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1 Introduction

These are additional notes on categories and functors for this course. Some of the notes are cut-
and-pasted from previous courses I taught about basic algebraic objects (semigroups, monoids,
groups, acts and actions, associative rings, commutative rings, and modules), elementary language
of category theory, and adjoint pairs of functors. Much of the notes are exercises working through
the basic results about these definitions.

2 Algebraic Objects

Definition 2.1. A semigroup is a pair (G,m) of a set G and a binary relation,

m ∶ G ×G→ G,

such that m is associative, i.e., the following diagram commutes,

G ×G ×G m×IdGÐÐÐ→ G ×G

IdG×m
×××Ö

×××Ö
m

G ×G ÐÐÐ→
m

G

.

The binary operation is equivalent to a set function,

L● ∶ G→ HomSets(G,G), g ↦ Lg,

such that for every g, g′ ∈ G, the composition Lg ○ Lg′ equals Lm(g,g′), where m(g, g′) is defined to
equal Lg(g′). When no confusion is likely, the element m(g, g′) is often denoted g ⋅ g′.
For semigroups (G,m) and (G′,m′) a semigroup morphism from the first to the second is a set
map

u ∶ G→ G′,

such that the following diagram commutes,

G ×G u×uÐÐÐ→ G′ ×G′

m
×××Ö

×××Ö
m′

G ÐÐÐ→
u

G′

.

The set of semigroup morphisms is denoted HomSemigroups((G,m), (G′,m′)).

Definition 2.2. For a semigroup (G,m), an element e of G of is a left identity element, resp.
right identity element, if for every g ∈ G, g equals m(e, g), resp. g equals m(e, g). An iden-
tity element is an element that is both a left identity element and a right identity element.
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A monoid is a triple (G,m, e) where (G,m) is a semigroup and e is an identity element. For
monoids (G,m, e) and (G′,m′, e′) a monoid morphism from the first monoid to the second is a
semigroup morphism that preserves identity elements. The set of monoid morphisms is denoted
HomMonoids((G,m, e), (G′,m′, e′)).

Example 2.3. For every semigroup (G,m), the opposite semigroup is (G,mopp), wheremopp(g, g′)
is defined to equal m(g′, g) for every (g, g′) ∈ G×G. A left identity element of a semigroup is equiv-
alent to a right identity element of the opposite semigroup. In particular, the opposite semigroup
of a monoid is again a monoid.

Example 2.4. For every set I and for every collection (Gα,mα)α∈I of semigroups, for the Cartesian
product set G ∶= ∏α∈I Gα with its projections,

prα ∶ G→ Gα,

there exists a unique semigroup operation m on G such that every projection is a morphism of
semigroups. Indeed, for every α, the composition

prα ○m ∶ G ×G→ Gα

equals mα ○ (prα × prα). There exists an identity element e of (G,m) if and only if there exists an
identity element eα of (Gα,mα) for every α, in which case e is the unique element such that prα(e)
equals eα for every α ∈ I.

Example 2.5. For every set S, the set HomSets(S,S) of set maps from S to itself has a structure
of monoid where the semigroup operation is set composition, (f, g) ↦ f ○ g, and where the identity
element of the monoid is the identity function on S. For every semigroup (G,m), a left act of
(G,m) on S is a semigroup morphism

ρ ∶ (G,m) → (HomSets(S,S), ○).

For every ordered pair ((S, ρ), (T,π)) of sets with left G-acts, a left G-equivariant map from
(S, ρ) to (T,π) is a set function u ∶ S → T such that u(ρ(g)s) equals π(g)u(s) for every g ∈ G and
for every s ∈ S.

For each set S, a right act of G on S is a semigroup morphism ρ from (G,m) to the opposite
semigroup of HomSets(S,S). Note, this is equivalent to a left act of the opposite semigroup Gopp

on S. For every ordered pair ((S, ρ), (T,π)) of sets with a right G-act, a right G-equivariant
map is a set function u ∶ S → T such that u(sρ(g)) equals u(s)π(g) for every g ∈ G and for every
s ∈ S. Note, this is equivalent to a left Gopp-equivariant map.

For an ordered pair ((G,m), (H,n)) of semigroups, for each set S, a G −H-act on S is an ordered
pair (ρ, π) of a left G-act on S, ρ, and a right H-act on S, π, such that (ρ(g)s)π(h) equals
ρ(g)(sπ(h)) for every g ∈ G, for every h ∈ H, and for every s ∈ S. This is equivalent to a left act
on S by the product semigroup of G and Hopp. A G −H-equivariant map is a map that is left
equivariant for the associated left act by G ×Hopp.
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For every monoid (G,m, e), a left action of (G,m, e) on S is a monoid morphism from (G,m, e)
to HomSets(S,S). There is a category G−Sets whose objects are pairs (S, ρ) of a set S and a left
action of (G,m, e) on S, whose morphisms are left G-equivariant maps, and where composition
is usual set function composition. A right action is a monoid morphism from (G,m, e) to the
opposite monoid of HomSets(S,S). There is a category Sets−G whose objects are pairs (S, ρ) of a
set S and a right action of (G,m, e) on S, whose morphisms are left G-equivariant maps, and where
composition is usual set function composition. Finally, for every ordered pair ((G,m, e), (H,n, f))
of monoids, a G−H-action on S is a G−H act (ρ, π) such that each of ρ and π is an action. There
is a category G −H −Sets whose objects are sets together with a G −H-action, whose morphisms
are G −H-equivariant maps, and where composition is usual set function composition.

Definition 2.6. A semigroup (G, ⋅) is called left cancellative, resp. right cancellative, if for
every f, g, h in G, if f ⋅ g equals f ⋅ h, resp. if g ⋅ f equals h ⋅ f , then g equals h. A semigroup is
cancellative if it is both left cancellative and right cancellative. A semigroup is commutative
if for every f, g ∈ G, f ⋅ g equals g ⋅ f , i.e., the identity function from G to itself is a semigroup
morphism from G to the opposite semigroup. For an element f of a monoid, a left inverse, resp.
right inverse, is an element g such that g ⋅ f equals the identity, resp. such that f ⋅ g equals the
identity. An inverse of f is an element that is both a left inverse and a right inverse. An element
f is invertible if it has an inverse.

Definition 2.7. A group is a monoid such that every element is invertible. The map that associates
to each element the (unique) inverse element is the group inverse map, i ∶ G → G. If the
monoid operation is commutative, the group is Abelian. A monoid morphism between groups
is a group homomorphism, and the set of monoid morphisms between two groups is denoted
HomGroups((G,m, e), (G′,m′, e′)). If both groups happen to be Abelian, this is also denoted
HomZ−mod((G,m, e), (G′,m′, e′)). In this case, this set is itself naturally an Abelian group for the
operation that associates to a pair (u, v) of group homomorphisms the group homomorphism u ⋅ v
defined by (u ⋅ v)(g) =m′(u(g), v(g)).

Definition 2.8. An associative ring is an ordered pair ((A,+,0), L●) of an Abelian group (A,+,0)
and a homomorphism of Abelian groups,

L● ∶ A→ HomZ−mod(A,A), a↦ (La ∶ A→ A)

such that for every a, a′ ∈ A, the composition La ○La′ equals La⋅a′ , where a ⋅ a′ denotes La(a′). The
set map L● is equivalent to a biadditive binary operation,

⋅ ∶ A ×A→ A, (a, a′) = a ⋅ a′,

that is also associative, i.e., for every a, a′, a′′ in A, the element (a ⋅ a′) ⋅ a′′ equals a ⋅ (a′ ⋅ a′′). In
particular, (A, ⋅) is a semigroup. For associative rings (A,+,0, ⋅) and (A′,+′,0′, ⋅′), a ring homo-
morphism from the first to the second is a set function that is simultaneously a morphism of
Abelian groups from (A,+,0) to (A′,+′,0′) and a morphism of semigroups from (A, ⋅) to (A′, ⋅′).
For every associative ring (A,+,0, ⋅), the opposite ring is (A,+,0, ⋅opp).
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Definition 2.9. An associative, unital ring is an associative ring such that the multiplication
semigroup has an identity element, i.e., there exists a multiplicative identity. An unital ring
homomorphism is a ring homomorphism that preserves multiplicative identities. For associative,
unital rings (A,+,0, ⋅,1) and (A′,+′,0′, ⋅′,1′), the set of unital ring homomorphisms from the first to
the second is denoted HomUnitalRings((A,+,0, ⋅,1), (A′,+′,0′, ⋅′,1′)), or just HomUnitalRings(A,A′)
if the identities and operations are understood. In particular, a commutative, associative,
unital ring is an associative unital ring such that the multiplication monoid is commutative. The
set of unital ring homomorphisms between two commutative, associative, unital rings is denoted
HomCommUnitalRings(A,A′).

Definition 2.10. For every Abelian group (F,+,0), the Abelian group HomZ−mod(F,F ) of group
homomorphisms from the group to itself has a structure of associative, unital ring where the multi-
plication operation is composition, and where the identity element is the identity homomorphism.
For every associative ring (R,+,0, ⋅), a (not necessarily unital) left module structure on F for
the associative ring R is a morphism of associative rings from R to HomZ−mod(F,F ). A (not neces-
sarily unital) right module structure is a morphism of associative rings from R to the opposite
ring of HomZ−mod(F,F ). For every associative, unital ring (R,+,0, ⋅,1), a (unital) left module
structure on F for the associative unital ring R is a morphism of associative unital rings from R
to HomZ−mod(F,F ). A (unital) right module structure on F for R is a morphism of associative
unital rings from R to the the oppsite ring of HomZ−mod(F,F ). For every left module structure on
F of R, the opposite module is the equivalent right module structure on F of the opposite ring
of R.

For left R-modules F and F ′,

L● ∶ R → HomZ−mod(F,F ), L′● ∶ R → HomZ−mod(F ′, F ′),

a left R-module morphism from F to F ′ is a group homomorphism,

φ ∶ (F,+,0) → (F ′,+′,0′),

such that for every r ∈ R, the following composition functions are equal,

φ ○Lr, L′r ○ φ ∶ F → F ′,

i.e., φ(r ⋅ x) equals r ⋅′ φ(x) for every r ∈ R and for every x ∈ F . For right R-modules G and G′,
a right R-module morphism from G to G′ is a left Ropp-module morphism from the opposite
module Gopp to the opposite module (G′)opp.

3 Categories

Definition 3.1. A category A consists of (i) a “recognition principle” or “axiom list” (possibly
depending on auxiliary sets) for determining whether a specified set a is an object of this category,
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(ii) an assignment, for every ordered pair (a, a′) of objects of A, of a specified set HomA(a, a′), and
(iii) an assignment, for every ordered triple (a, a′, a′′) of objects of A, of a specified set function

− ○ − ∶ HomA(a′, a′′) ×HomA(a, a′) → HomA(a, a′′), (g, f) ↦ g ○ f,

such that, for every object a of A, there exists an element Ida ∈ HomA(a, a) that is a left-right
identity for ○, and such that for every ordered 4-tuple (a, a′, a′′, a′′′) of objects of A and for every
ordered triple

(g, f, e) ∈ HomA(a′′, a′′′) ×HomA(a′, a′′) ×HomA(a, a′),
the elements g ○ (f ○ e) and (g ○ f) ○ e in HomA(a, a′′′) are equal, i.e., ○ is associative. The elements
of HomA(a, a′) are morphisms from a to a′ in A. The set function − ○ − is composition in A.

Definition 3.2. For a category A, for an ordered pair (a, a′) of objects of A, for an ordered pair
of elements

(g, f) ∈ HomA(a, a′) ×HomA(a′, a),
if the composition g ○f ∈ HomA(a, a) equals Ida, then g is a left inverse of f in A and f is a right
inverse of g in A. If g is both a left inverse of f and a right inverse of f , then g is an inverse of
f in A. An isomorphism in A is a morphism in A that has an inverse in A.

Definition 3.3. For a category A, an initial object, respectively a terminal object (or final
object), is an object a such that for every object a′, the set HomA(a, a′), resp. the set HomA(a′, a),
is a singleton set. An object that is simultaneously an initial object and a terminal object is called
a zero object.

Example 3.4. The category Sets has as objects all sets. For every ordered pair of sets, the
associated set of morphisms in Sets is defined to be the set of all set functions from the first set
to the second set. The composition in Sets is usual composition of functions. A set function has a
left inverse, respectively a right inverse, an inverse, if and only if the set function is injective, resp.
surjective, bijective. The empty set is an initial object. Every singleton set is a final object.

Example 3.5. For every category A, for every object a of A, there is a monoid Ha
a ∶= HomA(a, a)

whose semigroup operation is the categorical composition and whose monoid identity element is
the categorical identity morphism of a. This is the A-monoid of the object a. For every ordered
pair (a, a′) of objects of A, the set Ha

a′ ∶= HomA(a, a′) the categorical composition defines a set
map,

Ha′

a′ ×Ha
a′ ×Ha

a →Ha
a′ , (u′, f, u) ↦ u′ ○ f ○ u.

This is a Ha′

a′ − Ha
a -action on Ha

a′ . This is the A-action of Ha′

a′ − Ha
a on Ha

a′ . Finally, for every
ordered triple (a, a′, a′′) of objects, the composition binary operation,

Ha′

a′′ ×Ha
a′ →Ha

a′′ ,

is a Ha′′

a′′ −Ha
a -equivariant map that is Ha′

a′ -balanced, i.e., for every u′′ ∈ Ha′′

a′′ , for every g ∈ Ha′

a′′ , for
every u′ ∈Ha′

a′ , for every f ∈Ha
a′ , and for every u ∈Ha

a , we have,

u′′ ○ (g ○ f) = (u′′ ○ g) ○ f, (g ○ u′) ○ f = g ○ (u′ ○ f), (g ○ f) ○ u = g ○ (f ○ u).

This is the A-equivariant binary operation.
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Example 3.6. For every monoid, there is a category with a single object whose unique categorical
monoid is the specified monoid. Every category with a single object is (strictly) equivalent to such
a category for a monoid (unique up to non-unique isomorphism).

Example 3.7. For every monoid (G,m, e), for every set S together with a left G-action ρ, there
is an associated category, sometimes denoted [(S, ρ)/G], whose objects are the elements of S, and
such that for every ordered pair (s, s′) ∈ S × S the set of morphisms is

Gs
s′ ∶= {g ∈ G∣ρ(g)s = s′}.

For every ordered triple (s, s′, s′′) ∈ S × S × S, the semigroup operation defines a binary operation,

Gs′

s′′ ×Gs
s′ → Gs

s′′ , (g′, g) ↦ g′g.

The morphism of an element g ∈ Gs
s′ is left invertible, respectively right invertible, invertible, in this

category if and only if the element g of the monoid is left invertible, resp. right invertible, invertible.
This category has an initial object if and only if the left G-action is left G-equivariantly isomorphic
to the left regular representation of the monoid G on itself, in which case every invertible element
is an initial object. For the left regular representation, the category has a final object if and only
if the monoid is a group (every element is invertible), in which case every object is both initial and
final.

Example 3.8. For every ordered pair of monoids (G,G′), for every ordered pair (M,M ′) where
M is a set with a specified G′ −G-action and where M is a set with a specified G −G′-action, for
every ordered pair of biequivariant and balanced binary operations,

○M ′,M ∶M ′ ×M → G, ○M,M ′ ∶ G ×M ′ → G′,

that are associative, i.e., for all f, f1, f2 ∈M and for all f ′, f ′1, f
′
2 ∈M ′,

(f1 ○M,M ′ f ′) ⋅ f2 = f1 ⋅ (f ′ ○M ′,M f2), (f ′1 ○M ′,M f) ⋅ f ′2 = f ′1 ⋅ (f ○M,M ′ f ′2),

there is a category A with precisely two objects a and a′ such that the categorical monoid Ga
a equals

G, such that the categorical monoid Ga′

a′ equals G′, such that the categorical G′−G-set Ga
a′ equals M ,

such that the categorical G −G′-set Ga′
a equals M ′ and such that the composition binary relations

are the specified binary operations ○M ′,M and ○M,M ′ . Every category with precisely two objects is
(strictly) equivalent to such a category for some datum as above, (G,G′,M,M ′, ○M ′,m, ○M,M ′).

Example 3.9. Continuing the previous example, let (S,S′) be an ordered pair of sets, let

ρ ∶ G→ HomSets(S,S), ρ′ ∶ G′ → HomSets(S′, S′),

be an ordered pair of left actions so that HomSets(S,S′) has an induced G′ − G action and
HomSets(S′, S) has an induced G −G′ action. Let

µ ∶M → HomSets(S,S′), µ′ ∶M ′ → HomSets(S′, S),
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be an ordered pair of a G′ −G equivariant map and a G −G′ equivariant map that are compatible
with the composition maps, i.e., for every f ∈M and for every f ′ ∈M ′,

µ′(f ′) ○ µ(f) = ρ(f ′ ○M ′,M f), µ(f) ○ µ′(f ′) = ρ′(f ○M,M ′ f ′).

There is a category [(S,S′, ρ, ρ′, µ, µ′)/(G,G′,M,M ′, ○M ′,M , ○M,M ′)] whose objects are elements s of
S and elements s′ of S′, such that for every pair of elements (s1, s2) ∈ S ×S, resp. (s′1, s′2) ∈ S′ ×S′,
the morphisms are Gs1

s2 , resp. (G′)s
′

1

s′2
, as in [(S, ρ)/G], resp. as in [(S′, ρ′)/G′], and such that for

every s ∈ S and for every s′ ∈ S′, the morphisms from s to s′, resp. the morphisms from s′ to s,
are those elements m of M with µ(m)s = s′, resp. those elements m′ of M ′ with µ′(m′)s′ = s. The
compositions are defined in the evident way.

Example 3.10. For every monoid M , for the associated category A with one object a whose
monoid of self-morphisms equals M , the category HomA has objects (a, a, f) for every f ∈M . For
an ordered pair (f, g) ∈ M ×M , the set of morphisms from (a, a, f) to (a, a, g) equals the set of
ordered pairs (q, q′) ∈M ×M such that g ⋅ q equals q′ ⋅ f .

Example 3.11. For every semigroup (G,m), for every set S with a left G-act ρ on S, the iden-
tity function from S to itself is a left G-equivariant map from (S, ρ) to (S, ρ). Also, for every
ordered triple ((S, ρ), (T,π), (U,λ)) of sets with a left G-act, the composition of each left G-
equivariant map from (S, ρ) to (T,π) with a left G-equivariant map from (T,π) to (U,λ) is a
left G-equivariant map from (S, ρ) to (U,λ). Thus, there is a category G − Act whose objects
are sets with a left G-act, (S, ρ), where for every ordered pair ((S, ρ), (T,π)) of sets with a left
G-act, HomG−Act((S, ρ), (T,π)) is the subset of HomSets(S,T ) of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Act − G
whose objects are sets with a right G-act, (S, ρ), where for every ordered pair ((S, ρ), (T,π)) of sets
with a right G-act, HomAct−G((S, ρ), (T,π)) is the subset of HomSets(S,T ) of right G-equivariant
maps, and where composition is the usual set function composition. Finally, for every ordered pair
((G,m), (H,n)) of semigroups, there is a category G − H − Act whose objects are sets S with
a G −H-act, whose morphisms are G −H-equivariant maps, and where composition is usual set
function composition.

Example 3.12. For every monoid (G,m, e), for every set S with a left G-action ρ on S, the
identity function from S to itself is a left G-equivariant map from (S, ρ) to (S, ρ). Also, for every
ordered triple ((S, ρ), (T,π), (U,λ)) of sets with a left G-action, the composition of each left G-
equivariant map from (S, ρ) to (T,π) with a left G-equivariant map from (T,π) to (U,λ) is a left
G-equivariant map from (S, ρ) to (U,λ). Thus, there is a category G − Sets whose objects are
sets with a left G-action, (S, ρ), where for every ordered pair ((S, ρ), (T,π)) of sets with a left
G-action, HomG−Sets((S, ρ), (T,π)) is the subset of HomSets(S,T ) of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Sets −G
whose objects are sets with a right G-action, (S, ρ), where for every ordered pair ((S, ρ), (T,π))
of sets with a right G-action, HomSets−G((S, ρ), (T,π)) is the subset of HomSets(S,T ) of right G-
equivariant maps, and where composition is the usual set function composition. Finally, for every
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ordered pair ((G,m, e), (H,n, f)) of monoids, there is a category G −H − Sets whose objects are
sets S with a G−H-action, whose morphisms are G−H-equivariant maps, and where composition
is usual set function composition.

Example 3.13. The category Semigroups, respectively Monoids, Groups, Rings, UnitalRings,
CommUnitalRings, has as objects all semigroups, respectively all monoids (semigroups that have
an identity element), all groups, all associative, unital rings, all associative, commutative, unital
rings. For every ordered pair of objects, the set of morphisms in each of these categories is the set
of all set maps between the objects that preserve the algebraic operations (and identity elements,
when these are part of the structure). Composition is usual composition of set maps. In each of
these categories, a morphism is an isomorphism if and only if it is a bijection, in which case the
set-theory inverse of the bijection is also the inverse in the category. Each of these categories has a
terminal object consisting of any object whose underlying point set is a singleton set. The trivial
object is also an initial object, hence a zero object, in Monoids and Groups. The commutative,
unital ring Z is an initial object in UnitalRings and CommUnitalRings.

Example 3.14. For every associative, unital ring A, the category A − mod, resp. mod − A, is
the category whose objects are left A-modules, resp. right A-modules, and whose morphisms are
homomorphisms of left A-modules, resp. of right A-modules. Composition is usual composition of
set functions. The zero module is both an initial object and a terminal object, i.e., a zero object.

Definition 3.15. For a commutative, unital ring R, an R−mod enriched category is a category
A together with a specified structure of (left-right) R-module on each set of morphisms such that
each composition set map is R-bilinear.

Definition 3.16. For every category A, the arrow category of of A is the category A→ whose
objects are ordered triples (a0, a1, f) of objects a0 and a1 of A and an element f ∈ HomA(a0, a1),
such that for every ordered pair ((a0, a1, f), (a′0, a′1, f ′)) of objects the set of morphisms is

HomA→((a0, a1, f), (a′0, a′1, f ′)) = {(q0, q1) ∈ HomA(a0, a
′
0) ×HomA(a1, a

′
1)∣f ′ ○ q0 = q1 ○ f},

and for every ordered triple of objects, ((a0, a1, f), (a′0, a′1, f ′), (a′′0 , a′′1 , f ′′)), for every morphism
(q0, q1) from (a0, a1, f) to (a′0, a′1, f ′), and for every morphism (q′0, q′1) from (a′0, a′1, f ′) to (a′′0 , a′′1 , f ′′),
the composition (q′0, q′1) ○ (q0, q1) is defined to be (q′0 ○ q0, q′1 ○ q1).

Definition 3.17. For every category, the opposite category has the same objects, but the set of
morphisms from a first object to a second object in the opposite category is defined to be the set of
morphisms from the second object to the first object in the original category. With this definition,
composition in the opposite category is defined to be composition in the original category, but
in the opposite order. For every object, the associated categorical monoid of that object in the
opposite category equals the opposite monoid of the categorical monoid in the original category.
For every ordered pair of objects, the categorical biaction for the opposite category is the opposite
biaction of the categorical biaction of the original category.
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Example 3.18. For every commutative, unital ring R, for every category enriched over R −mod,
every categorical monoid has an associated structure of an associative, unital, central R-algebra
such that the algebra product is the monoid operation. Conversely, for every central R-algebra,
there is a category enriched over R-mod with precisely one object whose central R-algebra of
self-morphisms is the specified central R-algebra. Also, for the opposite category enriched over
R −mod, every central R-algebra of self-morphisms of an object is the opposite central R-algebra
of that in the original category.

Example 3.19. For every commutative, unital ring R, for every category A enriched over R−mod,
for every ordered pair (a, a′) of objects of A with the associated central R-algebra structures on
the monoids Ha

a and Ha′

a′ , categorical composition defines an associated structure of R-central
Ha′

a′ −Ha
a -bimodule on Ha

a′ inducing the categorical Ha′

a′ −Ha
a -action. Also, for every ordered triple

(a, a′, a′′) of objects of A, the composition binary operation defines an R-central Ha′′

a′′ −Ha
a -bimodule

homomorphism,
Ha′

a′′ ⊗Ha′

a′
Ha
a′ →Ha

a′′ .

Conversely, for every ordered pair of central R-algebras (H,H ′), for every ordered pair (S,T ) of
an R-central H ′ −H bimodule S, i.e., a left H ′⊗RHopp-module, and an R-central H −H ′ bimodule
T , for every ordered pair of balanced bimodule homomorphisms,

○T,S ∶ T ⊗H′ S →H, ○S,T ∶ S ⊗H T →H ′,

that are associative, there is a category A enriched over R − mod with precisely two objects a
and a′ such that the categorical central R-algebra Ha

a equals H, such that the categorical central
R-algebra Ha′

a′ equals H ′, such that the categorical R-central H ′ −H bimodule Ha
a′ equals S, such

that categorical R-central H −H ′ bimodule Ha′
a equals T , and such that the composition binary

operationss are the specified binary operations ○G,F and ○F,G.

Also, for the opposite category enriched over R − mod, the R-central algebras of self-morphisms
of an object are replaced by their opposites, and the opposite of the R-central H ′ −H bimodule
structure on Ha

a′ is the categorical R-central Hopp − (H ′)opp bimodule structure of the opposite
category.

Example 3.20. For every partially ordered set (S,≤), there is a category whose objects are the
elements of S, and such that for every ordered pair (s, s′) ∈ S × S, the set of morphisms is empty
unless s ≤ s′, in which case the set of morphisms is a singleton set. There is a unique composition
law consistent with these sets of morphisms. The opposite category is the category associated to
the opposite partially ordered set (S,≥).

Definition 3.21. For a category A, a subcategory of A is a category B such that every object
of B is an object of A, such that for every ordered pair (b, b′) of objects of B, the set HomB(b, b′)
is a subset of HomA(b, b′), and such that for every ordered triple (b, b′, b′′) of objects of B, the
composition in B is the restriction of composition in A. A subcategory B of A is full if for every
ordered pair (b, b′) of objects of B, the subset HomB(b, b′) equals all of HomA(b, b′).
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Similarly, for a commutative, unital ring R and a category A enriched over R −mod, an R −mod
enriched subcategory is a subcategory B of A such that every subset HomB(b, b′) of HomA(b, b′)
is an R-submodule.

Example 3.22. For every monoid M , for the associated category with one object whose categorical
monoid equals M , the subcategories are precisely the categories with one object associated to
the submonoids of M . For every commutative, unital ring R, for every R-central algebra A, for
the associated category enriched over R − mod that has precisely one object whose categorical
central R-algebra equals A, the R −mod enriched subcategories are precisely those associated to
R-subalgebras of A. For every partially ordered set (S,≤), the subcategories of the associated
category are precisely the categories of pairs (T,≤T ) of a subset T of S and a partial ordering ≤T
on T such that the inclusion map is order-preserving, (T,≤T ) → (S,≤). The subcategory is full if
and only if ≤T is the restriction of ≤ to T .

4 Functors

Definition 4.1. For every pair of categories A and B, a covariant functor F from A to B is
defined to be a rule that associates to every object a of A an object F (a) of B and that associates
to every ordered pair of objects (a, a′) of A a set map

Fa,a′ ∶ HomA(a, a′) → HomB(F (a), F (a′)),

such that for every object a of A, Fa,a(Ida) equals IdF (a), and such that for every triple of objects
(a, a′, a′′) of A,

Fa,a′′(g ○ f) = Fa′,a′′(g) ○ Fa,a′(f), ∀(g, f) ∈ HomA(a′, a′′) ×HomA(a, a′).

The functor is faithful, resp. fully faithful, if every set map Fa,a′ is injective, resp. bijective.
The functor is essentially surjective if every object of B is isomorphic to F (a) for an object of
A. The functor is an equivalence if it is fully faithfuly and essentially surjective.

A contravariant functor from A to B is a covariant functor from the opposite category Aopp to
B.

Definition 4.2. For every triple of categories A, B and C, for every covariant functor F from A to
B and for every covariant functor G from B to C, the composition functor G ○F from A to C is
the covariant functor associating to every object a of A the object G(F (a)) of C, and associating
to every ordered pair of objects (a, a′) of A, the composition set map,

GF (a),F (a′) ○ Fa,a′ ∶ HomA(a, a′) → HomB(F (a), F (a′))HomC(G(F (a)),G(F (a′))).

For every category A, the identity functor from A to A is the rule associating every object to
itself, and sending each set of morphisms to itself by the identity set map.
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Definition 4.3. For every triple of categories A, B, C, for every pair of covariant functors, F ∶ A → C
and G ∶ B → C, the comma category, F ↓ G, has as objects ordered triples (a, b, u) of an object
a of A, an object b of B, and a C-morphism u ∶ F (a) → G(b). For an ordered pair of objects,
((a, b, u), (a′, b′, u′)), a morphism in the comma category is an ordered pair (q, r) of q ∈ HomA(a, a′)
and r ∈ HomB(b, b′) such that u′○F (q) equals G(r)○u in HomC(F (a),G(b′)). Composition is defined
in the evident way. In particular, the arrow category of C is the comma category when A equals B
equals C and each of F and G is the identity functor on C. In general, there is a domain functor or
source functor, F ↓ G→ A, associating to every object (a, b, u) the A-object a and associating to
every morphism (q, r) the A-morphism q. There is also a codomain functor or target functor,
F ↓ G → B, associating to every object (a, b, u) the B-object b and associating to every morphism
(q, r) the B-morphism r. Finally, there is an arrow functor, F ↓ G → C→ associating to every
object (a, b, u) the C→-object (F (a),G(b), u) and associating to every morphism (q, r) the C→-
morphism (F (q),G(r)).

Definition 4.4. For a category A, a full subcategory is skeletal if every object of A is isomorphic
to an object of the subcategory. If there exists a skeletal subcategory whose objects are indexed
by a set, then A is a small category. If the objects of A form a set, then A is a strictly small
category.

Example 4.5. Let FinSets be the full subcategory of Sets whose objects are the finite subsets.
Let B be the full subcategory whose objects are the subsets [1, n] = {1, . . . , n} of Z≥1 for every
integer n ≥ 0. Then B is a strictly small category that is a skeletal subcategory of FinSets, but
FinSets is not a strictly small category.

Example 4.6. For every partially ordered set (S,≤) and for every partially ordered set (T,⪯), a
functor from the associated category of (S,≤) to the associated category of (T,⪯) is equivalent to
a order-preserving function from S to T . Such a functor is always faithful. It is full if and only if
the function is strict, i.e., for every (s, s′) ∈ S × S, the image pair (t, t′) ∈ T × T satisfies t ⪯ t′ if
and only if s ≤ s′. The functor is essentially surjective if and only if the set function is surjective.

Example 4.7. For every pair of categories A and B, for every covariant functor F from A to B, the
opposite functor F opp from the opposite category Aopp to the opposite category Bopp associates
to every object a of Aopp the object F (a) of Bopp, and associates to every ordered pair (a, a′) of
objects of Aopp the set function Fa′,a of (a′, a). For a triple of categories A, B and C, for covariant
functors F ∶ A → B and G ∶ B → C, the functor (G ○ F )opp is the composition Gopp ○ F opp, and
the opposite functor of the identity functor is the identity functor of the opposite category. The
opposite functor is faithful, respectively full, essentially surjective if and only if the original functor
is faithful, resp. full, essentially surjective. Finally, the opposite functor of F opp is the original
functor F .

Example 4.8. For every set a, denote by P(a) the power set of a, i.e., the set whose elements are
all subsets of a. For every set map f ∶ a→ a′, define Pa,a′(f) to be the set map from P(a) to P(a′)
associating to every subset b of a the image subset f(b) of a′. Similarly, define Pa′,a(f) to be the
set map from P(a′) to P(a) that associates to every subset b′ of b the preimage subset fpre(b′)
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of a. This defines a covariant functor P∗ from Sets to itself and a contravariant functor P∗ from
Sets to itself. These functors preserve the full subcategory FinSets, but they do not preserve the
skeletal subcategory B.

Example 4.9. There is a forgetful functor from Groups to Sets that forgets the group structure.
Similarly, there is a forgetful functor from R −mod to Groups that remembers only the additive
group structure on the R-module. Similarly, there is a forgetful functor from Rings to Z-mod that
remembers only the additive group structure. There is a forgetful functor from UnitalRings to
Rings. All of these are faithful functors. The category CommUnitalRings is a full subcategory
of UnitalRings.

Example 4.10. For every ordered pair of monoids, the covariant functors between the associated
categories are naturally equivalent to the morphisms of monoids. For every commutative, unital
ring R, for every ordered pair of central R-algebras, the covariant functors between the associ-
ated categories that are R-linear on sets of morphisms are naturally equivalent to the R-algebra
homomorphisms between these central R-algebras.

Definition 4.11. For every category A and for every object a of A, the Yoneda covariant
functor of a is the covariant functor,

ha ∶ A → Sets, ha(a′) = HomA(a, a′).

For every ordered pair of objects (a′, a′′), for every morphism g ∈ HomA(a′, a′′), and for every
element f ∈ ha(a′), i.e., for every morphism f ∈ HomA(a, a′), composition defines an element g ○ f
in ha(a′′). This defines a set function,

haa′,a′′ ∶ HomA(a′, a′′) → HomSets(ha(a′), ha(a′′)), g ↦ (f ↦ g ○ f).

In particular, haa′,a′ sends the identity morphism of a′ to the identity set function of ha(a′). Also,
since composition is associative, the set maps haa′,a′′ respect composition. Altogether, this defines a
covariant functor.

Similarly, the Yoneda contravariant functor of a′′ is the contravariant functor,

ha′′ ∶ A → Sets, ha′′(a′) = HomA(a′, a′′).

Each set map ha,a
′

a′′ is defined by sending g ∈ HomA(a, a′) to the set map

ha′′(a′) → ha′′(a), g ↦ g ○ f.

Example 4.12. For every partially ordered set (S,≤), for the associated category, for every element
a ∈ S, the Yoneda functor ha associates to each element a′ the empty set unless a′ ≤ a, in which
case it associates a singleton set. Similarly, the Yoneda functor ha

′

associates to each element a the
empty set unless a′ ≤ a.

14

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

5 Natural Transformations

Definition 5.1. For categories A and B, for covariant functors F and G from A to B, a natural
transformation from F to G is a rule θ that associates to every object a of A an element θa ∈
HomB(F (a),G(a)) such that for every ordered pair of objects (a, a′) of A, for every element
f ∈ HomA(a, a′), the following compositions of morphisms in B are equal,

θa′ ○ F (f) = G(f) ○ θa.

For covariant functors, F , G and H from A to B, for natural transformations from F to G and
from G to H, the (vertical) composite natural transformation from F to H is defined in the
evident way. Also, for every functor F , the identity natural transformation from F to itself is
defined in the evident way. An invertible natural transformation (with respect to composition of
natural transformations and the identity natural transformations) is called a natural equivalence
or natural isomorphism. This holds if and only if θa is an invertible morphism for every object
a, in which case the inverse natural transformation associates to a the inverse of θa.

For every natural transformation θ between covariant functors F,G ∶ A → B, for every natural
transformation θ′ between covariant functors F ′,G′ ∶ B → C, the horizontal composition natural
transformation, or Godement product, is the natural transformation θ ∗ θ′ ∶ F ′ ○ F → G′ ○G
associating to every object a of A the C-morphism,

θ′G(a) ○C F ′
F (a),G(a)(θa) = (θ ∗ θ′)a = G′

F (a),G(a)(θa) ○ θ′F (a).

This is associative in θ and θ′. For every covariant functor I ∶ B → C, the I-pushforward
natural transformation, I∗θ = θ ∗ IdI , is the natural transformation between the composition
functors I ○ F, I ○ G ∶ A → C associating to every object a of A the morphism IF (a),G(a)(θa) in
HomC(I(F (a)), I(G(a))). Similarly, for every covariant functor E ∶ D → A, the E-pullback
natural transformation, E∗θ = IdE ∗ θ, is the natural transformation between the composi-
tion functors F ○ E,G ○ E ∶ D → B that associates to every object d of D the morphism θE(d) in
HomB(F (E(d)),G(E(d))). Of course the Godement product can be expanded in terms of push-
forward, pullback and vertical composition,

G∗θ′ ○ (F ′)∗θ = θ ∗ θ′ = G′
∗θ ○ F ∗θ′.

In particular,
I∗(E∗(θ)) = (IdE ∗ θ) ∗ IdI = IdE ∗ (θ ∗ IdI) = E∗(I∗(θ)).

Example 5.2. For every partially ordered set (S,≤), for every partially ordered set (T,⪯), for
every pair of order-preserving functions,

F,G ∶ (S,≤) → (T,⪯),

there exists a natural transformation from F to G if and only if F ⪯ G, i.e., F (s) ⪯ G(s) for every
s ∈ S. In this case, the natural transformation is unique. Notice that F ⪯ F , and if both F ⪯ G
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and G ⪯ H for order-preserving functions F , G, and H, then also F ⪯ H, reflecting composition
of natural transformations. If F ⪯ G, then the natural transformation is a natural equivalence
if and only if the set functions are equal. For order-preserving functions I ∶ (T,⪯) → (U,⪯′) and
E ∶ (R,≤′) → (S,≤), if F ⪯ G, then also I ○F ⪯′ I ○G and F ○E ⪯ G○E, reflecting the I-pushforward
and E-pullback of the natural transformation.

Example 5.3. For categories A and B, for covariant functors F and G from A to B, for every
natural transformation θ from F to G, the opposite natural transformation θopp from Gopp to
F opp associates to every object a of A the element θa in HomB(F (a),G(a)) = HomBopp(G(a), F (a)).
The natural transformation θ is a natural equivalence if and only if θopp is a natural equivalence.
The opposite natural transformation of θopp is the original natural transformation θ. The opposite
natural transformation is compatible with vertical composition and Godement product.

Example 5.4. Let F ∶ A → C and G ∶ B → C be covariant functors, and let F ↓ G be the comma
category with its domain functor, s ∶ F ↓ G → A, and its codomain functor t ∶ F ↓ G → B. For the
composite functors, F ○ s,G ○ t ∶ F ↓ G→ C, there is a natural transformation,

θ ∶ F ○ s⇒ G ○ t, θ(a,b,u) = u.

For every category D, for every functor E ∶ D → F ↓ G, there is a triple (S,T, η) of functors,

S = s ○E ∶ D → A, T = t ○E ∶ D → B,

and a natural transformation η = E∗θ from F ○ S to G ○ T . Conversely, for every natural transfor-
mation (S,T, η) as above, there is a unique functor E ∶ D → F ↓ G such that s ○E (strictly) equals
S, such that t ○E (strictly) equals T , and such that E∗θ equals η.

Example 5.5. As a special case of the preceding, for every category A, for every category D, a
covariant functor to the arrow category,

E ∶ D → A→,

is (strictly) equivalent to an ordered pair (S,T ) of covariant functors,

S ∶ D → A, T ∶ D → A,

and a natural transformation η ∶ S ⇒ T .

Example 5.6. For every set a, denote by θa ∶ a → P(a) the set function that associates to every
element x ∈ a the singleton set of x. This defines a natural transformation from the identity functor
of Sets, resp. FinSets, to the covariant functor P∗.

Example 5.7. For every category A, for every covariant functor F ∶ A → Sets, for every object a
of A, for every element t ∈ F (a), for every object a′ of A, for every element f ∈ HomA(a, a′), denote
by f∗(t) the element of F (a′) that is the image of t under Fa,a′(f). This defines a set function,

t̃a′ ∶ ha(a′) → F (a′), f ↦ f∗(t).
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This is a natural transformation t̃ from the covariant functor ha to F . Every natural transformation
from ha to F is of the form t̃ for a unique element t ∈ F (a).
Similarly, for every contravariant functor G ∶ Aopp → Sets, for every element t ∈ G(a), for every
object a′ of A, and for every element f ∈ HomA(a′, a), denote by f∗(t) the element of G(a′) that
is the image of t under Ga′,a(f). This defines a set function,

t̃a
′ ∶ ha(a′) → G(a′), f ↦ f∗(t).

This is a natural transformation t̃ from the contravariant functor ha to G. Every natural transfor-
mation from ha to G is of the form t̃ for a unique element t ∈ F (a).

Definition 5.8. For a category A and for a covariant functor F ∶ A → Sets, a representation
of F is a pair (a, t) of an object a of A and an element t ∈ F (a) such that the associated natural
transformation t̃ ∶ ha ⇒ F is a natural equivalence. If there exists a representation, then F is a
representable functor. Similarly, a representation of a contravariant functor is a represen-
tation of the associated covariant functor from Aopp to Sets, and the contravariant functor is a
representable functor if there exists a representation.

Example 5.9. For a covariant functor F ∶ A → B, for every object a of A, let θa ∶ F (a) → G(a) be
an isomorphism in B. For every ordered pair (a, a′) of objects of A, denote by Ga,a′ the unique set
map,

Ga,a′ ∶ HomA(a, a′) → HomB(G(a),G(a′)),
such that for every u ∈ HomA(a, a′), the composite Ga,a′(u) ○ θa equals θa′ ○ Fa,a′(u). The rule
associating to every object a of A the object G(a) of B and associating to every ordered pair (a, a′)
of objects of A the set map Ga,a′ is a covariant functor G ∶ A → B, and the rule associating to every
object a of A the isomorphism θa in B is a natural equivalence between F and G. In this sense, a
rule that covariantly associates to every object of A an object of B only up to unique isomorphism
in B defines a “natural equivalence class” of covariant functors.

Example 5.10. As an explicit example of the preceding, let R ∶ B → A be a fully faithful, essentially
surjective covariant functor, i.e., an equivalence of categories. Also assume that A is strictly small.
For every object a of A, since R is essentially surjective, there exists an object b of and an
isomorphism, a → R(b). Using the Axiom of Choice, let b = L(a) and θa ∶ a → R(L(a)) be such a
choice of object and isomorphism for every object a of A. For every ordered pair (a, a′) of objects,
since R is fully faithful, there exists a unique bijection of sets,

La,a′ ∶ HomA(a, a′) → HomB(R(a),R(a′)), u↦ v = La,a′(u)

such that the composition R(v)○θa equals θa′○u for every u in HomA(a, a′). This defines a covariant
functor L ∶ A → B and a natural equivalence θ ∶ IdA⇒ R○L. Since R is fully faithful, also L is fully
faithful.

Again using that R is fully faithful, there is a unique natural equivalence η ∶ L ○ R ⇒ IdB such
that the R-pullback R∗η equals the inverse natural isomorphism of the R-pushforward R∗θ. In
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particular, L is essentially surjective. Thus, L is also an equivalence of categories. For a given
equivalence R from a category A to a strictly small category B, the extended datum of functors
and natural transformations, (L,R, θ, η) as above, is unique up to unique natural equivalence in R.

6 Adjoint Pairs of Functors

Let A and B be categories.

Definition 6.1. An adjoint pair of (covariant) functors between A and B is a pair of (covariant)
functors,

L ∶ A → B, R ∶ B → A,

be (covariant) functors, and a pair of natural transformations of functors,

θ ∶ IdA⇒ RL, θ(a) ∶ a→ R(L(a)),

η ∶ LR⇒ IdB, η(b) ∶ L(R(b)) → b,

such that the following compositions of natural transformations equal IdR, resp. IdL,

(∗R) ∶ R
θ○R⇒ RLR

R○η
⇒ R,

(∗L) ∶ L
L○θ⇒ LRL

η○L
⇒ R.

For every object a of A and for every object b of B, define set maps,

HL
R(a, b) ∶ HomB(L(a), b) → HomA(a,R(b)),

(L(a) φÐ→ b) ↦ (a
θ(a)
ÐÐ→ R(L(a))

R(φ)
ÐÐ→ R(b)) ,

and
HR
L (a, b) ∶ HomA(a,R(b)) → HomB(L(a), b),

(a ψÐ→ R(b)) ↦ (L(a)
L(ψ)
ÐÐ→ L(R(b))

η(b)
ÐÐ→ b) .

Adjoint Pairs Exercise.

(i) For L, R, θ and η as above, the conditions (∗R) and (∗L) hold if and only if for every object a
of A and every object b of B, HL

R(a, b) and HR
L (a, b) are inverse bijections.

(ii) Prove that both HL
R(a, b) and HR

L (a, b) are binatural in a and b.

(iii) For functors L and R, and for binatural inverse bijections HL
R(a, b) and HR

L (a, b) between the
bifunctors

HomB(L(a), b),HomA(a,R(b)) ∶ A × B → Sets,
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prove that there exist unique θ and η extending L and R to an adjoint pair such that HL
R and HR

L

agree with the binatural inverse bijections defined above.

(iv) Let (L,R, θ, η) be an adjoint pair. Let a (covariant) functor

R̃ ∶ B → A,

and natural transformations,

θ̃ ∶ IdA⇒ R̃ ○L, η̃ ∶ L ○ R̃⇒ IdB,

be natural transformations such that (L, R̃, θ̃, η̃) is also an adjoint pair. For every object b of B,
define I(b) in HomB(R(b), R̃(b)) to be the image of Idb under the composition,

HomB(b, b)
HomB(θ(b),b)ÐÐÐÐÐÐÐ→ HomB(L(R(b)), b)

HR̃
L (R(b),b)
ÐÐÐÐÐÐ→ HomB(R(b), R̃(b)).

Similarly, define J(b) in HomB(R̃(b),R(b)), to be the image of Idb under the composition,

HomB(b, b)
HomB(θ̃(b),b)ÐÐÐÐÐÐÐ→ HomB(L(R̃(b)), b)

HR
L (R̃(b),b)
ÐÐÐÐÐÐ→ HomB(R̃(b),R(b)).

Prove that I and J are the unique natural transformations of functors,

I ∶ R⇒ R̃, J ∶ R̃⇒ R,

such that θ̃ equals (I ○ L) ○ θ, θ equals (J ○ L) ○ θ̃, η̃ equals η ○ (L ○ I), and η equals η̃ ○ (L ○ J).
Moreover, prove that I and J are inverse natural isomorphisms. In this sense, every extension
of a functor L to an adjoint pair (L,R, θ, η) is unique up to unique natural isomorphisms (I, J).
Formulate and prove the symmetric statement for all extensions of a functor R to an adjoint pair
(L,R, θ, η).
(v) For every adjoint pair (L,R, θ, η), prove that also (Ropp, Lopp, ηopp, θopp) is an adjoint pair.

(vi) Formulate the corresponding notions of adjoint pairs when L and R are contravariant functors
(just replace one of the categories by its opposite category).

Exercise on Composition of Adjoint Pairs. Let A, B, and C be categories. Let

L′ ∶ A → B,R′ ∶ B → A,

be (covariant) functors, and let

θ′ ∶ IdA⇒ R′L′, η′ ∶ L′R′⇒ IdB,

be natural transformations that are an adjoint pair of functors. Also let

L′′ ∶ B → C,R′′ ∶ C → B,
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be (covariant) functors, and let

θ′′ ∶ IdB ⇒ R′′L′′, η′′ ∶ L′′R′′⇒ IdC,

be natural transformations that are an adjoint pair of functors. Define functors

L ∶ A → C, R ∶ C → A

by L = L′′ ○L′, R = R′ ○R′′. Define the natural transformation,

θ ∶ IdA⇒ R ○L,

to be the composition of natural transformations,

IdA
θ′⇒ R′ ○L′ R

′○θ′′○L′⇒ R′ ○R′′ ○L′′ ○L′.

Similarly, define the natural transformation,

η ∶ L ○R⇒ IdC,

to be the composition of natural transformations,

L′′ ○L′ ○R′ ○R′′ L
′′○η′○R′′
⇒ L′′ ○R′′ η

′′

⇒ IdC.

Prove that L, R, θ and η form an adjoint pair of functors. This is the composition of (L′,R′, θ′, η′)
and (L′′,R′′, θ′′, η′′). If A equals B, if L′ and R′ are the identity functors, and if θ′ and η′ are the
identity natural transformations, prove that (L,R, θ, η) equals (L′′,R′′, θ′′, η′′). Similarly, if B equals
C, if L′′ and R′′ are the identity functors, and if θ′′ and η′′ are the identity natural transformations,
prove that (L,R, θ, η) equals (L′,R′, θ′, η′). Finally, prove that composition of three adjoint pairs
is associative.

7 Adjoint Pairs of Partially Ordered Sets

Partially Ordered Sets Exercise. Let (S,≤) and (T,⪯) be partially ordered sets, and consider
the associated categories. For an order-preserving function,

L ∶ (S,≤) → (T,⪯),

prove that there exists an order-preserving function,

R ∶ (T,⪯) → (S,≤)

extending (uniquely) to an adjoint pair of functors (L,R, θ, η) if and only if for every element t of
T , there exists an element s of S (necessarily unique) such that

L−1{τ ∈ T ∣τ ≤ t} = {σ ∈ S∣σ ≤ s}.

In particular, conclude that L is injective and strict, i.e., the associated functor is fully faithful.
Formulate and prove a similar criterion for an order-preserving function R from (T,⪯) to (S,≤) to
admit a left adjoint.
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8 Adjoint Pair between a Category and its Pointed Cate-

gory

Definition 8.1. A pointed set is an ordered pair (S, s) of a set S and an element s of the set
S. For pointed sets (S, s) and (S′, s′), the set of morphisms of pointed sets is the subset of
HomSets(S,S′) of set functions that map s to s′.

Notation 8.2. For every set S, denote by S the subset of the power set P(S) whose elements are
{S} and all singleton sets. Thus, S contains the image of the set function θS ∶ S → P(S) from
Example 5.6. For every set function u ∶ S → S′, define u ∶ S → S′ to be the unique set function
that maps {S} to {S′} and such that u ○ θS equals θS′ ○ u. For every pointed set (S, s), define
η(S,s) ∶ (S,{S}) → (S, s) to be the unique function of pointed sets such that η(S,s) ○ θS equals the
identity function on S.

Pointed Sets Exercise.

(i) Prove that the rules above define a category PtdSets of pointed sets together with a faithful
functor PtdSets → Sets associating to every pointed set (S, s) the set S and restricting to the
inclusion from the set of morphisms of pointed sets from (S, s) to (S′, s′) inside the set of all set
functions from S to s′. This is the forgetful functor.

(ii) Prove that the rule associating to every set S the ordered pair (S,{S}) and associating to
every set function u ∶ S → S′ the set function u defines a faithful functor from Sets to PtdSets.

(iii) Prove that the rule associating to every set S the set function θS ∶ S → S defines a natural
transformation from the identity functor on Sets to the composition of the above functors, Sets→
PtdSets→ Sets.

(iv) Prove that the rule associating to every pointed set (S, s) the set function η(S,s) ∶ (S,{S}) →
(S, s) is a natural transformation to the identity functor on PtdSets from the composition of the
above functors PtdSets→ Sets→ PtdSets.

(v) Prove that these functors and natural transformations define an adjoint pair of functors.

Semigroups and Monoids Exercise. Modify the construction of the previous exercise to con-
struct an adjoint pair of functors between Semigroups and Monoids whose right adjoint functor is
the (faithful) forgetful functor from Monoids to Semigroups that “forgets” the specified identity
element of the monoid (since identity elements in a monoid are unique, this functor is faithful).

Definition 8.3. A category is a category with an initial object, respectively a category with
a terminal object, a pointed category, if it has an initial object, resp. if it has a terminal
object, it has an object that is simultaneously an initial object and a terminal object, i.e., if it has
a zero object. A functor between categories that both have an initial object, respectively a terminal
object, a zero object, is a initial preserving, resp. terminal preserving, a pointed functor, if
it maps each initial object to an initial object, resp. if it maps each terminal object to a terminal
object, resp. if it maps each zero object to a zero object.
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Definition 8.4. A trivial category is a pointed category such that every object is a zero object
(i.e., there are objects, and every Hom set is a singleton set). A terminal category is a trivial
category that has a unique object; every object of a trivial category gives a skeletal subcategory
that is a terminal category.

Definition 8.5. For every category C, for every set 0, the associated category C0,init with initial
object 0 is the category whose objects consist of 0 together with ordered pairs (A,0) for all objects
A of C. For every object of Cinit, the set of morphisms from 0 to that object is a singleton set. For
every pair of objects A and B of C, the set of morphisms of C0,init from (A,0) to (B,0) is the set of
morphisms of C from A to B. For every object A of C, the set of morphisms in C0,init from (A,0)
to 0 is the empty set. There is a rule FC,0 that associates to every object A of C the object (A,0)
of C0,init and, for every pair of objects A and B of C, identifies the set of morphisms of C from A
to B to the set of morphisms of C0,init from (A,0) to (B,0). There is a unique composition rule on
C0,init that makes C0,init a category in such a way that FC,0 is a fully faithful functor.

Adjointness property of the associated category with initial object. Show that the object
0 of C0,init is an initial object. Show that for every functor G ∶ C → B to a category B and for
every initial object b of B, there exists a unique functor Gb,0,init ∶ Cinit → B that is initial preserving,
that sends the initial object 0 of C0,init to b, and such that Gb,0,init ○ F equals G. Show that for
every initial object b′ of B, there is a unique natural equivalence Gb′,b,0,init ∶ Gb,0,init ⇒ Gb′,0,init such
that Gb′,b,0,init ○ F equals the identity natural equivalence of G to itself. In this sense, (−)0,init is
a 2-functor from the 2-category of categories to the 2-category of categories with initial objects
with morphisms being natural equivalence classes of initial preserving functors, and (−)init is “left
adjoint” to the faithful (but not full) functor from the 2-category of categories with initial objects
to the 2-category of categories (not necessarily having an initial object).

Associated category with a terminal object. For a category C, define C0,term to be the
opposite category of the associated category with initial object of the opposite category Copp, i.e.,
((Copp)0,init)opp. Formulate the analogues of the above for the associated functor F0,term ∶ C → C0,term.

Definition 8.6. For every category C that has a terminal object, for every terminal object 0, the
associated category C0 with final object (0, Id0) is the category whose objects are all ordered
pairs (A,f) of an object A of C and a morphism f ∶ 0→ A of C. For every pair of such ordered pairs,
(A,f) and (A′, f ′), the set of morphisms of C0 from (A,f) to (A′, f ′) is the set of all morphisms
of C g ∶ A→ A′ such that g ○ f equals f ′. There is a rule ΦC,0 that associates to every object (A,f)
of C0 the object A of C and that associates to every morphism of C0, g ∶ (A,f) → (A′, f ′), the
morphism g ∶ A → A′ of C. There is a unique composition rule on C0 that makes C0 a category in
such a way that ΦC,0 is a faithful functor (usually not full).

Adjointness property of the associated category with zero object. Show that (0, Id0) is a
zero object of C0. Show that for every terminal-preserving functor G ∶ B → C from a category with
a zero object b to a category with a terminal object 0, there exists a unique zero-preserving functor
G0,b ∶ B → C0 such that ΦC,0 ○G0,b equals G. In this sense, the rule associating to a category with
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a terminal object C the category with zero object C0 is right adjoint to the fully faithful 2-functor
from the 2-category of categories with zero object and zero-preserving functors to the 2-category
of categories with terminal object and terminal-preserving functors.

9 Adjoint Pairs of Free Objects

Definition 9.1. A concrete category is a category, A, together with a faithful functor, R ∶ A →
Sets, the forgetful functor of the concreted category. A left adjoint of R is a free functor for the
specified concrete category. For concrete categories (A,R) and (A′,R′), a functor of concrete
categories is a functor F ∶ A → A′ together with a natural equivalence θ ∶ R ⇒ R′ ○ F , cf. the
articles of Porst.

Remark 9.2. If there exists a free functor L for R, then the natural equivalence θ in a functor of
concrete categories is uniquely determined by its value on the object L({∗}) for any singleton set
{∗}. for a given functor F ∶ A → A′, there is at most one natural equivalence θ such that (R, θ)
is a functor of concrete categories. Thus, there is a unique concrete equivalence of the concrete
category of sets extending the identity functor, but the extensions of the identity functor on the
concrete category of groups has two elements (the identity extension and the extension given by
group inversion).

Notation 9.3. For every nonnegative integer n, denote by [1, n] the set {k ∈ Z>0∣k ≤ n}, which has
precisely n elements. For every ordered pair (n′, n′′) of nonnegative integers, denote by q′n′,n′′ and
q′′n′,n′′ the following set maps,

q′n′,n′′ ∶ [n′] → [n′ + n′′], k ↦ k,

q′′n′,n′′ ∶ [n′′] → [n′ + n′′], k ↦ n′ + k.
For every set Σ and for every ordered pair of set functions,

f ′ ∶ [n′] → Σ, f ′′ ∶ [n′′] → Σ,

denote by mΣ,n′,n′′(f ′, f ′′) the unique set function

f ∶ [n′ + n′′] → Σ, f ○ q′n′,n′′ = f ′, f ○ q′′n′,n′′ = f ′′.

Denote the unique set function [0] → Σ by 0Σ. For every element σ ∈ Σ, denote by ιΣ,σ the unique
set function [1] → Σ with image {σ}.

Notation 9.4. For every set Σ, denote by F (Σ) the set of all ordered pairs (n, f) of an integer
n ≥ 0 and a set map f ∶ [n] → Σ. For every set function u ∶ Σ→ Π, denote by F (u) ∶ F (Σ) → F (Π)
the set function (n, f) ↦ (n, f ○ u). Denote by prΣ,1 ∶ F (Σ) → Z≥0 the set map that sends (n, f) to
n. Denote by mΣ the following binary operation,

mΣ ∶ F (Σ) × F (Σ) → F (Σ), ((n′, f ′), (n′′, f ′′)) ↦ (n′ + n′′,mΣ,n′,n′′(f ′, f ′′)).

Denote by ιΣ the following set map,

ιΣ ∶ Σ→ F (Σ), σ ↦ ([1], ιΣ,σ).
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Free Monoids Exercise.

(i) Prove that the rule associating to every monoid (G,m, e) the set G and associating to every
monoid morphism the same set map defines a faithful functor Monoids → Sets. This is the
forgetful functor of the concrete category of monoids.

(ii) For every set Σ, prove that (F (Σ),mΣ, ([0],0Σ)) is a monoid. For this monoid structure, for
every set map u ∶ Σ→ Π, prove that F (u) is a monoid morphism. Prove that this defines a covariant
functor Sets→Monoids.

(iii) Prove that the rule associating to every set Σ the set function ιΣ is a natural transformation
from the identity functor on Sets to the composition of the two functors above, Sets→Monoids→
Sets.

(iv) For every monoid (G,m, e) and for every set function j ∶ Σ → G, use induction on the integer
n ≥ 0 to prove that there exists a unique morphism of monoids,

j̃ ∶ F (Σ) → G,

such that j̃ ○ iΣ equals j.

