MAT 536 Problem Set 9

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will be happy to discuss the solutions during office hours.

Problems.

Problem 0.(Commutation of Cohomology with Filtered Colimits) Let \mathcal{B} be a cocomplete Abelian category satisfying Grothendieck's condition (AB5). Let I be a small filtering category. Let C^{\bullet} : $I \to \operatorname{Ch}^{\bullet}(\mathcal{B})$ be a functor.

(a) For every $n \in \mathbb{Z}$, prove that the natural \mathcal{B} -morphism,

$$\operatorname{colim}_{i \in I} H^n(C^{\bullet}(i)) \to H^n(\operatorname{colim}_{i \in I} C^{\bullet}(i)),$$

is an isomorphism. **Prove** that this extends to a natural isomorphism of cohomological δ -functors. This is "commutation of cohomology with filtered colimits".

(b) Let \mathcal{A} be an Abelian category with enough injective objects. Let $F: I \times \mathcal{A} \to \mathcal{B}$ be a bifuncto such that for every object *i* of *I*, the functor $F_i: \mathcal{A} \to \mathcal{B}$ is additive and left-exact. Prove that $F_{\infty}(-) \coloneqq \operatorname{colim}_{i \in I} F_i(-)$ also forms an additive functor that is left-exact. Also prove that the natural map

$$\operatorname{colim}_{i \in I} R^n(F_i) \to R^n(F_\infty)$$

is an isomorphism. This is "commutation of right derived functors with filtered colimits".

Problem 1.(The Topological Space of a Presheaf and an Alternative Description of Sheafification for Sets) Let (X, τ_X) be a topological space. A space over X is a continuous map of topological spaces, $f: (Y, \tau_Y) \to (X, \tau_X)$. For spaces over X, $f: (Y, \tau_Y) \to (X, \tau_X)$ and $g: (Z, \tau_Z) \to (X, \tau_X)$, a morphism of spaces over X from f to g is a continuous map $u: (Y, \tau_Y) \to (Z, \tau_X)$ such that $g \circ u$ equals f.

(a)(The Category of Spaces over X) For every space over X, $f : (Y, \tau_Y) \to (X, \tau_X)$, prove that $\operatorname{Id}_Y : (Y, \tau_Y) \to (Y, \tau_Y)$ is a morphism from f to f. For spaces over X, $f : (Y, \tau_Y) \to (X, \tau_X)$, $g : (Z, \tau_Z) \to (X, \tau_X)$ and $h : (W, \tau_W) \to (X, \tau_X)$, for every morphism from f to g, $u : (Y, \tau_Y) \to (Z, \tau_Z)$, and for every morphism from g to h, $v : (Z, \tau_Z) \to (W, \tau_W)$, prove that the composition $v \circ u : (Y, \tau_Y) \to (W, \tau_W)$ is a morphism from f to h. Conclude that these notions form a category, denoted $\operatorname{Top}_{(X, \tau_X)}$.

(b)(The Sheaf of Sections) For every space over $X, f: (Y, \tau_Y) \to (X, \tau_X)$, for every open U of τ_X , define $\operatorname{Sec}_f(U)$ to be the set of continuous functions $s: (U, \tau_U) \to (Y, \tau_Y)$ such that $f \circ s$ is the inclusion morphism $(U, \tau_Y) \to (X, \tau_X)$. For every inclusion of τ_X -open subsets, $U \supseteq V$, for every s in $\operatorname{Sec}_f(U)$, define $s|_V$ to be the restriction of s to the open subset V. **Prove** that $s|_V$ is an element of $\operatorname{Sec}_f(V)$. **Prove** that these rules define a functor

 $\operatorname{Sec}_f : \tau_X \to \operatorname{\mathbf{Sets}}.$

Prove that this functor is a sheaf of sets on (X, τ_X) .

(c)(The Sections Functor) For spaces over X, $f(Y, \tau_Y) \to (X, \tau_X)$ and $g: (Z, \tau_Z) \to (X, \tau_X)$, for every morphism from f to $g, u: (Y, \tau_Y) \to (Z, \tau_Z)$, for every τ_X -open set U, for every s in $\text{Sec}_f(U)$, **prove** that $u \circ s$ is an element of $\text{Sec}_g(U)$. For every inclusion of τ_X -open sets, $U \supseteq V$, **prove** that $u \circ (s|_V)$ equals $(u \circ s)|_V$. Conclude that these rules define a morphism of sheaves of sets,

$$\operatorname{Sec}_u : \operatorname{Sec}_f \to \operatorname{Sec}_q.$$

Prove that $\operatorname{Sec}_{\operatorname{Id}_Y}$ is the identity morphism of Sec_f . For spaces over $X, f: (Y, \tau_Y) \to (X, \tau_X), g: (Z, \tau_Z) \to (X, \tau_X)$ and $h: (W, \tau_W) \to (X, \tau_X)$, for every morphism from f to $g, u: (Y, \tau_Y) \to (Z, \tau_Z)$, and for every morphism from g to $h, v: (Z, \tau_Z) \to (W, \tau_W)$, **prove** that $\operatorname{Sec}_{v \circ u}$ equals $\operatorname{Sec}_v \circ \operatorname{Sec}_u$. Conclude that these rules define a functor,

$$\operatorname{Sec}:\operatorname{Top}_{(X,\tau_X)}\to\operatorname{Sets}-\operatorname{Sh}_{(X,\tau_X)}.$$

(d)(The Éspace Étalè) For every presheaf of sets over X, \mathcal{F} , define $\operatorname{Esp}_{\mathcal{F}}$ to be the set of pairs (x, ϕ_x) of an element x of X and an element ϕ_x of the stalk $\mathcal{F}_x = \operatorname{colim}_{x \in U} \mathcal{F}(U)$; such an element is called a *germ* of \mathcal{F} at x. Denote by

$$\pi_{\mathcal{F}} : \operatorname{Esp}_{\mathcal{F}} \to X,$$

the set map sending (x, ϕ_x) to x. For every open subset U of X and for every element ϕ of $\mathcal{F}(U)$, define $B(U, \phi) \subset \operatorname{Esp}_{\mathcal{F}}$ to be the image of the morphism,

$$\widetilde{\phi}: U \to \operatorname{Esp}_{\mathcal{F}}, \ x \mapsto \phi_x.$$

Let (U, ψ) and (V, χ) be two such pairs. Let (x, ϕ_x) be an element of both $B(U, \psi)$ and $B(V, \chi)$. **Prove** that there exists an open subset W of $U \cap V$ containing x such that $\psi|_W$ equals $\chi|_W$. Denote this common restriction by $\phi \in \mathcal{F}(W)$. Conclude that (x, ϕ_x) is contained in $B(W, \phi)$, and this is contained in $B(U, \psi) \cap B(V, \chi)$. Conclude that the collection of all subset $B(U, \phi)$ of $\operatorname{Esp}_{\mathcal{F}}$ is a topological basis. Denote by $\tau_{\mathcal{F}}$ the associated topology on $\operatorname{Esp}_{\mathcal{F}}$. **Prove** that $\tau_{\mathcal{F}}$ is the finest topology on $\operatorname{Esp}_{\mathcal{F}}$ such that for every τ_X -open set U and for every $\phi \in \mathcal{F}(U)$, the set map $\tilde{\phi}$ is a continuous map $(U, \tau_U) \to (\operatorname{Esp}_{\mathcal{F}}, \tau_{\mathcal{F}})$. In particular, since every composition $\pi_{\mathcal{F}} \circ \tilde{\phi}$ is the continuous inclusion of (U, τ_U) in (X, τ_X) , conclude that every $\tilde{\phi}$ is continuous for the topology $\pi_{\mathcal{F}}^{-1}(\tau_X)$ on $\operatorname{Esp}_{\mathcal{F}}$. Since $\tau_{\mathcal{F}}$ refines this topology, **prove** that

$$\pi_{\mathcal{F}}: (\mathrm{Esp}_{\mathcal{F}}, \tau_{\mathcal{F}}) \to (X, \tau_X)$$

is a continuous map, i.e., $\pi_{\mathcal{F}}$ is a space over X.

(e)(The Éspace Functor) For every morphism of presheaves of sets over $X, \alpha : \mathcal{F} \to \mathcal{G}$, for every (x, ϕ_x) in $\operatorname{Esp}_{\mathcal{F}}$, define $\operatorname{Esp}_{\alpha}(x, \phi_x)$ to be $(x, \alpha_x(\phi_x))$, where $\alpha_x : \mathcal{F}_x \to \mathcal{G}_x$ is the induced morphism of stalks. For every τ_X -open set U and every $\phi \in \mathcal{F}(U)$, **prove** that the composition $\operatorname{Esp}_{\alpha} \circ \widetilde{\phi}$ equals $\widetilde{\alpha_U(\phi)}$ as set maps $U \to \operatorname{Esp}_{\mathcal{G}}$. By construction, $\widetilde{\alpha_U(\phi)}$ is continuous for the topology $\tau_{\mathcal{G}}$. Conclude that $\widetilde{\phi}$ is continuous for the topology ($\operatorname{Esp}_{\alpha}$)⁻¹($\tau_{\mathcal{G}}$) on $\operatorname{Esp}_{\mathcal{F}}$. Conclude that $\tau_{\mathcal{F}}$ refines this topology, and thus $\operatorname{Esp}_{\alpha}$ is a continuous function,

$$\operatorname{Esp}_{\alpha} : (\operatorname{Esp}_{\mathcal{F}}, \tau_{\mathcal{F}}) \to (\operatorname{Esp}_{\mathcal{G}}, \tau_{\mathcal{G}}).$$

Prove that $\operatorname{Esp}_{\operatorname{Id}_{\mathcal{F}}}$ equals the identity map on $\operatorname{Esp}_{\mathcal{F}}$. For morphisms of presheaves of sets over X, $\alpha : \mathcal{F} \to \mathcal{G}$ and $\beta : \mathcal{G} \to \mathcal{H}$, **prove** that $\operatorname{Esp}_{\beta \circ \alpha}$ equals $\operatorname{Esp}_{\beta} \circ \operatorname{Esp}_{\alpha}$. Conclude that these rules define a functor,

$$\operatorname{Esp}: \operatorname{\mathbf{Sets}} - \operatorname{Presh}_{(X,\tau_X)} \to \operatorname{\mathbf{Top}}_{(X,\tau_X)}.$$

