction of this partial order to the subset R of S x S.
Then for the category of the partially ordered set (S, R), the arrow category is strongly equivalent
to the category of the partially ordered set (R, R®)|g).

Definition G.53. For every category C and for every object b, the under category of C under
the object b, denoted C, or b/C, is the subcategory of the arrow category whose objects are arrows
((s,t), f) such that t equals b, and whose morphisms from ((s,b), f) to ((s',b), f) are all ordered
pairs (0,1dy) of a morphism o from s to s’ such that f’o o equals Id, o f, i.e., equals f.

Definition G.54. For every category C and for every object a, the over category of C over the
object a, denoted C® or C/a, is the subcategory of the arrow category whose objects are arrows
((s,t), f) such that s equals a, and whose morphisms from ((a,t), f) to ((a,t"), f’) are all ordered
pairs (Id,,7) of a morphism 7 from ¢ to ¢’ such that 7o f equals f’o1d,, i.e., equals f.

Example G.55. For every monoid (H,e), for the associated monoid category, for the unique
object, both for the under category and the over category, the objects are the elements h of H.
For every ordered pair (h,h') of elements of H, the morphisms from A to A’ in the under category
are ordered pairs (o,Idy) of elements of H such that h equals i’ e o, and the morphisms from h to
h’ in the over category are ordered pairs (Idy,7) such that 7 e h equals h'. In particular, if (H,e)
is a group, both the over category and the under category are weakly equivalent to the discrete
category with only one object and only one morphism (the identity morphism).

Example G.56. For each partially ordered set (S, R), for each element b of S, denote by S, the
lower subset of b in (S, R), i.e., the subset of all elements a of S such that (a,b) is an element of
R. Denote by R, the restriction of R to this subset. Then the under category of the category of
(S, R) under the object b is strongly equivalent to the category of the partially ordered set (.Sy, Rp).
Similarly, the over category over an element a is strongly equivalent to the category of the partially
ordered set (S%, R%), where S is the upper subset of a in (S, R), i.e., the subset of all elements
b of S such that (a,b) is an element of R.

H Functors

The usual notion of morphisms between categories, called functors, are morphisms of spans that
respect both composition and identities.
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Definition H.1. For every ordered pair class (O,M) of a class O and a O-Hom span M, for
every ordered pair class (O, M) of a class O’ and a O’-Hom span M’, a morphism of Hom spans
from (O,M) to (O’,M’) is an ordered pair class F = (Fopj, Fior) such that (Fobi, Fopj, Fror) is a
span cell (0O,0,M) to (O’,0’, M), i.e., for every member (a,a’) of Fy,;, for every member (b,0")
of Fop;, for every member ((a,b), f) of M, the value of ((a,b), f) under the class morphism F,o,
equals ((a’,b"), f') for a unique member ((a’,"), f’) of M'.

Example H.2. For every ordered pair class (O, M) with M a O-Hom span, for every ordered
pair class (O’, M) with M’ a O’-Hom span such that O’ is a subclass of O and such that M’ is a
subclass of M, the inclusion morphism from the class O’ to O and the inclusion morphism from M’
to M together define a morphism of Hom spans, inclg,ie[/[, from (O’,M’) to (O,M), the inclusion
morphism. ’

Exercise H.3. For every ordered pair class (O, M) as above, check that the identity span cell from
(0,0,M) to itself is a morphism of Hom spans from (O, M) to itself. Also, for every morphism of
Horn spans F = (Fobj, Fobj, Frnor) from (O, M) to (O’, M) and for every morphism of Hom spans
(FObJ, obj» Fmor) from (O’, M) to (0", M"), check that the composition (F{,; o Fopj, Fy,,, o
mor) is a morphism of Hom spans from (O, M) to (O”,M"). Use earlier exercises to deduce that
composition of morphisms of Hom spans is associative, and the identity morphisms of Hom spans
are left-right identities for this composition.

Definition H.4. For every category C = (O, M, o), for every category C’ = (O’, M’,o"), a (covari-
ant) functor from C to C’ is a morphism F of Hom spans from (O, M) to (O’,M’) that maps
identities to identities and that is compatible with composition laws: for every object a of C, the
morphism Fo maps (a,a,1dS) to (a’,a’,IdS,’), and for every ordered pair ((a,b), f), ((b,¢),g) of
members of M with images ((a’,0"), f') and ((V,c’),g") under Fy,, also ((a,c),go f) has image
(). 9' 1)

Exercise H.5. For every category C, check that the identity span cell of C is a functor from C to
itself. This is the identity functor. Also, check that the composition of Hom spans of functors is
again a functor. By the previous exercise, deduce that composition of functors is associative, and
that identity functors are left-right identities for functor composition.

Example H.6. For every category C = (O,M,o0) for every (not necessarily full) subcategory
= (O',M’, o) the inclusion morphism is a functor 1nch from C’ to C, the inclusion functor.

Example H.7. For every category C = (O, M, o), for every class morphism Fp; from a class O’
to O, this extends uniquely to a functor (Fop;, Fior) from the discrete category structure on O’ to
(O,M, o). Similarly for every class morphism Fp; from O to a class O, this extends uniquely to
a functor (Fopj, Fror) from (O, M, o) to the final category structure on O’.

Definition H.8. For every category C = (O, M, o), a C-Hom equivalence relation is a subclass
R of M xo.0 M, that, considered as an O-Hom span, is stable for (component-wise) composition

and whose fiber class, for every ordered pair (a,b) of members of O, is an equivalence relation on
M¢.
b
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Example H.9. For every category C = (O, M, o), for every C-Hom equivalence relation R, there
exists a unique O-Hom span M/R and a unique composition law o making (O, M/R,o) into a
category such that both, for every ordered pair (a,b) of members of O, the Hom set (M/R)¢ is
the set of R{-equivalence classes in M, and the identity class morphism on O together with the
quotient class morphism M — M/R defines a full, strictly surjective functor from (O,M,0) to
(O,M/R,0).

Exercise H.10. Check that the composition law on M does factor through a composition law on
M/R. Also check that this composition is associative and unital. Deduce that the class morphisms
above define a full, strictly surjective functor.

Definition H.11. For every category C, for every C-Hom equivalence relation R, the functor of
the previous example is the quotient functor of C by the C-Hom equivalence relation R.

Example H.12. As examples of the previous construction, for every category (O, M, o), for the
equality class, the quotient functor is a strict equivalence of categories.

Example H.13. On the other hand, if R equals the entire O-Hom span M xgxo M, then each
quotient Hom set (M/R)¢ is either a singleton set if there exists an M-morphism from a to b, or
the empty set if M7 is empty. When O is the class of a set, this quotient category is equivalent to
a preorder on that set.

Example H.14. For every monoid (H,e), for the associated monoid category, a Hom-equivalence
relation is equivalent to an equivalence relation R on H such that, for every (h,h’) in R and for
every k in H, also (ke h,keh') and (hek,h' e k) are elements of R. In particular, if (H,e) is a
group, Hom-equivalence relation are precisely the equivalence relations of (left or right) congruence
modulo normal subgroups of (H,e), and the quotient functor corresponds to the quotient group
homomorphism by the normal subgroup.

Definition H.15. For every functor (Fop;, Fobj, Fimor) from (O, M, o) to (O’,M’,o’), the span cell
of opposites spans is a functor of the opposite category, (Fopj, Fonj, Fmor) from (O, MOPP c°PP) to
(07, (M")opp_(o")oPP). This is the opposite functor. The opposite functor of the opposite functor
equals the original functor.

For every category C, for every category C’, a functor from C°PP to C’ is then equivalent (up to
taking opposites) to a functor from C to (C’)°PP, and these are both (somewhat confusingly) called
contravariant functors from C to C'.

Definition H.16. For every functor (Fobi, Fobj, Finor) from C = (O, M, 0) to C’ = (O’,M’, '), the
functor is full, respectively faithful, fully faithful, if for all members a and b of O with values
a' = Fopj(a) and 0’ = Fo,;(b), the function F¢_, from Home(a,b) to Home: (a’, V') is surjective,
resp. injective, bijective. A functor is essential’ly surjective if every object of C’ is isomorphic
to an object of the form Fg,;(a) for some member a of C. A faithful functor is conservative if
(and only if) every morphism that is mapped to an isomorphism under the functor is already an
isomorphism. A functor that is essentially surjective and fully faithful is a weak equivalence of

categories.
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Definition H.17. For every category, the identity functor from the category to itself maps every
object to itself and maps every morphism to itself. For every functor F = (Fop;, Fopj, Fimor) from
a category C to a category C’, for every functor F’ = (F”ij, ngj, F/ ..) from the category C’ to a
category C”, the composite functor is the composite of span cells, F o F = (F(’)bj o Fobj,ngj o
Fobjs Flor © Finor) that sends every C-object a to F(,)bj(Fobj(a)) and that sends every C-morphism

mor

((a,0), f) in Cf to Fiyo,(Fmor((a,0), )

Proposition H.18. Composition of functors is associative, and it is unital for the identity functors.
A composition of functors is faithful, respectively full, fully faithful, essentially surjective, if each
of the component functors is of this type.

Example H.19. The inclusion functor of a subcategory into a category is a faithful functor. The
inclusion functor is full if and only if the subcategory is a full subcategory. An essentially surjective
inclusion functor of a full skeletal subcategory in a category is a skeleton of the category. If we
assume a strong version of the Axiom of Choice then every category has a skeleton.

Example H.20. A faithful functor from a category C to Set is a concrete functor, and this
functor makes C into a concrete category. Most of the categories that arise in analysis, algebra,
geometry, etc. are concrete, and typically the concrete functor is a “forgetful functor” that “forgets”
some of the structure of the objects of C. For example, the forgetful functor from Monoid to Set
that forgets the binary operation is a faithful functor; in fact, it is conservative. Thus, we also get
concrete (and conservative) functors by restricting to the full subcategories Grp, Ab and Q-Mod.
Similarly, the forgetful functors on R — Mod, on Mod - S and on R - S —Mod are concrete (and
conservative) functors. The forgetful functor on Ring is a concrete (and conservative) functor,
hence so is its restriction to the full subcategory CRing. Similarly, the forgetful functor from Top
to Set is faithful, but it is not conservative (because there can be many different topologies on the
same underlying set).

Exercise H.21. Of course the inclusion of Set as a (non-full) subcategory of Rel is faithful. Prove
that the following defines a faithful functor P from Rel to Set: map every set a, considered as an
object of Rel, to the power set P(a) of a, as an object of Set, and, for every ordered pair (a,b)
of sets, map every element R of Rely = P(a x b) to the set function Pg from P(a) to P(b) by
sending every subset a’ of a to the subset Pgr(a’) = pr(avbm(prpfb),l(a’) n R) of b, where pr(,;;,
respectively pr(,; o, is the usual projection function from the 6artesian product a x b to a, resp.
to b. (Eventually we will see that this defines a right adjoint to the non-full inclusion of Set into

Rel.)

Example H.22. For every monoid (H,e), for every monoid (H’ e'), for every monoid homo-
morphism f from (H,e) to (H',e'), there is a unique functor from the category of (H,e) to the
category of (H’,e’) that maps the unique object to the unique object, and that maps Hom sets via
f. Every functor between these categories is of this form for a unique monoid homomorphism f.
More generally, for every functor F from a category C to a category C’, for every object a of C
with image a’ = F(a), the function F¢ from C¢ to (C’)% is a monoid homomorphism. Moreover,
for every ordered pair (a,b) of objects of C, for the set C¢ with its natural left Cl-act and its
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natural right Cé-act, for the set (C’)¢ with the induced left Ci-act and right Cé-act arising from
the monoid homomorphisms F? and F¢, the function F§ from C¢ to (C’){, is compatible with the
left and right acts.

Example H.23. Specializing the previous example to the case when (H,e) and (H’, ") are groups,
the functors from BH to BH' are equivalent to group homomorphisms from (H,e) to (H’,e"). More
generally, every functor between groupoids induces group homomorphisms between automorphism
groups of objects and the induced functioms between general Hom sets are compatible with both
the left and right actions by these automorphism groups.

Example H.24. For every category C, for every preordered set (S, R"), every functor from C to
the category of (S, R') is equivalent to a morphism F; from obj(C) to (the class of) S’ that is
nondecreasing, i.e., for every ordered pair (a,b) of objects of C such that C{ is nonempty, then
(f(a), f(b)) is an element of R'.

Definition H.25. For every every category C, for every category C’, for every object a’ of the
category C’, the constant functor Constg,,a, from C to C’ with value a’ assigns the object a’ to

every object a of C and assigns the identity morphism IdS, to every C-morphism. In other words,
constS, ,, is the composition of the unique functor from C to the trivial monoid B{e} with the
unique functor from B{e} to C’ sending the unique object of B{e} to the object a’ of C’.

Example H.26. In particular, for the category Set, the functor L = Constggag from Set to itself
has the special property that Homgei(L(a),b) is always a singleton set.

Definition H.27. For every category C, an object 0 of C is an initial object if (and only if), for
every object a of C, there exists a unique C-morphism from 0 to a.

Example H.28. Similarly, for the category Set, for every singleton set, say 1 := {@}, the functor
R = Constggal from Set to itself has the special property that Homget (a, R(b)) is always a singleton
set.