(v) For every monoid (G,m, e), for the identity set map IdG ∶ G→ G, prove that the rule associating
to (G,m, e) the monoid morphism ĨdG ∶ F (G) → G is a natural transformation to the identity func-
tor on Monoids from the composition of the two functors above, Monoids→ Sets→Monoids.

(vi) Check that these functors and natural transformations define an adjoint pair of functors. The
monoid F (Σ) is the free monoid on Σ.

(vii) Also check that for the functor Sets → Monoids that associates to every set the additive
monoid Z≥0 and associates to every set function the identity morphism of Z≥0, the rule associating
to every set Σ the monoid morphism pr1,Σ ∶ F (Σ) → Z≥0 is a natural transformation from the free
monoid functor to this functor. Also, check that this equals the composition of the free monoid
functor with the natural transformation from the identity functor on Sets to the “constant” functor
from Sets to itself associating to every set the singleton {1} and associating to every set function
the identity set function on {1} (since this singleton is a final object in Sets, there is a unique
natural transformation from the identity functor to this constant functor).

Notation 9.5. For every set Σ, denote by F>0(Σ) ⊂ F (Σ) the inverse image under prΣ,1 of the
subset Z>0 ⊂ Z≥0. For every set function u ∶ Σ → Π, define F>0(u) to be the restriction of F (u) to
F>0(Σ), which is a set function with image contained in F>0(Π).

Free Semigroups Exercise.

(i) Since Z>0 is a subsemigroup of Z≥0 (although not a submonoid), check that also F>0(Σ) is a
subsemigroup of F (Σ) for every set.

(ii) Also check that F>0(u) is a morphism of semigroups for every set function u ∶ Σ→ Π.

24

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

(iii) Check that these rules define a functor from Sets to Semigroups. Check that the natural
transformations of the previous exercise modify to define an adjoint pair of functors between Sets
and Semigroups whose right adjoint functor is the forgetful functor.

(iv) Double-check that the composite of this adjoint pair with the adjoint pair between Semigroups
and Monoids is naturally equivalent to the adjoint pair between Sets and Monoids from the pre-
vious exercise.

Notation 9.6. For every set Σ, denote the Cartesian product Σ × {+1}, respectively Σ × {−1}, by
Σ+, resp. Σ−, with the corresponding bijections,

jΣ,+ ∶ Σ→ Σ+, jΣ,− ∶ Σ→ Σ−, jΣ,+(σ) = (σ,+1), jΣ,−(σ) = (σ,−1).

For every set function u ∶ Σ→ Π, denote by u+⊔u− the unique set function from Σ+⊔Σ− to Π+⊔Π−
whose composition with jΣ,+, resp. with jΣ,−, equals jΠ,+ ○ u, resp. equals jΠ,− ○ u. Denote by
ΛΣ ⊂ F (Σ+ ⊔Σ−) × F (Σ+ ⊔Σ−), the subset whose elements are the following ordered pairs,

(f ⋅ (i ○ jΣ,+)(σ) ⋅ (i ○ jΣ,−)(σ) ⋅ g, f ⋅ (i ○ jΣ,−)(σ) ⋅ (i ○ jΣ,+)(σ) ⋅ g), f, g ∈ F (Σ+ ⊔Σ−), σ ∈ Σ.

Denote by ∼Σ to be the weakest equivalent relation on F (Σ+ ⊔ Σ−) generated by the relation ΛΣ.
Denote the quotient by this equivalence relation by

qΣ ∶ F (Σ+ ⊔Σ−) → FGroups(Σ).

Denote the composition qΣ ○ i ○ jΣ,+ by

iGroups,Σ ∶ Σ→ FGroups(Σ).

Free Groups Exercise.

(i) For an equivalence relation ∼ on a semigroup (G,m) with quotient q ∶ G→H, check that there
exists a semigroup structure on H for which q is a morphism of semigroups if and only if there
exists a left act of G on H for which q is a morphism of left G-acts if and only if there exists a
right act of G on H for which q is a morphism of right acts if and only if ∼ satisfies the following:
for every g, g′, g′′ ∈ G, if g ∼ g′, then also g ⋅ g′′ ∼ g′ ⋅ g′′ and also g′′ ⋅ g′ ∼ g′′ ⋅ g.

(ii) For a monoid (G,m, e), check that every surjective morphism of semigroups u ∶ G → G′ is a
morphism of monoids. Conclude that for an equivalence relation ∼ on G, the quotient is a morphism
of monoids if and only if it is a morphism of semigroups.

(iii) Check that the rule associating to each set Σ the monoid F (Σ+ ⊔Σ−) and associating to each
set function u ∶ Σ→ Π the monoid morphism F (u+⊔u−) is a functor from Sets to Monoids. Check
that the functions i○ jΣ,+ and i○ jΣ,− are natural transformations from the identity functor on Sets
to the composite of this functor with the forgetful functor Monoids → Sets. Check that the rule
associating to every set Σ the set F (Σ+ ⊔Σ−) × F (Σ+ ⊔Σ−) and associating to every set function
u ∶ Σ→ Π the set function

F (u+ ⊔ u−) × F (u+ ⊔ u−) ∶ F (Σ+ ⊔Σ−) × F (Σ+ ⊔Σ−) → F (Π+ ⊔Π−) × F (Π+ ⊔Π−)
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is a functor from Sets to itself. Check that this function sends ΛΣ to ΛΠ. Conclude that the
rule associating to every set Σ the subset ΛΣ and associating to every set function u ∶ Σ → Π the
restriction of F (u+ ⊔ u−) × F (u+ ⊔ u−) is a subfunctor of the previous functor. Conclude that the
rule associating to every set Σ the equivalence relation ∼Σ is also a subfunctor.

(iv) For every set Σ, check that the equivalence relation ∼Σ satisfies the condition necessary for
the quotient map to be a monoid morphism. Conclude that there is a unique pair of a functor
Sets → Monoids and a natural transformation to this functor from the free monoid functor
F (Σ+ ⊔Σ−) associating to every set Σ the monoid FGroups(Σ) and the quotient monoid morphism
qΣ.

(v) Check that each of the monoid generators i(jΣ,+(σ)) and i(jΣ,−(σ)) of the free monoid F (Σ+ ⊔
Σ−) map under qΣ to an invertible element of FGroups(Σ). Conclude that the functor FGroups from
Sets to Monoids factors through the full subcategory Groups of Monoids. Thus, FGroups is a
functor from Sets to Groups.

(vi) Check that the rule associating to every set Σ the set function iGroups,Σ is a natural transfor-
mation from the identity functor to the composition of the forgetful functor with the functor above,
Sets →Groups → Sets. Similarly, modify the definition of ηΣ to obtain a natural transformation
from the composition Groups → Sets →Groups to the identity functor on Groups. Prove that
these functors and natural transformations define an adjoint pair whose right adjoint functor is the
(faithful) forgetful functor Groups→ Sets. The group FGroups(Σ) is the free group on the set
Σ.

(vii) For every monoid (G,m, e), denote by N(G,m,e) the fiber over e of the natural transformation,

ĨdG ∶ F (G) → G.

Denote by NGroups,(G,m,e) the normal subgroup of FGroups(G) generated by the image under
q ○ F (jG,+) of N(G,m,e). Check that this is functorial in (G,m, e) and that the quotient group
FGroups(G)/NGroups,(G,m,e) define a left adjoint functor to the (fully faithful) forgetful functor from
Groups to Monoids. This left adjoint functor is the group completion functor. Double-check
that the composite of the group completion functor with the free monoids functor is naturally
equivalent to FGroups.

(viii) For categories B, C, for functors

L′′ ∶ B → C, R′′ ∶ C → B,

and for natural transformations

θ′′ ∶ IdB ⇒ R′′ ○L′′, η′′ ∶ L′′ ○R′′⇒ IdC,

such that (L′′,R′′, θ′′, η′′) is an adjoint pair, the adjoint pair is reflective if R′′ is fully faithful. In
this case, prove that there exists a unique binatural transformation

H̃L′′

R′′(b, b′) ∶ HomC(L′′(R′′(b)), b′) → HomC(b, b′),
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such that the composition with R′′,

HomC(L′′(R′′(b)), b′)
H̃L′′

R′′
(b,b′)

ÐÐÐÐÐ→ HomC(b, b′)
R′′Ð→ HomB(R′′(b),R′′(b′)),

equals HL′′

R′′(R(b), b′). In particular, taking b′ = L′′(R′′(b)), denote the image of Idb′ by

η̃′′b ∶ b→ L′′(R′′(b)).

Prove that η̃′′b is an inverse to η′′b ∶ L′′(R′′(b)) → b. Thus, for a reflective adjoint pair, η′′ is a natural
isomorphism. Conversely, if η′′ is a natural isomorphism, prove that the adjoint pair is reflective,
i.e., R′′ is fully faithful. In particular, for the group completion, conclude that the group completion
of the monoid underlying a group is naturally isomorphic to that group.

Free Abelian Groups Exercise. Denote by

Φ ∶ Z −mod→Groups

the full subcategory of Groups whose objects are Abelian groups. For every group (G, ⋅, e), denote
by [G,G] the normal subgroup of G generated by all commutators

[g, h] = g ⋅ h ⋅ g−1 ⋅ h−1

for pairs g, h ∈ G. Denote by
θG ∶ G→ L(G),

the group quotient associated to the normal subgroup [G,G] of G. Prove that L(G) is an Abelian
group. Moreover, for every Abelian group (A, ⋅, e), prove that the set map

HL
Φ ∶ HomZ−mod(L(G),A) → HomGroups(G,Φ(A)), v ↦ v ○ θG,

is a bijection. In particular, for every group homomorphism,

u ∶ G→ G′,

the composition θG′ ○u ∶ G→ L(G′) is a group homomorphism, and thus there exists a unique group
homomorphism,

L(u) ∶ L(G) → L(G′),

such that HL
Φ(L(u)) ○ θG equals θG′ ○u. Prove that the rule G↦ L(G), u↦ L(u) defines a functor,

L ∶ Groups→ Z −mod.

This functor is called Abelianization. Prove that G↦ θG is a natural transformation,

θ ∶ IdGroups⇒ Φ ○L.
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For every Abelian group A, prove that [A,A] is the identity subgroup, and thus the quotient
homomorphism,

θΦ(A) ∶ Φ(A) → Φ(L(Φ(A))),

is an isomorphism. Thus there exists a unique group homomorphism, just the inverse isomorphism
of θΦ(A),

ηA ∶ L(Φ(A)) → A,

such that θΦ(A) ○Φ(ηA) equals the IdΦ(A). Prove that A↦ ηA is a natural isomorphism,

η ∶ L ○Φ→ IdZ−mod.

Prove that (L,Φ, θ, η) is an adjoint pair.

Factorization Exercise. Let A, B, and C be categories. Let

R′ ∶ B → A, R′′ ∶ C → B,

be fully faithful functors. Denote the composition R′ ○R′′ by

R ∶ C → A.

(i) If there exist extensions to reflective adjoint pairs (L′,R′, θ′, η′), (L′′,R′′, θ′′, η′′), prove that
there is also an extension to a reflective adjoint pair (L,R, θ, η).
(ii) If there exists an extension of R to a reflective adjoint pair (L,R, θ, η), prove that there exists an
extension (L′′,R′′, θ′′, η′′). Give an example demonstrating that R′ need not extend to a reflective
adjoint pair (for instance, consider the full subcategory of Abelian groups in the full subcategory
of solvable groups in the category of all groups).

(iii) A monoid (G, ⋅, e) is called left cancellative, resp. right cancellative, if for every f, g, h in
G, if f ⋅ g equals f ⋅ h, resp. if g ⋅ f equals h ⋅ f , then g equals h. A monoid is cancellative if it is
both left cancellative and right cancellative. A monoid is commutative if for every f, g ∈ G, f ⋅ g
equals g ⋅ f . A commutative monoid is left cancellative if and only if it is right cancellative if and
only if it is cancellative. Denote by

LCanMonoids, RCanMonoids, CanMonoids, CommMonoids, CommCanMonoids ⊆ Monoids

the full subcategories of the category of all monoids whose objects are left cancellative monoids,
resp. right cancellative monoids, cancellative monoids, commutative monoids, commutative can-
cellative monoids. In each of these cases, prove that the fully faithful inclusion functor R extends
to a reflective adjoint pair. Use (ii) to conclude that for every inclusion functor among the full
subcategories listed above, there is an extension of the inclusion functor to a reflective adjoint pair.

(iv) In particular, prove that the group completion adjoint pair

(L ∶ Monoids→Groups,R ∶ Groups→Monoids, θ, η)
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factors as the composition of the reflective adjoint pair

(L′ ∶ Monoids→CanMonoids,R′ ∶ CanMonoids→Monoids, θ′, η′),

and the restriction to CanMonoids of the group completion adjoint pair

(L′′ = L ○R′,R′′, θ′′, η′′).

Similarly, prove that the composition of the Abelianization functor and the group completion
functor

(L ∶ Monoids→ Z −mod,R ∶ Z −mod→Monoids, θ, η),
factors through the reflection to the full subcategory of commutative, cancellative monoids,

(L′ ∶ Monoids→CommCanMonoids,R′ ∶ CommCanMonoids→Monoids, θ′, η′).

Adjointness of Tensor and Hom Exercise. Let A and B be unital, associative rings, and let
φ ∶ A→ B be a morphism of unital, associative rings.

(i) For every left B-module,
(N,mB,N ∶ B ×N → N),

prove that the composition

A ×N φ×IdNÐÐÐ→ B ×N
mB,NÐÐÐ→ N,

makes the datum
(N,mB,N ○ (φ × IdN) ∶ A ×N → N),

an R-module. For every morphism of left B-modules,

u ∶ (N,mB,N) → (N ′,mB,N ′),

prove that also
u ∶ (N,mB,N ○ (φ × IdN)) → (N ′,mB,N ′ ○ (φ × IdN ′))

is a morphism of left A-modules. Altogether, prove that the association (N,mB,N) ↦ (N,mB,N ○
(φ × IdN)) and u↦ u is a faithful functor

Rφ ∶ B −mod→ A −mod.

In particular, in the usual manner, for every unital, associative ring C and for every B−C-bimodule
N , prove that Rφ(N) is naturally an A −C-bimodule.

(ii) Formulate and prove the analogous results for right modules, giving a faithful functor

Rφ ∶ mod −B →mod −A.

For every C −B-bimodule N , prove that Rφ(N) is naturally a C −A-bimodule. In particular for
the B −B-bimodule N = B, Rφ(B) is naturally a B −A-bimodule.
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For every left A-module M , denote Lφ(M) = Rφ(B)⊗AM . For every morphism of left A-modules,

u ∶M →M ′,

denote by Lφ(u) = IdRφ(B) ⊗ u,
Lφ(u) ∶ Lφ(M) → Lφ(M ′),

the associated morphism of left B-modules. Prove that the associations M ↦ Lφ(M) and u↦ Lφ(u)
define a functor

Lφ ∶ A −mod→ B −mod.

(iv) Denote by 1B the multiplicative unit in B. For every left A-module M , prove that the
composition

M
1B×IdMÐÐÐÐ→ B ×M

βB,MÐÐÐ→ B ⊗AM,

is a morphism of left A-modules,
θM ∶M → Rφ(Lφ(M)),

i.e., for every a ∈ A and for every m ∈M ,

βB,M(1B, a ⋅m) = βB,M(1B ⋅ φ(a),m) = βB,M(φ(a) ⋅ 1B,m).

Prove that the association M ↦ θM defines a natural transformation

θ ∶ IdA−mod ⇒ Rφ ○Lφ.

(v) For every left B-module (N,mB,N), for the induced right A-module structure on Rφ(B) and
left A-module structure on N , prove that

mB,N ∶ B ×N → N

is A-bilinear, i.e., for every a ∈ A, for every b ∈ B, and for every n ∈ N ,

mB,N(b, φ(a) ⋅ n) =mB,N(b ⋅ φ(a), n).

Thus, by the universal property of tensor product, there exists a unique homomorphism of Abelian
groups,

mN ∶ B ⊗AN → N,

such that mN ○ βB,N equals mB,N . Prove that mN is a morphism of left B-modules, i.e., for every
b, b′ ∈ B and for every n ∈ N ,

mN(b ⋅ βB,N(b′, n)) =mN(βB,N(b ⋅ b′, n)) =mB,N(b ⋅ b′, n) =mB,N(b,mB,N(b′, n)).

Prove that the association N ↦mN defines a natural transformation

m ∶ Rφ ○Lφ⇒ IdB−mod.
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(vi) Prove that (Lφ,Rφ, θ,m) is an adjoint pair of functors. In particular, even though Rφ is
faithful, the natural transformation m is typically not a natural isomorphism. Conclude that one
cannot weaken the definition of reflective adjoint pair from “fully faithful” to “faithful”.

(vii) Prove the analogues of the above for right modules. Also, taking A to be Z, and taking
φ ∶ Z→ B to be the unique ring homomorphism, obtain an adjoint pair

(L′′ ∶ Z −mod→ B −mod,R′′ ∶ B −mod→ Z −mod, θ′′, η′′)

whose composition with the adjoint pair

(L′ ∶ CommCanMonoids→ Z −mod,R′ ∶ Z −mod→CommCanMonoids, θ′, η′)

is an adjoint pair (L,R, θ, η) extending the forgetful functor

R ∶ B −mod→CommCanMonoids.

Composing this adjoint pair further with the other adjoint pairs above gives, in particular, an
adjoint pair (F,Φ, i, η) extending the forgetful functor

Φ ∶ B −mod→ Sets.

The functor F ∶ Set → B − mod and the natural transformation i is called the “free B-module”.
Use the usual functorial properties to conclude that F naturally maps to the category of B −B-
bimodules.

Free Central A-algebras and Free Commutative Central A-algebras Exercise. Let A be
an associative, unital ring that is commutative. Recall that a central A-algebra is a pair (B,φ)
of an associative, unital ring B and a morphism of associative, unital rings, φ ∶ A → B, such that
for every a ∈ A and every b ∈ B, φ(a) ⋅ b equals b ⋅ φ(a), i.e., φ(A) is contained in the center of B.
In particular, the identity map

IdB ∶ Rφ(B) → Rφ(B),

is an isomorphism of A −A-bimodules making B into a left-right A-module.

For central A-algebras (B,φ) and (B′, φ′), a morphism of central A-algebras is a morphism of
associative, unital rings, ψ ∶ B → B′, such that ψ ○ φ equals φ′. In particular, ψ is a morphism of
left-right A-modules.

(i) Prove that the usual composition and the usual identity maps define a faithful (but not full!)
subcategory

R ∶ A − algebra→ A −mod

whose objects are central A-algebras and whose morphisms are morphisms of central A-algebras.
The rest of this problem extends this to an adjoint pair that is a composition of two other (more
elementary) adjoint pairs.
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(ii) Let n ≥ 2 be an integer. Let M1, . . . ,Mn be (left-right) A-modules. For every A-module U , a
map

γ ∶M1 × ⋅ ⋅ ⋅ ×Mn → U,

is an n-A-multilinear map if for every i = 1, . . . , n, for every choice of

mi = (m1, . . . ,mi−1,mi+1, . . . ,mn) ∈M1 × ⋅ ⋅ ⋅ ×Mi−1 ×Mi+1 × ⋅ ⋅ ⋅ ×Mn,

the induced map
γmi ∶Mi → U, mi ↦ γ(m1, . . . ,mi−1,mi,mi+1, . . . ,mn),

is a morphism of A-modules. Prove that there exists a pair (T (M1, . . . ,Mn), βM1,...,Mn) of an A-
module T (M1, . . . ,Mn) and an n-A-multilinear map

βM1,...,MN
∶M1 × ⋅ ⋅ ⋅ ×Mn → T (M1, . . . ,Mn),

such that for every n-A-multilinear map γ as above, there exists a unique A-module homomorphism,

u ∶ T (M1, . . . ,Mn) → U,

such that u ○ βM1,...,Mn equals γ. For n = 3, prove that βM1,M2,M3 factors through

βM1,M2 × IdM3 ∶M1 ×M2 ×M3 → (M1 ⊗AM2) ×M3.

Prove that the induced map

βM1⊗M2,M3 ∶ (M1 ⊗AM2) ×M3 → T (M1,M2,M3),

is A-bilinear. Conclude that there exists a unique A-module homomorphism,

u ∶ (M1 ⊗AM2) ⊗AM3 → T (M1,M2,M3).

Prove that this is an isomorphism ofA-modules. Similarly, prove that there is a natural isomorphism
of A-modules,

M1 ⊗A (M2 ⊗AM3) → T (M1,M2,M3).

Conclude that there is a natural isomorphism of A-modules,

(M1 ⊗AM2) ⊗AM3 ≅M1 ⊗A (M2 ⊗AM3),

i.e., tensor product is associative for A-modules. Iterate this to conclude that there are natural
isomorphisms between all the different interpretations of M1 ⊗A ⋅ ⋅ ⋅ ⊗A Mn, and each of these is
naturally isomorphic to T (M1, . . . ,Mn). (All of this is also true in the case of Mi that are Ai−1−Ai-
bimodules with n-(Ai)i-multilinearity defined appropriately.)

(iii) Let B be an A-algebra. A Z+-grading of B is a direct sum decomposition as an A-module,

B = ⊕n≥0Bn,
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such that for every pair of integers n, p ≥ 0, the restriction to the summands Bn and Bp of the
multiplication map,

mB ∶ Bn ×Bp → B

factors through Bn+p. The induced A-bilinear map is denoted

mB,n,p ∶ Bn ×Bp → Bn+p.

In particular, notice that this means that B0 is an A-subalgebra of B, and every direct summand
Bn is a B0 − B0-bimodule. Finally, for every triple of integers n, p, r ≥ 0, the following diagram
commutes,

Bn ×Bp ×Br

mB,n,p×IdBrÐÐÐÐÐÐÐ→ Bn+p ×Br

IdBn×mB,p,r
×××Ö

×××Ö
mB,n+p,r

Bn ×Bp+r ÐÐÐÐ→
mB,n,p+r

Bn+p+r

.

Prove that a Z+-graded A-algebra is equivalent to the data ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) satisfying
the conditions above.

(iv) For Z+-graded A-algebras ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) and ((B′
n)n∈Z+ , (mB′,n,p)(n,p)∈Z+×Z+), a

morphism of Z+-graded A-algebras is a morphism of A-algebras,

ψ ∶ B → B′,

such that for every integer n ≥ 0, ψ(Bn) is contained in B′
n. The induced A-linear map is denoted

ψn ∶ Bn → B′
n.

In particular, ψ0 is a morphism of A-algebras. Relative to ψ0, every map ψn is a morphism of
B0 −B0-bimodules. Finally, for every pair of integers n, p ≥ 0, the following diagram commutes,

Bn ×Bp

ψn×ψpÐÐÐ→ B′
n ×B′

p

mB,n,p
×××Ö

×××Ö
mB′,n,p

Bn+p ÐÐÐ→
ψn+p

B′
n+p

.

Prove that a morphism of Z+-graded A-algebras is equivalent to the data (ψn)n∈Z+ satisfying the
conditions above. Prove that composition of morphisms of Z+-graded A-algebras is a morphism of
Z+-graded A-algebras. Prove that identity maps are morphisms of Z+-graded A-algebras. Conclude
that there is a faithful (but not full!) subcategory,

L′′ ∶ Z+ −A − algebra→ A − algebra,

whose objects are Z+=graded A-algebras and whose morphisms are morphisms of Z+-graded A-
algebras. Prove that this extends to an adjoint pair (L′′,R′′, θ′′, η′′) where

R′′ ∶ A − algebra→ Z+ −A − algebra,
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associates to an associative, unital A-algebra (C,mC) the Z+-graded A-algebra,

((Cn)n∈Z+ , (mn,p)(n,p)∈Z+×Z+) = ((C)n∈Z+ , (m)(n,p)).

Thus C0 equals C as an A-algebra, and the C0-algebra ⊕nCn is equivalent as a Z+-graded C-algebra
to C[t] = C ⊗Z Z[t], where Z[t] is graded in the usual way.

(v) Let M be an A-module. For every integer n ≥ 1, denote

T nA(M) = T (M1, . . . ,Mn) =M⊗n =M ⊗A ⋅ ⋅ ⋅ ⊗AM,

with the universal n-A-multilinear map,

βnM ∶Mn → T nA(M).

Similarly, denote T 0
A(M) = A. For every pair of integers n, p ≥ 0, the composition,

Mn ×Mp =Ð→Mn+p βn+pÐÐ→ T n+pA (M),

is n-A-multilinear, resp. p-A-multilinear in the two arguments separately. Thus the composition
factors as

Mn ×Mp
βnM×βpMÐÐÐÐ→ T nA(M) × T pA(M)

µn,pMÐÐ→ T n+pA (M),

where µn,pM is A-bilinear. Finally, for every triple of integers n, p, r ≥ 0, associativity of tensor
products implies that the following diagram commutes,

T nA(M) × T pA(M) × T rA(M)
µn,pM ×IdTr

A
(M)

ÐÐÐÐÐÐÐ→ T n+pA (M) × T rA(M)
IdTn

A
(M)

×µp,rM
×××Ö

×××Ö
µn+p,rM

T nA(M) × T p+rA (M) ÐÐÐ→
µn,p+rM

T n+p+rA (M)

.

Thus, the data ((T nA(M))m∈Z+ , (µ
n,p
M )(n,p)∈Z+×Z+) defines a Z+-graded A-algebra, denoted TA(M) and

called the tensor algebra associated to M . For every Z+-graded A-algebra

B = ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+),

for every integer n, inductively define the A-module morphism

η′B,n ∶ T nA(B1) → Bn,

by η′B,0 ∶ A → B0 is the usual A-algebra structure map φ, η′B,1 ∶ T 1
A(B1) → B1 is the usual identity

morphism on B1, and for every n ≥ 0, assuming that η′B,n is defined,

η′B,n+1 ∶ T n+1
A (B1) = B1 ⊗A T nA(B) → Bn+1,
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is the unique A-module homomorphism whose composition with the universal A-bilinear map,

βM ∶ B1 × T nA(B) → BA ⊗A T nA(B),

equals the A-bilinear composition

B1 × T nA(B1)
IdB1

×ηB,nÐÐÐÐÐ→ B1 ×Bn

mB,1,nÐÐÐ→ Bn+1.

Use associativity of tensor product (and induction) to prove that for every pair of integers n, p ≥ 0,
the following diagram commutes,

T nA(B1) × T pA(B1)
η′B,n×η′B,pÐÐÐÐÐ→ Bn ×Bp

µn,pB1

×××Ö
×××Ö
mB,n,p

T n+pA (B1) ÐÐÐ→
η′B,n+p

Bn+p

.

Conclude that (η′B,n)n∈Z+ is a morphism of Z+-graded A-algebras,

η′B ∶ TA(B1) → B.

(vi) Denote by
R′ ∶ Z+ −A − algebra→ A −mod

the functor that associates to a Z+-graded A-algebra ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) the A-module
B1 and that associates to a morphism (ψn)n∈Z+ of Z+-graded A-algebras the A-module ψ1. For
every A-module M , denote by

θ′M ∶M → R′(TA(M))
the identity morphism M → T 1

A(M). Prove that this defines an adjoint pair (TA,R′, θ′, η′). Com-
posing with the adjoint pair (L′′,R′′, θ′′, η′′) gives an adjoint pair (L′′ ○ TA,R, θ, η) extending the
faithful (but not full!) forgetful functor

R ∶ A − algebra→ A −mod, B ↦ B.

10 Adjoint Pairs for Lawvere Theories

Definition 10.1. For a concrete category A with its forgetful functor R ∶ A → Sets, for a category
B, an A-object of B is a triple (b,F, θ) of an object b of B, a contravariant functor F ∶ Bopp → A, and
a natural equivalence of set-valued contravariant functors on B, θ ∶ ha ⇒ R ○ F . The contravariant
functor F is the Yoneda contravariant functor associated to the A-object of B. For A-objects of
B, (b,F, θ) and (b′, F ′, θ′), a morphism of A-objects of B from the first triple to the second triple
is a pair (u ∶ b → b′, v ∶ F ′ ⇒ F ) of a B-morphism u and a natural transformation of contravariant
functors v such that (F ○v)○θ′ equals θ○hu as natural transformations from hb′ to R○F . Composition
is defined in the evident way, and the identity of (b,F, θ) is (Idb, IdF ).
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Remark 10.2. BecauseR is faithful, for every B-morphism u ∶ b→ b′, there is at most one morphism
(u, v) from the A-object (b,F, θ) to the morphism (b′, F ′, θ′). Thus, the rule associating to each
morphism (u, v) of A-objects of B the B-morphism u gives an identification of the morphisms
(u, v) with a subset of the set of B-morphisms; in particular, the morphisms (u, v) from (b,F, θ)
to (b′, F ′, θ′) form a set. Using axioms on inaccessible cardinals or Grothendieck universes, one
can also deal with the foundational issues around the objects. Altogether, this gives a category
of A-objects of B, denoted A − B, together with a covariant, faithful functor, L − B ∶ A − B → B,
sending (b,F, θ) to b and sending (u, v) to u.

The Yoneda Functor of an A-Object. Formulate and prove the analogue of Problem for the
Yoneda contravariant functors associated to A-objects of B.

Definition 10.3. Assume now that A has a terminal object and all finite products. A Lawvere
theory forA is a category T with a terminal object and all finite products together with anA-object
(xT , FT , θT ) in T such that for every category B having a terminal object and all finite products,
every A-object of B is equivalent to the A-object of B associated to (bT , FT , θT ) for a functor
G(b,F,θ) ∶ T → B that is unique up to natural equivalence and satisfying the following minimality
condition: every object of T equals the n-fold self product of xT , xnT , for some nonnegative integer
n.

Lawvere Theory for a Concrete Category with a Free Functor. If there exists a left adjoint
L ∶ Sets → A of R, then show that there is a Lawvere theory whose underlying category T equals
the opposite category of the full subcategory of A obtained by evaluating L on the sets [1, n]
from Notation 9.3. In particular, conclude that there exists a Lawvere theory for monoids, for
semigroups, for groups, for Abelian groups, for central A-algebras, and for commutative central A-
algebras. When a Lawvere theory exists, use this to give another solution of the previous problem.

11 Adjoint Pairs of Limits and Colimits

Limits and Colimits Exercise. Mostly we use the special cases of products and coproducts. The
notation here is meant to emphasize the connection with operations on presheaves and sheaves such
as formation of global sections, stalks, pushforward and inverse image. Let τ be a small category.
Let C be a category. A τ -family in C is a (covariant) functor,

F ∶ τ → C.

Precisely, for every object U of τ , F(U) is a specified object of C. For every morphism of objects
of τ , r ∶ U → V , F(r) ∶ F(U) → F(V ) is a morphism of C. Also, F(IdU) equals IdF(U). Finally, for
every pair of morphisms of τ , r ∶ U → V and s ∶ V →W , F(s) ○ F(r) equals F(s ○ r).
For every pair F , G of τ -families in C, a morphism of τ -families from F to G is a natural transfor-
mation of functors, φ ∶ F ⇒ G. For every object a of C, denote by

aτ ∶ τ → C
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the functor that sends every object to a and that sends every morphism to Ida. For every morphism
in C, p ∶ a→ b, denote by

p
τ
∶ aτ ⇒ bτ

the natural transformation that assigns to every object U of τ the morphism p ∶ a→ b. Finally, for
every object U of τ , denote

Γ(U,F) = F(U), Γ(U, θ) = θ(U),

and for every morphism r ∶ U → V of τ , denote

Γ(r,F) = F(r).

(i)(Functor Categories and Section Functors) For τ -families F , G and H, and for morphisms of
τ -families, θ ∶ F → G and η ∶ G → H, define the composition of θ and η to be the composite natural
transformation η ○ θ ∶ F → H. Prove that with this notion, there is a category Fun(τ,C) whose
objects are τ -families F and whose morphisms are natural transformations. Prove that

∗τ ∶ C → Fun(τ,C), a↦ aτ , p↦ p
τ
,

is a functor that preserves monomorphisms, epimorphisms and isomorphisms. For every object U
of τ , prove that

Γ(U,−) ∶ Fun(τ,C) → C, F ↦ Γ(U,F), θ ↦ Γ(U, θ),

is a functor. For every morphism r ∶ U → V of τ , prove that Γ(r,−) is a natural transformation
Γ(U,−) ⇒ Γ(V,−).

(ii)(Adjointness of Constant / Diagonal Functors and the Global Sections Functor) If C has an
initial object X, prove that (∗τ ,Γ(X,−)) extends to an adjoint pair of functors. More generally,
a limit of a τ -family F (if it exists) is a natural transformation η ∶ aτ ⇒ F that is final among all
such natural transformations, i.e., for every natural transformation θ ∶ bτ ⇒F , there exists a unique
morphism t ∶ b → a in C such that θ equals η ○ tτ . For a morphism φ ∶ F → G, for limits η ∶ aτ ⇒ F
and θ ∶ bτ ⇒ G, prove that there exists a unique morphism f ∶ a → b such that θ ○ p

τ
equals φ ○ η.

In particular, prove that if a limit of F exists, then it is unique up to unique isomorphism. In
particular, for every object a of C, prove that the identity transformation θa ∶ aτ → aτ is a limit of
aτ .

(iii)(Adjointness of Constant / Diagonal Functors and Limits) For this part, assume that every
τ -family has a limit; a category C is said to have all limits if for every small category τ and for
every τ -family F , there is a limit. Assume further that there is a rule Γτ that assigns to every F
an object Γτ(F) and a natural transformation ηF ∶ Γτ(F)

τ
→ F that is a limit. (Typically such a

rule follows from the “construction” of limits, but such a rule also follows from some form of the
Axiom of Choice.) Prove that this extends uniquely to a functor,

Γτ ∶ Fun(τ,C) → C,
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and a natural transformation of functors

η ∶ ∗τ ○ Γτ ⇒ IdFun(τ,C).

Moreover, prove that the rule sending every object a of C to the identity natural transformation
θa is a natural transformation θ ∶ IdC ⇒ Γτ ○ ∗τ . Prove that (∗τ ,Γ, θ, η) is an adjoint pair of
functors. In particular, the limit functor Γτ preserves monomorphisms and sends injective objects
of Fun(τ,C) to injective objects of C.

(iiii)(Adjointness of Colimits and Constant / Diagonal Functors) If C has a final object O, prove
that (Γ(O,−),∗τ) extends to an adjoint pair of functors. More generally, a colimit of a τ -family F (if
it exists) is a natural transformation θ ∶ F ⇒ aτ that is final among all such natural transformations,
i.e., for every natural transformation η ∶ F ⇒ bτ , there exists a unique morphism h ∶ a → b in C
such that hτ ○ θ equals η. For a morphism φ ∶ F → G, for colimits θ ∶ F ⇒ aτ and η ∶ G ⇒ bτ ,
prove that there exists a unique morphism f ∶ a → b such that f

τ
○ θ equals η ○ φ. In particular,

prove that if a colimit of F exists, then it is unique up to unique isomorphism. In particular, for
every object a of C, prove that the identity transformation θa ∶ aτ → aτ is a colimit of aτ . Finally,
repeat the previous part for colimits in place of limits. Deduce that colimits (if they exist) preserve
epimorphisms and projective objects.

(v)(Functoriality in the Source) Let x ∶ σ → τ be a functor of small categories. For every τ -family
F , define Fx to be the composite functor F ○ x, which is a σ-family. For every morphism of τ -
families, φ ∶ F → G, define φx ∶ Fx → Gx to be φ ○ x, which is a morphism of σ-families. Prove that
this defines a functor

∗x ∶ Fun(τ,C) → Fun(σ,C).

For the identity functor Idτ ∶ τ → τ , prove that ∗Idτ is the identity functor. For y ∶ ρ σ a functor
of small categories, prove that ∗x○y is the composite ∗y ○ ∗x. In this sense, deduce that ∗x is a
contravariant functor in x.

For two functors, x,x1 ∶ σ → τ and for a natural transformation n ∶ x ⇒ x1, define Fn ∶ Fx ⇒ Fx1

to be F(n(V )) ∶ F(x(V )) → F(x1(V )) for every object V of σ. Prove that Fn is a morphism
of σ-families. For every morphism of τ -families, φ ∶ F → G, prove that φx1 ○ Fn equals Gn ○ φx.
In this sense, conclude that ∗n is a natural transformation ∗x ⇒ ∗x′ . For the identity natural
transformation Idx ∶ x ⇒ x, prove that ∗Idx is the identity natural transformation of ∗x. For a
second natural transformation m ∶ x1 ⇒ x1, prove that Fm○n equals Fm ○Fn. In this sense, deduce
that ∗x is also compatible with natural transformations. In particular, if (x, y, θ, η) is an adjoint
pair of functors, prove that (∗y,∗x,∗θ,∗η) is an adjoint pair of functors.

(vi)(Fiber Categories) The following notion of fiber category is a special case of the notion of 2-
fiber product of functors of categories. Let x ∶ σ → τ be a functor; this is also called a category
over τ . For every object U of τ , a σx,U -object is a pair (V, r ∶ x(V ) → U) of an object V of σ
and a τ -isomorphism r ∶ x(V ) → U . For two objects σx,U -objects (V, r) and (V ′, r′) of σx,U , a
σx,U -morphism from (V, r) to (V ′, r′) is a morphism of σ, s ∶ V → V ′, such that r′ ○ x(s) equals
r. Prove that IdV is a σx,U -morphism from (V, r) to itself; more generally, the σx,U -morphisms
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from (V, r) to (V, r) are precisely the σ-morphisms s ∶ V → V such that x(s) equals Idx(V ). For
every pair of σx,U -morphisms, s ∶ (V, r) → (V ′, r′) and s′ ∶ (V ′, r′) → (V ′′, r′′), prove that s′ ○ s is
a σx,U -morphism from (V, r) to (V ′′, r′′). Conclude that these rules form a category, denoted σx,U .
Prove that the rule (V, r) ↦ V and s↦ s defines a faithful functor,

Φx,U ∶ σx,U → σ,

and r ∶ x(V ) → U defines a natural isomorphism θx,U ∶ x ○Φx,U ⇒ Uσx,U
. Finally, for every category

σ′, for every functor Φ′ ∶ σ′ → σ, and for every natural isomorphism θ′ ∶ x ○Φ′ ⇒ Uσ′ , prove that
there exists a unique functor F ∶ σ′ → σx,U such that Φ′ equals Φx,U ○ F and θ′ equals θx,U ○ F . In
this sense, (Φx,U , θx,U) is final among pairs (Φ′, θ′) as above.

For every pair of functors x,x1 ∶ σ → τ , and for every natural isomorphism n ∶ x ⇒ x1, for every
σx1,U -object (V, r1 ∶ x1(V ) → U), prove that (V, r1 ○nV ∶ x(V ) → U) is an object of σx,U . For every
morphism in σx1,U , s ∶ (V, r1) → (V ′, r′1), prove that s is also a morphism (V, r1○nV ) → (V ′, r′1○nV ′).
Conclude that these rules define a functor,

σn,U ∶ σx1,U → σx,U .

Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that σn,U is functorial in n, i.e., for a second natural isomorphism m ∶ x1 ⇒ x2, prove that
σm○n,U equals σn,U ○ σm,U .

For every pair of functors, x ∶ σ → τ and y ∶ ρ → τ , and for every functor z ∶ σ → ρ such that x
equals y ○ z equals x, for every σx,U -object (V, r), prove that (z(V ), r) is a ρy,U -object. For every
σx,U -morphism s ∶ (V, r) → (V ′, r′), prove that z(s) is a ρy,U -morphism (z(V ), r) → (z(V ′), r′).
Prove that z(IdV ) equals Idz(V ), and prove that z preserves composition. Conclude that these
rules define a functor,

zU ∶ σx,U → ρy,U .

Prove that this is functorial in z: (Idσ)U equals Idσx,U , and for a third functor w ∶ π → τ and
functor z′ ∶ ρ → π such that y equals w ○ z′, then (z′ ○ z)U equals z′U ○ zU . For an object (W,rW )
of ρy,U , for each object ((V, rV ), q ∶ Z(V ) → W ) of (σx,U)z,(W,rW ), define the associated object of
σz,W to be (V, q). For an object ((V ′, rV ′), q′ ∶ Z(V ′) → W ) of (σx,U)z,(W,rW ), for every morphism
s ∶ (V, rV ) → (V ′, rV ′) such that q equals q′ ○ z(s), define the associated morphism of σz,W to be s.
Prove that this defines a functor

z̃U,(W,rW ) ∶ (σx,U)zU ,(W,rW ) → σz,W .

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z, z1 ∶ σ → ρ such that x equals both y ○ z and y ○ z1, and
for a natural transformation m ∶ z ⇒ z1, for every object (V, r ∶ x(V ) → U) of σx,U , prove that
mV is a morphism in ρy,U from (z(V ), r) to (z1(V ), r). Moreover, for every morphism in σx,U ,
s ∶ (V, r) → (V ′, r′), prove that mV ′ ○ z(s) equals z1(s) ○mV . Conclude that this rule is a natural
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transformation mU ∶ zU ⇒ (z1)U . Prove that this is functorial in m. If m is a natural isomorphism,
prove that also mU is a natural isomorphism, and the strict equivalence (mU)(W,rW ) is compatible
with the strict equivalence mW . Finally, prove that m ↦ mU is compatible with precomposition
and postcomposition of m with functors of categories over τ .

(vii)(Colimits and Limits along an Essentially Surjective Functor) Let x ∶ σ → τ be a functor of
small categories. Prove that every fiber category σx,U is small. Next, assume that x is essentially
surjective, i.e., for every object U of τ , there exists a σx,U -object (V, r). Let y ∶ τ → σ be a functor,
and let α ∶ Idσ ⇒ y ○ x be a natural transformation. Prove that this extends to an adjoint pair of
functors (x, y,α, β) if and only if for every object V of σ, the morphism x(αV ) ∶ x(V ) → x(y(x(V )))
is an isomorphism and (y(x(V )), x(αV )−1) is a final object of the fiber category σx,x(V ). (Conversely,
up to some form of the Axiom of Choice, there exists y and α extending to an adjoint pair if
and only if every fiber category σx,U has a final object.) For every adjoint pair (x, y,α, β), also
(∗y,∗x,∗α,∗β) is an adjoint pair. More generally, no longer assume that there exists y and α, yet
let Lx be a rule that assigns to every object F of Fun(σ,C) an object Lx(F) of Fun(τ,C) and a
natural transformation,

θF ∶ F → ∗x ○Lx(F),

of objects in Fun(σ,C). For every object U of τ , this defines a natural transformation

θF ,x,U ∶ F ○Φx,U ⇒ Lx(F) ○Uσx,U
,

of objects in Fun(σx,U ,C). Assume that each (Lx(F)(U), θF ,x,U) is a colimit of F ○Φx,U . Prove
that this extends uniquely to a functor,

Lx ∶ Fun(σ,C) → Fun(τ,C),

and a natural transformation
θx ∶ IdFun(σ,C) ⇒ ∗x ○Lx.

Moreover, for every G in Fun(τ,C), the identity morphism,

IdG ∶ G ○ x ○Φx,U → G ○Uσx,U
,

factors uniquely through a C-morphism Lx(G ○x)(U) → G(U). Prove that this defines a morphism
ηG ∶ Lx(G ○ x) → G in Fun(τ,C). Prove that is a natural transformation,

η ∶ Lx ○ ∗x⇒ IdFun(τ,C).

Prove that (Lx,∗x, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ○Φx,U admits a colimit, then there exists a Γx and θ as above.)

Next, as above, let x ∶ σ → τ be a functor of small catgories that is essentially surjective. Let
y ∶ τ → sigma be a functor, and let β ∶ y ○ x ⇒ Idσ be a natural transformation. Prove that
this extends to an adjoint pair of functors (x, y,α, β) if and only if for every object V of σ, the
morphism x(βv) ∶ x(y(x(V ))) → x(V ) is an isomorphism and (y(x(V )), x(βv)) is an initial object
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of the fiber category σx,x(V ). (Conversely, up to some form of the Axiom of Choice, there exists y
and β extending to an adjoint pair if and only if every fiber category σx,U has an initial object.) For
every adjoint pair (y, x,α, beta) also (∗x,∗y,∗α,∗β) is an adjoint pair. More generally, no longer
assume that there exists y and β, yet let Rx be a rule that assigns to every object F of Fun(σ,C)
an object Rx(F) of Fun(τ,C) and a natural transformation,

ηF ∶ ∗x ○Rx(F) → F ,

of objects in Fun(σ,C). For every object U of τ , this defines a natural transformation

ηF ,x,U ∶ Rx(F) ○Uσx,U
⇒F ○Φx,U ,

of objects in Fun(σx,U ,C). Assume that each (Rx(F)(U), ηF ,x,U) is a limit of F ○Φx,U . Prove that
this extends uniquely to a functor,

Rx ∶ Fun(σ,C) → Fun(τ,C),

and a natural transformation,
η ∶ ∗x ○Rx⇒ IdFun(σ,C).

Moreover, for every G in Fun(τ,C), the identity morphism,

IdG ∶ G ○Uσx,U
⇒ G ○ x ○Φx,U ,

factors uniquely through a G(U) → C-morphism Rx(G ○x)(U). Prove that this defines a morphism
θG ∶ G → Rx(G ○ x) in Fun(τ,C). Prove that this is a natural transformation,

θ ∶ IdFun(τ,C) ⇒ Rx ○ ∗x.

Prove that (∗x,Rx, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ○Φx,U admits a colimit, then there exists a Rx and η as above.)

(viii)(Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let x ∶ σ → τ be an embedding of a full subcategory (thus, x is essentially surjective if and
only if x is an equivalence of categories). In this case, the functor

∗x ∶ Fun(τ,C) → Fun(σ,C)

is called restriction. Assume further that σ is upper (a la the theory of partially ordered sets) in
the sense that every morphism of τ whose source is an object of σ also has target an object of σ.
Assume that C has an initial object, ⊙. Let G be a σ-family of objects of C. Also, let φ ∶ G → H
be a morphism of σ-families. For every object U of τ , if U is an object of σ, then define xG(U) to
be G(U), and define xφ(U) to be φ(U). For every object U of τ that is not an object of σ, define

x G(U) to be ⊙, and define x φ(U) to be Id⊙. For every morphism r ∶ U → V , if U is an object of
σ, then r is a morphism of σ. In this case, define x G(r) to be G(r). On the other hand, if U is
not an object of σ, then G(U) is the initial object ⊙. In this case, define x G(r) to be the unique
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morphism xG(U) → xG(V ). Prove that xG is a τ -family of objects, i.e., the definitions above are
compatible with composition of morphisms in τ and with identity morphisms. Also prove that

x φ is a morphism of τ -families. Prove that x IdG equals Idx G. Also, for a second morphism of
σ-families, ψ ∶ H → I, prove that x(ψ ○ φ) equals xψ ○xφ. Conclude that these rules form a functor,

x∗ ∶ Fun(σ,C) → Fun(τ,C).

Prove that (x∗,∗x) extends to an adjoint pair of functors. In particular, conclude that ∗x preserves
epimorphisms and x∗ preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every τ -family F , for every
object U of τ , define θF(U) ∶ F(U) → xF(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s) ∶ F(T ) → F(U),
for all morphisms s ∶ T → U with V not in σ (possibly empty, in which case θF(U) is the identity
on F(U)). In particular, if U is not in σ, then xF(U) is zero. For every morphism r ∶ U → V in τ ,
prove that the composition θF(V ) ○ F(r) equals xF(r) ○ θF(U) for a unique morphism

xF(r) ∶ xF(U) → xF(V ).

Prove that x F(IdU) is the identity morphism of x F(U). Prove that r ↦ x F(r) is compatible
with composition in τ . Conclude that xF is a τ -family, and θF is a morphism of τ -families. For
every morphism φ ∶ F → E of τ -families, for every object U of τ , prove that θE(U) ○ φ(U) equals
xφ(U) ○ θF(U) for a unique morphism

xφ(U) ∶ xF(U) → xE(U).

Prove that the rule U ↦ xφ(U) is a morphism of τ -families. Prove that x IdF is the identity on
xF . Also prove that φ ↦ xφ is compatible with composition. Conclude that these rules define a
functor

x∗ ∶ Fun(τ,C) → Fun(τ,C).
Prove that the rule F ↦ θF is a natural transformation IdFun(τ,C) ⇒ x∗. Prove that the natural
morphism of τ -families,

xF → x((xF)x),
is an isomorphism. Conclude that there exists a unique functor,

∗x ∶ Fun(τ,C) → Fun(σ,C),

and a natural isomorphism x∗ ⇒ x(∗x). Prove that (∗x, x∗, θ) extends to an adjoint pair of functors.
In particular, conclude that x∗ preserves epimorphisms and ∗x preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that σ is upper, assume that
σ has an initial object, Wσ, and assume that there is a functor

y ∶ τ → σ
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and a natural transformation θ ∶ Idτ ⇒ x○y, such that for every object U of τ , the unique morphism
Wσ → y(U) and the morphism θU ∶ U → y(U) make y(U) into a coproduct of Wσ and U in τ . For
simplicity, for every object U of σ, assume that θU ∶ U → y(U) is the identity IdU (rather than
merely being an isomorphism), and for every morphism r ∶ U → V in σ, assume that y(r) equals r.
Thus, for every object V of σ, the identity morphism y(V ) → V defines a natural transformation
η ∶ y ○ x⇒ Idσ. Prove that (y, x, θ, η) is an adjoint pair of functors. Conclude that (∗x,∗y,∗θ,∗η)
is an adjoint pair of functors. In particular, conclude that ∗x preserves monomorphisms and ∗y
preserves epimorphisms.

(ix)(Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that Γ(0,−) is an equivalence of categories. For
an arbitrary category τ , for the unique natural transformation τ̂ ∶ τ → 0, prove that ∗τ̂ equals the
composite ∗τ ○Γ(0,−) so that ∗τ is an example of this construction. In particular, for every functor
x ∶ σ → τ , prove that (aτ)x equals aσ. If η ∶ aτ ⇒ F is a limit of a τ -family F , and if θ ∶ bσ ⇒ Fx
is a limit of the associated σ-family Fx, then prove that there is a unique morphism h ∶ a → b in
C such that ηx equals θ ○ p

σ
. If there are right adjoints Γτ of ∗τ and Γσ of ∗σ, conclude that there

exists a unique natural transformation

Γx ∶ Γτ ⇒ Γσ ○ ∗x

so that ηFx ○ Γx(F)
σ

equals (ηF)x. Repeat this construction for colimits.

(x)(Limits / Colimits of a Concrete Category) Let σ be a small category in which the only mor-
phisms are identity morphisms: identify σ with the underlying set of objects. Let C be the category
Sets. For every σ-family F , prove that the rule

Γσ(F) ∶= ∏
U∈Σ

Γ(U,F)

together with the morphism
ηF ∶ Γσ(F)

σ
⇒F ,

ηF(V ) = prV ∶ ∏
U∈Σ

Γ(U,F) → Γ(V,F),

is a limit of F . Next, for every small category τ , define σ to be the category with the same objects
as τ , but with the only morphisms being identity morphisms. Define x ∶ σ → τ to be the unique
functor that sends every object to itself. Define Γτ(F) to be the subobject of Γσ(Fx) of data
(fU)U∈Σ such that for every morphism r ∶ U → V , F(r) maps fU to fV . Prove that with this
definition, there exists a unique natural transformation ηF ∶ Γτ(F)

τ
⇒ F such that the natural

transformation Γτ(F)
σ
⇒ Γσ(Fx) ⇒ Fx equals (ηF)x. Prove that ηF is a limit of F . Conclude

that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

Φ ∶ R − S −mod→ Sets

sends products to products. Let F be a τ -family of R − S-modules. Prove that the defining
relations for Γτ(Φ ○ F) as a subset of Γσ(Φ ○ F) are the simultaneous kernels of R − S-module
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homomorphisms. Conclude that there is a natural R − S-module structure on Γτ(Φ ○ F), and use
this to prove that R − S-mod has all limits.

(xi)(Functoriality in the Target) For every functor of categories,

H ∶ C → D,

for every τ -family F in C, prove that H ○F is a τ -family in D. For every morphism of τ -families in
C, φ ∶ F ⇒ G, prove that H ○φ is a morphism of τ -families in D. Prove that this defines a functor

Hτ ∶ Fun(τ,C) → Fun(τ,D).

For the identity functor IdC, prove that (IdC)τ is the identity functor. For I ∶ D → E a functor of
categories, prove that (I ○H)τ is the composite Iτ ○Hτ . In this sense, deduce that Hτ is functorial
in H.

For two functors, H,I ∶ C → D, and for a natural transformation N ∶ H ⇒ I, for every τ -family F
in C, define Nτ(F) to be

N ○ F ∶H ○ F ⇒ I ○ F .

Prove that Nτ(F) is a morphism of τ -families in D. For every morphism of τ -families in C,
φ ∶ F → G, prove that Nτ(G) ○Hτ(φ) equals Iτ(φ) ○ Nτ(F). In this sense, conclude that Nτ is
a natural transformation Hτ ⇒ Iτ . For the identity natural transformation IdH ∶ H ⇒ H, prove
that (IdH)τ is the identity natural transformation of Hτ . For a second natural transformation
M ∶ I ⇒ J , prove that (M ○N)τ equals Mτ ○Nτ . In this sense, deduce that (−)τ is also compatible
with natural transformations.

(xii)(Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if
for every pair of objects U and V there exists a pair of morphisms, r ∶ W → U and s ∶ W → V ,
and for every pair of morphisms, r, s ∶ V → U , there exists a morphism t ∶ W → V such that r ○ t
equals s ○ t (both of these are automatic if the category has an initial object X). Assume that the
category C has limits for all categories τ with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category τ , define τ̂ to be the small category whose objects are
finite full subcategories σ of τ , and whose morphisms are inclusions of subcategories, ρ ⊂ σ, of τ .
Prove that τ̂ is cofiltering. Let F be a τ -family in C. For every finite full subcategory σ ⊂ τ , denote
by Fσ the restriction as in (f) above. By hypothesis, there is a limit ησ ∶ F̂(σ)

σ
⇒Fσ. Moreover, by

(g), for every inclusion of full subcategories ρ ⊂ σ, there is a natural morphism in C, F̂(ρ) → F̂(σ),
and this is functorial. Conclude that F̂ is a τ̂ -family in C. Since τ̂ is filtering, there is a limit

ηF̂ ∶ aτ̂ ⇒ F̂ .

Prove that this defines a limit ηFaτ ⇒F .

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
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(not necessarily commutative) rings, the category of commutative rings, and the category of R−S-
bimodules (where R and S are associative, unital rings).

(xiii)(bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R−S-bimodules (where R and S are
associative, unital rings).

Practice with Limits and Colimits Exercise. In each of the following cases, say whether the
given category (a) has an initial object, (b) has a final object, (c) has a zero object, (d) has finite
products, (e) has finite coproducts, (f) has arbitrary products, (g) has arbitrary coproducts, (h)
has arbitrary limits (sometimes called inverse limits), (i) has arbitrary colimits (sometimes called
direct limits), (j) coproducts / filtering colimits preserve monomorphisms, (k) products / cofiltering
limits preserve epimorphisms.

(i) The category Sets whose objects are sets, whose morphisms are set maps, whose composition
is usual composition, and whose identity morphisms are usual identity maps.

(ii) The opposite category Setsopp.

(iii) For a given set S, the category whose objects are elements of the set, and where the only
morphisms are the identity morphisms from an element to that same element. What if the set is
the empty set? What if the set is a singleton set?

(iv) For a partially ordered set (S,⪯), the category whose objects are elements of S, and where
the Hom set between two elements x, y of S is a singleton set if x ⪯ y and empty otherwise. What
if the partially ordered set (S,⪯) is a lattice, i.e., every finite subset (resp. arbitrary subset) has
a least upper bound and has a greatest lower bound?

(v) For a monoid (M, ⋅,1), the category with only one object whose Hom set, with its natural
composition and identity, is (M, ⋅,1). What is M equals {1}?

(vi) For a monoid (M, ⋅,1) and an action of that monoid on a set, ρ ∶ M × S → S, the category
whose objects are the elements of S, and where the Hom set from x to y is the subset Mx,y = {m ∈
M ∣m ⋅x = y}. What if the action is both transitive and faithful, i.e., S equals M with its left regular
representation?

(vii) The category PtdSets whose objects are pairs (S, s0) of a set S and a specified element s0

of S, i.e., pointed sets, whose morphisms are set maps that send the specified point of the domain
to the specified point of the target, whose composition is usual composition, and whose identity
morphisms are usual identity maps.

(viii) The category Monoids whose objects are monoids, whose morphisms are homomorphisms of
monoids, whose composition is sual composition, and whose identity morphisms are usual identity
maps.
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(ix) For a specified monoid (M, ⋅,1), the category whose objects are pairs (S, ρ) of a set S and an
action ρ ∶M ×S → S of M on S, whose morphisms are set maps compatible with the action, whose
composition is usual composition, and whose identity morphisms are usual identity maps.

(x) The full subcategory Groups of Monoids whose objects are groups. Does the inclusion functor
preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms, resp.
epimorphisms?

(xi) The full subcategory Z−mod of Groups whose objects are Abelian groups. Does the inclusion
functor preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms,
resp. epimorphisms?

(xii) The full subcategory FiniteGroups of Groups whose objects are finite groups. Are coprod-
ucts, resp. products, in the subcategory also coproducts, resp. products, in the larger category
Groups? Does the inclusion functor preserve monomorphisms, resp. epimorphisms?

(xiii) The full subcategory Z −modtor of Z −mod consisting of torsion Abelian groups, i.e., every
element has finite order (allowed to vary from element to element). Are coproducts, resp. products,
preserved by the inclusion functor? Are monomorphisms, resp. epimorphisms preserved?

(xiv) The category Rings whose objects are associative, unital rings, whose morphisms are ho-
momorphisms of rings (preserving the multiplicative identity), whose composition is the usual
composition, and whose identity morphisms are the usual identity maps. Hint. For the coproduct
of two associative, unital rings (R′,+,0, ⋅′,1′) and (R′′,+,0, ⋅′′,1′′), first form the coproduct R′⊕R′′

of (R′,+,0) and (R′′,+,0) as a Z-module, then form the total tensor product ring T ●
Z(R′⊕R′′) as in

the previous problem set. For the two natural maps q′ ∶ R′ ↪ T 1
Z(R′⊕R′′) and q′′ ∶ R′′ ↪ T 1

Z(R′⊕R′′)
form the left-right ideal I ⊂ T ●

Z(R′⊕R′′) generated by q′(1′)−1, q′′(1′′)−1, q′(r′ ⋅′ s′)− q′(r′) ⋅ q′(s′),
and q′′(r′′ ⋅′′ s′′) − q′′(r′′) ⋅ q′′(s′′) for all elements r′, s′ ∈ R′ and r′′, s′′ ∈ R′′. Define

p ∶ T 1
Z(R′ ⊕R′′) → R,

to be the quotient by I. Prove that p ○ q′ ∶ R′ → R and p ○ q′′ ∶ R′′ → R are ring homomorphisms
that make R into a coproduct of R′ and R′′.