(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, \mathcal{F} , for every τ_X open set U, for every $\phi \in \mathcal{F}(U)$, **prove** that $\tilde{\phi}$ is an element of $\operatorname{Sec}_{\pi_{\mathcal{F}}}(U)$. For every τ_X -open subset $U \supseteq V$, **prove** that $\tilde{\phi}|_V$ equals $\tilde{\phi}|_V$. Conclude that $\phi \mapsto \tilde{\phi}$ is a morphism of presheaves of sets over X,

$$\theta_{\mathcal{F}}: \mathcal{F} \to \operatorname{Sec} \circ \operatorname{Esp}(\mathcal{F}).$$

For every morphism of presheaves of sets over X, $\alpha : \mathcal{F} \to \mathcal{G}$, for every τ_X -open set U, for every $\phi \in \mathcal{F}(U)$, **prove** that $\operatorname{Esp}_{\alpha} \circ \theta_{\mathcal{F},U}(\phi)$ equals $\alpha_U(\phi)$, and this in turn equals $\theta_{\mathcal{G},U} \circ \alpha_U(\phi)$. Conclude that $\operatorname{Sec} \circ \operatorname{Esp}(\alpha) \circ \theta_{\mathcal{F}}$ equals $\theta_{\mathcal{G}} \circ \alpha$. Therefore θ is a natural transformation of functors,

$$\theta : \mathrm{Id}_{\mathbf{Sets-Presh}_{(X,\tau_Y)}} \Rightarrow \mathrm{Sec} \circ \mathrm{Esp.}$$

(g)(Alternative Description of Sheafification) Since $\operatorname{Sec} \circ \operatorname{Esp}(\mathcal{F})$ is a sheaf, **prove** that there exists a unique morphism

$$\hat{\theta}_{\mathcal{F}} : \operatorname{Sh}(\mathcal{F}) \to \operatorname{Sec} \circ \operatorname{Esp}(\mathcal{F})$$

factoring $\theta_{\mathcal{F}}$. For every element $t \in \text{Sec} \circ \text{Esp}(\mathcal{F})(U)$, a t-pair is a pair (U_0, s_0) of a τ_X -open subset $U \supseteq U_0$ and an element $s_0 \in \mathcal{F}(U_0)$ such that $t^{-1}(B(U_0, s_0))$ equals U_0 . Define \mathfrak{U} to be the set of t-pairs, and define $\iota : \mathfrak{U} \to \tau_U$ to be the set map $(U_0, s_0) \mapsto U_0$. Prove that $(U, \iota : \mathfrak{U} \to \tau_U)$ is an open covering. For every pair of t-pairs, (U_0, s_0) and (U_1, s_1) , for every $x \in U_0 \cap U_1$, prove that there exists a τ_X -open subset $U_{0,1} \subset U_0 \cap U_1$ containing x such that $s_0|_{U_{0,1}}$ equals $s_1|_{U_{0,1}}$. Prove that this data gives rise to a section $s \in \text{Sh}(\mathcal{F})(U)$ such that $\tilde{\theta}_{\mathcal{F}}(s)$ equals t. Conclude that $\tilde{\theta}$ is an epimorphism. On the other hand, for every $r, s \in \mathcal{F}(U)$, if $\theta_{\mathcal{F},x}(r_x)$ equals $\theta_{\mathcal{F},x}(s_x)$, prove that $\tilde{r}(x)$ equals $\tilde{s}(x)$, i.e., r_x equals s_x . Conclude that every morphism $\tilde{\theta}_x$ is a monomorphism, and hence $\tilde{\theta}$ is a monomorphism of sheaves. Thus, finally prove that $\tilde{\theta}_{\mathcal{F}}$ is an isomorphism of sheaves. Conclude that $\tilde{\theta}$ is a natural isomorphism of functors,

$$\tilde{\theta}$$
: Sh \Rightarrow Sec \circ Esp.

(h) For every space over $X, f: (Y, \tau_Y) \to (X, \tau_X)$, for every τ_X -open U, for every $s \in \text{Sec}_f(U)$, and for every $x \in U$, define a set map,

$$\eta_{f,U,x}$$
: Sec_f(U) \rightarrow Y, $s \mapsto s(x)$.

Prove that for every τ_X -open subset $U \supseteq V$ that contains x, $\eta_{f,V,x}(s|_V)$ equals $\eta_{f,U,x}(s)$. Conclude that the morphisms $\eta_{f,U,x}$ factor through set maps,

$$\eta_{f,x}: (\operatorname{Sec}_f)_x \to Y, \ s_x \mapsto s(x).$$

Define a set map,

$$\eta_f : \operatorname{Esp}_{\operatorname{Sec}_f} \to Y, \ (x, s_x) \mapsto \eta_{f,x}(s_x).$$

Prove that $\eta_f \circ \tilde{s}$ equals s as set maps $U \to Y$. Since s is continuous for τ_Y , conclude that \tilde{s} is continuous for the inverse image topology $(\eta_f)^{-1}(\tau_Y)$ on $\operatorname{Esp}_{\operatorname{Sec}_f}$. Conclude that $\tau_{\operatorname{Sec}_f}$ refines this topology, and thus η_f is a continuous map,

$$\eta_f : (\operatorname{Esp}_{\operatorname{Sec}_f}, \tau_{\operatorname{Sec}_f}) \to (Y, \tau_Y).$$

Also **prove** that $f \circ \eta_f$ equals $\pi_{\operatorname{Sec}_f}$. Conclude that η_f is a morphism of spaces over X. Finally, for spaces over X, $f : (Y, \tau_Y) \to (X, \tau_X)$ and $g : (Z, \tau_Z) \to (X, \tau_X)$, and for every morphism from f to $g, u : (Y, \tau_Y) \to (Z, \tau_Z)$, **prove** that $u \circ \eta_f$ equals $\eta_g \circ \operatorname{Esp} \circ \operatorname{Sec}(u)$. Conclude that $f \mapsto \eta_f$ defines a natural transformation of functors,

$$\eta : \operatorname{Esp} \circ \operatorname{Sec} \Rightarrow \operatorname{Id}_{\operatorname{Top}_{(X,\tau_Y)}}.$$

(i)(The Adjoint Pair) **Prove** that (Esp, Sec, θ, η) is an adjoint pair of functors.

Problem 2. (Alternative Description of Inverse Image) Let $f : (Y, \tau_Y) \to (X, \tau_X)$ be a continuous function of topological spaces. Since the category of topological spaces is a Cartesian category (by Problem 2(e) on Problem Set 8), for every space over $X, g : (Z, \tau_Z) \to (X, \tau_X)$, there is a fiber product diagram in **Top**,

$$\begin{array}{ccc} (Z,\tau_Z) \times_{(X,\tau_X)} (Y,\tau_Y) & \stackrel{g^*f}{\longrightarrow} & (Z,\tau_Z) \\ & & & & & \downarrow^g \\ & & & & \downarrow^g \\ & & & & (Y,\tau_Y) & \stackrel{g^*f}{\longrightarrow} & (X,\tau_X) \end{array}$$

Denote the fiber product by $f^*(Z, \tau_Z)$.

(a) For spaces over $X, g: (Z, \tau_Z) \to (X, \tau_X)$ and $h: (W, \tau_W) \to (X, \tau_X)$, for every morphism of spaces over $X, u: (Z, \tau_Z) \to (W, \tau_W)$, **prove** that there is a unique morphism of topological spaces,

$$f^*u: f^*(Z, \tau_Z) \to f^*(W, \tau_W),$$

such that $f^*h \circ f^*u$ equals f^*g and $h^*f \circ f^*u$ equals $u \circ g^*f$. **Prove** that f^*Id_Z is the identity morphism of $f^*(Z,\tau_Z)$. For spaces over $X, g: (Z,\tau_Z) \to (X,\tau_X), h: (W,\tau_W) \to (X,\tau_X)$ and

 $i: (M, \tau_M) \to (X, \tau_X)$, for every morphism from g to $h, u: (Z, \tau_Z) \to (W, \tau_W)$, and for every morphism from h to $i, v: (W, \tau_W) \to (M, \tau_M)$, **prove** that $f^*(v \circ u)$ equals $f^*v \circ f^*u$. Conclude that these rules define a functor,

$$f_{\mathrm{Sp}}^*: \operatorname{Top}_{(X,\tau_X)} \to \operatorname{Top}_{(Y,\tau_Y)}.$$

Prove that this functor is contravariant in f. In particular, there is a composite functor,

$$f_{\mathrm{Sp}}^* \circ \mathrm{Esp}_{(X,\tau_X)} : \mathbf{Sets} - \mathrm{Sh}_{(X,\tau_X)} \to \mathbf{Top}_{(Y,\tau_Y)}.$$

(b) Consider the composite functor,

$$f_* \circ \operatorname{Sec}_{(Y,\tau_Y)} : \operatorname{Top}_{(Y,\tau_Y)} \to \operatorname{Sets} - \operatorname{Sh}_{(Y,\tau_Y)} \to \operatorname{Sets} - \operatorname{Sh}_{(X,\tau_X)}.$$

Prove directly (without using the inverse image functor on sheaves) that $(f_{\text{Sp}}^* \circ \text{Esp}_{(X,\tau_X)}, f_* \circ \text{Sec}_{(Y,\tau_Y)})$ extends to an adjoint pair of functors. Use this to conclude that the composite $\text{Sec}_{(Y,\tau_Y)} \circ f_{\text{Sp}}^* \circ \text{Esp}_{(X,\tau_X)}$ is naturally isomorphic to the inverse image functor on sheaves of sets.

