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Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 0.(Limits and Colimits) These notions have been implicit throughout the semester,
although mostly we used the special cases of products and coproducts. The notation here is meant
to emphasize the connection with operations on presheaves and sheaves such as formation of global
sections, stalks, pushforward and inverse image. Let τ be a small category. Let C be a category. A
τ -family in C is a (covariant) functor,

F : τ → C.

Precisely, for every object U of τ , F(U) is a specified object of C. For every morphism of objects
of τ , r : U → V , F(r) : F(U) → F(V ) is a morphism of C. Also, F(IdU) equals IdF(U). Finally,
for every pair of morphisms of τ , r : U → V and s : V → W , F(s) ◦ F(r) equals F(s ◦ r).

For every pair F , G of τ -families in C, a morphism of τ -families from F to G is a natural transfor-
mation of functors, φ : F ⇒ G. For every object a of C, denote by

aτ : τ → C

the functor that sends every object to a and that sends every morphism to Ida. For every morphism
in C, p : a→ b, denote by

p
τ

: aτ ⇒ bτ

the natural transformation that assigns to every object U of τ the morphism p : a → b. Finally,
for every object U of τ , denote

Γ(U,F) = F(U), Γ(U, θ) = θ(U),

and for every morphism r : U → V of τ , denote

Γ(r,F) = F(r).

(a)(Functor Categories and Section Functors) For τ -families F , G and H, and for morphisms of
τ -families, θ : F → G and η : G → H, define the composition of θ and η to be the composite natural
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transformation η ◦ θ : F → H. Prove that with this notion, there is a category Fun(τ, C) whose
objects are τ -families F and whose morphisms are natural transformations. Prove that

∗τ : C → Fun(τ, C), a 7→ aτ , p 7→ p
τ
,

is a functor that preserves monomorphisms, epimorphisms and isomorphisms. For every object U
of τ , prove that

Γ(U,−) : Fun(τ, C)→ C, F 7→ Γ(U,F), θ 7→ Γ(U, θ),

is a functor. For every morphism r : U → V of τ , prove that Γ(r,−) is a natural transformation
Γ(U,−)⇒ Γ(V,−).

(b)(Adjointness of Constant / Diagonal Functors and the Global Sections Functor) If C has an
initial object X, prove that (∗τ ,Γ(X,−)) extends to an adjoint pair of functors. More generally,
a limit of a τ -family F (if it exists) is a natural transformation η : aτ ⇒ F that is final among
all such natural transformations, i.e., for every natural transformation θ : bτ ⇒ F , there exists
a unique morphism t : b → a in C such that θ equals η ◦ tτ . For a morphism φ : F → G, for
limits η : aτ ⇒ F and θ : bτ ⇒ G, prove that there exists a unique morphism f : a → b such
that θ ◦ p

τ
equals φ ◦ η. In particular, prove that if a limit of F exists, then it is unique up to

unique isomorphism. In particular, for every object a of C, prove that the identity transformation
θa : aτ → aτ is a limit of aτ .

(c)(Adjointness of Constant / Diagonal Functors and Limits) For this part, assume that every
τ -family has a limit; a category C is said to have all limits if for every small category τ and for
every τ -family F , there is a limit. Assume further that there is a rule Γτ that assigns to every F
an object Γτ (F) and a natural transformation ηF : Γτ (F)

τ
→ F that is a limit. (Typically such a

rule follows from the “construction” of limits, but such a rule also follows from some form of the
Axiom of Choice.) Prove that this extends uniquely to a functor,

Γτ : Fun(τ, C)→ C,

and a natural transformation of functors

η : ∗τ ◦ Γτ ⇒ IdFun(τ,C).

Moreover, prove that the rule sending every object a of C to the identity natural transformation
θa is a natural transformation θ : IdC ⇒ Γτ ◦ ∗τ . Prove that (∗τ ,Γ, θ, η) is an adjoint pair of
functors. In particular, the limit functor Γτ preserves monomorphisms and sends injective objects
of Fun(τ, C) to injective objects of C.

(d)(Adjointness of Colimits and Constant / Diagonal Functors) If C has a final object O, prove that
(Γ(O,−), ∗τ ) extends to an adjoint pair of functors. More generally, a colimit of a τ -family F (if it
exists) is a natural transformation θ : F ⇒ aτ that is final among all such natural transformations,
i.e., for every natural transformation η : F ⇒ bτ , there exists a unique morphism h : a → b in C
such that hτ ◦ θ equals η. For a morphism φ : F → G, for colimits θ : F ⇒ aτ and η : G ⇒ bτ ,
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prove that there exists a unique morphism f : a→ b such that f
τ
◦ θ equals η ◦ φ. In particular,

prove that if a colimit of F exists, then it is unique up to unique isomorphism. In particular,
for every object a of C, prove that the identity transformation θa : aτ → aτ is a colimit of aτ .
Finally, repeat the previous part for colimits in place of limits. Deduce that colimits (if they exist)
preserve epimorphisms and projective objects.

(e)(Functoriality in the Source) Let x : σ → τ be a functor of small categories. For every τ -family
F , define Fx to be the composite functor F ◦ x, which is a σ-family. For every morphism of τ -
families, φ : F → G, define φx : Fx → Gx to be φ ◦ x, which is a morphism of σ-families. Prove
that this defines a functor

∗x : Fun(τ, C)→ Fun(σ, C).

For the identity functor Idτ : τ → τ , prove that ∗Idτ is the identity functor. For y : ρ σ a functor
of small categories, prove that ∗x◦y is the composite ∗y ◦ ∗x. In this sense, deduce that ∗x is a
contravariant functor in x.

For two functors, x, x1 : σ → τ and for a natural transformation n : x⇒ x1, define Fn : Fx ⇒ Fx1
to be F(n(V )) : F(x(V )) → F(x1(V )) for every object V of σ. Prove that Fn is a morphism
of σ-families. For every morphism of τ -families, φ : F → G, prove that φx1 ◦ Fn equals Gn ◦ φx.
In this sense, conclude that ∗n is a natural transformation ∗x ⇒ ∗x′ . For the identity natural
transformation Idx : x ⇒ x, prove that ∗Idx is the identity natural transformation of ∗x. For a
second natural transformation m : x1 ⇒ x1, prove that Fm◦n equals Fm ◦Fn. In this sense, deduce
that ∗x is also compatible with natural transformations. In particular, if (x, y, θ, η) is an adjoint
pair of functors, prove that (∗y, ∗x, ∗θ, ∗η) is an adjoint pair of functors.

(f)(Fiber Categories) The following notion of fiber category is a special case of the notion of 2-
fiber product of functors of categories. Let x : σ → τ be a functor; this is also called a category
over τ . For every object U of τ , a σx,U -object is a pair (V, r : x(V ) → U) of an object V of σ
and a τ -isomorphism r : x(V ) → U . For two objects σx,U -objects (V, r) and (V ′, r′) of σx,U , a
σx,U -morphism from (V, r) to (V ′, r′) is a morphism of σ, s : V → V ′, such that r′ ◦ x(s) equals
r. Prove that IdV is a σx,U -morphism from (V, r) to itself; more generally, the σx,U -morphisms
from (V, r) to (V, r) are precisely the σ-morphisms s : V → V such that x(s) equals Idx(V ). For
every pair of σx,U -morphisms, s : (V, r) → (V ′, r′) and s′ : (V ′, r′) → (V ′′, r′′), prove that s′ ◦ s is
a σx,U -morphism from (V, r) to (V ′′, r′′). Conclude that these rules form a category, denoted σx,U .
Prove that the rule (V, r) 7→ V and s 7→ s defines a faithful functor,

Φx,U : σx,U → σ,

and r : x(V )→ U defines a natural isomorphism θx,U : x◦Φx,U ⇒ Uσx,U
. Finally, for every category

σ′, for every functor Φ′ : σ′ → σ, and for every natural isomorphism θ′ : x ◦ Φ′ ⇒ Uσ′ , prove that
there exists a unique functor F : σ′ → σx,U such that Φ′ equals Φx,U ◦ F and θ′ equals θx,U ◦ F . In
this sense, (Φx,U , θx,U) is final among pairs (Φ′, θ′) as above.