(xv) The full subcategory CommRings of Rings whose objects are commutative, unital rings.
Does the inclusion functor preserve coproducts, resp. products? Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvi) The full subcategory NilCommRings of CommRings whose objects are commutative,
unital rings such that every noninvertible element is nilpotent. Does the inclusion functor preserve
coproducts, resp. products? (Be careful about products!) Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvii) Let R and S be associative, unital rings. Let R −mod, resp. mod − S, R − S −mod, be the
category of left R-modules, resp. right S-modules, R − S-bimodules. Does the inclusion functor
from R − S − mod to R − mod, resp. to mod − S, preserve coproduct, products, monomorphisms
and epimorphisms?
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(xviii) Let (I,⪯) be a partially ordered set. Let C be a category. An (I,⪯)-system in C is a datum

c = ((ci)i∈I , (fi,j)(i,j)∈I×I,i⪯j)

where every ci is an object of C, where for every pair (i, j) ∈ I × I with i ⪯ j, ci,j is an element of
HomC(ci, cj), and satisfying the following conditions: (a) for every i ∈ I, ci,i equals Idci , and (b) for
every triple (i, j, k) ∈ I with i ⪯ j and j ⪯ k, cj,k ○ ci,j equals ci,k. For every pair of (I,⪯)-systems
in C, c = ((ci)i∈I , (ci,j)i⪯j) and c′ = ((c′i)i∈I , (c′i,j)i⪯j), a morphism g ∶ c → c′ is defined to be a datum
(gi)i∈I of morphisms gi ∈ HomC(ci, c′i) such that for every (i, j) ∈ I × I with i ⪯ j, gj ○ ci,j equals
c′i,j○gi. Composition of morphisms g and g′ is componentwise g′i○gi, and identities are Idc = (Idci)i∈I .
This category is Fun((I,⪯),C), and is sometimes referred to as the category of (I,⪯)-presheaves.
Assuming C has finite coproducts, resp. finite products, arbitrary coproducts, arbitrary products,
a zero object, kernels, cokernels, etc., what can you say about Fun((I,⪯),C)?

(xix) Let C be a category that has arbitrary products. Let (I,⪯) be a partially ordered set whose
associated category as in (iv) has finite coproducts and has arbitrary products. The main example
is when I = U is the collection of all open subsets U of a topology on a set X, and where U ⪯ V if
U ⊇ V . Then coproduct is intersection and product is union. Motivated by this case, an covering
of an element i of I is a collection j = (jα)α∈A of elements jα of I such that for every α, i ⪯ jα, and
such that i is the product of (jα)α∈A in the sense of (iv). In this case, for every (α,β) ∈ A × A,
define jα,β to be the element of I such that jα ⪯ jα,β, such that jβ ⪯ jα,β, and such that jα,β is a
coprodcut of (jα, jβ). An (I,⪯)-presheaf c = ((ci)i∈I , (ci,j)i⪯j) is an (I,⪯)-sheaf if for every element
i of I and for every covering j = (jα)α∈A, the following diagram in C is exact in a sense to be made
precise,

ci
qÐ→ ∏

α∈A
cjα

p′

⇉ p′′ ∏
(α,β)∈A×A

cjα,β .

For every α ∈ A, the factor of q,
prα ○ q ∶ ci → cjα ,

is defined to be ci,jα . For every (α,β) ∈ A ×A, the factor of p′,

prα,β ○ p′ ∶ ∏
γ∈A

cjγ → cjα,β ,

is defined to be cjα,jα,β ○ prα. Similarly, prα,β ○ p′′ is defined to be cjβ ,jα,β ○ prβ. The diagram above
is exact in the sense that q is a monomorphism in C and q is a fiber product in C of the pair of
morphisms (p′, p′′). The category of (I,⪯) is the full subcategoryof the category of (I,⪯)-presheaves
whose objects are (I,⪯)-sheaves. Does this subcategory have coproducts, products, etc.? Does the
inclusion functor preserve coproducts, resp. products, monomorphisms, epimorphisms? Before
considering the general case, it is probably best to first consider the case that C is Z − mod, and
then consider the case that C is Sets.
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12 Adjoint Pairs and Yoneda Functors

Adjoint Pairs and Representable Functors. Let A be a category, and let B be a strictly small
category. Let L ∶ A → B be a covariant functor. For every object b of B, assume that the following
contravariant functor from A to Sets is representable,

HomB(L(−), b) ∶ Aopp → Sets.

Prove that there exists an adjoint pair (L,R, θ, η). Using the opposite adjoint pair (Ropp, Lopp, ηopp, θopp),
formulate and prove the analogous result for a contravariant functor R from a category A to a
strictly small category B.

The Yoneda Functor as an Adjoint Functor. Let A be a strictly small category, so that there is
a well-defined category SetsA of set-valued covariant functors from A with natural transformations
as morphisms (independent of axioms on inaccessible cardinals or Grothendieck universes). As
in Example , for every ordered pair (a, a′) of objects of A, composition in A enriches the set
Ha
a′ ∶= HomA(a, a′) with an Ha′

a′ −Ha
a -action. For every set S together with a right Ha

a -action, define

HS,a
a′ to be the set of right Ha

a -equivariant maps from S to Ha
a′ ,

HS,a
a′ = HomSet−Ha

a
(S,Ha

a′).

This is compatible with postcomposition by A-morphisms in Ha′

a′′ . Altogether, this defines a co-
variant, set-valued functor,

hS,a ∶ A → Sets, hS,a(a′) =HS,a
a′ ,

the Yoneda functor of a and S. Prove that the rule that associates to a set with right Ha
a -action

the covariant functor hS,a is itself a functor,

h−,a ∶ Sets −Ha
a → SetsA.

Conversely, for every set-valued functor F on A, the set F (a) is enriched with a right Ha
a -action.

Prove that the rule associating to each set-valued functor F on A the set F (a) with its right
Ha
a -action is itself a functor,

−(a) ∶ SetsA → Sets −Ha
a .

Prove that these two functors are adjoint, i.e., there is a binatural bijection

HomSets−Ha
a
(S,F (a)) ≅ HomSetsA(hS,a, F ).

In particular, when S equals Ha
a with its right regular action this gives the usual Yoneda bijection,

F (a) ≅ HomSetsA(ha, F ).

Specializing further, when F equals the Yoneda functor ha
′

, this gives a binatural bijection,

Ha
a′ ≅ HomSetsA(ha, ha

′).
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Deduce that the rule,
h ∶ A → SetsA, a↦ ha,

is an equivalence of the category A with a full subcategory of the functor category SetsA. Formulate
and prove the analogous result for the contravariant Yoneda functors. Finally, if you know the
axioms about inaccessible cardinals or the notion of Grothendieck universes, formulate a version of
this for categories that are not necessarily strictly small.

13 Preservation of Exactness by Adjoint Additive Functors

Exactness and adjoint pairs. Let A and B be Abelian categories. Let (L,R, θ, η) be an adjoint
pair of additive functors

L ∶ A → B, R ∶ B → A.

(a) For every short exact sequence in A,

Σ ∶ 0 ÐÐÐ→ A′ qAÐÐÐ→ A
pAÐÐÐ→ A′′ ÐÐÐ→ 0,

for every object B in B, prove that the induced morphism of Abelian groups,

HomA(pA,R(B)) ∶ HomA(A′′,R(B)) → HomA(A,R(B)),

is a monomorphism. Conclude that also the associated morphism of Abelian groups,

HomB(L(pA),B) ∶ HomB(L(A′′),B) → HomB(L(A),B),

is a monomorphism. In the special case that B equals Coker(L(pA)), use this to conclude that B
must be a zero object. Conclude that R preserves epimorphisms.

(b) Prove that the following induced diagram of Abelian groups is exact,

HomA(A′′,R(B))
p∗AÐÐÐ→ HomA(A,R(B))

q∗AÐÐÐ→ HomA(A′,R(B)).

Conclude that also the following associated diagram of Abelian groups is exact,

HomB(L(A′′),B)
p∗AÐÐÐ→ HomB(L(A),B)

q∗AÐÐÐ→ HomB(L(A′),B).

In the special case that B equals Coker(L(qA)), conclude that the induced epimorphism B → L(A′′)
is split. Conclude that L is half-exact, hence right exact.

(c) Use similar arguments, or opposite categories, to conclude that also R is left exact.

(d) In case R is exact (not just left exact), prove that for every projective object P of A, also
L(P ) is a projective object of B. Similarly, if L is exact (not just right exact), prove that for every
injective object I of A, also R(I) is an injective object of A.
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14 Derived Functors as Adjoint Pairs

Problem 0.(The Cochain Functor of an Additive Functor) Let A and B be Abelian categories.
Denote by Ch(A), respectively Ch(B), the associated Abelian category of cochain complexes of
objects of A, resp. of objects of B.

Let
F ∶ A → B

be an additive functor. There is an induced additive functor,

Ch(F ) ∶ Ch(A) → Ch(B)

that associates to a cochain complex

A● = ((An)n∈Z, (dnA ∶ An → An+1)n∈Z),

in A the cochain complex

F (A●) = ((F (An))n∈Z, (F (dnA) ∶ F (An) → F (An+1))n∈Z).

(a) Prove that F is half-exact, resp. left exact, right exact, exact, if and only if Ch(F ) is half-exact,
resp. left exact, right exact, exact.

(b) Prove that the functor Ch(F ) induces natural transformations,

θnB,F ∶ Bn ○Ch(F ) ⇒ F ○Bn, θnF,Z ∶ F ○Zn⇒ Zn ○Ch(F ).

Thus, for the functor A
n = An/Bn(A●), there is also an induced natural transformation,

θ⋅,F ∶ ⋅n ○Ch(F ) ⇒ F ○ ⋅n.

(c) Assume now that F is right exact (half-exact and preserves epimorphisms). Denote by

pn ∶ Zn⇒Hn,

the usual natural transformation of functors Ch(A) → A. Conclude the existence of a unique
natural transformation

θnF,H ∶ F ○Hn⇒Hn ○Ch(F ),
such that for every A● in Ch(A), the following diagram commutes,

F (Zn(A●))
F (pn)
ÐÐÐ→ F (Hn(A●))

θnF,Z(A●)
×××Ö

×××Ö
θnF,H(A●)

Zn(Ch(F )(A●)) ÐÐÐ→
pn

Hn(Ch(F )(A●))

.

50

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

Finally, for every short exact sequence in Ch(A),

Σ ∶ 0 ÐÐÐ→ K● u●ÐÐÐ→ A● v●ÐÐÐ→ 0,

such that also F (Σ) is a short exact sequence in Ch(B) (this holds, for instance, if Σ is term-by-term
split), prove that the following diagram commutes,

F (Hn(Q●))
F (δnΣ)
ÐÐÐ→ F (Hn+1(K●))

θnF,H(Q●)
×××Ö

×××Ö
θn+1
F,H(K●)

Hn(F (Q●)) ÐÐÐ→
δn
F (Σ)

>Hn+1(F (K●))

.

(d) Assume now that F is left exact (half-exact and preserves monomorphisms). Denote by

qn ∶Hn(A●) ⇒ A
n = An/Bn(A●),

the usual natural transformation of functors Ch(A) → A. Conclude the existence of a unique
natural transformation

θnH,F ∶Hn ○Ch(F ) ⇒ F ○Hn,

such that for every A● in Ch(A), the following diagram commutes,

Hn(Ch(F )(A●)) qnÐÐÐ→ Ch(F )(A●)
n

θnH,F (A●)
×××Ö

×××Ö
θn
⋅,F (A●)

Ch(F )(A●)
n

ÐÐÐ→
F (qn)

F (An)

.

Finally, for every short exact sequence in Ch(A),

Σ ∶ 0 ÐÐÐ→ K● u●ÐÐÐ→ A● v●ÐÐÐ→ 0,

such that also F (Σ) is a short exact sequence in Ch(B) (this holds, for instance, if Σ is term-by-term
split), prove that the following diagram commutes,

Hn(F (Q●))
δn
F (Σ)ÐÐÐ→ Hn+1(F (K●))

θnH,F (Q●)
×××Ö

×××Ö
θn+1
H,F (K●)

F (Hn(Q●)) ÐÐÐ→
F (δnΣ)

F (Hn+1(K●))

.

Preservation of Direct Sums Exercise. Let A be an additive category. Let A1 and A2 be
objects of A. Let (q1 ∶ A1 → A, q2 ∶ A2 → A) be a coproduct (direct sum) in A. Define p1 ∶ A → A1
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to be the unique morphism in A such that p1 ○ q1 equals IdA1 and p1 ○ q2 is zero. Similarly define
p2 ∶ A→ A2 to be the unique morphism in A such that p2 ○ q1 is zero and p2 ○ q2 equals IdA2 . Prove
that q1 ○p1+ q2 ○p2 equals IdA both compose with qi to equal qi, and thus both are equal. Conclude
that (p1 ∶ A→ A1, p2 ∶ A→ A2) is a product in A.

Now let B be a second additive category, and let

F ∶ A → B

be an additive functor. Define Bi = F (Ai) and B = F (A). Prove that F (pi) ○ F (qj) equals IdBi if
j = i and equals 0 otherwise. Also prove that IdB equals F (q1)○F (p1)+F (q2)○F (p2). Conclude that
both (F (q1) ∶ B1 → B,F (q2) ∶ B2 → B) is a coproduct in B and (F (p1) ∶ B → B1, F (p2) ∶ B → B2)
is a product in B. Hence, additive functors preserve direct sums. In particular, additive functors
send split exact sequences to split exact sequences.

Preservation of Homotopies Exercise. Let A be an Abelian category. Let A● and C● be
cochain complexes in Ch(A). Let f ● ∶ A● → C● be a cochain morphism. A homotopy from f ● to 0
is a sequence (sn ∶ An → Cn−1)n∈Z such that for every n ∈ Z,

fn = dn−1
C ○ sn + sn+1 ○ dnA.

In this case, f ● is called homotopic to 0 or null homotopic. Cochain morphisms g●, h● ∶ A● → C● are
homotopic if f ● = g● − h● is homotopic to 0.

(a) Prove that the null homotopic cochain morphisms form an Abelian subgroup of HomCh(A)(A●,C●).
Moreover, prove that the precomposition or postcomposition of a null homotopic cochain morphism
with an arbitrary cochain morphism is again null homotopic (the null homotopic cochain morphisms
form a “left-right ideal” with respect to composition).

(b) If f ● is homotopic to 0, prove that for every n ∈ Z, the induced morphism,

Hn(f ●) ∶Hn(A●) →Hn(C●),

is the zero morphism. In particular, if IdA● is homotopic to 0, conclude that every Hn(A●) is a zero
object.

(c) For a short exact sequence in A

Σ ∶ 0 ÐÐÐ→ K
qÐÐÐ→ A

pÐÐÐ→ Q ÐÐÐ→ 0,

considered as a cochain complex A● in A concentrated in degrees −1, 0, 1, prove that a homotopy
from IdA● to 0 is the same thing as a splitting of the short exact sequence.

(d) Let B be an Abelian category. Let F ∶ A → B be an additive functor. This induces an additive
functor

Ch(F ) ∶ Ch(A) → Ch(B).
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If F is half-exact, resp. left exact, right exact, exact, prove that also Ch(F ) is half-exact, resp. left
exact, right exact, exact. Prove that Ch(F ) preserves homotopies. In particular, if g● and h● are
homotopic in Ch(A), then for every integer n ∈ Z, Hn(Ch(F )(g●)) equals Hn(Ch(F )(h●)).

Preservation of Translation Exercise. Let A be an Abelian category. For every integer m, for
every cochain complex A● in Ch(A), define Tm(A●) = A●[m] to be the cochain complex such that
Tm(A●)n = Am+n, and with differential

dnTm(A●) ∶ Tm(A●)n → Tm(A●)n+1

equal to (−1)mdm+nA● . For every cochain morphism

f ● ∶ A● → C●,

define
Tm(f ●)n ∶ Tm(A●)n → Tm(C●)n

to be fm+n. Finally, for every homotopy s● from g● − h● to 0, define

Tm(s●)n = (−1)msm+n.

(a) Prove that Tm ∶ Ch(A) → Ch(A) is an additive functor that is exact. Prove that T 0 is the
identity functor. Also prove that Tm ○T ` equals Tm+`. Prove that not only are Tm and T −m inverse
functors, but also (Tm, T −m) is an adjoint pair of functors (which implies that also (T −m, Tm) is
an adjoint pair). Finally, if s● is a homotopy from g● − h● to 0, prove that Tm(s●) is a homotopy
from Tm(g●) − Tm(h●) to 0.

(b) Via the identification Tm(A●)n = Am+n, prove that the subfunctor Zn(Tm(A●)) is naturally
identified with Zm+n(A●). Similarly, prove that the subfunctor Bn(Tm(A●)) is naturally identified

with Bm+n(A●). Thus, show that the epimorphism (Tm(A●))n → Tm(A●)
n

is identified with the

epimorphism Am+n → A
m+n

. Finally, use these natural equivalences to deduce a natural equivalence
of half-exact, additive functors Ch(A) → A,

ιm,n ∶Hm+n⇒Hn ○ Tm.

(c) For a short exact sequence in Ch(A),

Σ ∶ K● q●ÐÐÐ→ A● p●ÐÐÐ→ Q● ÐÐÐ→ 0,

for the associated short exact sequence,

Σ[+1] = T (Σ) ∶ T (K●)
T (q●)
ÐÐÐ→ T (A●)

T (p●)
ÐÐÐ→ T (Q●) ÐÐÐ→ 0,
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prove that the following diagram commutes,

Hn+1(Q●)
−δn+1

ΣÐÐÐ→ Hn+1(K●)

ιn(Q●)
×××Ö

×××Ö
ιn+1(K●)

Hn(T (Q●)) ÐÐÐ→
δn
T (Σ)

Hn+1(T (K●))

.

Iterate this to prove that for every m ∈ Z, δn
Σ[m] is identified with (−1)mδn+mΣ .

(d) For every integer m, define
e≥m ∶ Ch≥m(A) → Ch(A)

to be the full additive subcategory whose objects are complexes A● such that for every n < m, An

is a zero object. (From here on, writing A = 0 for an object A means “A is a zero object”.) Check
that Ch≥m(A) is an Abelian category, and e≥m is an exact functor. For every integer m, define the
“brutal truncation”

σ≥m ∶ Ch(A) → Ch≥m(A),
to be the additive functor such that for every object A●

(σ≥mA●)n = { An, n ≥m
0, n <m

and for every morphism u● ∶ A● → C●,

(σ≥mf ●)n = { fn, n ≥m,
0, n <m

Check that σ≥m is exact and is right adjoint to e≥m. For the natural transformation,

η≥m ∶ e≥m ○ σ≥m⇒ IdCh(A),

check that the induced natural transformation,

η≥m(A●)n ∶ (σ≥m(A))n → An,

is zero for n <m, is the identity for n >m, and for n =m it is the epimorphism,

Am↠ Am.

Check that the induced natural transformation

Zn(η≥m(A●)) ∶ Zn(σ≥m(A●)) → Zn(A●),

is zero for n <m, and it is the identity for n ≥m. Check that the induced natural transformation,

Bn(η≥m(A●)) ∶ Bn(σ≥m(A●)) → Bn(A●),
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is zero for n ≤m, and it is the identity for n >m. Check that the induced natural transformation,

Hn(η≥m(A●)) ∶Hn(σ≥m(A●)) →Hn(A●),

is zero for n <m, is the identity for n >m, and for n =m it is the epimorphism,

Zm(A●) ↠Hn(A●).

Check that for every integer `, there is a unique (exact) equivalence of categories,

T `m ∶ Ch≥m(A) → Ch≥`+m(A),

such that T `m ○σ≥m equals σ≥`+m ○T `, and T `m. Check that (T `m, T −`
`+m) is an adjoint pair of functors,

so that also (T −`
`+m, T

`
m) is an adjoint pair of functors.

(d)bis Similarly, define the “good truncation”

τ≥m ∶ Ch(A) → Ch≥m(A),

to be the additive functor such that for every object A●

(τ≥mA●)n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

An, n >m,
Am, n =m,

0, n <m

and for every morphism u● ∶ A● → C●,

(τ≥mf ●)n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fn, n >m,
fm, n =m,

0, n <m

Check that τm is right exact and is left adjoint to e≥m. For the natural transformation

θm ∶ IdCh(A) ⇒ em ○ τ≥m,

check that the induced morphism,

Zn(θA●) ∶ Zn(A●) → Zn(τ≥m(A●)),

is zero for n <m, is the identity for n >m, and for n =m it is the epimorphism,

Zn(A●) →Hn(A●).

Check that the induced natural transformation,

Bn(θA●) ∶ Bn(A●) → Bn(τ≥m(A●)),
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is zero for n ≤m, and it is the identity for n >m. Check that the induced natural transformation,

θA●
n ∶ An → τ≥m(A●)

n

is zero for n <m, and it is the identity for n ≥m. Check that the induced natural transformation,

Hn(θA●) ∶Hn(A●) →Hn(τ≥m(A●)),

is zero for n <m, and it is the identity for n ≥m.

Finally, e.g., using the opposite category, formulate and prove the corresponding results for the full
embedding,

e≤m ∶ Ch≤m(A) → Ch(A),

whose objects are complexes A● such that An is a zero object for all n >m. In particular, note that
although the sequence of brutal truncations,

0 ÐÐÐ→ σ≥m(A●)
η≥m(A●)
ÐÐÐÐ→ A● θ≤m−1(A●)ÐÐÐÐÐ→ σ≤m−1(A●) ÐÐÐ→ 0

is exact, the corresponding morphisms of good truncations,

Ker(θ≥m(A●)) ↪ τ≤m(A●), τ≥m(A●) ↠ Coker(η≤m(A●)),

are not isomorphisms; in the first case the cokernel is Hm(A●)[m], and in the second case the kernel
is Hm(A●)[m]. However, check that the natural morphisms,

τ≤m−1(A●) η≤m−1ÐÐÐ→ Ker(θ≥m(A●),

Coker(η≤m−1(A●)) θ≥mÐÐÐ→ τ≥m(A●),

are quasi-isomorphisms. (One reference slightly misstates this, claiming that the morphisms are
isomorphisms, which is “morally” correct after passing to the derived category.)

(e) Beginning with the cohomological δ-functor (in all degrees) Ch(A) → A,

H● = ((Hn)n∈Z, (δn)n∈Z),

the associated cohomological δ-functor,

H● ○ T ` = ((Hn ○ T `)n∈, (δn ○ T `)n∈Z),

the cohomological δ-functor
H●+` = ((Hn+`)n∈Z, (δn+`)n∈Z),

and the equivalence,
ι`,0 ∶H`⇒H0 ○ T `,
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prove that there exists a unique natural transformation of cohomological δ-functors,

θ` ∶H●+`⇒H● ○ T `, (θn` ∶Hn+`⇒Hn ○ T `)n∈Z,

and that θn` = (−1)n`ι`,n.

(e)bis The truncation τ≥mH● in degrees ≥ m is obtained by replacing Hm by the subfunctor Zm.
Check that θ` restricts to a natural transformation τ≥`+mH

●+` → τ≥mH● ○T `. Assuming that τ≥mH●

is a universal cohomological δ-functor in degrees ≥ m, conclude that also τ≥`+mH● is a universal
cohomological δ-functor in degrees ≥ ` +m. Also, formulate and prove the corresponding result for
the universal δ-functors τ≤0H● and τ≤mH●.

(f) Let B be an Abelian category. Let F ∶ A → B be an additive functor. This induces an additive
functor

Ch(F ) ∶ Ch(A) → Ch(B).

Prove that Ch(F ) ○ TA equals TB ○Ch(F ).

Compatibility with Automorphisms Exercise. Let A be an Abelian category. Let

Σ ∶ 0 ÐÐÐ→ K● q●ÐÐÐ→ A● p●ÐÐÐ→ Q● ÐÐÐ→ 0

be a short exact sequence in Ch(A). Let

u● ∶K● →K●, v● ∶ Q● → Q●

be isomorphisms in Ch(A).

(a) Prove that the following sequence is a short exact sequence,

Σu●,v● ∶ 0 ÐÐÐ→ K● q●○u●ÐÐÐ→ A● v●○p●ÐÐÐ→ Q● ÐÐÐ→ 0.

(b) Prove that the following diagrams are commutative diagrams.

Σu●,IdQ ∶ 0 ÐÐÐ→ K● q●○u●ÐÐÐ→ A● p●ÐÐÐ→ Q● ÐÐÐ→ 0

ũ
×××Ö

u●
×××Ö

×××Ö
IdA

×××Ö
IdQ

ΣIdK ,IdQ ∶ 0 ÐÐÐ→ K● q●ÐÐÐ→ A● p●ÐÐÐ→ Q● ÐÐÐ→ 0

,

Σu●,IdQ ∶ 0 ÐÐÐ→ K● q●○u●ÐÐÐ→ A● p●ÐÐÐ→ Q● ÐÐÐ→ 0

ṽ
×××Ö

IdK
×××Ö

×××Ö
IdA

×××Ö
v●

Σu●,v● ∶ 0 ÐÐÐ→ K● q●○u●ÐÐÐ→ A● v●○p●ÐÐÐ→ Q● ÐÐÐ→ 0

.
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(c) Use the commutative diagram of long exact sequences associated to a commutative diagrams
of short exact sequences to prove that

δnΣ =Hn+1(u●) ○ δnΣu●,v● ○H
n(v●),

for every integer n.

Compatibility with Natural Transformations of Additive Functors. Let A and B be
Abelian categories.

(a) For additive functors,
F,G ∶ A → B,

let
α ∶ F ⇒ G,

be a natural transformation. For every cochain complex A● in Ch(A), prove that

(αAn ∶ F (An) → G(An))n∈Z

is a morphism of cochain complexes in Ch(B),

Ch(α)(A●) ∶ Ch(F )(A●) → Ch(G)(A●).

(b) Prove that the rule A● ↦ Ch(α)(A●) is a natural transformation

Ch(α) ∶ Ch(F ) ⇒ Ch(G).

Moreover, for every morphism u● ∶ C● → A● in Ch(A), and for every homotopy (sn ∶ Cn → An−1)n∈Z
from u● to 0, prove that also Ch(α)(A●) ○Ch(F )(s●) equals Ch(G)(s●) ○Ch(α)(C●).
(c) For the identity natural transformation IdF ∶ F ⇒ F , prove that Ch(IdF ) is the identity
natural transformation Ch(F ) ⇒ Ch(F ). Also, for every pair of natural transformations of additive
functors A → B,

α ∶ F ⇒ G, β ∶ E ⇒ F,

for the composite natural transformation α ○β, prove that Ch(α ○β) equals Ch(α) ○Ch(β). In this
sense, Ch is a “functor” from the “2-category” of Abelian categories to the “2-category” of Abelian
categories.

Derived Functors as Adjoint Pairs Exercise. Let A and B be Abelian categories. Let F ∶
A → B be an additive functor. Assume that A has enough injective objects. Thus, every object A
admits an injective resolution in Ch(A),

A[0] ∶ . . . ÐÐÐ→ 0 ÐÐÐ→ A ÐÐÐ→ 0 ÐÐÐ→ . . .

εA
×××Ö

×××Ö
ε
×××Ö

×××Ö
I●A ∶ . . . ÐÐÐ→ 0 ÐÐÐ→ I0

d0
IÐÐÐ→ I1

d1
IÐÐÐ→ . . .

,
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which is functorial up to null homotopies (in particular, any two injective resolutions are homotopy
equivalent). Moreover, for every short exact sequence in A,

Σ ∶ 0 ÐÐÐ→ K
qÐÐÐ→ A

pÐÐÐ→ Q ÐÐÐ→ 0,

there exists a diagram of injective resolutions with rows being short exact sequences in Ch(A),

Σ[0] ∶ 0 ÐÐÐ→ K[0]
q[0]
ÐÐÐ→ A[0]

p[0]
ÐÐÐ→ Q[0] ÐÐÐ→ 0

εΣ
×××Ö

εK
×××Ö

×××Ö
εA

×××Ö
εQ

IΣ ∶ 0 ÐÐÐ→ I●K
q●ÐÐÐ→ I●A

p●ÐÐÐ→ I●Q ÐÐÐ→ 0

whose associated short exact sequences in A,

InΣ ∶ 0 ÐÐÐ→ InK
qnÐÐÐ→ InA

pnÐÐÐ→ InQ ÐÐÐ→ 0,

are automatically split. Moreover, this diagram of injective resolutions is functorial up to homotopy,
i.e., for every commutative diagram of short exact sequences in A,

Σ ∶ 0 ÐÐÐ→ K
qÐÐÐ→ A

pÐÐÐ→ Q ÐÐÐ→ 0

u
×××Ö

uK
×××Ö

×××Ö
uA

×××Ö
uQ

Σ̃ ∶ 0 ÐÐÐ→ K̃
q̃ÐÐÐ→ Ã

p̃ÐÐÐ→ Q̃ ÐÐÐ→ 0

,

there exists a commutative diagram in Ch(A),

IΣ ∶ 0 ÐÐÐ→ IK
q●ÐÐÐ→ IA

p●ÐÐÐ→ IQ ÐÐÐ→ 0

u●
×××Ö

u●K

×××Ö
×××Ö
u●A

×××Ö
u●Q

IΣ̃ ∶ 0 ÐÐÐ→ IK̃
q̃●ÐÐÐ→ IÃ

p̃●ÐÐÐ→ IQ̃ ÐÐÐ→ 0

compatible with the morphisms ε−, and the cochain morphisms u● making all diagrams commute
are unique up to homotopy.

As proved in lecture, there is an associated cohomological δ-functor in degrees ≥ 0, R●F , with

RnF ∶ A → B, RnF (A) =Hn(Ch(F )(A●)).

For every short exact sequence in A,

Σ ∶ 0 ÐÐÐ→ K
qÐÐÐ→ A

pÐÐÐ→ Q ÐÐÐ→ 0,

the corresponding complex in B, Ch(B),

Ch(F )(IΣ) ∶ 0 ÐÐÐ→ Ch(F )(I●K)
Ch(F )(q●)
ÐÐÐÐÐ→ Ch(F )(I●A)

Ch(F )(p●)
ÐÐÐÐÐ→ Ch(F )(I●Q) ÐÐÐ→ 0,
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has associated complexes in B,

Ch(F )(IΣ)n ∶ 0 ÐÐÐ→ F (InK)
F (qn)
ÐÐÐ→ F (InA)

F (pn)
ÐÐÐ→ F (InQ) ÐÐÐ→ 0,

being split exact sequences (since the additive functor F preserves split exact sequences), and hence
Ch(F )(IΣ) is a short exact sequence in B. The maps δnR●F,Σ are the connecting maps determined
by the Snake Lemma for this short exact sequence,

δnCh(F )(IΣ) ∶Hn(Ch(F )(I●Q)) →Hn+1(Ch(F )(I●K)).

Associated to ε, there are morphisms in B

F (εA) ∶ F (A) → R0F (A).

(a) Let G ∶ A → B be an additive functor. Let

α ∶ F ⇒ G,

be a natural transformation. For every object A of A and for every injective resolution ε ∶ A[0] → I●A,
there is an induced morphism in Ch(B),

Ch(α)(I●A) ∶ Ch(F )(I●A) → Ch(G)(I●A).

This induces morphisms,
Rnα(A) ∶ RnF (A) → RnG(A),

given by,
Hn(Ch(α)(I●A)) ∶Hn(Ch(F )(I●A)) →Hn(Ch(G)(I●A)).

For every n, prove that A↦ Rnα(A) defines a natural transformation

Rnα ∶ RnF ⇒ RnG.

Moreover, prove that this natural transformation is a morphism of δ-functors, i.e., for every short
exact sequence,

Σ ∶ 0 ÐÐÐ→ K
qÐÐÐ→ A

pÐÐÐ→ Q ÐÐÐ→ 0,

for every integer n, the following diagram commutes,

RnF (Q)
δn
R●F,ΣÐÐÐ→ Rn+1F (K)

Rnα(Q)
×××Ö

×××Ö
Rn+1α(K)

RnG(Q) ÐÐÐ→
δn
R●G,Σ

Rn+1G(K)

.

(b) Prove that the morphisms F (εA) form a natural transformation, ρF ∶ F → R0F .
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(c) Prove that R0F is a left-exact functor. Assuming that F is left-exact, prove that ρF is a natural
equivalence of funcors. In particular, conclude that ρR0F ∶ R0F → R0(R0F ) is a natural equivalence
of functors.

(d) For every half-exact functor,
G ∶ A → B,

and for every natural transformation,
γ ∶ F ⇒ G,

prove that the two natural transformations,

R0γ ○ ρF , ρG ○ γ ∶ F ⇒ R0G,

are equal. In particular, if G is left-exact, so that ρG is a natural equivalence, conclude that there
exists a unique natural transformation,

γ̃ ∶ R0F ⇒ G,

such that γ equals γ̃ ○ ρF .

(e) Now assume that A and B are small Abelian categories. Thus, functors from A to B are well-
defined in the usual axiomatization of set theory. Let Fun(A,B) be the category whose objects
are functors from A to B and whose morphisms are natural transformations of functors. Let
AddFun(A,B) be the full subcategory of additive functors. Let

e ∶ LExactFun(A,B) → AddFun(A,B),

be the full subcategory whose objects are left-exact additive functors from A to B. Prove that the
rule associating to F the left-exact functor R0F and associating to every natural transformation
α ∶ F ⇒ G the natural transformation R0α ∶ R0F ⇒ R0G is a left adjoint to e.

(f) With the same hypotheses as above, denote by Fun≥0
δ (A,B) the category whose objects are

cohomological δ-functors from A to B concentrated in degrees ≥ 0,

T ● = ((T n ∶ A → B)n∈Z, (δnT )n∈Z),

and whose morphisms are natural transformations of δ-functors,

α● ∶ S● → T ●, (αn ∶ Sn⇒ T n)n∈Z.

Denote by
(−)0 ∶ Fun≥0

δ (A,B) → LExactFun(A,B),
the functor that associates to every cohomological δ-functor, T ●, the functor, T 0, and that as-
sociates to every natural transformation of cohomological δ-functors, u● ∶ S● → T ●, the natural
transformation u0 ∶ S0 → T 0. Denote by

R ∶ LExactFun(A,B) → Fun≥0
δ (A,B),
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the functor that associates to every left-exact functor, F , the cohomological δ-functor, R●F , and
that associates to the natural transformation, α ∶ F ⇒ G, the natural transformation of cohomo-
logical δ-functors, R●α ∶ R●F ⇒ R●G. Prove that R is left adjoint to (−)0.

(g) In particular, for n > 0, prove that R0(RnF ) is the zero functor. Thus, for every m ≥ n,
Rm(RnF ) is the zero functor.

Right Derived Functors and Filtering Colimits Exercise. Let B be a cocomplete Abelian
category satisfying Grothendieck’s condition (AB5). Let I be a small filtering category. Let C● ∶
I → Ch●(B) be a functor.

(a) For every n ∈ Z, prove that the natural B-morphism,

colim
i∈I

Hn(C●(i)) →Hn(colim
i∈I

C●(i)),

is an isomorphism. Prove that this extends to a natural isomorphism of cohomological δ-functors.
This is “commutation of cohomology with filtered colimits”.

(b) Let A be an Abelian category with enough injective objects. Let F ∶ I ×A → B be a bifunctor
such that for every object i of I, the functor Fi ∶ A → B is additive and left-exact. Prove that
F∞(−) ∶= colimi∈I Fi(−) also forms an additive functor that is left-exact. Also prove that the
natural map

colim
i∈I

Rn(Fi) → Rn(F∞)

is an isomorphism. This is “commutation of right derived functors with filtered colimits”.

15 Constructing Injectives via Adjoint Pairs

Projective / Injective Objects and Adjoint Pairs Exercise. Recall that for a category C,
for every object X of C, there is a covariant Yoneda functor,

hX ∶ C → Sets, B ↦ HomC(X,B),

and for every object Y of C, there is a contravariant Yoneda functor,

hY ∶ Copp → Sets, A↦ HomC(A,Y ).

An object X of C is projective if the Yoneda functor hX sends epimorphisms to epimorphisms.
An object Y of C is injective if the Yoneda functor hY sends monomorphisms to epimorphisms.
The category has enough projectives if for every object B there exists a projective object X and
an epimorphism X → B. The category has enough injectives if for every object A there exists
an injective object Y and a monomorphism from A to Y .

(a) Check that this notion agrees with the usual definition of projective and injective for objects
in an Abelian category.
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(b) For the category Sets, assuming the Axioms of Choice, prove that every object is both projec-
tive and injective. Deduce the same for the opposite category, Setsopp.

(c) Let C and D be categories. Let (L,R, θ, η) be an adjoint pair of covariant functors,

L ∶ C → D, R ∶ D → C.

For every object d of D, prove that

η(d) ∶ L(R(d)) → d,

is an epimorphism. For every object c of C, prove that

θ ∶ c→ R(L(c)),

is a monomorphism. Thus, if every L(R(d)) is a projective object, then C has enough projective
objects. Similarly, if every R(L(c)) is an injective object, then C has enough injective objects.

(d) Assuming that R sends epimorphisms to epimorphisms, prove that L sends projective objects
of C to projective objects of D. Thus, if every object of C is projective, conclude that D has
enough projective objects. More generally, assume further that R is faithful, i.e., R sends distinct
morphisms to distinct morphisms. Then conclude for every epimorphism X → R(D) in C, the
associated morphism L(X) →D in D is an epimorphism. Thus, if C has enough projective objects,
also D has enough projective objects.

Similarly, assuming that L sends monomorphisms to monomorphisms, prove that R sends injective
objects of D to injective objects of C. Thus, if every object of D is injective, conclude that there are
enough injective objects of C. More generally, assume further that L is faithful. Then conclude for
every monomorphism L(C) → Y in D, the associated morphism C → R(Y ) in C is a monomorphism.
Thus, if D has enough injective objects, also C has enough injective objects.

(e) Let S and T be associative, unital algebras. Let C be the category Sets. Let D be the category
S − T −mod of S − T -bimodules. Let

R ∶ S − T −mod→ Sets

be the forgetful functor that sends every S − T -bimodule to the underlying set of elements of the
bimodule. Prove that R sends epimorphisms to epimorphisms and R is faithful. Prove that there
exists a left adjoint functor,

L ∶ Sets→ S − T −mod,

that sends every set Σ to the corresponding S −T -bimodule, L(Σ) of functions f ∶ Σ→ S⊗Z T that
are zero except on finitely many elements of Σ. Since Sets has enough projective objects (in fact
every object is projective), conclude that S − T −mod has enough projective objects.

(e) Let S, T and U be associative, unital rings. Let B be a T −U -bimodule. Let C be the Abelian
category of S −T -bimodules, let D be the Abelian category of S −U -bimodules, let L be the exact,
additive functor,

L ∶ S − T −mod→ S −U −mod, L(A) = A⊗T B,
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and let R be the right adjoint functor,

R ∶ S −U −mod→ S − T −mod, R(C) = Hommod−U(B,C).

Prove that if B is a flat (left) T -module, resp. a faithfully flat (left) T -module, then L sends
monomorphisms to monomorphisms, resp. L sends monomorphism to monomorphisms and is
faithful. Conclude, then, that R sends injective objects of S − U − mod to injective objects of
S − T −mod, resp. if S − U −mod has enough injective objects then also S − T −mod has enough
injective objects.

(f) Continuing as above, for every ring homomorphism U → T , prove that the induced T −U -module
structure on T is faithfully flat as a left T -module. Thus, given rings Λ and Π, define S = Λ, define
T = Π, and define U to be Z with its unique ring homomorphism to T . Conclude that if there exist
enough injective objects in Λ −mod, then there exist enough injective objects in Λ −Π −mod.

(g) For the next step, define T and U to be Λ, define B to be Λ as a left-right T -module, and define
S to be Z. Conclude that if there are enough injective Z-modules, then there are enough injective
Λ-modules, and hence there are enough injective Λ −Π-bimodules. Thus, to prove that there are
enough Λ −Π-bimodules, it is enough to prove that there are enough Z-modules.

Enough Injective Modules Exercise. Let A be an Abelian category that has all small products.
An object Y of A is an injective cogenerator if Y is injective and for every pair of distinct
morphisms,

u, v ∶ A′ → A,

in A, there exists a morphism w ∶ A→ Y such that w ○ u and w ○ v are also distinct.

(a) Let C be the category Setsopp. For an object Y of A, define L to be the Yoneda functor

hY ∶ A → Setsopp, hY (A) = HomA(A,Y ).

Similarly, define the functor,

R ∶ Setsopp → A, L(Σ) = ”HomSets(Σ, Y )”,

that sends every set Σ to the object R(Σ) in A that is the direct product of copies of Y indexed
by elements of Σ. Prove that L and R are an adjoint pair of functors.

(b) Assuming that A has an injective cogenerator Y , prove that L sends monomorphisms to
monomorphisms, and prove that L is faithful. Conclude that A has enough injective objects.

(c) Now let S be an associative, unital ring (it suffices to consider the special case that S is Z). Let
A be mod − S. Use the Axiom of Choice to prove Baer’s criterion: a right S-module Y is injective
if and only if for every right ideal J of S, the induced set map

Hommod−S(S,Y ) → Hommod−S(J,Y )

is surjective. In particular, if S is a principal ideal domain, conclude that Y is injective if and only
if Y is divisible.
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(d) Finally, defining S to be Z, conclude that Y = Q/Z is injective, since it is divisible. Finally,
for every Abelian group A and for every nonzero element a of A, conclude that there is a nonzero
Z-module homomorphism Z ⋅ a → Q/Z. Thus, for every pair of elements a′, a′′ ∈ A such that
a = a′ − a′′ is nonzero, conclude that there exists a Z-module homomorphisms w ∶ A → Q/Z such
that w(a′) −w(a′′) is nonzero. Conclude that Q/Z is an injective cogenerator of Z. Thus mod −Z
has enough injective objects. Thus, for every pair of associative, unital rings Λ, Π, the Abelian
category Λ −Π −mod has enough injective objects.

Enough Injectives / Projectives in the Cochain Category Exercise. Let S be an associa-
tive, unital ring. Prove that Ch≥0(S) has enough injective objects, and prove that Ch≤0(S) has
enough projective objects.

16 The Koszul Complex via Adjoint Pairs

Exterior Algebra CDGA as an Adjoint Pair Exercise. Let R be a commutative, unital ring.
An associative, unital, graded commutative R-algebra (with homological indexing) is a triple

A● = ((An)n∈Z, (mp,q ∶ Ap ×Aq → Ap+q)p,q∈Z, (ε ∶ R → A0))

of a sequence (An)n∈Z of R-modules, of a sequence (mp,q)p,q∈Z of R-bilinear maps, and an R-module
morphism ε such that the following hold.

(i) For the associated R-module A = ⊕n∈ZAn and the induced morphism m ∶ A ×A → A whose
restriction to each Ap ×Aq equals mp,q, (A,m, ε(1)) is an associative, unital, R-algebra.

(ii) For every p, q ∈ Z, for every ap ∈ Ap and for every aq ∈ Aq, mq,p(aq, ap) equals (−1)pqmp,q(ap, aq).

(a) Prove that the R-submodules of A,

A≥0 =⊕
n≥0

An, A≤0 =⊕
n≤0

An,

are both associative, unital R-subalgebras. Moreover, prove that the R-submodule,

A>0 =⊕
n>0

An, resp. A<0 =⊕
n<0

An,

is a left-right ideal in A≥0, resp. in A≤0.

(b) For associative, unital, graded commutative R-algebras A● and B●, a graded homomorphism
of R-algebras is a collection

f● = (fn ∶ An → Bn)n≥0

such that for the unique R-module homomorphism f ∶ A→ B whose restriction to every An equals
fn, f is an R-algebra homomorphism. Prove that such f● is uniquely reconstructed from the
homomorphism f . Prove that IdA comes from a unique graded homomorphism IdA● . Prove that
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for a graded homomorphism of R-algebras, g● ∶ B● → C●, the composition g ○f arises from a unique
graded homomorphism of R-algebras, A● → C●. Using this to define composition of homomorphisms
of graded R-algebras, prove that composition is associative and the identity morphisms abe are
left-right identities for composition. Conclude that these notions form a category R −GrComm of
associative, unital, graded commutative R-algebras. Prove that the rule A● ↦ A, f● ↦ f defines a
faithful functor

R −GrComm→ R −Algebra.

Give an example showing that this functor is not typically full.

(c) Let A● be an associative, unital, graded commutative R-algebra. Prove that R is commutative
(in the usual sense) if and only if An is a zero module for every even integer n. Denote by R−Comm
the category of associative, unital R-algebras S that are commutative. Denote by Z −R −Comm
the faithful (but not full) subcategory whose objects are triples,

S● = ((Sn)n∈Z, (mp,q ∶ Sp × Sq → Sp+q)p,q∈Z, (ε ∶ R → S0))

as above, but such that the multiplication is commutative rather than graded commutative, i.e.,
mq,p(sq, sp) =mp,q(sp, sq). Prove that there is a functor,

veven ∶ R −GrComm→ Z −R −Comm,

((An)n∈Z, (mp,q ∶ Ap×Aq → Ap+q)p,q∈Z, (ε ∶ R → A0)) ↦ ((A2n)n∈Z, (m2p,2q ∶ A2p×A2q → A2(p+q))p,q∈Z, (ε ∶ R → A0 = A2⋅0)),

and f● ∶ A● → B● maps to vev(f) = (f2n)n∈Z. Also prove that there is a left adjoint to veven,

weven ∶ Z −R −Comm→ R −GrComm,

where weven(S●)2n equals Sn, where weven(S●)p is the zero module for every odd p, where

A2p ×A2q → A2(p+q)

is mp,q for S●, and where R → A0 is ε ∶ R → S0. For a morphism f● ∶ S● → T● in Z − R − Comm,
weven(f●) is the unique morphism whose component in degree 2n equals fn for every n ∈ Z.

(d) Let e be an odd integer. For every associative, unital, graded commutative R-algebra A● define
ve(A●) to be the collection

((Ane)n∈Z, (mpe,qe ∶ Ape ×Aqe → A(p+q)e)p,q∈Z, ε ∶ R → A0 = A0e).

Prove that ve(A●) is again an associative, unital, graded commutative R-algebra. For every mor-
phism of associative, unital, graded commutative R-algebras, f● ∶ A● → B●, the collection ve(f●) =
(fne)n∈Z is a morphism of associative, unival, graded commutative R-algebras, ve(A●) → ve(B●).
Prove that this defines a functor,

ve ∶ R −GrComm→ R −GrComm.
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This is sometimes called the Veronese functor (it is closely related to the Veronese morphism of
projective spaces). If e is positive, prove that the induced morphism ve(A≥0) → ve(A●), resp.
ve(A≤0) → ve(A●), is an isomorphism to (ve(A●))≥0, resp. to (ve(A●))≤0. Similarly, if e is negative
(e.g., if e equals −1), this defines an isomorphism to (ve(A●))≤0, resp. to (ve(A●))≥0. Prove that v1

is the identity functor. For odd integers d and e, construct a natural isomorphism of functors,

vd,e ∶ vd ○ ve⇒ vde,

prove that vd,1 and v1,e are identity natural transformations, and prove that these natural iso-
morphisms are associative: vde,f ○ (vd,e ○ vf) equals vd,ef ○ (vd ○ ve,f) for all odd integers d, e and
f .

(e) For every associative, unital, graded commutative R-algebra A●, for every odd integer e, define

we ∶ R −GrComm→ R −GrComm,

where we(A●)ne equals An for every integer n, and where we(A●)m is a zero module if e does not m.
For every morphism f● ∶ A● → B●, define we(f●) to the be the unique morphism whose component
in degree en equals fn for every n ∈ Z. Prove that we is a functor. For the natural isomorphism,

θe(A●) ∶ A● → ve(we(A●)), (An
=Ð→ An)n∈Z

and the natural monomorphisms

ηe(B●) ∶ we(ve(B●)) → B●, (Bne
=Ð→ Bne)n∈Z,

prove that (we, ve, θe, ηe) is an adjoint pair.

(f) For every integer n ≥ 0, recall from Problem 5(iv) of Problem Set 1, that there is a functor,

n

⋀
R

∶ R −mod→ R −mod, M ↦
n

⋀
R

(M).

In particular, there is a natural isomorphism

ε(M) ∶ R →
0

⋀
R

(M),

and there is a natural isomorphism,

θ(M) ∶M →
1

⋀
R

(M).

By convention, for every integer n < 0, define ⋀nR(M) to be the zero module. For every pair of
integers q, r ≥ 0, prove that the natural R-bilinear map

⊗ ∶M⊗q ×M⊗r →M⊗(q+r), ((m1 ⊗ ⋅ ⋅ ⋅ ⊗mq), (m′
1 ⊗ ⋅ ⋅ ⋅ ⊗m′

r)) ↦m1 ⊗ . . .mq ⊗m′
1 ⊗ ⋅ ⋅ ⋅ ⊗m′

r,
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factors uniquely through an R-bilinear map,

∧ ∶
q

⋀
R

(M) ×
r

⋀
R

(M) →
q+r
⋀
R

(M).

Prove that ⋀●
R(M) is an associative, unital, graded commutative R-algebra. For every R-module

homomorphism φ ∶M → N , prove that the associated R-module homomorphisms,

n

⋀
R

(φ) ∶
n

⋀
R

(M) →
n

⋀
R

(N),

define a morpism of associative, unital, graded commutative R-algebras,

●
⋀
R

(φ) ∶
●
⋀
R

(M) →
●
⋀
R

(N).

Prove that for every R-module homomorphism ψ ∶ N → P , ⋀●
R(ψ ○ φ) equals ⋀●

R(ψ) ○ ⋀●
R(φ). Also

prove that ⋀●
R(IdM) is the identity morphism of ⋀●

R(M).
(g) An associative, unital, graded commutative R-algebra A● is (strictly) 0-connected, resp. weakly
0-connected, if the inclusion A≥0 → A is an isomorphism and the R-module homorphism ε is an
isomorphism, resp. an epimorphism. If R is a field, prove that every weakly 0-connected algebra is
strictly 0-connected. Denote by

R −GrComm≥0, resp. R −GrComm′
≥0

the full subcategory of R −GrComm whose objects are the 0-connected algebras, resp. the weakly
0-connected algebras. Prove that veven restricts to a functor,

R −GrComm≥0 → Z+ −R −Comm,

where Z+ −R −Comm is the full subcategory of Z −R −Comm of algebras graded in nonnegative
degrees such that R → S0 is an isomorphism. For e an odd positive integer, prove that ve and we
restrict to an adjoint pair of functors,

ve ∶ R −GrComm≥0 → R −GrComm≥0,

we ∶ R −GrComm≥0 → R −GrComm≥0.

For every odd positive integer e, define a functor

Φe ∶ R −GrComm≥0 → R −mod,

that sends A● to Ae and sends f● to fe. Of course, for every odd positive integer d, Φe ○ vd is
naturally isomorphic to Φde and Φde ○wd is Φe. By the previous part, there is a functor

●
⋀
R

∶ R −mod→ R −GrComm≥0
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that sends every module M to the 0-connected, associative, unital, graded commutative R-algebra
(⋀nR(M))n≥0. Moreover, there is a natural transformation,

θ ∶ IdR−mod ⇒ Φ1 ○
●
⋀
R

.

Prove that this extends uniquely to an adjoint pair of functors

(
●
⋀
R

,Φ1, θ, η).

Using the natural isomorphisms Φe ○ vd = Φde and Φde ○wd = Φe, prove that there is also an adjoint
pair of functors

(we ○
●
⋀
R

,Φe, θ, ηe).

The Koszul Complex CDGA as an Adjoint Pair. Let R be a commutative, unital ring. A
(homological, unital, associative, graded commutative) differential graded R-algebra is a pair

((Cn)n∈Z, (∧ ∶ Cp ×Cq → Cp+q)p,q∈Z, (ε ∶ R → C0), (dn ∶ Cn → Cn−1)n∈Z),

of an associative, unital, graded commutative R-algebra C● together with R-linear morphisms
(dn)n∈Z such that dn−1 ○ dn equals 0 for every n ∈ Z, and that satisfies the graded Leibniz identity,

dp+q(cp ∧ cq) = dp(cp) ∧ cq + (−1)pcp ∧ dq(cq),

for every p, q ∈ Z, for every cp ∈ Cp, and for every cq ∈ Cq. A morphism of differential graded
R-algebras,

φ● ∶ C● → A●,

is a morphism φ● = (φn)n∈Z that is simultaneously a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras.

(a) For morphisms of differential graded R-algebras, φ● ∶ C● → A●, ψ● ∶ D● → C●, prove that the
composition of ψ● ○ φ● of graded R-modules is both a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras. Thus, it is a composition
of morphisms of differential graded R-algebras. With this composition, prove that this defines a
category R −CDGA of differential graded R-algebras.

(b) For every associative, unital, graded commutative R-algebra A●, for every integer n, define
dE(A),n ∶ An → An−1 to be the zero morphism. Prove that this gives a differential graded R-algebra,
denoted E(A●). For every morphism f● ∶ A● → B● of associative, unital, graded commutative R-
algebras, prove that f● ∶ E(A●) → E(B●) is a morphism of differential graded R-algebras, denoted
E(f●). Prove that this defines a functor

E ∶ R −GrComm→ R −CDGA.
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For every differential graded R-algebra C●, prove that the subcomplex Z●(C●) is a differential
graded R-subalgebra with zero differential, and the inclusion,

η(C●) ∶ E(Z●(C●)) → C●,

is a morphism of differential gradedR-algebras. Also, for every morphism φ● ∶ C● →D● of differential
graded R-algebras, prove that the induced morphism Z●(f●) ∶ Z●(C●) → Z●(D●) is a morphism of
associative, unital, graded commutative R-algebras. Prove that this defines a functor

Z● ∶ R −CDGA→ R −GrComm.

For every associative, unital, graded commutative R-algebra A●, the inclusion Z●(E(A●)) → E(A●)
is just the identity map, whose inverse,

θ(A●) ∶ A● → Z●(E(A●)),

is an isomorphism. Prove that (E,Z●, θ, η) is an adjoint pair of functors. Finally, prove that the
subcomplex B●(C●) ⊂ Z●(C●) is a left-right ideal in the associative, unital, graded commutative
R-algebra Z●(C●). Conclude that there is a unique structure of associative, unital, graded commu-
tative R-algebra on the cokernel H●(C●) such that the quotient morphism Z●(C●) → H●(C●) is a
morphism of differential graded R-algebras. Prove that altogether this defines a functor,

H ∶ R −CDGA→ R −GrComm.

(c) A differential graded R-algebra C● is (strictly) 0-connected, resp. weakly 0-connected, if the
underlying associative, unital, graded commutative R-algebra is 0-connected, resp. weakly 0-
connected. Denote by R −CDGA≥0, resp. R −CDGA′

≥0, the full subcategory of R −CDGA whose
objects are the 0-connected differential graded R-algebras, resp. those that are weakly 0-connected.
Prove that the functors above restrict to functors,

E ∶ R −GrComm≥0 → R −CDGA≥0,

Z● ∶ R −CDGA≥0 → R −GrComm≥0,

such that (E,Z, θ, η) is still an adjoint pair. Similarly, show that H restricts to a functor

H ∶ R −CDGA≥0 → R −GrComm′
≥0.

(d) Denote by R −CDGA[0,1] the full subcategory of R −CDGA≥0 whose objects are 0-connected
differential graded R-algebras C● such that Cn is a zero object for n > 1. Prove that every such
object is uniquely determined by the data of an R-module C1 and an R-module homomorphism
dC,1 ∶ C1 → C0 = R, and conversely such data uniquely determine an object of R−CDGA[0,1]. Prove
that for such algebras C● and D●, every morphism φ● ∶ C● →D● of differential graded R-algebras is
uniquely determined by an R-module homomorphism φ1 ∶ C1 → D1 such that dD,1 ○ φ1 equals dC,1,
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and conversely, such an R-module homomorphism uniquely determines a morphism of differential
graded R-algebras. Conclude that there is a functor

σ[0,1] ∶ R −CDGA≥0 → R −CDGA[0,1],

that associates to every 0-connected differential graded R-algebra C● the algebra σ[0,1](C●) uniquely
determined by the R-module homomorphism dC,1 ∶ C1 → C0 = R and that associates to every
morphism φ● ∶ C● →D● of 0-connected differential graded R-algebras the morphism,

σ[0,1](φ●) ∶ σ[0,1](C●) → σ[0,1](D●),

uniquely determined by the morphism φ1 ∶ C1 →D1.

(e) For every R-module M and for every R-module homomorphism φ ∶ M → R, prove that there
exists a unique sequence of R-module homomorphisms,

(dM,φ,n ∶
n

⋀
R

(M) →
n−1

⋀
R

(M))n>0,

such that d1 equals φ and such that (⋀●
R(M), dM,φ) is a 0-connected differential graded R-algebra.

It may be convenient to begin with the case of a free R-module P and a morphism ψ ∶ P → R, in
which case every ⋀nR(P ) is also free and the R-module homomorphisms dn is uniquely determined
by its restriction to a convenient basis. Given a presentation M = P /K such that ψ factors uniquely
through φ ∶M → R, prove that the associative, unital, graded commutative R-algebra ⋀●

R(M) is the
quotient of ⋀●

R(P ) by the left-right ideal generated by K ⊂ P = ⋀1
R(P ). Also prove that dP,ψ maps

this ideal to itself, i.e., the ideal is differentially-closed. Conclude that there is a unique structure
of differential graded algebra on the quotient ⋀●

R(M) such that the quotient map is a morphism of
differential graded R-algebras.

(f) Prove that the construction of the previous part defines a functor,

●
⋀
R

∶ R −CDGA[0,1] → R −CDGA≥0.

Prove that for every object (φ ∶M → R) of R −CDGA[0,1], the morphism

θ(M,φ) ∶M =Ð→
1

⋀
R

(M)

is a natural isomorphism

θ ∶ IdR−CDGA
[0,1]
⇒ σ[0,1] ○

●
⋀
R

.

Similarly, for every object 0-connected differential graded R-algebra C●, prove that the natural
transformation from Problem 10(g),

η(C●) ∶
●
⋀
R

(C1) → C●,
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is compatible with the differential on ⋀●
R(C1) induced by dC,1 ∶ C1 → C0 = R, i.e., η(C●) is a natural

transformation,

η ∶
●
⋀
R

○σ[0,1] → IdR−CDGA≥0 .