Problem 3.(An Epimorphism of Sheaves that is not Epimorphic on Global Sections) Let \mathbb{R} be the usual real line with coordinate θ and with the Euclidean topology and standard structure of differentiable manifold. **Prove** that translations of \mathbb{R} by elements of \mathbb{Z} are diffeomorphisms, and conclude that there is a unique structure of differentiable manifold on the quotient, $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$, such that the quotient set map,

$$q: \mathbb{R} \to \mathbb{S}^1.$$

is a C^{∞} map that is a local diffeomorphism. Let $A^{0}_{\mathbb{S}^{1}}$ be the presheaf of \mathbb{R} -vector spaces that associates to every open subset U the collection of all C^{∞} functions $f: U \to \mathbb{R}$ and with the usual notion of restriction. **Prove** that $A^{0}_{\mathbb{S}^{1}}$ is a sheaf of \mathbb{R} -vector spaces. Let $A^{1}_{\mathbb{S}^{1}}$ be the presheaf of \mathbb{R} -vector spaces that associates to every open subset U the collection of all C^{∞} differential 1-forms on U with the usual notion of restriction, i.e., locally these differential forms are isomorphic to $f(\theta)d\theta$ for a C^{∞} function $f(\theta)$. **Prove** that $A^{1}_{\mathbb{S}^{1}}$ is a sheaf of \mathbb{R} -vector spaces. For every open set U, for every C^{∞} function $f: U \to \mathbb{R}$, **prove** that the differential df is an element of $A^{1}_{\mathbb{S}^{1}}(U)$. **Prove** that

$$d_U: A^0_{\mathbb{S}^1}(U) \to A^1_{\mathbb{S}^1}(U),$$

is an \mathbb{R} -linear transformation. For every open subset $V \subset U$, **prove** that $d_V(f|_V)$ equals $(d_U(f))|_V$. Conclude that these \mathbb{R} -linear transformations define a morphism of sheaves of \mathbb{R} -vector spaces,

$$d: A^0_{\mathbb{S}^1} \to A^1_{\mathbb{S}^1}.$$

Let U be an open subset of \mathbb{S}^1 such that there exists a $s: U \to \mathbb{R}$ of q over U. **Prove** that d_U is surjective. Conclude that d is an epimorphism in the category of sheaves of \mathbb{R} -vector spaces on \mathbb{S}^1 . **Prove** that the differential 1-form $d\theta$ on \mathbb{R} is invariant under translations by \mathbb{Z} . Conclude that there exists a unique differential 1-form α in $A^1_{\mathbb{S}^1}(\mathbb{S}^1)$ such that $q^*\alpha$ equals $d\theta$. **Prove** that there exists no f in $A^0_{\mathbb{S}^1}(\mathbb{S}^1)$ such that α equals df. **Hint.** Prove that, up to constant, the coordinate function θ is the unique C^{∞} function on \mathbb{R} with $d\theta = q^* \alpha$. If there were f with $df = \alpha$, conclude that $f \circ q = \theta + C$, and this is not invariant under translation by \mathbb{Z} .

Problem 4.(Flasque Sheaves) Let (X, τ_X) be a topological space, and let \mathcal{C} be a category. A \mathcal{C} -presheaf F on (X, τ_X) is *flasque* (or *flabby*) if for every inclusion of τ_X -open sets, $U \supseteq V$, the restriction morphism $A_V^U : A(U) \to A(V)$ is an epimorphism.

(a)(Pushforward Preserves Flasque Sheaves) For every continuous function $f : (X, \tau_X) \to (Y, \tau_Y)$, for every flasque C-presheaf F on (X, τ_X) , **prove** that f_*F is a flasque C-presheaf on (Y, τ_Y) .

(b)(Restriction to Opens Preserves Flasque Sheaves) For every τ_X -open subset U, for the continuous inclusion $i : (U, \tau_U) \to (X, \tau_X)$, for every flasque C-presheaf F on (X, τ_X) , **prove** that $i^{-1}F$ is a flasque C-presheaf. Also, for every C-sheaf F on (X, τ_X) , **prove** that the presheaf inverse image $i^{-1}F$ is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H^1 -Acyclicity of Flasque Sheaves) Let \mathcal{A} be an Abelian category realized as a full subcategory of the category of left *R*-modules (via the embedding theorem). Let

 $0 \longrightarrow A' \xrightarrow{q} A \xrightarrow{p} A'' \longrightarrow 0$

be a short exact sequence of \mathcal{A} -sheaves on (X, τ_X) . Let U be a τ_X -open set. Let $t: A''(U) \to T$ be a morphism in \mathcal{A} such that $t \circ p(U)$ is the zero morphism. Assume that \mathcal{A}' is flasque. Prove that t is the zero morphism as follows. Let $a'' \in A''(U)$ be any element. Let S be the set of pairs (V, a)of a τ_X -open subset $V \subseteq U$ and an element $a \in A(V)$ such that p(V)(a) equals $a''|_V$. For elements (V,a) and $(\widetilde{V},\widetilde{a})$ of \mathcal{S} , define $(V,a) \leq (\widetilde{V},\widetilde{a})$ if $V \subseteq V'$ and $\widetilde{a}|_V$ equals a. Prove that this defines a partial order on \mathcal{S} . Use the sheaf axiom for A to **prove** that every totally ordered subset of \mathcal{S} has a least upper bound in \mathcal{S} . Use Zorn's Lemma to conclude that there exists a maximal element (V, a) in S. For every x in U, since p is an epimorphism of sheaves, prove that there exists (W, b)in S such that $x \in W$. Conclude that on $V \cap W$, $a|_{V \cap W} - b|_{V \cap W}$ is in the kernel of $p(V \cap W)$. Since the sequence above is exact, **prove** that there exists unique $a' \in A'(V \cap W)$ such that $q(V \cap W)(a')$ equals $a|_{V\cap W} - b|_{V\cap W}$. Since A' is flasque, **prove** that there exists $a'_W \in A'(W)$ such that $a'_W|_{V\cap W}$ equals a'. Define $a_W = b + q(W)(a'_W)$. Prove that (W, a_W) is in \mathcal{S} and $a|_{V \cap W}$ equals $a_W|_{V \cap W}$. Use the sheaf axiom for A once more to **prove** that there exists unique $(V \cap W, a_{V \cap W})$ in S with $a_{V \cap W}|_V$ equals a and $a_{V \cap W}|_W$ equals a_W . Since (V, a) is maximal, conclude that $W \subset V$, and thus x is in V. Conclude that V equals U. Thus, a'' equals p(U)(a). Conclude that t(a'') equals 0, and thus t is the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding theorem.)

(d) $(H^r$ -Acyclicity of Flasque Sheaves) Let $C^{\bullet} = (C^q, d_C^q)_{q \ge 0}$ be a complex of \mathcal{A} -sheaves on (X, τ_X) . Assume that every C^q is flasque. Let $r \ge 0$ be an integer, and assume that the cohomology sheaves $h^q(C^{\bullet})$ are zero for $q = 0, \ldots, r$. Use (c) and induction on r to prove that for the associated complex in \mathcal{C} ,

$$C^{\bullet}(U) = (C^{q}(U), d_{C}^{q}(U))_{q \ge 0}$$

also $h^q(C^{\bullet}(U))$ is zero for q = 0, ..., r.

Problem 5. $(\Lambda - \Pi$ -modules) Let (X, τ_X) be a topological space. Let Λ and Π be presheaves of associative, unital rings on (X, τ_X) . The most common case is to take both Λ and Π to be the constant presheaf with values \mathbb{Z} . Assume, for simplicity, that $\Lambda(\emptyset)$ and $\Pi(\emptyset)$ are the zero ring. A presheaf of $\Lambda - \Pi$ -bimodules on (X, τ_X) is a presheaf M of Abelian groups on (X, τ_X) together with a structure of $\Lambda(U) - \Pi(U)$ -bimodule on every Abelian group M(U) such that for every open subset $U \supseteq V$, relative to the restriction homomorphisms of associative, unital rings,

 $\Lambda_V^U : \Lambda(U) \to \Lambda(V), \quad \Pi_V^U : \Pi(U) \to \Pi(V),$

every restriction homomorphism of Abelian groups,

 $M_V^U: M(U) \to M(V),$

is a homomorphism of $\Lambda(U) - \Pi(U)$ -bimodules. For presheaves of $\Lambda - \Pi$ -bimodules on (X, τ_X) , M and N, a morphism of presheaves of $\Lambda - Pi$ -bimodules is a morphism of presheaves of Abelian groups $\alpha : M \to N$ such that for every open U, the Abelian group homomorphism,

$$\alpha(U): M(U) \to N(U),$$

is a homomorphism of $\Lambda(U) - \Pi(U)$ -bimodules.

(a)(The Category of Presheaves of Λ – Π -Bimodules) **Prove** that these notions form a category Λ – Π – Presh_(X,\tau_X). Prove that this is an Abelian category that satisfies Grothendieck's axioms (AB1), (AB2), (AB3), (AB3^{*}), (AB4) and (AB5).

(b) (Discontinuous $\Lambda - \Pi$ -Bimodules) A discontinuous $\Lambda - \Pi$ -bimodule is a specification K for every nonempty τ_X -open U of a $\Lambda(U) - \Pi(U)$ -bimodule K(U), but without any specification of restriction morphisms. For discontinuous $\Lambda - \Pi$ -bimodules K and L, a morphism of discontinuous $\Lambda - \Pi$ bimodules $\alpha : K \to L$ is a specification for every nonempty τ_X -open U of a homomorphism $\alpha(U) :$ $K(U) \to L(U)$ of $\Lambda(U) - \Pi(U)$ -bimodules. **Prove** that with these notions, there is a category $\Lambda - \Pi - \text{Disc}_{(X,\tau_X)}$ of discontinuous $\Lambda - \Pi$ -bimodules. Prove that this is an Abelian category that satisfies Grothendieck's axioms (AB1), (AB2), (AB3), (AB3^{*}), (AB4), (AB4^{*}) and (AB5).