For every pair of functors x, x1 : σ → τ , and for every natural isomorphism n : x ⇒ x1, for every
σx1,U -object (V, r1 : x1(V )→ U), prove that (V, r1 ◦nV : x(V )→ U) is an object of σx,U . For every
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morphism in σx1,U , s : (V, r1)→ (V ′, r′1), prove that s is also a morphism (V, r1◦nV )→ (V ′, r′1◦nV ′).
Conclude that these rules define a functor,

σn,U : σx1,U → σx,U .

Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that σn,U is functorial in n, i.e., for a second natural isomorphism m : x1 ⇒ x2, prove that
σm◦n,U equals σn,U ◦ σm,U .

For every pair of functors, x : σ → τ and y : ρ → τ , and for every functor z : σ → ρ such that x
equals y ◦ z equals x, for every σx,U -object (V, r), prove that (z(V ), r) is a ρy,U -object. For every
σx,U -morphism s : (V, r) → (V ′, r′), prove that z(s) is a ρy,U -morphism (z(V ), r) → (z(V ′), r′).
Prove that z(IdV ) equals Idz(V ), and prove that z preserves composition. Conclude that these
rules define a functor,

zU : σx,U → ρy,U .

Prove that this is functorial in z: (Idσ)U equals Idσx,U , and for a third functor w : π → τ and
functor z′ : ρ → π such that y equals w ◦ z′, then (z′ ◦ z)U equals z′U ◦ zU . For an object (W, rW )
of ρy,U , for each object ((V, rV ), q : Z(V ) → W ) of (σx,U)z,(W,rW ), define the associated object of
σz,W to be (V, q). For an object ((V ′, rV ′), q

′ : Z(V ′) → W ) of (σx,U)z,(W,rW ), for every morphism
s : (V, rV )→ (V ′, rV ′) such that q equals q′ ◦ z(s), define the associated morphism of σz,W to be s.
Prove that this defines a functor

z̃U,(W,rW ) : (σx,U)zU ,(W,rW ) → σz,W .

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z, z1 : σ → ρ such that x equals both y ◦ z and y ◦ z1, and
for a natural transformation m : z ⇒ z1, for every object (V, r : x(V ) → U) of σx,U , prove that
mV is a morphism in ρy,U from (z(V ), r) to (z1(V ), r). Moreover, for every morphism in σx,U ,
s : (V, r)→ (V ′, r′), prove that mV ′ ◦ z(s) equals z1(s) ◦mV . Conclude that this rule is a natural
transformation mU : zU ⇒ (z1)U . Prove that this is functorial in m. If m is a natural isomorphism,
prove that also mU is a natural isomorphism, and the strict equivalence (mU)(W,rW ) is compatible
with the strict equivalence mW . Finally, prove that m 7→ mU is compatible with precomposition
and postcomposition of m with functors of categories over τ .

(g)(Colimits and Limits along an Essentially Surjective Functor) Let x : σ → τ be a functor of
small categories. Prove that every fiber category σx,U is small. Next, assume that x is essentially
surjective, i.e., for every object U of τ , there exists a σx,U -object (V, r). Let y : τ → σ be a functor,
and let α : Idσ ⇒ y ◦ x be a natural transformation. Prove that this extends to an adjoint pair of
functors (x, y, α, β) if and only if for every object V of σ, the morphism x(αV ) : x(V )→ x(y(x(V )))
is an isomorphism and (y(x(V )), x(αV )−1) is a final object of the fiber category σx,x(V ). (Conversely,
up to some form of the Axiom of Choice, there exists y and α extending to an adjoint pair if and only
if every fiber category σx,U has a final object.) For every adjoint pair (x, y, α, β), also (∗y, ∗x, ∗α, ∗β)
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is an adjoint pair. More generally, no longer assume that there exists y and α, yet let Lx be
a rule that assigns to every object F of Fun(σ, C) an object Lx(F) of Fun(τ, C) and a natural
transformation,

θF : F → ∗x ◦ Lx(F),

of objects in Fun(σ, C). For every object U of τ , this defines a natural transformation

θF ,x,U : F ◦ Φx,U ⇒ Lx(F) ◦ Uσx,U
,

of objects in Fun(σx,U , C). Assume that each (Lx(F)(U), θF ,x,U) is a colimit of F ◦ Φx,U . Prove
that this extends uniquely to a functor,

Lx : Fun(σ, C)→ Fun(τ, C),

and a natural transformation
θx : IdFun(σ,C) ⇒ ∗x ◦ Lx.

Moreover, for every G in Fun(τ, C), the identity morphism,

IdG : G ◦ x ◦ Φx,U → G ◦ Uσx,U
,

factors uniquely through a C-morphism Lx(G ◦x)(U)→ G(U). Prove that this defines a morphism
ηG : Lx(G ◦ x)→ G in Fun(τ, C). Prove that is a natural transformation,

η : Lx ◦ ∗x ⇒ IdFun(τ,C).

Prove that (Lx, ∗x, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ◦ Φx,U admits a colimit, then there exists a Γx and θ as above.)

Next, as above, let x : σ → τ be a functor of small catgories that is essentially surjective. Let
y : τ → sigma be a functor, and let β : y ◦ x ⇒ Idσ be a natural transformation. Prove that
this extends to an adjoint pair of functors (x, y, α, β) if and only if for every object V of σ, the
morphism x(βv) : x(y(x(V ))) → x(V ) is an isomorphism and (y(x(V )), x(βv)) is an initial object
of the fiber category σx,x(V ). (Conversely, up to some form of the Axiom of Choice, there exists y
and β extending to an adjoint pair if and only if every fiber category σx,U has an initial object.)
For every adjoint pair (y, x, α, beta) also (∗x, ∗y, ∗α, ∗β) is an adjoint pair. More generally, no longer
assume that there exists y and β, yet let Rx be a rule that assigns to every object F of Fun(σ, C)
an object Rx(F) of Fun(τ, C) and a natural transformation,

ηF : ∗x ◦Rx(F)→ F ,

of objects in Fun(σ, C). For every object U of τ , this defines a natural transformation

ηF ,x,U : Rx(F) ◦ Uσx,U
⇒ F ◦ Φx,U ,
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of objects in Fun(σx,U , C). Assume that each (Rx(F)(U), ηF ,x,U) is a limit of F ◦Φx,U . Prove that
this extends uniquely to a functor,

Rx : Fun(σ, C)→ Fun(τ, C),

and a natural transformation,
η : ∗x ◦Rx ⇒ IdFun(σ,C).

Moreover, for every G in Fun(τ, C), the identity morphism,

IdG : G ◦ Uσx,U
⇒ G ◦ x ◦ Φx,U ,

factors uniquely through a G(U)→ C-morphism Rx(G ◦x)(U). Prove that this defines a morphism
θG : G → Rx(G ◦ x) in Fun(τ, C). Prove that this is a natural transformation,

θ : IdFun(τ,C) ⇒ Rx ◦ ∗x.

Prove that (∗x, Rx, θ, η) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F ◦ Φx,U admits a colimit, then there exists a Rx and η as above.)

(h)(Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let x : σ → τ be an embedding of a full subcategory (thus, x is essentially surjective if and
only if x is an equivalence of categories). In this case, the functor

∗x : Fun(τ, C)→ Fun(σ, C)

is called restriction. Assume further that σ is upper (a la the theory of partially ordered sets) in
the sense that every morphism of τ whose source is an object of σ also has target an object of σ.
Assume that C has an initial object, �. Let G be a σ-family of objects of C. Also, let φ : G → H
be a morphism of σ-families. For every object U of τ , if U is an object of σ, then define xG(U) to
be G(U), and define xφ(U) to be φ(U). For every object U of τ that is not an object of σ, define

xG(U) to be �, and define xφ(U) to be Id�. For every morphism r : U → V , if U is an object of
σ, then r is a morphism of σ. In this case, define xG(r) to be G(r). On the other hand, if U is
not an object of σ, then G(U) is the initial object �. In this case, define xG(r) to be the unique
morphism xG(U) → xG(V ). Prove that xG is a τ -family of objects, i.e., the definitions above are
compatible with composition of morphisms in τ and with identity morphisms. Also prove that

x φ is a morphism of τ -families. Prove that x IdG equals Idx G. Also, for a second morphism of
σ-families, ψ : H → I, prove that x(ψ ◦ φ) equals xψ◦xφ. Conclude that these rules form a functor,

x∗ : Fun(σ, C)→ Fun(τ, C).