Conclude that (⋀●
R, σ[0,1], θ, η) is an adjoint pair of functors. For every φ ∶M → R in R−CDGA[0,1],

the associated 0-complete differential graded R-algebra structure on ⋀●
R(M) is called the Koszul

algebra of φ ∶M → R and denoted K●(M,φ).
(g) For every R-module M , and for every R-submodule M ′ of M , denote by F 1 ⊂ ⋀●

R(M) the
left-right ideal generated by M ′ ⊂ M = ⋀1

R(M). For every integer n ≤ 0, denote by F n ⊂ ⋀●
R(M)

the entire algebra. For every integer n ≥ 1, denote by F n the left-right ideal of ⋀●
R(M) generated

by the n-fold self-product F 1 ⋅ ⋅ ⋅ ⋅ ⋅ F 1. For every pair of nonnegative integers p, q, prove that the
ideal F p ⋅ F q equals F p+q. In particular, prove that there is a natural epimorphism,

p

⋀
R

(F 1
1 ) ⊗R

q

⋀
R

(M) → F p
p+q.

Denote the quotient M/M ′ by M ′′, and denote by Σ the short exact sequence,

Σ ∶ 0 ÐÐÐ→ M ′ uÐÐÐ→ M
vÐÐÐ→ M ′′ ÐÐÐ→ 0.

For every nonnegative integer q, prove that the R-module morphism,

q

⋀
R

(v) ∶
q

⋀
R

(M) →
q

⋀
R

(M ′′),

is an epimorphism whose kernel equals F 1
q . Conclude that the composite epimorphism

p

⋀
R

(M ′) ⊗R
q

⋀
R

(M) → F p
p+q → F p

p+q/F p+1
p+q

factors uniquely through an R-module epimorphism

cΣ,p,q ∶
p

⋀
R

(M ′) ⊗R
q

⋀
R

(M ′′) → F p
p+q/F p+1

p+q .

In case there exists a splitting of Σ, prove that every epimorphism cΣ,p,q is an isomorphism. On the
other hand, find an example where Σ is not split and some morphism cΣ,p,q is not a monomorphism
(there exist such examples for R = C[x, y]).
(h) Continuing the previous problem, assume that M ′′ is isomorphic to R as an R-module (or,
more generally, projective of constant rank 1), so that Σ is split. For every nonnegative integer p,
conclude that there exists a short exact sequence,

Σp,1 ∶ 0 ÐÐÐ→ ⋀p+1
R (M ′)

⋀p+1
R (u)
ÐÐÐÐ→ ⋀p+1

R (M)
c−1
Σ,p,1ÐÐÐ→ ⋀pR(M ′) ⊗RM ′′ ÐÐÐ→ 0,
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that is split. Check that this is compatible with the product structure and, thus, defines a short
exact sequence of graded (left) ⋀●

R(M)-modules,

⋀●
R(Σ) ∶ 0 ÐÐÐ→ ⋀●

R(M ′)
⋀●R(u)
ÐÐÐ→ ⋀●

R(M)
c−1
ΣÐÐÐ→ ⋀●

R(M ′) ⊗RM ′′[+1] ÐÐÐ→ 0.

(i) Now, let φ ∶ M → R be an R-module homomorphism. Denote by φ′ ∶ M ′ → R the restriction
φ ○ u. These morphisms define structures of differential graded R-algebra, K●(M,φ) on ⋀●

R(M),
and K●(M ′, φ′) on ⋀●

R(M ′). Moreover, the morphism ⋀●
R(u) above is a morphism of differential

graded R-modules,
K(u) ∶K●(M ′, φ′) →K●(M,φ).

Prove that the induced morphism

c−1
Σ ∶K●(M,φ) →K●(M ′, φ′) ⊗RM ′′[+1]

is a morphism of cochain complexes. Moreover, for a choice of splitting s ∶M ′′ →M , for the induced
morphism φ′′ ∶M ′′ → R, φ′′ = φ ○ s, for the induced morphism of cochain complexes,

IdK●(M ′,φ′) ⊗ φ′′ ∶K●(M ′, φ′) ⊗RM ′′ →K●(M ′, φ′),
prove that there is a unique commutative diagram of short exact sequences,

TId⊗φ′′ ∶ 0 ÐÐÐ→ K●(M ′, φ′)
qId⊗φ′′ÐÐÐ→ Cone(Id⊗ φ′′)

pId⊗φ′′ÐÐÐ→ K●(M ′, φ′) ⊗RM ′′[+1] ÐÐÐ→ 0

s̃
×××Ö

Id
×××Ö

×××Ö
s̃

×××Ö
Id

K(Σ) 0 ÐÐÐ→ K●(M ′, φ′)
K●(u)ÐÐÐ→ K●(M,φ)

c−1
ΣÐÐÐ→ K●(M ′, φ′) ⊗RM ′′ ÐÐÐ→ 0.

(j) With the same hypotheses as above, conclude that there is an exact sequence of homology
(remember the shift [+1] above is cohomological),

H0(K●(M ′, φ′)) ⊗RM ′′ Id⊗φ′′ÐÐÐ→H0(K●(M ′, φ′))
K0(u)ÐÐÐ→H0(K●(M,φ)) → 0,

i.e., H0(K●(M,φ)) ≅ H0(K●(M,φ))/φ(M ′′) ⋅H0(K●(M,φ)) as a quotient algebra of R. Also, for
every n > 0, conclude the existence of a short exact sequence of Koszul homologies,

0→Kn(M ′, φ′) ⊗R R/Im(φ′′) ψ′′Ð→Kn(M,φ) →Kn−1(M ′, φ′;M ′′)Im(φ′′) → 0,

where for every R-module N , NIm(φ′′) denotes the submodule of elements that are annihilated by the
ideal Im(φ′′) ⊂ R. As graded modules over the associative, unital, graded commutative R-algebra
K∗(M ′, φ′) =H∗(K●(M ′, φ′)), this is a short exact sequence,

0→K∗(M ′, φ′) ⊗R R/Im(φ′′) ψ′′Ð→K∗(M,φ) →K∗−1(M ′, φ′;M ′′)Im(φ′′) → 0,

As a special case, if K●(M ′, φ′) is acyclic, and if the morphism

H0(K●(M ′, φ′)) ⊗RM ′′ Id⊗φ′′ÐÐÐ→H0(K●(M ′, φ′))
is injective, conclude that also K●(M,φ) is acyclic.

(k) Repeat this exercise for the cohomological Koszul complexes K●(M,φ).
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17 Adjoint Pairs of Simplicial and Cosimplicial Objects

Constant Cosimplicial Objects and the Right Adjoint. Please read the basic definitions of
cosimplicial objects in a category C. In particular, for the small category ∆ of totally ordered finite
sets with nondecreasing morphisms, read the equivalent characterization of a (covariant) functor

C ∶ ∆→ C,

via the specification for every integer r ≥ 0 of an object Cr of C, the specification for every integer
r ≥ 0 and every integer i = 0, . . . , r + 1, of a morphism,

∂ir ∶ Cr → Cr+1,

and the specification for every integer r ≥ 0 and every integer i = 0, . . . , r, of a morphism,

σir+1 ∶ Cr+1 → Cr,

satisfying the cosimplicial identities : for every r ≥ 0, for every 0 ≤ i < j ≤ r + 2,

∂jr+1 ○ ∂ir = ∂ir+1 ○ ∂j−1
r ,

for every 0 ≤ i ≤ j ≤ r,
σjr+1 ○ σir+2 = σir+1 ○ σ

j+1
r+2,

and for every 0 ≤ i ≤ r + 1 and 0 ≤ j ≤ r,

σjr+1 ○ ∂ir =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ir−1 ○ σ
j−1
r , i < j,

IdCr , i = j, i = j + 1,

∂i−1
r−1 ○ σ

j
r , i > j + 1

Moreover, for cosimplicial objects C● = (Cr, ∂ir, σ
i
r+1) and C̃● = (C̃r, ∂̃ir, σ̃

i
r+1), read about the equiv-

alent specification of a natural transformation α● ∶ C● → C̃● as the specification for every integer
r ≥ 0 of a C-morphism αr ∶ Cr → C̃r such that for every r and i,

∂̃ir ○ αr = αr+1 ○ ∂ir, σ̃ir+1 ○ αr+1 = αr ○ σir+1.

Finally, for every pair of morphisms of cosimplicial objects, α●, β● ∶ C● → C̃●, a cosimplicial homo-
topy is a specification for every integer r ≥ 0 and for every integer i = 0, . . . , r of a C-morphism,

gir+1 ∶ Cr+1 → C̃r,

satisfying the following cosimplicial homotopy identities : for every r ≥ 0,

g0
r+1 ○ ∂0

r = αr, grr+1 ○ ∂r+1
r = βr,
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gjr+1 ○ ∂ir =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂̃ir−1 ○ g
j−1
r , 0 ≤ i < j ≤ r,

gi−1
r+1 ○ ∂ir, 0 < i = j ≤ r,
∂̃i−1
r−1 ○ g

j
r , 1 ≤ j + 1 < i ≤ r + 1.

gjr ○ σir+1 = { σ̃ir ○ g
j+1
r+1, 0 ≤ i ≤ j ≤ r − 1,

σ̃i−1
r ○ gjr+1, 0 ≤ j < i ≤ r.

(a)(Constant Cosimplicial Objects) For every object C of C, define const(C) to be the rule that
associates to every integer r ≥ 0 the object C of C, and that associates to (r, i) the morphisms
∂ir = IdC , σir+1 = IdC . Prove that const(C) is a cosimplicial object of C. For every morphism of
objects α ∶ C → C̃, prove that the specification for every integer r ≥ 0 of the morphism α ∶ C → C̃
defines a morphism of cosimplicial objects,

const(α) ∶ const(C) → const(C̃).

Prove that const(IdC) is the identity morphism of const(C). For a pair of morphisms, α ∶ C → C̃
and β ∶ C̃ → Ĉ, prove that const(β ○ α) equals const(β) ○ const(α). Conclude that these rules
define a functor

const ∶ C → Fun(∆,C).

Prove that this is functorial in C, i.e., given a functor F ∶ C → D, for the associated functor,

Fun(∆, F ) ∶ Fun(∆,C) → Fun(∆,D), (Cr, ∂ir, σ
i
r+1) ↦ (F (Cr), F (∂ir), F (σir+1)),

Fun(∆, F ) ○ constC strictly equals constD ○ F .

(b)(Morphisms from a Constant Cosimplicial Object) For every integer r ≥ 1 and for every pair
of distinct morphisms [0] → [r], prove that there exists a unique ∆-morphism F ∶ [1] → [r] such
that the two morphisms are F ○∂0

0 and F ○∂1
0 . Let C● = (Cr, ∂ir, σ

i
r+1) be a cosimplicial object in C.

For every object A of C and for every morphism, α● ∶ const(A) → C●, of cosimplicial objects, prove
that α0 ∶ A → C0 is a morphism such that ∂0

0 ○ α0 equals ∂1
0 ○ α0. Prove that the morphism α● is

uniquely determined by α0, i.e., for every r ≥ 0, and for every morphism f ∶ [0] → [r], αr ∶ A → Cr

equals C(f)○α0. Conversely, for every morphism α0 ∶ A→ C0 such that ∂0
0 ○α0 equals ∂1

0 ○α0, prove
that the morphisms αr ∶= C(f) ○ α0 are well-defined and define a morphism α● ∶ const(A) → C● of
cosimplicial objects. Conclude that the set map,

HomFun(∆,C)(const(A),C●) → {α0 ∈ HomC(A,C0)∣∂0
0 ○ α0 = ∂1

0 ○ α0}, α● ↦ α0,

is a bijection. Prove that this bijection is natural in both A and in C●. In particular, conclude
that the functor,

const ∶ C → Fun(∆,C),

is fully faithful. Finally, for every pair of morphisms, α0, β0 ∶ A → C0 equalizing ∂0
0 and ∂1

0 , prove
that there exists a cosimplicial homotopy gir+1 ∶ A → Cr from α● to β● if and only if β0 equals α0,
and in this case there is a unique cosimplicial homotopy given by gir+1 = αr = βr.
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(c)(Equalizers in Cartesian Categories) Let ∆≤1 be the category of totally ordered sets of cardinality
≤ 1. Prove that a functor C● ∶ ∆≤1 → C is equivalent to the data of a pair of objects C0, C1, a pair
of morphisms ∂0

0 , ∂
1
0 ∶ C0 → C1, and a morphism σ0

1 ∶ C1 → C0 such that σ0
1 ○∂0

0 = σ0
1 ○∂1

0 = IdC0 . Let,

Z0 ∶ Fun(∆≤1,C) → C,

be a functor and let,
η ∶ const ○Z0 ⇒ IdFun(∆≤1,C),

be a natural transformation such that (const, Z0, η) extends to an adjoint pair of functors (const, Z0, θ, η).
Prove that the natural transformation θ is a natural isomorphism. Prove that for every object
C● of Fun(∆≤1,C), the morphism ηC● ∶ Z0(C●) → C0 satisfies ∂0

0 ○ ηC● = ∂1
0 ○ ηC● and is final among

all such morphisms. Prove that if α●, β● ∶ C● → C̃● are two morphisms of cosimplicial objects, and
if (gir+1 ∶ Cr+1 → C̃r) is a cosimplicial homotopy from α● to β●, then Z0(α●) equals Z0(β●).
Assume that C has finite products. For every pair of objects N0 and N1 of C and for every pair
of morphisms d0

0, d
1
0 ∶ N0 → N1, define C0 = N0, define C1 = N0 ×N1, define ∂0

0 = (IdC0 , d0
0), define

∂1
0 = (IdC0 , d1

0), and define σ0
1 = prN0 . Prove that C● is an object of Fun(∆≤1,C), and prove that

ηC● ∶ Z0(C●) → C0 is an equalizer of d0
0, d

1
0 ∶ N0 → N1. In particular, if C has both finite products

and Z0, prove that C has all equalizers of a pair of morphisms. For every pair of morphisms
f 0

0 ∶M0
0 → N1 and f 1

0 ∶M0
1 → N1 in C, for N0 =M0

0 ×M0
1 , and for d0

0 = f 0
0 ○ prM0

0
and d1

0 = f 1
0 ○ prM0

1
,

prove that the equalizer of d0
0, d

1
0 ∶ N0 → N1 is a fiber product of f 0

0 and f 1
0 . Conclude that C has

all finite fiber products, i.e., C is a Cartesian category. Conversely, assuming that C is a Cartesian
category, then, up to some form of the Axiom of Choice, prove that there exists a functor Z0 and
a natural transformation η such that (const, Z0, η) extends to an adjoint pair of functors.

(d)(The Right Adjoint to the Constant Cosimplicial Object) Assume now that there exists a functor

Z0 ∶ Fun(∆≤1,C) → C,

and a natural transformation,
η ∶ const ○Z0 ⇒ IdFun(∆≤1,C),

such that (const, Z0, η) extends to an adjoint pair of functors. For every cosimplicial object C● ∶
∆ → C, for the equalizer η ∶ Z0(C●) → C0 of ∂0

0 and ∂1
0 , use (b) above to prove that there exists a

unique extension η● ∶ const(Z0) → C● of η to a morphism of cosimplicial objects of C. Prove that
this defines a functor,

Z0 ∶ Fun(∆,C) → C,

and a natural transformation,
η● ∶ const ○Z0 ⇒ IdFun(∆,C),

such that (const, Z0, η●) extends uniquely to an adjoint pair of functors, (const, Z0, η●, θ). Prove
that θ is a natural isomorphism. Prove that if α●, β● ∶ C● → C̃● are two morphisms of cosimplicial
objects, and if (gir+1 ∶ Cr+1 → C̃r) is a cosimplicial homotopy from α● to β●, then Z0(α●) equals
Z0(β●).
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18 Topology Adjoint Pairs

Categories of Topologies on a Fixed Set Exercise. Recall from Problem 1(iv) on Problem
Set 3, for every partially ordered set there is an associated category. For a set P , form the partially
ordered set P(P ) of subsets S of P . Then for objects S, S′ of the category P(P ), i.e., for subsets
of P , the Hom set HomP(P )(S,S′) is nonempty if and only if S′ ⊂ S, in which case the Hom set
is a singleton set. In particular, this category has arbitrary (inverse) limits, namely unions, and it
has arbitrary colimits (direct limits), namely intersections. Moreover, it has a final object, ∅, and
it has an initial object, P .

Now let X be a set, and let P be P(X), so that P is a lattice. Denote by PowerX the category
from the previous paragraph. Thus, objects are subsets S ⊂ P(X), and there exists a morphism
from S to S′ if and only if S′ ⊂ S, and then the morphism is unique. We say that S refines S′.
There is a covariant functor

∪ ∶ P(P ) → P,∪S = {x ∈X ∣∃p ∈ S,x ∈ p},

and a contravariant functor

∩ ∶ P(P )opp → P,∩S = {x ∈X ∣∀p ∈ S,x ∈ p}.

By convention, ∪∅ = ∅ and ∩∅ =X.

A topology on X is a subset τ ⊂ P(X) such that (i) ∅ ∈ τ and X ∈ τ , (ii) for every finite subset
S ⊂ τ , also ∩S is in τ , and (iii) for every S ⊂ τ (possibly infinite), the set ∪S is in τ . Denote by
TopX the full subcategory of PowerX whose objects are topologies on X. A topological basis on
X is a subset B ⊂ P(X) such that for every finite subset S of B, the set V = ∩S equals ∪BV ,
where BV = {U ∈ B ∶ U ⊂ V }. Denote by BasisX the full subcategory of PowerX whose objects are
topological bases on X.

(a) Prove that TopX is stable under colimits, i.e., for every collection of topologies, there is a
topology that is refined by every topology in the collection and that refines every topology that is
refined by every topology in the collection. Prove that TopX is a full subcategory of BasisX . For
every topological basis B on X, define T (B) to consist of all elements ∪S for S ⊂ B. Prove that
T (B) is a topology on X. Prove that this uniquely extends to a functor

T ∶ BasisX → TopX ,

and prove that T is a right adjoint of the full embedding. Moreover, for every subset S ⊂ P(X),
define B(S) to consist of all elements ∩R for R ⊂ S a finite subset. In particular, ∩∅ = X is an
element of B(S). Prove that B(S) is topological basis on X. Prove that this uniquely extends to
a functor

B ∶ PowerX → BasisX ,

and prove that T ○ B is a right adjoint to the full embedding of BasisX in PowerX .
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(b) Prove that for every adjoint pair of functors, the left adjoint functor preserves colimits (direct
limits), and the right adjoint functor preserves limits (inverse limits). Conclude that TopX is stable
under limits, i.e., for every collection of topologies, there is a topology that refines every topology
in the collection and that is refined by every topology that refines every topology in the collection.

(c) Let f ∶ Y →X be a set map. Denote by

Pf ∶ P(X) → P(Y )

the functor that associates to every subset S of X the preimage subset f−1(S) of Y , and denote by

Pf ∶ P(Y ) → P(X)

the functor that associates to every subset T of Y the image subset f(T ) of X. Prove that (Pf ,Pf)
extends uniquely to an adjoint pair of functors. In particular, define

Powerf ∶ PowerX → PowerY

to be PPf , i.e., for every subset S ⊂ P(X), Powerf(S) ⊂ P(Y ) is the set of all subsets f−1(U) ⊂ Y
for subsets U ⊂X that are in S. Similarly, define

Powerf ∶ PowerY → PowerX ,

to be PPf , i.e., for every subset T ⊂ P(Y ), Powerf(Y ) ⊂ P(X) is the set of all subsets U ⊂X such
that the subset f−1(U) ⊂ Y is in T . Prove that (Powerf ,Powerf) extends uniquely to an adjoint
pair of functors. Prove that Powerf and Powerf restrict to functors TopX → TopY . For a given
topology σ on Y and τ on X, f is continuous with respect to σ and τ if σ refines Powerf(τ), i.e.,
for every τ -open subset U of X, also f−1(U) is σ-open in Y . For a given topology τ on X, for
every topology σ on Y , σ refines Powerf(τ) if and only if f is continuous with respect to σ and τ .
Similarly, for a given topology σ on Y , for every topology τ on X, Powerf(σ) refines τ if and only
if f is continuous with respect to σ and τ .

Adjoint Pair for the Category of Topological Spaces Exercise. A topological space is a pair
(X,τ) of a set X and a topology τ on X. For topological spaces (X,τ) and (Y,σ), a continuous
map is a function f ∶ X → Y such that for every subset V of Y that is in σ, the inverse image
subset f−1(V ) of X is in τ , i.e., σ refines Powerf(τ) and τ is refined by Powerf(σ).
(a) Prove that for every topological space (X,τ), the identity function IdX ∶X →X is a continuous
map from (X,τ) to (X,τ). For every pair of continuous maps f ∶ (X,τ) → (Y,σ) and g ∶ (Y,σ) →
(Z,ρ), prove that the composition g ○ f ∶ (X,τ) → (Z,ρ) is a continuous map. With this notion
of composition of continuous map, check that the topological spaces and continuous maps form a
category, Top.

(b) For every topological space (X,τ), define Φ(X) to be the set X. For every continuous map of
topological spaces, f ∶ (X,τ) → (Y,σ), define Φ(f) ∶ Φ(X) → Φ(Y ) to be f ∶ X → Y . Prove that
this defines a covariant functor,

Φ ∶ Top→ Sets.
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(c) For every set X, define L(X) = (X,P(X)), i.e., every subset of X is open. Prove that P(X)
satisfies the axioms for a topology on X. This is called the discrete topology on X. For every
set map, f ∶ X → Y , prove that f ∶ (X,P(X)) → (Y,P(Y )) is a continuous map, denoted L(f).
Prove that this defines a functor,

L ∶ Sets→ Top.

For every set X, define θX ∶X → Φ(L(X)) to be the identity map on X. Prove that θ is a natural
equivalence IdSets ⇒ Φ ○ L. For every topological space (X,τ), prove that IdX is a continuous
map (X,P(X)) → (X,τ), denoted η(X,τ). Prove that η is a natural transformation L ○Φ⇒ IdTop.
Prove that (L,Φ, θ, η) is an adjoint pair of functors. In particular, Φ preserves monomorphisms
and limits (inverse limits).

(d) For every set X, define R(X) = (X,{∅,X}). Prove that {∅,X} satisfies the axioms for a
topology on X. This is called the indiscrete topology on X. For every set map f ∶ X → Y , prove
that f ∶ R(X) → R(Y ) is a continuous map, denoted R(f). Prove that this defines a functor,

R ∶ Sets→ Top.

For every set topological space (X,τ), prove that IdX is a continous map (X,τ) → R(Φ(X,τ)),
denoted α(X,τ). Prove that α is a natural transformation IdTop⇒ R○Φ. For every set S, denote by
βX ∶ Φ(R(X)) → X the identity morphism. Prove that β is a natural equivalence Φ ○R⇒ IdSets.
Prove that (Φ,R,α, β) is an adjoint pair of functors. In particular, Φ preserves epimorphisms and
colimits (direct limits).

(e) Use the method of Problem 0 to prove that Top has (small) limits and colimits. Finally, prove
that the projective objects in Top are precisely the discrete topological spaces, and the injective
objects in Top are precisely the nonempty indiscrete topological spaces.

Adjoint Pair of Direct Image and Inverse Image Presheaves. Let (X,τX) be a topological
space. As above, consider τX as a category whose objects are open sets U of the topology, and
where for open sets U and V , there is a unique morphism from U to V if U ⊇ V , and otherwise
there is no morphism. Let C be a category. A presheaf on (X,τX) of objects of C is a functor,

A ∶ τX → C,

i.e., a τX-family as in Problem 0. By Problem 0, the τ -families form a category Fun(τX ,C), called
the category of presheaves of objects of C. For every continuous map f ∶ (Y, τY ) → (X,τX), define

f−1 ∶ τX → τY ,

as in Problem 1(c), i.e., U ↦ f−1(U). The corresponding functor

∗f−1 ∶ Fun(τY ,C) → Fun(τX ,C)

is called the direct image functor and is denoted f∗, i.e., for every presheaf F on (Y, τY ), f∗F is a
presheaf on (X,τX) given by (f∗F)(U) = F(f−1(U)).
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(a) Denote by σf the category whose objects are pairs (U,V ) of an object U of τX and an object
V of τV such that V is contained in f−1(U). For objects (U,V ) and (U ′, V ′), there is a morphism
from (U,V ) to (U ′, V ′) if and only if there is a morphism U ⊇ U ′ in τX and a morphism V ⊇ V ′ in
τY , and in this case the morphism for (U,V ) to (U ′, V ′) is unique. Prove that this is a category.
Prove that the map on objects,

x ∶ σf → τX , (U,V ) ↦ U,

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following maps on objects,

`x ∶ τX → σf , U ↦ (U, f−1(U)),

rx ∶ τX → σf , U ↦ (U,∅)

extend uniquely to functors, and prove that (`x, x) and (x, rx) extend uniquely to adjoint functors,
i.e., (U, f−1(U)), resp. (U,∅), is the initial object, resp. final object, in the fiber category (σf)x,U .
Prove that the map on objects

y ∶ σf → τY , (U,V ) ↦ V

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following map on objects,

`y ∶ τY → σf , V ↦ (X,V ),

extends uniquely to a functor, and prove that (`y, y) extends uniquely to an adjoint functor, i.e.,
(X,V ) is the initial object in the fiber category (σf)y,V . Prove that y○`x is the functor f−1 ∶ τX → τY
from above. Find an example where y does not admit a right adjoint.

Assume now that C has colimits. Apply Problem 0(g) to conclude that there are adjoint pairs
of functors (∗x,∗`x), (∗rx,∗x), (∗y,∗`y), and (Ly,∗y). Compose these adjoint pairs to obtain an
adjoint pair (Ly ○∗x,∗`x ○∗y). Also, by functoriality of ∗z in z, ∗`x ○∗y equals ∗y○`x, and this equals
∗f−1 . Thus, this is an adjoint pair (Ly ○∗x, f∗). Unwind the defintions from Problem 0(g) to check
that for every presheaf A on X and for every V an object of τY , Ly ○∗x(A) on V is the colimit over
the fiber category (σf)y,V of all U an object of τX with V ⊆ f−1(U) of A(U). The functor Ly ○ ∗x
is the inverse image functor for presheaves,

f−1 ∶ Fun(τX ,C) → Fun(τY ,C).

Čech Cosimplicial Object of a Covering Exercise. Let (X,τX) be a topological space. For
every object U of τX , prove that the topology τU on U associated to i ∶ U → X via Problem 1(c)
is a full, upper subcategory of τX that has an initial object ⊙ = U . For every U , an open covering
of U is a set U and a set map ιU ∶ U → τU such that ∪Image(ιU) equals U . Define σ to be the
category whose objects are pairs (U,U) of an open U in τX and an open covering ιU ∶ U → τU . For
objects (U,U) and (V,V), a σ-morphism from (U,U) to (V,V) is a pair U ⊇ V of a morphism in
τX and a refinement φ ∶ U ⪰V, i.e., a set function φ ∶V→ U such that for every V0 in V, ιU(φ(V0))
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contains ιV(V0). In particular, for every object (U, ιU ∶ U→ τU) of σ, define V = Image(ιU) with its
natural inclusion ιV ∶ V ↪ τU . Up to the Axiom of Choice, prove that there exists a refinement
φ ∶ (U,U) ⪰ (U,V). Thus, the open coverings with ι a monomorphism are cofinal in the category σ.

(a)(Category of Open Coverings) For every pair of refinements, φ ∶ (U,U) ⪰ (V,V) and ψ ∶ (V,V) ⪰
(W,W), prove that the composition φ ○ ψ ∶W → U is a refinement, φ ○ ψ ∶ (U,U) → (W,W). Also
prove that IdU ∶ U→ U is a refinement (U,U) → (U,U). Conclude that these rules define a category
σ whose objects are open coverings (U,U) of opens U in τX and whose morphisms are refinements.
Define x ∶ σ → τX to be the rule that associates to every (U,U) the open U and that associates to
every refinement φ ∶ (U,U) ⪰ (V,V) the inclusion U ⊇ V . Prove that this is a strictly surjective
functor. Prove that the map on objects,

`x ∶ τX → σ, U ↦ (U,{U}),

extends uniquely to a functor, and prove that (`x, x) extends uniquely to an adjoint pair of
functors, i.e., (U,{U}) is the initial object in the fiber category σx,U . Typically x does not admit
a right adjoint.

For every open covering ιU ∶ U→ τU , for every integer r ≥ 0, define the following set map,

ιUr+1 ∶ Ur+1 → τU , (U0, U1, . . . , Ur) ↦ ιU(U0) ∩ ιU(U1) ∩ ⋅ ⋅ ⋅ ∩ ιU(Ur).

Let C be a category, and let A be an C-presheaf on (X,τX). Let (U,U) be an object of σ. Recall
that for every object T of C, there is a Yoneda functor,

hT ∶ Copp → Sets, S ↦HomC(S,T ),

and this is covariant in T . For every integer r ≥ 0, define

hA,U,r ∶ Copp → Sets, S ↦ ∏
(U0,...,Ur)∈Ur+1

hA(ι(U0,...,Ur))(S),

together with the projections,

π(U0,...,Ur) ∶ hA,U,r → hA(ι(U0,...,Ur)).

For every integer r ≥ 0, and for every integer i = 0, . . . , r + 1, define

∂ir ∶ hA,U,r → hA,U,r+1,

to be the unique natural transformation such that for every (U0, . . . , Ur+1) ∈ Ur+2, π(U0,...,Ur+1) ○ ∂ir
equals the composition of the projection,

π(U0,...,Ui−1,Ui+1,...,Ur+1) ∶ hA,U,r → hA(ι(U0,...,Ui−1,Ui+1∩,∩Ur+1)),

with the natural transformation of Yoneda functors arising from the restriction morphism

A(ι(U0) ∩ ⋅ ⋅ ⋅ ∩ ι(Ui−1) ∩ ι(Ui+1) ∩ ⋅ ⋅ ⋅ ∩ ι(Ur+1)) → A(ι(U0) ∩ ⋅ ⋅ ⋅ ∩ ι(Ur+1)).
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Similarly, for every i = 0, . . . , r, define

σir+1 ∶ hA,U,r+1 → hA,U,r

to be the unique natural transformation such that for every (U0, . . . , Ur) ∈ Ur+1, π(U0,...,Ur+1) ○ σir+1

equals the projection π(U0,...,Ui−1,Ui,Ui,Ui+1,...,Ur).

(b)(Cosimplicial Identities) Prove that these natural transformations satisfy the cosimplicial iden-
tities : for every r ≥ 0, for every 0 ≤ i < j ≤ r + 2,

∂jr+1 ○ ∂ir = ∂ir+1 ○ ∂j−1
r ,

for every 0 ≤ i ≤ j ≤ r,
σjr+1 ○ σir+2 = σir+1 ○ σ

j+1
r+2,

and for every 0 ≤ i ≤ r + 1 and 0 ≤ j ≤ r,

σjr+1 ○ ∂ir =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ir−1 ○ σ
j−1
r , i < j,
Id, i = j, i = j + 1,

∂i−1
r−1 ○ σ

j
r , i > j + 1

In the case that C is an additive category, define

dr ∶ hA,U,r → hA,U,r+1, dr =
r+1

∑
i=0

∂ir.

Prove that dr+1 ○ dr equals 0.

(c)(Refinements and Cosimplicial Homotopies) For every refinement, φ ∶ (U,U) ⪰ (V,V), for every
integer r ≥ 0, define

hA,φ,r ∶ hA,U,r → hA,V,r

to be the unique natural transformation such that for every (V0, . . . , Vr) ∈ Vr+1, the composition
π(V0,...,Vr) ○ hA,q,r equals the composition of projection

π(φ(V0),...,φ(Vr)) ∶ hA,U,r → hA(φ(V0)∩⋅⋅⋅∩φ(Vr))

with the natural transformation of Yoneda functors arising from the restriction morphism

A(ιφ(V0) ∩ ⋅ ⋅ ⋅ ∩ ιφ(Vr)) → A(ι(V0) ∩ ⋅ ⋅ ⋅ ∩ ι(Vr)).

Prove that the natural transformations (hA,φ,r)r≥0 are compatible with the natural transformations
∂ir and σir+1. For every pair of refinements, φ ∶ (U,U) ⪰ (V,V) and ψ ∶ (V,V) ⪰ (W,W), for the
composition refinement φ ○ ψ ∶ (U,U) ⪰ (W,W), prove that hA,φ○ψ,r equals hA,ψ,r ○ hA,φ,r, and also
prove that hA,IdU,r equals IdhA,U,r . Thus hA,φ,r is functorial in φ.

Let φ ∶ (U,U) ⪰ (V,V) and ψ ∶ (U,U) ⪰ (V,V) be refinements. For every integer r ≥ 0, for every
integer i = 0, . . . , r, define

giA,φ,ψ,r+1 ∶ hA,U,r+1 → hA,V,r
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to be the unique natural transformation such that for every (V0, . . . , Vr) ∈Vr+1, π(V0,...,Vr) ○giA,φ,ψ,r+1

equals the composition of the projection,

πψ(V0),...,ψ(Vi),φ(Vi),...,φ(Vr) ∶ hA,U,r+1 → hA(ι(ψ(V0),...,ψ(Vi),φ(Vi),...,φ(Vr))),

with the natural transformation of Yoneda functors arising from the restriction morphism

A(ιψ(V0) ∩ ⋅ ⋅ ⋅ ∩ ιψ(Vi) ∩ ιφ(Vi) ∩ ⋅ ⋅ ⋅ ∩ ιφ(Vr)) → A(ι(V0) ∩ ⋅ ⋅ ⋅ ∩ ι(Vi) ∩ ⋅ ⋅ ⋅ ∩ ι(Vr)).

Prove the following identities (cosimplicial homotopy identities),

g0
A,φ,ψ,r+1 ○ ∂0

A,U,r = hA,φ,r, grA,φ,ψ,r+1 ○ ∂r+1
A,U,r = hA,ψ,r,

gjA,φ,ψ,r+1 ○ ∂
i
A,U,r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂iA,V,r−1 ○ g
j−1
A,φ,ψ,r, 0 ≤ i < j ≤ r,

gi−1
A,φ,ψ,r+1 ○ ∂iA,U,r, 0 < i = j ≤ r,
∂i−1
A,V,r−1 ○ g

j
A,φ,ψ,r, 1 ≤ j + 1 < i ≤ r + 1.

gjA,φ,ψ,r ○ σ
i
A,U,r+1 = {

σiA,V,r ○ g
j+1
A,φ,ψ,r+1, 0 ≤ i ≤ j ≤ r − 1,

σi−1
A,V,r ○ g

j
A,φ,ψ,r+1, 0 ≤ j < i ≤ r.

For the identity refinement IdU ∶ U ⪰ U, prove that gjA,Id,Id,r+1 equals σjA,U,r+1. Also prove that for

refinements χ ∶ V →W and ξ ∶ T → U, gjA,φ○χ,ψ○χ,r+1 equals hA,χ,r ○ gjA,φ,ψ,r+1 and gjA,ξ○φ,ξ○ψ,r+1 equals

gjA,φ,ψ,r+1 ○ hA,ξ,r+1.

(d)(Functoriality in A) For every morphism of C-presheaves, α ∶ A→ A′, define

hα,U,r ∶ hA,U,r → hB,U,r,

to be the unique natural transformation whose postcomposition with each projection πB,(U0,...,Ur)
equals the composition of πA,(U0,...,Ur) with the natural transformation induced by the morphism

αι(U0,...,Ur) ∶ A(ι(U0, . . . , Ur)) → A′(ι(U0, . . . , Ur)).

Prove that these maps are compatible with the cosimplicial operations ∂ir and σir+1, as well as the
operations hA,φ,r associated to a refinement φ ∶ U ⪰ V, and the cosimplicial homotopies giA,φ,ψ,r+1

associated to a pair of refinements, φ,ψ ∶ U ⪰V. Prove that this is functorial in α. Conclude that
(up to serious set-theoretic issues), for every open cover U, morally these rules define a functor
from the category of C-presheaves to the “category” of cosimplicial objects in the category of con-
travariant functors from C to Sets. Stated differently, to every open cover U there is an associated
cosimplicial object in the category Fun(C − Presh,Fun(C,Sets)) of covariant functors from the
category of C-presheaves to the category of contravariant functors C → Sets. This rule is covariant
for refinement of open covers. Moreover, up to simplicial homotopy, it is independent of the choice
of refinement.
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(e)(Coadjunction of Sections) As a particular case, for the left adjoint `x of x, observe that there
is a canonical refinement

ηU,U ∶ `x ○ x(U,U) ⪰ (U,U), i.e., (U,{U}) ⪰ (U,U).

Prove that hA,{U},r is the constant / diagonal cosimplicial object that for every r associates hA(U)
and with ∂i and σi equal to the identity morphism. Conclude that for every cover (U,U) in σ, there
is a natural coaugmentation,

grA,U ∶ hA(U) → hA,U,r,

that is functorial in A, functorial in (U,U) with respect to refinements, and that equalizes the
simplicial homotopies associated to a pair of refinements in the sense that

gjA,φ,ψ,r+1 ○ g
r+1
A,U = grA,V ○ hAUV .

Define the functor
const ∶ Fun(σ,C) → Fun(∆ × σ,C)

that associates to a functor B ∶ σ → C the functor constB ∶ σ → Fun(∆,C) whose value on every
(U,U) is the constant / diagonal cosimplicial object r ↦ B(U,U) for every r with every ∂i and σi

defined to be the identity morphism. Conclude that the rule U ↦ (r ↦ hA(U)) above is the Yoneda
functor associated to const ○ ∗x(A).
(f)(Čech cosimplicial object) Assume now that C has all finite products. Thus, for every open
covering (U,U) and for every integer r ≥ 0, there exists an object

Čr(U,A) = ∏
(U0,...,Ur)∈U

A(U0 ∩ ⋅ ⋅ ⋅ ∩Ur),

such that hA,U,r equals hČr(U,A). Use the Yoneda Lemma to prove that there are associated mor-
phisms in C,

∂iA,U,r ∶ Čr(U,A) → Čr+1(U,A),

σiA,U,r+1 ∶ Čr+1
U (A) → Čr

U(A),

Čr(φ,A) ∶ Čr(U,A) → Čr(V,A),

Čr+1,i(φ,ψ,A) ∶ Čr+1(U,A) → Čr(V,A),

Čr(U, α) ∶ Čr(U,A) → Čr(U,A′),

whose associated morphisms of Yoneda functors equal the morphisms defined above. Thus, in this
case, Č∗(U,A) is a cosimplicial object in C. Prove that this defines a covariant functor

Č(U,−) ∶ Fun(τX ,C) → Fun(∆,C).

Incorporating the role of U, prove that this defines a functor

Č ∶ Fun(τX ,C) → Fun(∆ × σ,C).
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Prove that this is, typically, not equivalent to the composite functor,

const ○ ∗x ∶ Fun(τX ,C) → Fun(σ,C) → Fun(∆ × σ,C).

However, prove that the coadjunction in the last part does give rise to a natural transformation,

g ∶ const ○ ∗x⇒ Č.

(g) Assume now that there exists a functor,

Z0 ∶ Fun(∆≤1,C) → C,

and a natural transformation,
η ∶ const ○Z0 ⇒ IdFun(∆≤1,C),

such that (const, Z0, η) extends to an adjoint pair of functors, i.e., assume that C is a Cartesian
category. Use Problem 4(d) to conclude that there exists a functor,

Z0 ∶ Fun(∆ × σ,C) → Fun(σ,C),

and a natural transformation,
η ∶ const ○Z0 ⇒ IdFun(∆×σ,C),

such that (const, Z0, η) extends to an adjoint pair of functors, (const, Z0, η, θ) such that θ is a
natural isomorphism. Moreover, for every A● ∶ ∆ × σ → C, for every object (U,U) of σ, prove
that η ∶ Z0(A●(U) → A0(U)) is an equalizer of ∂0

0 , ∂
1
0 ∶ A0(U) → A1(U). Finally, the composition of

natural transformations, (Z0 ○ g) ○ (θ ○ ∗x), is a natural transformation

Z0(g) ∶ ∗x⇒ Z0 ○ const ○ ∗x⇒ Z0 ○ Č.

In particular, conclude that for a refinement φ ∶ (U,U) ⪰ (V,V), the induced morphism Z0(Č●(U,A)) →
Z0(Č●(V,A)) is independent of the choice of refinement.

(h) Let (U, ι ∶ U→ τU) be an object of σ. Let φ ∶ (U,U) ⪰ (U,{U}) be a refinement, i.e., ∗ = φ(U) is
an element of U such that ι(∗) equals U . Thus, (U,U) admits both the identity refinement of (U,U)
and also the composite of φ with the canonical refinment from (e), ηU,Ucircφ. Using (c), prove that
the identity on Č●(U,−) is homotopy equivalent to Č(ηU,U,−) ○ Č(φ,−). On the other hand, the
refinement φ ○ ηU,U of (U,{U}) is the identity refinement. Thus the composite Č(φ,−) ○ Č(ηU,U,−)
equals the identity on Č●({U},−). Prove that Č●(U,A) is homotopy equivalent to the constant
simplicial object constA(U), and these homotopy equivalences are natural in A and open coverings
(U,U) that refine to (U,{U}).
Sheaves Exercise. Let (X,τX) be a topological space. Let C be a category. A C-sheaf on (X,τX)
is a C-presheaf A such that for every open subset U in τX , for every open covering ι ∶ U→ τU of U ,
the associated sequence of Yoneda functors,

hA(U)
g0
A,UÐÐ→ hA,U,0 ⇉ hA,U,1,
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is exact, where the two arrows are ∂0
A,U,0 and ∂1

A,U,0. Stated more concretely, for every object S of
C, for every collection (sU0 ∶ S → A(ι(U0)))U0∈U of C-morphisms such that for every (U0, U1) ∈ U2,
the following two compositions are equal,

S
sU0ÐÐ→ A(ι(U0))

A
ι(U0)

ι(U0)∩ι(U1)ÐÐÐÐÐÐ→ A(ι(U0) ∩ ι(U1)), S
sU1ÐÐ→ A(ι(U1))

A
ι(U1)

ι(U0)∩ι(U1)ÐÐÐÐÐÐ→ A(ι(U0) ∩ ι(U1)),

there exists a unique morphism sU ∶ S → A(U) such that for every U0 ∈ U, sU0 equals AU
ι(U0) ○ sU .

(a)(Sheaf Axiom via Čech Objects) For simplicity, assume that C is a Cartesian category that has
all small products. In particular, assume that the functors Č and Z0 of the previous exercise are
defined. Prove that a C-presheaf on (X,τX) is a sheaf if and only if the morphism

Z0(g) ∶ ∗x(A) → Z0(Č(A))

of objects in Fun(σ,C) is an isomorphism.

(b)(Associated Sheaf / Sheafification Functor) Now assume that C has all small colimits. In
particular, assume that there exists a functor

Lx ∶ Fun(σ,C) → Fun(τX ,C),

such that (Lx,∗x) extends to an adjoint pair of functors. Using Exercise 0(g), prove that for every
open U in τX and for every functor,

B ∶ σ → C,
Lx(B)(U) is the colimit of the restriction of B to the fiber category σx,U . In particular, since open
coverings (U, ι ∶ U → U) such that ι is a monomorphism are cofinal in the category σx,U , it suffices
to compute the colimit over such open coverings. For every functor,

A ∶ τX → C,

prove that Lx ○ ∗x(A) → A is a natural isomorphism. Denote by Sh ∶ Fun(τX ,C) → Fun(τX ,C)
the composite functor,

Lx ○Z0 ○ Č ∶ Fun(τX ,C) → Fun(τx,C).
Prove that there exists a unique natural transformation,

sh ∶ IdFun(τx,C) ⇒ Sh,

whose composition with the natural isomorphism above equals Lx(Z0(g)). For every sheaf A,
prove that

sh ∶ A→ Sh(A)
is an isomorphism.

(c)(The Associated Sheaf is a Sheaf) Let (U, ι ∶ U→ τU) an object of σ, and let,

(ι(U0), κU0 ∶VU0 → τι(U0)),
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be a collection of open coverings of each ι(U0). For every pair (U0, U1) ∈ U2, let

(ι(U0, U1), κU0,U1 ∶VU0,U1 → τι(U0,U1)),

be an open covering together with refinements

φ0
0 ∶ (ι(U0),VU0) ⪰ (ι(U0, U1),VU0,U1), φ1

0 ∶ (ι(U1),VU1) ⪰ (ι(U0, U1),VU0,U1).

Define
V ∶= (⊔U0∈UVU0) ⊔ (⊔(U0,U1)∈U2VU0,U1

) ,

define
κ ∶V→ τU ,

to be the unique set map whose restriction to every VU0 equals κU0 and whose restriction to every
VU0,U1 equals κU0,U1 . For every U0 ∈ U, define

φU0 ∶ (U,κ ∶V→ τU) ⪰ (ι(U0), κU0 ∶VU0 → τι(U0)),

to be the obvious refinement. For every U0 ∈ U, define Z(U0,A) = Z0(Č●(VU0 ,A)). For every
(U0, U1) ∈ U2, define Z0(U0, U1,A) = Z0(Č●(VU0,U1 ,A)). Define

Z0(U,A) ∶= ∏
U0∈U

Z0(U0,A),

Z1(U,A) ∶= ∏
(U0,U1)∈U2

Z0(U0, U1,A),

∂0
0 ∶ Z0(U,A) → Z1(U,A), ∂i0(zU0) = (AUiU0∩U1

(zUi))U0,U1 .

Prove that the restriction morphism,

Z0(φ●) ∶ Z0(V,A) → Z0(Z●(U,A)),

is a C-isomorphism. Conclude that Sh(A) is a sheaf. Denote by,

Φ ∶ C − Sh(X,τX) → C −Presh(X,τX),

the full embedding of the category of sheaves in the category of presheaves. Thus, Sh is a functor,

Sh ∶ C −Presh(X,τX) → C − Sh(X,τX),

and sh is a natural transformation IdC−PreshX ⇒ Φ ○ Sh. Conclude that (Sh,Φ, sh) extends to an
adjoint pair of functors.

(d)(Pushforward and Inverse Image) For a continuous map f ∶ (X,τX) → (Y, τY ), prove that the
composite functor,

C − Sh(X,τX)
ΦÐ→ C −Presh(X,τX)

f∗Ð→ C −Presh(Y,τY ),
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factors uniquely through Φ ∶ C − Sh(Y,τY ) → C −Presh(Y,τY ), i.e., there is a functor

f∗ ∶ C − Sh(X,τX) → C − Sh(Y,τY ),

such that f∗ ○Φ equals Φ ○ f∗. On the other hand, prove by example that the composite

C − Sh(Y,τY )
ΦÐ→ C −Presh(Y,τY )

f−1

ÐÐ→ C −Presh(X,τX)

need not factor through Φ. Define

f−1 ∶ C − Sh(Y,τY ) → C − Sh(X,τX),

to be the composite of the previous functor with Sh ∶ C − Presh(X,τX) → C − Sh(X,τX). Prove that
the functors (f−1, f∗) extend to an adjoint pair of functors between C − Sh(X,τX) and C − Sh(Y,τY ).

Espace Étalé Exercise. Let (X,τX) be a topological space. A space over X is a continuous
map of topological spaces, f ∶ (Y, τY ) → (X,τX). For spaces over X, f ∶ (Y, τY ) → (X,τX) and
g ∶ (Z, τZ) → (X,τX), a morphism of spaces over X from f to g is a continuous map u ∶ (Y, τY ) →
(Z, τX) such that g ○ u equals f .

(a)(The Category of Spaces over X) For every space over X, f ∶ (Y, τY ) → (X,τX), prove that
IdY ∶ (Y, τY ) → (Y, τY ) is a morphism from f to f . For spaces over X, f ∶ (Y, τY ) → (X,τX),
g ∶ (Z, τZ) → (X,τX) and h ∶ (W,τW ) → (X,τX), for every morphism from f to g, u ∶ (Y, τY ) →
(Z, τZ), and for every morphism from g to h, v ∶ (Z, τZ) → (W,τW ), prove that the composition
v ○ u ∶ (Y, τY ) → (W,τW ) is a morphism from f to h. Conclude that these notions form a category,
denoted Top(X,τX).

(b)(The Sheaf of Sections) For every space over X, f ∶ (Y, τY ) → (X,τX), for every open U of τX ,
define Secf(U) to be the set of continuous functions s ∶ (U, τU) → (Y, τY ) such that f ○ s is the
inclusion morphism (U, τY ) → (X,τX). For every inclusion of τX-open subsets, U ⊇ V , for every s
in Secf(U), define s∣V to be the restriction of s to the open subset V . Prove that s∣V is an element
of Secf(V ). Prove that these rules define a functor

Secf ∶ τX → Sets.

Prove that this functor is a sheaf of sets on (X,τX).
(c)(The Sections Functor) For spaces over X, f(Y, τY ) → (X,τX) and g ∶ (Z, τZ) → (X,τX), for
every morphism from f to g, u ∶ (Y, τY ) → (Z, τZ), for every τX-open set U , for every s in Secf(U),
prove that u ○ s is an element of Secg(U). For every inclusion of τX-open sets, U ⊇ V , prove that
u ○ (s∣V ) equals (u ○ s)∣V . Conclude that these rules define a morphism of sheaves of sets,

Secu ∶ Secf → Secg.

Prove that SecIdY is the identity morphism of Secf . For spaces over X, f ∶ (Y, τY ) → (X,τX), g ∶
(Z, τZ) → (X,τX) and h ∶ (W,τW ) → (X,τX), for every morphism from f to g, u ∶ (Y, τY ) → (Z, τZ),
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and for every morphism from g to h, v ∶ (Z, τZ) → (W,τW ), prove that Secv○u equals Secv ○ Secu.
Conclude that these rules define a functor,

Sec ∶ Top(X,τX) → Sets − Sh(X,τX).

(d)(The Éspace Étalé) For every presheaf of sets over X, F , define EspF to be the set of pairs
(x,φx) of an element x of X and an element φx of the stalk Fx = colimx∈U F(U); such an element
is called a germ of F at x. Denote by

πF ∶ EspF →X,

the set map sending (x,φx) to x. For every open subset U of X and for every element φ of F(U),
define B(U,φ) ⊂ EspF to be the image of the morphism,

φ̃ ∶ U → EspF , x↦ φx.

Let (U,ψ) and (V,χ) be two such pairs. Let (x,φx) be an element of both B(U,ψ) and B(V,χ).
Prove that there exists an open subset W of U ∩V containing x such that ψ∣W equals χ∣W . Denote
this common restriction by φ ∈ F(W ). Conclude that (x,φx) is contained in B(W,φ), and this
is contained in B(U,ψ) ∩ B(V,χ). Conclude that the collection of all subset B(U,φ) of EspF is
a topological basis. Denote by τF the associated topology on EspF . Prove that τF is the finest
topology on EspF such that for every τX-open set U and for every φ ∈ F(U), the set map φ̃ is a
continuous map (U, τU) → (EspF , τF). In particular, since every composition πF ○φ̃ is the continuous
inclusion of (U, τU) in (X,τX), conclude that every φ̃ is continuous for the topology π−1

F (τX) on
EspF . Since τF refines this topology, prove that

πF ∶ (EspF , τF) → (X,τX)

is a continuous map, i.e., πF is a space over X.

(e)(The Éspace Functor) For every morphism of presheaves of sets over X, α ∶ F → G, for every
(x,φx) in EspF , define Espα(x,φx) to be (x,αx(φx)), where αx ∶ Fx → Gx is the induced morphism
of stalks. For every τX-open set U and every φ ∈ F(U), prove tht the composition Espα ○ φ̃ equals

α̃U(φ) as set maps U → EspG. By construction, α̃U(φ) is continuous for the topology τG. Conclude

that φ̃ is continuous for the topology (Espα)−1(τG) on EspF . Conclude that τF refines this topology,
and thus Espα is a continuous function,

Espα ∶ (EspF , τF) → (EspG, τG).

Prove that EspIdF
equals the identity map on EspF . For morphisms of presheaves of sets over X,

α ∶ F → G and β ∶ G → H, prove that Espβ○α equals Espβ ○Espα. Conclude that these rules define
a functor,

Esp ∶ Sets −Presh(X,τX) → Top(X,τX).
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(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, F , for every τX-
open set U , for every φ ∈ F(U), prove that φ̃ is an element of SecπF (U). For every τX-open subset

U ⊇ V , prove that φ̃∣V equals φ̃∣V . Conclude that φ ↦ φ̃ is a morphism of presheaves of sets over
X,

θF ∶ F → Sec ○Esp(F).
For every morphism of presheaves of sets over X, α ∶ F → G, for every τX-open set U , for every
φ ∈ F(U), prove that Espα ○ θF ,U(φ) equals α̃U(φ), and this in turn equals θG,U ○αU(φ). Conclude
that Sec ○Esp(α) ○ θF equals θG ○ α. Therefore θ is a natural transformation of functors,

θ ∶ IdSets−Presh
(X,τX )

⇒ Sec ○Esp.

(g)(Alternative Description of Sheafification) Since Sec○Esp(F) is a sheaf, prove that there exists
a unique morphism

θ̃F ∶ Sh(F) → Sec ○Esp(F)
factoring θF . For every element t ∈ Sec ○Esp(F)(U), a t-pair is a pair (U0, s0) of a τX-open subset
U ⊇ U0 and an element s0 ∈ F(U0) such that t−1(B(U0, s0)) equals U0. Define U to be the set of
t-pairs, and define ι ∶ U → τU to be the set map (U0, s0) ↦ U0. Prove that (U, ι ∶ U → τU) is an
open covering. For every pair of t-pairs, (U0, s0) and (U1, s1), for every x ∈ U0 ∩ U1, prove that
there exists a τX-open subset U0,1 ⊂ U0 ∩ U1 containing x such that s0∣U0,1 equals s1∣U0,1 . Prove

that this data gives rise to a section s ∈ Sh(F)(U) such that θ̃F(s) equals t. Conclude that θ̃ is
an epimorphism. On the other hand, for every r, s ∈ F(U), if θF ,x(rx) equals θF ,x(sx), prove that

r̃(x) equals s̃(x), i.e., rx equals sx. Conclude that every morphism θ̃x is a monomorphism, and
hence θ̃ is a monomorphism of sheaves. Thus, finally prove that θ̃F is an isomorphism of sheaves.
Conclude that θ̃ is a natural isomorphism of functors,

θ̃ ∶ Sh⇒ Sec ○Esp.

(h) For every space over X, f ∶ (Y, τY ) → (X,τX), for every τX-open U , for every s ∈ Secf(U), and
for every x ∈ U , define a set map,

ηf,U,x ∶ Secf(U) → Y, s↦ s(x).

Prove that for every τX-open subset U ⊇ V that contains x, ηf,V,x(s∣V ) equals ηf,U,x(s). Conclude
that the morphisms ηf,U,x factor through set maps,

ηf,x ∶ (Secf)x → Y, sx ↦ s(x).

Define a set map,
ηf ∶ EspSecf

→ Y, (x, sx) ↦ ηf,x(sx).
Prove that ηf ○ s̃ equals s as set maps U → Y . Since s is continuous for τY , conclude that s̃ is
continuous for the inverse image topology (ηf)−1(τY ) on EspSecf

. Conclude that τSecf refines this
topology, and thus ηf is a continuous map,

ηf ∶ (EspSecf
, τSecf ) → (Y, τY ).
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Also prove that f ○ ηf equals πSecf . Conclude that ηf is a morphism of spaces over X. Finally, for
spaces over X, f ∶ (Y, τY ) → (X,τX) and g ∶ (Z, τZ) → (X,τX), and for every morphism from f to
g, u ∶ (Y, τY ) → (Z, τZ), prove that u ○ ηf equals ηg ○Esp ○ Sec(u). Conclude that f ↦ ηf defines a
natural transformation of functors,

η ∶ Esp ○ Sec⇒ IdTop
(X,τX )

.

(i)(The Adjoint Pair) Prove that (Esp,Sec, θ, η) is an adjoint pair of functors.

Alternative Description of Inverse Image Exercise. Let f ∶ (Y, τY ) → (X,τX) be a continuous
function of topological spaces. Since the category of topological spaces is a Cartesian category (by
Problem 2(e) on Problem Set 8), for every space over X, g ∶ (Z, τZ) → (X,τX), there is a fiber
product diagram in Top,

(Z, τZ) ×(X,τX) (Y, τY )
g∗fÐÐÐ→ (Z, τZ)

f∗g
×××Ö

×××Ö
g

(Y, τY ) ÐÐÐ→
f

(X,τX)

.

Denote the fiber product by f∗(Z, τZ).
(a) For spaces over X, g ∶ (Z, τZ) → (X,τX) and h ∶ (W,τW ) → (X,τX), for every morphism of
spaces over X, u ∶ (Z, τZ) → (W,τW ), prove that there is a unique morphism of topological spaces,

f∗u ∶ f∗(Z, τZ) → f∗(W,τW ),

such that f∗h ○ f∗u equals f∗g and h∗f ○ f∗u equals u ○ g∗f . Prove that f∗IdZ is the identity
morphism of f∗(Z, τZ). For spaces over X, g ∶ (Z, τZ) → (X,τX), h ∶ (W,τW ) → (X,τX) and
i ∶ (M,τM) → (X,τX), for every morphism from g to h, u ∶ (Z, τZ) → (W,τW ), and for every
morphism from h to i, v ∶ (W,τW ) → (M,τM), prove that f∗(v ○ u) equals f∗v ○ f∗u. Conclude
that these rules define a functor,

f∗Sp ∶ Top(X,τX) → Top(Y,τY ).

Prove that this functor is contravariant in f . In particular, there is a composite functor,

f∗Sp ○Esp(X,τX) ∶ Sets − Sh(X,τX) → Top(Y,τY ).

(b) Consider the composite functor,

f∗ ○ Sec(Y,τY ) ∶ Top(Y,τY ) → Sets − Sh(Y,τY ) → Sets − Sh(X,τX).

Prove directly (without using the inverse image functor on sheaves) that (f∗Sp ○ Esp(X,τX), f∗ ○
Sec(Y,τY )) extends to an adjoint pair of functors. Use this to conclude that the composite Sec(Y,τY ) ○
f∗Sp ○Esp(X,τX) is naturally isomorphic to the inverse image functor on sheaves of sets.
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19 The Adjoint Pair of Discontinuous Sections (Godement

Resolution)

Flasque Sheaves Exercise. Let (X,τX) be a topological space, and let C be a category. A
C-presheaf F on (X,τX) is flasque (or flabby) if for every inclusion of τX-open sets, U ⊇ V , the
restriction morphism AUV ∶ A(U) → A(V ) is an epimorphism.