Definition H.29. For every category C, an object 1 of C is a final object if (and only if), for
every object a of C, there exists a unique C-morphism from a to 1. An object that is both initial
and final is a zero object.

Exercise H.30. For every category C that has an initial object, prove that the initial object is
unique up to unique isomorphism. Similarly, for every category C that has a final object, prove
that the final object is unique up to unique isomorphism (you can use opposites to reduce to the
previous assertion). Conclude that for every category C that has a zero object, the zero object is
unique up to unique isomorphism.

Exercise H.31. Prove that Set has an initial object and a final object, but these are not isomor-
phic, hence Set does not have a zero object. Prove the same for Top, and the concrete forgetful
functor maps the initial object of Top, respectively each final object of Top, to the initial object
of Set, resp. to a final object of Set. On the other hand, prove that the empty set is the unique
zero object of Rel. Similarly, prove that {e} is the unique zero object in Monoid, in the full
subcategory Grp, in the full subcategory Ab, etc.
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Exercise H.32. Prove that the (standard) ring of integers Z is an initial object in the category
Ring of associative, unital rings, and also in the full subcategory CRing of commutative, associa-
tive, unital rings. Prove that the zero ring is a final object in each of these categories.

I Natural transformations

The notion of functors admits its own notion of morphisms between functors, called natural trans-
formations. This is very analogous to the operation on group homomorphisms of post-composition
by a conjugation (inner) automorphism.

Definition I.1. For every category C, for every category C’, for every covariant functor F from
C to C’, and for every covariant functor G from C to C’, a natural transformation from
F to G is a morphism of classes 6 from ob¢ associating to every object a of C an element 6,
of Homeg/(F(a),G(a)) such that, for every ordered pair (a,b) of objects of C and for every C-
morphism « from a to b, the C’-composite ) o F*(u) equals the C’-composite G§(u) o 6,. A
natural transformation is a natural equivalence (or natural isomorphism) if (and only if) the
morphism associated to each object is an isomorphism.

Example 1.2. For every category C, for every category C’, and for every covariant functor F from
C to C’, the identity natural equivalence from F to itself is the natural transformation that
associates to every object a of C the identity morphism Idgéa). This is denoted by Idg,vF, or just
Idg when confusion is unlikely.

Exercise I.3. For the inclusion functor inclgey from Set to Rel, for the power set functor P from

Rel to Set, check that the following defines a natural transformation 6 from the identity functor
I1d5°* to the composite functor P oinclpe. For every set a, the set function 6, from a to P(a) sends
every element y of a to the singleton set {y} considered as an element of P(a).

Exercise 1.4. Continuing the previous exercise, check that the following defines a natural trans-
formation 7 from incl%eetl o P to the identity functor Id®®!. For every set a, the relation 7, from
P(a) to a is the subset 1, of P(a) x a of all ordered pairs (z,y) of a subset z of a and an element
y of a, the ordered pair (x,y) is an element of 7, if and only if y is an element of = (i.e., 7, is the
opposite relation of the relation €, of being an element of a set).

Definition I.5. For every category C, for every category C’, for every ordered triple (F,G,H) of
covariant functors from C to C’, for every natural transformation 8 from F to G, for every natural
transformation 7 from G to H, the (vertical) composition natural transformation 706 from F
to H is the natural transformation that associates to every object a of C the composite morphism
Na © 0, from F(a) to H(a).

Exercise I.6. Check that the composition natural transformation is, indeed, a natural transfor-
mation. Also check that composition is (strictly) associative for natural transformations. Finally
check that identity natural transformations are (strict) left-right identities for composition.
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Example 1.7. For every category C, for every category C’; for every C’-morphism f’ from an
object a’ to an object ', there is an associated natural transformation constS, o from the constant
functor constg,ﬂ, to the constant functor constg,ﬁ, associating to every object a of C the morphism

f

Exercise 1.8. For every category C, for every category C’, for every object a’ of C’, prove that
constg,’ld , is the identity natural transformation from constg,’a, to itself. Also, for every ordered
triple (a’, ¥, ") of C’-objects, for every C’-morphism f’ from a’ to " and for every C’-morphism g’
from o to ¢/, prove that constS, gopr €quals the composition of natural transformations constS, g °

C ’ b
conste, Iz

Example 1.9. For every monoid (H,e), for every monoid (H’,e’), for monoid homomorphisms f
and g from (H,e) to (H’,e’), for the associated functors from the category of (H,e) to the category
of (H’,e"), a natural transformation between these functors is an element h’ of H’ such that for
every element h of H, the composite h' e’ f(h) equals g(h) e’ h'. In particular, if g equals f, then
the natural self-transformations of g = f are equivalent to elements of H’ that centralize the image
of f. So the center of (H’,e") is equivalent to the set of natural self-transformations of the identity
functor of the category of (H',e’).

Example 1.10. Continuing the previous example, if the monoid (H’,’) is a group (i.e., if every
morphism is an isomorphism), then a natural transformation from f to g, monoid homomorphisms
from (H,e) to (H’,e"), are equivalent to elements h’ of H' such that g equals the composite
innerys o f, where innery, is the conjugation (inner) automorphism of (H',e") associated to h'.

Example 1.11. Similarly, for every natural transformation 6 between functors F and G from a
category C to a category C’, for every object a of C that maps under both F and G to a common
object a’, the monoid homomorphisms F¢ and G¢ from C¢ to (C’) are intertwined by the element
0, of (C")% in the sense that 0, o F¢(u) equals G%(u) o, for every element u of C¢.

Example 1.12. For every functor F from a category C to a category C’, if there exists an initial
object 0’ of C’, then there is a unique natural transformation from the constant functor Constg,p,
to F that associates to every object a of C the unique C’-morphism from 0’ to F(a).

Example 1.13. For every functor F from a category C to a category C’, if there exists a final object
1" of C’, then there is a unique natural transformation from F to the constant functor constg, 1
that associates to every object a of C the unique C’-morphism from F(a) to 1’.

Example 1.14. For every category C, for every preordered set (S, R"), for functors F and G from
C to the category of (S, R), i.e., nondecreasing morphisms from obj(C) to (the class of) S, there
exists a natural transformation from F to G if and only if (F(a),G(a)) is an element of R’ for
every object a of C, and then the natural transformation is unique. Thus, there exists a natural
transformation from F to G if and only if, valuewise F ., is “less than or equal to” G-

There is another notion of composition for functors.
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Definition I.15. For every category C = (O, M, o), for every category C’ = (O’,M’,o’), for every
category C” = (O, M" o"), for every ordered pair (F,G) of covariant functors from C to C’, for
every ordered pair (F/, G’) of covariant functors from C’ to C”, for every natural transformation
0 from F to G, for every natural transformation 6’ from F’ to G’, the horizontal composition
natural transformation of 6’ and 6, sometimes called the Godement product, is the natural
transformation 6’ * § from F’' o F to G’ o G associating to every object a of C the C”-morphism,

e " (FVGD (0a) = (0" % 0)q = (GG (0a) " O .

Exercise 1.16. Check that the Godement product is a natural transformation from F’oF to G'oG.
Also check that the Godement product is associative in both 6 and ¢’ separately for the (vertical)
composition of natural transformations.

There are some important special cases of the Godement product.

Definition 1.17. For every category C, for every category C’, for every category C”, for every
ordered pair (F, G) of covariant functors from C to C’, for every covariant functor H’ from C’ to C”,
for every natural transformation 6 from F to G, the H'-pushforward natural transformation

is H.0 = Idg:,7H, * 0, associating to every object a of A the C”-morphism (H’)g((‘;))(ea).

Definition 1.18. For every category C, for every category C’, for every category C”, for every
covariant functor E from C to C’, for every ordered pair (F’, G’) of covariant functors from C’ to
C”, for every natural transformation # from F’ to G’, the E-pullback natural transformation,
E*0 =0 Idg,vE associates to every object a of C the C”-morphism 6gq).

Exercise 1.19. Check that the Godement product can be expanded in terms of pushforward,
pullback and vertical composition as follows,

GnoF.0=n+0=G.0oF*n.

J Products and Coproducts

Definition J.1. For every category C, for every ordered pair (by,by) of objects of C, an arrow
over (by,by) is an ordered pair (p1,ps) of a C-morphism p; from an object a to b; and a C-
morphism p, from a to be. For every arrow ((py:a — by, ps:a — by) over (by,by), for every arrow
(p]:a’ = by, ph:a’ — by)) over (by,bsy), a morphism of arrows over (by,bs) from (py1,p2) to (pf,ph)
is a C-morphism f from a to a’ such that both p/ o f equals p; and p) o f equals p,. A product
of (by,b2) in C is an arrow over (b, bs), say

(pr&m)’l 1by X by — b1>pr(clj;17b2)72 1by X by — 52),

such that for every arrow (p1, p2) over (by, bs), there exists a unique morphism of arrows over (by, bs)
from (p1,p2) to (prgj1 ba) 1,p1rg71 ba) ,). More generally, for every object ¢ of C, for every ordered
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pair (g1 : by = ¢, 92 : by > ¢) of objects of the under category C,, a fiber product of (g;,¢2) is a
product of (g1, g2) in the under category C,, i.e., an arrow over (by,bs),

C . C .
(pr(gl,gg),l tb1 Xgy e b2 > b17pr(g1,g2),2 101 X gy .95 b2 = b2),

such that g o plr&m%1 equals g, © prglm)a, and such that, for every arrow over (by,b,), say

(p1:a— by, ps:a— by) that satisfies g; o p; = go 0 po, there exists a unique morphism of arrows over
(b1, b2) from (1. p2) t0 (DX, 5,) 10 PIG g),2):

Definition J.2. For every category C, for every ordered pair (b1, by) of objects of C, an arrow
under (by,by) is an ordered pair (i1,is) of a C-morphism i; from b; to an object ¢ and a C-
morphism py from by to c¢. For every arrow ((iy: by = ¢,i5 : by - ¢) under (by,by), for every arrow
(@) : by > ¢, 1 by > ¢’)) under (by,b2), a morphism of arrows under (b1, be) from (iy,1s) to (i},75)
is a C-morphism h from c to ¢’ such that both h o equals 7} and h oy equals 7). A coproduct
of (by,b2) in C is an arrow under (by,bs), say

(inclG, pyy1 b1 = by Uba,inClG, ) 5 b = b Lby),

such that for every arrow (i{,45) under (by,by), there exists a unique morphism of arrows under
(b1,b2) from (inclgm),l,inclg,lm)g) to (i},45). More generally, for every object a of C, for every
ordered pair (f1:a — by = b, fo : a = by) of objects of the over category C¢, a cofiber coproduct
of (f1, f2) is a coproduct of (fi, f2) in the over category C?, i.e., an arrow under (by,bs),

(incl&, oy i b= byl by ind@h 2 i be > byuie by,

such that incl(c}h o)1 © J1 equals incl(c}h f2),2 © J2, and such that for every arrow under (b1,b2), say

(@) : by > ;i 1 by > ') that satisfies fj 0] = fy01l, there exists a unique morphism of arrows under
. C . C .

(b1,b2) from (incly, 1) 1,incly, f,y0) to (4],15).

Lemma J.3. When products exist, respectively when fiber products exist, when coproducts ezxist,
when cofiber coproducts exist, they are unique up to unique isomorphism. Products and fiber prod-
ucts in the opposite category are coproducts and cofiber coproducts in the original category. Coprod-
ucts and cofiber coproducts in the opposite category are products and fiber products in the original
category.

Definition J.4. A category C has all finite products, respectively has all finite coproducts,
if (and only if) for every ordered pair (b,by) of objects of C there exists a product of (by,by) in
C, resp. there exists a coproduct of (by,by) in C. A category has all finite limits if (and only if),
for every object ¢ of C, the under category C. has all finite products. A category has all finite
colimits if (and only if), for every object a of C, the over category C¢ has all finite coproducts.

Example J.5. In the category Set, Cartesian products with the usual projection functions are
products, and disjoint unions with the usual inclusion functions are coproducts. Thus, Set has all
finite products, and it has all finite coproducts. Similarly, for fiber products, the equalizer subset
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in the Cartesian product of the pair of morphisms is a fiber product in the category of sets, and
the coequalizer quotient set of the disjoint union for the pair of morphisms is a cofiber coproduct
in the category of sets. Thus, Set has all finite limits, and it has all finite colimits. In the category
Rel, again disjoint union with inclusion functions (considered as relations) are coproducts. The
opposite relations of the inclusions functions make disjoint unions into products in the category of
Rel. Thus, Rel has all finite products, and it has all finite coproducts. However, the category Rel
does not have all fiber products, nor does it have all cofiber coproducts.

Definition J.6. For every category C, for every category C’, for every functor F from C to C’,
the functor preserves finite products if (and only if), for every ordered pair (b1,by) of objects
of C and for every ordered pair (pr(cl’)1 bo) 1,p1“8)1 bo) ,) of C-morphisms that is a product of (b,b,),

for the C’-objects b} = F(b;), and for the C’-morphisms pr((;', b = F(pr(cb1 by).i)» the ordered pair
1:92) 02),

(pr(cz:;:l,bg),ppr(cb:l,bg)g) is a product of (b}, b5) in C'.