(c)(The Presheaf Associated to a Discontinuous $\Lambda - \Pi$ -Bimodule) For every discontinuous $\Lambda - \Pi$ bimodule K, for every nonempty τ_X -open subset U, define

$$\widetilde{K}(U) = \prod_{W \subseteq U} K(W)$$

as a $\Lambda(U) - \Pi(U)$ -bimodule, where the product is over nonempty open subsets $W \subseteq U$ (in particular also W = U is allowed), together with its natural projections $\pi_W^U : \widetilde{K}(U) \to K(W)$. Also define $\widetilde{K}(\emptyset)$ to be a zero object. For every inclusion of τ_X -open subsets $U \supseteq V$, define

$$\widetilde{K}_{V}^{U}:\prod_{W\subseteq U}K(W)\to\prod_{W\subseteq V}K(W),$$

to be the unique morphism of $\Lambda(U) - \Pi(U)$ -bimodules such that for every $W \subset V$, $\pi_W^V \circ \widetilde{K}_V^U$ equals π_W^U . **Prove** that \widetilde{K} is a presheaf of $\Lambda - \Pi$ -bimodules. For discontinuous $\Lambda - \Pi$ -bimodules K and L, for every morphism of discontinuous $\Lambda - \Pi$ -bimodules, $\alpha : K \to L$, for every τ_X -open set U, define

$$\widetilde{\alpha}(U): \prod_{W \subseteq U} K(W) \to \prod_{W \subseteq U} L(W)$$

to be the unique morphism of $\Lambda(U) - \Pi(U)$ -bimodules such that for every $W \subseteq U$, $\pi_{L,W}^U \circ \widetilde{\alpha}(U)$ equals $\pi_{K,W}^U$. **Prove** that $\widetilde{\alpha}$ is a morphism of presheaves of $\Lambda - \Pi$ -bimodules. **Prove** that these notions define a functor,

$$\widetilde{*}: \Lambda - \Pi - \operatorname{Disc}_{(X,\tau_X)} \to \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)}.$$

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Čech Object of a Discontinuous $\Lambda - \Pi$ -Bimodule is Acyclic) For every open covering $(U, \iota : \mathfrak{U} \to \tau_U)$, define

$$\tau_{\mathfrak{U}} = \bigcup_{U_0 \in \mathfrak{U}} \tau_{\iota(U_0)} = \{ W \in \tau_U | \exists U_0 \in \mathfrak{U}, W \subset \iota(U_0) \}.$$

For every discontinuous $\Lambda - \Pi$ -bimodule K, define

$$\widetilde{K}(\mathfrak{U}) \coloneqq \prod_{W \in \tau_{\mathfrak{U}}} K(W)$$

together with its projections $\pi_W : \widetilde{K}(\mathfrak{U}) \to K(W)$. In particular, define

$$\pi^U_{\mathfrak{U}}: \widetilde{K}(\mathfrak{U}) \to \widetilde{K}(\mathfrak{U})$$

to be the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every $W \in \tau_{\mathfrak{U}}, \pi_W \circ \pi_{\mathfrak{U}}^U$ equals π_W . For every nonempty $W \in \tau_{\mathfrak{U}}$, define

$$\mathfrak{U}^W \coloneqq \{ U_0 \in \mathfrak{U} | W \subset \iota(U_0) \}.$$

Prove that

$$\check{C}^{r}(\mathfrak{U},\widetilde{K}) = \prod_{(U_0,\dots,U_r)\in\mathfrak{U}^{r+1}}\prod_{W\subseteq\iota(U_0,\dots,U_r)}K(W)$$

together with its projection $\pi_{(U_0,\ldots,U_r;W)} : \check{C}^r(\mathfrak{U}, \widetilde{K}) \to K(W)$ for every nonempty $W \subset \iota(U_0,\ldots,U_r)$; if $\iota(U_0,\ldots,U_r)$ is empty, the corresponding factor is a zero object. For every integer $r \ge 0$, for every $i = 0, \ldots, r+1$, **prove** that the morphism

$$\partial_r^i : \check{C}^r(\mathfrak{U}, \widetilde{K}) \to \check{C}^{r+1}(\mathfrak{U}, \widetilde{K}),$$

is the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every nonempty $W \in \tau_{\mathfrak{U}}$ and for every $(U_0, \ldots, U_r, U_{r+1}) \in (\mathfrak{U}^W)^{r+2}$, $\pi_{U_0,\ldots,U_r,U_{r+1};W} \circ \partial_r^i$ equals $\pi_{U_0,\ldots,U_{i+1},\ldots,U_{r+1};W}$. For every integer $r \ge 0$ and for every $i = 0, \ldots, r$, prove that the morphism

$$\sigma_{r+1}^i:\check{C}^{r+1}(\mathfrak{U},\widetilde{K})\to\check{C}^r(\mathfrak{U},\widetilde{K}),$$

is the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every nonempty $W \in \tau_{\mathfrak{U}}$ and for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}$, $\pi_{U_0,\ldots,U_r;W} \circ \sigma_{r+1}^i$ equals equals $\pi_{U_0,\ldots,U_{i-1},U_i,U_i,U_{i+1},\ldots,U_{r+1};W}$. For every integer $r \geq 0$, prove that the morphism

$$g^r_{\widetilde{K},\mathfrak{U}}: \widetilde{K}(\mathfrak{U}) \to \check{C}^r(\mathfrak{U}, \widetilde{K})$$

is the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every nonempty $W \in \tau_{\mathfrak{U}}$ and for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}$, $\pi_{U_0,\ldots,U_r;W} \circ g^r$ equals π_W .

For every nonempty $W \in \tau_{\mathfrak{U}}$, for every $r \geq 0$, define

$$\check{C}^{r}(\mathfrak{U},\widetilde{K})^{W} \coloneqq \prod_{(U_{0},\ldots,U_{r})\in(\mathfrak{U}^{W})^{r+1}} K(W),$$

with its projections

$$\pi_{U_0,\ldots,U_r|W}:\check{C}^r(\mathfrak{U},\widetilde{K})^W\to K(W).$$

Define

$$\pi^r_{-;W}:\check{C}^r(\mathfrak{U},\widetilde{K})\to\check{C}^r(\mathfrak{U},\widetilde{K})^W$$

to be the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}$, $\pi_{U_0,\ldots,U_r|W} \circ \pi^r_{-;W}$ equals $\pi_{U_0,\ldots,U_r;W}$. For every integer $r \ge 0$ and for every $i = 0, \ldots, r+1$, **prove** that there exists a unique $\Lambda(U) - \Pi(U)$ -morphism

$$\partial_r^i : \check{C}^r(\mathfrak{U}, \widetilde{K})^W \to \check{C}^{r+1}(\mathfrak{U}, \widetilde{K})^W,$$

such that $\partial_r^i \circ \pi_{-;W}^r$ equals $\pi_{-;W}^{r+1} \circ \partial_r^i$, and **prove** that for every $(U_0, \ldots, U_r, U_{r+1}) \in (\mathfrak{U}^W)^{r+2}$, $\pi_{U_0,\ldots,U_r,U_{r+1}|W} \circ \partial_r^i$ equals $\pi_{U_0,\ldots,U_{i-1},U_{i+1},\ldots,U_{r+1}|W}$. For every integer $r \ge 0$ and for every $i = 0, \ldots, r$, **prove** that there exists a unique $\Lambda(U) - \Pi(U)$ -morphism

$$\sigma_{r+1}^i:\check{C}^{r+1}(\mathfrak{U},\widetilde{K})^W\to\check{C}^r(\mathfrak{U},\widetilde{K})^W$$

such that $\sigma_{r+1}^i \circ \pi_{-;W}^{r+1}$ equals $\pi_{-;W}^r \circ \sigma_{r+1}^i$, and **prove** that for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}$, $\pi_{U_0,\ldots,U_r|W} \circ \sigma_{r+1}^i$ equals equals $\pi_{U_0,\ldots,U_{i-1},U_i,U_{i+1},\ldots,U_{r+1}|W}$. For every integer $r \ge 0$, **prove** that there exists a unique $\Lambda(U) - \Pi(U)$ -morphism

$$g^r: K(W) \to \check{C}^r(\mathfrak{U}, \widetilde{K})^W$$

such that $\pi^r_{-;W} \circ g^r$ equals $g^r \circ \pi_W$, and **prove** that for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}$, $\pi_{U_0, \ldots, U_r|W} \circ g^r$ equals $\mathrm{Id}_{K(W)}$. Conclude that

$$\pi^{\bullet}_{-;W}: \check{C}^{\bullet}(\mathfrak{U}, \widetilde{K}) \to \check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})^{W}$$

is a morphism of cosimplicial $\Lambda(U) - \Pi(U)$ -bimodules that is compatible with the coaugmentations g^{\bullet} . **Prove** that these morphisms realize $\check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})$ in the category $S^{\bullet}\Lambda(U) - \Pi(U)$ – Bimod as a product,

$$\check{C}^{\bullet}(\mathfrak{U},\widetilde{K}) = \prod_{W \in \tau_{\mathfrak{U}}} \check{C}^{\bullet}(\mathfrak{U},\widetilde{K})^{W}.$$