(a)(Pushforward Preserves Flasque Sheaves) For every continuous function f ∶ (X,τX) → (Y, τY ),
for every flasque C-presheaf F on (X,τX), prove that f∗F is a flasque C-presheaf on (Y, τY ).
(b)(Restriction to Opens Preserves Flasque Sheaves) For every τX-open subset U , for the continuous
inclusion i ∶ (U, τU) → (X,τX), for every flasque C-presheaf F on (X,τX), prove that i−1F is a
flasque C-presheaf. Also, for every C-sheaf F on (X,τX), prove that the presheaf inverse image
i−1F is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H1-Acyclicity of Flasque Sheaves) Let A be an Abelian category realized as a full subcategory
of the category of left R-modules (via the embedding theorem). Let

0 ÐÐÐ→ A′ qÐÐÐ→ A
pÐÐÐ→ A′′ ÐÐÐ→ 0

be a short exact sequence of A-sheaves on (X,τX). Let U be a τX-open set. Let t ∶ A′′(U) → T be
a morphism in A such that t ○ p(U) is the zero morphism. Assume that A′ is flasque. Prove that
t is the zero morphism as follows. Let a′′ ∈ A′′(U) be any element. Let S be the set of pairs (V, a)
of a τX-open subset V ⊆ U and an element a ∈ A(V ) such that p(V )(a) equals a′′∣V . For elements
(V, a) and (Ṽ , ã) of S, define (V, a) ⪯ (Ṽ , ã) if V ⊆ V ′ and ã∣V equals a. Prove that this defines
a partial order on S. Use the sheaf axiom for A to prove that every totally ordered subset of S
has a least upper bound in S. Use Zorn’s Lemma to conclude that there exists a maximal element
(V, a) in S. For every x in U , since p is an epimorphism of sheaves, prove that there exists (W,b)
in S such that x ∈W . Conclude that on V ∩W , a∣V ∩W − b∣V ∩W is in the kernel of p(V ∩W ). Since
the sequence above is exact, prove that there exists unique a′ ∈ A′(V ∩W ) such that q(V ∩W )(a′)
equals a∣V ∩W − b∣V ∩W . Since A′ is flasque, prove that there exists a′W ∈ A′(W ) such that a′W ∣V ∩W
equals a′. Define aW = b + q(W )(a′W ). Prove that (W,aW ) is in S and a∣V ∩W equals aW ∣V ∩W . Use
the sheaf axiom for A once more to prove that there exists unique (V ∩W,aV ∩W ) in S with aV ∩W ∣V
equals a and aV ∩W ∣W equals aW . Since (V, a) is maximal, conclude that W ⊂ V , and thus x is in V .
Conclude that V equals U . Thus, a′′ equals p(U)(a). Conclude that t(a′′) equals 0, and thus t is
the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding
theorem.)

(d)(Hr-Acyclicity of Flasque Sheaves) Let C● = (Cq, dqC)q≥0 be a complex of A-sheaves on (X,τX).
Assume that every Cq is flasque. Let r ≥ 0 be an integer, and assume that the cohomology sheaves
hq(C●) are zero for q = 0, . . . , r. Use (c) and induction on r to prove that for the associated complex
in C,

C●(U) = (Cq(U), dqC(U))q≥0

also hq(C●(U)) is zero for q = 0, . . . , r.
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Enough Injective Λ −Π-modules Exercise. Let (X,τX) be a topological space. Let Λ and Π
be presheaves of associative, unital rings on (X,τX). The most common case is to take both Λ and
Π to be the constant presheaf with values Z. Assume, for simplicity, that Λ(∅) and Π(∅) are the
zero ring. A presheaf of Λ −Π-bimodules on (X,τX) is a presheaf M of Abelian groups on (X,τX)
together with a structure of Λ(U) − Π(U)-bimodule on every Abelian group M(U) such that for
every open subset U ⊇ V , relative to the restriction homomorphisms of associative, unital rings,

ΛU
V ∶ Λ(U) → Λ(V ), ΠU

V ∶ Π(U) → Π(V ),

every restriction homomorphism of Abelian groups,

MU
V ∶M(U) →M(V ),

is a homomorphism of Λ(U) − Π(U)-bimodules. For presheaves of Λ − Π-bimodules on (X,τX),
M and N , a morphism of presheaves of Λ − Pi-bimodules is a morphism of presheaves of Abelian
groups α ∶M → N such that for every open U , the Abelian group homomorphism,

α(U) ∶M(U) → N(U),

is a homomorphism of Λ(U) −Π(U)-bimodules.

(a)(The Category of Presheaves of Λ − Π-Bimodules) Prove that these notions form a category
Λ − Π − Presh(X,τX). Prove that this is an Abelian category that satisfies Grothendieck’s axioms
(AB1), (AB2), (AB3), (AB3*), (AB4) and (AB5).

(b)(Discontinuous Λ−Π-Bimodules) A discontinuous Λ−Π-bimodule is a specification K for every
nonempty τX-open U of a Λ(U)−Π(U)-bimodule K(U), but without any specification of restriction
morphisms. For discontinuous Λ − Π-bimodules K and L, a morphism of discontinuous Λ − Π-
bimodules α ∶ K → L is a specification for every nonempty τX-open U of a homomorphism α(U) ∶
K(U) → L(U) of Λ(U) − Π(U)-bimodules. Prove that with these notions, there is a category
Λ − Π − Disc(X,τX) of discontinuous Λ − Π-bimodules. Prove that this is an Abelian category that
satisfies Grothendieck’s axioms (AB1), (AB2), (AB3), (AB3*), (AB4), (AB4*) and (AB5).

(c)(The Presheaf Associated to a Discontinuous Λ −Π-Bimodule) For every discontinuous Λ −Π-
bimodule K, for every nonempty τX-open subset U , define

K̃(U) = ∏
W⊆U

K(W )

as a Λ(U)−Π(U)-bimodule, where the product is over nonempty open subsets W ⊆ U (in particular
also W = U is allowed), together with its natural projections πUW ∶ K̃(U) → K(W ). Also define

K̃(∅) to be a zero object. For every inclusion of τX-open subsets U ⊇ V , define

K̃U
V ∶ ∏

W⊆U
K(W ) → ∏

W⊆V
K(W ),
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to be the unique morphism of Λ(U) −Π(U)-bimodules such that for every W ⊂ V , πVW ○ K̃U
V equals

πUW . Prove that K̃ is a presheaf of Λ−Π-bimodules. For discontinuous Λ−Π-bimodules K and L,
for every morphism of discontinuous Λ −Π-bimodules, α ∶K → L, for every τX-open set U , define

α̃(U) ∶ ∏
W⊆U

K(W ) → ∏
W⊆U

L(W )

to be the unique morphism of Λ(U) − Π(U)-bimodules such that for every W ⊆ U , πUL,W ○ α̃(U)
equals πUK,W . Prove that α̃ is a morphism of presheaves of Λ − Π-bimodules. Prove that these
notions define a functor,

∗̃ ∶ Λ −Π −Disc(X,τX) → Λ −Π −Presh(X,τX).

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Čech Object of a Discontinuous Λ − Π-Bimodule is Acyclic) For every open covering
(U, ι ∶ U→ τU), define

τU = ⋃
U0∈U

τι(U0) = {W ∈ τU ∣∃U0 ∈ U,W ⊂ ι(U0)}.

For every discontinuous Λ −Π-bimodule K, define

K̃(U) ∶= ∏
W ∈τU

K(W )

together with its projections πW ∶ K̃(U) →K(W ). In particular, define

πUU ∶ K̃(U) → K̃(U)

to be the unique Λ(U) −Π(U)-morphism such that for every W ∈ τU, πW ○ πUU equals πW .

For every nonempty W ∈ τU, define

UW ∶= {U0 ∈ U∣W ⊂ ι(U0)}.

Prove that
Čr(U, K̃) = ∏

(U0,...,Ur)∈Ur+1

∏
W⊆ι(U0,...,Ur)

K(W )

together with its projection π(U0,...,Ur;W ) ∶ Čr(U, K̃) →K(W ) for every nonempty W ⊂ ι(U0, . . . , Ur);
if ι(U0, . . . , Ur) is empty, the corresponding factor is a zero object. For every integer r ≥ 0, for every
i = 0, . . . , r + 1, prove that the morphism

∂ir ∶ Čr(U, K̃) → Čr+1(U, K̃),

is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur, Ur+1) ∈
(UW )r+2, πU0,...,Ur,Ur+1;W ○ ∂ir equals πU0,...,Ui−1,Ui+1,...,Ur+1;W . For every integer r ≥ 0 and for every
i = 0, . . . , r, prove that the morphism

σir+1 ∶ Čr+1(U, K̃) → Čr(U, K̃),
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is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur) ∈
(UW )r+1, πU0,...,Ur;W ○ σir+1 equals equals πU0,...,Ui−1,Ui,Ui,Ui+1,...,Ur+1;W . For every integer r ≥ 0, prove
that the morphism

gr
K̃,U

∶ K̃(U) → Čr(U, K̃)

is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur) ∈
(UW )r+1, πU0,...,Ur;W ○ gr equals πW .

For every nonempty W ∈ τU, for every r ≥ 0, define

Čr(U, K̃)W ∶= ∏
(U0,...,Ur)∈(UW )r+1

K(W ),

with its projections
πU0,...,Ur ∣W ∶ Čr(U, K̃)W →K(W ).

Define
πr−;W ∶ Čr(U, K̃) → Čr(U, K̃)W

to be the unique Λ(U)−Π(U)-morphism such that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○πr−;W

equals πU0,...,Ur;W . For every integer r ≥ 0 and for every i = 0, . . . , r + 1, prove that there exists a
unique Λ(U) −Π(U)-morphism

∂ir ∶ Čr(U, K̃)W → Čr+1(U, K̃)W ,

such that ∂ir ○ πr−;W equals πr+1
−;W ○ ∂ir, and prove that for every (U0, . . . , Ur, Ur+1) ∈ (UW )r+2,

πU0,...,Ur,Ur+1∣W ○ ∂ir equals πU0,...,Ui−1,Ui+1,...,Ur+1∣W . For every integer r ≥ 0 and for every i = 0, . . . , r,
prove that there exists a unique Λ(U) −Π(U)-morphism

σir+1 ∶ Čr+1(U, K̃)W → Čr(U, K̃)W ,

such that σir+1○πr+1
−;W equals πr−;W ○σir+1, and prove that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○

σir+1 equals equals πU0,...,Ui−1,Ui,Ui,Ui+1,...,Ur+1∣W . For every integer r ≥ 0, prove that there exists a
unique Λ(U) −Π(U)-morphism

gr ∶K(W ) → Čr(U, K̃)W

such that πr−;W ○ gr equals gr ○ πW , and prove that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○ gr
equals IdK(W ). Conclude that

π●−;W ∶ Č●(U, K̃) → Č●(U, K̃)W

is a morphism of cosimplicial Λ(U)−Π(U)-bimodules that is compatible with the coaugmentations
g●. Prove that these morphisms realize Č●(U, K̃) in the category S●Λ(U) − Π(U) − Bimod as a
product,

Č●(U, K̃) = ∏
W ∈τU

Č●(U, K̃)W .
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Using the Axiom of Choice, prove that there exists a set map

φ ∶ τU ∖ {∅} → U

such that for every nonempty W ∈ τU, φ(W ) is an element in UW . For every integer r ≥ 0, define

Čr(φ, K̃)W ∶ Čr(U, K̃)W →K(W )

to be πφ(W ),...,φ(W )∣W . Prove that for every integer r ≥ 0 and for every i = 0, . . . , r+1, Čr+1(φ, K̃)W ○∂ir
equals Čr(φ, K̃)W . Prove that for every integer r ≥ 0 and for every i = 0, . . . , r, Čr(φ, K̃)W ○ σir+1

equals Čr+1(φ, K̃)W . Conclude that

Č●(φ, K̃)W → constK(W )

is a morphism of cosimplicial Λ(U) − Π(U)-bimodules. Prove that Č●(φ, K̃)W ○ g● equals the
identity morphism of constK(W ). For every nonempty W ∈ τU, for every integer r ≥ 0, for every
integer i = 0, . . . , r, define

giφ,r+1 ∶ Čr+1(U, K̃)W → Čr(U, K̃)W

to be the unique Λ(U)−Π(U)-morphism such that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○giφ,r+1

equals πU0,...,Ui,φ(W ),...,φ(W )∣W . Prove the following identities (cosimplicial homotopy identities),

g0
φ,r+1 ○ ∂0

r = gr ○ Čr(φ, K̃)W , grφ,r+1 ○ ∂r+1
r = IdČr(U,K̃)W ,

gjφ,r+1 ○ ∂
i
r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ir−1 ○ g
j−1
φ,r , 0 ≤ i < j ≤ r,

gi−1
φ,r+1 ○ ∂ir, 0 < i = j ≤ r,
∂i−1
r−1 ○ g

j
φ,r, 1 ≤ j + 1 < i ≤ r + 1.

gjφ,r ○ σ
i
r+1 = {

σir ○ g
j+1
φ,r+1, 0 ≤ i ≤ j ≤ r − 1,

σi−1
r ○ gjφ,r+1, 0 ≤ j < i ≤ r.

Conclude that g● and Č●(φ, K̃)W are homotopy equivalences between Č●(U, K̃)W and constK(W ).

Conclude that Č●(U, K̃) is homotopy equivalent to constK̃(U). In particular, prove that the associ-

ated cochain complex of Č●(U, K̃)W is acyclic with Ȟ0(U, K̃)W equal to K(W ). Similarly, prove
that the associated cochain complex of Č●(U, K̃) is acyclic with Ȟ0(U, K̃) equal to K(U).

(e)(The Forgetful Functor to Discontinuous Λ−Π-Bimodules; Preservation of Injectives) For every
presheaf M of Λ −Π-bimodules on (X,τX), define Φ(M) to be the discontinuous Λ −Π-bimodule
U ↦ M(U). For presheaves of Λ − Π-bimodules, M and N , for every morphism of presheaves of
Λ−Π-bimodules, α ∶M → N , define Φ(α) ∶ Φ(M) → Φ(N) to be the assignment U ↦ α(U). Prove
that these rules define a functor

Φ ∶ Λ −Π −Presh(X,τX) → Λ −Π −Disc(X,τX).
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Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For
every presheaf M of Λ −Π-bimodules, for every τX-open U , define

θM,U ∶M(U) → ∏
W⊆U

M(W )

to be the unique homomorphism of Λ(U) − Π(U)-bimodules such that for every τX-open subset
W ⊂ U , πUW ○θM,U equals MU

W . Prove that U ↦ θM,U is a morphism of presheaves of Λ−Π-bimodules,

θM ∶M → Φ̃(M).

For every morphism of presheaves of Λ−Π-bimodules, α ∶M → N , for every τX-open set U , prove
that Φ̃(α) ○ θM equals θN ○ α. Conclude that θ is a natural transformation of functors,

θ ∶ IdΛ−Π−Presh
(X,τX )

⇒ ∗̃ ○Φ.

For every discontinuous Λ −Π-bimodule K, for every τX-open U , define

ηK,U ∶ ∏
W⊆U

K(W ) →K(U)

to be πUW . Prove that U ↦ ηK,U is a morphism of discontinuous Λ −Π-bimodules. For every pair
of discontinuous Λ−Π-bimodules, K and L, for every morphism of discontinuous Λ−Π-bimodules,
β ∶ K → L, prove that ηL ○ Φ(β̃) equals β ○ ηL. Conclude that η is a natural transformation of
functors,

η ∶ Φ ○ ∗̃ ⇒ IdΛ−Π−Disc
(X,τX )

.

Prove that (Φ, ∗̃, θ, η) is an adjoint pair of functors. Since Φ preserves monomorphisms, use
Problem 3(d), Problem Set 5 to prove that ∗̃ sends injective objects to injective objects. Since
the forgetful morphism from sheaves to presheaves preserves monomorphisms, prove that the
sheafification functor Sh sends injective objects to injective objects. Conclude that Sh ○ ∗̃ sends
injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every τX-open
set U , there are enough injective Λ(U) − Π(U)-bimodules. Using the Axiom of Choice, conclude
that Λ −Π −Disc(X,τX) has enough injective objects. In particular, for every presheaf M of Λ −Π-
bimodules, for every open set U , let there be given a monomorphism of Λ(U) −Π(U)-bimodules,

εU ∶M(U) → I(U),

with I(U) an injective Λ(U) −Π(U)-bimodule. Conclude that Ĩ is an injective presheaf of Λ −Π-
bimodules, and the composition

M
θMÐ→ Φ̃(M) ε̃Ð→ Ĩ

is a monomorphism of presheaves of Λ −Π-bimodules. If M is a sheaf, conclude that Sh(Ĩ) is an
injective sheaf of Λ −Π-bimodules. Also, use (d) to prove that the composition

M
θMÐ→ Φ̃(M) ε̃Ð→ Ĩ

shÐ→ Sh(Ĩ)
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is a monomorphism of sheaves of Λ −Π-bimodules. (Hint: Since σx,U is a filtering small category,
use Problem 0 to reduce to the statement that for every open covering (U,U), the morphism
M(U) → M̃(U) is a monomorphism. Realize this a part of the Sheaf Axiom for M .) Conclude that
both the category Λ−Π−Presh(X,τX) and Λ−Π−Sh(X,τX) have enough injective objects. In particular,
for an additive, left-exact functor F , resp. G, on the category of presheaves of Λ − Π-bimodules,
resp. the category of sheaves of Λ−Π-bimodules, there are right derived functors ((RnF )n, (δn)n),
resp. ((RnG)n, (δn)n). Finally, since ∗̃ is exact and sends injective objects to injective objects, use
the Grothendieck Spectral Sequence (or universality of the cohomological δ-functor) to prove that
(RnF ) ○ ∗̃ is Rn(F ○ ∗̃).

(g)(Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous Λ−Π-bimodule on
X. For every τX-open set U , prove that K̃(U) → Sh(K̃)(U) is the colimit over all open coverings
U ⊂ τU (ordered by refinement as usual) of the morphism

πUU ∶ K̃(U) → K̃(U).

In particular, since every morphism K̃(U) → K̃(U) is surjective (by the Axiom of Choice), conclude
that also

sh(U) ∶ K̃(U) → Sh(K̃)(U)

is surjective. Use this to prove that Sh(K̃) is a flasque sheaf.

For every injective Λ−Π-sheaf I, for the monomorphism θI ∶ I → Sh(Φ̃(I)), there exists a retraction

ρ ∶ Sh(Φ̃(I)) → I. Also Sh(Φ̃(I)) is flasque. Use this to prove that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every τX-open set U , prove that the
functor

Γ(U,−) ∶ Λ −Π −Presh(X,τX) → Λ(U) −Π(U) −Bimod, M ↦M(U)

is an exact functor. Also prove that the functor

Γ(U,−) ∶ Λ −Π − Sh(X,τX) → Λ(U) −Π(U) −Bimod

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of Λ−Π-modules admits
a resolution, ε ∶ M → I● by injective sheaves of Λ − Π-modules that are also flasque. Conclude
that Γ(U,−) extends to a universal cohomological δ-functor formed by the right derived functors,
((Hn(U,−))n, (δn)n). Finally, assume that M is flasque. Use Problem 4(d) to prove that I●(U) is
an acyclic complex of Λ(U) −Π(U)-bimodules. Conclude that for every flasque sheaf M of Λ −Π-
bimodules, for every n ≥ 0, Hn(U,M) is zero, i.e., flasque sheaves of Λ − Π-bimodules are acyclic
for the right derived functors of Γ(U,−).

(i)(Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Indepen-
dence of Λ −Π) Use (h) and the hypercohomlogy spectral sequence to prove that for every sheaf
M of Λ − Π-bimodules, for every acyclic resolution εM ∶ M → M ● of M by sheaves of Λ − Π-
bimodules that are flasque, for every integer n ≥ 0, there is a canonical isomorphism of Hn(U,M)
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with hn(M ●(U)). In particular, the functor ⊤= Sh ○ ∗̃ ○ Φ, the natural transformation θ ∶ Id ⇒⊤,
and the natural transformation

Sh ○ ∗̃ ○ η ○Φ ∶⊤⊤⇒⊤,

form a triple on the category Λ −Π − Sh(X,τX). There is an associated cosimplicial functor,

L⊤ ∶ Λ −Π − Sh(X,τX) → S●Λ −Π − Sh(X,τX)

and a functorial coaugmentation,
θM ∶ const●M → L●⊤(M).

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution
of M by flasque sheaves of Λ−Π-bimodules, and it is canonical, depending on no choices of injective
resolutions.

Finally, let Λ̂→ Λ and Π̂→ Π be morphisms of presheaves of associative, unital rings. This induces
a functor,

Λ −Π − Sh(X,τX) → Λ̂ − Π̂ − Sh(X,τX).

For every sheaf M of Λ−Π-bimodules, and for every acyclic resolution ε ∶M →M ● of M by flasque
sheaves of Λ − Π-bimodules, this is also an acyclic, flasque resolution of M with the associated
structure of sheaves of Λ̂− Π̂-bimodules. For the natural map of cohomological δ-functors from the
derived functors of Γ(U,−) on Λ−Π−Sh(X,τX) to the derived functors of Γ(U,−) on Λ̂−Π̂−Sh(X,τX),
prove that this natural map is a natural isomorphism of cohomological δ-functors. This justifies
the notation Hn(U,−) that makes no reference to the underlying presheaves Λ and Π, and yet is
naturally a functor to Λ(U) −Π(U) −Bimod whenever M is a sheaf of Λ −Π-bimodules.

Problem 6.(Flasque Sheaves are Čech-Acyclic) Let (X,τX) be a topological space. Let M be a
presheaf of Λ −Π-bimodules on (X,τX). Let U be a τX-open set. Let (U, ι ∶ U → τU) be an open
covering. For every τX-open subset V , define (V, ιV ∶ U → τV ) to be the open covering ιV (U0) =
V ∩ ι(U0). For simplicity, denote this by (V,UV ). For every integer r ≥ 0, define Č

r(U,M)(V ) to
be the Λ(V ) −Π(V )-bimodule Čr(UV ,M). Moreover, define

∂iV,r ∶ Č
r(U,M)(V ) → Č

r+1(U,M)(V ), σiV,r+1 ∶ Č
r+1(U,M)(V ) → Č

r(U,M)(V ),

to be the face and degeneracy maps on Č●(UV ,M). Finally, let ηrV ∶M(V ) → Č
r(U,M)(V ) be the

coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of τX-open subsets
W ∩ V ∩U , the identity map IdU is a refinement of open coverings,

φVW ∶ (V, ιV ∶ U→ τV ) → (W, ιW ∶ U→ τW ).

By Problem 5(f) from Problem Set 8, Čr(φVW ,M) is an associated morphism of Λ(V ) − Π(V )-
bimodules, denoted

Č
r(U,M)VW ∶ Čr(U,M)(V ) → Č

r(U,M)(W ).
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(a)(The Presheaf of Čech Objects) Prove that the rules V ↦ Č
r(U,M)(V ) and Č

r(U,M)VW define

a presheaf Č
r(U,M) of Π − Λ-bimodules on U . Moreover, prove that the rules V ↦ ∂iV,r, resp.

V ↦ σiV,r+1, V ↦ ηrV , define morphisms of presheaves of Λ −Π-bimodules,

∂ir ∶ Č
r(U,M) → Č

r+1(U,M), σir+1 ∶ Č
r+1(U,M) → Č

r(U,M), ηr ∶M ∣U → Č
r(U,M).

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

Č
● ∶ σ ×Λ −Π −Presh(X,τX) → S●Λ −Π −Presh(U,τU ),

compatible with cosimplicial homotopies for pairs of refinements and together with a natural trans-
formation of cosimplicial objects,

η● ∶ const●M ∣U → Č
●(U,M).

(b)(The Čech Resolution Preserves Sheaves and Flasques) For every (U0, . . . , Ur) in Ur+1, denote by
iU0,...,Ur ∶ (ι(U0, . . . , Ur), τι(U0,...,Ur)) → (U, τU) the continuous inclusion map. Prove that Č

r(U,M)
is isomorphic as a presheaf of Λ −Π-bimodules to

∏
(U0,...,Ur)

(ιU0,...,Ur)∗ι−1
U0,...,Ur

M.

Use Problem 4(a) and (b) to prove that Č
r(U,M) is a sheaf whenever M is a sheaf, and it is

flasque whenever M is flasque.

(c)(Localy Acyclicity of the Čech Resolution) Assume now that M is a sheaf. For every τX-open
subset V ⊂ U such that there exists ∗ ∈ U with V ⊂ ι(∗), conclude that (V,UV ) refines to (V,{V }).
Using Problem 5(h), Problem Set 8, prove that

η●V ∶ const●M(V ) → Č
●(U,M)(V )

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial
object,

dr =
r

∑
i=0

(−1)i∂ir,

the coaugmentation
ηV ∶M(V ) → Č

●(U,M)(V )

is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of Π − Λ-
bimodules,

η ∶M ∣U → Č
●(U,M)

is an acyclic resolution.
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Now assume that M is flasque. Prove that η is a flasque resolution of the flasque sheaf M ∣U . Using
Problem 5(i), prove that the cohomology of the complex of Λ(U) −Π(U)-bimodules,

Ȟn(U,M) ∶= hn(Č●(U,M), d●)

equals H●(U,M). Using Problem 5(h), prove that H0(U,M) equals M(U) and Hn(U,M) is zero
for every integer n > 0. Conclude that for every flasque sheaf M of Λ − Π-bimodules, for every
open covering (U,U), M(U) → Ȟ0(U,M) is an isomorphism and Ȟn(U,M) is zero for every integer
n > 0.

Čech Cohomology as a Derived Functor Exercise. Let (X,τX) be a topological space. Let U
be a τX-open set. Let (U, ι ∶ U→ τU) be an open covering. For every presheaf A of Λ−Π-bimodules,
denote by Č●(U,A) the object in Ch≥0(Λ −Π −Bimod) associated to the cosimplicial object.

(a)(Exactness of the Functor of Čech Complexes; The δ-Functor of Čech Cohomologies) Use Prob-
lem 5 of Problem Set 8 to prove that this is an additive functor

Č●(U,−) ∶ Λ −Π −Presh(X,τX) → Ch≥0(Λ −Π −Bimod).

Prove that for every short exact sequence of presheaves of Λ −Π-bimodules,

0 ÐÐÐ→ A′ qÐÐÐ→ A
pÐÐÐ→ A′′ ÐÐÐ→ 0,

the associated sequence of cochain complexes,

0 ÐÐÐ→ Č●(U,A′)
Č●(U,q)
ÐÐÐÐ→ Č●(U,A)

Č●(U,p)
ÐÐÐÐ→ Č●(U,A′′) ÐÐÐ→ 0,

is a short exact sequence. Use this to prove that the Čech cohomology functor Ȟ0(U,A) =
h0(Č●(U,A)) is an additive, left-exact functor, and the sequence of Čech cohomologies,

Ȟr(U,A) = hr(Č●(U,A)),

extend to a cohomological δ-functor from Λ −Π −Presh(X,τX) to Λ(U) −Π(U) −Bimod.

(b)(Effaceability of Čech Cohomology) For every presheaf A of Λ−Π-bimodules, use Problem 5(e)

and 5(f) to prove that θA ∶ A→ Φ̃(A) is a natural monomorphism of presheaves of Λ−Π-bimodules.

Use Problem 5(d) to prove that for every r ≥ 0, Ȟr(U, Φ̃(A)) is zero. Conclude that Ȟr(U,−) is
effaceable. Prove that the cohomological δ-functor ((Ȟr(U,A))r, (δr)r) is universal. Conclude that
the natural transformation of cohomological δ-functors from the right derived functor of Ȟ0(U,−)
to the Čech cohomology δ-functor is a natural isomorphism of cohomological δ-functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by

Ψ ∶ Λ −Π − Sh(X,τX) → Λ −Π −Presh(X,τX),

the additive, fully faithful embedding (since we are already using Φ for the forgetful morphism to
discontinuous Λ − Π-bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends
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to an adjoint pair of functors (Sh,Φ). Recall the construction of Sh as a filtering colimit of
Čech cohomologies Ȟ0(U,−). Since Ȟ0(U,−) is left-exact, and since Λ − Π − Presh(X,τX) satisfies
Grothendieck’s condition (AB5), prove that Sh is left-exact. Use Problem 3(d), Problem Set 5
to prove that Ψ sends injective objects to injective objects. Use Problem 5(g) to prove that
every injective sheaf I of Λ − Π-bimodules is flasque. Use Problem 6(c) to prove that Ψ(I) is
acyclic for Ȟ●(U,−). Prove that the pair of functors Ψ and Ȟ0(U,−) satisfy the hypotheses for the
Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological
spectral sequence,

IEp,q
2 = Ȟp(U,RqΨ(A)) ⇒Hp+q(U,A).

(d)(The Derived Functors of Ψ are the Presheaves of Sheaf Cohomologies) For every sheaf A of
Λ − Π-bimodules, for every integer r ≥ 0, for every τX-open set U , denote Hr(A)(U) the additive
functor Hr(U,A). In particular, H0(A)(U) is canonically isomorphic to A(U). Thus, for all τX-
open sets, V ⊂ U , there is a natural transformation

∗∣UV ∶ H0(−)(U) → H0(−)(V ).

Use universality to prove that this uniquely extends to a morphism of cohomological δ-functors,

∗∣UV ∶ ((Hr(−)(U))r, (δr)r) → ((Hr(−)(V ))r, (δr)r).

Prove that for all τX-open sets, W ⊂ V ⊂ U , both the composite morphism of cohomological
δ-functors,

∗∣VW ○ ∗∣UV ∶ ((Hr(−)(U))r, (δr)r) → ((Hr(−)(V ))r, (δr)r) → ((Hr(−)(W ))r, (δr)r),

and the morphism of cohomological δ-functors,

∗∣UW ∶ ((Hr(−)(U))r, (δr)r) → ((Hr(−)(W ))r, (δr)r),

extend the functor ∗∣VW ○ ∗∣UV = ∗∣UW from H0(−)(U) to H0(−)(W ). Use the uniqueness in the uni-
versality to conclude that these two morphisms of cohomological δ-functors are equal. Prove that
((Hr(−))r, (δr)r) is a cohomological δ-functor from Λ − Π − Sh(X,τX) to Λ − Π − Presh(X,τX). Use
Problem 5(h) to prove that every flasque sheaf is acyclic for this cohomological δ-functor. Com-
bined with Problem 5(i), prove that the higher functors are effaceable, and thus this cohomological
δ-functor is universal. Conclude that this the canonical morphism of cohomological δ-functors from
the right derived functors of Ψ to this cohomological δ-functor is a natural isomorphism of cohomo-
logical δ-functors. In particular, combined with the last part, this gives a convergent, first quadrant
spectral sequence,

IEp,q
2 = Ȟp(U,Hq(A)) ⇒Hp+q(U,A).

This is the Čech-to-Sheaf Cohomology Spectral Sequence. In particular, conclude the existence of
monomorphic abutment maps,

Ȟr(U,A) →Hr(U,A).
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as well as abutment maps,
Hr(U,A) →H0(U,Hr(A)).

(e)(The Colimit of Čech Cohomology with Respect to Refinement) Since Čech complexes are
compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy,
the induced refinement maps on Čech cohomology are independent of the choice of refinement. Use
this to define a directed system of Čech cohomologies. Denote the colimit of this direct system as
follows,

Ȟ●(U,−) = colim
U∈σx,U

Ȟ●(U,−).

Prove that this extends uniquely to a cohomological δ-functor such that for every open covering
(U,U), the induced sequence of natural transformations,

∗∣UU ∶ ((Ȟr(U,−))r, (δr)r) → ((Ȟr(U,−))r, (δr)r),

is a natural transformation of cohomological δ-functors. Repeat the steps above to deduce the
existence of a unique convergent, first quadrant spectral sequence,

IEp,q
2 = Ȟp(U,Hq(A)) ⇒Hp+q(U,A),

such that for every open covering (U,U), the natural maps

∗∣UU ∶ Ȟp(U,Hq(A)) → Ȟp(U,Hq(A))

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of
monomorphic abutment maps

Ȟr(U,A) →Hr(U,A)
as well as abutment maps

Hr(U,A) → Ȟ0(U,Hr(A)).
Use the first abutment maps to define subpresheaves Ȟr(A) of Hr(A) by V ↦ Ȟr(V,A).
(f)(Reduction of the Spectral Sequence; Ȟ1(U,A) equals H1(U,A)) For every r > 0, prove that the
associated sheaf of Hr(A) is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of
sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude
that Ȟ0(U,Hr(A)) is zero. In particular, conclude that the natural abutment map,

Ȟ1(U,A) →H1(U,A)

is an isomorphism. Thus, also Ȟ1(A) → H1(A) is an isomorphism. Use this to produce a “long
exact sequence of low degree terms” of the spectral sequence,

0→ Ȟ2(U,A) →H2(U,A) → Ȟ1(U, Ȟ1(A)) δÐ→ Ȟ3(U,A).

(g)(Sheaves that Are Čech-Acyclic for “Enough” Covers are Acyclic for Sheaf Cohomology) Let
B ⊂ τX be a basis that is stable for finite intersection. For every open U in B, let CovU be a
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collection of open coverings of U by sets in B such that CovU is cofinal with respect to refinement
in σx,U . Let A be such that for every U in B, for every (U,U) in CovU , for every r > 0, Ȟr(U,A) is
zero. Prove that Hr(U,A) is zero. Use the spectral sequence to inductively prove that for every
r > 0, Hr(A)(U) is zero, Hr(U,A) is zero and Hr(A)(U) is zero. Conclude that for every open
covering (X, ι ∶V→ B), the Čech-to-Sheaf Cohomology Spectral Sequence relative to V degenerates
to isomorphisms

Ȟr(V,A) →Hr(X,A).

If you are an algebraic geometer, let (X,OX) be a separated scheme, let Λ = Π = OX , let B be the
basis of open affine subsets, let CovU be the collection of basic open affine coverings, and let A be
a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U,U) of an affine
scheme, for every quasi-coherent sheaf A, Ȟr(U,A) is zero for all r ≥ 0 (this is essentially exactness
of the Koszul cochain complex for a regular sequence, combined with commutation with colimits).
Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine
scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology
is computed as Čech cohomology of any open affine covering.

A Propositional calculus

The language of category theory uses the language of classes. The most common formulation of
class theory in pure mathematics is a second-order theory built on top of the first-order theory of
predicate calculus and Zermelo – Fraenkel set theory.

Every formal language has an alphabet of symbols, A. The Kleene star A∗ of the alphabet A is
the set of all strings of elements of A, i.e., the elements of A∗ are those ordered pairs whose first
entry is a nonnegative (true) integer n, the length of the string, and whose second entry is itself
an ordered n-tuple of elements of A (sometimes called a literal). Thus, for every nonempty set A,
the first projection is a surjective function from A∗ to the set of all nonnegative integers whose
fiber over each nonnegative integer n is (naturally bijective to) the set An of all ordered n-tuples
of elements of A.

Every formal language also has a specified subset of A∗ whose elements are called well-formed
formulas. In formalizing mathematics, a formal language is usually defined to be an ordered pair
of an alphabet A and of this subset of A∗. Most often this subset is specified by a subset of
atomic strings and a collection of production rules for producing new well-formed formulas from
existing well-formed formulas. Then the well-formed formulas are all strings obtained by iteratively
applying the production rules to the atomic strings (this is formalized mathematically using the
Chomsky hierarchy, automata, the Chomsky-Schützenberger theorem, etc.).

In the formal language for propositional logic, the alphabet includes one symbol for the propositional
variable as well as the following symbols for the usual logical connectives (we use the pipe to separate
items in a list).

p ∣ ⇐ ∣ ⇒ ∣ ¬ ∣ ∧ ∣ ∨ ∣ ⇔ ∣ ( ∣ )
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When immediately preceded and succeeded by symbols other than p, the string p is p1, and, for
every (true) positive integer n, the concatenated string pn∗p is pn+1. Thus, the alphabet represents
denumerably many

A string in propositional logic is a well-formed formula (called a proposition) if and only if it can
be obtained, starting from propositional variables pn for all (true) positive integers n, by iterated
application of the following production rules. For all well-formed formulas f and g, also the following
are well-formed formulas:

(f) ∣ (f) ⇒ (g) ∣ (f) ⇐ (g) ∣ (f) ⇔ (g) ∣ ¬(f) ∣ (f) ∧ (g) ∣ (f) ∨ (g)

The alphabet of predicate calculus also includes a symbol t for a term variable. As with the
propositional variables, when preceded and succeded by symbols other than t, the string t is t1,
and, for every (true) positive integer n, the concatenated string tn ∗ t is tn+1. The alphabet also
includes a symbol – the comma “,” – for separating term variables in a list. [HERE]

that are certain finite strings of symbols from the alphabet. In predicate calculus, there are
symbols that allow to produce variables. Every well-formed formula, or predicate, in predicate
calculus has a specified set of free variables whose number is a nonnegative integer called the arity.
Every predicat also has a specified set of bound variables, each bound by precisely one quantifier
(∀ or ∃) and distinct from all free variables of the predicate. There is also a deductive system of
axioms and inference rules that iteratively produce all theorems of Zermelo – Fraenkel set theory.
Often one thinks of theorems as well-formed formulas for a second formal language structure on
the same alphabet.

The alphabet of predicate calculus includes the usual logical connectives

Many strings of elements from the alphabet are not well-formed formulas. The well-formed formu-
las are those that are obtained by iteratively applying the production rules of the formal language
to the list of atomic strings. The alphabet of zeroth-order propositional calculus includes a (count-
ably enumerated) list of propositional variables, i.e., p1, p2, etc. It is common to have only one
propositional symbol in the alphabet, say p, which when repeated consecutively gives all other
propositional variables, e.g., repeated once p is p1, repeated twice pp is p2, repeated three times
ppp is p3, etc. The production rules of propositional calculus are as follows: every propositional
variable is a well-formed formula, and for all well-formed formulas f and g

With the usual (i.e., intended) meaning of the logical connectives, the well-formed formulas are
precisely those strings of elements from the alphabet that have an unambiguous (Boolean) value
of true, ⊺, or false, �, for each model, i.e., for each assignment to each propositional variable of a
(Boolean) value of ⊺ or �.

This formal language becomes a Hilbert system by introducing a second list of production rules –
called axioms (if they have arity 0) and inference rules (if they have arity > 0) – that are sound
for the (intended) models: i.e., for every model, every inference rule preserves the set of those
well-formed formulas that take the value ⊺ on that model (when we give each logical connective
its intended meaning). One common Hilbert system, the  Lukasieweicz system, is obtained by first
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adopting modus ponens, i.e., the production rule that associates to each pair of well-formed formulas
of the form f and (f) ⇒ (g) (that both take the value ⊺ for the model) the well-formed formula
g (this also takes the value ⊺ for the model, for the intended interpretation of ⇒, so that modus
ponens is sound). In symbols, this inference rule is as follows.

Modus Ponens for f and g. f, (f) ⇒ (g) ⊢ g

We also have three additional axiom schemata for the  Lukasieweicz system (where f , g and h are
substituted with all triples of well-formed formulas, whether or not those formulas take the value
⊺ for a particular model).

 L1 for f and g. ⊢ (f) ⇒ ((g) ⇒ (f))

 L2 for f , g and h. ⊢ ((f) ⇒ ((g) ⇒ (h))) ⇒ (((f) ⇒ (g)) ⇒ ((f) ⇒ (h)))

 L3 for f and g. ⊢ ((¬(f)) ⇒ (¬(g))) ⇒ ((g) ⇒ (f))

Since we are also using other logical connectives than just⇒ and ¬, we add as axioms the definitions
of those logical connectives in terms of ⇒ and ¬.

Conjunction. ⊢ ¬((f) ⇒ (¬(g))) ⇒ ((f) ∧ (g))

⊢ ((f) ∧ (g)) ⇒ ¬((f) ⇒ (¬(g)))

Disjunction. ⊢ ((¬(f)) ⇒ (g)) ⇒ ((f) ∨ (g))

⊢ ((f) ∨ (g)) ⇒ ((¬(f)) ⇒ (g))

Reverse Implication. ⊢ ((f) ⇒ (g)) ⇒ ((g) ⇐ (f)),

⊢ ((g) ⇐ (f)) ⇒ ((f) ⇒ (g))

Logical Equivalence. ⊢ (((f) ⇒ (g)) ∧ ((g) ⇒ (f))) ⇒ ((f) ⇔ (g))

⊢ ((f) ⇔ (g)) ⇒ (((f) ⇒ (g)) ∧ ((g) ⇒ (f)))

A theorem of this Hilbert system is a well-formed formula obtained by iteratively applying modus
ponens beginning with the axioms above. For some theorems, the iterative procedure is fairly short.
For instance, for every well-formed formula f , substituting f for g in Axiom  L1 gives the following.

 L1 for f and f . ⊢ (f) ⇒ ((f) ⇒ (f))

Next, substituting (f) ⇒ (f) for g in Axiom  L1 gives the following.

 L1 for f and (f) ⇒ (f). ⊢ (f) ⇒ (((f) ⇒ (f)) ⇒ (f))

Substitute (f) ⇒ (f) for g and substitute f for h in Axiom  L2 to get the following.

 L2 for f , (f) ⇒ (f) and f . ⊢ ((f) ⇒ (((f) ⇒ (f)) ⇒ (f))) ⇒ (((f) ⇒ ((f) ⇒ (f))) ⇒ ((f) ⇒ (f)))
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Apply Modus Ponens to the previous two well-formed formulas gives the following.

Modus Ponens for  L1f,(f)⇒(f) and  L2f,(f)⇒(f),f . ⊢ ((f) ⇒ ((f) ⇒ (f))) ⇒ ((f) ⇒ (f))

Finally, apply Modus Ponens once more to the first well-formed formula and to this last well-formed
formula gives the following.

Modus Ponens. ⊢ (f) ⇒ (f)

Thus, using the syntactic procedure explained above, we have deduced the statement (f) ⇒ (f) for
every well-formed formula f . It is standard to define ⊺ to be this well-formed formula, (f) ⇒ (f).
Then define � to be the well-formed formula ¬(⊺).

Of course other theorems have more content and longer proofs. For instance, basic theorems about
the nonnegative integers (via some formalization of Peano arithmetic) and finite sets give the
Deduction Theorem: for every finite collection A = {A1, . . . ,An} of well-formed formulas, if there is
a finite sequence of applications of the inference rules to the well-formed formulas in A and to the
 Lukasieweicz axioms that leads to a proof of the well-formed formula B, then we also have a finite
sequence of applications of the inference rules to the  Lukasieweicz axioms that leads to a proof of
the well-formed formula

(A1 ∧ (A2 ∧ (. . . (An−1 ∧An) . . . ))) ⇒ B.

Conversely, Modus Ponens applied to A and this well-formed formula gives B, so that the Deduction
Theorem becomes an “if and only if” statement.

The theory of the  Lukasieweicz deductive system is the set of all theorems, considered as a
(nonempty, proper) subset of the set of all well-formed formulas. By Post’s completeness theo-
rem, a well-formed formula is a theorem if and only if, for every model, the well-formed formula
takes the value ⊺. (For beginning mathematics students, a well-formed formula is a theorem if and
only if it always gives the value ⊺ for every row in the truth table).

B Predicate calculus

First-order predicate calculus extends the propositional variables to predicate variables of arbitrary
arity (a nonnegative integer), where the propositional variables are predicate variables of arity 0. A
predicate variable of arity n immediately followed by an ordered n-tuple of term variables enclosed
by parentheses is an atomic predicate. The variables occurring in the ordered n-tuple are the free
variables of the predicate. The number of distinct free variables is the arity of the predicate. For
a propositional variable pn of arity 0, by convention we write pn as the predicate rather than pn().
We also have one special predicate of arity 2, equality =. This is always written in infix notation,
i.e., we always write t = s rather than = (t, s). Every atomic predicate is a well-formed formula of
predicate calculus.

We also add the universal quantifier, ∀, and the existential quantifier, ∃, with their usual syntax:
each of these quantifiers is immediately followed by a term variable which is then followed by a
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well-formed formula (of arbitrary arity) that may, or may not, include the term variable among
its list of free variables, i.e., ∃s f and ∀s f , but must never include the term variable among the
bound variables of f . The bound variables of this new predicate is the set of all bound variables
of f together with s. The free variables of the new predicate is the set of all free variables of f
different from s.

One way to prevent the bound term variable s from being among the bound variables of f is to use
variable substitution. For each term variable t, for each term variable u, for each predicate f such
that either t does not occur in f or such that u is not a bound variable of f , there is a predicate
f[u/t], by replacing each instance of t in f with u. The free variables of f[u/t] are obtained from
the free variables of f by replacing t by u (if t occurs in the list of free variables of f), and the
bound variables of f[u/t] are obtained from bound variables of f by replacing t by u (if t occurs
in the list of bound variables of f).

Similarly, when combining well-formed formulas using the logical connectives, we substitute term
variables bounded by quantifiers so that each bound variable of one constituent well-formed formula
in the connective is not a variable occurring in the other constituent well-formed formula. Then the
free variables of the connective are those in the union of the sets of free variables of the constituents,
and likewise for the set of bound variables of the constituents (which are now disjoint sets). The
predicates are all of the well-formed formulas produced by these production rules. Each predicate
has an arity n that is a nonnegative integer together with a set of n free variables, and a set of bound
variables. Using variable substitution, we insure that no free variable is also a bound variable, and
every bound variable is bound precisely once in the predicate.

For all predicates f and g, we add the following axioms.

Universal Generalization. ⊢ f[t/s] ⇒ (∀u f[u/s])

Here s is any term variable that is not a bound variable of f , and t and u are term variables
that first appear at the application of universal generalization (i.e., for a new term variable t not
mentioned in any earlier step of a derivation, if we can derive f[t/s], then we deduce that f[u/s]
holds for all u).

Universal Instantiation. ⊢ (∀u f[u/s]) ⇒ f[t/s]
Here s and t are term variables that are not bound variables of f , and u is a term variable that
does not occur in f .

Existential Generalization. ⊢ p[t/s] ⇒ (∃u f[u/s])

Here s and t are term variables that are not bound variables of f , and u is a term variable that
first appears at the application of existential generalization.

Existential Instantiation. ⊢ (∃u f[u/s]) ⇒ f[t/s]

Here s is a term variable that is not a bound variable of f , and u and t are term variables that first
appear at the application of existential instantiation.
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For every predicate f , and for all term variables s, t and u, we add the following axioms for the
arity-2 predicate of equality.

Substitution. ⊢ (t = u) ⇒ (f[t/s] ⇔ f[u/s])

Reflexivity. ⊢ t = t

Transitivity. ⊢ ((t = u) ∧ (u = v)) ⇒ (t = v)

Symmetry. ⊢ (t = u) ⇒ (u = t)

Here s is a free variable of f , and t and u are not bound variables of f .

For predicate calculus, a model consists of a nonempty set, called a universe, together with an
assignment to each predicate variable of arity n of a true / false valued function (Boolean function)
on the n-fold self-product of the universe. For this model, we use the usual (i.e., intended) meaning
for the equality symbol, the logical connectives, and the quantifiers. For the well-formed formulas
of arity 0, there is a well-defined true / false value of the well-formed formula for each model.
For well-formed formulas of higher arity, they are considered true if and only if they are true
once all free variables are universally quantified (this corresponds to the inference rule of universal
generalization). The axioms and inference rules of first-order predicate calculus are sound for these
models with the intended interpretation of the logical symbols (and assuming consistency of some
version of Peano arithmetic). By Gödel’s Completeness Theorem, a well-formed formula of arity
0 is a theorem produced by the axioms and inference rules of predicate calculus if and only if the
Boolean value of the well-formed formula is true for every model (Gödel’s Completeness Theorem
assumes consistency of an appropriate fragment of Zermelo-Fraenkel set theory).

C Zermelo-Fraenkel axioms

The only additional symbol in Zermelo-Fraenkel set theory is an arity-2 predicate written in infix
notation, x ∈ y, read “x is an element of y” or “y contains x as an element.” Adding this predicate,
the production rules produce the well-formed formulas of set theory, i.e., the Zermelo – Fraenkel
predicates. To the axioms and inference rules of predicate calculus, we also add the following
axioms of Zermelo – Fraenkel set theory.

Axiom C.1 (Axiom of Extensionality). For every set a and for every set b, the set a equals the
set b if and only if, for every set x, the set x is an element of a if and only if x is an element of b.

∀a ∀b (∀x ((x ∈ a) ⇔ (x ∈ b))) ⇔ (a = b)

Axiom C.2 (Axiom of Regularity). For every set a such that there exists a set x that is an element
of a, there exists an element y of a such that every element of y is not an element of a.
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∀a ((∃x (x ∈ a)) ⇒ (∃y (y ∈ a) ∧ (∀z (z ∈ y) ⇒ ¬(z ∈ a))))

Together with the other axioms, the axiom of regularity implies a strong form of foundation: there
does not exist a sequence of sets (an)n∈Z≥0 such that for every element n of Z≥0 the set an+1 is an
element of the set an (every formalization of this requires first formalizing natural numbers).

The next axiom is sometimes also called the “Axiom of Separation.” It is an axiom schema: there
is one axiom for each predicate f(s, t) in the first-order language of set theory together with an
ordered pair (s, t) of (all of) the free variables of the predicate.

Axiom C.3 (Axiom Schema of Specification). For every set b, for every set c, there exists a set a
whose elements are precisely those elements x of b such that the predicate f(c, x) is true.

∀b ∀c ∃a(∀x ((x ∈ a) ⇔ ((x ∈ b) ∧ p(c, x)))

In particular, assuming that the universe of sets has at least one member (which we do assume),
for the predicate p(s, t) of s equals s and t does not equal t, for each set a = ∅ produced by the
axiom (for any set b and for any set c), for every set x, the set x is not an element of ∅. The
Axiom of Extensionality guarantees that this empty set is unique. So (together with the tacit
axiom that the universe of sets has at least one member), the Axiom Schema of Specification gives
the existence of an empty set.

Please note, we certainly do need to guard the quantifier of x in the Axiom Schema of Specification,
restricting x to an element of the specified set b, to avoid asserting that there exists a “set whose
elements are all sets that do not include themselves as an element” (which leads to Russell’s
Paradox about whether the set is an element of itself). Also note, we do not claim that we can
recover the predicate p(s, t) from the subset of b. For one thing, different predicates can be logically
equivalent, so the best we could hope for is to recover the truth-valued function whose domain equals
b determined by the predicate. A subset a of b is equivalent to such a truth-valued function, and
every such subset arises from substitution of a for s in the specific predicate p: t ∈ s. So this
axiom schema is producing “every” subset that it should. Even though predicates are specified via
a finite string of symbols from an (at most) countable alphabet, this certainly does not imply that
we have (at most) countably many distinct subsets of b (in a given model of Zermelo – Fraenkel
set theory), since the subset c can range freely. As Cantor proved, for every set b, there does not
exist a surjective function from b to the set of all subsets of b.

Axiom C.4 (Axiom of Pairing). For every set a, for every set b, there exists a set {a, b} whose
elements are precisely a and b.

∀a ∀b ∃c ∀x ((x ∈ c) ⇔ ((x = a) ∨ (x = b)))

Please note, for every set a and for every set b, the set {a, b} equals the singleton set {a} if (and
only if) b equals a. Thus, this axiom also gives the existence of the Kuratowski ordered pair,
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(a, b) ∶= {{a},{a, b}}, by applying the axiom to the singleton set {a} and the doubleton set {a, b}.
By the Axiom of Extensionality, for every set a, for every set b, for every set a′, for every set b′, the
ordered pair (a, b) equals the ordered pair (a′, b′) if and only if both a equals a′ and b equals b′.

Axiom C.5 (Axiom of Union). For every set a, there exists a set b such that, for every set x, the
set x is an element of b if and only if there exists an element y of a such that x is an element of y.

∀a ∃b ∀x ((x ∈ b) ⇔ (∃y ((x ∈ y) ∧ (y ∈ a))))

By the Axiom of Extensionality, the union set produced by this axiom is unique. In particular, for
every set a, for every set b, the Axiom of Union applied to the set {a, b} guarantees the existence
of a set, denoted a ∪ b, such that, for every set x, the set x is an element of a ∪ b if (and only if)
either x is an element of a or x is an element of b (or both).

Similar to the Axiom Schema of Specification, the next axiom schema has one axiom for each
predicate f(x, b, y) in the first-order language of set theory together with an ordered triple (x, b, y)
of (all of) the free variables of the predicate.

Axiom C.6 (Axiom Schema of Replacement). For every set b and for every set d such that, for
every element x of d there exists a unique set y satisfying f(x, b, y), then there exists a set c whose
elements are precisely those sets y such that there exists an element x of d such that f(x, b, y)
holds.

∀b ∀d ((∀x ((x ∈ d) ⇒ (∃y p(x, b, y)) ∧ (∀z ∀w((p(x, b, z) ∧ p(x, b,w)) ⇒ (y = z)))) ⇒

(∃c ∀y′ ((y′ ∈ c) ⇔ (∃x (x ∈ d) ∧ p(x, b, y′)))))

Consider the predicate f with an ordered triple of free variables (x, b, y): the set y equals (x, b),
i.e., y equals {{x},{x, b}}. By the Axiom of Pairing, for every set a, for every set b, and for every
element x of a, there exists a unique set y satisfying the predicate p(x, b, y). Thus, the Axiom
Schema of Replacement guarantees the existence of a set, denoted a × {b}, such that for every set
y, the set y is an element of a×{b} if (and only if) there exists an element x of a such that y equals
(x, b). Moreover, by the Axiom of Extensionality, this set a × {b} is unique.

Next, consider the predicate f ′ with an ordered triple of free variables (x′, b′, y′): y′ equals b′×{x′}.
By the previous paragraph, for every set a′, for every set a, and for every element x of a′, there exists
a unique set a×{x} satisfying the predicate f ′(x′, a, y′). Thus, the Axiom Schema of Replacement
and the Axiom of Union guarantees the existence of a set, denoted a × a′, such that for every set
x′′, the set x′′ is an element of a× a′ if (and only if) there exists an element x of a and there exists
an element x′ of a′ such that x′′ equals (a, a′). Therefore, for every set a and for every set a′, the
Axiom Schema of Replacement (together with the earlier axioms) guarantees the existence of a
Cartesian product set a × a′. By the Axiom of Extensionality, the Cartesian product set a × a′ is
unique.
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This, finally, leads to the essential meaning of the Axiom Schema of Replacement. For every
ordered triple (b, d, g(x, z, y)) of a set b, of a domain set d, and of a “function” predicate g(x, z, y)
for (b, d), i.e., such that for every element x of d there exists a unique set y such that g(x, b, y)
holds, there exists an image set c for (b, d, g(x, z, y)), and also there exists a Cartesian product
set d × c. Finally, by the Axiom Schema of Specification, the predicate g(x, z, y) and the set b
(substituted for z) determines a subset graph(g(x, b, y)) of d × c that equals the graph of a unique
set function from d onto c. Therefore, for every domain set d, for every “parameter” set b, and for
every predicate g(x, b, y) that determines a function in the “traditional” sense on the domain set d,
there exists a unique image set c = codd,b,g and a unique surjective set function funcd,b,g from d to
codd,b,g such that for every element x of d, for every set y, the predicate g(x, b, y) holds if and only
if both y is an element of codd,b,g and y equals the value of funcd,b,g on x. Thus, to every function
in the “traditional” sense on the domain set d, there exists a function in the set-theoretical sense
of a subset of a Cartesian product d × c satisfying the “vertical line test.”

As with the Axiom Schema of Specification, the Axiom Schema of Replacement is producing all
the set-theoretical functions from d to c, since we can let g(x, b, y) be the predicate that x is an
element of d, that y is an element of c, that (x, y) is an element of b, and that b is a subset of
c × d such that for every element x of d, there exists a unique element y of c for which (x, y) is an
element of b (i.e., b is a subset of c × d that satisfies the “vertical line test”).

Axiom C.7 (Axiom of Infinity). There exists a set Z≥0 such that (i) the empty set, ∅, is one
element of Z≥0, such that (ii) for every element n ∈ Z≥0 the set n ∪ {n} is an element in Z≥0, and
such that (iii) the set Z≥0 is a subset of every set that satisfies both (i) and (ii).

∃z ((∅ ∈ z) ∧ (∀n ((n ∈ z) ⇒ (n ∪ {n} ∈ z))))∧

(∀z′ (((∅ ∈ z′) ∧ (∀n′ ((n′ ∈ z′) ⇒ (n′ ∪ {n′} ∈ z′)))) ⇒ (∀n′′ (n′′ ∈ z) ⇒ (n′′ ∈ z′))))

Consider the predicate g(x, b, y) with three free variables: b equals b and y equals x ∪ {x}. This is
a predicate as in the Axiom Schema of Replacement, i.e., it can be used to define a set function,
succ (for “successor”), in the “traditional” sense for each specification of domain set. Since the
empty set contains no element {n}, the empty set can never be an element of the image set of such
a function. The empty set can be an element of the domain set, i.e., {∅} can be a subset of the
domain that is disjoint from the image set. The Axiom of Infinity guarantees the existence of a
domain set for this function such that the domain set equals the disjoint union of the image set
and the singleton set {∅}.

For each such domain set, the intersection of all subsets of the domain set satisfying these conditions
is a unique subset, by the Axiom Schema of Specification and the Axiom of Extensionality. So,
up to replacing any domain set as above by this unique subset, there exists a unique domain set
Z≥0 for succ that equals the disjoint union of the image set and the singleton set {∅}, and such
that every domain set satisfying these conditions contains Z≥0 as a subset. For every model of
Zermelo – Fraenkel set theory, the set Z≥0, the element ∅ of Z≥0 (interpreted as the element 0), and
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the associated set function succ from Z≥0 to Z≥0 is a model of the (second order) axiom schema
of Peano arithmetic. So the Axiom of Infinity inteprets Peano arithmetic within Zermelo-Fraenkel
set theory. This addresses the difficulty, mentioned earlier, that many of the metamathematical
notions about this axiomatization of set theory implicitly use some formalization of the natural
numbers.

Axiom C.8 (Axiom of Power Sets). For every set b, there exists a set, denoted P(b), such that
for every set a, the set a is an element of P(b) if and only if the set a is a subset of b, i.e., if and
only if, for every set x, if x is an element of a then a is an element of b.

∀b ∃b′ ∀a ((a ∈ b′) ⇔ (∀x ((x ∈ a) ⇒ (x ∈ b))))

Really the axiom of power sets is only the first in a continuing list of axioms (e.g., “large cardinal”
axioms) considered by set theorists that allow more and more of the operations on sets that are
relevant in both mathematics and metamathematics.