Similarly, the functor preserves finite limits if (and only if), for every object ¢ of C with image
object ¢ = F(c) of C’, the associated functor F, from the under category C. to the under category
C!, preserves finite products, i.e., F preserves (finite) fiber products.

Definition J.7. For every category C, for every category C’, for every functor F from C to C’, the
functor preserves finite coproducts if (and only if), for every ordered pair (b, by) of objects of
C and for every ordered pair (incl(Cbl’bz)vl, in(:l(cbhb2 ).2) of C-morphisms that is a coproduct of (b1, bz),

for th(? C’—object/s bi = F(b;), and for the C’-morphisms inclg,;ﬁbém = F(inclg,l’b2)7i), the ordered pair
(incl&’bém,incl&?bgm) is a coproduct of (b],b5) in C'.

Similarly, the functor preserves finite colimits if (and only if), for every object a of C with image
object a’ = F(c) of C’, the associated functor F, from the over category C¢ to the over category
(C")% preserves finite coproducts, i.e., F preserves (finite) cofiber coproducts.

Exercise J.8. For every monoid (H,e), for every monoid (H’,e"), define a binary operation on
the Cartesian product H x H' by (hy, h}) * (ha, h}) := (hy @ he, b} o' h}). Check that the projection
function pry gy 1, respectively pry gy o, is @ monoid homomorphism from (H x H',*) to (H, ),
resp. to (H’,e"). Check that this operation makes (H x H’, *) into a product of (H,e) and (H',e")
in the category of monoids. Conclude that Momnoid has all finite products, and the forgetful
concrete functor from Monoid to Set preserves finite products. Similarly, check that Monoid has
all finite limits, and the forgetful concrete functor preserves finite limits.

Exercise J.9. Prove that a full subcategory of a category that has all finite products, respectively
that has all finite coproducts, both has all finite products, resp. all finite coproducts, and the
inclusion functor preserves all finite products, resp. all finite coproducts, if and only if every
product in the ambient category, resp. every coproduct in the ambient category, of objects of
the full subcategory is isomorphic to an object in the full subcategory. Formulate and prove the
analogous result for finite limits, resp. for finite colimits.
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Exercise J.10. Prove that the full subcategory Grp of Monoid has all finite limits and the
inclusion functor preserves all finite limits. Similarly, prove that the full subcategory Ab of Grp
has all finite limits and the inclusion functor preserves all finite limits. Similarly, prove that the
full subcategory Q — Mod of Ab has all finite limits and the inclusion functor preserves all finite
limits. More generally, for all associative, unital rings R and S, for the forgetful functor to Ab from
R —Mod, respectively from Mod - 5, from R - S - Mod, mapping each module to its underlying
additive group, prove that each of these categories has all finite limits and the forgetful functor
preserves all finite limits.

Exercise J.11. For the forgetful functor from Ring to Ab that maps each associative, unital
rings to its underling additive group, prove that Ring has all finite limits and the forgetful functor
preserves all finite limits. Prove that the full subcategory CRing of Ring has all finite limits and
the inclusion functor preserves all finite limits.

Exercise J.12. For every ordered pair ((X1,71), (X2,72)) of topological spaces, prove that there
exists a coarsest topology 7 ® 75 on the product set X; x X5 such that for both : =1 and 7 = 2, the
projection function pry, x,), is a continuous map from (X; x Xs, 71 ® 72) to (X;, 7;), namely the
topology generated by the topological basis B of all subsets pr?;’h x). (U1) n pry X'? X )2(U2) with
U, an element of 7 and with U, an element of 75. This is the product topology on X; x X5 of
7 and 7. Prove that the pair of continuous maps ((pr(x, x,).1,PT(x,,x,)2) is @ product of (X1,71)
and (X2, 72) in the category of topological spaces. Conclude that the category of topological spaces

has all finite products.

Exercise J.13. For every topological space (X,7), and for every subset X’ of X, prove that the
subset T|xs = {U N X'|U € 7} of P(X’) is the coarsest topology on X’ such that the inclusion
function incl¥ is a continuous map from (X', 7|x/) to (X, 7). Show also that for every topological
space (X' 7'"), for every continuous map f from (X”,7") to (X, 7), the image of f is contained in
the subset X if and only if there exists a continuous map f’ from (X", 7") to (X', 7|x+) such that
f equals inclf o f’, and then f’ is unique. The topology 7|x is the subspace topology.

Exercise J.14. For every ordered triple of topological spaces, say (X1,71), (X2, 7) and (X, 7), for
every ordered pair of continuous maps ¢; from (Xi,71) to (X,7) and gy from (X5, 72) to (X,7),
prove that the subspace topology on the subset X x,, v, Xo of (X7 x X5, 71 ® 7») gives a fiber
product of g; and g5 in the category of topological spaces. Conclude that the category of topological
spaces has all finite limits, and the forgetful functor from Top to Set preserves all finite limits.

The description of coproduct in each of these concrete categories is different. The notion of left
adjoint functors to each concrete forgetful functor gives a uniform construction of the coproducts.
K Product categories

Definition K.1. For every category C; and for every category Cs, the product category C; xC,
of C; and C, is the category whose objects are ordered pairs (ag,as) of a Ci-object a; and a Cs-
object ay. For every ordered pair ((aq,az), (b1,b2)) of objects a; and by of Cy and objects as and
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by of Cs, the Hom set in C; x C, is the product set
Home, xc, ((a1,a2), (b1,b2)) = Homg, (a1, 1) x Homg, (az, bs).

Finally, composition is defined componentwise: for every ordered pair ((g1,92), (f1, f2)) of Ci-
morphisms f; from a; to by and ¢; from b; to ¢; and Cy-morphisms fy from as to by and go from
by to co, the composition (g1, 92) o (f1, f2) is defined to equal (g1 o1 fi, s 02 f2).

Example K.2. For every monoid (H,e), for every monoid (H',e"), the product of the category of
(H,e) and the category of (H’,e’) is (canonically equivalent to) the category of the direct product
monoid (H x H', *) where (a,a’) * (b,b") equals (aea’,bed’) for all elements a and b of H and for
all elements a’ and b' of H'. Note, this is (usually) quite different from the free product of the two
monoids (which is the coproduct in the category of monoids), i.e., the quotient of the free monoid
on the set H u H' by the equivalence relation arising from the identities and group operations on
H and on H’. The direct product is a further quotient by the equivalence relation identifying each
product (e, h’) = (h,e’) with the product (h,e’) * (e, h’), for identity elements e and e’ of H and H'.

Definition K.3. For every category Cy, for every category Cs, for the product category C; x Ca,
the first projection functor prgl’ > from C; x Cy to C; maps every object (ay,as) of Cq x Cs
to the object a; of C; and maps (fl, f2) to fi for every ordered pair (fi, f2) of a C;-morphism f;
from a; to by and a Cy-morphism f5 from ay to be. This functor is denoted by pr; when confusion
is unlikely.

Similarly, the second projection functor prcl’CQ from C;xCsy to Cy maps every object (a1,az) to

ay and maps every C; x Cy-morphism (fi, fo) to f2. This functor is denoted by pr, when confusion
is unlikely.

Example K.4. For every monoid (Hi,e;), for every monoid (H,,es) the projection functors
from the product category correspond to the projection monoid homomorphisms from the product
monoid (Hy x Hy, e1 x e3) to the factors (Hy,e;) and (Ha,es).

Proposition K.5. For every category B, for every category Cq, for every category Co, for every
functor Fy from B to Cy, for every functor Fy from B to Cs, there exists a unique functor (Fi,Fy)
from B to the product category Cy x Cq such that the composite functor pr; o (F1,Fs) equals Fy and
the composite functor pry o (F1,F3) equals Fy.

Proposition K.6. For every category B, for every category Cq, for every category Cs, for every
ordered pair (F1,G1) of functors from B to Cy, for every ordered pair (Fa, Gg) of functors from B
to Cy, for every natural transformation 6, from ¥ to Gy, for every natural transformation 65 from
Fy to G, there exists a unique natural transformation (01,60s) from (F1,Fy) to (G, Gs) such that
the pushforward of (61,02) by pry equals 01 and the pushforward of (61,602) by pr, equals 0.

Corollary K.7. For every functor of categories, ¥y from Cq to Dy, for every functor of categories,
Fy from Cy to Do, there is a unique functor (Fyo pry,Fyopry) from the product category Cq x Cy
to the product category Dy x Do, such that the composite functor pry o (Fy o pr,Fyo pry) equals
Fy o pry and the composite functor pryo (Fyo pry,Fso pry) equals Fy o pr,.
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Corollary K.8. For every ordered pair (F1,G1) of functors from Cy to Dy, for every ordered pair
(F2, Gs) of functors from Cy to Ds, for every natural transformation 0y from ¥y to Gy, for every
natural transformation Oy from Fo to Ga, there is a unique natural transformation (pri6y, pri6s)
from (Fyopry,Fyopry) to (Gyopry, Gyopry) whose pushforward by pr, equals the pullback pri6;
and whose pushforward by pry equals the pullback pri0s.

Definition K.9. For every category Cy, for every category Cs, for every category D, a bifunctor

(or strict 2-functor) F to D from C; and C, is an ordered triple class (Fob; objs (Fmor,objs Fobjmor))

of a class morphism Fop;0n; from obj(C;) x 0bj(Cs) to obj(D), of a class morphism F o ob;

from mor(C;) x obj(Cs) to mor(D), and of a class morphism Fp;jmer from obj(Cy) x mor(Cs)

to mor(D) such that, for every member (a;,as) of obj(C;p) x obj(Csy), the ordered pair class
(Fobjobi(®, a2), Fror obi(®, az)) is a functor from C; to D, the ordered pair class (Fob;obi(@1,®), Fobjmor(a1,®))
is a functor from Cy to D, and we have

Fobj,mor(bla fl) © Fmonobj(fla a2) = Fmor,obj(fb b2) o Fobj,mor(ala f2)

for every Ci-morphism f; from a; to an object b; and for every Cy-morphism fy from as to an
object bs.

Example K.10. For every category C, the Hom bifunctor Homc, or just Hom when confusion
is unlikely, is the bifunctor to Set from C°PP and C that maps every ordered pair (a,b) of objects
of C to the set Homg(a,b), that maps every ordered pair (u : a’ - a,b) of a C-morphism u from
a’ to a and an object b of C to the set function Homg(u,b) from Homeg(a,b) to Homg(a’,b) of
precomposition by u, and that maps every ordered pair (a,v : b — b') of an object a of C and
a C-morphism v from b to b to the set function Home(a,v) from Home(a,b) to Home(a,b’) of
postcomposition by v. This satisfies the bifunctor identities because of associativity of composition.

Exercise K.11. Check that this is a bifunctor.

Example K.12. For every category C;, for every category C,, the braiding bifunctor B¢, ¢,
is the bifunctor to Cy x C; from C; and C, that maps every ordered pair (a;,as) of an object
a; of C; and an object as of Cy to the object (az,a;) of Cy x Cq, that maps every ordered pair
(uy : a1 - a},ay) of a Cy-morphism w; from a; to a} and an object as of Cy to the morphism
(Iday,u1) from (ag,a1) to (az,a}) in Cy x Cy, and that maps every ordered pair (ai,us : as - aj)
of a Cy-morphism us from ay to a} and an object a; of Cy to the morphism (us,Id,, ) from (ag,a;)
to (aé,al) in CQ X Cl.

Proposition K.13. For every category Cy, for every category Cs, and for every category D, every

bifunctor to D from Cy and Cy extends uniquely to a functor from the product category Cq x Cq to
D.

Proposition K.14. For every category Cy, for every category Cs, and for every category D,
for every ordered pair (F,G) of bifunctor to D from C; and C,, for every class morphism 0
from 0bj(Cy) x 0bj(Cs) to mor(D), this is a natural transformation from the functor of F to the
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functor of G if and only if, for every member (ai,as) of 0bj(Cy) x 0bj(Cs), both 0. ., is a natural
transformation from F (e ,as) to G(e,a2) and 0,, . is a natural transformation from F(ay,e) to

G(ay,e).

Example K.15. For every category Cq, for every category C,, there is a projection bifunctor
prgl’lc2, respectively prc1 €2 from C; and Cy to Cy, resp. to Cs, that sends every ordered pair
(al,az) of an object a; of C1 and an object ay of Cy to the object a; of Cy, resp. to the object
ay of Cy. For every Ci-morphism f; from a; to by, the associated morphism from pr,(a;,as) = a;
to pry(b1,az) = by, resp. from pry(as,as) = ag to pry(by,az) = ag, is f, resp. is Id,,. For every
Cy-morphism fy from a, to b, the associated morphism from pry(ai,as) = a; to pry(ay,bs) = ay,
resp. from pry(aq,as) = ag to pry(ag,by) = be, is Id,,, resp. is fo.

Example K.16. For every category C, for every category D, for every functor F from C to D,
the associated bifunctor F°oPP x F of F from C°PP x C to D°PP x D is the unique functor such that
both pr, o (FoPP x F') equals F°PP o pr; and pr, o (F°PP x F') equals F o pr,. The associated natural
transformation of Hom bifunctors F; of F from Hom¢ to Homp o (FoPP x F') maps every
ordered pair (a,b) of objects of C to the set function F§ from Homc/(a,b) to Homp(F(a),F(b)).