Prove that (x∗, ∗x) extends to an adjoint pair of functors. In particular, conclude that ∗x preserves
epimorphisms and x∗ preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every τ -family F , for every
object U of τ , define θF(U) : F(U)→ xF(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s) : F(T )→ F(U),
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for all morphisms s : T → U with V not in σ (possibly empty, in which case θF(U) is the identity
on F(U)). In particular, if U is not in σ, then xF(U) is zero. For every morphism r : U → V in τ ,
prove that the composition θF(V ) ◦ F(r) equals xF(r) ◦ θF(U) for a unique morphism

xF(r) : xF(U)→ xF(V ).

Prove that xF(IdU) is the identity morphism of xF(U). Prove that r 7→ xF(r) is compatible
with composition in τ . Conclude that xF is a τ -family, and θF is a morphism of τ -families. For
every morphism φ : F → E of τ -families, for every object U of τ , prove that θE(U) ◦ φ(U) equals
xφ(U) ◦ θF(U) for a unique morphism

xφ(U) : xF(U)→ xE(U).

Prove that the rule U 7→ xφ(U) is a morphism of τ -families. Prove that xIdF is the identity on
xF . Also prove that φ 7→ xφ is compatible with composition. Conclude that these rules define a
functor

x∗ : Fun(τ, C)→ Fun(τ, C).

Prove that the rule F 7→ θF is a natural transformation IdFun(τ,C) ⇒ x∗. Prove that the natural
morphism of τ -families,

xF → x((
xF)x),

is an isomorphism. Conclude that there exists a unique functor,

∗x : Fun(τ, C)→ Fun(σ, C),

and a natural isomorphism x∗ ⇒ x(∗x). Prove that (∗x, x∗, θ) extends to an adjoint pair of functors.
In particular, conclude that x∗ preserves epimorphisms and ∗x preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that σ is upper, assume that
σ has an initial object, Wσ, and assume that there is a functor

y : τ → σ

and a natural transformation θ : Idτ ⇒ x◦y, such that for every object U of τ , the unique morphism
Wσ → y(U) and the morphism θU : U → y(U) make y(U) into a coproduct of Wσ and U in τ . For
simplicity, for every object U of σ, assume that θU : U → y(U) is the identity IdU (rather than
merely being an isomorphism), and for every morphism r : U → V in σ, assume that y(r) equals r.
Thus, for every object V of σ, the identity morphism y(V ) → V defines a natural transformation
η : y ◦ x⇒ Idσ. Prove that (y, x, θ, η) is an adjoint pair of functors. Conclude that (∗x, ∗y, ∗θ, ∗η)
is an adjoint pair of functors. In particular, conclude that ∗x preserves monomorphisms and ∗y
preserves epimorphisms.

(i)(Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that Γ(0,−) is an equivalence of categories.
For an arbitrary category τ , for the unique natural transformation τ̂ : τ → 0, prove that ∗τ̂ equals
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the composite ∗τ ◦ Γ(0,−) so that ∗τ is an example of this construction. In particular, for every
functor x : σ → τ , prove that (aτ )x equals aσ. If η : aτ ⇒ F is a limit of a τ -family F , and if
θ : bσ ⇒ Fx is a limit of the associated σ-family Fx, then prove that there is a unique morphism
h : a→ b in C such that ηx equals θ ◦ p

σ
. If there are right adjoints Γτ of ∗τ and Γσ of ∗σ, conclude

that there exists a unique natural transformation

Γx : Γτ ⇒ Γσ ◦ ∗x

so that ηFx ◦ Γx(F)
σ

equals (ηF)x. Repeat this construction for colimits.

(j)(Limits / Colimits of a Concrete Category) Let σ be a small category in which the only morphisms
are identity morphisms: identify σ with the underlying set of objects. Let C be the category Sets.
For every σ-family F , prove that the rule

Γσ(F) :=
∏
U∈Σ

Γ(U,F)

together with the morphism
ηF : Γσ(F)

σ
⇒ F ,

ηF(V ) = prV :
∏
U∈Σ

Γ(U,F)→ Γ(V,F),

is a limit of F . Next, for every small category τ , define σ to be the category with the same objects
as τ , but with the only morphisms being identity morphisms. Define x : σ → τ to be the unique
functor that sends every object to itself. Define Γτ (F) to be the subobject of Γσ(Fx) of data
(fU)U∈Σ such that for every morphism r : U → V , F(r) maps fU to fV . Prove that with this
definition, there exists a unique natural transformation ηF : Γτ (F)

τ
⇒ F such that the natural

transformation Γτ (F)
σ
⇒ Γσ(Fx) ⇒ Fx equals (ηF)x. Prove that ηF is a limit of F . Conclude

that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

Φ : R− Smod→ Sets

sends products to products. Let F be a τ -family of R − S-modules. Prove that the defining
relations for Γτ (Φ ◦ F) as a subset of Γσ(Φ ◦ F) are the simultaneous kernels of R − S-module
homomorphisms. Conclude that there is a natural R− S-module structure on Γτ (Φ ◦ F), and use
this to prove that R− S-mod has all limits.

(k)(Functoriality in the Target) For every functor of categories,

H : C → D,

for every τ -family F in C, prove that H ◦ F is a τ -family in D. For every morphism of τ -families
in C, φ : F ⇒ G, prove that H ◦ φ is a morphism of τ -families in D. Prove that this defines a
functor

Hτ : Fun(τ, C)→ Fun(τ,D).
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For the identity functor IdC, prove that (IdC)τ is the identity functor. For I : D → E a functor of
categories, prove that (I ◦H)τ is the composite Iτ ◦Hτ . In this sense, deduce that Hτ is functorial
in H.

For two functors, H, I : C → D, and for a natural transformation N : H ⇒ I, for every τ -family F
in C, define Nτ (F) to be

N ◦ F : H ◦ F ⇒ I ◦ F .
Prove that Nτ (F) is a morphism of τ -families in D. For every morphism of τ -families in C,
φ : F → G, prove that Nτ (G) ◦ Hτ (φ) equals Iτ (φ) ◦ Nτ (F). In this sense, conclude that Nτ is
a natural transformation Hτ ⇒ Iτ . For the identity natural transformation IdH : H ⇒ H, prove
that (IdH)τ is the identity natural transformation of Hτ . For a second natural transformation
M : I ⇒ J , prove that (M ◦ N)τ equals Mτ ◦ Nτ . In this sense, deduce that (−)τ is also
compatible with natural transformations.

(l)(Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if for
every pair of objects U and V there exists a pair of morphisms, r : W → U and s : W → V , and
for every pair of morphisms, r, s : V → U , there exists a morphism t : W → V such that r ◦ t
equals s ◦ t (both of these are automatic if the category has an initial object X). Assume that the
category C has limits for all categories τ with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category τ , define τ̂ to be the small category whose objects are
finite full subcategories σ of τ , and whose morphisms are inclusions of subcategories, ρ ⊂ σ, of τ .
Prove that τ̂ is cofiltering. Let F be a τ -family in C. For every finite full subcategory σ ⊂ τ ,
denote by Fσ the restriction as in (f) above. By hypothesis, there is a limit ησ : F̂(σ)

σ
⇒ Fσ.

Moreover, by (g), for every inclusion of full subcategories ρ ⊂ σ, there is a natural morphism in C,
F̂(ρ)→ F̂(σ), and this is functorial. Conclude that F̂ is a τ̂ -family in C. Since τ̂ is filtering, there
is a limit

ηF̂ : aτ̂ ⇒ F̂ .
Prove that this defines a limit ηFaτ ⇒ F .

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
(not necessarily commutative) rings, the category of commutative rings, and the category of R−S-
bimodules (where R and S are associative, unital rings).