The following axiom, the Axiom of Choice, is not part of the Zermelo – Fraenkel axiom system,
but it is accepted by most current mathematicians. Assuming the consistency of the Zermelo –
Fraenkel axiom system, Cohen and Gödel proved the independence of the Axiom of Choice: the
Zermelo – Fraenkel axiom system remains consistent if we add the Axiom of Choice, and the
Zermelo – Fraenkel axiom system remains consistent if we add the negation of the Axiom of Choice
(obviously it is not consistent if we add both simultaneously).

Axiom C.9 (Axiom of Choice). For every set a, for every set b, for every set c, if c is a subset of
a×b such that for every element y of b there exists an element (x, y) of c, then there exists a subset
d of c such that for every element y of b there exists a unique element (x, y) of d.

∀a ∀b ∀c ((∀y ((y ∈ b) ⇒ (∃x ((x, y) ∈ c)))) ⇒

(∃d (∀w ((w ∈ b) ⇒ ((∃z ((z,w) ∈ d)) ∧ (∀v ∀u ((((v,w) ∈ d) ∧ ((u,w) ∈ d)) ⇒ (v = u))))))))

As discussed in all books on set theory, in the presence of the Zermelo – Fraenkel axioms, the Axiom
of Choice is equivalent to the Well-Order Principle (every set has a well-order), it is equivalent to
Zorn’s lemma, etc.

D Classes

The definition of category uses the notion of a class. Classes can be axiomatized as a first-order
theory, as done by von Neumann – Bernays – Gödel or by Morse – Kelley. The approach here is a
second-order theory using the metalanguage of (first-order) Zermelo – Fraenkel set theory. This can
be formalized, for instance, by using a Gödel numbering of the well-formed formulas of (first-order)
Zermelo – Fraenkel set theory, but we prefer the verbose alternative of writing out the predicates
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of Zermelo – Fraenkel set theory. The classes produced in this way are the parametrically definable
classes. For every model of Zermelo – Fraenkel set theory, the parameterically definable classes
in that model form a model of class theory (the model most often intended in analysis, algebra,
geometry, and topology). In particular, the (Kuratowski) ordered pair (a, b) ∶= {{a},{a, b}} converts
predicates of higher arity into predicates of lower arity, i.e., every predicate p(t1, t2, . . . , tn−1, tn) of
arity n ≥ 1 (with n a “true” natural number) in the first-order language of Zermelo – Fraenkel set
theory converts to the following predicate p̃(t) of arity 1 with unique free variable t,

∃t1 ∃t2 . . .∃tn−1 ∃tn ((t1, (t2, . . . , (tn−1, tn) . . . )) = t) ∧ p(t1, t2, . . . , tn−1, tn).

Definition D.1 (Parametrically definable classes). For every ordered pair ((p(s, t), a), (p′(s′, t′), a′))
of (first-order, Zermelo – Fraenkel) predicates p, respectively p′, with a specified ordered pair (s, t),
resp. (s′, t′), of (all of) its free variables and of a set a, resp. a′, the ordered pair (p(s, t), a) is
Lindenbaum-Tarski equivalent to (p′(s′, t′), a′) if (and only if)

∀b (p′(a′, b) ⇔ p(a, b)) .

Because logical equivalence is reflexive, transitive and symmetric, also Lindenbaum-Tarski equiv-
alence is reflexive, transitive and symmetric. A parametrically definable class is a Lindenbaum-
Tarski equivalence class [p(s, t), a] (i.e., we are extending the usual equality predicate a = a′ to a
predicate [p(s, t), a] = [p′(s′, t′), a′] via Lindenbaum-Tarski equivalence). For every class [p(s, t), a],
a set b is a member of [p(s, t), a] if (and only if) p(a, b) holds (i.e., we are extending the set mem-
bership predicate b ∈ a to a predicate of membership of b in the class [p(s, t), a] as above). For
every class C, a class B is a subclass of C if (and only if) every member of B is a member of C
(i.e., we are extending the subset predicate b ⊆ c to a subclass predicate).

With this definition, we have a variant of extensionality for classes.

Lemma D.2 (Extensionality). For every class B, for every class B′, the class B equals the class
B′ if and only if, for every set x, the set x is a member of B if and only if x is a member of B′.

Proof. This is just a restatement of Lindenbaum-Tarski equivalence.

By construction we also have the axiom of class formation.

Lemma D.3 (Class Formation). For every (first-order, Zermelo – Fraenkel) predicate p(s, t) with
an ordered pair (s, t) of (all of) its free variables, for every set a, there exists a unique class C such
that, for every set b, the set b is a member of C if and only if p(a, b) holds.

Proof. The class C ∶= [p(s, t), a] is one such class. By the previous lemma, this is unique.

In particular, we have a universal class.

Lemma D.4. There exists a unique class V such that every set is a member of V.
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Proof. Let p(s, t) be tautological, e.g., (s = s) ∧ (t = t). Then for every set a, say a = ∅, every set
is a member of the class V ∶= [(s = s) ∧ (t = t), a]. By Lemma D.2, this class is unique.

Also, we have a class for each set (including for the empty set). In most axiomatizations of class
theory, each set is identified with its associated class (but we prefer not to do this).

Lemma D.5. For every set a, there exists a unique class whose members are the elements of a. In
particular, for a equal to the empty set, the associated class has no members. Two sets are equal if
and only if their associated classes are equal.

Proof. The members of the class [t ∈ s, a] are precisely the sets the elements of a. By Lemma
D.2, this class is unique. By the Axiom of Extensionality, two sets are equal if and only if their
associated classes are equal.

We also have a variant for classes of the axiom of foundation.

Lemma D.6 (Foundation). For every class C, there does not exist a sequence (an)n∈Z≥0 of members
of C such that, for every element n of Z≥0, the set an+1 is an element of the set an. In particular,
for every class C that has at least one member, there exists a member a of C such that for every
element of a, that element is not a member of C.

Proof. By foundation for Zermelo – Fraenkel set theory, there does not exist any sequence (an)n∈Z≥0
of sets such that, for every element n of Z≥0, the set an+1 is an element of the set an. Thus, there
exists no such sequence satisfying the additional condition that every set an is a member of C.

For every class C that has a member, there exists a set a0 that is a member of C. If there exists an
element a1 of a0 that is also a member of C, then this gives a finite sequence (a0, a1) of members
of C such that a1 is an element of a0. If there exists an element a2 of a1 that is also a member
of C, then this gives a finite sequence (a0, a1, a2) of member of C such that a1 is an element of a0

and a2 is an element of a1. Continuing inductively, either there exists a sequence (a0, a1, . . . , an)
of members of C such that a1 is an element of a0, etc., an is an element of an−1 and every element
of an is not a member of C, or there exists a sequence (an)n∈Z≥0 of members of C such that, for
every element n of Z≥0, the member an+1 is an element of an. This second case is forbidden by the
previous paragraph. Thus, there exists a member an of C such that every element of an is not a
member of C.

The axioms in the previous section define Zermelo – Fraenkel set theory, i.e., ZF, but do not include
the Axiom of Choice that gives ZFC set theory. The lemmas above verify the axioms of NBG, von
Neumman – Bernays – Gödel class theory, for the model of parameterically definable classes in each
model of ZF set theory, except for the Axiom of Limitation of Size, which is essentially a global
analogue of the Axiom of Choice.

Of course there are many additional results about classes. Many of these are the analogues for
classes of well-known results for sets.
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Lemma D.7. For every class B, for every class B′, the class B equals the class B′ if and only if
both B is a subclass of B′ and B′ is a subclass of B.

Proof. Of course if B equals B′, then every member of B is a member of B′, i.e., B is a subclass
of B′, and every member of B′ is a member of B, i.e., B′ is a subclass of B.

Conversely, if both B is a subclass of B′ and B′ is a subclass of B, then for every set x that is a
member of B, also x is a member of B′, and for every set x that is a member of B′, also x is a
member of B. By Lemma D.2, the class B equals the class B′.

Definition D.8. The class that has every set as a member is the von Neumann class, sometimes
called the von Neumann universe or the universal class, denoted V or obSet. For every set a,
the class that has as members precisely the elements of a is the class of the set a, denoted Cla.

Lemma D.9. The von Neumann class V is the unique class such that, for every class B, the class
B is a subclass of V. For every set a, the class Cla is the unique class such that, for every class
B, the class Cla is a subclass of B if and only if x is a member of B for every element x of a.

Proof. By definition of V, every set is a member of V. Thus, every class is a subclass of V. For
every class B, if also V is a subclass of B, then B equals V by Lemma D.7. Thus, if every class is
a subclass of B, so that V is a subclass of B in particular, then B equals V. Therefore V is the
unique class such that every class is a subclass of V.

For every set a, for every class B, by the definition of subclass, the class Cla is a subclass of B if
and only if, for every set x that is a member of Cla, also x is a member of B. By the definition of
Cla, this holds if and only if, for every set x that is an element of a, also x is a member of B.

Lemma D.10. For every class B, for every class B′, there exists a unique class B ∧ B′ whose
members are those sets that are simultaneously members of B and members of B′. The subclasses
of B ∧B′ are precisely the classes that are simultaneously subclasses of both B and B′. For every
ordered pair (b, b′) of sets, the class Clb ∧Clb′ equals Clb∩b′. Finally, for every class B there exists
a class ∩B whose members are all sets x such that for every member b of B, the set x is an element
of b. In particular, for every set c, the class ∩Clc equals Cl∩c.

Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′] the class [p′′(s′′, t′′), (a, a′)]
for the following predicate has as members precisely those sets that are simultaneously members of
B and members of B′.

∃s ∃s′ (p(s, t′′) ∧ p′(s′, t′′)) ∧ (s′′ = (s, s′)).

By Lemma D.2, the class B∧B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets that are simultaneously members of B and members of B′.

By definition, a class C is a subclass of B ∧B′ if and only if, for every member x of C, also x is
a member of B ∧B′. By the definition of B ∧B′, for every set x, a set x is a member of B ∧B′ if
and only if both x is a member of B and x is a member of B′. Thus, C is a subclass of B ∧B′ if
and only if, for every member x of C, both x is a member of B and x is a member of B′. By the
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definition of subclass, C is a subclass of B ∧B′ if and only if both C is a subclass of B and C is a
subclass of B′.

For every ordered pair (b, b′) of sets, by the definition of Cl, for every set x, the set x is a member
of Clb if and only if x is an element of b, and the set x is a member of Clb′ if and only if x is an
element of b′. Thus, for every set x, the set x is a member of Clb ∧Clb′ if and only if both x is an
element of b and x is an element of b′. By the definition of intersection, for every set x, the set x is
both an element of b and an element of b′ if and only if x is an element of b∩ b′. Thus, again using
the definition of Cl, for every set x, the set x is a member of Clb ∧Clb′ if and only x is a member
of Clb∩b′ . By Lemma D.2, the class Clb ∧Clb′ equals Clb∩b′ .

Finally, for every class B = [p(s, t), a], for the class ∩B ∶= [∀t (p(s, t) ⇒ (t′ ∈ t)), a] with the ordered
pair of free variables (s, t′), for every set x, the set x is a member of ∩B if and only if, for every
member b of B, the set x is an element of b. By Lemma D.2, the class ∩B is the unique class such
that, for every set x, the set x is a member of ∩B if and only if, for every member b of B, the set
x is an element of b. In particular, for every set c, the class ∩Clc equals Cl∩c.

Lemma D.11. For every class B, for every class B′, there exists a unique class B ∨ B′ whose
members are those sets that are either members of B or members of B′ (or both). The classes that
have B ∨B′ as a subclass are precisely the classes that both have B as a subclass and have B′ as a
subclass. For every ordered pair (b, b′) of sets, the class Clb ∨Clb′ equals Clb∪b′. Finally, for every
class B there exists a class ∪B whose members are all sets x such that there exists a member b of
B with x an element of b. In particular, for every set c, the class ∪Clc equals Cl∪c.

Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′], the class [p′′(s′′, t′′), a′′]
with a′′ = (a, a′′) and with the following predicate has as members precisely those sets that are
either members of B or members of B′.

∃s ∃s′ (p(s, t′′) ∨ p′(s′, t′′)) ∧ (s′′ = (s, s′)).

By Lemma D.2, the class B∨B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets that are either members of B or members of B′.

By definition, a class C has B ∨B′ as a subclass if and only if, for every member x of B ∨B′, also
x is a member of C. By the definition of B ∨B′, for every set x, a set x is a member of B ∨B′ if
and only if either x is a member of B or x is a member of B′. Thus, B ∧B′ is a subclass of C if
and only if, both every member x of B is a member of C and every member x of B′ is a member
of C. By the definition of subclass, B ∧B′ is a subclass of C if and only if both B is a subclass of
C and B′ is a subclass of C.

For every ordered pair (b, b′) of sets, by the definition of Cl, for every set x, the set x is a member
of Clb if and only if x is an element of b, and the set x is a member of Clb′ if and only if x is an
element of b′. Thus, for every set x, the set x is a member of Clb ∨Clb′ if and only if either x is an
element of b or x is an element of b′. By the definition of union, for every set x, the set x is either
an element of b or an element of b′ if and only if x is an element of b ∪ b′. Thus, again using the
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definition of Cl, for every set x, the set x is a member of Clb ∨Clb′ if and only x is a member of
Clb∪b′ . By Lemma D.2, the class Clb ∨Clb′ equals Clb∪b′ .

Finally, for every class B = [p(s, t), a], for the class ∪B ∶= [∃t (p(s, t) ⇒ (t′ ∈ t)), a] with the ordered
pair of free variables (s, t′), for every set x, the set x is a member of ∪B if and only if there exists
a member b of B that has x as an element. By Lemma D.2, the class ∪B is the unique class such
that, for every set x, the set x is a member of ∪B if and only if there exists a member b of B that
has x as an element. In particular, for every set c, the class ∪Clc equals Cl∪c.

Lemma D.12. For every class B, there exists a unique class ¬B whose members are those sets
that are not members of B. A class is a subclasses of ¬B if and only if every member of the class
is not a member of B. The class ¬(¬B) equals B. For every class B′, both ¬(B ∧ B′) equals
(¬B) ∨ (¬B′) and ¬(B ∨B′) equals (¬B) ∧ (¬B′). Also ¬(∩B) equals ∪(¬B), and ¬(∪B) equals
∩(¬B). For every set b, for every set b′, the class Clb ∧ (¬Clb′) equals Clb∖b′.

Proof. For every class B = [p(s, t), a], the members of [¬p(s, t), a] are precisely the sets that are
not members of B, and this class is unique by Lemma D.2.

By definition, a class C is a subclass of ¬B if and only if, for every member x of C, also x is a
member of ¬B. By definition, for every set x, the set x is a member of ¬B if and only if x is not a
member of B. Therefore, C is a subclass of ¬B if and only if every member x of C is not a member
of B. In particular, a class C is a subclass of ¬(¬B) if and only if every member x of C is not a
member of ¬B, i.e., if and only if every member x of C is a member of C. By Lemma D.7, the
class ¬(¬B) equals B.

For every class B = [p(s, t), a] and for every class B′ = [p′(s′, t′), a′], since ¬(p(a, t′′) ∧ p′(a′, t′′))
is logically equivalent to (¬p(a, t′′)) ∨ (¬p′(a′, t′′)), also the class ¬(B ∧B′) equals (¬B) ∨ (¬B′).
Similarly, the class ¬(B ∨B′) equals the class (¬B) ∧ (¬B′).

Since the following two predicates are logically equivalent,

¬(∃t (x ∈ t) ∧ p(a, t)) ,

∀t (x ∈ t) ⇒ ¬p(a, t),

the class ¬(∪B) equals ∩(¬B). Similarly, the class ¬(∩B) equals ∪(¬B).

Finally, for every set b, for every set b′, for every set x, the set x is a member of Clb∧(¬Clb′) if and
only if both x is an element of b and x is not an element of b′, i.e., if and only if x is an element of
b ∖ b′. Thus, the class Clb ∧ (¬Clb′) equals Clb∖b′ by Lemma D.2.

Lemma D.13. For every class B, for every class B′, there exists a unique class B × B′ whose
members are ordered pairs (b, b′) of a member b of B and a member b′ of B′. A class is a subclass
of B ×B′ if and only if every member of the class is of the form (b, b′) for a member b of B and a
member b′ of B′. For every set c, for every set c′, the class Clc ×Clc′ equals Clc×c′.
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Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′], the class [p′′(s′′, t′′), a′′]
with a′′ = (a, a′′) and with the following predicate has as members precisely those sets (b, b′) such
that b is a member of B and such that b′ is a member of B′.

∃s ∃s′ ∃t ∃t′ (p(s, t) ∨ p′(s′, t′)) ∧ (s′′ = (s, s′)) ∧ (t′′ = (t, t′)).

By Lemma D.2, the class B×B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets (b, b′) such that b is a member of B and such that b′ is a member of B′.

By definition, a class C is a subclass of B ×B′ if and only if, for every member b′′ of C is also a
member of B ×B′. By the definition of B ×B′, a set b′′ is a member of B ×B′ if and only if b′′

equals (b, b′) for a member b′ of B and for a member b′ of B′. Thus, C is a subclass of B ×B′ if
and only if every member of C equals (b, b′) for a member b of B and for a member b′ of B′.

For every set c, for every set c′, by the definition of Cl, a set is an element of Clc ×Clc′ if and only
if the set equals (b, b′) for an element b of c and for an element b′ of c′, i.e., if and only if the set is
an element of c × c′. Therefore, by Lemma D.2, the class Clc ×Clc′ equals Clc×c′ .

Lemma D.14. For every class R, there exists a unique subclass rel(R) of R whose members are
those members of R of the form (b, c) for a set b and for a set c. In particular, for every set r,
the class rel(Clr) is the class of the unique maximal subset rel(r) of r such that rel(r) is a binary
relation.

Proof. For every class R = [p(s, t), a], the class of the following predicate rel(p)(s, t), the members
of the class [rel(p)(s, t), a] are those members of R of the form (b, c) for a set b and for a set c.

∃u ∃v (t = (u, v)) ∧ p(s, (u, v)).

By Lemma D.2, this subclass of R is unique.

For every set r, by the Axiom Schema of Specification, there exists a unique subset rel(r) of r
consisting of those elements of r of the form (b, c) for some set b and for some set c. By the Axiom
Schema of Replacement, there exists a unique set active(rel(r)) and a unique set image(rel(r)) such
that rel(r) is a subset of active(rel(r))× image(rel(r)) and each of the two projection functions are
surjective.

Definition D.15. For every class R, the class R is a class relation if (and only if) the subclass
rel(R) equals R, i.e., if (and only if) every member of R is of the form (b, c) for a set b and for a
set c.

Lemma D.16. For every class R, for every subclass of R, the subclass is a class relation if and
only if it is a subclass of rel(R). For every class relation R, there exists a unique class relation
Ropp whose members are those sets of the form (c, b) such that (b, c) is a member of R. Also there
exists a unique class image(R) whose members are all sets c such that (b, c) is a member of R for
some set b. Similarly, there exists a unique class active(R) = image((R)opp) whose members are
all sets b such that (b, c) is a member of R for some set c. More generally, for every class relation
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R and for every class B, there exists a unique class R[B] whose members are those sets c such
that there exists a member b of B for which (b, c) is a member of R. Similarly, for every class R
and for every class C, there exists a unique class Ropp[C] whose members are those sets b such
that there exists a member c of C for which (b, c) is a member of R.

Proof. For every class R = [p(s, t), a], the class of the following predicate rel(p)(s, t), the members
of the class [rel(p)(s, t), a] are those members of R of the form (b, c) for a set b and for a set c.

∃u ∃v (t = (u, v)) ∧ p(s, (u, v)).

By Lemma D.2, this subclass of R is unique.

Similarly, for the following predicate rel(p)opp(s, t), the members of the class [rel(p)opp(s, t), a] are
those sets of the form (c, b) such that (b, c) is a member of R.

∃u ∃v (t = (v, u)) ∧ p(s, (u, v)).

By Lemma D.2, this class is unique.

For the following predicate image(rel(p))(s, t), the members of the class [image(rel(p))(s, t), a] are
those sets c such that (b, c) is a member of R for some set b.

∃u p(s, (u, t)).

Similarly, for the following predicate active(rel(p))(s, t), the members of the class [active(rel(p))(s, t), a]
are those sets b such that (b, c) is a member of R for some set c.

∃v p(s, (t, v)).

By Lemma D.2, this class is unique.

For every class R, for every class B, the members of the class image(rel(R)) ∧B are those sets c
such that there exists a member b of B for which (b, c) is a member of R. By Lemma D.2, this
class rel(R)[B] is unique.

Similarly, for every class R, for every class C, the members of the class C∧active(rel(R)) are those
sets b such that there exists a member c of C for which (b, c) is a member of R. By Lemma D.2,
this class [C]rel(R) is unique.

Lemma D.17. For every class R, for every set b, there exists a unique class Rb whose members
are those sets c such that (b, c) is a member of R.

Proof. For every class R = [p(s, t), a], for every set b, for following predicate rel(p)(s, t), the
members of the class [rel(p)(s, t), (a, b)] are those sets c such that (b, c) is a member of R.

∃u ∃v (s = (u, v)) ∧ p(u, (v, t)).

By Lemma D.2, this subclass of R is unique.
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Definition D.18. For every class B and for every class C, a subclass R of B ×C is a relation
from B to C. In particular, for every class B, a B-class is a relation from B to the von Neumann
class V. For every B-class R, for every member b of B, the fiber class Rb of R over b is the class
whose members are all sets c such that (b, c) is a member of R.

Lemma D.19. For every class B, for every B-class R, for every B-class R′, the B-class R equals
R′ if and only if, for every member b of B, the fiber class Rb equals R′

b.

Proof. By Lemma D.2, the class R equals R′ if and only if, for every set x, the set x is a member
of R if and only if x is a member of R′. Since R is a B-class, every member x of R is of the form
(b, c) for a unique member b of B and for a unique set c. Since R′ is a B-class, every member x′

of R′ is of the form (b′, c′) for a unique member b′ of B and for a unique set c. By the defining
property of Kuratowski ordered pairs, the Kuratowski ordered pair (b, c) equals (b′, c′) if and only
if both b equals b′ and c equals c′.

Thus, the following two conditions are equivalent: (i) for every set x, the set x is a member of R
if and only if x is a member of R′; (ii) for every member b of B, for every set c, the Kuratowski
ordered pair (b, c) is a member of R if and only if (b, c) is a member of R′. Therefore R equals R′

if and only if, for every member b of B, the class Rb equals R′
b.

Lemma D.20. For every class B, for every class B′, there exists a unique Cl{0,1}-class (B,B′)
whose 0-fiber equals B and whose 1-fiber equals B′, where 0 is ∅ and 1 is {∅}. For every Cl{0,1}-
class R, for every class B, for every class B′, the Cl{0,1}-class (B,B′) equals R if and only if both
B equals the fiber class R0 and B′ equals the fiber class R1. In particular, for every class C, for
every class C′, the Cl{0,1}-class (C,C′) equals (B,B′) if and only if both B equals C and B′ equals
C′.

Proof. For every class B = [p(s, t), a] and for every class B′ = [p′(s′, t′), a′], for the following
predicate p′′(s′′, t′′), the members of the class [p′′(s′′, t′′), (a, a′)] are those sets of the form (0, b)
for a member b of B and those sets of the form (1, c) for a member c of C.

∃s ∃s′ ∃u ∃v (s′′ = (s, s′)) ∧ (t′′ = (u, v)) ∧ (((u = 0) ∧ p(s, v)) ∨ ((u = 1) ∧ p′(s′, v))).

By Lemma D.2, this subclass of R is unique.

For every Cl{0,1}-class R, by the previous lemma, the Cl{0,1}-class (B,B′) equals R if and only if
both the 0-fiber class B equals R0 and B′ equals R1. In particular, for every class C, for every
class C′, the Cl{0,1}-class (B,B′) equals (C,C′) if and only if both the 0-fiber B equals C and the
1-fiber B′ equals C′.

E Morphisms and spans between classes

For defining categories, a bit more useful than class morphisms or relations is the notion of spans.
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Definition E.1. For every class B, for every class C, a (B,C)-span M is a B × C-class. For
every member b of B, for every member c of C, the fiber class Mb

c of M over (b, c) is the fiber
class M(b,c). A B-class is a B-set if (and only if) every fiber class is a class of a set. Similarly, a
(B,C)-span is a (B,C)-set if (and only if) it is a B×C-set. Finally, for every class O, an O-Hom
span is an (O,O)-set M, i.e., for every ordered pair (b, c) of members of O, the fiber class Mb

c is
the class of a set.

Example E.2. For every class B, the identity relation IdB from B to itself is the class whose
members are all ordered pairs (b, b) such that b is a member of B. In particular, for every set a,
IdCla equals ClIda for the usual identity set relation Ida whose elements are all ordered pairs (b, b)
such that b is an element of a. For every class O, the identity O-Hom span IdO is the class
whose members are all ordered pairs ((b, b), Idb) such that b is a member of O. In particular, the
identity Cla-Hom span is the ClIda-class whose fiber class (IdCla)bc has a unique member Idb if c
equals b is an element of a and otherwise has no member.

Definition E.3. For every class B, a B-class F is a class morphism from B if (and only if), for
every member b of B, the fiber class Fb is the class of a singleton set, i.e., there exists a unique set
c such that (b, c) is a member of F. For every class B, for every class C, a class morphism from
B to C is a relation from B to C that is also a class morphism from B. The class morphism is a
class isomorphism if also, for every member c of C, there exists a unique member b of B such
that (b, c) is a member of the class morphism.

Example E.4. For every class B, the identity IdB is a class isomorphism from B to itself.

Example E.5. For every class B, for every morphism of classes F from B, there is a B-class clB,F
whose members are all ordered pairs (b, c) of a member b of B and of an element c of the set F(b).

Exercise E.6. For every class B, for every morphism of classes F from B, check that clB,F is a
B-set. Conversely, for every B-set D, check that there is a unique morphism of classes funB,D

from B associating to every member b of B the unique set whose associated class is the fiber class
Db. Check that these two operations determine an equivalence between B-sets and morphisms of
classes from B.

Definition E.7. For every class B, for every B-class Q, for every B-class R, a B-class morphism
from Q to R is a class morphism F from Q to R such that, for every member b of B, for every
member c of Qb, there exists a unique member d of Rb such that ((b, c), (b, d)) is a member of F.
In this case, the fiber class morphism Fb from Qb to Rb associated to F is the class morphism
whose members are all ordered pairs (c, d) such that ((b, c), (b, d)) is a member of F. A B-class
morphism F from Q to R is a B-class isomorphism if and only if F is a class isomorphism from
R to Q.

In particular, for every class B, for every class C, for every (B,C)-span M, for every (B,C)-span
N, a (B,C)-span morphism from M to N is a B ×C-class morphism from M to N. This is a
(B,C)-span isomorphism F from M to N if (and only if) it is a B ×C-class isomorphism from
M to N.

122

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

Example E.8. For every class B, for every B-class Q, the identity class isomorphism IdQ is a B-
class isomorphism from Q to itself such that (IdQ)b equals IdQb

for every member b of B. Similarly,
for every class B, for every class C, for every (B,C)-span M, the identity class isomorphism IdM

is a (B,C)-span isomorphism such that (IdM)bc equals IdMb
c

for every member (b, c) of B ×C. In
particular, for every class O, the identity IdIdO

class morphism from IdO to itself is an isomorphism
of O-Hom spans.

The notion of composition of functions and relations between sets extends to composition of mor-
phisms and relations between classes, as well as composition of spans.

Definition E.9. For every class B, for every class C, for every class D, for every relation Q from
B to C, for every relation R from C to D, a class the composition R ○Q of R and Q is the class
whose members are all ordered pairs (b, d) such that there exists a member c of C with both (b, c)
a member of Q and (c, d) a member of R.

Definition E.10. For every class B, for every class C, for every class D, for every span M from
B to C, for every span N from C to D, the span composition N ○M of N and M is the span
from B to D such that for every member (b, d) of B ×D, the members of the fiber class (N ○M)bd
are all ordered pairs (c, (n,m)) of a member c of C and members n and m of the respective fiber
categories Nc

d and Mb
c.

Example E.11. For every class B, for every class C, for every span M from B to C, there is an
isomorphism of (B,C)-spans rM from M ○ IdB to M, respectively lM from IdC ○M to M, sending
every member ((b, c), (b, (m, Idb))) of M ○ IdB to ((b, c),m), respectively sending every member
((b, c), (c, (Idc,m))) of IdC ○M to ((b, c),m). The isomorphism rM, respectively lM, is the right
unitor of M, resp. the left unitor of M.

Example E.12. For every class B, for every class C, for every class D, for every class E, for every
span M from B to C, for every span N from C to D, and for every span P from D to E, there is
an isomorphism of (B,E)-spans aP,N,M from (P ○N) ○M to P ○ (N ○M) sending every member
((b, e), (c, ((d, (p, n)),m))) of (P○N)○M to the member ((b, e), (d, (p, (c, (n,m))))) of P○(Q○R).
In other words, for every member (b, e) of B × E, the induced isomorphism of fiber classes from
((P○N)○M)be to (P○(N○M))be sends (c, ((d, (p, n)),m)) to (d, (p, (c, (n,m)))), i.e., it transposes
c and d while leaving p, n and m in the same order. The isomorphism aP,N,M is the associator of
P, N and M.

Example E.13. For the von Neumann class V of all sets, consider the span mor(Set) from V to
V such that for every set b and for every set c, the members of the fiber class over (b, c) are all
subsets of b × c that are (graphs of) functions from b to c. In other words, for every member (b, c)
of V × V, the fiber class is the class of the set Fun(b, c) of all functions from b to c. The span
mor(Set) from V to itself, together with the usual composition law, is the category Set of all sets.

Proposition E.14. Composition of relations between classes is strictly associative, and the identity
relations are strict left-right identities for this composition. Composition of spans is associative up
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to the specified associator a, and the identity spans are left-right identities for this composition up
to the left and right unitors l and r. The associator and unitors satisfy the triangle (coherence)
identity and the pentagon (coherence) identity of monoidal categories.

There is a notion of morphisms of spans. Together with the composition, associator and unitors,
spans satisfy the axioms of (a version of) double category. Of course spans are classes that may not
be sets, so extreme care is necessary in forming any kind of category of spans.

Exercise E.15. Read about double categories. Formulate and verify the axioms of a double
category that are satisfied by the operations above for spans.

Spans admit a more general notion of morphisms that is useful in formulating natural transforma-
tions.

Definition E.16. For every ordered triple (B,C,M) of classes B and C and a span M from B to
C, for every ordered triple (B′,C′,M′) of classes B′ and C′ and a span M′ from B′ to C′, a span
cell from (B,C,M) to (B′,C′,M′) is a class F = ((s(F), t(F)),Fmor) of a morphism of classes
s(F) from B to B′, of a morphism of classes t(F) from C to C′, and of a morphism of classes Fmor

from M to M′ such that for every member ((b, c),m) of M, for the unique member ((b′, c′),m′)
of M′ such that (((b, c),m), ((b′, c′),m′)) is a member of F, also (b, b′) is a member of s(F) and
(c, c′) is a member of t(F).

Example E.17. For every ordered triple (B,C,M) of class B and C and a span M from B to C,
the identity span cell is (IdB, IdC, IdM).

Exercise E.18. Check that the identity span cell is a span cell.

Example E.19. For every ordered triple (B,C,M) of a span M from a class B to a class C, for
every ordered triple (B′,C′,M′) of a span M′ from a class B′ to a class C′, for every ordered triple
(B′′,C′′,M′′) of a span M′′ from a class B′′ to a class C′′, for every span cell F = (s(F), t(F),Fmor)
from (B,C,M) to (B′,C′,M′), and for every span cell F′ = (s(F′), s(F′),F′

mor) from (B′,C′,M′)
to (B′′,C′′,M′′), the composition span cell is (s(F′) ○ s(F), t(F′) ○ t(F),F′

mor ○ Fmor) from
(B,C,M) to (B′′,C′′,M′′).

Exercise E.20. Check that the composition span cell is a span cell.

Exercise E.21. Check that composition of span cells is strictly associative. Also check that identity
span cells are strict left-right identities for composition of span cells.

One advantage of relations, and more generally of spans, over morphisms is that they have opposites.

Definition E.22. For every class B, for every class C, for every relation R from B to C, the
opposite relation Ropp from C to B is the unique subclass of C × B whose members are all
ordered pairs (c, b) such that (b, c) is a member of R.

More generally, for every span M from B to C, the opposite span Mopp from C to B is the
C×B-class such that for every member b of B and for every member c of C, the fiber class (Mopp)cb
equals the fiber class Mb

c.
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Exercise E.23. Formulate the notion of the opposite of a span cell. Check that the opposite span
of a span composite is naturally span isomorphic to the span composite of the span opposites of
the factors (in the opposite order). Read about dagger categories. Formulate and check the axioms
of a dagger category that hold for spans.

F Definition of categories

A category is a span from a class to itself whose fiber classes are required to be (classes of) sets,
and equipped with a morphism of spans to itself from the span composite of the span with itself
that is associative and unital.

Definition F.1. For every class O, a O-Hom span is a (O,O)-set M, i.e., a class in which every
member is of the form ((a, b), f) for members a and b of O and a set f , and each fiber class Ma

b

of all sets f such that ((a, b), f) is a member of M is the class of a set, the Hom set of M over
(a, b). For every clas O, for every O-Hom span M′, for every O-Hom span M, a morphism of
O-Hom spans from M′ to M is a morphism of (O,O)-classes from M′ to M.

Breaking with our earlier convention, we sometimes denote the Hom set by Ma
b . More often it is

denoted HomO,M(a, b), or just Hom(a, b) when O and M are understood, i.e., the members of M
are sets ((a, b), f) for members a and b of O and elements f of Hom(a, b).

Example F.2. For every class O, the empty (O,O)-span M with no members is an O-Hom span,
the initial O-Hom span. For every class O, the identity IdO×O of O ×O, considered as a span
from O to itself, is an (O,O)-span, the final O-Hom span. Finally, the identity Hom span
IdO is the class whose members are all ordered pairs ((b, b), Idb) for b a member of O. This is also
called the discrete O-Hom span.

Example F.3. For every set H, let OH be a class with a unique member (say ∅, for definiteness),
and let MH be the unique OH-Hom span whose unique Hom set is H.

Example F.4. Recall the earlier example, where O is the von Neumann class V of all sets, the
span mor(Set) from V to itself is the class of all triples ((a, b), f) of a set a, of a set b, and of a
function f from a to b. Thus, each Hom set HomV,mor(Set)(a, b) is the set Fun(a, b) of all functions
from a to b.

Example F.5. For another example, again let O be the von Neumann class V of all sets, but
now let the span mor(Rel) from V to itself be the class of all triples ((a, b),R) of a set a, of a set
b, and of a relation R from a to b, i.e., R is an (arbitrary) subset of a × b. Thus, each Hom set
HomV,mor(Rel)(a, b) is the power set P(a × b) of a × b.

Example F.6. For every class O, for every O-Hom span M, for every O-Hom span M′, for every
O-Hom span M′′, for every morphism F′ of O-Hom spans from M′ to M, and for every morphism
F′′ of O-Hom spans from M′′ to M, the fiber product M′ ×F′,M,F′′ M′′, or just M′ ×M M′′ when
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confusion is unlikely, is also an O-Hom span whose fiber class for each ordered pair (a, b) of members
of O equals the fiber product set (M′)ab ×Ma

b
(M′′)ab . In particular, M ×O×O M is the O-Hom span

whose fiber class is just the product set Ma
b ×Ma

b for every ordered pair (a, b) of members of O.

Of course, for a Hom span (O,M), the composite span M○M from O to O is typically not a Hom
span: for all members a and c of O, the members of (M ○M)ac are all ordered triples (b, (g, f)) of
a member b of O, of an element f of the set Hom(a, b) and of an element g of Hom(b, c). Since b
varies over members of a class (that is typically not a set), the class (M ○M)ac is typically not a
set. This is a Hom span if and only if O is the class of a set.

Definition F.7. A Hom span (O,M) is small if (and only if) the class O is the class of a set.

Example F.8. In the example Set, for every set a, for every set c, the fiber class (mor(Set) ○mor(Set))ac
is the class of all triples (b, (g, f)) of a set b, of a function f from a to b, and of a function g from b
to c. This is not the class of a set, since the class of all sets b (i.e., the von Neumann class) is not
the class of a set.

Example F.9. On the other hand, for every small Hom span (O,M), for every nonnegative integer
n, the n-fold composite of the O-Hom span is again an O-Hom span. Taking the union over all
positive integers n gives a new O-Hom span (O,M∗) where the fiber class over (a, b) is the set

of strings, i.e., ordered pairs (n, (a = a0
f1Ð→ a1, a1

f2Ð→ a2, . . . , an−1
fnÐ→ an = b)) of a positive integer

n and an ordered n-tuple of “composable” members of M. We “complete” this by also adding a
member (0, (a = a0, a0 = a)) of M∗ mapping to (a, a) in O ×O for every member a of O.

Definition F.10. For every class O, for every Hom span M from O to itself, a (O,M)-composition
law is a span morphism ○ from the composition (O,O)-span M ○ M to M, i.e., a morphism of
O×O-classes such that, for all members a and c of O, the induced fiber morphism from (M ○M)ac
to Ma

c sends each member (b, (g, f)) of (M ○M)ac to a member g ○ f of Ma
c .

A composition law is associative if (and only if), for all members a, b, c and d of O, for every
element (h, g, f) of Hom(d, e) ×Hom(c, d),Hom(b, c), the composition (h ○ g) ○ f equals h ○ (g ○ f)
as elements of Hom(a, e).

An associative composition law is unital if (and only if), for every member a of O, there exists
an element IdO,M,○

a of Hom(a, a) such that, for every member b of O, both the left composition
with IdO,M,○

a from Hom(b, a) to itself is the identity, and the right composition with IdO,M,○
a from

Hom(a, b) to itself is the identity.

A category is a class O, called the class of objects, an O-Hom span M, called the class of
morphisms, the specification of the source and target morphisms from M to O sending every
member ((a, b), f) of M to the member a of O, respectively to the member b of O, and a (O,M)-
composition law ○ that is both associative and unital. An isomorphism in a category is a
morphism ((a, b), f) such that there exists a morphism ((b, a), g) with both g ○ f equal to Ida and
f ○ g equal to Idb; in this case we denote g by f−1.
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For a category C, the class O is often denoted ob(C) and its members are called C-objects
or objects of C. The class M is often denoted mor(C), each set HomO,M(a, b) is denoted Ca

b or
HomC(a, b) and its elements are called C-morphisms from a to b. The composition law is denoted
○C, or just ○ when confusion is unlikely. For every object a of C, the left-right identity morphism
from a to itself is usually denoted IdC

a or Ida when confusion is unlikely (this set may or may not
equal the identity function from the set a to itself, so please use caution). A category is small if
(and only if) the class of objects is (the class of) a set.

G Examples of categories

There are many elementary examples of categories, and there are many different properties that a
category can possess.

Example G.1. For every class O that has at least one member, the empty O-Hom span is not the
underlying Hom span of any category structure, since there are not identity morphisms (there are
not any morphisms at all). On the other hand, the final O-Hom span, where every Hom set is a
singleton set, has a unique composition law (since singleton sets are final objects in the category of
sets), and this composition law is associative and unital. This is the final category structure on
O. Similarly, the discrete O-Hom span (whose only morphisms are identity morphisms) also has a
unique composition law, and this is associative. It is unital by construction. This is the discrete
category structure on O.

Definition G.2. For every small class O, for every O-Hom span M, the free category on (O,M)
is the O-Hom span M∗ of composable strings of morphisms from M with composition law given

by concatenation, i.e., for every morphism f = (m, (a0
f1Ð→ a1, . . . , am−1

fmÐ→ am)) and for every

morphism g = (n, (b0
g1Ð→ b1, . . . , bn−1

gnÐ→ bn)) such that am equals b0, the composition is

g ○ f ∶= (n +m, (a0
f1Ð→ a1, . . . , am−1

fmÐ→ am, b0
g1Ð→ b1, . . . , bn−1

gnÐ→ bn)).

Of course each element (0, (a0, a0)) composes as a left-right identity.

Exercise G.3. Check that this is a small category.

Example G.4. The category Set of sets has object class obj(Set) equal to the von Neumann class
/ universal class V of all sets, has morphism class mor(Set) as above with fiber class Setab equal
to the (class of the) set Fun(a, b) of all functions f from a to b, and has the usual composition
of functions. Composition of functions is associative. The identity functions are the identity
morphisms of this category.

Example G.5. The category Rel of relations again has object class equal to V, but has morphism
class as in the second example above with fiber class Relab equal to the (class of the) power set
P(a× b) of a× b. Composition is composition of relations (as defined in the previous section). The
identity functions (or their graphs) are the identity morphisms of this category.
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Example G.6. For every small category B, for every small category C, each object of the category
SpanB

C is a (set whose associated class is a) B×C-set, i.e., a span from B to C whose fiber classes
are all (classes of) sets. The morphisms between two such spans are span cells such that the class
morphism from B to itself is the identity and the class morphism from C to itself is the identity.
Composition is composition of span cells.

Definition G.7. A category is a monoid if (and only if) the object class is the class of a singleton
set. A category is thin if (and only if) every nonempty Hom set is a singleton set. A category is
a groupoid if (and only if) every morphism is an isomorphism. A thin groupoid is a setoid. A
category is skeletal if (and only if) all isomorphic objects are equal. A skeletal setoid is a discrete
category.

There are many ways to produce new categories from given categories.

Definition G.8. For every category C = (O,M, ○), the opposite category is the category
(O,Mopp, ○opp), where Mopp is the opposite span of M, and where, for every member ((a, b), f) of
M and for every member ((b, c), g) of M, the opposite composition is defined by

((b, a), f) ○opp ((c, b), g) = ((c, a), g ○ f).

Definition G.9. For every category C = (O,M, ○), for every subclass O′ of O, the full subcat-
egory of C with objects class O′ is the category (O′,M∣O′ , ○′) where, for all members a and b
of O′, the class (M∣O′)ab equals Ma

b , and where ○′ is the restriction of ○. More generally, a (not
necessarily full) subcategory of C consists of a subclass O′ of O and a subclass of M′ of M∣O′ that
contains all identity morphisms of objects of O′ and that is stable for composition, thus defining a
restriction composition on the subcategory.

Example G.10. The category Set of sets is a non-full subcategory of the category Rel of all
relations. The category of all finite sets is a full subcategory of the category of all sets.

Example G.11. For every category C = (O,M, ○), the discrete category on O is (uniquely) a
(typically not full) subcategory of C.

Example G.12. For every set H together with a binary operation ● from H ×H to H that is
associative and unital, there exists a monoid category B(H, ●) whose unique object is, say, the set
H itself (perhaps considered as a right act over itself), and whose unique Hom set is H with ●
giving the binary operation. For every category, for every object of that category, the restriction
of composition to the Hom set of that object is a monoid as above. In particular, every category
with a unique object is strongly equivalent to the category of the monoid of the unique Hom set
with its composition operation.

Example G.13. In particular, for every set S, for a category O with a unique object ∗, for the
O-Hom span MS whose unique Hom set is S, for the free category (O,M∗

S, ○), the associated
monoid is the free monoid on the set S. The unique Hom set S∗ is also called the free monoid
on S, and it is also the Kleene star of S, i.e.,

S∗ = ({0} × {Id∗}) ⊔ ({1} × S) ⊔ ({2} × (S × S)) ⊔ ({3} × (S × S × S)) ⊔ . . . .
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Example G.14. For every monoid (H, ●), the opposite category of B(H, ●) is (canonically equiv-
alent to) the category of the opposite monoid (H, ●opp) where a ●opp b is defined to equal b ●a for
all elements a and b of H.

Example G.15. For every monoid (H, ●), the monoid is a group if and only if every element of H
is invertible. In this case, the category of the group is a skeletal groupoid. In this case, the nerve of
the small category B(H, ●) is the classifying simplicial set of the (discrete) group (H, ●). The
geometric realization of this simplicial set is the classifying space of (H, ●). For every groupoid,
for every object ∗ of that groupoid, the restriction of composition to the Hom set from ∗ to itself is
a group (H, ●), and the full subcategory whose unique object is ∗ is strongly equivalent to B(H, ●).
In particular, every groupoid with a unique object is strongly equivalent to B(H, ●) for the unique
Hom set (H, ●) with its composition operation.

Example G.16. We could “deskeletonize” the previous example by considering the category whose
objects are all right acts over the monoid (H, ●) that are principal homogeneous spaces, and whose
morphisms are all morphisms of right (H, ●)-acts.

Example G.17. The category of right principal homogenous spaces for (H, ●), as above, is a full
subcategory of the category of all right (H, ●)-acts. Another full subcategory is the category of all
right (H, ●)-acts that are trivial in the sense that every element of (H, ●) acts identically on the set.
This full subcategory is strongly equivalent to the category Set of all sets. Of course if (H, ●) is
itself a singleton monoid, then this full subcategory equals the entire category of right (H, ●)-acts,
so that this category is strongly equivalent to Set.

Example G.18. The category Monoid has as objects all ordered pairs (H, ●) of a set H together
with a unital, associative binary operation ● from H to itself, and has morphisms from (H, ●) to
(H ′, ●′) being all functions f from H to H ′ that preserve the identity and preserve the binary
operation (i.e., usual morphisms of monoids): f(eH) equals eH′ and f(h●k) equals f(h)●′ f(k) for
all elements h, k of H. The category Monoid has a full subcategory Grp whose objects are groups.
The category Grp has a full subcategory Ab whose objects are Abelian groups. The category Ab
has a full subcategory Q−mbfMod whose objects are Abelian groups such that multiplication by n
is a bijection of the group to itself for every nonzero integer n, i.e., the Abelian group is a Q-vector
space. The category Q−Mod has a full subcategory whose objects are finite-dimensional Q-vector
spaces, etc.

Example G.19. A hybrid of the previous two examples is the category whose objects are all
ordered pairs ((H, ●), (S, ρ)) of a monoid (H, ●) together with a right H-act ρ ∶ S ×H → S. The
morphisms from ((H, ●), (S, ρ)) to ((H ′, ●′), (S′, ρ′)) are all ordered pairs (f, g) of a morphism f
of monoids from (H, ●) to (H ′, ●′) together with a function g from S to S′ such that, for every
element h of H and every element s of S, the image g(ρ(s, h)) equals ρ′(g(s), f(h)), i.e., g is a
morphism of right H-acts for the induced right H-act on S′ obtained from ρ′ and f . This hybrid
category is an example of the “Grothendieck construction” for fibered categories (one of the basic
notions in extending from schemes to stacks).
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For Abelian monoids, respectively for Abelian groups, there is an enrichment of the Hom sets to
Abelian monoids, resp. to Abelian groups.

Definition G.20. For every Abelian monoid (H, ●), for every monoid (H ′, ●′), the addition law
on HomMonoid((H ′, ●′), (H, ●)) is the binary operation that associates to every pair (f, g) of monoid
homomorphisms from (H ′, ●′) to (H, ●) the monoid homomorphism f ● g that sends every element
h′ of H ′ to f(h′) ● g(h′).

Example G.21. Check that the set function f ● g is a monoid homomorphism. Check that the
addition law is both associative and commutative, and it has a left-right identity consisting of
the constant set function from H ′ with image the singleton of the monoid identity in H. Thus
HomMonoid((H ′, ●′), (H, ●)) with this addition law is itself an Abelian monoid. If (H, ●) is an
Abelian group, check that also HomMonoid((H ′, ●′), (H, ●)) is an Abelian group.

Example G.22. For the full subcategory Ab of all Abelian groups, check that the addition laws
makes composition into a biadditive map of Abelian groups

HomAb((H ′, ●′), (H, ●)) ×HomAb((H ′′, ●′′), (H ′, ●′)) → HomAb((H ′′, ●′′), (H, ●)).

In particular, check that the addition law together with composition makes HomAb((H, ●), (H, ●))
into an associative, unital ring, i.e., composition is a monoid structure that distributes with respect
to addition both on the left and right.

This allows a concise definition of associative, unital rings. Moreover, for each associative, unital
rings, there are (Abelian) categories of modules over that ring.

Definition G.23. An associative, unital ring (R,+, ⋅) is an Abelian group (R,+) together with
an (injective) homomorphism of Abelian groups

L● ∶ (R,+) → HomAb((R,+), (R,+)), r ↦ (Lr ∶ (R,+) → (R,+))

whose image is a submonoid under composition that is right unital, i.e., there exists a (unique)
element 1 in R with L1 = IdR (so 1 is a left multiplicative identity) and also with Lr(1) = r
for every element r of R (so 1 is also a right right multiplicative identity), and, for every (r, s)
in R × R, there exists a (unique) element r ⋅ s of R such that Lr ○ Ls equals Lr⋅s (notice that
Lr(s) = Lr(Ls(1)) = Lr⋅s(1) = r ⋅s). For every associative, unital ring (R,+, ⋅), for every associative,
unital ring (R′,+′, ⋅′), a morphism of associative, unital rings from (R,+, ⋅) to (R′,+′, ⋅′) is a set
function f from R to R′ that is simultaneously a homomorphism from the Abelian group (R,+) to
(R′,+′) and a homomorphism from the monoid (R, ⋅) to the monoid (R′, ⋅′).

Exercise G.24. Check that, for every associative, unital ring (R,+, ⋅), the identity function IdR
is a morphism of associative, unital rings from (R,+, ⋅) to itself. Also check that the composition
function of morphisms of associative, unital rings is again a morphism of associative, unital rings.
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Definition G.25. The category of associative, unital rings, denoted Ring, has as objects all
associative, unital rings, has as morphisms the morphisms of associative, unital rings, and has the
composition from the previous exercise.

Definition G.26. For every associative, unital ring (R,+, ⋅), the opposite product ⋅opp is the
binary operation on R defined by s ⋅opp r = r ⋅ s for every element (r, s) of R ×R.

Exercise G.27. Check that for every associative, unital ring (R,+, ⋅), also (R,+, ⋅opp) is an asso-
ciative, unital ring.

Definition G.28. A commutative, associative, unital ring is an associative, unital ring
(R,+, ⋅) such that ⋅opp equals ⋅, i.e., r ⋅ s equals s ⋅ r for every element (r, s) of R × R. For ev-
ery commutative, associative, unital ring (R,+, ⋅), for every commutative, associative, unital ring
(R′,+′, ⋅′), a morphism of commutative, associative, unital rings from (R,+, ⋅) to (R′,+′, ⋅′) is a
morphism of associative, unital rings from (R,+, ⋅) to (R′,+′, ⋅′). The category CRing is the full
subcategory of Ring whose objects are all commutative, associative, unital rings.

Definition G.29. For every associative, unital ring (R,+, ⋅), for every Abelian group (M,+), a left
R-module structure on (M,+) is a morphism of associative, unital rings λ from (R,+, ⋅) to the
associative, unital ring HomAb((M,+), (M,+)), i.e., for every element r of R, the function λr from
M to itself is a group homomorphism, λ1 equals IdM , and, for every element (r, s) of R ×R, the
image λr+s equals λr +λs and λr⋅s equals λr ○λs. Stated differently, this is a biadditive map ∗ from
R×M to M that is also a monoid homomorphism for ⋅ on R and for composition of Abelian group
homomorphisms of M , i.e., 1∗m equals m and (r ⋅ s) ∗m equals r ∗ (s∗m) for every element m of
M and for every element (r, s) of R×R. For every left R-module (M,+, λ), for every left R-module
(M ′,+′, λ′), a morphism of left R-modules from (M,+, λ) to (M ′,+′, λ′) is a set function f from
M to M ′ that is a homomorphism of Abelian groups from (M,+) to (M ′,+′) and that commutes
with λ and λ′, i.e., f ○ λr equals λ′r ○ f for every element r of R.

Exercise G.30. Check that the identity function from M to itself is a morphism of left R-modules
from (M,+, λ) to itself. Check that the composition function of two morphisms of left R-modules
is again a morphism of left R-modules.

Definition G.31. For every associative, unital ring (R,+, ⋅), the category of left R-modules,
denoted R −Mod, has objects that are all left R-modules, has morphisms that are all morphisms
of left R-modules, and has composition as defined above.

Exercise G.32. For every left R-module (M,+, λ), for every Abelian group (M ′,+′), define a left
R-module structure on HomAb((M ′,+′), (M,+)) by λM

′

M,r(f)(m′) ∶= λr(f(m′)) for every element r
of R, for every element m′ of M ′, and for every Abelian group homomorphism f from (M ′,+′) to
(M,+). Check that this is a structure of left R-module. For every ordered pair of left R-modules
(M,+, λ) and (M ′,+′, λ′), for every Abelian group homomorphism f from (M ′,+′) to (M,+), check
that f is a morphism of left R-modules from (M ′,+′, λ′) to (M,+, λ) if and only if λM

′

M,r(f) equals
f ○ λ′r for every element r of R.
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Definition G.33. For every associative, unital ring (R,+, ⋅), for every Abelian group (M,+), a
right R-module structure on (M,+) is a morphism of associative, unital rings ρ from (R,+, ⋅opp)
to the associative, unital ring HomAb((M,+), (M,+)). Stated differently, this is a biadditive map
∗ from M ×R to M that is also a monoid homomorphism for ⋅ on R and for composition of Abelian
group homomorphisms of M , i.e., m ⋅ 1 equals m and m∗ (r ⋅ s) equals (m∗ r) ∗ s for every element
m of M and for every element (r, s) of R × R. For every right R-module (M,+, ρ), for every
right R-module (M ′,+′, ρ′), a morphism of right R-modules from (M,+, ρ) to (M ′,+′, ρ′) is a set
function f from M to M ′ that is a homomorphism of Abelian groups from (M,+) to (M ′,+′) and
that commutes with ρ and ρ′, i.e., f ○ ρr equals ρ′r ○ f for every element r of R.

Exercise G.34. Check that the identity function from M to itself is a morphism of right R-modules
from (M,+, ρ) to itself. Check that the composition function of two morphisms of right R-modules
is again a morphism of right R-modules.

Definition G.35. For every associative, unital ring (R,+, ⋅), the category of right R-modules,
denoted Mod−R, has objects that are all right R-modules, has morphisms that are all morphisms
of right R-modules, and has composition as defined above.

Exercise G.36. For every left R-module (M,+, λ), for every Abelian group (M ′,+′), define a right
R-module structure on HomAb((M,+), (M ′,+′)) by ρM,r

M ′ (f)(m) ∶= f(λr(m)) for every element r
of R, for every element m of M , and for every Abelian group homomorphism f from (M,+) to
(M ′,+′). Check that this is a structure of right R-module. For every ordered pair of left R-modules
(M,+, λ) and (M ′,+′, λ′), for every Abelian group homomorphism f from (M,+) to (M ′,+′), check
that f is a morphism of left R-modules from (M,+, λ) to (M ′,+′, λ′) if and only if ρM,r

M ′ (f) equals
λr ○ f (which also equals λMM ′,r(f), by definition) for every element r of R.

Exercise G.37. Formulate and prove the analogous results for a right R-module structure on
HomAb((M,+), (M ′,+′)) associated to a right R-module structure on (M ′,+′) and for a left R-
module structure on HomAb((M,+), (M ′,+′)) associated to a right R-module structure on (M,+).

Definition G.38. For every associative, unital ring (R,+R, ⋅R), for every associative, unital ring
(S,+S, ⋅S), an R − S-bimodule is a quadruple (M,+, λ, ρ) of an Abelian group (M,+) with a left
R-module structure λ and a right S-module structure ρ such that, for every element (r, r′) of
R × R′, the Abelian group homomorphism λr ○ ρr′ equals ρr′ ○ λr, i.e., the images of λ and ρ in
HomAb((M,+), (M,+)) centralize one another. For every R − S-bimodule (M,+, λ, ρ), for every
R−S-bimodule (M ′,+′, λ′, ρ′), a morphism of R−S-bimodules from (M,+, λ, ρ) to (M ′,+′, λ′, ρ′) is
a set function f from M to M ′ that is simultaneously a morphism of left R-modules from (M,+, λ)
to (M ′,+′, λ′) and a morphism of right S-modules from (M,+, ρ) to (M ′,+′, ρ′).

Exercise G.39. Check that the identity set function IdM is a morphism of R − S-bimodules from
(M,+, λ, ρ) to itself. Also check that the composition function of morphisms of R−S-bimodules is
again an R − S-bimodule.

Definition G.40. For every associative, unital ring (R,+R, ⋅R), for every associative, unital ring
(S,+S, ⋅S), the category of R − S-bimodules, denoted R − S − Mod, has objects that are all
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R − S-bimodules, has morphisms that are all morphisms of R − S-bimodules, and has composition
as defined above.

Exercise G.41. For every R − S-bimodule (M,+, λ, ρ), for every Abelian group (M ′,+′), check
that the operations λM

′

M,r and ρM
′

M,s make HomAb((M ′,+′), (M,+)) into an R − S-bimodule. Sim-
ilarly, define an S −R-bimodule structure on HomAb((M,+), (M ′,+′)). For every Abelian group
homomorphism f from an R − S-bimodule (M,+, λ, ρ) to an R − S-bimodule (M ′,+′, λ′, ρ′), check
that f is a morphism of R − S-bimodules if and only if both ρM,r

M ′ (f) equals λMM ′,r(f) and ρMM ′,s(f)
equals λM,s

M ′ (f) for every element r of R and for every element s of S.

Of course there are also many notions of topological space and geometric object.

Definition G.42. For every set X, a topology (of open subsets of X) is a subset τ of the power
set P(X) of X satisfying all of the following.

(i) Both ∅ and X are elements of τ .

(ii) For every ordered pair (U,V ) of elements of τ , also U ∩ V is an element of τ .

(iii) For every subset I of τ , the union over all elements of I (considered as a subset of X) is an
element of τ .

A topological space is an ordered pair (X,τ) of a set X and a topology τ on X.

For every ordered pair ((X,τ), (X ′, τ ′)) of topological spaces, a continuous map from (X,τ) to
(X ′, τ ′) is a function f from X to X ′ such that for every element U ′ of τ ′, the preimage fpre(U ′)
is an element of τ .

Exercise G.43. For every topological space (X,τ), check that IdX is a continuous map from (X,τ)
to itself. Check that the composition function of continuous maps is again a continuous map. Thus,
topological spaces with continuous maps form a category, Top.

Definition G.44. For every set X, a topological basis (of open subsets of X) is a subset B of
the power set P(X) of X satisfying all of the following.

(i) The set X is the union over all elements of B.

(ii) For every ordered pair (U,V ) of elements of B, the set U∩V equals the union over all elements
of B that are subset of U ∩ V .