Exercise K.17. Check that F¢ is, indeed, a natural transformation of bifunctors. For every functor
G from D to a category E, check that (G°PP x G) o (F°PP x F') equals (G o F)°PP x (G o F). Also
check that the composition natural transformation (FoPP x F'),G? o F: equals (G o F)s:.

Exercise K.18. For every category C, for every category D, for functors F and F from C to D,
for every natural equivalence ¢ from F to F with inverse natural equivalence 8, prove that §°PP x 9
from Forp x F to Forp x F is a natural equivalence. Formulate and prove the compatibility of this
natural transformation with the natural transformations F¢ and ﬁ:.

Definition K.19. For every category C, a product bifunctor is an ordered triple (—x—, pr®, prf)
of a bifunctor — >< — to C from C and C, a natural transformation pr® from the bifunctor — o — to
the bifunctor prc 1, and a natural transformatlon pr$ from the bifunctor —o— to the bifunctor p1rC 2
such that, for every ordered pair (a1,as) of objects of C, the following ordered pair is a product of
a; and as in C,

(pr(czmaz)’1 fay X ag —> aLl,pr(Calm)’2 Lay X g = ag).

Exercise K.20. For every category C, if a product bifunctor exists, prove that it is unique up to
unique natural equivalence.

Exercise K.21. Let C be a small category such that for every ordered pair (aq,as) of objects of
C, there exists a product. Using the Axiom of Choice, prove that there is a product bifunctor. Up
to some much stronger Axiom of Choice, every category that admits finite products has a product
bifunctor.

Example K.22. For every product bifunctor on a category C, a product bifunctor on the arrow
category Arr(C) maps every ordered pair (((s1,%1), f1), ((s2,t2), f2)) to ((s1 % s2,t1 x t2), f1 % fa),
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maps every morphism (o, 71) from ((s1,%1), f1) to ((s},t}), f{) to the morphism (o xIds,, 7 x1ds,)
from ((s1 % s2,t1 xt2), fi x fa) to ((s] x s2,t] xta), f{ x f2), and maps every morphism (o2, 72) from
((s2,t2), f2) to ((sh,th), f3) to the morphism (Ids, x 09,1d;, x 79) from ((s1 x S9,t1 X ta), f1 % f2)
to ((s1 x sh,t1 x th), f1 x f3). The projection natural transformation prim(c) maps every ordered
pair (((s1,t1), f1), ((s2,%2), f2)) to the projection morphism (pr(] ), P ;) from ((six sz, t1x
"©) maps every ordered

29 PIG, 4y).0) from ((s1x 82,81 %

ta), f1 x f2) to ((s1,t1), f1). The projection natural transformation pr?r
pair (((s1,%1), f1), ((s2,t2), f2)) to the projection morphism (pr&&)?
ta), J1 % f2) to ((s2,12), f2).

Example K.23. For the category Set, the bifunctor — x — associates to every ordered pair (ay, as)
of sets the Cartesian product set a; x aq, associates to every function f; from a set a; to a set a}
the function f; x Id,, from a; x ay to aj x ag, and associates to every function fy from as to a)
the function Id,, x f, from a; x ay to a; x al. The natural transformation pﬁet associates to every
ordered pair (aq,az) of sets the first projection function pr(S:f’az))’l from aq x as to a;. The natural
transformation prS€® associates to every ordered pair (ay,as) of sets the second projection function

Set
Pl ao) 1 from a; x a9 to as.

Exercise K.24. Check that this defines a product bifunctor on the category Set.

Exercise K.25. Each of the categories Monoid, Grp, Ab, Ring, CRing, R - Mod, Mod - S
and R - S - Mod, and Top has all finite products, and the (standard) concrete forgetful functor
from each to Set preserves all finite products. Use this “lift” to each of these categories the product
bifunctor for Set, thus proving that each of these categories has a product bifunctor.

Exercise K.26. Formulate and prove analogues of each of the general theorems about for a co-
product functor (e.g., by applying the theorems above to the opposite category). However, the
standard concrete forgetful functors in the previous exercise do not preserve all coproducts, except
for the concrete functor on Top. Adjoint pairs give coproducts in the other cases.

Exercise K.27. For every monoid (H,e), there is a bifunctor U to the category H — Act of left
H-acts from the category H — Act and H — Act that sends every ordered pair ((.S, p), (S’,p")) of
left H-acts to the left H-act pu p’ on the disjoint union set S'u.S’. Deduce that H — Act has all
finite coproducts, and the concrete forgetful functor to Set preserves all finite coproducts. If (H,e)
is a group, prove that the left H-actions that are indecomposable with respect to U are precisely
the left regular action of H on the right coset space H/K of a subgroup K of H.

Exercise K.28. For every monoid (H,e), use the same technique as earlier to construct a product
bifunctor x to H — Act from the category H — Act and H — Act sending every ordered pair
((S,p), (S, p")) of left H-acts to the left H-act px p’ on the Cartesian product set S x S’. Deduce
that the category H—Act has all finite products, and the concrete forgetful functor to Set preserves
finite products. In particular, if (H,e) is a group, then for u-indecomposible left H-actions H/K
and H/K' for subgroups K and K’ of H, the u-components of (H/K) x (H/K") are of the form
H/K" for K" a subgroup of the form (hKh=')n (R'K’(h")"'). Thus, the u-components are all
isomorphic (so that (H/K)x (H/K") is “isotypic”) if at least two of K, K’ and K n K’ are normal.
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Exercise K.29. For associative, unital rings (R, +g,r), (S,+s,s) and (T, +7,r), there is a bi-
functor ®¢ to the category R —T —Mod of R - T-bimodules from the category R - S - Mod and
S - T —Mod that sends every ordered pair ((M,+,(p,0)),(M',+',(c’,7")) of an R — S-bimodule
and a S — T-bimodule to the associated tensor product R — T-bimodule M ®¢ M’, where the set
function from M x M’ to the Abelian group M ®g M’ is initial among all biadditive maps from
M x M’ to an Abelian group that are S-balanced: for every element (m,m’) of M x M’ and for
every element s of S, both (m-s,m') and (m,s-m’) have the same image. Formulate and prove
existence of associator isomorphisms (M ®gM")@rM" = M ®g(M'®7 M") for every T-module M".
Formulate and prove existence of left / right unitor isomorphisms of S®g M’ = M’ and M ®gS = M.
Formulate and prove the triangle (coherence) identity and the pentagon (coherence) identity for
the unitors and associators.

Example K.30. For every Abelian monoid (H,e), there is a bifunctor sumgy,. to B(H,e) from
B(H,e) and B(H,e) that maps the unique object (*,*) to the unique object %, and, for every
element h of H, maps both (h,*) and (*,h) to h. The bifunctor axiom is precisely the Abelian
hypothesis on the monoid.

L Comma categories

M Adjoint pairs

Definition M.1. For every category C, for every category D, an adjoint pair of covariant functors
between C and D is ((L,R), (0,1)) consisting of an ordered pair of covariant functors,

L:C-D,
R:D - C,
and an ordered pair of natural transformations of covariant functors,
6:ldc = RoL, 0(a):a—-R(L(a)),

n:LoR = ldp, n(b): L(R(D)) - b,
such that the following composition of natural transformations equals Idg, respectively equals Idy,,

(+r) RS RoLoR 'R,

(+1): LY LoRoL ™S L.

For every object a of C and for every object b of D, define set maps,

HE(a,b) : Homp (L(a),b) -» Home(a, R(b)),
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(L(a) > b) o> (a 2O, R(L(a)) 22 R(b))

and

H(a,b) : Homg(a, R(b)) - Homp (L(a),b),

(a % R() = (L(0) > LRE) ).

Exercise M.2. For L, R, 6 and 7 as above, prove that the conditions (*g) and (1) hold if and
only if, for every object a of C and for every object b of D, the morphisms Hg (a,b) and Hf*(a,b)
are inverse bijections.

Exercise M.3. Prove that both HE(a,b) and Hf¥(a,b) are binatural in a and b.

Exercise M.4. For functors L and R, and for binatural inverse bijections Hg(a,b) and HR(a,b)
between the bifunctors

Homp(L(a),b), Homc(a, R(b)) : C x D - Set,

prove that there exist unique # and 1 extending L and R to an adjoint pair such that Hg and H}*
agree with the binatural inverse bijections defined above.

Exercise M.5. Let (L, R,0,7n) be an adjoint pair as above. For every covariant functor,
R:D - C,

for every natural transformation n from L o R to Idp, prove that 7= R0 R*0 is the unique
natural transformation from R to R such that 7 equals no L,77. Conversely, for every natural
transformation 7 from R to R, prove that 77:=no L7 is the unique natural transformation from
Lo R such that 77 " equals R,7jo R*0. Formulate and prove the analogous _correspondence between
natural transformations 6 from Idc to Ro L and natural transformations 6’ from L to a functor L.

Exercise M.6. Let (L, R,0,7n) be an adjoint pair as above. Let a covariant functor
R:D-C,
and natural transformations,
0:1dc = f{oL,ﬁ: LoR = Idp,

be natural transformations such that (L, R, @’,ﬁ) is also an adjoint pair. For every object b of D,
define ¢(b) in Homp (R(b),R(b)) to be the image of 1d, under the composition,

Homp (6(b),b) HE(R(b),b)
—_—

Homp (b, b) Homp (L(R(D)), ) —"" Homp (R(b), R(b)).
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Similarly, define x(b) in Homp (R (b), R(b)), to be the image of Id, under the composition,

Homp (9(b),b) HE(R(b),b)
_ 5

Homp (b, b) Homp (L(R(b)),b) Homp (R(b), R(b)).

Prove that ¢ and k are the unique natural transformations of functors,
.:R=R, r:R=>R,

such that 6 equals (coL)o#, 6 equals (roL) o8, 7j equals no(Low), and 5 equals 7o (Lox). Moreover,
prove that ¢+ and k are inverse natural equivalences. In this sense, every extension of a functor L
to an adjoint pair (L, R,6,7n) is unique up to unique natural isomorphisms (¢, x). Formulate and
prove the symmetric statement for all extensions of a functor R to an adjoint pair (L, R,6,7n) (you
could use opposite categories to simplify this).

Exercise M.7. For every adjoint pair (L,R,0,7n), prove that also (R°PP,LoPP 7j°oPP (°PP) is an
adjoint pair.

Exercise M.8. Formulate the corresponding notions of adjoint pairs when L and R are contravari-
ant functors (just replace one of the categories by its opposite category).

Exercise M.9. For every ordered triple of categories, (C,D, &) for all covariant functors,
L':C-D
R':D - C,
for all natural transformations that form an adjoint pair,
0" :1dc = R'L/,
n:L'R’ = Idp,

for all covariant functors,
L":D - ¢,

R":&£ - D,
and for all natural transformations that form an adjoint pair,
0" :1dp = R"L",
n":L"R" = Idg,

define covariant functors

L:C-¢& R:£E-C
by L=L"oL’, R=R'0oR”, define the natural transformation,

f:1dc = RoL,
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to be the composition of natural transformations,

6’ R0 oL’/
Idc=R' oL’ " =" R'oR"oL"oL/,

and define the natural transformation,
n:LoR = Idg,

to be the composition of natural transformations,

L"On’OR" ,,7//
LII o Ll o RI o RII = LII o RII = Idé‘

Prove that L, R, # and 7 form an adjoint pair of functors. This is the composition of (L’, R/, 0", n")
and (L//7 RII’ 9//7 7]//).

Exercise M.10. If C equals D, if L’ and R/ are the identity functors, and if #” and n" are the identity
natural transformations, prove that (L,R,0,7n) equals (L”,R",0"” n). Similarly, if D equals &,
if L” and R are the identity functors, and if 8” and n’ are the identity natural transformations,
prove that (L, R, 0,n) equals (L’,R/,0",n"). Finally, prove that composition of three adjoint pairs
is associative.

Example M.11. Let C be a category that has a final object f, and let D be a category that has
an initial object e. Let L be constge, and let R be constgf. Thus, R o Li equals CODStSf, and
LoR equals constBe. Since f is a final object of C, there is a unique natural transformation from
every endofunctor of C to constg’ ;- In particular, there exists a unique natural transformation 6
from the identity functor to constS - Since e is an initial object of C, there is a unique natural
transformation from constB6 to every endofunctor of D. In particular, there exists a unique natural
transformation 7 from constg, s to the identity functor. Together, these define an adjoint pair giving
binatural bijections for every object a of C and every object b of D,

Homp (constg (a), b) = Homc (a, constg ;(b)).

Example M.12. Let (5,<) and (5’,<’) be partially ordered sets. Let L be a nondecreasing
function from (5,<) to (5’,<’) considered as a functor between the associated categories. Let R
be a nondecreasing function from (S’,<’) to (5,<) considered as a functor between the associated
categories. There exist natural transformations completing this to an adjoint pair if and only if|
for every element a of S, for every element a’ of S’, we have L(a) <’ @’ if and only a < R(a’). In
this case, the natural transformations extending to an adjoint pair are unique.