(m)(bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R−S-bimodules (where R and S are
associative, unital rings).

Problem 1.(Categories of Topologies on a Fixed Set) Recall from Problem 1(iv) on Problem Set
3, for every partially ordered set there is an associated category. For a set P , form the partially
ordered set P(P ) of subsets S of P . Then for objects S, S ′ of the category P(P ), i.e., for subsets
of P , the Hom set HomP(P )(S, S

′) is nonempty if and only if S ′ ⊂ S, in which case the Hom set
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is a singleton set. In particular, this category has arbitrary (inverse) limits, namely unions, and it
has arbitrary colimits (direct limits), namely intersections. Moreover, it has a final object, ∅, and
it has an initial object, P .

Now let X be a set, and let P be P(X), so that P is a lattice. Denote by PowerX the category
from the previous paragraph. Thus, objects are subsets S ⊂ P(X), and there exists a morphism
from S to S ′ if and only if S ′ ⊂ S, and then the morphism is unique. We say that S refines S ′.
There is a covariant functor

∪ : P(P )→ P,∪S = {x ∈ X|∃p ∈ S, x ∈ p},

and a contravariant functor

∩ : P(P )opp → P,∩S = {x ∈ X|∀p ∈ S, x ∈ p}.

By convention, ∪∅ = ∅ and ∩∅ = X.

A topology on X is a subset τ ⊂ P(X) such that (i) ∅ ∈ τ and X ∈ τ , (ii) for every finite subset
S ⊂ τ , also ∩S is in τ , and (iii) for every S ⊂ τ (possibly infinite), the set ∪S is in τ . Denote by
TopX the full subcategory of PowerX whose objects are topologies on X. A topological basis on
X is a subset B ⊂ P(X) such that for every finite subset S of B, the set V = ∩S equals ∪BV ,
where BV = {U ∈ B : U ⊂ V }. Denote by BasisX the full subcategory of PowerX whose objects
are topological bases on X.

(a) Prove that TopX is stable under colimits, i.e., for every collection of topologies, there is a
topology that is refined by every topology in the collection and that refines every topology that is
refined by every topology in the collection. Prove that TopX is a full subcategory of BasisX . For
every topological basis B on X, define T (B) to consist of all elements ∪S for S ⊂ B. Prove that
T (B) is a topology on X. Prove that this uniquely extends to a functor

T : BasisX → TopX ,

and prove that T is a right adjoint of the full embedding. Moreover, for every subset S ⊂ P(X),
define B(S) to consist of all elements ∩R for R ⊂ S a finite subset. In particular, ∩∅ = X is an
element of B(S). Prove that B(S) is topological basis on X. Prove that this uniquely extends to
a functor

B : PowerX → BasisX ,

and prove that T ◦ B is a right adjoint to the full embedding of BasisX in PowerX .

(b) Prove that for every adjoint pair of functors, the left adjoint functor preserves colimits (direct
limits), and the right adjoint functor preserves limits (inverse limits). Conclude that TopX is stable
under limits, i.e., for every collection of topologies, there is a topology that refines every topology
in the collection and that is refined by every topology that refines every topology in the collection.

(c) Let f : Y → X be a set map. Denote by

Pf : P(X)→ P(Y )

10
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the functor that associates to every subset S of X the preimage subset f−1(S) of Y , and denote by

Pf : P(Y )→ P(X)

the functor that associates to every subset T of Y the image subset f(T ) of X. Prove that (Pf ,Pf )
extends uniquely to an adjoint pair of functors. In particular, define

Powerf : PowerX → PowerY

to be PPf , i.e., for every subset S ⊂ P(X), Powerf (S) ⊂ P(Y ) is the set of all subsets f−1(U) ⊂ Y
for subsets U ⊂ X that are in S. Similarly, define

Powerf : PowerY → PowerX ,

to be PPf , i.e., for every subset T ⊂ P(Y ), Powerf (Y ) ⊂ P(X) is the set of all subsets U ⊂ X
such that the subset f−1(U) ⊂ Y is in T . Prove that (Powerf ,Powerf ) extends uniquely to an
adjoint pair of functors. Prove that Powerf and Powerf restrict to functors TopX → TopY . For a
given topology σ on Y and τ on X, f is continuous with respect to σ and τ if σ refines Powerf (τ),
i.e., for every τ -open subset U of X, also f−1(U) is σ-open in Y . For a given topology τ on X, for
every topology σ on Y , σ refines Powerf (τ) if and only if f is continuous with respect to σ and τ .
Similarly, for a given topology σ on Y , for every topology τ on X, Powerf (σ) refines τ if and only
if f is continuous with respect to σ and τ .

Problem 2.(The Category of Topological Spaces) A topological space is a pair (X, τ) of a set X
and a topology τ on X. For topological spaces (X, τ) and (Y, σ), a continuous map is a function
f : X → Y such that for every subset V of Y that is in σ, the inverse image subset f−1(V ) of X is
in τ , i.e., σ refines Powerf (τ) and τ is refined by Powerf (σ).

(a) Prove that for every topological space (X, τ), the identity function IdX : X → X is a continuous
map from (X, τ) to (X, τ). For every pair of continuous maps f : (X, τ)→ (Y, σ) and g : (Y, σ)→
(Z, ρ), prove that the composition g ◦ f : (X, τ) → (Z, ρ) is a continuous map. With this notion
of composition of continuous map, check that the topological spaces and continuous maps form a
category, Top.

(b) For every topological space (X, τ), define Φ(X) to be the set X. For every continuous map of
topological spaces, f : (X, τ)→ (Y, σ), define Φ(f) : Φ(X)→ Φ(Y ) to be f : X → Y . Prove that
this defines a covariant functor,

Φ : Top→ Sets.

(c) For every set X, define L(X) = (X,P(X)), i.e., every subset of X is open. Prove that P(X)
satisfies the axioms for a topology on X. This is called the discrete topology on X. For every set
map, f : X → Y , prove that f : (X,P(X)) → (Y,P(Y )) is a continuous map, denoted L(f).
Prove that this defines a functor,

L : Sets→ Top.
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For every set X, define θX : X → Φ(L(X)) to be the identity map on X. Prove that θ is a natural
equivalence IdSets ⇒ Φ ◦ L. For every topological space (X, τ), prove that IdX is a continuous
map (X,P(X))→ (X, τ), denoted η(X,τ). Prove that η is a natural transformation L◦Φ⇒ IdTop.
Prove that (L,Φ, θ, η) is an adjoint pair of functors. In particular, Φ preserves monomorphisms
and limits (inverse limits).

(d) For every set X, define R(X) = (X, {∅, X}). Prove that {∅, X} satisfies the axioms for a
topology on X. This is called the indiscrete topology on X. For every set map f : X → Y , prove
that f : R(X)→ R(Y ) is a continuous map, denoted R(f). Prove that this defines a functor,

R : Sets→ Top.

For every set topological space (X, τ), prove that IdX is a continous map (X, τ) → R(Φ(X, τ)),
denoted α(X,τ). Prove that α is a natural transformation IdTop ⇒ R◦Φ. For every set S, denote by
βX : Φ(R(X))→ X the identity morphism. Prove that β is a natural equivalence Φ ◦R⇒ IdSets.
Prove that (Φ, R, α, β) is an adjoint pair of functors. In particular, Φ preserves epimorphisms and
colimits (direct limits).

(e) Use the method of Problem 0 to prove that Top has (small) limits and colimits. Finally, prove
that the projective objects in Top are precisely the discrete topological spaces, and the injective
objects in Top are precisely the nonempty indiscrete topological spaces.

Problem 3.(Presheaves) Let (X, τX) be a topological space. As above, consider τX as a category
whose objects are open sets U of the topology, and where for open sets U and V , there is a unique
morphism from U to V if U ⊇ V , and otherwise there is no morphism. Let C be a category. A
presheaf on (X, τX) of objects of C is a functor,

A : τX → C,

i.e., a τX-family as in Problem 0. By Problem 0, the τ -families form a category Fun(τX , C), called
the category of presheaves of objects of C. For every continuous map f : (Y, τY )→ (X, τX), define

f−1 : τX → τY ,

as in Problem 1(c), i.e., U 7→ f−1(U). The corresponding functor

∗f−1 : Fun(τY , C)→ Fun(τX , C)

is called the direct image functor and is denoted f∗, i.e., for every presheaf F on (Y, τY ), f∗F is a
presheaf on (X, τX) given by (f∗F)(U) = F(f−1(U)).