Using the Axiom of Choice, prove that there exists a set map

$$\phi:\tau_{\mathfrak{U}}\smallsetminus\{\emptyset\}\to\mathfrak{U}$$

such that for every nonempty $W \in \tau_{\mathfrak{U}}, \phi(W)$ is an element in \mathfrak{U}^W . For every integer $r \geq 0$, define

$$\check{C}^r(\phi, \widetilde{K})^W : \check{C}^r(\mathfrak{U}, \widetilde{K})^W \to K(W)$$

to be $\pi_{\phi(W),\ldots,\phi(W)|W}$. **Prove** that for every integer $r \ge 0$ and for every $i = 0, \ldots, r+1, \check{C}^{r+1}(\phi, \widetilde{K})^W \circ \partial_r^i$ equals $\check{C}^r(\phi, \widetilde{K})^W$. **Prove** that for every integer $r \ge 0$ and for every $i = 0, \ldots, r, \check{C}^r(\phi, \widetilde{K})^W \circ \sigma_{r+1}^i$ equals $\check{C}^{r+1}(\phi, \widetilde{K})^W$. Conclude that

$$\check{C}^{\bullet}(\phi, \widetilde{K})^W \to \operatorname{const}_{K(W)}$$

is a morphism of cosimplicial $\Lambda(U) - \Pi(U)$ -bimodules. **Prove** that $\check{C}^{\bullet}(\phi, \widetilde{K})^W \circ g^{\bullet}$ equals the identity morphism of $\operatorname{const}_{K(W)}$. For every nonempty $W \in \tau_{\mathfrak{U}}$, for every integer $r \geq 0$, for every integer $i = 0, \ldots, r$, define

$$g^i_{\phi,r+1} : \check{C}^{r+1}(\mathfrak{U},\widetilde{K})^W \to \check{C}^r(\mathfrak{U},\widetilde{K})^W$$

to be the unique $\Lambda(U) - \Pi(U)$ -morphism such that for every $(U_0, \ldots, U_r) \in (\mathfrak{U}^W)^{r+1}, \pi_{U_0, \ldots, U_r|W} \circ g^i_{\phi, r+1}$ equals $\pi_{U_0, \ldots, U_i, \phi(W), \ldots, \phi(W)|W}$. **Prove** the following identities (cosimplicial homotopy identities),

$$\begin{split} g^0_{\phi,r+1} \circ \partial^0_r &= g^r \circ \check{C}^r(\phi,\widetilde{K})^W, \quad g^r_{\phi,r+1} \circ \partial^{r+1}_r = \mathrm{Id}_{\check{C}^r(\mathfrak{U},\widetilde{K})^W}, \\ g^j_{\phi,r+1} \circ \partial^i_r &= \begin{cases} \partial^i_{r-1} \circ g^{j-1}_{\phi,r}, & 0 \leq i < j \leq r, \\ g^{i-1}_{\phi,r+1} \circ \partial^i_r, & 0 < i = j \leq r, \\ \partial^{i-1}_{r-1} \circ g^j_{\phi,r}, & 1 \leq j+1 < i \leq r+1. \end{cases} \\ g^j_{\phi,r} \circ \sigma^i_{r+1} &= \begin{cases} \sigma^i_r \circ g^{j+1}_{\phi,r+1}, & 0 \leq i \leq j \leq r-1, \\ \sigma^{i-1}_r \circ g^j_{\phi,r+1}, & 0 \leq j < i \leq r. \end{cases} \end{split}$$

Conclude that g^{\bullet} and $\check{C}^{\bullet}(\phi, \widetilde{K})^W$ are homotopy equivalences between $\check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})^W$ and $\operatorname{const}_{K(W)}$. Conclude that $\check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})$ is homotopy equivalent to $\operatorname{const}_{\widetilde{K}(\mathfrak{U})}$. In particular, **prove** that the associated cochain complex of $\check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})^W$ is acyclic with $\check{H}^0(\mathfrak{U}, \widetilde{K})^W$ equal to K(W). Similarly, **prove** that the associated cochain complex of $\check{C}^{\bullet}(\mathfrak{U}, \widetilde{K})$ is acyclic with $\check{H}^0(\mathfrak{U}, \widetilde{K})$ equal to $K(\mathfrak{U})$.

(e)(The Forgetful Functor to Discontinuous $\Lambda - \Pi$ -Bimodules; Preservation of Injectives) For every presheaf M of $\Lambda - \Pi$ -bimodules on (X, τ_X) , define $\Phi(M)$ to be the discontinuous $\Lambda - \Pi$ -bimodule $U \mapsto M(U)$. For presheaves of $\Lambda - \Pi$ -bimodules, M and N, for every morphism of presheaves of $\Lambda - \Pi$ -bimodules, $\alpha : M \to N$, define $\Phi(\alpha) : \Phi(M) \to \Phi(N)$ to be the assignment $U \mapsto \alpha(U)$. Prove that these rules define a functor

$$\Phi: \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)} \to \Lambda - \Pi - \operatorname{Disc}_{(X,\tau_X)}.$$

Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For every presheaf M of $\Lambda - \Pi$ -bimodules, for every τ_X -open U, define

$$\theta_{M,U}: M(U) \to \prod_{W \subseteq U} M(W)$$

to be the unique homomorphism of $\Lambda(U) - \Pi(U)$ -bimodules such that for every τ_X -open subset $W \subset U$, $\pi_W^U \circ \theta_{M,U}$ equals M_W^U . **Prove** that $U \mapsto \theta_{M,U}$ is a morphism of presheaves of Λ - Π -bimodules,

$$\theta_M: M \to \widetilde{\Phi(M)}.$$

For every morphism of presheaves of $\Lambda - \Pi$ -bimodules, $\alpha : M \to N$, for every τ_X -open set U, prove that $\overline{\Phi(\alpha)} \circ \theta_M$ equals $\theta_N \circ \alpha$. Conclude that θ is a natural transformation of functors,

$$\theta: \mathrm{Id}_{\Lambda-\Pi-\mathrm{Presh}_{(X,\tau_X)}} \Rightarrow \widetilde{*} \circ \Phi.$$

For every discontinuous Λ – Π -bimodule K, for every τ_X -open U, define

$$\eta_{K,U}:\prod_{W\subseteq U}K(W)\to K(U)$$

to be π_W^U . **Prove** that $U \mapsto \eta_{K,U}$ is a morphism of discontinuous $\Lambda - \Pi$ -bimodules. For every pair of discontinuous $\Lambda - \Pi$ -bimodules, K and L, for every morphism of discontinuous $\Lambda - \Pi$ -bimodules, $\beta : K \to L$, **prove** that $\eta_L \circ \Phi(\widetilde{\beta})$ equals $\beta \circ \eta_L$. Conclude that η is a natural transformation of functors,

$$\eta: \Phi \circ \widetilde{*} \Rightarrow \mathrm{Id}_{\Lambda - \Pi - \mathrm{Disc}_{(X, \tau_X)}}.$$

Prove that $(\Phi, \tilde{*}, \theta, \eta)$ is an adjoint pair of functors. Since Φ preserves monomorphisms, use Problem 3(d), Problem Set 5 to **prove** that $\tilde{*}$ sends injective objects to injective objects. Since the forgetful morphism from sheaves to presheaves preserves monomorphisms, **prove** that the sheafification functor Sh sends injective objects to injective objects. Conclude that Sh $\circ \tilde{*}$ sends injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every τ_X -open set U, there are enough injective $\Lambda(U) - \Pi(U)$ -bimodules. Using the Axiom of Choice, conclude that $\Lambda - \Pi - \text{Disc}_{(X,\tau_X)}$ has enough injective objects. In particular, for every presheaf M of $\Lambda - \Pi$ -bimodules, for every open set U, let there be given a monomorphism of $\Lambda(U) - \Pi(U)$ -bimodules,

$$\epsilon_U: M(U) \to I(U),$$

with I(U) an injective $\Lambda(U) - \Pi(U)$ -bimodule. Conclude that \tilde{I} is an injective presheaf of $\Lambda - \Pi$ -bimodules, and the composition

$$M \xrightarrow{\theta_M} \widetilde{\Phi(M)} \xrightarrow{\widetilde{\epsilon}} \widetilde{I}$$

is a monomorphism of presheaves of $\Lambda - \Pi$ -bimodules. If M is a sheaf, conclude that $\operatorname{Sh}(I)$ is an injective sheaf of $\Lambda - \Pi$ -bimodules. Also, use (d) to prove that the composition

$$M \xrightarrow{\theta_M} \widetilde{\Phi(M)} \xrightarrow{\widetilde{\epsilon}} \widetilde{I} \xrightarrow{sh} \operatorname{Sh}(\widetilde{I})$$

is a monomorphism of sheaves of $\Lambda - \Pi$ -bimodules. (**Hint:** Since $\sigma_{x,U}$ is a filtering small category, use Problem 0 to reduce to the statement that for every open covering (U,\mathfrak{U}) , the morphism $M(U) \to \widetilde{M}(\mathfrak{U})$ is a monomorphism. Realize this a part of the Sheaf Axiom for M.) Conclude that both the category $\Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)}$ and $\Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)}$ have enough injective objects. In particular, for an additive, left-exact functor F, resp. G, on the category of presheaves of $\Lambda - \Pi$ -bimodules, resp. the category of sheaves of $\Lambda - \Pi$ -bimodules, there are right derived functors $((R^n F)_n, (\delta^n)_n)$, resp. $((R^n G)_n, (\delta^n)_n)$. Finally, since $\widetilde{*}$ is exact and sends injective objects to injective objects, use the Grothendieck Spectral Sequence (or universality of the cohomological δ -functor) to **prove** that $(R^n F) \circ \widetilde{*}$ is $R^n(F \circ \widetilde{*})$.

(g)(Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous Λ – Π -bimodule on X. For every τ_X -open set U, **prove** that $\widetilde{K}(U) \to \operatorname{Sh}(\widetilde{K})(U)$ is the colimit over all open coverings $\mathfrak{U} \subset \tau_U$ (ordered by refinement as usual) of the morphism

$$\pi^U_{\mathfrak{U}}: \widetilde{K}(U) \to \widetilde{K}(\mathfrak{U}).$$

In particular, since every morphism $\widetilde{K}(U) \to \widetilde{K}(\mathfrak{U})$ is surjective (by the Axiom of Choice), conclude that also

 $\operatorname{sh}(U): \widetilde{K}(U) \to \operatorname{Sh}(\widetilde{K})(U)$

is surjective. Use this to **prove** that $\operatorname{Sh}(\widetilde{K})$ is a flasque sheaf.