Definition M.13. For every category C, for every category D, for every adjoint pair
(L:C>D,R:D->C,#:ldc=RoL,n:LoR = Idp),

the adjoint pair is a strict equivalence from C to D if (and only if) both € is a natural equivalence
and 7 is a natural equivalence.
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Exercise M.14. Prove that identity adjoint pairs are strict equivalences. Prove that the compo-
sition adjoint pair of strict equivalences is a strict equivalence. For every strict equivalence from C
to D as above, prove that also (R, L,n™,671) is a strict equivalence from D to C that is a left-right
inverse of the original strict equivalence.

Exercise M.15. Prove that each of the functors in a strict equivalence is a weak equivalence.
Prove that every composition of weak equivalences is a weak equivalence.

Exercise M.16. Let C and D be strictly small categories. Prove that for every weak equivalence
L from C to D there exists a strict equivalence (L, R,6,7n) from C to D, and this strict equivalence
is unique up to isomorphism (which is not necessarily unique). Thus, using a strong variant of the
Axiom of Choice, every weak equivalence should arise (non-uniquely) from a strict equivalence.

N More about categories

The category of presheaves on a topological space (containing the category of sheaves as a full sub-
category) is an example of a functor category. Functor categories also give the cleanest formulation
of the Yoneda lemma and of limits / colimits.

N.1 Functor categories

Functors give a formalism for working with labelled collections of objects in some fixed category
D, where the labels or indices are themselves objects of some small category C (such as a partially
ordered set). The indexed collections then form objects of a new category, called a functor category.

Definition N.1. For every small category C, for every category D, the class obj(D€), sometimes
also denoted obj([C,D]) or obj(Fun(C,D)), is the unique class whose members are precisely the
sets whose classes give functors from C to D.

For every ordered pair (F,G) of functors from C to D, again because C is small, every natural
transformation from F to G is the class of a set, and the class of all sets whose classes are natural
transformations from F to G is itself a set.

Definition N.2. For every small category C, for every category D, the class mor(D€), sometimes
also denoted mor([C,D]) or mor(Fun(C, D), is the span from obj(D€) whose fiber class over each
ordered pair (F, G) of sets whose classes are functors from C to D is the class whose members are
precisely the sets whose classes give natural transformation from F to G.

Together this defines a category.
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Definition N.3. For every small category C, for every category D, the functor category D€
from C to D, also denoted Fun(C, D) or [C,D], is the category with objects class obj(D€) and
with morphisms class mor(D€). So the objects of the class are equivalent to functors from C to
D, and the morphisms of the class are equivalent to natural transformations. The composition law
of this category is composition of natural transformations.

Please note, the way we formalize (parametrically definable) classes there is a distinction between
sets and the associated classes. Thus the objects of the functor category are sets whose classes
are functors from C to D, and the morphisms are sets whose classes are natural transformations
between such functors. Nonetheless, we shall treat this category as if the objects are functors and
as if the morphisms are natural transformations.

Definition N.4. For every small category C, for every category D, for every category D’, for
every functor H from D to D’, the H-composition functor HE from D€ to (D’)€ maps every
functor F from C to D to the composite functor Ho F from C to D’, and maps every natural
transformation 6 from a functor F to a functor G to the H-pushforward natural transformation
H.0.

Exercise N.5. Prove that the H-composition functor is a functor. Prove that the Idp-composition
functor is the identity functor from D€ to itself. Prove that for every ordered pair (I, H) of a functor
H from D to D’ and a functor I from D’ to D”, the I o H-composition functor (IoH)€ equals the
composition of functors I€ o HC.

Definition N.6. For every small category C, for every small category C’, for every functor J from
C to C/, for every category D, the J-precomposition functor D7 from D€ to D€ maps every
functor F’ from C’ to D to the composite functor F’ o J from C to D, and maps every natural
transformation 6’ from a functor F’ to a functor G’ to the J-pullback natural transformation J,.6".

Exercise N.7. Prove that the J-precomposition functor is a functor. Prove that the Idc-precomposition
functor is the identity functor from D€ to itself. Prove that for every ordered pair (K, J) of a func-

tor J from C to C’ and a functor K from C’ to C”, the K o I-precomposition functor D¥*J equals

the composition of functors DY o DX,

Exercise N.8. Prove that for every functor J from a small category C to a small category C’ and
for every functor H from a category D to a category D’, the composite functor (D’)J o HE equals
the composite functor HC o DY,

Definition N.9. For every small category C, for every category D, for every category D’, for every
ordered pair (Hy, Hy) of functors from D to D, for every natural transformation 6 from H; to Hs,
the f-composition natural transformation 6€ from the functor HE to the functor HY maps
every functor F from C to D to the F-pullback natural transformation F*6 from H; o F to Hy o F.

Exercise N.10. Prove that 6 is a natural transformation. For every functor H from D to D’, for
the identity natural transformation Idg from H to itself, prove that (Idg)€ is the identity natural
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transformation from HC to itself. For every ordered pair (65,6,) of a natural transformation 6; of
functors from H; to Hy and of a natural transformation 6, of functors from Hy to Hs, prove that
(62 0601)C equals the composite natural transformation 6S o €.

Exercise N.11. For every small category C, for every category D, for every category D’, for
every category D", for every ordered pair (H;,Hy) of functors from D to D’, for every natural
transformation 6 from H; to Hay, for every ordered pair (H7, H}) of functors from D’ to D", for
every natural transformation ¢’ from H} to H, prove that for the Godement product ¢’ * § natural
transformation from Hj o Hy to H} o Hy, also (6’ » 0)€ equals the Godement product (6”)€ x 0€.
Deduce special cases of compatibility of (-)€ with pushforward and pullback by functors of natural
transformations.

Definition N.12. For every small category C, for every small category C’, for every ordered pair
(I1,I,) of functors from C to C’, for every natural transformation n from I; to I, for every category
D, the n-precomposition natural transformation D" from the functor D! to the functor D2
maps every functor F’ from C’ to D to the F’-pushforward natural transformation (F').n from
F'ol; to F'ols.

Exercise N.13. Prove that D" is a natural transformation. For every functor I from C to C’,
for the identity natural transformation Id; from I to itself, prove that D1 is the identity natural
transformation from D! to itself. For every ordered pair (72,7:) of a natural transformation 7,
of functors from I; to I, and of a natural transformation 7y of functors from I, to I3, prove that
Dmem equals the composite natural transformation D72 o D™, Also prove that D® is compatible
with Godement products.

Exercise N.14. For every small category C, for every small category C’, for every small category
C”, for every ordered pair (Iy,I5) of functors from C to C’, for every natural transformation 7 from
I, to I, for every ordered pair (If,1I}) of functors from C’ to C”, for every natural transformation
n' from I} to I), for every category D, prove that for the Godement product n’ * n natural trans-
formation from I/ o I; to I} o I,, also D"*7 equals the Godement product D7 * D" (in the opposite
order). Deduce special cases of compatibility of D* with pushforward and pullback by functors of
natural transformations.

Exercise N.15. For every small category C, for every small category C’, for every ordered pair
(I, Iy) of functors from C to C’, for every natural transformation 7 from I; to I, for every category
D, for every category D', for every ordered pair (Hy, Hy) of functors from D to D/, for every natural
transformation 6 from H; to Hy, prove that the Godement product #€ * D" equals the Godement
product (D)7 * §€. Deduce special cases for pushforward and pullback by functors of natural
transformations.

N.2 Constant functors

Definition N.16. For every small category C, for every category D, the constant functor
constS, from D to D€ maps every object a of D to the object const§, of D€, and maps ev-
ery D-morphism f from a to b to the natural transformation constS s from constgja to constS ,.

156


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

Exercise N.17. Prove that this is a functor.

Exercise IN.18. For every small category C, for every category D, for every category D', for every
functor H from D to D’, prove that the composite functor HC o constg’. equals the composite

functor constS, , o H as functors from D to (D’)€.

Exercise N.19. For every small category C, for every small category C’, for every functor I from
C to C/, for every category D, prove that the composite functor DT o Constgi, equals constg,.

Exercise N.20. For every small category C, for every small category C’, for every functor I from
C to C', for every category D, for every category D’, for every functor H from D to D’, use
the compatibilities above to deduce the compatibilities between the functors constg,, constg:_,
constg,7,, constgl,’., HC, HE, D! and (D’)!, e.g., the composite functor HE o DI o constg:. equals
the composite functor (D)o constgiy, o H as functors from D to (D’)€.

Exercise N.21. For every small category C, for every category D, for every category D’, for every
ordered pair (Hy,Hy) of functors from D to D’, for every natural transformation 6 from H; to
H,, prove that the pullback natural transformation (constgy,)*ec equals the pushforward natural
transformation (constf, , ). as natural transformation between functors from D to (D’)C.

N.3 Category of small categories

Definition N.22. The class of small categories is the class obj(Cat) whose members are sets
whose associated class is a small category. The class of functors of small categories is the span
mor(Cat) from obj(Cat) to itself whose fiber class over each pair (C,D) has for members those
sets whose associated class is a functor from C to D. Composition of functors defines a composition
law that completes these classes to a category Cat, the category of small categories.

Technically we distinguish each set from its associated class, and thus the objects of Cat are sets
whose associated class is a small category, rather than the small category itself (since we do not
allow classes to be members of other classes). Similarly, the morphisms of Cat are sets whose
associated class is a functor between small categories, rather than the functor itself.

The standard usage is different: most authors identify each set with the associated class (this is
built in to the axioms of von Neumann — Bernays — Godel class theory). At any rate, even though
it is technically incorrect, we will refer to small categories as objects of Cat, and we will refer to
functors between small categories as morphisms of Cat.

Exercise N.23. Read about (strict) 2-categories. Formulate and prove the assertion that the
natural transformations between functors make Cat into a 2-category.

Definition N.24. The opposite functor from Cat to Cat is the functor that maps every small
category C to its opposite category C°PP that maps every functor F from a small category C to a
small category D to the functor FoPP from C°PP to DPP. The 2-cell dual of the 2-category Cat is
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the 2-category Cat” with the same objects as Cat, respectively the same and 1-morphisms as Cat,
namely small categories, resp. functors between small categories, yet with opposite 2-morphism
sets. The opposite 2-functor is the strict 2-functor from Cat® to Cat extending the opposite
functor by mapping every natural transformation 6 from a functor F to a functor G (both from a
small category C to a small category D) to the natural transformation #°PP from GOPP to Fopp.

Exercise N.25. Prove that this is a strict 2-functor from Cat® to Cat.

N.4 Evaluation bifunctor

Definition IN.26. For every small category C, for every category D, the evaluation bifunctor
Homg, or just Hom when confusion is unlikely, is the bifunctor to D from D€ and C that maps
every ordered pair (F,a) of an object F of D€ and an object a of C to the object Fop;(a) of D,
that maps every ordered pair (#,a) of a D€-morphism 6 from F to G and of an object a of C to
the D-morphism 6§, from F,;(a) to Gopj(a), and that maps every ordered pair (F,u) of an object
F of D€ and of a C-morphism u from a to b to the D-morphism F,o(u) from Fop;(a) to Fop;(b).

Exercise N.27. Prove that this is a bifunctor.

Definition N.28. For every category B, for every small category C, for every category D, for
every bifunctor F to D from B and C, the classifying functor Sg’CF, or just SF when confusion
is unlikely, from B to D€ maps every object b of B to the functor F(b,e) from C to D and maps
every B-morphism u from b to 0’ to the natural transformation F(u,e) from F(b,e) to F(V',e).

Exercise N.29. Prove that SF is a functor.

Proposition N.30. For every category B, for every small category C, for every category D, for
every bifunctor F to D from B and C, the functor SF from B to D€ is the unique functor such
that the pullback of the bifunctor Hom by the functor SF x Idc equals F'.

Exercise N.31. Formulate and prove functoriality of the construction Sg’c in B, in C, and in D.

Definition N.32. For every category B, for every small category C, for every category D, for every
ordered pair (F, G) of bifunctors to D from B and C, for every natural transformation ¢ from F to
G, the classifying natural transformation SE’CQ, or just SO when confusion is unlikely, from
SF to SG maps every object b of B to the natural transformation 6, from F(b,e) to G(b,e).

Exercise N.33. Prove that S0 is a natural transformation.

Proposition N.34. For every category B, for every small category C, for every category D, for
every ordered pair (F,G) of bifunctors to D from B and C, for every natural transformation
from SF to SG there exists a unique natural transformation 0 from ¥ to G such that the natural
transformation equals S6.

Exercise IN.35. Use this universal property (or any other argument) to formulate and prove
compatibility of the operations S with Godement products of natural transformations. Specialize
this to formulate and prove compatibility of S with pushforwards and pullbacks by functors of
natural transformations.
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N.5 Limits and colimits

Definition N.36. For every category C, for every category D, for every object U of C, for every
functor F from C to D, the U-section object of F over U is the object I'S(U,F) := F(U) of D,
denoted also I'(U, F) when confusion is unlikely. For every ordered pair (F, G) of functors from C
to D, for every natural transformation 6 from F to G, the U-section morphism of F over U is
the D-morphism I'(U, 6) := 0y from F(U) to G(U).

Exercise N.37. Prove that these rules preserve identities and composition.