(a) Denote by σf the category whose objects are pairs (U, V ) of an object U of τX and an object
V of τV such that V is contained in f−1(U). For objects (U, V ) and (U ′, V ′), there is a morphism
from (U, V ) to (U ′, V ′) if and only if there is a morphism U ⊇ U ′ in τX and a morphism V ⊇ V ′ in
τY , and in this case the morphism for (U, V ) to (U ′, V ′) is unique. Prove that this is a category.
Prove that the map on objects,

x : σf → τX , (U, V ) 7→ U,
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extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following maps on objects,

`x : τX → σf , U 7→ (U, f−1(U)),

rx : τX → σf , U 7→ (U, ∅)

extend uniquely to functors, and prove that (`x, x) and (x, rx) extend uniquely to adjoint functors,
i.e., (U, f−1(U)), resp. (U, ∅), is the initial object, resp. final object, in the fiber category (σf )x,U .
Prove that the map on objects

y : σf → τY , (U, V ) 7→ V

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following map on objects,

`y : τY → σf , V 7→ (X, V ),

extends uniquely to a functor, and prove that (`y, y) extends uniquely to an adjoint functor, i.e.,
(X, V ) is the initial object in the fiber category (σf )y,V . Prove that y◦`x is the functor f−1 : τX → τY
from above. Find an example where y does not admit a right adjoint.

Assume now that C has colimits. Apply Problem 0(g) to conclude that there are adjoint pairs of
functors (∗x, ∗`x), (∗rx, ∗x), (∗y, ∗`y), and (Ly, ∗y). Compose these adjoint pairs to obtain an adjoint
pair (Ly ◦ ∗x, ∗`x ◦ ∗y). Also, by functoriality of ∗z in z, ∗`x ◦ ∗y equals ∗y◦`x, and this equals ∗f−1 .
Thus, this is an adjoint pair (Ly ◦ ∗x, f∗). Unwind the defintions from Problem 0(g) to check that
for every presheaf A on X and for every V an object of τY , Ly ◦ ∗x(A) on V is the colimit over the
fiber category (σf )y,V of all U an object of τX with V ⊆ f−1(U) of A(U). The functor Ly ◦ ∗x is
the inverse image functor for presheaves,

f−1 : Fun(τX , C)→ Fun(τY , C).

Problem 4.(Constant Cosimplicial Objects and the Right Adjoint) Please read the basic definitions
of cosimplicial objects in a category C. In particular, for the small category ∆ of totally ordered
finite sets with nondecreasing morphisms, read the equivalent characterization of a (covariant)
functor

C : ∆→ C,

via the specification for every integer r ≥ 0 of an object Cr of C, the specification for every integer
r ≥ 0 and every integer i = 0, . . . , r + 1, of a morphism,

∂ir : Cr → Cr+1,

and the specification for every integer r ≥ 0 and every integer i = 0, . . . , r, of a morphism,

σir+1 : Cr+1 → Cr,
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satisfying the cosimplicial identities : for every r ≥ 0, for every 0 ≤ i < j ≤ r + 2,

∂jr+1 ◦ ∂ir = ∂ir+1 ◦ ∂j−1
r ,

for every 0 ≤ i ≤ j ≤ r,
σjr+1 ◦ σir+2 = σir+1 ◦ σ

j+1
r+2,

and for every 0 ≤ i ≤ r + 1 and 0 ≤ j ≤ r,

σjr+1 ◦ ∂ir =


∂ir−1 ◦ σj−1

r , i < j,
IdCr , i = j, i = j + 1,

∂i−1
r−1 ◦ σjr , i > j + 1

Moreover, for cosimplicial objects C• = (Cr, ∂ir, σ
i
r+1) and C̃• = (C̃r, ∂̃ir, σ̃

i
r+1), read about the

equivalent specification of a natural transformation α• : C• → C̃• as the specification for every
integer r ≥ 0 of a C-morphism αr : Cr → C̃r such that for every r and i,

∂̃ir ◦ αr = αr+1 ◦ ∂ir, σ̃ir+1 ◦ αr+1 = αr ◦ σir+1.

Finally, for every pair of morphisms of cosimplicial objects, α•, β• : C• → C̃•, a cosimplicial
homotopy is a specification for every integer r ≥ 0 and for every integer i = 0, . . . , r of a C-
morphism,

gir+1 : Cr+1 → C̃r,

satisfying the following cosimplicial homotopy identities : for every r ≥ 0,

g0
r+1 ◦ ∂0

r = αr, grr+1 ◦ ∂r+1
r = βr,

gjr+1 ◦ ∂ir =


∂̃ir−1 ◦ gj−1

r , 0 ≤ i < j ≤ r,
gi−1
r+1 ◦ ∂ir, 0 < i = j ≤ r,

∂̃i−1
r−1 ◦ gjr , 1 ≤ j + 1 < i ≤ r + 1.

gjr ◦ σir+1 =

{
σ̃ir ◦ g

j+1
r+1, 0 ≤ i ≤ j ≤ r − 1,

σ̃i−1
r ◦ gjr+1, 0 ≤ j < i ≤ r.

(a)(Constant Cosimplicial Objects) For every object C of C, define const(C) to be the rule that
associates to every integer r ≥ 0 the object C of C, and that associates to (r, i) the morphisms
∂ir = IdC , σir+1 = IdC . Prove that const(C) is a cosimplicial object of C. For every morphism of

objects α : C → C̃, prove that the specification for every integer r ≥ 0 of the morphism α : C → C̃
defines a morphism of cosimplicial objects,

const(α) : const(C)→ const(C̃).

Prove that const(IdC) is the identity morphism of const(C). For a pair of morphisms, α : C → C̃

and β : C̃ → Ĉ, prove that const(β ◦ α) equals const(β) ◦ const(α). Conclude that these rules
define a functor

const : C → Fun(∆, C).
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Prove that this is functorial in C, i.e., given a functor F : C → D, for the associated functor,

Fun(∆, F ) : Fun(∆, C)→ Fun(∆,D), (Cr, ∂ir, σ
i
r+1) 7→ (F (Cr), F (∂ir), F (σir+1)),

Fun(∆, F ) ◦ constC strictly equals constD ◦ F .

(b)(Morphisms from a Constant Cosimplicial Object) For every integer r ≥ 1 and for every pair
of distinct morphisms [0] → [r], prove that there exists a unique ∆-morphism F : [1] → [r] such
that the two morphisms are F ◦ ∂0

0 and F ◦ ∂1
0 . Let C• = (Cr, ∂ir, σ

i
r+1) be a cosimplicial object in

C. For every object A of C and for every morphism, α• : const(A) → C•, of cosimplicial objects,
prove that α0 : A→ C0 is a morphism such that ∂0

0 ◦α0 equals ∂1
0 ◦α0. Prove that the morphism

α• is uniquely determined by α0, i.e., for every r ≥ 0, and for every morphism f : [0] → [r],
αr : A → Cr equals C(f) ◦ α0. Conversely, for every morphism α0 : A → C0 such that ∂0

0 ◦ α0

equals ∂1
0 ◦ α0, prove that the morphisms αr := C(f) ◦ α0 are well-defined and define a morphism

α• : const(A)→ C• of cosimplicial objects. Conclude that the set map,

HomFun(∆,C)(const(A), C•)→ {α0 ∈ HomC(A,C
0)|∂0

0 ◦ α0 = ∂1
0 ◦ α0}, α• 7→ α0,

is a bijection. Prove that this bijection is natural in both A and in C•. In particular, conclude
that the functor,

const : C → Fun(∆, C),

is fully faithful. Finally, for every pair of morphisms, α0, β0 : A→ C0 equalizing ∂0
0 and ∂1

0 , prove
that there exists a cosimplicial homotopy gir+1 : A→ Cr from α• to β• if and only if β0 equals α0,
and in this case there is a unique cosimplicial homotopy given by gir+1 = αr = βr.