Occasionally, a function to P(X) whose image is a topological basis is also called a topological
basis. The topology generated by a topological basis is the subset τ(B) of P(X) of all subsets U
of X that equal the union over all elements of B that are a subset of U (thus, also ∅ is tautologically
an element of B).
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Exercise G.45. Check that τ(B) is a topology for X . For every topological space (X ′, τ ′) and for
every function f from X ′ to X, check that f is a continuous map from (X ′, τ ′) to (X,τ(B) if and
only if, for every element U of B, the preimage subset fpre(U) is an element of τ ′.

Associated to every category there is a maximal subcategory that is a groupoid.

Definition G.46. For every category C, the core of C is the (usually non-full) groupoid sub-
category with the same objects, but whose Hom set is the subset of invertible elements in the
corresponding Hom set of C.

Example G.47. For every monoid (H, ●), the core of the category of (H, ●) is B(H, ●)×, where
(H, ●)× is the submonoid (in fact, group) of (H, ●) whose elements are all invertible elements of H.
The core of Set is the the groupoid of sets whose morphisms are bijections of sets. This also equals
the core of Rel. The core of a product of categories is (canonically equivalent to) the product of
the cores of the categories.

Example G.48. In particular, in the core of the hybrid category, for every object ((H, ●), (H,rH))
where (H, ●) is a group and where (H,rH) is the right regular H-action on itself, the group of
automorphisms of this object is the classical notion of holomorph of the group, i.e., the semidirect
product of the group with its automorphism group.

Example G.49. For every set S together with a relation R from S to itself, consider the class of
S as a class of objects, and consider R as a span from this class to itself. An associative, unital
composition law extending this to a category is unique if it exists. In fact, this span extends to
a category if and only if R is a preorder, i.e., if and only if R is both transitive and reflexive.
In this case, the corresponding category is small and thin. Every small, thin category is strongly
equivalent to the category of a preordered set. The core of the category of a preordered set (S,R)
is (canonically equivalent to) the category of the associated Bishop set, i.e., the set S together
with an equivalence relation ∼R, where a ∼R b if and only if both (a, b) and (b, a) are elements of
R. The category of a preordered set is skeletal if and only if ∼R is equality, i.e., if and only if the
preorder is a partial order: a transitive, reflexive relation that is also asymmetric. Similarly, the
category of a preordered set is a groupoid if and only if the relation R is already an equivalence
relation, i.e., if and only if the transitive, reflexive relation is also symmetric. Every preordered
set is the pullback of a partial order under a surjection whose associated equivalence relation is ∼R
(and this surjection to a partially ordered set is unique up to unique isomorphism). If we accept
the Axiom of Choice, there exists a subset of the original set that surjects isomorphically to the
partially ordered set, and this defines a full subcategory of the category of the preordered set that
is a skeleton.

Definition G.50. For every category C, the objects of the arrow category Arr(C) are objects
of mor(C), i.e., tuples ((s, t), f) of an ordered pair (s, t) of objects of C and a C-morphism f from
s to t. For every ordered pair of C-morphisms, say ((s, t), f) and ((s′, t′), f ′) , the morphisms
of Arr(C) from ((s, t), f) to ((s′, t′), f ′) are ordered pairs (σ, τ) of a C-morphism σ from s to
s′ and a C-morphism τ from t to t′ such that f ′ ○ σ equals τ ○ f . Composition of morphisms is
componentwise.
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Example G.51. For every monoid (H, ●), for the associated monoid category, the objects of the
arrow category are elements h of H, and for every ordered pair (h,h′) of elements of H, the
morphisms from h to h′ in the arrow category are ordered pairs (σ, τ) of elements of H such that
τ ●h equals h′●σ. In particular, if (H, ●) is a group, this is the same as the set of pairs (σ,h′●σσh−1),
which projects under pr1 as a bijection to H (where composition corresponds to ●). Thus, for every
group (H, ●), the arrow category of B(H, ●) is weakly equivalent to B(H, ●).

Example G.52. For each partially ordered set (S,R), denote by R(2) the partial order on S × S
whose elements are all elements ((s, t), (s′, t′)) of (S ×S)× (S ×S) such that both (s, s′) and (t, t′)
are elements of R. Denote by R(2)∣R the restriction of this partial order to the subset R of S × S.
Then for the category of the partially ordered set (S,R), the arrow category is strongly equivalent
to the category of the partially ordered set (R,R(2)∣R).

Definition G.53. For every category C and for every object b, the under category of C under
the object b, denoted Cb or b/C, is the subcategory of the arrow category whose objects are arrows
((s, t), f) such that t equals b, and whose morphisms from ((s, b), f) to ((s′, b), f ′) are all ordered
pairs (σ, Idb) of a morphism σ from s to s′ such that f ′ ○ σ equals Idb ○ f , i.e., equals f .

Definition G.54. For every category C and for every object a, the over category of C over the
object a, denoted Ca or C/a, is the subcategory of the arrow category whose objects are arrows
((s, t), f) such that s equals a, and whose morphisms from ((a, t), f) to ((a, t′), f ′) are all ordered
pairs (Ida, τ) of a morphism τ from t to t′ such that τ ○ f equals f ′ ○ Ida, i.e., equals f ′.

Example G.55. For every monoid (H, ●), for the associated monoid category, for the unique
object, both for the under category and the over category, the objects are the elements h of H.
For every ordered pair (h,h′) of elements of H, the morphisms from h to h′ in the under category
are ordered pairs (σ, IdH) of elements of H such that h equals h′ ●σ, and the morphisms from h to
h′ in the over category are ordered pairs (IdH , τ) such that τ ● h equals h′. In particular, if (H, ●)
is a group, both the over category and the under category are weakly equivalent to the discrete
category with only one object and only one morphism (the identity morphism).

Example G.56. For each partially ordered set (S,R), for each element b of S, denote by Sb the
lower subset of b in (S,R), i.e., the subset of all elements a of S such that (a, b) is an element of
R. Denote by Rb the restriction of R to this subset. Then the under category of the category of
(S,R) under the object b is strongly equivalent to the category of the partially ordered set (Sb,Rb).
Similarly, the over category over an element a is strongly equivalent to the category of the partially
ordered set (Sa,Ra), where Sa is the upper subset of a in (S,R), i.e., the subset of all elements
b of S such that (a, b) is an element of R.

H Functors

The usual notion of morphisms between categories, called functors, are morphisms of spans that
respect both composition and identities.
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Definition H.1. For every ordered pair class (O,M) of a class O and a O-Hom span M, for
every ordered pair class (O′,M′) of a class O′ and a O′-Hom span M′, a morphism of Hom spans
from (O,M) to (O′,M′) is an ordered pair class F = (Fobj,Fmor) such that (Fobj,Fobj,Fmor) is a
span cell (O,O,M) to (O′,O′,M′), i.e., for every member (a, a′) of Fobj, for every member (b, b′)
of Fobj, for every member ((a, b), f) of M, the value of ((a, b), f) under the class morphism Fmor

equals ((a′, b′), f ′) for a unique member ((a′, b′), f ′) of M′.

Example H.2. For every ordered pair class (O,M) with M a O-Hom span, for every ordered
pair class (O′,M′) with M′ a O′-Hom span such that O′ is a subclass of O and such that M′ is a
subclass of M, the inclusion morphism from the class O′ to O and the inclusion morphism from M′

to M together define a morphism of Hom spans, inclO
′,M′

O,M from (O′,M′) to (O,M), the inclusion
morphism.

Exercise H.3. For every ordered pair class (O,M) as above, check that the identity span cell from
(O,O,M) to itself is a morphism of Hom spans from (O,M) to itself. Also, for every morphism of
Hom spans F = (Fobj,Fobj,Fmor) from (O,M) to (O′,M′) and for every morphism of Hom spans
F′ = (F′

obj,F
′
obj,Fmor) from (O′,M′) to (O′′,M′′), check that the composition (F′

obj ○Fobj,F′
mor ○

Fmor) is a morphism of Hom spans from (O,M) to (O′′,M′′). Use earlier exercises to deduce that
composition of morphisms of Hom spans is associative, and the identity morphisms of Hom spans
are left-right identities for this composition.

Definition H.4. For every category C = (O,M, ○), for every category C′ = (O′,M′, ○′), a (covari-
ant) functor from C to C′ is a morphism F of Hom spans from (O,M) to (O′,M′) that maps
identities to identities and that is compatible with composition laws: for every object a of C, the
morphism Fmor maps (a, a, IdC

a ) to (a′, a′, IdC′

a′ ), and for every ordered pair ((a, b), f), ((b, c), g) of
members of M with images ((a′, b′), f ′) and ((b′, c′), g′) under Fmor, also ((a, c), g ○ f) has image
((a′, c′), g′ ○′ f ′).

Exercise H.5. For every category C, check that the identity span cell of C is a functor from C to
itself. This is the identity functor. Also, check that the composition of Hom spans of functors is
again a functor. By the previous exercise, deduce that composition of functors is associative, and
that identity functors are left-right identities for functor composition.

Example H.6. For every category C = (O,M, ○) for every (not necessarily full) subcategory
C′ = (O′,M′, ○) the inclusion morphism is a functor inclC

′

C from C′ to C, the inclusion functor.

Example H.7. For every category C = (O,M, ○), for every class morphism Fobj from a class O′

to O, this extends uniquely to a functor (Fobj,Fmor) from the discrete category structure on O′ to
(O,M, ○). Similarly for every class morphism Fobj from O to a class O′, this extends uniquely to
a functor (Fobj,Fmor) from (O,M, ○) to the final category structure on O′.

Definition H.8. For every category C = (O,M, ○), a C-Hom equivalence relation is a subclass
R of M ×O×O M, that, considered as an O-Hom span, is stable for (component-wise) composition
and whose fiber class, for every ordered pair (a, b) of members of O, is an equivalence relation on
Ma

b .
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Example H.9. For every category C = (O,M, ○), for every C-Hom equivalence relation R, there
exists a unique O-Hom span M/R and a unique composition law ○ making (O,M/R, ○) into a
category such that both, for every ordered pair (a, b) of members of O, the Hom set (M/R)ab is
the set of Ra

b -equivalence classes in Ma
b , and the identity class morphism on O together with the

quotient class morphism M → M/R defines a full, strictly surjective functor from (O,M, ○) to
(O,M/R, ○).

Exercise H.10. Check that the composition law on M does factor through a composition law on
M/R. Also check that this composition is associative and unital. Deduce that the class morphisms
above define a full, strictly surjective functor.

Definition H.11. For every category C, for every C-Hom equivalence relation R, the functor of
the previous example is the quotient functor of C by the C-Hom equivalence relation R.

Example H.12. As examples of the previous construction, for every category (O,M, ○), for the
equality class, the quotient functor is a strict equivalence of categories.

Example H.13. On the other hand, if R equals the entire O-Hom span M ×O×O M, then each
quotient Hom set (M/R)ab is either a singleton set if there exists an M-morphism from a to b, or
the empty set if Ma

b is empty. When O is the class of a set, this quotient category is equivalent to
a preorder on that set.

Example H.14. For every monoid (H, ●), for the associated monoid category, a Hom-equivalence
relation is equivalent to an equivalence relation R on H such that, for every (h,h′) in R and for
every k in H, also (k ● h, k ● h′) and (h ● k, h′ ● k) are elements of R. In particular, if (H, ●) is a
group, Hom-equivalence relation are precisely the equivalence relations of (left or right) congruence
modulo normal subgroups of (H, ●), and the quotient functor corresponds to the quotient group
homomorphism by the normal subgroup.

Definition H.15. For every functor (Fobj,Fobj,Fmor) from (O,M, ○) to (O′,M′, ○′), the span cell
of opposites spans is a functor of the opposite category, (Fobj,Fobj,F

opp
mor) from (O,Mopp, ○opp) to

(O′, (M′)opp, (○′)opp). This is the opposite functor. The opposite functor of the opposite functor
equals the original functor.

For every category C, for every category C′, a functor from Copp to C′ is then equivalent (up to
taking opposites) to a functor from C to (C′)opp, and these are both (somewhat confusingly) called
contravariant functors from C to C′.

Definition H.16. For every functor (Fobj,Fobj,Fmor) from C = (O,M, ○) to C′ = (O′,M′, ○′), the
functor is full, respectively faithful, fully faithful, if for all members a and b of O with values
a′ = Fobj(a) and b′ = Fobj(b), the function Fa

mor,b from HomC(a, b) to HomC′(a′, b′) is surjective,
resp. injective, bijective. A functor is essentially surjective if every object of C′ is isomorphic
to an object of the form Fobj(a) for some member a of C. A faithful functor is conservative if
(and only if) every morphism that is mapped to an isomorphism under the functor is already an
isomorphism. A functor that is essentially surjective and fully faithful is a weak equivalence of
categories.
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Definition H.17. For every category, the identity functor from the category to itself maps every
object to itself and maps every morphism to itself. For every functor F = (Fobj,Fobj,Fmor) from
a category C to a category C′, for every functor F′ = (F′

obj,F
′
obj,F

′
mor) from the category C′ to a

category C′′, the composite functor is the composite of span cells, F′ ○ F = (F′
obj ○ Fobj,F′

obj ○
Fobj,F′

mor ○Fmor) that sends every C-object a to F′
obj(Fobj(a)) and that sends every C-morphism

((a, b), f) in Ca
b to F′

mor(Fmor((a, b), f)).

Proposition H.18. Composition of functors is associative, and it is unital for the identity functors.
A composition of functors is faithful, respectively full, fully faithful, essentially surjective, if each
of the component functors is of this type.

Example H.19. The inclusion functor of a subcategory into a category is a faithful functor. The
inclusion functor is full if and only if the subcategory is a full subcategory. An essentially surjective
inclusion functor of a full skeletal subcategory in a category is a skeleton of the category. If we
assume a strong version of the Axiom of Choice then every category has a skeleton.

Example H.20. A faithful functor from a category C to Set is a concrete functor, and this
functor makes C into a concrete category. Most of the categories that arise in analysis, algebra,
geometry, etc. are concrete, and typically the concrete functor is a “forgetful functor” that “forgets”
some of the structure of the objects of C. For example, the forgetful functor from Monoid to Set
that forgets the binary operation is a faithful functor; in fact, it is conservative. Thus, we also get
concrete (and conservative) functors by restricting to the full subcategories Grp, Ab and Q−Mod.
Similarly, the forgetful functors on R −Mod, on Mod − S and on R − S −Mod are concrete (and
conservative) functors. The forgetful functor on Ring is a concrete (and conservative) functor,
hence so is its restriction to the full subcategory CRing. Similarly, the forgetful functor from Top
to Set is faithful, but it is not conservative (because there can be many different topologies on the
same underlying set).

Exercise H.21. Of course the inclusion of Set as a (non-full) subcategory of Rel is faithful. Prove
that the following defines a faithful functor P from Rel to Set: map every set a, considered as an
object of Rel, to the power set P(a) of a, as an object of Set, and, for every ordered pair (a, b)
of sets, map every element R of Relab = P(a × b) to the set function PR from P(a) to P(b) by
sending every subset a′ of a to the subset PR(a′) = pr(a,b),2(prpre

(a,b),1(a′) ∩ R) of b, where pr(a,b),1,
respectively pr(a,b),2, is the usual projection function from the Cartesian product a × b to a, resp.
to b. (Eventually we will see that this defines a right adjoint to the non-full inclusion of Set into
Rel.)

Example H.22. For every monoid (H, ●), for every monoid (H ′, ●′), for every monoid homo-
morphism f from (H, ●) to (H ′, ●′), there is a unique functor from the category of (H, ●) to the
category of (H ′, ●′) that maps the unique object to the unique object, and that maps Hom sets via
f . Every functor between these categories is of this form for a unique monoid homomorphism f .
More generally, for every functor F from a category C to a category C′, for every object a of C
with image a′ = F(a), the function Fa

a from Ca
a to (C′)a′a′ is a monoid homomorphism. Moreover,

for every ordered pair (a, b) of objects of C, for the set Ca
b with its natural left Cb

b-act and its
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natural right Ca
a-act, for the set (C′)a′b′ with the induced left Cb

b-act and right Ca
a-act arising from

the monoid homomorphisms Fb
b and Fa

a, the function Fa
b from Ca

b to (C′)a′b′ is compatible with the
left and right acts.

Example H.23. Specializing the previous example to the case when (H, ●) and (H ′, ●′) are groups,
the functors from BH to BH ′ are equivalent to group homomorphisms from (H, ●) to (H ′, ●′). More
generally, every functor between groupoids induces group homomorphisms between automorphism
groups of objects and the induced functioms between general Hom sets are compatible with both
the left and right actions by these automorphism groups.

Example H.24. For every category C, for every preordered set (S′,R′), every functor from C to
the category of (S′,R′) is equivalent to a morphism Fobj from obj(C) to (the class of) S′ that is
nondecreasing, i.e., for every ordered pair (a, b) of objects of C such that Ca

b is nonempty, then
(f(a), f(b)) is an element of R′.

Definition H.25. For every every category C, for every category C′, for every object a′ of the
category C′, the constant functor constCC′,a′ from C to C′ with value a′ assigns the object a′ to

every object a of C and assigns the identity morphism IdC′

a′ to every C-morphism. In other words,
constCC′,a′ is the composition of the unique functor from C to the trivial monoid B{e} with the
unique functor from B{e} to C′ sending the unique object of B{e} to the object a′ of C′.

Example H.26. In particular, for the category Set, the functor L = constSetSet,∅ from Set to itself
has the special property that HomSet(L(a), b) is always a singleton set.

Definition H.27. For every category C, an object 0 of C is an initial object if (and only if), for
every object a of C, there exists a unique C-morphism from 0 to a.

Example H.28. Similarly, for the category Set, for every singleton set, say 1 ∶= {∅}, the functor
R = constSetSet,1 from Set to itself has the special property that HomSet(a,R(b)) is always a singleton
set.

Definition H.29. For every category C, an object 1 of C is a final object if (and only if), for
every object a of C, there exists a unique C-morphism from a to 1. An object that is both initial
and final is a zero object.

Exercise H.30. For every category C that has an initial object, prove that the initial object is
unique up to unique isomorphism. Similarly, for every category C that has a final object, prove
that the final object is unique up to unique isomorphism (you can use opposites to reduce to the
previous assertion). Conclude that for every category C that has a zero object, the zero object is
unique up to unique isomorphism.

Exercise H.31. Prove that Set has an initial object and a final object, but these are not isomor-
phic, hence Set does not have a zero object. Prove the same for Top, and the concrete forgetful
functor maps the initial object of Top, respectively each final object of Top, to the initial object
of Set, resp. to a final object of Set. On the other hand, prove that the empty set is the unique
zero object of Rel. Similarly, prove that {e} is the unique zero object in Monoid, in the full
subcategory Grp, in the full subcategory Ab, etc.
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Exercise H.32. Prove that the (standard) ring of integers Z is an initial object in the category
Ring of associative, unital rings, and also in the full subcategory CRing of commutative, associa-
tive, unital rings. Prove that the zero ring is a final object in each of these categories.

I Natural transformations

The notion of functors admits its own notion of morphisms between functors, called natural trans-
formations. This is very analogous to the operation on group homomorphisms of post-composition
by a conjugation (inner) automorphism.

Definition I.1. For every category C, for every category C′, for every covariant functor F from
C to C′, and for every covariant functor G from C to C′, a natural transformation from
F to G is a morphism of classes θ from obC associating to every object a of C an element θa
of HomC′(F(a),G(a)) such that, for every ordered pair (a, b) of objects of C and for every C-
morphism u from a to b, the C′-composite θb ○ F a

b (u) equals the C′-composite Ga
b(u) ○ θa. A

natural transformation is a natural equivalence (or natural isomorphism) if (and only if) the
morphism associated to each object is an isomorphism.

Example I.2. For every category C, for every category C′, and for every covariant functor F from
C to C′, the identity natural equivalence from F to itself is the natural transformation that
associates to every object a of C the identity morphism IdC′

F(a). This is denoted by IdC
C′,F, or just

IdF when confusion is unlikely.

Exercise I.3. For the inclusion functor inclSetRel from Set to Rel, for the power set functor P from
Rel to Set, check that the following defines a natural transformation θ from the identity functor
IdSet to the composite functor P ○ inclSetRel. For every set a, the set function θa from a to P(a) sends
every element y of a to the singleton set {y} considered as an element of P(a).

Exercise I.4. Continuing the previous exercise, check that the following defines a natural trans-
formation η from inclSetRel ○ P to the identity functor IdRel. For every set a, the relation ηa from
P(a) to a is the subset ηa of P(a) × a of all ordered pairs (x, y) of a subset x of a and an element
y of a, the ordered pair (x, y) is an element of ηa if and only if y is an element of x (i.e., ηa is the
opposite relation of the relation εa of being an element of a set).

Definition I.5. For every category C, for every category C′, for every ordered triple (F,G,H) of
covariant functors from C to C′, for every natural transformation θ from F to G, for every natural
transformation η from G to H, the (vertical) composition natural transformation η ○θ from F
to H is the natural transformation that associates to every object a of C the composite morphism
ηa ○ θa from F(a) to H(a).

Exercise I.6. Check that the composition natural transformation is, indeed, a natural transfor-
mation. Also check that composition is (strictly) associative for natural transformations. Finally
check that identity natural transformations are (strict) left-right identities for composition.
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Example I.7. For every category C, for every category C′, for every C′-morphism f ′ from an
object a′ to an object b′, there is an associated natural transformation constCC′,f ′ from the constant

functor constCC′,a′ to the constant functor constCC′,b′ associating to every object a of C the morphism
f ′.

Exercise I.8. For every category C, for every category C′, for every object a′ of C′, prove that
constCC′,Ida′

is the identity natural transformation from constCC′,a′ to itself. Also, for every ordered

triple (a′, b′, c′) of C′-objects, for every C′-morphism f ′ from a′ to b′ and for every C′-morphism g′

from b′ to c′, prove that constCC′,g′○f ′ equals the composition of natural transformations constCC′,g′ ○
constCC′,f ′ .

Example I.9. For every monoid (H, ●), for every monoid (H ′, ●′), for monoid homomorphisms f
and g from (H, ●) to (H ′, ●′), for the associated functors from the category of (H, ●) to the category
of (H ′, ●′), a natural transformation between these functors is an element h′ of H ′ such that for
every element h of H, the composite h′ ●′ f(h) equals g(h) ●′ h′. In particular, if g equals f , then
the natural self-transformations of g = f are equivalent to elements of H ′ that centralize the image
of f . So the center of (H ′, ●′) is equivalent to the set of natural self-transformations of the identity
functor of the category of (H ′, ●′).

Example I.10. Continuing the previous example, if the monoid (H ′, ●′) is a group (i.e., if every
morphism is an isomorphism), then a natural transformation from f to g, monoid homomorphisms
from (H, ●) to (H ′, ●′), are equivalent to elements h′ of H ′ such that g equals the composite
innerh′ ○ f , where innerh′ is the conjugation (inner) automorphism of (H ′, ●′) associated to h′.

Example I.11. Similarly, for every natural transformation θ between functors F and G from a
category C to a category C′, for every object a of C that maps under both F and G to a common
object a′, the monoid homomorphisms Fa

a and Ga
a from Ca

a to (C′)a′a′ are intertwined by the element
θa of (C′)a′a′ in the sense that θa ○Fa

a(u) equals Ga
a(u) ○ θa for every element u of Ca

a.

Example I.12. For every functor F from a category C to a category C′, if there exists an initial
object 0′ of C′, then there is a unique natural transformation from the constant functor constCC′,0′

to F that associates to every object a of C the unique C′-morphism from 0′ to F(a).

Example I.13. For every functor F from a category C to a category C′, if there exists a final object
1′ of C′, then there is a unique natural transformation from F to the constant functor constCC′,1′

that associates to every object a of C the unique C′-morphism from F(a) to 1′.

Example I.14. For every category C, for every preordered set (S′,R′), for functors F and G from
C to the category of (S,R), i.e., nondecreasing morphisms from obj(C) to (the class of) S′, there
exists a natural transformation from F to G if and only if (F(a),G(a)) is an element of R′ for
every object a of C, and then the natural transformation is unique. Thus, there exists a natural
transformation from F to G if and only if, valuewise Fmor is “less than or equal to” Gmor.

There is another notion of composition for functors.
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Definition I.15. For every category C = (O,M, ○), for every category C′ = (O′,M′, ○′), for every
category C′′ = (O′′,M′′, ○′′), for every ordered pair (F,G) of covariant functors from C to C′, for
every ordered pair (F′,G′) of covariant functors from C′ to C′′, for every natural transformation
θ from F to G, for every natural transformation θ′ from F′ to G′, the horizontal composition
natural transformation of θ′ and θ, sometimes called the Godement product, is the natural
transformation θ′ ∗ θ from F′ ○F to G′ ○G associating to every object a of C the C′′-morphism,

θ′G(a) ○′′ (F′)F(a)
G(a)(θa) = (θ′ ∗ θ)a = (G′)F(a)

G(a)(θa) ○
′′ θ′F(a).

Exercise I.16. Check that the Godement product is a natural transformation from F′○F to G′○G.
Also check that the Godement product is associative in both θ and θ′ separately for the (vertical)
composition of natural transformations.

There are some important special cases of the Godement product.

Definition I.17. For every category C, for every category C′, for every category C′′, for every
ordered pair (F,G) of covariant functors from C to C′, for every covariant functor H′ from C′ to C′′,
for every natural transformation θ from F to G, the H′-pushforward natural transformation
is H′

∗θ = IdC′

C′′,H′ ∗ θ, associating to every object a of A the C′′-morphism (H′)F(a)
G(a)(θa).

Definition I.18. For every category C, for every category C′, for every category C′′, for every
covariant functor E from C to C′, for every ordered pair (F′,G′) of covariant functors from C′ to
C′′, for every natural transformation θ from F′ to G′, the E-pullback natural transformation,
E∗θ = θ ∗ IdCC′,E associates to every object a of C the C′′-morphism θE(a).

Exercise I.19. Check that the Godement product can be expanded in terms of pushforward,
pullback and vertical composition as follows,

G∗η ○F′
∗θ = η ∗ θ = G′

∗θ ○F∗η.

J Products and Coproducts

Definition J.1. For every category C, for every ordered pair (b1, b2) of objects of C, an arrow
over (b1, b2) is an ordered pair (p1, p2) of a C-morphism p1 from an object a to b1 and a C-
morphism p2 from a to b2. For every arrow ((p1 ∶ a → b1, p2 ∶ a → b2) over (b1, b2), for every arrow
(p′1 ∶ a′ → b1, p′2 ∶ a′ → b2)) over (b1, b2), a morphism of arrows over (b1, b2) from (p1, p2) to (p′1, p′2)
is a C-morphism f from a to a′ such that both p′1 ○ f equals p1 and p′2 ○ f equals p2. A product
of (b1, b2) in C is an arrow over (b1, b2), say

(prC(b1,b2),1 ∶ b1 × b2 → b1,prC(b1,b2),2 ∶ b1 × b2 → b2),

such that for every arrow (p1, p2) over (b1, b2), there exists a unique morphism of arrows over (b1, b2)
from (p1, p2) to (prC(b1,b2),1,prC(b1,b2),2). More generally, for every object c of C, for every ordered
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pair (g1 ∶ b1 → c, g2 ∶ b2 → c) of objects of the under category Cc, a fiber product of (g1, g2) is a
product of (g1, g2) in the under category Cc, i.e., an arrow over (b1, b2),

(prC(g1,g2),1 ∶ b1 ×g1,c,g2 b2 → b1,prC(g1,g2),2 ∶ b1 ×g1,c,g2 b2 → b2),

such that g1 ○ prC(g1,g2),1 equals g2 ○ prC(g1,g2),2, and such that, for every arrow over (b1, b2), say

(p1 ∶ a→ b1, p2 ∶ a→ b2) that satisfies g1 ○ p1 = g2 ○ p2, there exists a unique morphism of arrows over
(b1, b2) from (p1, p2) to (prC(g1,g2),1,prC(g1,g2),2).

Definition J.2. For every category C, for every ordered pair (b1, b2) of objects of C, an arrow
under (b1, b2) is an ordered pair (i1, i2) of a C-morphism i1 from b1 to an object c and a C-
morphism p2 from b2 to c. For every arrow ((i1 ∶ b1 → c, i2 ∶ b2 → c) under (b1, b2), for every arrow
(i′1 ∶ b1 → c′, i′2 ∶ b2 → c′)) under (b1, b2), a morphism of arrows under (b1, b2) from (i1, i2) to (i′1, i′2)
is a C-morphism h from c to c′ such that both h ○ i1 equals i′1 and h ○ i2 equals i′2. A coproduct
of (b1, b2) in C is an arrow under (b1, b2), say

(inclC(b1,b2),1 ∶ b1 → b1 ⊔ b2, inclC(b1,b2),2 ∶ b2 → b1 ⊔ b2),

such that for every arrow (i′1, i′2) under (b1, b2), there exists a unique morphism of arrows under
(b1, b2) from (inclC(b1,b2),1, inclC(b1,b2),2) to (i′1, i′2). More generally, for every object a of C, for every
ordered pair (f1 ∶ a → b1 → b, f2 ∶ a → b2) of objects of the over category Ca, a cofiber coproduct
of (f1, f2) is a coproduct of (f1, f2) in the over category Ca, i.e., an arrow under (b1, b2),

(inclC(f1,f2),1 ∶ b1 → b1 ⊔f1,a,f2 b2, inclC(f1,f2),2 ∶ b2 → b1 ⊔f1,a,f2 b2),

such that inclC(f1,f2),1 ○ f1 equals inclC(f1,f2),2 ○ f2, and such that for every arrow under (b1, b2), say
(i′1 ∶ b1 → c′, i′2 ∶ b2 → c′) that satisfies f1 ○ i′1 = f2 ○ i′2, there exists a unique morphism of arrows under
(b1, b2) from (inclC(f1,f2),1, inclC(f1,f2),2) to (i′1, i′2).

Lemma J.3. When products exist, respectively when fiber products exist, when coproducts exist,
when cofiber coproducts exist, they are unique up to unique isomorphism. Products and fiber prod-
ucts in the opposite category are coproducts and cofiber coproducts in the original category. Coprod-
ucts and cofiber coproducts in the opposite category are products and fiber products in the original
category.

Definition J.4. A category C has all finite products, respectively has all finite coproducts,
if (and only if) for every ordered pair (b1, b2) of objects of C there exists a product of (b1, b2) in
C, resp. there exists a coproduct of (b1, b2) in C. A category has all finite limits if (and only if),
for every object c of C, the under category Cc has all finite products. A category has all finite
colimits if (and only if), for every object a of C, the over category Ca has all finite coproducts.

Example J.5. In the category Set, Cartesian products with the usual projection functions are
products, and disjoint unions with the usual inclusion functions are coproducts. Thus, Set has all
finite products, and it has all finite coproducts. Similarly, for fiber products, the equalizer subset
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in the Cartesian product of the pair of morphisms is a fiber product in the category of sets, and
the coequalizer quotient set of the disjoint union for the pair of morphisms is a cofiber coproduct
in the category of sets. Thus, Set has all finite limits, and it has all finite colimits. In the category
Rel, again disjoint union with inclusion functions (considered as relations) are coproducts. The
opposite relations of the inclusions functions make disjoint unions into products in the category of
Rel. Thus, Rel has all finite products, and it has all finite coproducts. However, the category Rel
does not have all fiber products, nor does it have all cofiber coproducts.

Definition J.6. For every category C, for every category C′, for every functor F from C to C′,
the functor preserves finite products if (and only if), for every ordered pair (b1, b2) of objects
of C and for every ordered pair (prC(b1,b2),1,prC(b1,b2),2) of C-morphisms that is a product of (b1, b2),
for the C′-objects b′i = F(bi), and for the C′-morphisms prC

′

(b′1,b′2),i
= F(prC(b1,b2),i), the ordered pair

(prC
′

(b′1,b′2),1
,prC

′

(b′1,b′2),2
) is a product of (b′1, b′2) in C′.

Similarly, the functor preserves finite limits if (and only if), for every object c of C with image
object c′ = F(c) of C′, the associated functor Fc from the under category Cc to the under category
C′
c′ preserves finite products, i.e., F preserves (finite) fiber products.

Definition J.7. For every category C, for every category C′, for every functor F from C to C′, the
functor preserves finite coproducts if (and only if), for every ordered pair (b1, b2) of objects of
C and for every ordered pair (inclC(b1,b2),1, inclC(b1,b2),2) of C-morphisms that is a coproduct of (b1, b2),
for the C′-objects b′i = F(bi), and for the C′-morphisms inclC

′

(b′1,b′2),i = F(inclC(b1,b2),i), the ordered pair

(inclC
′

(b′1,b′2),1, inclC
′

(b′1,b′2),2) is a coproduct of (b′1, b′2) in C′.

Similarly, the functor preserves finite colimits if (and only if), for every object a of C with image
object a′ = F(c) of C′, the associated functor Fa from the over category Ca to the over category
(C′)a′ preserves finite coproducts, i.e., F preserves (finite) cofiber coproducts.

Exercise J.8. For every monoid (H, ●), for every monoid (H ′, ●′), define a binary operation on
the Cartesian product H ×H ′ by (h1, h′1) ∗ (h2, h′2) ∶= (h1 ● h2, h′1 ●′ h′2). Check that the projection
function pr(H,H′),1, respectively pr(H,H′),2, is a monoid homomorphism from (H ×H ′,∗) to (H, ●),
resp. to (H ′, ●′). Check that this operation makes (H ×H ′,∗) into a product of (H, ●) and (H ′, ●′)
in the category of monoids. Conclude that Monoid has all finite products, and the forgetful
concrete functor from Monoid to Set preserves finite products. Similarly, check that Monoid has
all finite limits, and the forgetful concrete functor preserves finite limits.

Exercise J.9. Prove that a full subcategory of a category that has all finite products, respectively
that has all finite coproducts, both has all finite products, resp. all finite coproducts, and the
inclusion functor preserves all finite products, resp. all finite coproducts, if and only if every
product in the ambient category, resp. every coproduct in the ambient category, of objects of
the full subcategory is isomorphic to an object in the full subcategory. Formulate and prove the
analogous result for finite limits, resp. for finite colimits.
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Exercise J.10. Prove that the full subcategory Grp of Monoid has all finite limits and the
inclusion functor preserves all finite limits. Similarly, prove that the full subcategory Ab of Grp
has all finite limits and the inclusion functor preserves all finite limits. Similarly, prove that the
full subcategory Q −Mod of Ab has all finite limits and the inclusion functor preserves all finite
limits. More generally, for all associative, unital rings R and S, for the forgetful functor to Ab from
R −Mod, respectively from Mod − S, from R − S −Mod, mapping each module to its underlying
additive group, prove that each of these categories has all finite limits and the forgetful functor
preserves all finite limits.

Exercise J.11. For the forgetful functor from Ring to Ab that maps each associative, unital
rings to its underling additive group, prove that Ring has all finite limits and the forgetful functor
preserves all finite limits. Prove that the full subcategory CRing of Ring has all finite limits and
the inclusion functor preserves all finite limits.

Exercise J.12. For every ordered pair ((X1, τ1), (X2, τ2)) of topological spaces, prove that there
exists a coarsest topology τ1 ⊗ τ2 on the product set X1 ×X2 such that for both i = 1 and i = 2, the
projection function pr(X1,X2),i is a continuous map from (X1 ×X2, τ1 ⊗ τ2) to (Xi, τi), namely the
topology generated by the topological basis B of all subsets prpre

(X1,X2),1(U1) ∩ prpre
(X1,X2),2(U2) with

U1 an element of τ1 and with U2 an element of τ2. This is the product topology on X1 ×X2 of
τ1 and τ2. Prove that the pair of continuous maps ((pr(X1,X2),1,pr(X1,X2),2) is a product of (X1, τ1)
and (X2, τ2) in the category of topological spaces. Conclude that the category of topological spaces
has all finite products.

Exercise J.13. For every topological space (X,τ), and for every subset X ′ of X, prove that the
subset τ ∣X′ ∶= {U ∩ X ′∣U ∈ τ} of P(X ′) is the coarsest topology on X ′ such that the inclusion
function inclX

′

X is a continuous map from (X ′, τ ∣X′) to (X,τ). Show also that for every topological
space (X ′′, τ ′′), for every continuous map f from (X ′′, τ ′′) to (X,τ), the image of f is contained in
the subset X ′ if and only if there exists a continuous map f ′ from (X ′′, τ ′′) to (X ′, τ ∣X′) such that
f equals inclX

′

X ○ f ′, and then f ′ is unique. The topology τ ∣X′ is the subspace topology.

Exercise J.14. For every ordered triple of topological spaces, say (X1, τ1), (X2, τ2) and (X,τ), for
every ordered pair of continuous maps g1 from (X1, τ1) to (X,τ) and g2 from (X2, τ2) to (X,τ),
prove that the subspace topology on the subset X1 ×g1,X,g2 X2 of (X1 ×X2, τ1 ⊗ τ2) gives a fiber
product of g1 and g2 in the category of topological spaces. Conclude that the category of topological
spaces has all finite limits, and the forgetful functor from Top to Set preserves all finite limits.

The description of coproduct in each of these concrete categories is different. The notion of left
adjoint functors to each concrete forgetful functor gives a uniform construction of the coproducts.

K Product categories

Definition K.1. For every category C1 and for every category C2, the product category C1×C2

of C1 and C2 is the category whose objects are ordered pairs (a1, a2) of a C1-object a1 and a C2-
object a2. For every ordered pair ((a1, a2), (b1, b2)) of objects a1 and b1 of C1 and objects a2 and
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b2 of C2, the Hom set in C1 ×C2 is the product set

HomC1×C2((a1, a2), (b1, b2)) = HomC1(a1, b1) ×HomC2(a2, b2).

Finally, composition is defined componentwise: for every ordered pair ((g1, g2), (f1, f2)) of C1-
morphisms f1 from a1 to b1 and g1 from b1 to c1 and C2-morphisms f2 from a2 to b2 and g2 from
b2 to c2, the composition (g1, g2) ○ (f1, f2) is defined to equal (g1 ○1 f1, g2 ○2 f2).

Example K.2. For every monoid (H, ●), for every monoid (H ′, ●′), the product of the category of
(H, ●) and the category of (H ′, ●′) is (canonically equivalent to) the category of the direct product
monoid (H ×H ′,∗) where (a, a′) ∗ (b, b′) equals (a ● a′, b ● b′) for all elements a and b of H and for
all elements a′ and b′ of H ′. Note, this is (usually) quite different from the free product of the two
monoids (which is the coproduct in the category of monoids), i.e., the quotient of the free monoid
on the set H ⊔H ′ by the equivalence relation arising from the identities and group operations on
H and on H ′. The direct product is a further quotient by the equivalence relation identifying each
product (e, h′)∗(h, e′) with the product (h, e′)∗(e, h′), for identity elements e and e′ of H and H ′.

Definition K.3. For every category C1, for every category C2, for the product category C1 ×C2,
the first projection functor prC1,C2

C1,1
from C1 ×C2 to C1 maps every object (a1, a2) of C1 ×C2

to the object a1 of C1 and maps (f1, f2) to f1 for every ordered pair (f1, f2) of a C1-morphism f1

from a1 to b1 and a C2-morphism f2 from a2 to b2. This functor is denoted by pr1 when confusion
is unlikely.

Similarly, the second projection functor prC1,C2

C2,2
from C1×C2 to C2 maps every object (a1, a2) to

a2 and maps every C1×C2-morphism (f1, f2) to f2. This functor is denoted by pr2 when confusion
is unlikely.

Example K.4. For every monoid (H1, ●1), for every monoid (H2, ●2) the projection functors
from the product category correspond to the projection monoid homomorphisms from the product
monoid (H1 ×H2, ●1 × ●2) to the factors (H1, ●1) and (H2, ●2).

Proposition K.5. For every category B, for every category C1, for every category C2, for every
functor F1 from B to C1, for every functor F2 from B to C2, there exists a unique functor (F1,F2)
from B to the product category C1×C2 such that the composite functor pr1 ○(F1,F2) equals F1 and
the composite functor pr2 ○ (F1,F2) equals F2.

Proposition K.6. For every category B, for every category C1, for every category C2, for every
ordered pair (F1,G1) of functors from B to C1, for every ordered pair (F2,G2) of functors from B
to C2, for every natural transformation θ1 from F1 to G1, for every natural transformation θ2 from
F2 to G2, there exists a unique natural transformation (θ1, θ2) from (F1,F2) to (G1,G2) such that
the pushforward of (θ1, θ2) by pr1 equals θ1 and the pushforward of (θ1, θ2) by pr2 equals θ2.

Corollary K.7. For every functor of categories, F1 from C1 to D1, for every functor of categories,
F2 from C2 to D2, there is a unique functor (F1 ○ pr1,F2 ○ pr2) from the product category C1 ×C2

to the product category D1 × D2, such that the composite functor pr1 ○ (F1 ○ pr1,F2 ○ pr2) equals
F1 ○ pr1 and the composite functor pr2 ○ (F1 ○ pr1,F2 ○ pr2) equals F2 ○ pr2.
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Corollary K.8. For every ordered pair (F1,G1) of functors from C1 to D1, for every ordered pair
(F2,G2) of functors from C2 to D2, for every natural transformation θ1 from F1 to G1, for every
natural transformation θ2 from F2 to G2, there is a unique natural transformation (pr∗1θ1,pr∗2θ2)
from (F1 ○ pr1,F2 ○ pr2) to (G1 ○ pr1,G2 ○ pr2) whose pushforward by pr1 equals the pullback pr∗1θ1

and whose pushforward by pr2 equals the pullback pr∗2θ2.

Definition K.9. For every category C1, for every category C2, for every category D, a bifunctor
(or strict 2-functor) F to D from C1 and C2 is an ordered triple class (Fobj,obj, (Fmor,obj,Fobj,mor))
of a class morphism Fobj,obj from obj(C1) × obj(C2) to obj(D), of a class morphism Fmor,obj

from mor(C1) × obj(C2) to mor(D), and of a class morphism Fobj,mor from obj(C1) × mor(C2)
to mor(D) such that, for every member (a1, a2) of obj(C1) × obj(C2), the ordered pair class
(Fobj,obj(●, a2),Fmor,obj(●, a2)) is a functor from C1 to D, the ordered pair class (Fobj,obj(a1, ●),Fobj,mor(a1, ●))
is a functor from C2 to D, and we have

Fobj,mor(b1, f1) ○Fmor,obj(f1, a2) = Fmor,obj(f1, b2) ○Fobj,mor(a1, f2)

for every C1-morphism f1 from a1 to an object b1 and for every C2-morphism f2 from a2 to an
object b2.

Example K.10. For every category C, the Hom bifunctor HomC, or just Hom when confusion
is unlikely, is the bifunctor to Set from Copp and C that maps every ordered pair (a, b) of objects
of C to the set HomC(a, b), that maps every ordered pair (u ∶ a′ → a, b) of a C-morphism u from
a′ to a and an object b of C to the set function HomC(u, b) from HomC(a, b) to HomC(a′, b) of
precomposition by u, and that maps every ordered pair (a, v ∶ b → b′) of an object a of C and
a C-morphism v from b to b′ to the set function HomC(a, v) from HomC(a, b) to HomC(a, b′) of
postcomposition by v. This satisfies the bifunctor identities because of associativity of composition.

Exercise K.11. Check that this is a bifunctor.

Example K.12. For every category C1, for every category C2, the braiding bifunctor BC1,C2

is the bifunctor to C2 × C1 from C1 and C2 that maps every ordered pair (a1, a2) of an object
a1 of C1 and an object a2 of C2 to the object (a2, a1) of C2 × C1, that maps every ordered pair
(u1 ∶ a1 → a′1, a2) of a C1-morphism u1 from a1 to a′1 and an object a2 of C2 to the morphism
(Ida2 , u1) from (a2, a1) to (a2, a′1) in C2 ×C1, and that maps every ordered pair (a1, u2 ∶ a2 → a′2)
of a C2-morphism u2 from a2 to a′2 and an object a1 of C1 to the morphism (u2, Ida1) from (a2, a1)
to (a′2, a1) in C2 ×C1.

Proposition K.13. For every category C1, for every category C2, and for every category D, every
bifunctor to D from C1 and C2 extends uniquely to a functor from the product category C1 ×C2 to
D.

Proposition K.14. For every category C1, for every category C2, and for every category D,
for every ordered pair (F,G) of bifunctor to D from C1 and C2, for every class morphism θ
from obj(C1) × obj(C2) to mor(D), this is a natural transformation from the functor of F to the
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functor of G if and only if, for every member (a1, a2) of obj(C1) × obj(C2), both θ●,a2 is a natural
transformation from F(●, a2) to G(●, a2) and θa1,● is a natural transformation from F(a1, ●) to
G(a1, ●).

Example K.15. For every category C1, for every category C2, there is a projection bifunctor
prC1,C2

C1,1
, respectively prC1,C2

C2,2
, from C1 and C2 to C1, resp. to C2, that sends every ordered pair

(a1, a2) of an object a1 of C1 and an object a2 of C2 to the object a1 of C1, resp. to the object
a2 of C2. For every C1-morphism f1 from a1 to b1, the associated morphism from pr1(a1, a2) = a1

to pr1(b1, a2) = b1, resp. from pr2(a1, a2) = a2 to pr1(b1, a2) = a2, is f , resp. is Ida2 . For every
C2-morphism f2 from as to b2, the associated morphism from pr1(a1, a2) = a1 to pr1(a1, b2) = a1,
resp. from pr2(a1, a2) = a2 to pr1(a1, b2) = b2, is Ida1 , resp. is f2.

Example K.16. For every category C, for every category D, for every functor F from C to D,
the associated bifunctor Fopp×F of F from Copp×C to Dopp×D is the unique functor such that
both pr1 ○ (Fopp ×F) equals Fopp ○pr1 and pr2 ○ (Fopp ×F) equals F○pr2. The associated natural
transformation of Hom bifunctors F●

● of F from HomC to HomD ○ (Fopp × F) maps every
ordered pair (a, b) of objects of C to the set function Fa

b from HomC(a, b) to HomD(F(a),F(b)).

Exercise K.17. Check that F●
● is, indeed, a natural transformation of bifunctors. For every functor

G from D to a category E, check that (Gopp ×G) ○ (Fopp ×F) equals (G ○F)opp × (G ○F). Also
check that the composition natural transformation (Fopp ×F)∗G●

● ○F●
● equals (G ○F)●●.

Exercise K.18. For every category C, for every category D, for functors F and F̃ from C to D,
for every natural equivalence θ from F to F̃ with inverse natural equivalence θ̃, prove that θ̃opp × θ
from Fopp ×F to F̃opp × F̃ is a natural equivalence. Formulate and prove the compatibility of this
natural transformation with the natural transformations F●

● and F̃●
●.

Definition K.19. For every category C, a product bifunctor is an ordered triple (−×−,prC1 ,prC2 )
of a bifunctor − × − to C from C and C, a natural transformation prC1 from the bifunctor − ○ − to
the bifunctor prC,CC,1, and a natural transformation prC2 from the bifunctor −○− to the bifunctor prC,CC,2

such that, for every ordered pair (a1, a2) of objects of C, the following ordered pair is a product of
a1 and a2 in C,

(prC(a1,a2),1 ∶ a1 × a2 → a1,prC(a1,a2),2 ∶ a1 × a2 → a2).

Exercise K.20. For every category C, if a product bifunctor exists, prove that it is unique up to
unique natural equivalence.

Exercise K.21. Let C be a small category such that for every ordered pair (a1, a2) of objects of
C, there exists a product. Using the Axiom of Choice, prove that there is a product bifunctor. Up
to some much stronger Axiom of Choice, every category that admits finite products has a product
bifunctor.

Example K.22. For every product bifunctor on a category C, a product bifunctor on the arrow
category Arr(C) maps every ordered pair (((s1, t1), f1), ((s2, t2), f2)) to ((s1 × s2, t1 × t2), f1 × f2),
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maps every morphism (σ1, τ1) from ((s1, t1), f1) to ((s′1, t′1), f ′1) to the morphism (σ1×Ids2 , τ1×Idt2)
from ((s1 × s2, t1 × t2), f1 × f2) to ((s′1 × s2, t′1 × t2), f ′1 × f2), and maps every morphism (σ2, τ2) from
((s2, t2), f2) to ((s′2, t′2), f ′2) to the morphism (Ids1 × σ2, Idt1 × τ2) from ((s1 × s2, t1 × t2), f1 × f2)
to ((s1 × s′2, t1 × t′2), f1 × f ′2). The projection natural transformation pr

Arr(C)
1 maps every ordered

pair (((s1, t1), f1), ((s2, t2), f2)) to the projection morphism (prC(s1,s2),1,prC(t1,t2),1) from ((s1×s2, t1×
t2), f1 × f2) to ((s1, t1), f1). The projection natural transformation pr

Arr(C)
2 maps every ordered

pair (((s1, t1), f1), ((s2, t2), f2)) to the projection morphism (prC(s1,s2),2,prC(t1,t2),2) from ((s1×s2, t1×
t2), f1 × f2) to ((s2, t2), f2).

Example K.23. For the category Set, the bifunctor −×− associates to every ordered pair (a1, a2)
of sets the Cartesian product set a1 × a2, associates to every function f1 from a set a1 to a set a′1
the function f1 × Ida2 from a1 × a2 to a′1 × a2, and associates to every function f2 from a2 to a′2
the function Ida1 × f2 from a1 × a2 to a1 × a′2. The natural transformation prSet1 associates to every
ordered pair (a1, a2) of sets the first projection function prSet(a1,a2),1 from a1 × a2 to a1. The natural

transformation prSet2 associates to every ordered pair (a1, a2) of sets the second projection function
prSet(a1,a2),1 from a1 × a2 to a2.

Exercise K.24. Check that this defines a product bifunctor on the category Set.

Exercise K.25. Each of the categories Monoid, Grp, Ab, Ring, CRing, R −Mod, Mod − S
and R − S −Mod, and Top has all finite products, and the (standard) concrete forgetful functor
from each to Set preserves all finite products. Use this “lift” to each of these categories the product
bifunctor for Set, thus proving that each of these categories has a product bifunctor.

Exercise K.26. Formulate and prove analogues of each of the general theorems about for a co-
product functor (e.g., by applying the theorems above to the opposite category). However, the
standard concrete forgetful functors in the previous exercise do not preserve all coproducts, except
for the concrete functor on Top. Adjoint pairs give coproducts in the other cases.

Exercise K.27. For every monoid (H, ●), there is a bifunctor ⊔ to the category H −Act of left
H-acts from the category H −Act and H −Act that sends every ordered pair ((S, ρ), (S′, ρ′)) of
left H-acts to the left H-act ρ ⊔ ρ′ on the disjoint union set S ⊔ S′. Deduce that H −Act has all
finite coproducts, and the concrete forgetful functor to Set preserves all finite coproducts. If (H, ●)
is a group, prove that the left H-actions that are indecomposable with respect to ⊔ are precisely
the left regular action of H on the right coset space H/K of a subgroup K of H.

Exercise K.28. For every monoid (H, ●), use the same technique as earlier to construct a product
bifunctor × to H − Act from the category H − Act and H − Act sending every ordered pair
((S, ρ), (S′, ρ′)) of left H-acts to the left H-act ρ × ρ′ on the Cartesian product set S × S′. Deduce
that the category H−Act has all finite products, and the concrete forgetful functor to Set preserves
finite products. In particular, if (H, ●) is a group, then for ⊔-indecomposible left H-actions H/K
and H/K ′ for subgroups K and K ′ of H, the ⊔-components of (H/K) × (H/K ′) are of the form
H/K ′′ for K ′′ a subgroup of the form (hKh−1) ∩ (h′K ′(h′)−1). Thus, the ⊔-components are all
isomorphic (so that (H/K)×(H/K ′) is “isotypic”) if at least two of K, K ′ and K ∩K ′ are normal.

149

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

Exercise K.29. For associative, unital rings (R,+R, ⋅R), (S,+S, ⋅S) and (T,+T , ⋅T ), there is a bi-
functor ⊗S to the category R − T −Mod of R − T -bimodules from the category R − S −Mod and
S − T −Mod that sends every ordered pair ((M,+, (ρ, σ)), (M ′,+′, (σ′, τ ′)) of an R − S-bimodule
and a S − T -bimodule to the associated tensor product R − T -bimodule M ⊗S M ′, where the set
function from M ×M ′ to the Abelian group M ⊗S M ′ is initial among all biadditive maps from
M ×M ′ to an Abelian group that are S-balanced: for every element (m,m′) of M ×M ′ and for
every element s of S, both (m ⋅ s,m′) and (m,s ⋅m′) have the same image. Formulate and prove
existence of associator isomorphisms (M⊗SM ′)⊗TM ′′ ≅M⊗S (M ′⊗TM ′′) for every T -module M ′′.
Formulate and prove existence of left / right unitor isomorphisms of S⊗SM ′ ≅M ′ and M⊗SS ≅M .
Formulate and prove the triangle (coherence) identity and the pentagon (coherence) identity for
the unitors and associators.

Example K.30. For every Abelian monoid (H, ●), there is a bifunctor sumH,● to B(H, ●) from
B(H, ●) and B(H, ●) that maps the unique object (∗,∗) to the unique object ∗, and, for every
element h of H, maps both (h,∗) and (∗, h) to h. The bifunctor axiom is precisely the Abelian
hypothesis on the monoid.

L Comma categories

M Adjoint pairs

Definition M.1. For every category C, for every category D, an adjoint pair of covariant functors
between C and D is ((L,R), (θ, η)) consisting of an ordered pair of covariant functors,

L ∶ C→D,

R ∶ D→C,

and an ordered pair of natural transformations of covariant functors,

θ ∶ IdC⇒R ○L, θ(a) ∶ a→R(L(a)),

η ∶ L ○R⇒ IdD, η(b) ∶ L(R(b)) → b,

such that the following composition of natural transformations equals IdR, respectively equals IdL,

(∗R) ∶ R θ○R⇒ R ○L ○R
R○η
⇒ R,

(∗L) ∶ L
L○θ⇒ L ○R ○L

η○L
⇒ L.

For every object a of C and for every object b of D, define set maps,

HL
R(a, b) ∶ HomD(L(a), b) → HomC(a,R(b)),
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(L(a) φÐ→ b) ↦ (a
θ(a)
ÐÐ→R(L(a))

R(φ)
ÐÐ→R(b)) ,

and
HR

L (a, b) ∶ HomC(a,R(b)) → HomD(L(a), b),

(a ψÐ→R(b)) ↦ (L(a)
L(ψ)
ÐÐ→ L(R(b))

η(b)
ÐÐ→ b) .

Exercise M.2. For L, R, θ and η as above, prove that the conditions (∗R) and (∗L) hold if and
only if, for every object a of C and for every object b of D, the morphisms HL

R(a, b) and HR
L (a, b)

are inverse bijections.

Exercise M.3. Prove that both HL
R(a, b) and HR

L (a, b) are binatural in a and b.

Exercise M.4. For functors L and R, and for binatural inverse bijections HL
R(a, b) and HR

L (a, b)
between the bifunctors

HomD(L(a), b),HomC(a,R(b)) ∶ C ×D→ Set,

prove that there exist unique θ and η extending L and R to an adjoint pair such that HL
R and HR

L

agree with the binatural inverse bijections defined above.

Exercise M.5. Let (L,R, θ, η) be an adjoint pair as above. For every covariant functor,

R̃ ∶ D→C,

for every natural transformation η from L ○ R̃ to IdD, prove that η̃′ ∶= R∗η̃ ○ R̃∗θ is the unique
natural transformation from R̃ to R such that η̃ equals η ○ L∗η̃′. Conversely, for every natural
transformation η̃′ from R̃ to R, prove that η̃ ∶= η ○L∗η̃′ is the unique natural transformation from
L ○ R̃ such that η̃′ equals R∗η̃ ○ R̃∗θ. Formulate and prove the analogous correspondence between
natural transformations θ̃ from IdC to R ○ L̃ and natural transformations θ̃′ from L to a functor L̃.

Exercise M.6. Let (L,R, θ, η) be an adjoint pair as above. Let a covariant functor

R̃ ∶ D→C,

and natural transformations,

θ̃ ∶ IdC⇒ R̃ ○L, η̃ ∶ L ○ R̃⇒ IdD,

be natural transformations such that (L, R̃, θ̃, η̃) is also an adjoint pair. For every object b of D,
define ι(b) in HomD(R(b), R̃(b)) to be the image of Idb under the composition,

HomD(b, b)
HomD(θ(b),b)
ÐÐÐÐÐÐÐ→ HomD(L(R(b)), b)

HR̃
L (R(b),b)
ÐÐÐÐÐÐ→ HomD(R(b), R̃(b)).
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Similarly, define κ(b) in HomD(R̃(b),R(b)), to be the image of Idb under the composition,

HomD(b, b)
HomD(θ̃(b),b)
ÐÐÐÐÐÐÐ→ HomD(L(R̃(b)), b)

HR
L (R̃(b),b)
ÐÐÐÐÐÐ→ HomD(R̃(b),R(b)).

Prove that ι and κ are the unique natural transformations of functors,

ι ∶ R⇒ R̃, κ ∶ R̃⇒R,

such that θ̃ equals (ι○L)○θ, θ equals (κ○L)○θ̃, η̃ equals η○(L○ι), and η equals η̃○(L○κ). Moreover,
prove that ι and κ are inverse natural equivalences. In this sense, every extension of a functor L
to an adjoint pair (L,R, θ, η) is unique up to unique natural isomorphisms (ι, κ). Formulate and
prove the symmetric statement for all extensions of a functor R to an adjoint pair (L,R, θ, η) (you
could use opposite categories to simplify this).

Exercise M.7. For every adjoint pair (L,R, θ, η), prove that also (Ropp,Lopp, ηopp, θopp) is an
adjoint pair.

Exercise M.8. Formulate the corresponding notions of adjoint pairs when L and R are contravari-
ant functors (just replace one of the categories by its opposite category).

Exercise M.9. For every ordered triple of categories, (C,D,E) for all covariant functors,

L′ ∶ C→D

R′ ∶ D→C,

for all natural transformations that form an adjoint pair,

θ′ ∶ IdC⇒R′L′,

η′ ∶ L′R′⇒ IdD,

for all covariant functors,
L′′ ∶ D→ E ,
R′′ ∶ E →D,

and for all natural transformations that form an adjoint pair,

θ′′ ∶ IdD⇒R′′L′′,

η′′ ∶ L′′R′′⇒ IdE ,

define covariant functors
L ∶ C→ E , R ∶ E →C

by L = L′′ ○L′, R = R′ ○R′′, define the natural transformation,

θ ∶ IdC⇒R ○L,
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to be the composition of natural transformations,

IdC
θ′⇒R′ ○L′ R

′○θ′′○L′⇒ R′ ○R′′ ○L′′ ○L′,

and define the natural transformation,

η ∶ L ○R⇒ IdE ,

to be the composition of natural transformations,

L′′ ○L′ ○R′ ○R′′ L
′′○η′○R′′

⇒ L′′ ○R′′ η
′′

⇒ IdE .