For every injective $\Lambda - \Pi$ -sheaf I, for the monomorphism $\theta_I : I \to \operatorname{Sh}(\widetilde{\Phi(I)})$, there exists a retraction $\rho : \operatorname{Sh}(\widetilde{\Phi(I)}) \to I$. Also $\operatorname{Sh}(\widetilde{\Phi(I)})$ is flasque. Use this to **prove** that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every τ_X -open set U, prove that the functor

$$\Gamma(U, -) : \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)} \to \Lambda(U) - \Pi(U) - \operatorname{Bimod}, \quad M \mapsto M(U)$$

is an exact functor. Also prove that the functor

$$\Gamma(U, -) : \Lambda - \Pi - \operatorname{Sh}_{(X, \tau_X)} \to \Lambda(U) - \Pi(U) - \operatorname{Bimod}$$

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of $\Lambda - \Pi$ -modules admits a resolution, $\epsilon : M \to I^{\bullet}$ by injective sheaves of $\Lambda - \Pi$ -modules that are also flasque. Conclude that $\Gamma(U, -)$ extends to a universal cohomological δ -functor formed by the right derived functors, $((H^n(U, -))_n, (\delta^n)_n)$. Finally, assume that M is flasque. Use Problem 4(d) to **prove** that $I^{\bullet}(U)$ is an acyclic complex of $\Lambda(U) - \Pi(U)$ -bimodules. Conclude that for every flasque sheaf M of $\Lambda - \Pi$ bimodules, for every $n \ge 0$, $H^n(U, M)$ is zero, i.e., flasque sheaves of $\Lambda - \Pi$ -bimodules are acyclic for the right derived functors of $\Gamma(U, -)$.

(i) (Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Independence of $\Lambda - \Pi$) Use (h) and the hypercohomology spectral sequence to **prove** that for every sheaf M of $\Lambda - \Pi$ -bimodules, for every acyclic resolution $\epsilon_M : M \to M^{\bullet}$ of M by sheaves of $\Lambda - \Pi$ bimodules that are flasque, for every integer $n \geq 0$, there is a canonical isomorphism of $H^n(U, M)$ with $h^n(M^{\bullet}(U))$. In particular, the functor $\top = \text{Sh} \circ \widetilde{*} \circ \Phi$, the natural transformation $\theta : \text{Id} \Rightarrow \top$, and the natural transformation

$$\operatorname{Sh} \circ \widetilde{*} \circ \eta \circ \Phi : \mathsf{TT} \Rightarrow \mathsf{T},$$

form a *triple* on the category $\Lambda - \Pi - Sh_{(X,\tau_X)}$. There is an associated cosimplicial functor,

$$L_{\tau}: \Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)} \to S^{\bullet}\Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)}$$

and a functorial coaugmentation,

$$\theta_M : \operatorname{const}^{\bullet}_M \to L^{\bullet}_{\mathsf{T}}(M).$$

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution of M by flasque sheaves of $\Lambda - \Pi$ -bimodules, and it is *canonical*, depending on no choices of injective resolutions.

Finally, let $\widehat{\Lambda} \to \Lambda$ and $\widehat{\Pi} \to \Pi$ be morphisms of presheaves of associative, unital rings. This induces a functor,

$$\Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)} \to \widehat{\Lambda} - \widehat{\Pi} - \operatorname{Sh}_{(X,\tau_X)}.$$

For every sheaf M of $\Lambda - \Pi$ -bimodules, and for every acyclic resolution $\epsilon : M \to M^{\bullet}$ of M by flasque sheaves of $\Lambda - \Pi$ -bimodules, this is also an acyclic, flasque resolution of M with the associated structure of sheaves of $\widehat{\Lambda} - \widehat{\Pi}$ -bimodules. For the natural map of cohomological δ -functors from the derived functors of $\Gamma(U, -)$ on $\Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)}$ to the derived functors of $\Gamma(U, -)$ on $\widehat{\Lambda} - \widehat{\Pi} - \operatorname{Sh}_{(X,\tau_X)}$, **prove** that this natural map is a natural isomorphism of cohomological δ -functors. This justifies the notation $H^n(U, -)$ that makes no reference to the underlying presheaves Λ and Π , and yet is naturally a functor to $\Lambda(U) - \Pi(U)$ – Bimod whenever M is a sheaf of $\Lambda - \Pi$ -bimodules.

Problem 6.(Flasque Sheaves are Čech-Acyclic) Let (X, τ_X) be a topological space. Let M be a presheaf of $\Lambda - \Pi$ -bimodules on (X, τ_X) . Let U be a τ_X -open set. Let $(U, \iota : \mathfrak{U} \to \tau_U)$ be an open covering. For every τ_X -open subset V, define $(V, \iota_V : \mathfrak{U} \to \tau_V)$ to be the open covering $\iota_V(U_0) = V \cap \iota(U_0)$. For simplicity, denote this by (V, \mathfrak{U}_V) . For every integer $r \ge 0$, define $\underline{\check{C}}^r(\mathfrak{U}, M)(V)$ to be the $\Lambda(V) - \Pi(V)$ -bimodule $\check{C}^r(\mathfrak{U}_V, M)$. Moreover, define

$$\partial_{V,r}^{i}: \underline{\check{C}}^{r}(\mathfrak{U}, M)(V) \to \underline{\check{C}}^{r+1}(\mathfrak{U}, M)(V), \quad \sigma_{V,r+1}^{i}: \underline{\check{C}}^{r+1}(\mathfrak{U}, M)(V) \to \underline{\check{C}}^{r}(\mathfrak{U}, M)(V),$$

to be the face and degeneracy maps on $\check{C}^{\bullet}(\mathfrak{U}_{V}, M)$. Finally, let $\eta_{V}^{r}: M(V) \to \check{C}^{r}(\mathfrak{U}, M)(V)$ be the coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of τ_{X} -open subsets $W \cap V \cap U$, the identity map Id_u is a refinement of open coverings,

$$\phi_W^V : (V, \iota_V : \mathfrak{U} \to \tau_V) \to (W, \iota_W : \mathfrak{U} \to \tau_W).$$

By Problem 5(f) from Problem Set 8, $\check{C}^r(\phi_W^V, M)$ is an associated morphism of $\Lambda(V) - \Pi(V)$ bimodules, denoted

$$\underline{\check{C}}^{r}(\mathfrak{U}, M)_{W}^{V} : \underline{\check{C}}^{r}(\mathfrak{U}, M)(V) \to \underline{\check{C}}^{r}(\mathfrak{U}, M)(W).$$

(a)(The Presheaf of Čech Objects) **Prove** that the rules $V \mapsto \underline{\check{C}}^r(\mathfrak{U}, M)(V)$ and $\underline{\check{C}}^r(\mathfrak{U}, M)_W^V$ define a presheaf $\underline{\check{C}}^r(\mathfrak{U}, M)$ of $\Pi - \Lambda$ -bimodules on U. Moreover, **prove** that the rules $V \mapsto \partial_{V,r}^i$, resp. $V \mapsto \sigma_{V,r+1}^i, V \mapsto \eta_V^r$, define morphisms of presheaves of $\Lambda - \Pi$ -bimodules,

$$\partial_r^i : \underline{\check{C}}^r(\mathfrak{U}, M) \to \underline{\check{C}}^{r+1}(\mathfrak{U}, M), \quad \sigma_{r+1}^i : \underline{\check{C}}^{r+1}(\mathfrak{U}, M) \to \underline{\check{C}}^r(\mathfrak{U}, M), \quad \eta^r : M|_U \to \underline{\check{C}}^r(\mathfrak{U}, M).$$

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

$$\underline{\check{C}}^{\bullet}: \sigma \times \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)} \to S^{\bullet}\Lambda - \Pi - \operatorname{Presh}_{(U,\tau_U)},$$

compatible with cosimplicial homotopies for pairs of refinements and together with a natural transformation of cosimplicial objects,

$$\eta^{\bullet} : \operatorname{const}_{M|_U}^{\bullet} \to \underline{\check{C}}^{\bullet}(\mathfrak{U}, M).$$

(b) (The Čech Resolution Preserves Sheaves and Flasques) For every (U_0, \ldots, U_r) in \mathfrak{U}^{r+1} , denote by $i_{U_0,\ldots,U_r}: (\iota(U_0,\ldots,U_r), \tau_{\iota(U_0,\ldots,U_r)}) \to (U,\tau_U)$ the continuous inclusion map. **Prove** that $\underline{\check{C}}^r(\mathfrak{U}, M)$ is isomorphic as a presheaf of $\Lambda - \Pi$ -bimodules to

$$\prod_{(U_0,...,U_r)} (\iota_{U_0,...,U_r})_* \iota_{U_0,...,U_r}^{-1} M$$

Use Problem 4(a) and (b) to **prove** that $\underline{\check{C}}^r(\mathfrak{U}, M)$ is a sheaf whenever M is a sheaf, and it is flasque whenever M is flasque.

(c)(Localy Acyclicity of the Čech Resolution) Assume now that M is a sheaf. For every τ_X -open subset $V \subset U$ such that there exists $* \in \mathfrak{U}$ with $V \subset \iota(*)$, conclude that (V, \mathfrak{U}_V) refines to $(V, \{V\})$. Using Problem 5(h), Problem Set 8, **prove** that

$$\eta_V^{\bullet} : \operatorname{const}_{M(V)}^{\bullet} \to \check{\underline{C}}^{\bullet}(\mathfrak{U}, M)(V)$$

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial object,

$$d^r = \sum_{i=0}^r (-1)^i \partial_r^i,$$

the coaugmentation

$$\eta_V: M(V) \to \underline{\check{C}}^{\bullet}(\mathfrak{U}, M)(V)$$

is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of Π – Λ -bimodules,

$$\eta: M|_U \to \underline{\check{C}}^{\bullet}(\mathfrak{U}, M)$$

is an acyclic resolution.

Now assume that M is flasque. **Prove** that η is a flasque resolution of the flasque sheaf $M|_U$. Using Problem 5(i), **prove** that the cohomology of the complex of $\Lambda(U) - \Pi(U)$ -bimodules,

$$\check{H}^n(\mathfrak{U}, M) \coloneqq h^n(\check{C}^{\bullet}(\mathfrak{U}, M), d^{\bullet})$$

equals $H^{\bullet}(U, M)$. Using Problem 5(h), **prove** that $H^{0}(U, M)$ equals M(U) and $H^{n}(U, M)$ is zero for every integer n > 0. Conclude that for every flasque sheaf M of Λ – Π -bimodules, for every open covering $(U, \mathfrak{U}), M(U) \rightarrow \check{H}^{0}(\mathfrak{U}, M)$ is an isomorphism and $\check{H}^{n}(\mathfrak{U}, M)$ is zero for every integer n > 0.