Definition N.38. For every small category C, for every category D, for every object U of C, the
U-sections functor from D€ to D maps every object F of D€ to T'(U,F) := F(U) and maps every
DC-morphism 6 from F to G to the D-morphism I'(U, 0) := 6.

For every ordered pair (V,U) of objects of C, for every C-morphism r from V' to U, the r-sections
natural transformation from I'(V)e) to I'(U, e) maps every object F of D€ to the D-morphism
L(r,F):=F}(r) from F(V) to F(U).

Exercise N.39. Prove that I'(r, e) is a natural transformation. For every object U of C, prove that
I'(Idy, e) is the identity natural transformation from I'(U, e) to itself. For every triple (W, V,U) of
objects of C, for every C-morphism r from W to V, for every C-morphism s from V to U, prove
that I'(s o r, ®) equals the composition of natural transformations I'(s,e) o I'(r, ).

Exercise N.40. For every small category C, for every small category D, prove that D€ is a small
category.

Definition N.41. For every small category C, for every category D, the sections bifunctor is
the functor I'S(-, @), or just I'(—,e) when confusion is unlikely, from the product category Cx D€
to the category D that sends every object (U, F) of C x D€ to I'(U,F) := F(U), that sends every
C-morphism 7 from a to b to the D-morphism I'(r, F'), and that sends every natural transformation
0 from F to G to the D-morphism I'(U, 0) := ;.

Exercise N.42. Prove that the sections bifunctor is a bifunctor.

Exercise N.43. Formulate and prove the statement that formation of D€ is covariant in the
category D and is contravariant in the small category C. In particular, for every small category
C, prove that the covariant Yoneda functor of C in Cat enriches to a functor from Cat to itself.
Similarly, for every small category D, prove that the contravariant Yoneda functor of D in Cat
enriches to a functor from Cat’"® to Cat.

N.6 Yoneda embedding

Definition N.44. For every category C, for every object a of C, the set-valued covariant Yoneda
functor of a from C maps every C-object b to the set C¢ = Homeg(a,b). This is also denoted h,(b),
or just h®(b) when confusion is unlikely. Also, for every C-morphism v from b to ¥’, the functor
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maps u to left-composition with v from C{ to C¢,. This is denoted h%(v). Similarly, for every set
S, the set-valued functor S x h® maps every C-object b to S x h?(b) and maps every C-morphism
v to 13 x ha(v) from S x ha(b) to S x he(D').

Similarly, for every object b of C, the set-valued contravariant Yoneda functor of b is the
covariant functor from C°PP that maps every C-object a to the set C¢ = Homg(a,b). This is also
denoted hgp(a), or just hy(a) when confusion is unlikely. Also, for every C-morphism u from a to
a’, the functor map u to the right-composition with u from C,‘j' to Cf (note this is contravariant).
This is denoted hy(u). Similarly, for every set S, the set-valued functor S x h, maps every C-object
a to S x hy(a) and maps every C-morphism u to Id3 x hy(u) from S x hy(a’) to S x hy(a).

Exercise N.45. Check that each of these does preserve identities and composition, so that it is a
functor.

Example N.46. Let (S,<) be a partially ordered set. For every element a of S, for every element
b of S, the Yoneda functor h?(b) is a singleton set if and only if a < b, and otherwise it is empty,
i.e., the image in Set is either an initial object or a final object. If we define the support of such a
function to be the subset of S where the image is not the empty set, then the support of h¢ is the
subset S5, of all elements b with a < b. Similarly, the support of h; is the subset Sg, of all elements
of b with a <b.

Example N.47. For every monoid (H,e), for the unique object (which, recall, is chosen to be H
itself considered as a set), the Yoneda functor A associates to the unique object (i.e., H) the set H,
and associates to each element a of H, considered as a morphism from the unique object to itself,
the associated bijection of H of left-multiplication by a, i.e., hf is the left regular representation
of (H,e). Similarly hy is the right regular representation of (H,e).

Definition N.48. For every category C, for every C-morphism u from a to a’, the Yoneda natural
transformation of covariant functors from h% to h® associates to every object b the set function
of right-composition with u from h% (b) = C¢ to h*(b) = C¢. This natural transformation is denoted
by hv. Similarly, for every set S, the natural transformation Id$°* x h* maps every set S x he'(b) to
S x ha(b) by 1d3°* x hu(b).

For every category C, for every C-morphism v from b to ¢/, the Yoneda natural transformation
of contravariant functors from h, to hy associates to every object a of the set function of left-
composition with v from hy(a) to hy(a). This natural transformation is denoted by h,,. Similarly,
fors every set S, the natural transformation Id$®® x h, maps every set S x hy(a) to S x hy(a) by
13 x h,(a).

Exercise N.49. Check that each of these is a natural transformation of set-valued functors from
C.

Exercise N.50. For every C-morphism u from a to a’, for every C-morphism u’ from a’ to a”,
check that h* o ht' equals hv'**; thus, also, (Id3%® x h) o (1d5®* x hv') equals 1de®® x hv'*«. Conclude
contravariance of the assignment to every C-object a of the covariant Yoneda functor A% and to
every C-object u of the Yoneda natural transformation h®.
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Exercise N.51. For every C-morphism v from b to ¥, for every C-morphism v’ from 0’ to b”,
check that h, o h, equals h,.,; thus, also, (Idget X hyr) o (Idget x h,) equals Idget X Nyroy. Conclude
covariance of the assignment to every C-object a of the contravariant Yoneda functor h, and to
every C-object v of the Yoneda natural transformation h,,.

Exercise N.52. For every set-valued functor F from C, respectively from C°PP, for every set S,
for the set-valued functor S x F from C, resp. from C°PP, check covariance in S.

Definition N.53. For every category B, for every set-valued covariant functor F from BePP_ for
every C-object b, for every element v of the set F(b), the Yoneda evaluation natural transfor-
mation from h;, to F associates to every C-object a the set-function from hy(a) = Home(a,b) to
F(a) sending each element w of Homg(a,b) to the image of 7 under the set function F(w) from
F(b) to F(a). This natural transformation is denoted by 7,*(F), so that w maps to 1, (F)(w).
Similarly, 7,(F) is the natural transformation from F(b) x h; to F that associates to every C-object
a the set-function from F(b) x hy(a) to F(a) sending every element (y,w) to n,*(F)(w).

For every category B, for every set-valued covariant functor F from B, for every C-object a, for
every element 0 of the set F(a), the Yoneda evaluation natural transformation from h¢ to
F associates to every C-object b the set-function from h%(b) = Homg(a,b) to F(b) sending each
element w of Homeg(a,b) to the image of 4 under the set function F(w) from F(a) to F(b). This
natural transformation is denoted by ng’,.(F), so that w maps to n2 ,(F)(w). Similarly, n*(F) is
the natural transformation from F(a) x he to F that associates to every C-object b the set-function
from F(a) x h*(b) to F(b) sending every element (d,w) to n¢,(F)(w).

Exercise N.54. Check that 7,(F) and 7?(F) are natural transformations.

Exercise N.55. For every natural transformation a from F to G of set-valued covariant functors
from C, check that « o n,(F) equals the composition of 7,(G) with the natural transformation of
functors a(b) xId;, from F(b) x hy to G(b) x by, induced by the set function a(b) from F(b) to G(b).
Thus, n,(F) is “covariant” in F.

Lemma N.56 (Yoneda Lemma). For every category C, for every covariant set-valued functor F
from CePP, for every C-object b, every natural transformation I' from hy to F is of the form n)*(F)
for a unique element v of F(b), namely the image under T of the element Idy of hy(b) = Home (b, b).

Exercise IN.57. Formulate and prove the analogous result for covariant set-valued functors from
C and the Yoneda functors h®.

Definition N.58. For every set S, the identity section is the set function from S to S x hy(b) =
S x Home (b, b) that pairs each element of S with Idy .

Exercise N.59. Check that the identity section is covariant in S.

Definition N.60. For every small category C, for every C-object b, the set-valued left Yoneda
functor L, from the functor category Set(C™) associates to every set-valued covariant functor
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F from C°PP the set F(b) and associates to every natural transformation « from F to G the set
function «(b) from F(b) to G(b).

Similarly, the right Yoneda functor R,, from Set to Set®"" associates to every set S the covariant
set-valued functor S x h;, from C°PP| and associates to every set function f from S to S’ the natural
transformation f x Id, from S x hy to S” x Iy,

Exercise N.61. Check that each of these is a functor. Check that the identity section is a natural
transformation from the identity functor of Set to the composite functor Ry o Ly,.

Lemma N.62 (Yoneda Lemma II). For every small category C, for every C-object b, the left
Yoneda functor and the right Yoneda functor extend to an adjoint pair of functors using the natural
transformation n, above and the identity section natural transformation.

Exercise N.63. For every small category C, conclude that the Yoneda functor from C to Set(C™
sending every C-object b to hy is a fully faithful embedding of categories.

In the sense of the previous lemma, the Yoneda functors give examples of adjoint pairs. Conversely,
extension of a functor to an adjoint pair is an example of a representability problem.

Definition N.64. For every category C, for every functor F from C°PP to Set, a representation
of F is an ordered pair (a,z) of an object a of C and an element z of the set F(a) such that
the induced natural transformation h, = F is a natural equivalence. A functor from C°PP is
representable if (and only if) there exists a representation.

Exercise N.65. Formulate the opposite notion of representable for functors from C to Set.

Exercise N.66. For every category C, for every functor F from C°PP to Set, for every rep-
resentation (a,z) of F, for every representation (a’,z') of F, prove that there exists a unique
C-isomorphism f from a to a’ that pulls 2’ back to z. Conclude that a representation of a repre-
sentable functor is unique up to unique isomorphism. Formulate and prove the opposite result for
covariant functors from C to Set.

Exercise IN.67. For every category C, for every small category D, for every covariant functor L
from C to D such that the set-valued functor Homp(L(e),b) on C°PP is representable for every
object b of D, prove that there exists an adjoint pair (L,R,#6,7) (which is unique up to unique
natural equivalences by an earlier exercise). Thus, show that extension of a functor to an adjoint
pair is a special case of representability of functors.

Exercise N.68. Prove the variant of the previous result for opposite categories: for every small
category C, for every category D, for every covariant functor R from D to C, if the set-valued
functor Homg(a, R(e)) on D is representable for every object a of C, prove there exists an adjoint

pair (L, R,0,7).
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N.7 Functor categories

Notation N.69. For every small category 7, for every category C, for every object a of C, denote
by
a :7->C
the constant functor constg , that sends every object to a and that sends every morphism to Id,.
For every morphism in C, p:a — b, denote by
pia. =b

=z

the natural transformation that assigns to every object U of 7 the morphism p:a — b. Finally, for
every object U of 7, denote

I(U,F) = FU), T(U,6)=0(U),

and for every morphism r: U — V of 7, denote

L(r,F) =F(r).

Functor Categories and Section Functors.

Recall that associated to the small category 7 and the category C there is the functor category C™
Fun(7,C) whose objects are functors and whose morphisms are natural transformations

Exercise N.70. For every small category 7, for every category C, prove that the functor constg ,
from C to CT preserves isomorphisms.

Adjointness of Constant / Diagonal Functors and the Global Sections Functor.

Exercise N.71. For every small category 7, for every category C, if C has an initial object X,
prove that (x_,I'(X,-)) extends to an adjoint pair of functors.

N.8 Limits and colimits

Definition N.72. For every small category 7, for every category C, for every 7-family F in C, a
limit of the 7-family F is a natural transformation 7 : a, = F that is final among all such natural
transformations, i.e., for every natural transformation 6 : b_ = F, there exists a unique morphism
t:b—ain C such that 6 equals not_.

Exercise N.73. For every small category 7, for every category C, for all 7-families F and G in C,
for every morphism ¢ of 7-families from F to G, for all limits n:a, = F and 6 :b_ = G, prove that
there exists a unique morphism f : a — b such that § op equals ¢ on. In particular, prove that if
a limit of F exists, then it is unique up to unique isomagphism. Thus, for every object a of C, the
identity transformation 6, :a_— a_ is a limit of a_.

Adjointness of Constant / Diagonal Functors and Limits.
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Definition N.74. A category C is complete if (and only if), for every small category 7, every
7-family has a limit (which is then unique up to unique isomorphism by the previous exercise).

For every complete category C, some version of the Axiom of Choice (e.g., Hilbert’s epsilon operator)

produces a rule I'; that assigns to every 7-family F an object I',(F) and a natural transformation

nrg:-(F) — F that is a limit. (In many concrete categories, there is an explicit “construction”
_T

of such a rule.)

Exercise N.75. For every small category 7, for every complete category C, and for every rule I';
as above, prove that there is an extension to a functor,

I';: Fun(7,C) - C,
and a natural transformation of functors
n:-*.0 ;= IdFun(T,C)~

Moreover, the rule sending every object a of C to the identity natural transformation 6, is a natural
transformation 6 : Ide = I'; o . The quadruple (x_,I',6,n) is an adjoint pair of functors. In
particular, the limit functor I'; preserves monomorphisms and sends injective objects of Fun(r,C)
to injective objects of C.

Adjointness of Colimits and Constant / Diagonal Functors.