Prove that L, R, θ and η form an adjoint pair of functors. This is the composition of (L′,R′, θ′, η′)
and (L′′,R′′, θ′′, η′′).

Exercise M.10. If C equals D, if L′ and R′ are the identity functors, and if θ′ and η′ are the identity
natural transformations, prove that (L,R, θ, η) equals (L′′,R′′, θ′′, η′′). Similarly, if D equals E ,
if L′′ and R′′ are the identity functors, and if θ′′ and η′′ are the identity natural transformations,
prove that (L,R, θ, η) equals (L′,R′, θ′, η′). Finally, prove that composition of three adjoint pairs
is associative.

Example M.11. Let C be a category that has a final object f , and let D be a category that has
an initial object e. Let L be constCD,e, and let R be constDC,f . Thus, R ○ L equals constCC,f , and

L ○R equals constDD,e. Since f is a final object of C, there is a unique natural transformation from

every endofunctor of C to constCC,f . In particular, there exists a unique natural transformation θ

from the identity functor to constCC,f . Since e is an initial object of C, there is a unique natural

transformation from constDD,e to every endofunctor of D. In particular, there exists a unique natural

transformation η from constCC,f to the identity functor. Together, these define an adjoint pair giving
binatural bijections for every object a of C and every object b of D,

HomD(constCD,e(a), b) ≅ HomC(a, constDC,f(b)).

Example M.12. Let (S,≤) and (S′,≤′) be partially ordered sets. Let L be a nondecreasing
function from (S,≤) to (S′,≤′) considered as a functor between the associated categories. Let R
be a nondecreasing function from (S′,≤′) to (S,≤) considered as a functor between the associated
categories. There exist natural transformations completing this to an adjoint pair if and only if,
for every element a of S, for every element a′ of S′, we have L(a) ≤′ a′ if and only a ≤ R(a′). In
this case, the natural transformations extending to an adjoint pair are unique.

Definition M.13. For every category C, for every category D, for every adjoint pair

(L ∶ C→D,R ∶ D→C, θ ∶ IdC⇒R ○L, η ∶ L ○R⇒ IdD),

the adjoint pair is a strict equivalence from C to D if (and only if) both θ is a natural equivalence
and η is a natural equivalence.
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Exercise M.14. Prove that identity adjoint pairs are strict equivalences. Prove that the compo-
sition adjoint pair of strict equivalences is a strict equivalence. For every strict equivalence from C
to D as above, prove that also (R,L, η−1, θ−1) is a strict equivalence from D to C that is a left-right
inverse of the original strict equivalence.

Exercise M.15. Prove that each of the functors in a strict equivalence is a weak equivalence.
Prove that every composition of weak equivalences is a weak equivalence.

Exercise M.16. Let C and D be strictly small categories. Prove that for every weak equivalence
L from C to D there exists a strict equivalence (L,R, θ, η) from C to D, and this strict equivalence
is unique up to isomorphism (which is not necessarily unique). Thus, using a strong variant of the
Axiom of Choice, every weak equivalence should arise (non-uniquely) from a strict equivalence.

N More about categories

The category of presheaves on a topological space (containing the category of sheaves as a full sub-
category) is an example of a functor category. Functor categories also give the cleanest formulation
of the Yoneda lemma and of limits / colimits.

N.1 Functor categories

Functors give a formalism for working with labelled collections of objects in some fixed category
D, where the labels or indices are themselves objects of some small category C (such as a partially
ordered set). The indexed collections then form objects of a new category, called a functor category.

Definition N.1. For every small category C, for every category D, the class obj(DC), sometimes
also denoted obj([C,D]) or obj(Fun(C,D)), is the unique class whose members are precisely the
sets whose classes give functors from C to D.

For every ordered pair (F,G) of functors from C to D, again because C is small, every natural
transformation from F to G is the class of a set, and the class of all sets whose classes are natural
transformations from F to G is itself a set.

Definition N.2. For every small category C, for every category D, the class mor(DC), sometimes
also denoted mor([C,D]) or mor(Fun(C,D), is the span from obj(DC) whose fiber class over each
ordered pair (F,G) of sets whose classes are functors from C to D is the class whose members are
precisely the sets whose classes give natural transformation from F to G.

Together this defines a category.
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Definition N.3. For every small category C, for every category D, the functor category DC

from C to D, also denoted Fun(C,D) or [C,D], is the category with objects class obj(DC) and
with morphisms class mor(DC). So the objects of the class are equivalent to functors from C to
D, and the morphisms of the class are equivalent to natural transformations. The composition law
of this category is composition of natural transformations.

Please note, the way we formalize (parametrically definable) classes there is a distinction between
sets and the associated classes. Thus the objects of the functor category are sets whose classes
are functors from C to D, and the morphisms are sets whose classes are natural transformations
between such functors. Nonetheless, we shall treat this category as if the objects are functors and
as if the morphisms are natural transformations.

Definition N.4. For every small category C, for every category D, for every category D′, for
every functor H from D to D′, the H-composition functor HC from DC to (D′)C maps every
functor F from C to D to the composite functor H ○ F from C to D′, and maps every natural
transformation θ from a functor F to a functor G to the H-pushforward natural transformation
H∗θ.

Exercise N.5. Prove that the H-composition functor is a functor. Prove that the IdD-composition
functor is the identity functor from DC to itself. Prove that for every ordered pair (I,H) of a functor
H from D to D′ and a functor I from D′ to D′′, the I ○H-composition functor (I ○H)C equals the
composition of functors IC ○HC.

Definition N.6. For every small category C, for every small category C′, for every functor J from
C to C′, for every category D, the J-precomposition functor DJ from DC′

to DC maps every
functor F′ from C′ to D to the composite functor F′ ○ J from C to D, and maps every natural
transformation θ′ from a functor F′ to a functor G′ to the J-pullback natural transformation J∗θ′.

Exercise N.7. Prove that the J-precomposition functor is a functor. Prove that the IdC-precomposition
functor is the identity functor from DC to itself. Prove that for every ordered pair (K,J) of a func-
tor J from C to C′ and a functor K from C′ to C′′, the K ○ I-precomposition functor DK○J equals
the composition of functors DJ ○DK.

Exercise N.8. Prove that for every functor J from a small category C to a small category C′ and
for every functor H from a category D to a category D′, the composite functor (D′)J ○HC′

equals
the composite functor HC ○DJ.

Definition N.9. For every small category C, for every category D, for every category D′, for every
ordered pair (H1,H2) of functors from D to D′, for every natural transformation θ from H1 to H2,
the θ-composition natural transformation θC from the functor HC

1 to the functor HC
2 maps

every functor F from C to D to the F-pullback natural transformation F∗θ from H1 ○F to H2 ○F.

Exercise N.10. Prove that θC is a natural transformation. For every functor H from D to D′, for
the identity natural transformation IdH from H to itself, prove that (IdH)C is the identity natural
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transformation from HC to itself. For every ordered pair (θ2, θ1) of a natural transformation θ1 of
functors from H1 to H2 and of a natural transformation θ2 of functors from H2 to H3, prove that
(θ2 ○ θ1)C equals the composite natural transformation θC2 ○ θC1 .

Exercise N.11. For every small category C, for every category D, for every category D′, for
every category D′′, for every ordered pair (H1,H2) of functors from D to D′, for every natural
transformation θ from H1 to H2, for every ordered pair (H′

1,H
′
2) of functors from D′ to D′′, for

every natural transformation θ′ from H′
1 to H′

2, prove that for the Godement product θ′ ∗θ natural
transformation from H′

1 ○H1 to H′
2 ○H2, also (θ′ ∗ θ)C equals the Godement product (θ′)C ∗ θC.

Deduce special cases of compatibility of (−)C with pushforward and pullback by functors of natural
transformations.

Definition N.12. For every small category C, for every small category C′, for every ordered pair
(I1, I2) of functors from C to C′, for every natural transformation η from I1 to I2, for every category
D, the η-precomposition natural transformation Dη from the functor DI1 to the functor DI2

maps every functor F′ from C′ to D to the F′-pushforward natural transformation (F′)∗η from
F′ ○ I1 to F′ ○ I2.

Exercise N.13. Prove that Dη is a natural transformation. For every functor I from C to C′,
for the identity natural transformation IdI from I to itself, prove that DIdI is the identity natural
transformation from DI to itself. For every ordered pair (η2, η1) of a natural transformation η1

of functors from I1 to I2 and of a natural transformation η2 of functors from I2 to I3, prove that
Dη2○η1 equals the composite natural transformation Dη2 ○Dη1 . Also prove that D● is compatible
with Godement products.

Exercise N.14. For every small category C, for every small category C′, for every small category
C′′, for every ordered pair (I1, I2) of functors from C to C′, for every natural transformation η from
I1 to I2, for every ordered pair (I′1, I′2) of functors from C′ to C′′, for every natural transformation
η′ from I′1 to I′2, for every category D, prove that for the Godement product η′ ∗ η natural trans-
formation from I′1 ○ I1 to I′2 ○ I2, also Dη′∗η equals the Godement product Dη ∗Dη′ (in the opposite
order). Deduce special cases of compatibility of D● with pushforward and pullback by functors of
natural transformations.

Exercise N.15. For every small category C, for every small category C′, for every ordered pair
(I1, I2) of functors from C to C′, for every natural transformation η from I1 to I2, for every category
D, for every category D′, for every ordered pair (H1,H2) of functors from D to D′, for every natural
transformation θ from H1 to H2, prove that the Godement product θC ∗Dη equals the Godement
product (D′)η ∗ θC′

. Deduce special cases for pushforward and pullback by functors of natural
transformations.

N.2 Constant functors

Definition N.16. For every small category C, for every category D, the constant functor
constCD,● from D to DC maps every object a of D to the object constCD,a of DC, and maps ev-

ery D-morphism f from a to b to the natural transformation constCD,f from constCD,a to constCD,b.
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Exercise N.17. Prove that this is a functor.

Exercise N.18. For every small category C, for every category D, for every category D′, for every
functor H from D to D′, prove that the composite functor HC ○ constCD,● equals the composite

functor constCD′,● ○H as functors from D to (D′)C.

Exercise N.19. For every small category C, for every small category C′, for every functor I from
C to C′, for every category D, prove that the composite functor DI ○ constC

′

D,● equals constCD,●.

Exercise N.20. For every small category C, for every small category C′, for every functor I from
C to C′, for every category D, for every category D′, for every functor H from D to D′, use
the compatibilities above to deduce the compatibilities between the functors constCD,●, constC

′

D,●,

constCD′,●, constC
′

D′,●, HC, HC′

, DI and (D′)I, e.g., the composite functor HC ○DI ○ constC
′

D,● equals

the composite functor (D′)I ○ constC
′

D′,● ○H as functors from D to (D′)C.

Exercise N.21. For every small category C, for every category D, for every category D′, for every
ordered pair (H1,H2) of functors from D to D′, for every natural transformation θ from H1 to
H2, prove that the pullback natural transformation (constCD,●)∗θC equals the pushforward natural

transformation (constCD′,●)∗θ as natural transformation between functors from D to (D′)C.

N.3 Category of small categories

Definition N.22. The class of small categories is the class obj(Cat) whose members are sets
whose associated class is a small category. The class of functors of small categories is the span
mor(Cat) from obj(Cat) to itself whose fiber class over each pair (C,D) has for members those
sets whose associated class is a functor from C to D. Composition of functors defines a composition
law that completes these classes to a category Cat, the category of small categories.

Technically we distinguish each set from its associated class, and thus the objects of Cat are sets
whose associated class is a small category, rather than the small category itself (since we do not
allow classes to be members of other classes). Similarly, the morphisms of Cat are sets whose
associated class is a functor between small categories, rather than the functor itself.

The standard usage is different: most authors identify each set with the associated class (this is
built in to the axioms of von Neumann – Bernays – Gödel class theory). At any rate, even though
it is technically incorrect, we will refer to small categories as objects of Cat, and we will refer to
functors between small categories as morphisms of Cat.

Exercise N.23. Read about (strict) 2-categories. Formulate and prove the assertion that the
natural transformations between functors make Cat into a 2-category.

Definition N.24. The opposite functor from Cat to Cat is the functor that maps every small
category C to its opposite category Copp, that maps every functor F from a small category C to a
small category D to the functor Fopp from Copp to Dopp. The 2-cell dual of the 2-category Cat is
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the 2-category Catco with the same objects as Cat, respectively the same and 1-morphisms as Cat,
namely small categories, resp. functors between small categories, yet with opposite 2-morphism
sets. The opposite 2-functor is the strict 2-functor from Catco to Cat extending the opposite
functor by mapping every natural transformation θ from a functor F to a functor G (both from a
small category C to a small category D) to the natural transformation θopp from Gopp to Fopp.

Exercise N.25. Prove that this is a strict 2-functor from Catco to Cat.

N.4 Evaluation bifunctor

Definition N.26. For every small category C, for every category D, the evaluation bifunctor
HomC

D, or just Hom when confusion is unlikely, is the bifunctor to D from DC and C that maps
every ordered pair (F, a) of an object F of DC and an object a of C to the object Fobj(a) of D,
that maps every ordered pair (θ, a) of a DC-morphism θ from F to G and of an object a of C to
the D-morphism θa from Fobj(a) to Gobj(a), and that maps every ordered pair (F, u) of an object
F of DC and of a C-morphism u from a to b to the D-morphism Fmor(u) from Fobj(a) to Fobj(b).
Exercise N.27. Prove that this is a bifunctor.

Definition N.28. For every category B, for every small category C, for every category D, for
every bifunctor F to D from B and C, the classifying functor SB,C

D F, or just SF when confusion
is unlikely, from B to DC maps every object b of B to the functor F(b, ●) from C to D and maps
every B-morphism u from b to b′ to the natural transformation F(u, ●) from F(b, ●) to F(b′, ●).
Exercise N.29. Prove that SF is a functor.

Proposition N.30. For every category B, for every small category C, for every category D, for
every bifunctor F to D from B and C, the functor SF from B to DC is the unique functor such
that the pullback of the bifunctor Hom by the functor SF × IdC equals F .

Exercise N.31. Formulate and prove functoriality of the construction SB,C
D in B, in C, and in D.

Definition N.32. For every category B, for every small category C, for every category D, for every
ordered pair (F,G) of bifunctors to D from B and C, for every natural transformation θ from F to
G, the classifying natural transformation SB,C

D θ, or just Sθ when confusion is unlikely, from
SF to SG maps every object b of B to the natural transformation θb,● from F(b, ●) to G(b, ●).
Exercise N.33. Prove that Sθ is a natural transformation.

Proposition N.34. For every category B, for every small category C, for every category D, for
every ordered pair (F,G) of bifunctors to D from B and C, for every natural transformation
from SF to SG there exists a unique natural transformation θ from F to G such that the natural
transformation equals Sθ.

Exercise N.35. Use this universal property (or any other argument) to formulate and prove
compatibility of the operations S with Godement products of natural transformations. Specialize
this to formulate and prove compatibility of S with pushforwards and pullbacks by functors of
natural transformations.
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N.5 Limits and colimits

Definition N.36. For every category C, for every category D, for every object U of C, for every
functor F from C to D, the U -section object of F over U is the object ΓC

D(U,F) ∶= F(U) of D,
denoted also Γ(U,F) when confusion is unlikely. For every ordered pair (F,G) of functors from C
to D, for every natural transformation θ from F to G, the U -section morphism of F over U is
the D-morphism Γ(U, θ) ∶= θU from F(U) to G(U).

Exercise N.37. Prove that these rules preserve identities and composition.

Definition N.38. For every small category C, for every category D, for every object U of C, the
U -sections functor from DC to D maps every object F of DC to Γ(U,F) ∶= F(U) and maps every
DC-morphism θ from F to G to the D-morphism Γ(U, θ) ∶= θU .

For every ordered pair (V,U) of objects of C, for every C-morphism r from V to U , the r-sections
natural transformation from Γ(V, ●) to Γ(U, ●) maps every object F of DC to the D-morphism
Γ(r,F) ∶= FV

U (r) from F(V ) to F(U).

Exercise N.39. Prove that Γ(r, ●) is a natural transformation. For every object U of C, prove that
Γ(IdU , ●) is the identity natural transformation from Γ(U, ●) to itself. For every triple (W,V,U) of
objects of C, for every C-morphism r from W to V , for every C-morphism s from V to U , prove
that Γ(s ○ r, ●) equals the composition of natural transformations Γ(s, ●) ○ Γ(r, ●).

Exercise N.40. For every small category C, for every small category D, prove that DC is a small
category.

Definition N.41. For every small category C, for every category D, the sections bifunctor is
the functor ΓC

D(−, ●), or just Γ(−, ●) when confusion is unlikely, from the product category C×DC

to the category D that sends every object (U,F) of C ×DC to Γ(U,F) ∶= F(U), that sends every
C-morphism r from a to b to the D-morphism Γ(r,F), and that sends every natural transformation
θ from F to G to the D-morphism Γ(U, θ) ∶= θU .

Exercise N.42. Prove that the sections bifunctor is a bifunctor.

Exercise N.43. Formulate and prove the statement that formation of DC is covariant in the
category D and is contravariant in the small category C. In particular, for every small category
C, prove that the covariant Yoneda functor of C in Cat enriches to a functor from Cat to itself.
Similarly, for every small category D, prove that the contravariant Yoneda functor of D in Cat
enriches to a functor from Catopp to Cat.

N.6 Yoneda embedding

Definition N.44. For every category C, for every object a of C, the set-valued covariant Yoneda
functor of a from C maps every C-object b to the set Ca

b = HomC(a, b). This is also denoted haC(b),
or just ha(b) when confusion is unlikely. Also, for every C-morphism v from b to b′, the functor
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maps u to left-composition with v from Ca
b to Ca

b′ . This is denoted ha(v). Similarly, for every set
S, the set-valued functor S × ha maps every C-object b to S × ha(b) and maps every C-morphism
v to IdSet

S × ha(v) from S × ha(b) to S × ha(b′).
Similarly, for every object b of C, the set-valued contravariant Yoneda functor of b is the
covariant functor from Copp that maps every C-object a to the set Ca

b = HomC(a, b). This is also
denoted hC,b(a), or just hb(a) when confusion is unlikely. Also, for every C-morphism u from a to
a′, the functor map u to the right-composition with u from Ca′

b to Ca
b (note this is contravariant).

This is denoted hb(u). Similarly, for every set S, the set-valued functor S ×hb maps every C-object
a to S × hb(a) and maps every C-morphism u to IdSet

S × hb(u) from S × hb(a′) to S × hb(a).

Exercise N.45. Check that each of these does preserve identities and composition, so that it is a
functor.

Example N.46. Let (S,≤) be a partially ordered set. For every element a of S, for every element
b of S, the Yoneda functor ha(b) is a singleton set if and only if a ≤ b, and otherwise it is empty,
i.e., the image in Set is either an initial object or a final object. If we define the support of such a
function to be the subset of S where the image is not the empty set, then the support of ha is the
subset S≥a of all elements b with a ≤ b. Similarly, the support of hb is the subset S≤b of all elements
of b with a ≤ b.

Example N.47. For every monoid (H, ●), for the unique object (which, recall, is chosen to be H
itself considered as a set), the Yoneda functor hH associates to the unique object (i.e., H) the set H,
and associates to each element a of H, considered as a morphism from the unique object to itself,
the associated bijection of H of left-multiplication by a, i.e., hH is the left regular representation
of (H, ●). Similarly hH is the right regular representation of (H, ●).

Definition N.48. For every category C, for every C-morphism u from a to a′, the Yoneda natural
transformation of covariant functors from ha

′

to ha associates to every object b the set function
of right-composition with u from ha

′(b) = Ca′

b to ha(b) = Ca
b . This natural transformation is denoted

by hu. Similarly, for every set S, the natural transformation IdSet
S ×hu maps every set S ×ha′(b) to

S × ha(b) by IdSet
S × hu(b).

For every category C, for every C-morphism v from b to b′, the Yoneda natural transformation
of contravariant functors from hb to hb′ associates to every object a of the set function of left-
composition with v from hb(a) to hb′(a). This natural transformation is denoted by hv. Similarly,
for every set S, the natural transformation IdSet

S × hv maps every set S × hb(a) to S × hb′(a) by
IdSet
S × hv(a).

Exercise N.49. Check that each of these is a natural transformation of set-valued functors from
C.

Exercise N.50. For every C-morphism u from a to a′, for every C-morphism u′ from a′ to a′′,
check that hu ○hu′ equals hu

′○u; thus, also, (IdSet
S ×hu) ○ (IdSet

s ×hu′) equals IdSet
S ×hu′○u. Conclude

contravariance of the assignment to every C-object a of the covariant Yoneda functor ha and to
every C-object u of the Yoneda natural transformation hu.
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Exercise N.51. For every C-morphism v from b to b′, for every C-morphism v′ from b′ to b′′,
check that hv′ ○ hv equals hv′○v; thus, also, (IdSet

S × hv′) ○ (IdSet
S × hv) equals IdSet

S × hv′○v. Conclude
covariance of the assignment to every C-object a of the contravariant Yoneda functor ha and to
every C-object v of the Yoneda natural transformation hv.

Exercise N.52. For every set-valued functor F from C, respectively from Copp, for every set S,
for the set-valued functor S ×F from C, resp. from Copp, check covariance in S.

Definition N.53. For every category B, for every set-valued covariant functor F from Bopp, for
every C-object b, for every element γ of the set F(b), the Yoneda evaluation natural transfor-
mation from hb to F associates to every C-object a the set-function from hb(a) = HomC(a, b) to
F(a) sending each element w of HomC(a, b) to the image of γ under the set function F(w) from
F(b) to F(a). This natural transformation is denoted by ηγ,●b (F), so that w maps to ηγ,●b (F)(w).
Similarly, ηb(F) is the natural transformation from F(b)×hb to F that associates to every C-object
a the set-function from F(b) × hb(a) to F(a) sending every element (γ,w) to ηγ,●b (F)(w).

For every category B, for every set-valued covariant functor F from B, for every C-object a, for
every element δ of the set F(a), the Yoneda evaluation natural transformation from ha to
F associates to every C-object b the set-function from ha(b) = HomC(a, b) to F(b) sending each
element w of HomC(a, b) to the image of δ under the set function F(w) from F(a) to F(b). This
natural transformation is denoted by ηbδ,●(F), so that w maps to ηaγ,●(F)(w). Similarly, ηa(F) is
the natural transformation from F(a)×ha to F that associates to every C-object b the set-function
from F(a) × ha(b) to F(b) sending every element (δ,w) to ηaγ,●(F)(w).

Exercise N.54. Check that ηb(F) and ηa(F) are natural transformations.

Exercise N.55. For every natural transformation α from F to G of set-valued covariant functors
from C, check that α ○ ηb(F) equals the composition of ηb(G) with the natural transformation of
functors α(b)×Idhb from F(b)×hb to G(b)×hb induced by the set function α(b) from F(b) to G(b).
Thus, ηb(F) is “covariant” in F.

Lemma N.56 (Yoneda Lemma). For every category C, for every covariant set-valued functor F
from Copp, for every C-object b, every natural transformation Γ from hb to F is of the form ηγ,●b (F)
for a unique element γ of F(b), namely the image under Γ of the element IdC

b of hb(b) = HomC(b, b).

Exercise N.57. Formulate and prove the analogous result for covariant set-valued functors from
C and the Yoneda functors ha.

Definition N.58. For every set S, the identity section is the set function from S to S × hb(b) =
S ×HomC(b, b) that pairs each element of S with IdC

b .

Exercise N.59. Check that the identity section is covariant in S.

Definition N.60. For every small category C, for every C-object b, the set-valued left Yoneda
functor Lb from the functor category Set(C

opp) associates to every set-valued covariant functor
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F from Copp the set F(b) and associates to every natural transformation α from F to G the set
function α(b) from F(b) to G(b).

Similarly, the right Yoneda functor Rb from Set to SetC
opp

associates to every set S the covariant
set-valued functor S ×hb from Copp, and associates to every set function f from S to S′ the natural
transformation f × Idhb from S × hb to S′ × hb.

Exercise N.61. Check that each of these is a functor. Check that the identity section is a natural
transformation from the identity functor of Set to the composite functor Rb ○Lb.

Lemma N.62 (Yoneda Lemma II). For every small category C, for every C-object b, the left
Yoneda functor and the right Yoneda functor extend to an adjoint pair of functors using the natural
transformation ηb above and the identity section natural transformation.

Exercise N.63. For every small category C, conclude that the Yoneda functor from C to Set(C
opp

sending every C-object b to hb is a fully faithful embedding of categories.

In the sense of the previous lemma, the Yoneda functors give examples of adjoint pairs. Conversely,
extension of a functor to an adjoint pair is an example of a representability problem.

Definition N.64. For every category C, for every functor F from Copp to Set, a representation
of F is an ordered pair (a, x) of an object a of C and an element x of the set F(a) such that
the induced natural transformation ha ⇒ F is a natural equivalence. A functor from Copp is
representable if (and only if) there exists a representation.

Exercise N.65. Formulate the opposite notion of representable for functors from C to Set.

Exercise N.66. For every category C, for every functor F from Copp to Set, for every rep-
resentation (a, x) of F, for every representation (a′, x′) of F, prove that there exists a unique
C-isomorphism f from a to a′ that pulls x′ back to x. Conclude that a representation of a repre-
sentable functor is unique up to unique isomorphism. Formulate and prove the opposite result for
covariant functors from C to Set.

Exercise N.67. For every category C, for every small category D, for every covariant functor L
from C to D such that the set-valued functor HomD(L(●), b) on Copp is representable for every
object b of D, prove that there exists an adjoint pair (L,R, θ, η) (which is unique up to unique
natural equivalences by an earlier exercise). Thus, show that extension of a functor to an adjoint
pair is a special case of representability of functors.

Exercise N.68. Prove the variant of the previous result for opposite categories: for every small
category C, for every category D, for every covariant functor R from D to C, if the set-valued
functor HomC(a,R(●)) on D is representable for every object a of C, prove there exists an adjoint
pair (L,R, θ, η).
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N.7 Functor categories

Notation N.69. For every small category τ , for every category C, for every object a of C, denote
by

aτ ∶ τ → C

the constant functor constτC,a that sends every object to a and that sends every morphism to Ida.
For every morphism in C, p ∶ a→ b, denote by

p
τ
∶ aτ ⇒ bτ

the natural transformation that assigns to every object U of τ the morphism p ∶ a→ b. Finally, for
every object U of τ , denote

Γ(U,F) = F(U), Γ(U, θ) = θ(U),

and for every morphism r ∶ U → V of τ , denote

Γ(r,F) = F(r).

Functor Categories and Section Functors.

Recall that associated to the small category τ and the category C there is the functor category Cτ
Fun(τ,C) whose objects are functors and whose morphisms are natural transformations

Exercise N.70. For every small category τ , for every category C, prove that the functor constτC,●
from C to Cτ preserves isomorphisms.

Adjointness of Constant / Diagonal Functors and the Global Sections Functor.

Exercise N.71. For every small category τ , for every category C, if C has an initial object X,
prove that (∗τ ,Γ(X,−)) extends to an adjoint pair of functors.

N.8 Limits and colimits

Definition N.72. For every small category τ , for every category C, for every τ -family F in C, a
limit of the τ -family F is a natural transformation η ∶ aτ ⇒F that is final among all such natural
transformations, i.e., for every natural transformation θ ∶ bτ ⇒ F , there exists a unique morphism
t ∶ b→ a in C such that θ equals η ○ tτ .

Exercise N.73. For every small category τ , for every category C, for all τ -families F and G in C,
for every morphism φ of τ -families from F to G, for all limits η ∶ aτ ⇒F and θ ∶ bτ ⇒ G, prove that
there exists a unique morphism f ∶ a → b such that θ ○ p

τ
equals φ ○ η. In particular, prove that if

a limit of F exists, then it is unique up to unique isomorphism. Thus, for every object a of C, the
identity transformation θa ∶ aτ → aτ is a limit of aτ .

Adjointness of Constant / Diagonal Functors and Limits.
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Definition N.74. A category C is complete if (and only if), for every small category τ , every
τ -family has a limit (which is then unique up to unique isomorphism by the previous exercise).

For every complete category C, some version of the Axiom of Choice (e.g., Hilbert’s epsilon operator)
produces a rule Γτ that assigns to every τ -family F an object Γτ(F) and a natural transformation
ηF ∶ Γτ(F)

τ
→ F that is a limit. (In many concrete categories, there is an explicit “construction”

of such a rule.)

Exercise N.75. For every small category τ , for every complete category C, and for every rule Γτ
as above, prove that there is an extension to a functor,

Γτ ∶ Fun(τ,C) → C,

and a natural transformation of functors

η ∶ ∗τ ○ Γτ ⇒ IdFun(τ,C).

Moreover, the rule sending every object a of C to the identity natural transformation θa is a natural
transformation θ ∶ IdC ⇒ Γτ ○ ∗τ . The quadruple (∗τ ,Γ, θ, η) is an adjoint pair of functors. In
particular, the limit functor Γτ preserves monomorphisms and sends injective objects of Fun(τ,C)
to injective objects of C.

Adjointness of Colimits and Constant / Diagonal Functors.

Exercise N.76. For every small category τ , for every category C, if C has a final object O, prove
that (Γ(O,−),∗τ) extends to an adjoint pair of functors.

Definition N.77. For every small category τ , for every category C, for every τ -family F in C,
a colimit of the τ -family F is a natural transformation θ ∶ F ⇒ aτ that is final among all such
natural transformations, i.e., for every natural transformation η ∶ F ⇒ bτ , there exists a unique
morphism h ∶ a→ b in C such that hτ ○ θ equals η.

Exercise N.78. For every small category τ , for every category C, for all τ -families F and G in C,
for every morphism φ of τ -families from F to G, for all colimits θ ∶ F ⇒ aτ and η ∶ G ⇒ bτ , prove
that there exists a unique morphism f ∶ a → b such that f

τ
○ θ equals η ○ φ. In particular, prove

that if a colimit of F exists, then it is unique up to unique isomorphism. Thus, for every object a
of C, the identity transformation θa ∶ aτ → aτ is a colimit of aτ . Finally, repeat the previous results
with colimits in place of limits. Deduce that colimits (if they exist) preserve epimorphisms and
projective objects. (You can use opposite categories to reduce most of this to the case of limits.)

Functoriality in the Source.

Definition N.79. For every complete category C, for every functor x from a small category σ to
a small category τ , for every τ -family F , the x-pullback Fx of F is the composite functor F ○ x,
which is a σ-family. For every morphism of τ -families, say φ from F to G, the x-pullback φx from
the σ-family Fx to Gx is φ ○ x, which is a morphism of σ-families.

164

http://www.math.stonybrook.edu/~jstarr/M543f25/index.html
mailto:jstarr@math.stonybrook.edu


MAT 543 Representation Theory
Stony Brook University

Jason Starr
Fall 2025

Exercise N.80. For every complete category C, for every functor x from a small category σ to a
small category τ , prove that x-pullback defines a functor

∗x ∶ Fun(τ,C) → Fun(σ,C).

For the identity functor Idτ ∶ τ → τ , prove that Idτ -pullback is the identity functor from Fun(τ,C)
to itself. For every functor y from a small category ρ to σ, prove that x ○ y-pullback equals the
composite ∗y ○ ∗x. In this sense, deduce that pullback is contravariant in x.

Definition N.81. For every complete category C, for every small category σ, for every small
category τ , for all functors x and x′ from σ to τ , and for every natural transformation n from x to
x′, the associated morphism of σ-families is the natural transformation Fn from Fx to Fx′ that
sends every σ-object V to the morphism F(n(V )) from F(x(V )) to F(x′(V )).

Exercise N.82. Prove that Fn is a morphism of σ-families. Also, for every morphism of τ -families,
φ from F to G, prove that φx′ ○Fn equals Gn○φx. Thus, the operation ∗n is a natural transformation
from the functor ∗x to ∗x′ . For the identity natural transformation Idx from x to itself, also ∗Idx is
the identity natural transformation of ∗x. Finally, for every functor x′′ from σ to τ , and for every
natural transformation m from x′ to x′′, the morphism of σ-families Fm○n equals Fm ○ Fn. In this
sense, the operation ∗x is also compatible with natural transformations. In particular, if (x, y, θ, η)
is an adjoint pair of functors, then also (∗y,∗x,∗θ,∗η) is an adjoint pair of functors.

Fiber Categories The following notion of fiber category is a special case of the notion of 2-fiber
product of functors of categories. Let x ∶ σ → τ be a functor; this is also called a category over
τ . For every object U of τ , a σx,U -object is a pair (V, r ∶ x(V ) → U) of an object V of σ and
a τ -isomorphism r ∶ x(V ) → U . For two objects σx,U -objects (V, r) and (V ′, r′) of σx,U , a σx,U -
morphism from (V, r) to (V ′, r′) is a morphism of σ, s ∶ V → V ′, such that r′ ○x(s) equals r. Prove
that IdV is a σx,U -morphism from (V, r) to itself; more generally, the σx,U -morphisms from (V, r)
to (V, r) are precisely the σ-morphisms s ∶ V → V such that x(s) equals Idx(V ). For every pair of
σx,U -morphisms, s ∶ (V, r) → (V ′, r′) and s′ ∶ (V ′, r′) → (V ′′, r′′), prove that s′○s is a σx,U -morphism
from (V, r) to (V ′′, r′′). Conclude that these rules form a category, denoted σx,U . Prove that the
rule (V, r) ↦ V and s↦ s defines a faithful functor,

Φx,U ∶ σx,U → σ,

and r ∶ x(V ) → U defines a natural isomorphism θx,U ∶ x ○Φx,U ⇒ Uσx,U
. Finally, for every category

σ′, for every functor Φ′ ∶ σ′ → σ, and for every natural isomorphism θ′ ∶ x ○Φ′ ⇒ Uσ′ , prove that
there exists a unique functor F ∶ σ′ → σx,U such that Φ′ equals Φx,U ○ F and θ′ equals θx,U ○ F . In
this sense, (Φx,U , θx,U) is final among pairs (Φ′, θ′) as above.

For every pair of functors x,x1 ∶ σ → τ , and for every natural isomorphism n ∶ x ⇒ x1, for every
σx1,U -object (V, r1 ∶ x1(V ) → U), prove that (V, r1 ○nV ∶ x(V ) → U) is an object of σx,U . For every
morphism in σx1,U , s ∶ (V, r1) → (V ′, r′1), prove that s is also a morphism (V, r1○nV ) → (V ′, r′1○nV ′).
Conclude that these rules define a functor,

σn,U ∶ σx1,U → σx,U .
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Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that σn,U is functorial in n, i.e., for a second natural isomorphism m ∶ x1 ⇒ x2, prove that
σm○n,U equals σn,U ○ σm,U .

For every pair of functors, x ∶ σ → τ and y ∶ ρ → τ , and for every functor z ∶ σ → ρ such that x
equals y ○ z equals x, for every σx,U -object (V, r), prove that (z(V ), r) is a ρy,U -object. For every
σx,U -morphism s ∶ (V, r) → (V ′, r′), prove that z(s) is a ρy,U -morphism (z(V ), r) → (z(V ′), r′).
Prove that z(IdV ) equals Idz(V ), and prove that z preserves composition. Conclude that these
rules define a functor,

zU ∶ σx,U → ρy,U .

Prove that this is functorial in z: (Idσ)U equals Idσx,U , and for a third functor w ∶ π → τ and
functor z′ ∶ ρ → π such that y equals w ○ z′, then (z′ ○ z)U equals z′U ○ zU . For an object (W,rW )
of ρy,U , for each object ((V, rV ), q ∶ Z(V ) → W ) of (σx,U)z,(W,rW ), define the associated object of
σz,W to be (V, q). For an object ((V ′, rV ′), q′ ∶ Z(V ′) → W ) of (σx,U)z,(W,rW ), for every morphism
s ∶ (V, rV ) → (V ′, rV ′) such that q equals q′ ○ z(s), define the associated morphism of σz,W to be s.
Prove that this defines a functor

z̃U,(W,rW ) ∶ (σx,U)zU ,(W,rW ) → σz,W .

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z, z1 ∶ σ → ρ such that x equals both y ○ z and y ○ z1, and
for a natural transformation m ∶ z ⇒ z1, for every object (V, r ∶ x(V ) → U) of σx,U , prove that
mV is a morphism in ρy,U from (z(V ), r) to (z1(V ), r). Moreover, for every morphism in σx,U ,
s ∶ (V, r) → (V ′, r′), prove that mV ′ ○ z(s) equals z1(s) ○mV . Conclude that this rule is a natural
transformation mU ∶ zU ⇒ (z1)U . Prove that this is functorial in m. If m is a natural isomorphism,
prove that also mU is a natural isomorphism, and the strict equivalence (mU)(W,rW ) is compatible
with the strict equivalence mW . Finally, prove that m ↦ mU is compatible with precomposition
and postcomposition of m with functors of categories over τ .

(vii)(Colimits and Limits along an Essentially Surjective Functor) Let x ∶ σ → τ be a functor of
small categories. Prove that every fiber category σx,U is small. Next, assume that x is essentially
surjective, i.e., for every object U of τ , there exists a σx,U -object (V, r). Let y ∶ τ → σ be a functor,
and let α ∶ Idσ ⇒ y ○ x be a natural transformation. Prove that this extends to an adjoint pair of
functors (x, y,α, β) if and only if for every object V of σ, the morphism x(αV ) ∶ x(V ) → x(y(x(V )))
is an isomorphism and (y(x(V )), x(αV )−1) is a final object of the fiber category σx,x(V ). (Conversely,
up to some form of the Axiom of Choice, there exists y and α extending to an adjoint pair if
and only if every fiber category σx,U has a final object.) For every adjoint pair (x, y,α, β), also
(∗y,∗x,∗α,∗β) is an adjoint pair. More generally, no longer assume that there exists y and α, yet
let Lx be a rule that assigns to every object F of Fun(σ,C) an object Lx(F) of Fun(τ,C) and a
natural transformation,

θF ∶ F → ∗x ○Lx(F),
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of objects in Fun(σ,C). For every object U of τ , this defines a natural transformation

θF ,x,U ∶ F ○Φx,U ⇒ Lx(F) ○Uσx,U
,

of objects in Fun(σx,U ,C). Assume that each (Lx(F)(U), θF ,x,U) is a colimit of F ○Φx,U . Prove
that this extends uniquely to a functor,

Lx ∶ Fun(σ,C) → Fun(τ,C),

and a natural transformation
θx ∶ IdFun(σ,C) ⇒ ∗x ○Lx.

Moreover, for every G in Fun(τ,C), the identity morphism,

IdG ∶ G ○ x ○Φx,U → G ○Uσx,U
,

factors uniquely through a C-morphism Lx(G ○x)(U) → G(U). Prove that this defines a morphism
ηG ∶ Lx(G ○ x) → G in Fun(τ,C). Prove that is a natural transformation,

η ∶ Lx ○ ∗x⇒ IdFun(τ,C).

Prove that (Lx,∗x, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ○Φx,U admits a colimit, then there exists a Γx and θ as above.)

Next, as above, let x ∶ σ → τ be a functor of small catgories that is essentially surjective. Let
y ∶ τ → sigma be a functor, and let β ∶ y ○ x ⇒ Idσ be a natural transformation. Prove that
this extends to an adjoint pair of functors (x, y,α, β) if and only if for every object V of σ, the
morphism x(βv) ∶ x(y(x(V ))) → x(V ) is an isomorphism and (y(x(V )), x(βv)) is an initial object
of the fiber category σx,x(V ). (Conversely, up to some form of the Axiom of Choice, there exists y
and β extending to an adjoint pair if and only if every fiber category σx,U has an initial object.) For
every adjoint pair (y, x,α, beta) also (∗x,∗y,∗α,∗β) is an adjoint pair. More generally, no longer
assume that there exists y and β, yet let Rx be a rule that assigns to every object F of Fun(σ,C)
an object Rx(F) of Fun(τ,C) and a natural transformation,

ηF ∶ ∗x ○Rx(F) → F ,

of objects in Fun(σ,C). For every object U of τ , this defines a natural transformation

ηF ,x,U ∶ Rx(F) ○Uσx,U
⇒F ○Φx,U ,

of objects in Fun(σx,U ,C). Assume that each (Rx(F)(U), ηF ,x,U) is a limit of F ○Φx,U . Prove that
this extends uniquely to a functor,

Rx ∶ Fun(σ,C) → Fun(τ,C),

and a natural transformation,
η ∶ ∗x ○Rx⇒ IdFun(σ,C).
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Moreover, for every G in Fun(τ,C), the identity morphism,

IdG ∶ G ○Uσx,U
⇒ G ○ x ○Φx,U ,

factors uniquely through a G(U) → C-morphism Rx(G ○x)(U). Prove that this defines a morphism
θG ∶ G → Rx(G ○ x) in Fun(τ,C). Prove that this is a natural transformation,

θ ∶ IdFun(τ,C) ⇒ Rx ○ ∗x.

Prove that (∗x,Rx, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ○Φx,U admits a colimit, then there exists a Rx and η as above.)

(viii)(Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let x ∶ σ → τ be an embedding of a full subcategory (thus, x is essentially surjective if and
only if x is an equivalence of categories). In this case, the functor

∗x ∶ Fun(τ,C) → Fun(σ,C)

is called restriction. Assume further that σ is upper (a la the theory of partially ordered sets) in
the sense that every morphism of τ whose source is an object of σ also has target an object of σ.
Assume that C has an initial object, ⊙. Let G be a σ-family of objects of C. Also, let φ ∶ G → H
be a morphism of σ-families. For every object U of τ , if U is an object of σ, then define xG(U) to
be G(U), and define xφ(U) to be φ(U). For every object U of τ that is not an object of σ, define

x G(U) to be ⊙, and define x φ(U) to be Id⊙. For every morphism r ∶ U → V , if U is an object of
σ, then r is a morphism of σ. In this case, define x G(r) to be G(r). On the other hand, if U is
not an object of σ, then G(U) is the initial object ⊙. In this case, define x G(r) to be the unique
morphism xG(U) → xG(V ). Prove that xG is a τ -family of objects, i.e., the definitions above are
compatible with composition of morphisms in τ and with identity morphisms. Also prove that

x φ is a morphism of τ -families. Prove that x IdG equals Idx G. Also, for a second morphism of
σ-families, ψ ∶ H → I, prove that x(ψ ○ φ) equals xψ ○xφ. Conclude that these rules form a functor,

x∗ ∶ Fun(σ,C) → Fun(τ,C).

Prove that (x∗,∗x) extends to an adjoint pair of functors. In particular, conclude that ∗x preserves
epimorphisms and x∗ preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every τ -family F , for every
object U of τ , define θF(U) ∶ F(U) → xF(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s) ∶ F(T ) → F(U),
for all morphisms s ∶ T → U with V not in σ (possibly empty, in which case θF(U) is the identity
on F(U)). In particular, if U is not in σ, then xF(U) is zero. For every morphism r ∶ U → V in τ ,
prove that the composition θF(V ) ○ F(r) equals xF(r) ○ θF(U) for a unique morphism

xF(r) ∶ xF(U) → xF(V ).
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Prove that x F(IdU) is the identity morphism of x F(U). Prove that r ↦ x F(r) is compatible
with composition in τ . Conclude that xF is a τ -family, and θF is a morphism of τ -families. For
every morphism φ ∶ F → E of τ -families, for every object U of τ , prove that θE(U) ○ φ(U) equals
xφ(U) ○ θF(U) for a unique morphism

xφ(U) ∶ xF(U) → xE(U).

Prove that the rule U ↦ xφ(U) is a morphism of τ -families. Prove that x IdF is the identity on
xF . Also prove that φ ↦ xφ is compatible with composition. Conclude that these rules define a
functor

x∗ ∶ Fun(τ,C) → Fun(τ,C).
Prove that the rule F ↦ θF is a natural transformation IdFun(τ,C) ⇒ x∗. Prove that the natural
morphism of τ -families,

xF → x((xF)x),
is an isomorphism. Conclude that there exists a unique functor,

∗x ∶ Fun(τ,C) → Fun(σ,C),

and a natural isomorphism x∗ ⇒ x(∗x). Prove that (∗x, x∗, θ) extends to an adjoint pair of functors.
In particular, conclude that x∗ preserves epimorphisms and ∗x preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that σ is upper, assume that
σ has an initial object, Wσ, and assume that there is a functor

y ∶ τ → σ

and a natural transformation θ ∶ Idτ ⇒ x○y, such that for every object U of τ , the unique morphism
Wσ → y(U) and the morphism θU ∶ U → y(U) make y(U) into a coproduct of Wσ and U in τ . For
simplicity, for every object U of σ, assume that θU ∶ U → y(U) is the identity IdU (rather than
merely being an isomorphism), and for every morphism r ∶ U → V in σ, assume that y(r) equals r.
Thus, for every object V of σ, the identity morphism y(V ) → V defines a natural transformation
η ∶ y ○ x⇒ Idσ. Prove that (y, x, θ, η) is an adjoint pair of functors. Conclude that (∗x,∗y,∗θ,∗η)
is an adjoint pair of functors. In particular, conclude that ∗x preserves monomorphisms and ∗y
preserves epimorphisms.

(ix)(Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that Γ(0,−) is an equivalence of categories. For
an arbitrary category τ , for the unique natural transformation τ̂ ∶ τ → 0, prove that ∗τ̂ equals the
composite ∗τ ○Γ(0,−) so that ∗τ is an example of this construction. In particular, for every functor
x ∶ σ → τ , prove that (aτ)x equals aσ. If η ∶ aτ ⇒ F is a limit of a τ -family F , and if θ ∶ bσ ⇒ Fx
is a limit of the associated σ-family Fx, then prove that there is a unique morphism h ∶ a → b in
C such that ηx equals θ ○ p

σ
. If there are right adjoints Γτ of ∗τ and Γσ of ∗σ, conclude that there

exists a unique natural transformation

Γx ∶ Γτ ⇒ Γσ ○ ∗x
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so that ηFx ○ Γx(F)
σ

equals (ηF)x. Repeat this construction for colimits.

(x)(Limits / Colimits of a Concrete Category) Let σ be a small category in which the only mor-
phisms are identity morphisms: identify σ with the underlying set of objects. Let C be the category
Sets. For every σ-family F , prove that the rule

Γσ(F) ∶= ∏
U∈Σ

Γ(U,F)

together with the morphism
ηF ∶ Γσ(F)

σ
⇒F ,

ηF(V ) = prV ∶ ∏
U∈Σ

Γ(U,F) → Γ(V,F),

is a limit of F . Next, for every small category τ , define σ to be the category with the same objects
as τ , but with the only morphisms being identity morphisms. Define x ∶ σ → τ to be the unique
functor that sends every object to itself. Define Γτ(F) to be the subobject of Γσ(Fx) of data
(fU)U∈Σ such that for every morphism r ∶ U → V , F(r) maps fU to fV . Prove that with this
definition, there exists a unique natural transformation ηF ∶ Γτ(F)

τ
⇒ F such that the natural

transformation Γτ(F)
σ
⇒ Γσ(Fx) ⇒ Fx equals (ηF)x. Prove that ηF is a limit of F . Conclude

that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

Φ ∶ R − S −mod→ Sets

sends products to products. Let F be a τ -family of R − S-modules. Prove that the defining
relations for Γτ(Φ ○ F) as a subset of Γσ(Φ ○ F) are the simultaneous kernels of R − S-module
homomorphisms. Conclude that there is a natural R − S-module structure on Γτ(Φ ○ F), and use
this to prove that R − S-mod has all limits.

(xi)(Functoriality in the Target) For every functor of categories,

H ∶ C → D,

for every τ -family F in C, prove that H ○F is a τ -family in D. For every morphism of τ -families in
C, φ ∶ F ⇒ G, prove that H ○φ is a morphism of τ -families in D. Prove that this defines a functor

Hτ ∶ Fun(τ,C) → Fun(τ,D).

For the identity functor IdC, prove that (IdC)τ is the identity functor. For I ∶ D → E a functor of
categories, prove that (I ○H)τ is the composite Iτ ○Hτ . In this sense, deduce that Hτ is functorial
in H.

For two functors, H,I ∶ C → D, and for a natural transformation N ∶ H ⇒ I, for every τ -family F
in C, define Nτ(F) to be

N ○ F ∶H ○ F ⇒ I ○ F .
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Prove that Nτ(F) is a morphism of τ -families in D. For every morphism of τ -families in C,
φ ∶ F → G, prove that Nτ(G) ○Hτ(φ) equals Iτ(φ) ○ Nτ(F). In this sense, conclude that Nτ is
a natural transformation Hτ ⇒ Iτ . For the identity natural transformation IdH ∶ H ⇒ H, prove
that (IdH)τ is the identity natural transformation of Hτ . For a second natural transformation
M ∶ I ⇒ J , prove that (M ○N)τ equals Mτ ○Nτ . In this sense, deduce that (−)τ is also compatible
with natural transformations.

(xii)(Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if
for every pair of objects U and V there exists a pair of morphisms, r ∶ W → U and s ∶ W → V ,
and for every pair of morphisms, r, s ∶ V → U , there exists a morphism t ∶ W → V such that r ○ t
equals s ○ t (both of these are automatic if the category has an initial object X). Assume that the
category C has limits for all categories τ with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category τ , define τ̂ to be the small category whose objects are
finite full subcategories σ of τ , and whose morphisms are inclusions of subcategories, ρ ⊂ σ, of τ .
Prove that τ̂ is cofiltering. Let F be a τ -family in C. For every finite full subcategory σ ⊂ τ , denote
by Fσ the restriction as in (f) above. By hypothesis, there is a limit ησ ∶ F̂(σ)

σ
⇒Fσ. Moreover, by

(g), for every inclusion of full subcategories ρ ⊂ σ, there is a natural morphism in C, F̂(ρ) → F̂(σ),
and this is functorial. Conclude that F̂ is a τ̂ -family in C. Since τ̂ is filtering, there is a limit

ηF̂ ∶ aτ̂ ⇒ F̂ .

Prove that this defines a limit ηFaτ ⇒F .

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
(not necessarily commutative) rings, the category of commutative rings, and the category of R−S-
bimodules (where R and S are associative, unital rings).

(xiii)(bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R−S-bimodules (where R and S are
associative, unital rings).

Practice with Limits and Colimits Exercise. In each of the following cases, say whether the
given category (a) has an initial object, (b) has a final object, (c) has a zero object, (d) has finite
products, (e) has finite coproducts, (f) has arbitrary products, (g) has arbitrary coproducts, (h)
has arbitrary limits (sometimes called inverse limits), (i) has arbitrary colimits (sometimes called
direct limits), (j) coproducts / filtering colimits preserve monomorphisms, (k) products / cofiltering
limits preserve epimorphisms.

(i) The category Sets whose objects are sets, whose morphisms are set maps, whose composition
is usual composition, and whose identity morphisms are usual identity maps.

(ii) The opposite category Setsopp.
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(iii) For a given set S, the category whose objects are elements of the set, and where the only
morphisms are the identity morphisms from an element to that same element. What if the set is
the empty set? What if the set is a singleton set?

(iv) For a partially ordered set (S,⪯), the category whose objects are elements of S, and where
the Hom set between two elements x, y of S is a singleton set if x ⪯ y and empty otherwise. What
if the partially ordered set (S,⪯) is a lattice, i.e., every finite subset (resp. arbitrary subset) has
a least upper bound and has a greatest lower bound?

(v) For a monoid (M, ⋅,1), the category with only one object whose Hom set, with its natural
composition and identity, is (M, ⋅,1). What is M equals {1}?

(vi) For a monoid (M, ⋅,1) and an action of that monoid on a set, ρ ∶ M × S → S, the category
whose objects are the elements of S, and where the Hom set from x to y is the subset Mx,y = {m ∈
M ∣m ⋅x = y}. What if the action is both transitive and faithful, i.e., S equals M with its left regular
representation?

(vii) The category PtdSets whose objects are pairs (S, s0) of a set S and a specified element s0

of S, i.e., pointed sets, whose morphisms are set maps that send the specified point of the domain
to the specified point of the target, whose composition is usual composition, and whose identity
morphisms are usual identity maps.

(viii) The category Monoids whose objects are monoids, whose morphisms are homomorphisms of
monoids, whose composition is sual composition, and whose identity morphisms are usual identity
maps.

(ix) For a specified monoid (M, ⋅,1), the category whose objects are pairs (S, ρ) of a set S and an
action ρ ∶M ×S → S of M on S, whose morphisms are set maps compatible with the action, whose
composition is usual composition, and whose identity morphisms are usual identity maps.

(x) The full subcategory Groups of Monoids whose objects are groups. Does the inclusion functor
preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms, resp.
epimorphisms?

(xi) The full subcategory Z−mod of Groups whose objects are Abelian groups. Does the inclusion
functor preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms,
resp. epimorphisms?

(xii) The full subcategory FiniteGroups of Groups whose objects are finite groups. Are coprod-
ucts, resp. products, in the subcategory also coproducts, resp. products, in the larger category
Groups? Does the inclusion functor preserve monomorphisms, resp. epimorphisms?

(xiii) The full subcategory Z −modtor of Z −mod consisting of torsion Abelian groups, i.e., every
element has finite order (allowed to vary from element to element). Are coproducts, resp. products,
preserved by the inclusion functor? Are monomorphisms, resp. epimorphisms preserved?

(xiv) The category Rings whose objects are associative, unital rings, whose morphisms are ho-
momorphisms of rings (preserving the multiplicative identity), whose composition is the usual
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composition, and whose identity morphisms are the usual identity maps. Hint. For the coproduct
of two associative, unital rings (R′,+,0, ⋅′,1′) and (R′′,+,0, ⋅′′,1′′), first form the coproduct R′⊕R′′

of (R′,+,0) and (R′′,+,0) as a Z-module, then form the total tensor product ring T ●
Z(R′⊕R′′) as in

the previous problem set. For the two natural maps q′ ∶ R′ ↪ T 1
Z(R′⊕R′′) and q′′ ∶ R′′ ↪ T 1

Z(R′⊕R′′)
form the left-right ideal I ⊂ T ●

Z(R′⊕R′′) generated by q′(1′)−1, q′′(1′′)−1, q′(r′ ⋅′ s′)− q′(r′) ⋅ q′(s′),
and q′′(r′′ ⋅′′ s′′) − q′′(r′′) ⋅ q′′(s′′) for all elements r′, s′ ∈ R′ and r′′, s′′ ∈ R′′. Define

p ∶ T 1
Z(R′ ⊕R′′) → R,

to be the quotient by I. Prove that p ○ q′ ∶ R′ → R and p ○ q′′ ∶ R′′ → R are ring homomorphisms
that make R into a coproduct of R′ and R′′.

(xv) The full subcategory CommRings of Rings whose objects are commutative, unital rings.
Does the inclusion functor preserve coproducts, resp. products? Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvi) The full subcategory NilCommRings of CommRings whose objects are commutative,
unital rings such that every noninvertible element is nilpotent. Does the inclusion functor preserve
coproducts, resp. products? (Be careful about products!) Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvii) Let R and S be associative, unital rings. Let R −mod, resp. mod − S, R − S −mod, be the
category of left R-modules, resp. right S-modules, R − S-bimodules. Does the inclusion functor
from R − S − mod to R − mod, resp. to mod − S, preserve coproduct, products, monomorphisms
and epimorphisms?

(xviii) Let (I,⪯) be a partially ordered set. Let C be a category. An (I,⪯)-system in C is a datum

c = ((ci)i∈I , (fi,j)(i,j)∈I×I,i⪯j)

where every ci is an object of C, where for every pair (i, j) ∈ I × I with i ⪯ j, ci,j is an element of
HomC(ci, cj), and satisfying the following conditions: (a) for every i ∈ I, ci,i equals Idci , and (b) for
every triple (i, j, k) ∈ I with i ⪯ j and j ⪯ k, cj,k ○ ci,j equals ci,k. For every pair of (I,⪯)-systems
in C, c = ((ci)i∈I , (ci,j)i⪯j) and c′ = ((c′i)i∈I , (c′i,j)i⪯j), a morphism g ∶ c → c′ is defined to be a datum
(gi)i∈I of morphisms gi ∈ HomC(ci, c′i) such that for every (i, j) ∈ I × I with i ⪯ j, gj ○ ci,j equals
c′i,j○gi. Composition of morphisms g and g′ is componentwise g′i○gi, and identities are Idc = (Idci)i∈I .
This category is Fun((I,⪯),C), and is sometimes referred to as the category of (I,⪯)-presheaves.
Assuming C has finite coproducts, resp. finite products, arbitrary coproducts, arbitrary products,
a zero object, kernels, cokernels, etc., what can you say about Fun((I,⪯),C)?
(xix) Let C be a category that has arbitrary products. Let (I,⪯) be a partially ordered set whose
associated category as in (iv) has finite coproducts and has arbitrary products. The main example
is when I = U is the collection of all open subsets U of a topology on a set X, and where U ⪯ V if
U ⊇ V . Then coproduct is intersection and product is union. Motivated by this case, an covering
of an element i of I is a collection j = (jα)α∈A of elements jα of I such that for every α, i ⪯ jα, and
such that i is the product of (jα)α∈A in the sense of (iv). In this case, for every (α,β) ∈ A × A,
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define jα,β to be the element of I such that jα ⪯ jα,β, such that jβ ⪯ jα,β, and such that jα,β is a
coprodcut of (jα, jβ). An (I,⪯)-presheaf c = ((ci)i∈I , (ci,j)i⪯j) is an (I,⪯)-sheaf if for every element
i of I and for every covering j = (jα)α∈A, the following diagram in C is exact in a sense to be made
precise,

ci
qÐ→ ∏

α∈A
cjα

p′

⇉ p′′ ∏
(α,β)∈A×A

cjα,β .

For every α ∈ A, the factor of q,
prα ○ q ∶ ci → cjα ,

is defined to be ci,jα . For every (α,β) ∈ A ×A, the factor of p′,

prα,β ○ p′ ∶ ∏
γ∈A

cjγ → cjα,β ,

is defined to be cjα,jα,β ○ prα. Similarly, prα,β ○ p′′ is defined to be cjβ ,jα,β ○ prβ. The diagram above
is exact in the sense that q is a monomorphism in C and q is a fiber product in C of the pair of
morphisms (p′, p′′). The category of (I,⪯) is the full subcategoryof the category of (I,⪯)-presheaves
whose objects are (I,⪯)-sheaves. Does this subcategory have coproducts, products, etc.? Does the
inclusion functor preserve coproducts, resp. products, monomorphisms, epimorphisms? Before
considering the general case, it is probably best to first consider the case that C is Z − mod, and
then consider the case that C is Sets.
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