(c)(Equalizers in Cartesian Categories) Let ∆≤1 be the category of totally ordered sets of cardinality
≤ 1. Prove that a functor C• : ∆≤1 → C is equivalent to the data of a pair of objects C0, C1, a pair
of morphisms ∂0

0 , ∂
1
0 : C0 → C1, and a morphism σ0

1 : C1 → C0 such that σ0
1 ◦ ∂0

0 = σ0
1 ◦ ∂1

0 = IdC0 .
Let,

Z0 : Fun(∆≤1, C)→ C,

be a functor and let,
η : const ◦ Z0 ⇒ IdFun(∆≤1,C),

be a natural transformation such that (const, Z0, η) extends to an adjoint pair of functors (const, Z0, θ, η).
Prove that the natural transformation θ is a natural isomorphism. Prove that for every object C•

of Fun(∆≤1, C), the morphism ηC• : Z0(C•) → C0 satisfies ∂0
0 ◦ ηC• = ∂1

0 ◦ ηC• and is final among

all such morphisms. Prove that if α•, β• : C• → C̃• are two morphisms of cosimplicial objects,
and if (gir+1 : Cr+1 → C̃r) is a cosimplicial homotopy from α• to β•, then Z0(α•) equals Z0(β•).

Assume that C has finite products. For every pair of objects N0 and N1 of C and for every pair
of morphisms d0

0, d
1
0 : N0 → N1, define C0 = N0, define C1 = N0 × N1, define ∂0

0 = (IdC0 , d0
0),

define ∂1
0 = (IdC0 , d1

0), and define σ0
1 = prN0 . Prove that C• is an object of Fun(∆≤1, C), and

prove that ηC• : Z0(C•) → C0 is an equalizer of d0
0, d

1
0 : N0 → N1. In particular, if C has both

finite products and Z0, prove that C has all equalizers of a pair of morphisms. For every pair of
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morphisms f 0
0 : M0

0 → N1 and f 1
0 : M0

1 → N1 in C, for N0 = M0
0 ×M0

1 , and for d0
0 = f 0

0 ◦ prM0
0

and d1
0 = f 1

0 ◦ prM0
1
, prove that the equalizer of d0

0, d
1
0 : N0 → N1 is a fiber product of f 0

0 and f 1
0 .

Conclude that C has all finite fiber products, i.e., C is a Cartesian category. Conversely, assuming
that C is a Cartesian category, then, up to some form of the Axiom of Choice, prove that there
exists a functor Z0 and a natural transformation η such that (const, Z0, η) extends to an adjoint
pair of functors.

(d)(The Right Adjoint to the Constant Cosimplicial Object) Assume now that there exists a functor

Z0 : Fun(∆≤1, C)→ C,

and a natural transformation,
η : const ◦ Z0 ⇒ IdFun(∆≤1,C),

such that (const, Z0, η) extends to an adjoint pair of functors. For every cosimplicial object C• :
∆→ C, for the equalizer η : Z0(C•)→ C0 of ∂0

0 and ∂1
0 , use (b) above to prove that there exists a

unique extension η• : const(Z0)→ C• of η to a morphism of cosimplicial objects of C. Prove that
this defines a functor,

Z0 : Fun(∆, C)→ C,

and a natural transformation,
η• : const ◦ Z0 ⇒ IdFun(∆,C),

such that (const, Z0, η•) extends uniquely to an adjoint pair of functors, (const, Z0, η•, θ). Prove

that θ is a natural isomorphism. Prove that if α•, β• : C• → C̃• are two morphisms of cosimplicial
objects, and if (gir+1 : Cr+1 → C̃r) is a cosimplicial homotopy from α• to β•, then Z0(α•) equals
Z0(β•).

Problem 5.(Čech Cosimplicial Object of a Covering) Let (X, τX) be a topological space. For every
object U of τX , prove that the topology τU on U associated to i : U → X via Problem 1(c) is a
full, upper subcategory of τX that has an initial object � = U . For every U , an open covering of U
is a set U and a set map ιU : U→ τU such that ∪Image(ιU) equals U . Define σ to be the category
whose objects are pairs (U,U) of an open U in τX and an open covering ιU : U → τU . For objects
(U,U) and (V,V), a σ-morphism from (U,U) to (V,V) is a pair U ⊇ V of a morphism in τX and
a refinement φ : U � V, i.e., a set function φ : V → U such that for every V0 in V, ιU(φ(V0))
contains ιV(V0). In particular, for every object (U, ιU : U→ τU) of σ, define V = Image(ιU) with its
natural inclusion ιV : V ↪→ τU . Up to the Axiom of Choice, prove that there exists a refinement
φ : (U,U) � (U,V). Thus, the open coverings with ι a monomorphism are cofinal in the category
σ.

(a)(Category of Open Coverings) For every pair of refinements, φ : (U,U) � (V,V) and ψ : (V,V) �
(W,W), prove that the composition φ ◦ ψ : W → U is a refinement, φ ◦ ψ : (U,U) → (W,W).
Also prove that IdU : U → U is a refinement (U,U) → (U,U). Conclude that these rules define
a category σ whose objects are open coverings (U,U) of opens U in τX and whose morphisms are
refinements. Define x : σ → τX to be the rule that associates to every (U,U) the open U and that
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associates to every refinement φ : (U,U) � (V,V) the inclusion U ⊇ V . Prove that this is a strictly
surjective functor. Prove that the map on objects,

`x : τX → σ, U 7→ (U, {U}),

extends uniquely to a functor, and prove that (`x, x) extends uniquely to an adjoint pair of functors,
i.e., (U, {U}) is the initial object in the fiber category σx,U . Typically x does not admit a right
adjoint.

For every open covering ιU : U→ τU , for every integer r ≥ 0, define the following set map,

ιUr+1 : Ur+1 → τU , (U0, U1, . . . , Ur) 7→ ιU(U0) ∩ ιU(U1) ∩ · · · ∩ ιU(Ur).

Let C be a category, and let A be an C-presheaf on (X, τX). Let (U,U) be an object of σ. Recall
that for every object T of C, there is a Yoneda functor,

hT : Copp → Sets, S 7→ HomC(S, T ),

and this is covariant in T . For every integer r ≥ 0, define

hA,U,r : Copp → Sets, S 7→
∏

(U0,...,Ur)∈Ur+1

hA(ι(U0,...,Ur))(S),

together with the projections,

π(U0,...,Ur) : hA,U,r → hA(ι(U0,...,Ur)).

For every integer r ≥ 0, and for every integer i = 0, . . . , r + 1, define

∂ir : hA,U,r → hA,U,r+1,

to be the unique natural transformation such that for every (U0, . . . , Ur+1) ∈ Ur+2, π(U0,...,Ur+1) ◦ ∂ir
equals the composition of the projection,

π(U0,...,Ui−1,Ui+1,...,Ur+1) : hA,U,r → hA(ι(U0,...,Ui−1,Ui+1∩,∩Ur+1)),

with the natural transformation of Yoneda functors arising from the restriction morphism

A(ι(U0) ∩ · · · ∩ ι(Ui−1) ∩ ι(Ui+1) ∩ · · · ∩ ι(Ur+1))→ A(ι(U0) ∩ · · · ∩ ι(Ur+1)).

Similarly, for every i = 0, . . . , r, define

σir+1 : hA,U,r+1 → hA,U,r

to be the unique natural transformation such that for every (U0, . . . , Ur) ∈ Ur+1, π(U0,...,Ur+1) ◦ σir+1

equals the projection π(U0,...,Ui−1,Ui,Ui,Ui+1,...,Ur).
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(b)(Cosimplicial Identities) Prove that these natural transformations satisfy the cosimplicial iden-
tities : for every r ≥ 0, for every 0 ≤ i < j ≤ r + 2,

∂jr+1 ◦ ∂ir = ∂ir+1 ◦ ∂j−1
r ,

for every 0 ≤ i ≤ j ≤ r,
σjr+1 ◦ σir+2 = σir+1 ◦ σ

j+1
r+2,

and for every 0 ≤ i ≤ r + 1 and 0 ≤ j ≤ r,

σjr+1 ◦ ∂ir =


∂ir−1 ◦ σj−1

r , i < j,
Id, i = j, i = j + 1,

∂i−1
r−1 ◦ σjr , i > j + 1

In the case that C is an additive category, define

dr : hA,U,r → hA,U,r+1, dr =
r+1∑
i=0

∂ir.