Exercise N.76. For every small category 7, for every category C, if C has a final object O, prove
that (I'(O,-),*_) extends to an adjoint pair of functors.

Definition N.77. For every small category 7, for every category C, for every 7-family F in C,
a colimit of the 7-family F is a natural transformation 6 : 7 = a_ that is final among all such
natural transformations, i.e., for every natural transformation n: F = b_, there exists a unique
morphism h:a — b in C such that h_o 6 equals 7.

Exercise N.78. For every small category 7, for every category C, for all 7-families F and G in C,
for every morphism ¢ of 7-families from F to G, for all colimits 6 : F = a_ and n: G = b, prove
that there exists a unique morphism f : a - b such that f o6 equals no ¢. In particular, prove
that if a colimit of F exists, then it is unique up to unique Tisomorphism. Thus, for every object a
of C, the identity transformation 6, :a_— a_ is a colimit of a_. Finally, repeat the previous results
with colimits in place of limits. Deduce that colimits (if they exist) preserve epimorphisms and
projective objects. (You can use opposite categories to reduce most of this to the case of limits.)

Functoriality in the Source.

Definition N.79. For every complete category C, for every functor x from a small category o to
a small category 7, for every 7-family F, the z-pullback F, of F is the composite functor F o x,
which is a o-family. For every morphism of 7-families, say ¢ from F to G, the z-pullback ¢, from
the o-family F, to G, is ¢ o x, which is a morphism of o-families.
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Exercise N.80. For every complete category C, for every functor x from a small category o to a
small category 7, prove that z-pullback defines a functor

*, : Fun(7,C) - Fun(o,C).

For the identity functor Id, : 7 — 7, prove that Id,-pullback is the identity functor from Fun(r,C)
to itself. For every functor y from a small category p to o, prove that x o y-pullback equals the
composite *, o *,. In this sense, deduce that pullback is contravariant in .

Definition N.81. For every complete category C, for every small category o, for every small
category 7, for all functors x and 2z’ from ¢ to 7, and for every natural transformation n from x to
x', the associated morphism of o-families is the natural transformation F,, from F, to F,, that
sends every g-object V' to the morphism F(n(V)) from F(z(V)) to F(z'(V)).

Exercise N.82. Prove that F,, is a morphism of o-families. Also, for every morphism of 7-families,
¢ from F to G, prove that ¢, oF, equals G,o0¢,. Thus, the operation *,, is a natural transformation
from the functor %, to *,,. For the identity natural transformation Id, from x to itself, also *1q is
the identity natural transformation of *,. Finally, for every functor x” from o to 7, and for every
natural transformation m from x’ to z”, the morphism of o-families F,,., equals F,, o F,,. In this
sense, the operation *, is also compatible with natural transformations. In particular, if (x,y,0,n)
is an adjoint pair of functors, then also (x*,, *,, *g, *,) is an adjoint pair of functors.

Fiber Categories The following notion of fiber category is a special case of the notion of 2-fiber
product of functors of categories. Let x : ¢ — 7 be a functor; this is also called a category over
7. For every object U of 7, a o, -object is a pair (V,r : x(V) - U) of an object V of ¢ and
a 7T-isomorphism r : (V) - U. For two objects o, y-objects (V,r) and (V',r') of 0, v, a 0,u-
morphism from (V,r) to (V’,r") is a morphism of o, s : V' — V'  such that r'oz(s) equals r. Prove
that Idy is a o, y-morphism from (V,r) to itself; more generally, the o, y-morphisms from (V,r)
to (V,r) are precisely the o-morphisms s: V' — V such that z(s) equals Id, . For every pair of
o, p-morphisms, s: (V,r) - (V' r") and s": (V',7") - (V" r"), prove that s'os is a ¢, y-morphism
from (V,r) to (V”,r"). Conclude that these rules form a category, denoted o, . Prove that the
rule (V,7) » V and s — s defines a faithful functor,

(I):c,U ‘O0zUu — O,

and 7 : (V) — U defines a natural isomorphism 0, ;: x o ®, y = Q%U. Finally, for every category
o', for every functor ¢’ : 0’ — o, and for every natural isomorphism ¢’ : x 0 &’ = U_,, prove that
there exists a unique functor F': 0’ - 0,y such that ®" equals ®, o F' and ¢’ equals 0, 0 F. In
this sense, (P, 0, ) is final among pairs (®,60") as above.

For every pair of functors x,z; : 0 — 7, and for every natural isomorphism n : x = x1, for every
04, v-object (V,ry:21(V) - U), prove that (V,ryony :2(V) - U) is an object of 0, ;. For every
morphism in o, 7, s: (V,r1) - (V',7]), prove that s is also a morphism (V,ry0ony) - (V' 7] ony/).
Conclude that these rules define a functor,

OnU *O0g1,U > 0zU-
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Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that o, is functorial in n, i.e., for a second natural isomorphism m : x; = x4, prove that
Omon,u €qUAlS 0y, 17 0 0y 1.

For every pair of functors, x : ¢ - 7 and y : p - 7, and for every functor z : ¢ — p such that z
equals y o z equals x, for every o, -object (V,r), prove that (2(V'),r) is a p, y-object. For every
o, y-morphism s : (V,r) - (V’,r’), prove that z(s) is a p,p-morphism (z(V),r) - (2(V’),r’).
Prove that z(Idy) equals Id.(y), and prove that z preserves composition. Conclude that these
rules define a functor,

2U Oz, U = PyU-

Prove that this is functorial in z: (Id,)y equals Id,, ,, and for a third functor w : 7 - 7 and
functor 2’ : p - 7 such that y equals w o 2/, then (2’0 z)y equals z[; o zy. For an object (W,ry)
of pyu, for each object ((V,rv),q: Z(V) - W) of (02,0):,wry), define the associated object of
o.w to be (V,q). For an object ((V',ry+),q' : Z(V') = W) of (04,0): W), for every morphism
s:(V,ry) = (V',ry/) such that g equals ¢’ o z(s), define the associated morphism of o, y to be s.
Prove that this defines a functor

szv(WJW) : (O—IyU)ZUa(WJ'W) O W

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z,2; : ¢ - p such that x equals both y oz and y o z;, and
for a natural transformation m : z = 2z, for every object (V,r : (V) - U) of 0,1, prove that
my is a morphism in p, from (z(V'),r) to (21(V),r). Moreover, for every morphism in o, p,
s:(Vyr) - (V' r"), prove that my o z(s) equals z1(s) o my. Conclude that this rule is a natural
transformation my : zy = (21)y. Prove that this is functorial in m. If m is a natural isomorphism,
prove that also my is a natural isomorphism, and the strict equivalence (my)w,r, ) is compatible
with the strict equivalence my,. Finally, prove that m — my is compatible with precomposition
and postcomposition of m with functors of categories over 7.

(vii)(Colimits and Limits along an Essentially Surjective Functor) Let x : 0 - 7 be a functor of
small categories. Prove that every fiber category o, 17 is small. Next, assume that z is essentially
surjective, i.e., for every object U of 7, there exists a o, y-object (V,r). Let y: 7 — ¢ be a functor,
and let a : Id, = y o x be a natural transformation. Prove that this extends to an adjoint pair of
functors (z,y, v, §) if and only if for every object V' of o, the morphism z(ay ) : 2(V) — z(y(x(V)))
is an isomorphism and (y(z(V')), x(a)™!) is a final object of the fiber category o, »(v). (Conversely,
up to some form of the Axiom of Choice, there exists y and a extending to an adjoint pair if
and only if every fiber category o,y has a final object.) For every adjoint pair (z,y,«, ), also
(*y, *2, *a, *3) 1s an adjoint pair. More generally, no longer assume that there exists y and «, yet
let L, be a rule that assigns to every object F of Fun(o,C) an object L,(F) of Fun(7,C) and a
natural transformation,

Or: F > *QCoLx(]:),
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of objects in Fun(o,C). For every object U of 7, this defines a natural transformation
ef,x,U :Fo (I)JJ,U = Lx(F) OQUI Ul

of objects in Fun(o, ,C). Assume that each (L, (F)(U),0r.v) is a colimit of F o @, ;. Prove
that this extends uniquely to a functor,

L, :Fun(o,C) - Fun(r,C),
and a natural transformation
01} : IdFun(o,C) = %30 LJ:

Moreover, for every G in Fun(7,C), the identity morphism,
ldg:Gowod,y~GolU, .

factors uniquely through a C-morphism L,(Gox)(U) - G(U). Prove that this defines a morphism
ng : L:(Gox) -G in Fun(7,C). Prove that is a natural transformation,

n: L:B O *p = IdFun('r,C)-

Prove that (L., *,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o @,y admits a colimit, then there exists a I'* and 6 as above.)

Next, as above, let x : ¢ - 7 be a functor of small catgories that is essentially surjective. Let
y : T = sigma be a functor, and let 5 : y o x = Id, be a natural transformation. Prove that
this extends to an adjoint pair of functors (z,y,«, ) if and only if for every object V of o, the
morphism x(5,) : (y(x(V))) — x(V) is an isomorphism and (y(z(V')),z(5,)) is an initial object
of the fiber category o, »(v). (Conversely, up to some form of the Axiom of Choice, there exists y
and [ extending to an adjoint pair if and only if every fiber category o, v has an initial object.) For
every adjoint pair (y,z,a,beta) also (%4, %y, *q, *g) is an adjoint pair. More generally, no longer
assume that there exists y and 3, yet let R, be a rule that assigns to every object F of Fun(e,C)
an object R,(F) of Fun(7,C) and a natural transformation,

NF:*g0 Ry(F) > F,
of objects in Fun(o,C). For every object U of 7, this defines a natural transformation
nf,x,U : Rx(F) Oggz U = fo CI):(:,U;

of objects in Fun(o, 7,C). Assume that each (R,(F)(U),nFv) is a limit of Fo®, ;. Prove that
this extends uniquely to a functor,

R, :Fun(o,C) - Fun(7,C),

and a natural transformation,
7 *g 0 Rm = IdFun(o,C)'
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Moreover, for every G in Fun(7,C), the identity morphism,
IdgigOQULU :>goxoq>x7U7

factors uniquely through a G(U) - C-morphism R,(Goxz)(U). Prove that this defines a morphism
Og:G - R.(Gox) in Fun(7,C). Prove that this is a natural transformation,

0: IdFun(‘r,C) = Ra: O *gz.

Prove that (*,, R,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o @,y admits a colimit, then there exists a R, and 7 as above.)

(viii) (Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let x : 0 - 7 be an embedding of a full subcategory (thus, z is essentially surjective if and
only if z is an equivalence of categories). In this case, the functor

*+, : Fun(7,C) - Fun(o,(C)

is called restriction. Assume further that o is upper (a la the theory of partially ordered sets) in
the sense that every morphism of 7 whose source is an object of o also has target an object of o.
Assume that C has an initial object, ®. Let G be a o-family of objects of C. Also, let ¢ : G - H
be a morphism of o-families. For every object U of 7, if U is an object of o, then define ,G(U) to
be G(U), and define , ¢(U) to be ¢(U). For every object U of 7 that is not an object of o, define
+G(U) to be ®, and define , ¢(U) to be Idg. For every morphism 7 : U — V' if U is an object of
o, then r is a morphism of ¢. In this case, define , G(r) to be G(r). On the other hand, if U is
not an object of o, then G(U) is the initial object ®. In this case, define ,G(r) to be the unique
morphism ,G(U) - ,G(V). Prove that ,G is a 7-family of objects, i.e., the definitions above are
compatible with composition of morphisms in 7 and with identity morphisms. Also prove that
» ¢ is a morphism of 7-families. Prove that , Idg equals Id, g. Also, for a second morphism of
o-families, 1) : H — Z, prove that ,(¢ o ¢) equals ;)0 ,¢. Conclude that these rules form a functor,

+*:Fun(o,C) - Fun(r,C).
Prove that (,*, *,) extends to an adjoint pair of functors. In particular, conclude that *, preserves

epimorphisms and , * preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every 7-family F, for every
object U of 7, define 0£(U) : F(U) - *F(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s): F(T) -~ F(U),

for all morphisms s: 7T — U with V' not in o (possibly empty, in which case 6£(U) is the identity
on F(U)). In particular, if U is not in o, then # F(U) is zero. For every morphism r:U -V in 7,
prove that the composition 8£(V') o F(r) equals *F(r) o §£(U) for a unique morphism

TF(r):"FU) >"F(V).
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Prove that * F(Idy) is the identity morphism of # F(U). Prove that r — ¢ F(r) is compatible
with composition in 7. Conclude that * F is a 7-family, and 6z is a morphism of 7-families. For
every morphism ¢ : F — & of 7-families, for every object U of 7, prove that 0g(U) o ¢(U) equals
TH(U) o 0£(U) for a unique morphism

To(U):*F(U)->"EU).

Prove that the rule U » *¢(U) is a morphism of 7-families. Prove that “Idz is the identity on
¢ F. Also prove that ¢ — % ¢ is compatible with composition. Conclude that these rules define a
functor

#% :Fun(7,C) - Fun(r,C).