Problem 7. (Čech Cohomology is a Derived Functor on Presheaves) Let (X, τ_X) be a topological space. Let U be a τ_X -open set. Let $(U, \iota : \mathfrak{U} \to \tau_U)$ be an open covering. For every presheaf A of Λ – Π -bimodules, denote by $\check{C}^{\bullet}(\mathfrak{U}, A)$ the object in $\mathbf{Ch}^{\geq 0}(\Lambda - \Pi - \text{Bimod})$ associated to the cosimplicial object.

(a) (Exactness of the Functor of Čech Complexes; The δ -Functor of Čech Cohomologies) Use Problem 5 of Problem Set 8 to **prove** that this is an additive functor

$$\check{C}^{\bullet}(\mathfrak{U},-): \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)} \to \operatorname{Ch}^{\geq 0}(\Lambda - \Pi - \operatorname{Bimod}).$$

Prove that for every short exact sequence of presheaves of Λ – Π -bimodules,

 $0 \longrightarrow A' \stackrel{q}{\longrightarrow} A \stackrel{p}{\longrightarrow} A'' \longrightarrow 0,$

the associated sequence of cochain complexes,

$$0 \longrightarrow \check{C}^{\bullet}(\mathfrak{U}, A') \xrightarrow{\check{C}^{\bullet}(\mathfrak{U}, q)} \check{C}^{\bullet}(\mathfrak{U}, A) \xrightarrow{\check{C}^{\bullet}(\mathfrak{U}, p)} \check{C}^{\bullet}(\mathfrak{U}, A'') \longrightarrow 0,$$

is a short exact sequence. Use this to prove that the Čech cohomology functor $\check{H}^0(\mathfrak{U}, A) = h^0(\check{C}^{\bullet}(\mathfrak{U}, A))$ is an additive, left-exact functor, and the sequence of Čech cohomologies,

$$\check{H}^r(\mathfrak{U}, A) = h^r(\check{C}^{\bullet}(\mathfrak{U}, A)),$$

extend to a cohomological δ -functor from $\Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)}$ to $\Lambda(U) - \Pi(U) - \operatorname{Bimod}$.

(b) (Effaceability of Čech Cohomology) For every presheaf A of $\Lambda - \Pi$ -bimodules, use Problem 5(e) and 5(f) to **prove** that $\theta_A : A \to \widetilde{\Phi(A)}$ is a natural monomorphism of presheaves of $\Lambda - \Pi$ -bimodules. Use Problem 5(d) to prove that for every $r \ge 0$, $\check{H}^r(\mathfrak{U}, \widetilde{\Phi(A)})$ is zero. Conclude that $\check{H}^r(\mathfrak{U}, -)$ is effaceable. **Prove** that the cohomological δ -functor $((\check{H}^r(\mathfrak{U}, A))_r, (\delta^r)_r)$ is universal. Conclude that the natural transformation of cohomological δ -functors from the right derived functor of $\check{H}^0(\mathfrak{U}, -)$ to the Čech cohomology δ -functor is a natural isomorphism of cohomological δ -functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by

$$\Psi: \Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)} \to \Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)},$$

the additive, fully faithful embedding (since we are already using Φ for the forgetful morphism to discontinuous $\Lambda - \Pi$ -bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends to an adjoint pair of functors (Sh, Φ). Recall the construction of Sh as a filtering colimit of Čech cohomologies $\check{H}^0(\mathfrak{U}, -)$. Since $\check{H}^0(\mathfrak{U}, -)$ is left-exact, and since $\Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)}$ satisfies Grothendieck's condition (AB5), **prove** that Sh is left-exact. Use Problem 3(d), Problem Set 5 to **prove** that Ψ sends injective objects to injective objects. Use Problem 5(g) to **prove** that every injective sheaf I of $\Lambda - \Pi$ -bimodules is flasque. Use Problem 6(c) to **prove** that $\Psi(I)$ is acyclic for $\check{H}^{\bullet}(\mathfrak{U}, -)$. **Prove** that the pair of functors Ψ and $\check{H}^0(\mathfrak{U}, -)$ satisfy the hypotheses for the Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological spectral sequence,

$${}^{I}E_{2}^{p,q} = \check{H}^{p}(\mathfrak{U}, R^{q}\Psi(A)) \Rightarrow H^{p+q}(U, A).$$

(d)(The Derived Functors of Ψ are the Presheaves of Sheaf Cohomologies) For every sheaf A of Λ – Π -bimodules, for every integer $r \ge 0$, for every τ_X -open set U, denote $\mathcal{H}^r(A)(U)$ the additive functor $H^r(U, A)$. In particular, $\mathcal{H}^0(A)(U)$ is canonically isomorphic to A(U). Thus, for all τ_X -open sets, $V \subset U$, there is a natural transformation

$$*|_{V}^{U}: \mathcal{H}^{0}(-)(U) \to \mathcal{H}^{0}(-)(V).$$

Use universality to **prove** that this uniquely extends to a morphism of cohomological δ -functors,

$$*|_{V}^{U}: ((\mathcal{H}^{r}(-)(U))_{r}, (\delta^{r})_{r}) \to ((\mathcal{H}^{r}(-)(V))_{r}, (\delta^{r})_{r}).$$

Prove that for all τ_X -open sets, $W \subset V \subset U$, both the composite morphism of cohomological δ -functors,

$$*|_{W}^{V} \circ *|_{V}^{U} : ((\mathcal{H}^{r}(-)(U))_{r}, (\delta^{r})_{r}) \to ((\mathcal{H}^{r}(-)(V))_{r}, (\delta^{r})_{r}) \to ((\mathcal{H}^{r}(-)(W))_{r}, (\delta^{r})_{r}),$$

and the morphism of cohomological δ -functors,

$$*|_W^U : ((\mathcal{H}^r(-)(U))_r, (\delta^r)_r) \to ((\mathcal{H}^r(-)(W))_r, (\delta^r)_r),$$

extend the functor $*|_W^V \circ *|_V^U = *|_W^U$ from $\mathcal{H}^0(-)(U)$ to $\mathcal{H}^0(-)(W)$. Use the uniqueness in the universality to conclude that these two morphisms of cohomological δ -functors are equal. **Prove** that $((\mathcal{H}^r(-))_r, (\delta^r)_r)$ is a cohomological δ -functor from $\Lambda - \Pi - \operatorname{Sh}_{(X,\tau_X)}$ to $\Lambda - \Pi - \operatorname{Presh}_{(X,\tau_X)}$. Use Problem 5(h) to **prove** that every flasque sheaf is acyclic for this cohomological δ -functor. Combined with Problem 5(i), **prove** that the higher functors are effaceable, and thus this cohomological δ -functor is universal. Conclude that this the canonical morphism of cohomological δ -functors from the right derived functors of Ψ to this cohomological δ -functor is a natural isomorphism of cohomological δ -functors. In particular, combined with the last part, this gives a convergent, first quadrant spectral sequence,

$${}^{I}E_{2}^{p,q} = \check{H}^{p}(\mathfrak{U}, \mathcal{H}^{q}(A)) \Rightarrow H^{p+q}(U, A).$$

This is the *Čech-to-Sheaf Cohomology Spectral Sequence*. In particular, conclude the existence of monomorphic abutment maps,

$$\check{H}^r(\mathfrak{U}, A) \to H^r(U, A).$$

as well as abutment maps,

 $H^r(U, A) \to H^0(\mathfrak{U}, \mathcal{H}^r(A)).$

(e)(The Colimit of Čech Cohomology with Respect to Refinement) Since Čech complexes are compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy, the induced refinement maps on Čech cohomology are independent of the choice of refinement. Use this to define a directed system of Čech cohomologies. Denote the colimit of this direct system as follows,

$$\check{H}^{\bullet}(U,-) = \operatorname{colim}_{\mathfrak{U} \in \sigma_{x,U}} \check{H}^{\bullet}(\mathfrak{U},-).$$

Prove that this extends uniquely to a cohomological δ -functor such that for every open covering (U, \mathfrak{U}) , the induced sequence of natural transformations,

$$*|_{U}^{\mathfrak{U}}:((\dot{H}^{r}(\mathfrak{U},-))_{r},(\delta^{r})_{r})\to((\dot{H}^{r}(U,-))_{r},(\delta^{r})_{r}),$$

is a natural transformation of cohomological δ -functors. Repeat the steps above to deduce the existence of a unique convergent, first quadrant spectral sequence,

$${}^{I}E_{2}^{p,q} = \check{H}^{p}(U, \mathcal{H}^{q}(A)) \Rightarrow H^{p+q}(U, A),$$

such that for every open covering (U, \mathfrak{U}) , the natural maps

$$*|_{U}^{\mathfrak{U}}: \check{H}^{p}(\mathfrak{U}, \mathcal{H}^{q}(A)) \to \check{H}^{p}(U, \mathcal{H}^{q}(A))$$

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of monomorphic abutment maps

$$\check{H}^r(U,A) \to H^r(U,A)$$

as well as abutment maps

$$H^r(U,A) \to \check{H}^0(U,\mathcal{H}^r(A)).$$

Use the first abutment maps to define subpresheaves $\check{\mathcal{H}}^r(A)$ of $\mathcal{H}^r(A)$ by $V \mapsto \check{H}^r(V, A)$.