Prove that dr+1 ◦ dr equals 0.

(c)(Refinements and Cosimplicial Homotopies) For every refinement, φ : (U,U) � (V,V), for every
integer r ≥ 0, define

hA,φ,r : hA,U,r → hA,V,r

to be the unique natural transformation such that for every (V0, . . . , Vr) ∈ Vr+1, the composition
π(V0,...,Vr) ◦ hA,q,r equals the composition of projection

π(φ(V0),...,φ(Vr)) : hA,U,r → hA(φ(V0)∩···∩φ(Vr))

with the natural transformation of Yoneda functors arising from the restriction morphism

A(ιφ(V0) ∩ · · · ∩ ιφ(Vr))→ A(ι(V0) ∩ · · · ∩ ι(Vr)).

Prove that the natural transformations (hA,φ,r)r≥0 are compatible with the natural transformations
∂ir and σir+1. For every pair of refinements, φ : (U,U) � (V,V) and ψ : (V,V) � (W,W), for the
composition refinement φ ◦ ψ : (U,U) � (W,W), prove that hA,φ◦ψ,r equals hA,ψ,r ◦ hA,φ,r, and also
prove that hA,IdU,r equals IdhA,U,r . Thus hA,φ,r is functorial in φ.

Let φ : (U,U) � (V,V) and ψ : (U,U) � (V,V) be refinements. For every integer r ≥ 0, for every
integer i = 0, . . . , r, define

giA,φ,ψ,r+1 : hA,U,r+1 → hA,V,r

to be the unique natural transformation such that for every (V0, . . . , Vr) ∈ Vr+1, π(V0,...,Vr)◦giA,φ,ψ,r+1

equals the composition of the projection,

πψ(V0),...,ψ(Vi),φ(Vi),...,φ(Vr) : hA,U,r+1 → hA(ι(ψ(V0),...,ψ(Vi),φ(Vi),...,φ(Vr))),
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with the natural transformation of Yoneda functors arising from the restriction morphism

A(ιψ(V0) ∩ · · · ∩ ιψ(Vi) ∩ ιφ(Vi) ∩ · · · ∩ ιφ(Vr))→ A(ι(V0) ∩ · · · ∩ ι(Vi) ∩ · · · ∩ ι(Vr)).

Prove the following identities (cosimplicial homotopy identities),

g0
A,φ,ψ,r+1 ◦ ∂0

A,U,r = hA,φ,r, grA,φ,ψ,r+1 ◦ ∂r+1
A,U,r = hA,ψ,r,

gjA,φ,ψ,r+1 ◦ ∂
i
A,U,r =


∂iA,V,r−1 ◦ g

j−1
A,φ,ψ,r, 0 ≤ i < j ≤ r,

gi−1
A,φ,ψ,r+1 ◦ ∂iA,U,r, 0 < i = j ≤ r,

∂i−1
A,V,r−1 ◦ g

j
A,φ,ψ,r, 1 ≤ j + 1 < i ≤ r + 1.

gjA,φ,ψ,r ◦ σ
i
A,U,r+1 =

{
σiA,V,r ◦ g

j+1
A,φ,ψ,r+1, 0 ≤ i ≤ j ≤ r − 1,

σi=1
A,V,r ◦ g

j
A,φ,ψ,r+1, 0 ≤ j < i ≤ r.

For the identity refinement IdU : U � U, prove that gjA,Id,Id,r+1 equals σjA,U,r+1. Also prove that

for refinements χ : V→W and ξ : T→ U, gjA,φ◦χ,ψ◦χ,r+1 equals hA,χ,r ◦ gjA,φ,ψ,r+1 and gjA,ξ◦φ,ξ◦ψ,r+1

equals gjA,φ,ψ,r+1 ◦ hA,ξ,r+1.

(d)(Functoriality in A) For every morphism of C-presheaves, α : A→ A′, define

hα,U,r : hA,U,r → hB,U,r,

to be the unique natural transformation whose postcomposition with each projection πB,(U0,...,Ur)

equals the composition of πA,(U0,...,Ur) with the natural transformation induced by the morphism

αι(U0,...,Ur) : A(ι(U0, . . . , Ur))→ A′(ι(U0, . . . , Ur)).

Prove that these maps are compatible with the cosimplicial operations ∂ir and σir+1, as well as
the operations hA,φ,r associated to a refinement φ : U � V, and the cosimplicial homotopies
giA,φ,ψ,r+1 associated to a pair of refinements, φ, ψ : U � V. Prove that this is functorial in
α. Conclude that (up to serious set-theoretic issues), for every open cover U, morally these rules
define a functor from the category of C-presheaves to the “category” of cosimplicial objects in the
category of contravariant functors from C to Sets. Stated differently, to every open cover U there is
an associated cosimplicial object in the category Fun(C−Presh,Fun(C,Sets)) of covariant functors
from the category of C-presheaves to the category of contravariant functors C → Sets. This rule is
covariant for refinement of open covers. Moreover, up to simplicial homotopy, it is independent of
the choice of refinement.

(e)(Coadjunction of Sections) As a particular case, for the left adjoint `x of x, observe that there
is a canonical refinement

ηU,U : `x ◦ x(U,U) � (U,U), i.e., (U, {U}) � (U,U).
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Prove that hA,{U},r is the constant / diagonal cosimplicial object that for every r associates hA(U)

and with ∂i and σi equal to the identity morphism. Conclude that for every cover (U,U) in σ, there
is a natural coaugmentation,

grA,U : hA(U) → hA,U,r,

that is functorial in A, functorial in (U,U) with respect to refinements, and that equalizes the
simplicial homotopies associated to a pair of refinements in the sense that

gjA,φ,ψ,r+1 ◦ g
r+1
A,U = grA,V ◦ hAUV .

Define the functor
const : Fun(σ, C)→ Fun(∆× σ, C)

that associates to a functor B : σ → C the functor constB : σ → Fun(∆, C) whose value on every
(U,U) is the constant / diagonal cosimplicial object r 7→ B(U,U) for every r with every ∂i and σi

defined to be the identity morphism. Conclude that the rule U 7→ (r 7→ hA(U)) above is the Yoneda
functor associated to const ◦ ∗x(A).

(f)(Čech cosimplicial object) Assume now that C has all finite products. Thus, for every open
covering (U,U) and for every integer r ≥ 0, there exists an object

Čr(U, A) =
∏

(U0,...,Ur)∈U

A(U0 ∩ · · · ∩ Ur),

such that hA,U,r equals hČr(U,A). Use the Yoneda Lemma to prove that there are associated mor-
phisms in C,

∂iA,U,r : Čr(U, A)→ Čr+1(U, A),

σiA,U,r+1 : Čr+1
U (A)→ Čr

U(A),

Čr(φ,A) : Čr(U, A)→ Čr(V, A),

Čr+1,i(φ, ψ,A) : Čr+1(U, A)→ Čr(V, A),

Čr(U, α) : Čr(U, A)→ Čr(U, A′),

whose associated morphisms of Yoneda functors equal the morphisms defined above. Thus, in this
case, Č∗(U, A) is a cosimplicial object in C. Prove that this defines a covariant functor

Č(U,−) : Fun(τX , C)→ Fun(∆, C).

Incorporating the role of U, prove that this defines a functor

Č : Fun(τX , C)→ Fun(∆× σ, C).

Prove that this is, typically, not equivalent to the composite functor,

const ◦ ∗x : Fun(τX , C)→ Fun(σ, C)→ Fun(∆× σ, C).
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However, prove that the coadjunction in the last part does give rise to a natural transformation,

g : const ◦ ∗x ⇒ Č.