Prove that the rule 7 ~ 0 is a natural transformation Idpyn(rc) = **. Prove that the natural
morphism of 7-families,

CF =2 ((FF)a),

is an isomorphism. Conclude that there exists a unique functor,
+* : Fun(7,C) - Fun(o,(),

and a natural isomorphism x = ,(*%). Prove that (%%, .*,0) extends to an adjoint pair of functors.
In particular, conclude that , * preserves epimorphisms and ** preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that ¢ is upper, assume that
o has an initial object, W,, and assume that there is a functor

y!T—>0‘

and a natural transformation 6 : Id, = zoy, such that for every object U of 7, the unique morphism
W, - y(U) and the morphism 6y : U - y(U) make y(U) into a coproduct of W, and U in 7. For
simplicity, for every object U of o, assume that 0y : U — y(U) is the identity Idy (rather than
merely being an isomorphism), and for every morphism r: U - V in o, assume that y(r) equals .
Thus, for every object V of o, the identity morphism y(V') — V defines a natural transformation
n:yox = 1d,. Prove that (y,z,6,n) is an adjoint pair of functors. Conclude that (%, *,, *g, *,)
is an adjoint pair of functors. In particular, conclude that *, preserves monomorphisms and x,
preserves epimorphisms.

(ix) (Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that I'(0, -) is an equivalence of categories. For
an arbitrary category 7, for the unique natural transformation 7:7 — 0, prove that *; equals the
composite *_oI'(0,-) so that *_is an example of this construction. In particular, for every functor
xr:0 - T, prove that (a ), equals a,. If n:a_ = F is a limit of a 7-family F, and if 0: b, = F,
is a limit of the associated o-family F,, then prove that there is a unique morphism h:a — b in
C such that n, equals o p- If there are right adjoints I'; of x_and I', of *_, conclude that there
exists a unique natural transformation

Ip:Tr=T50x%,
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so that g, o T'(F) equals (nr),. Repeat this construction for colimits.

(x)(Limits / Colimits of a Concrete Category) Let o be a small category in which the only mor-
phisms are identity morphisms: identify o with the underlying set of objects. Let C be the category
Sets. For every o-family F, prove that the rule

Lo (F):= H (U, F)

Uex

together with the morphism
nf:ra(f)g:fa

nF(V) = pry : ;—IEF(UJE) - T(V,F),
€

is a limit of F. Next, for every small category 7, define o to be the category with the same objects
as 7, but with the only morphisms being identity morphisms. Define x : ¢ - 7 to be the unique
functor that sends every object to itself. Define I';(F) to be the subobject of T',(F,) of data
(fu)ves such that for every morphism r : U - V, F(r) maps fy to fy. Prove that with this
definition, there exists a unique natural transformation nz : I'.(F )T = F such that the natural
transformation I';(F) = I';(F,) = F, equals (nx),. Prove that nr is a limit of F. Conclude
that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

d: R-S5—-mod— Sets

sends products to products. Let F be a 7-family of R — S-modules. Prove that the defining
relations for I';(® o F) as a subset of I';(® o F) are the simultaneous kernels of R — S-module
homomorphisms. Conclude that there is a natural R — S-module structure on I',(® o F), and use
this to prove that R — S-mod has all limits.

(xi) (Functoriality in the Target) For every functor of categories,
H:C->D,

for every T-family F in C, prove that H o F is a 7-family in D. For every morphism of 7-families in
C, ¢: F =G, prove that H o ¢ is a morphism of 7-families in D. Prove that this defines a functor

H, :Fun(r,C) - Fun(r,D).

For the identity functor Idc, prove that (Idc), is the identity functor. For I : D — £ a functor of
categories, prove that (/o H), is the composite I, o H.. In this sense, deduce that H, is functorial
in H.

For two functors, H,I : C - D, and for a natural transformation N : H = I, for every 7-family F
in C, define N,(F) to be
NoF:HoF=1oF.

170


http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu

MAT 543 Representation Theory Jason Starr
Stony Brook University Fall 2025

Prove that N,(F) is a morphism of 7-families in D. For every morphism of 7-families in C,
¢ : F - G, prove that N.(G) o H.(¢) equals I,(¢) o N.(F). In this sense, conclude that N, is
a natural transformation H, = I,. For the identity natural transformation Idg : H = H, prove
that (Idg), is the identity natural transformation of H,. For a second natural transformation
M : I = J, prove that (M o N), equals M, o N,. In this sense, deduce that (-), is also compatible
with natural transformations.

(xii) (Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if
for every pair of objects U and V there exists a pair of morphisms, r : W - U and s : W -V,
and for every pair of morphisms, r,s: V — U, there exists a morphism ¢: W — V such that rot
equals s ot (both of these are automatic if the category has an initial object X). Assume that the
category C has limits for all categories 7 with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category 7, define 7 to be the small category whose objects are
finite full subcategories o of 7, and whose morphisms are inclusions of subcategories, p c o, of 7.
Prove that 7 is cofiltering. Let F be a 7-family in C. For every finite full subcategory o c 7, denote
by F, the restriction as in (f) above. By hypothesis, there is a limit 1, : F(¢) = F,. Moreover, by

(g), for every inclusion of full subcategories p c o, there is a natural morphism in C, F(p) - F(o),
and this is functorial. Conclude that F is a 7-family in C. Since 7 is filtering, there is a limit

—_

Ng:az=F.

7

Prove that this defines a limit nra, = F.

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
(not necessarily commutative) rings, the category of commutative rings, and the category of R—S-
bimodules (where R and S are associative, unital rings).

(xiii) (bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R— S-bimodules (where R and S are
associative, unital rings).

Practice with Limits and Colimits Exercise. In each of the following cases, say whether the
given category (a) has an initial object, (b) has a final object, (c) has a zero object, (d) has finite
products, (e) has finite coproducts, (f) has arbitrary products, (g) has arbitrary coproducts, (h)
has arbitrary limits (sometimes called inverse limits), (i) has arbitrary colimits (sometimes called
direct limits), (j) coproducts / filtering colimits preserve monomorphisms, (k) products / cofiltering
limits preserve epimorphisms.

(i) The category Sets whose objects are sets, whose morphisms are set maps, whose composition
is usual composition, and whose identity morphisms are usual identity maps.

(ii) The opposite category Sets°PP.
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(iii) For a given set S, the category whose objects are elements of the set, and where the only
morphisms are the identity morphisms from an element to that same element. What if the set is
the empty set? What if the set is a singleton set?

(iv) For a partially ordered set (S,<), the category whose objects are elements of S, and where
the Hom set between two elements x, y of S is a singleton set if x <y and empty otherwise. What
if the partially ordered set (5, <) is a lattice, i.e., every finite subset (resp. arbitrary subset) has
a least upper bound and has a greatest lower bound?

(v) For a monoid (M,-, 1), the category with only one object whose Hom set, with its natural
composition and identity, is (M,-,1). What is M equals {1}?

(vi) For a monoid (M,-, 1) and an action of that monoid on a set, p: M xS - S, the category
whose objects are the elements of S, and where the Hom set from x to y is the subset M, , = {m €
M|m-x = y}. What if the action is both transitive and faithful, i.e., S equals M with its left regular
representation?

(vii) The category PtdSets whose objects are pairs (S, sp) of a set S and a specified element s
of S, i.e., pointed sets, whose morphisms are set maps that send the specified point of the domain
to the specified point of the target, whose composition is usual composition, and whose identity
morphisms are usual identity maps.

(viii) The category Monoids whose objects are monoids, whose morphisms are homomorphisms of
monoids, whose composition is sual composition, and whose identity morphisms are usual identity
maps.

(ix) For a specified monoid (M, -, 1), the category whose objects are pairs (.5, p) of a set S and an
action p: M xS - S of M on S, whose morphisms are set maps compatible with the action, whose
composition is usual composition, and whose identity morphisms are usual identity maps.

(x) The full subcategory Groups of Monoids whose objects are groups. Does the inclusion functor
preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms, resp.
epimorphisms?

(xi) The full subcategory Z—-mod of Groups whose objects are Abelian groups. Does the inclusion
functor preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms,
resp. epimorphisms?

(xii) The full subcategory FiniteGroups of Groups whose objects are finite groups. Are coprod-
ucts, resp. products, in the subcategory also coproducts, resp. products, in the larger category
Groups? Does the inclusion functor preserve monomorphisms, resp. epimorphisms?

(xiii) The full subcategory Z — mody,, of Z - mod consisting of torsion Abelian groups, i.e., every
element has finite order (allowed to vary from element to element). Are coproducts, resp. products,
preserved by the inclusion functor? Are monomorphisms, resp. epimorphisms preserved?

(xiv) The category Rings whose objects are associative, unital rings, whose morphisms are ho-
momorphisms of rings (preserving the multiplicative identity), whose composition is the usual
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composition, and whose identity morphisms are the usual identity maps. Hint. For the coproduct
of two associative, unital rings (R’,+,0,,1") and (R",+,0,-",1"), first form the coproduct R’ & R"
of (R, +,0) and (R",+,0) as a Z-module, then form the total tensor product ring Ty (R'® R") as in
the previous problem set. For the two natural maps ¢': R’ = T;(R'@R") and ¢" : R" < T} (R'®R")
form the left-right ideal I c T (R’ & R") generated by ¢'(1’) -1, ¢"(1") =1, ¢'(+" " ") = ¢'(+") - ¢'(s),
and ¢"(r" " s") = q"(r") - q"(s") for all elements 7/, s’ € R" and r”,s" € R". Define

p:T}H(Re&R") >R,

to be the quotient by I. Prove that poq¢’: R” - R and poq¢” : R” - R are ring homomorphisms
that make R into a coproduct of R’ and R".

(xv) The full subcategory CommRings of Rings whose objects are commutative, unital rings.
Does the inclusion functor preserve coproducts, resp. products? Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvi) The full subcategory NilCommRings of CommRings whose objects are commutative,
unital rings such that every noninvertible element is nilpotent. Does the inclusion functor preserve
coproducts, resp. products? (Be careful about products!) Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvii) Let R and S be associative, unital rings. Let R —mod, resp. mod -5, R - .S —mod, be the
category of left R-modules, resp. right S-modules, R — S-bimodules. Does the inclusion functor
from R -5 -mod to R —mod, resp. to mod — S, preserve coproduct, products, monomorphisms
and epimorphisms?

(xviii) Let (7,<) be a partially ordered set. Let C be a category. An (I, <)-system in C is a datum

c=((¢i)ier, (fi,j)(i,j)e[x[,isj)

where every ¢; is an object of C, where for every pair (i,7) € I x I with i < j, ¢; ; is an element of
Home(¢;,¢;), and satisfying the following conditions: (a) for every i € I, ¢;; equals Id,,, and (b) for
every triple (4,j,k) € I with i < j and j <k, ¢;x 0 ¢;; equals ¢; ;. For every pair of (/,<)-systems
in C, c=((ci)ier, (¢ij)izj) and ¢’ = ((¢})ier, (¢; ;)i<j), @ morphism g: ¢ — ¢’ is defined to be a datum
(9i)ier of morphisms g; € Home(¢;, ¢) such that for every (4,5) € I x I with i < j, g; o ¢;; equals
¢; j°gi- Composition of morphisms g and g’ is componentwise g;og;, and identities are Id.. = (Ide, )ier-
This category is Fun((/,<),C), and is sometimes referred to as the category of (I, <)-presheaves.
Assuming C has finite coproducts, resp. finite products, arbitrary coproducts, arbitrary products,
a zero object, kernels, cokernels, etc., what can you say about Fun((/,<),C)?

(xix) Let C be a category that has arbitrary products. Let (I,<) be a partially ordered set whose
associated category as in (iv) has finite coproducts and has arbitrary products. The main example
is when [ =l is the collection of all open subsets U of a topology on a set X, and where U <V if
U 2 V. Then coproduct is intersection and product is union. Motivated by this case, an covering
of an element i of I is a collection j = (Ju)aeca Of elements j, of I such that for every «, i < j,, and
such that 7 is the product of (j,)aea in the sense of (iv). In this case, for every (a,f3) € A x A,
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define j, 3 to be the element of I such that j, < j, 3, such that jg < j, g, and such that j, s is a
coprodcut of (ja,jz). An (I,=)-presheaf ¢ = ((¢;)ier, (¢i;)i<j) is an (I, <)-sheaf if for every element
i of I and for every covering j = (Ja)aea, the following diagram in C is exact in a sense to be made
precise,
pl
> len=z0" Tl s
oA (a,B)eAx A
For every a € A, the factor of ¢,
pr,oq:-c; = ¢j,,

is defined to be ¢; ;,. For every (o, ) € A x A, the factor of p/,

Progop’: H Ciy 7 Clapo
yeA
is defined to be ¢;, j, , o pr,. Similarly, pr, 5o p” is defined to be ¢;, ;. , o prg. The diagram above
is exact in the sense that ¢ is a monomorphism in C and ¢ is a fiber product in C of the pair of
morphisms (p’,p”). The category of (I, <) is the full subcategoryof the category of (I, <)-presheaves
whose objects are (I, <)-sheaves. Does this subcategory have coproducts, products, etc.? Does the
inclusion functor preserve coproducts, resp. products, monomorphisms, epimorphisms? Before
considering the general case, it is probably best to first consider the case that C is Z — mod, and
then consider the case that C is Sets.
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