(f)(Reduction of the Spectral Sequence; $\check{H}^1(U, A)$ equals $H^1(U, A)$) For every r > 0, prove that the associated sheaf of $\mathcal{H}^r(A)$ is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude that $\check{H}^0(U, \mathcal{H}^r(A))$ is zero. In particular, conclude that the natural abutment map,

$$\dot{H}^1(U,A) \to H^1(U,A)$$

is an isomorphism. Thus, also $\check{\mathcal{H}}^1(A) \to \mathcal{H}^1(A)$ is an isomorphism. Use this to produce a "long exact sequence of low degree terms" of the spectral sequence,

$$0 \to \check{H}^2(U, A) \to H^2(U, A) \to \check{H}^1(U, \check{\mathcal{H}}^1(A)) \xrightarrow{\delta} \check{H}^3(U, A).$$

(g)(Sheaves that Are Čech-Acyclic for "Enough" Covers are Acyclic for Sheaf Cohomology) Let $\mathcal{B} \subset \tau_X$ be a basis that is stable for finite intersection. For every open U in \mathcal{B} , let Cov_U be a

collection of open coverings of U by sets in \mathcal{B} such that Cov_U is cofinal with respect to refinement in $\sigma_{x,U}$. Let A be such that for every U in \mathcal{B} , for every (U,\mathfrak{U}) in Cov_U , for every $r \ge 0$, $\check{H}^r(\mathfrak{U}, A)$ is zero. **Prove** that $\mathcal{H}^r(U, A)$ is zero. Use the spectral sequence to inductively **prove** that for every $r \ge 0$, $\mathcal{H}^r(A)(U)$ is zero, $H^r(U, A)$ is zero and $\mathcal{H}^r(A)(U)$ is zero. Conclude that for every open covering $(X, \iota : \mathfrak{V} \to \mathcal{B})$, the Čech-to-Sheaf Cohomology Spectral Sequence relative to \mathfrak{V} degenerates to isomorphisms

$$\check{H}^r(\mathfrak{V},A) \to H^r(X,A).$$

If you are an algebraic geometer, let (X, \mathcal{O}_X) be a separated scheme, let $\Lambda = \Pi = \mathcal{O}_X$, let \mathcal{B} be the basis of open affine subsets, let Cov_U be the collection of basic open affine coverings, and let A be a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U, \mathfrak{U}) of an affine scheme, for every quasi-coherent sheaf A, $\check{H}^r(\mathfrak{U}, A)$ is zero for all $r \ge 0$ (this is essentially exactness of the Koszul cochain complex for a regular sequence, combined with commutation with colimits). Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology is computed as Čech cohomology of any open affine covering.

Problem 8.(The de Rham, Dolbeault and Hodge Theorems) Read about *soft* and *fine* sheaves. In particular, read the proof that soft sheaves are acyclic on paracompact, Hausdorff topological spaces. Read about partitions of unity. For every paracompact, Hausdorff, C^{∞} analytic space X, let $\Lambda = \Pi$ equals $\mathcal{E}^0_{\mathbb{R}}$, resp. $\mathcal{E}^0_{\mathbb{C}}$, the sheaf of C^{∞} functions to \mathbb{R} , resp. \mathbb{C} , with its standard real analytic structure. **Prove** that this has partitions of unity, and hence is fine. Conclude that every sheaf M of \mathcal{E}^0 -modules is also fine.

(a) (de Rham's Theorem) Let X be a C^{∞} manifold that is paracompact and Hausdorff (some authors include paracompact and Hausdorff in the definition of manifold). For every integer $n \ge 0$, define $\mathcal{E}^n_{\mathbb{R}}$, resp. $\mathcal{E}^n_{\mathbb{C}}$, to be the sheaf of $\mathcal{E}^0_{\mathbb{R}}$ -modules, resp. $\mathcal{E}^0_{\mathbb{C}}$ -modules, whose sections on any open are the C^{∞} differential *n*-forms on that open set that are \mathbb{R} -valued, resp. \mathbb{C} -valued. Let $d^n : \mathcal{E}^n \to \mathcal{E}^{n+1}$ be the morphism of exterior differentiation. **Prove** that this defines a complex $\mathcal{E}^{\bullet}_{\mathbb{R}}$ in $\mathrm{Ch}^{\ge 0}(\mathbb{R} - \mathrm{Sh}_{(X,\tau_X)})$, the *de Rham complex*, and likewise for $\mathcal{E}^{\bullet}_{\mathbb{C}}$. The *de Rham cohomology* of X is defined to be the cohomology of the associated complex of global sections,

$$H^n_{\mathrm{dR}}(X,\mathbb{R}) = h^n(\mathcal{E}^{\bullet}_{\mathbb{R}}(X), d^{\bullet}), \text{ resp. } H^n_{\mathrm{dR}}(X,\mathbb{C}) = h^n(\mathcal{E}^{\bullet}_{\mathbb{C}}(X), d^{\bullet}).$$

Let $\epsilon : \mathbb{R}_X \to \mathcal{E}^0_{\mathbb{R}}$, resp. $\epsilon : \mathbb{C}_X \to \mathcal{E}^0_{\mathbb{C}}$ be the inclusion of the locally constant functions. Read the proof of the Poincaré Lemma. **Prove** that $\epsilon : \mathbb{R}_X \to \mathcal{E}^{\bullet}_{\mathbb{R}}$ is an acyclic resolution of \mathbb{R}_X by sheaves that are acyclic for sheaf cohomology, and similarly for $\epsilon : \mathbb{C}_X \to \mathcal{E}^{\bullet}_{\mathbb{C}}$. **Prove** that the hypercohomology spectral sequence degenerates to isomorphisms,

$$H^n_{\mathrm{dR}}(X,\mathbb{R}) \to H^n(X,\underline{\mathbb{R}}_X), \text{ resp. } H^n_{\mathrm{dR}}(X,\mathbb{C}) \to H^n(X,\underline{\mathbb{C}}_X).$$

This is the sheaf cohomology version of de Rham's theorem.

(b)(The Dolbeault Theorem) Now let X be a paracompact, Hausdorff, complex manifold, and let \mathcal{O}_X be the sheaf of holomorphic functions to \mathbb{C} with its standard complex analytic structure.

This is *not* a fine sheaf, but the sheaf associated to the underlying C^{∞} manifold structure, $\mathcal{E}^{0}_{\mathbb{C}}$, is fine. Now denote $\mathcal{E}^{0}_{\mathbb{C}}$ by $\mathcal{E}^{0,0}$. For every pair of integers, $p, q \geq 0$, define $\mathcal{E}^{p,q}$ to be the sheaf of $\mathcal{E}^{0,0}$ -modules whose sections on each open are the C^{∞} , \mathbb{C} -valued differential forms that can locally on opens U of an open covering be expressed as $\mathcal{E}^{0,0}$ -linear combinations of differential forms $dz_1 \wedge \cdots \wedge dz_p \wedge d\overline{z}_{p+1} \wedge \cdots \wedge d\overline{z}_{p+q}$, for a local holomorphic coordinate chart,

$$(z_1,\ldots,z_n):U\to B_1(0)\subset\mathbb{C}^n.$$

Let $\overline{\partial}^{p,q} : \mathcal{E}^{p,q} \to \mathcal{E}^{p,q+1}$ be the usual Dolbeault differential. **Prove** that this defines a complex $\mathcal{E}^{p,\bullet}$ in $\mathrm{Ch}^{\geq 0}(\mathbb{C} - \mathrm{Sh}_{(X,\tau_X)})$, the *Dolbeault complex*. The *Dolbeault cohomology* is defined to be the cohomology of the associated complex of global sections,

$$H^{p,q}_{\mathrm{Dol}}(X) \coloneqq h^q(\mathcal{E}^{p,\bullet},\overline{\partial}^{p,\bullet}).$$

For every $p \ge 0$, define $\epsilon^p : \Omega_{X,\text{hol}}^p \to \mathcal{E}^{p,0}$ to be the sheaf of \mathcal{O}_X -modules whose sections on an open are the *p*-forms that are locally \mathcal{O}_X -linear combinations of differentials of the form $dz_1 \wedge \cdots \wedge dz_p$. These are the *holomorphic p*-forms. Read the proof of the $\overline{\partial}$ -Poincaré Lemma. **Prove** that $\epsilon^p : \Omega_{X,\text{hol}}^p \to \mathcal{E}^{p,\bullet}$ is an acyclic resolution of $\Omega_{X,\text{hol}}^p$ by sheaves that are acyclic for sheaf cohomology. **Prove** that the hypercohomology spectral sequence degenerates to isomorphisms,

$$H^{p,q}_{\mathrm{Dol}}(X) \to H^q(X, \Omega^p_{X,\mathrm{hol}}).$$

This is the *Dolbeault theorem*.

(c)(The Frölicher Spectral Sequence) Continuing the previous part, **prove** that the exterior differential,

$$d^p: \mathcal{E}^{p,0} \to \mathcal{E}^{p+1}_{\mathbb{C}},$$

restricts on $\Omega^p_{X \text{ hol}}$ to a differential

$$d^p: \Omega^p_{X, \text{hol}} \to \Omega^{p+1}_{X, \text{hol}}.$$

Prove that this defines a complex $\Omega_{X,\text{hol}}^{\bullet}$ in $\text{Ch}^{\geq 0}(\mathbb{C} - \text{Sh}_{(X,\tau_X)})$, the holomorphic de Rham complex. **Prove** that the coaugmentation $\epsilon^0 : \underline{\mathbb{C}}_X \to \mathcal{E}^{0,0}$ factors through $\Omega_{X,\text{hol}}^0 = \mathcal{O}_X$. Read the proof of the holomorphic Poincaré Lemma. **Prove** that $\epsilon : \underline{\mathbb{C}}_X \to \Omega_{X,\text{hol}}^{\bullet}$ is an acyclic resolution. **Prove** that this induces an isomorphism of hypercohomology groups (written in the inverse direction),

$$\mathbb{H}^n(X, \Omega^{\bullet}_{X, \mathrm{hol}}) \to H^n(X, \underline{\mathbb{C}}_X).$$

The corresponding hypercohomology spectral sequence is the *Frölicher spectral sequence* or *Hodge*to-de Rham spectral sequence,

$$E_2^{p,q} = H^q(X, \Omega^p_{X, \text{hol}}) \Rightarrow H^{p+q}(X, \underline{\mathbb{C}}_X).$$

In those cases that the dimensions $h^n(X, \underline{\mathbb{C}}_X)$ of $H^n(X, \underline{\mathbb{C}}_X)$ and $h^{p,q}(X)$ of $H^q(X, \Omega^p_{X, hol})$ are finite, and also

$$h^n(X, \underline{\mathbb{C}}_X) = \sum_{p+q=n} h^{p,q}(X),$$

conclude that this spectral sequence degenerates. In particular, read the proof of the *Hodge theorem* for compact Kähler manifolds.