(g) Assume now that there exists a functor,

Z0 : Fun(∆≤1, C)→ C,

and a natural transformation,
η : const ◦ Z0 ⇒ IdFun(∆≤1,C),

such that (const, Z0, η) extends to an adjoint pair of functors, i.e., assume that C is a Cartesian
category. Use Problem 4(d) to conclude that there exists a functor,

Z0 : Fun(∆× σ, C)→ Fun(σ, C),

and a natural transformation,
η : const ◦ Z0 ⇒ IdFun(∆×σ,C),

such that (const, Z0, η) extends to an adjoint pair of functors, (const, Z0, η, θ) such that θ is a
natural isomorphism. Moreover, for every A• : ∆ × σ → C, for every object (U,U) of σ, prove
that η : Z0(A•(U)→ A0(U)) is an equalizer of ∂0

0 , ∂
1
0 : A0(U)→ A1(U). Finally, the composition of

natural transformations, (Z0 ◦ g) ◦ (θ ◦ ∗x), is a natural transformation

Z0(g) : ∗x ⇒ Z0 ◦ const ◦ ∗x ⇒ Z0 ◦ Č.

In particular, conclude that for a refinement φ : (U,U) � (V,V), the induced morphism Z0(Č•(U, A))→
Z0(Č•(V, A)) is independent of the choice of refinement.

(h) Let (U, ι : U→ τU) be an object of σ. Let φ : (U,U) � (U, {U}) be a refinement, i.e., ∗ = φ(U) is
an element of U such that ι(∗) equals U . Thus, (U,U) admits both the identity refinement of (U,U)
and also the composite of φ with the canonical refinment from (e), ηU,Ucircφ. Using (c), prove that
the identity on Č•(U,−) is homotopy equivalent to Č(ηU,U,−) ◦ Č(φ,−). On the other hand, the
refinement φ ◦ ηU,U of (U, {U}) is the identity refinement. Thus the composite Č(φ,−) ◦ Č(ηU,U,−)
equals the identity on Č•({U},−). Prove that Č•(U, A) is homotopy equivalent to the constant
simplicial object constA(U), and these homotopy equivalences are natural in A and open coverings
(U,U) that refine to (U, {U}).

Problem 6(Sheaves) Let (X, τX) be a topological space. Let C be a category. A C-sheaf on (X, τX)
is a C-presheaf A such that for every open subset U in τX , for every open covering ι : U→ τU of U ,
the associated sequence of Yoneda functors,

hA(U)

g0A,U−−→ hA,U,0 ⇒ hA,U,1,

21

http://www.math.stonybrook.edu/~jstarr/M536f15/index.html
mailto:jstarr@math.stonybrook.edu


MAT 536 Algebra III
Stony Brook University
Problem Set 8

Jason Starr
Fall 2015

is exact, where the two arrows are ∂0
A,U,0 and ∂1

A,U,0. Stated more concretely, for every object S of
C, for every collection (sU0 : S → A(ι(U0)))U0∈U of C-morphisms such that for every (U0, U1) ∈ U2,
the following two compositions are equal,

S
sU0−−→ A(ι(U0))

A
ι(U0)

ι(U0)∩ι(U1)−−−−−−−→ A(ι(U0) ∩ ι(U1)), S
sU1−−→ A(ι(U1))

A
ι(U1)

ι(U0)∩ι(U1)−−−−−−−→ A(ι(U0) ∩ ι(U1)),

there exists a unique morphism sU : S → A(U) such that for every U0 ∈ U, sU0 equals AUι(U0) ◦ sU .

(a)(Sheaf Axiom via Čech Objects) For simplicity, assume that C is a Cartesian category that has
all small products. In particular, assume that the functors Č and Z0 of the previous exercise are
defined. Prove that a C-presheaf on (X, τX) is a sheaf if and only if the morphism

Z0(g) : ∗x(A)→ Z0(Č(A))

of objects in Fun(σ, C) is an isomorphism.

(b)(Associated Sheaf / Sheafification Functor) Now assume that C has all small colimits. In
particular, assume that there exists a functor

Lx : Fun(σ, C)→ Fun(τX , C),

such that (Lx, ∗x) extends to an adjoint pair of functors. Using Exercise 0(g), prove that for every
open U in τX and for every functor,

B : σ → C,
Lx(B)(U) is the colimit of the restriction of B to the fiber category σx,U . In particular, since open
coverings (U, ι : U→ U) such that ι is a monomorphism are cofinal in the category σx,U , it suffices
to compute the colimit over such open coverings. For every functor,

A : τX → C,

prove that Lx ◦ ∗x(A) → A is a natural isomorphism. Denote by Sh : Fun(τX , C) → Fun(τX , C)
the composite functor,

Lx ◦ Z0 ◦ Č : Fun(τX , C)→ Fun(τx, C).
Prove that there exists a unique natural transformation,

sh : IdFun(τx,C) ⇒ Sh,

whose composition with the natural isomorphism above equals Lx(Z
0(g)). For every sheaf A, prove

that
sh : A→ Sh(A)

is an isomorphism.

(c)(The Associated Sheaf is a Sheaf) Let (U, ι : U→ τU) an object of σ, and let,

(ι(U0), κU0 : VU0 → τι(U0)),
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be a collection of open coverings of each ι(U0). For every pair (U0, U1) ∈ U2, let

(ι(U0, U1), κU0,U1 : VU0,U1 → τι(U0,U1)),

be an open covering together with refinements

φ0
0 : (ι(U0),VU0) � (ι(U0, U1),VU0,U1), φ1

0 : (ι(U1),VU1) � (ι(U0, U1),VU0,U1).

Define
V := (tU0∈UVU0) t

(
t(U0, U1) ∈ U2VU0,U1

)
,

define
κ : V→ τU ,

to be the unique set map whose restriction to every VU0 equals κU0 and whose restriction to every
VU0,U1 equals κU0,U1 . For every U0 ∈ U, define

φU0 : (U, κ : V→ τU) � (ι(U0), κU0 : VU0 → τι(U0)),

to be the obvious refinement. For every U0 ∈ U, define Z(U0, A) = Z0(Č•(VU0 , A)). For every
(U0, U1) ∈ U2, define Z0(U0, U1, A) = Z0(Č•(VU0,U1 , A)). Define

Z0(U, A) :=
∏
U0∈U

Z0(U0, A),

Z1(U, A) :=
∏

(U0,U1)∈U2

Z0(U0, U1, A),

∂0
0 : Z0(U, A)→ Z1(U, A), ∂i0(zU0) = (AUiU0∩U1

(zUi))U0,U1 .

Prove that the restriction morphism,

Z0(φ•) : Z0(V, A)→ Z0(Z•(U, A)),

is a C-isomorphism. Conclude that Sh(A) is a sheaf. Denote by,

Φ : C − Sh(X,τX) → C − Presh(X,τX),

the full embedding of the category of sheaves in the category of presheaves. Thus, Sh is a functor,

Sh : C − Presh(X,τX) → C − Sh(X,τX),

and sh is a natural transformation IdC−PreshX ⇒ Φ ◦ Sh. Conclude that (Sh,Φ, sh) extends to an
adjoint pair of functors.

(d)(Pushforward and Inverse Image) For a continuous map f : (X, τX)→ (Y, τY ), prove that the
composite functor,

C − Sh(X,τX)
Φ−→ C − Presh(X,τX)

f∗−→ C − Presh(Y,τY ),
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factors uniquely through Φ : C − Sh(Y,τY ) → C − Presh(Y,τY ), i.e., there is a functor

f∗ : C − Sh(X,τX) → C − Sh(Y,τY ),

such that f∗ ◦ Φ equals Φ ◦ f∗. On the other hand, prove by example that the composite

C − Sh(Y,τY )
Φ−→ C − Presh(Y,τY )

f−1

−−→ C − Presh(X,τX)

need not factor through Φ. Define

f−1 : C − Sh(Y,τY ) → C − Sh(X,τX),

to be the composite of the previous functor with Sh : C − Presh(X,τX) → C − Sh(X,τX). Prove that
the functors (f−1, f∗) extend to an adjoint pair of functors between C − Sh(X,τX) and C − Sh(Y,τY ).
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