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MAT 536 Problem Set 2

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 1. Let A and B be categories. Let

L : A → B, R : B → A,

be (covariant) functors. Let

θ : IdA ⇒ RL, θ(a) : a→ R(L(a)),

η : LR⇒ IdB, η(b) : L(R(b))→ b,

be natural transformations of functors. This data is an adjoint pair of (covariant) functors if the
following compositions of natural transformations equal IdR, resp. IdL,

(∗R) : R
θ◦R⇒ RLR

R◦η⇒ R,

(∗L) : L
L◦θ⇒ LRL

η◦L⇒ R.

For every object a of A and for every object b of B, define set maps,

HL
R(a, b) : HomB(L(a), b)→ HomA(a,R(b)),

(L(a)
φ−→ b) 7→

(
a

θ(a)−−→ R(L(a))
R(φ)−−→ R(b)

)
,

and
HR
L (a, b) : HomA(a,R(b))→ HomB(L(a), b),

(a
ψ−→ R(b)) 7→

(
L(a)

L(ψ)−−→ L(R(b))
η(b)−−→ b

)
.

(i) For L, R, θ and η as above, the conditions (∗R) and (∗L) hold if and only if for every object a
of A and every object b of B, HL

R(a, b) and HR
L (a, b) are inverse bijections.

(ii) Prove that both HL
R(a, b) and HR

L (a, b) are binatural in a and b.
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(iii) For functors L and R, and for binatural inverse bijections HL
R(a, b) and HR

L (a, b) between the
bifunctors

HomB(L(a), b),HomA(a,R(b)) : A× B → Sets,

prove that there exist unique θ and η extending L and R to an adjoint pair such that HL
R and HR

L

agree with the binatural inverse bijections defined above.

(iv) Let (L,R, θ, η) be an adjoint pair. Let a (covariant) functor

R̃ : B → A,

and natural transformations,

θ̃ : IdA ⇒ R̃ ◦ L, η̃ : L ◦ R̃⇒ IdB,

be natural transformations such that (L, R̃, θ̃, η̃) is also an adjoint pair. For every object b of B,

define I(b) in HomB(R(b), R̃(b)) to be the image of Idb under the composition,

HomB(b, b)
HomB(θ(b),b)−−−−−−−→ HomB(L(R(b)), b)

HR̃
L (R(b),b)
−−−−−−→ HomB(R(b), R̃(b)).

Similarly, define J(b) in HomB(R̃(b), R(b)), to be the image of Idb under the composition,

HomB(b, b)
HomB(θ̃(b),b)−−−−−−−→ HomB(L(R̃(b)), b)

HR
L (R̃(b),b)
−−−−−−→ HomB(R̃(b), R(b)).

Prove that I and J are the unique natural transformations of functors,

I : R⇒ R̃, J : R̃⇒ R,

such that θ̃ equals (I ◦ L) ◦ θ, θ equals (J ◦ L) ◦ θ̃, η̃ equals η ◦ (L ◦ I), and η equals η̃ ◦ (L ◦ J).
Moreover, prove that I and J are inverse natural isomorphisms. In this sense, every extension
of a functor L to an adjoint pair (L,R, θ, η) is unique up to unique natural isomorphisms (I, J).
Formulate and prove the symmetric statement for all extensions of a functor R to an adjoint pair
(L,R, θ, η).

(v) Formulate the corresponding notions of adjoint pairs when L and R are contravariant functors
(just replace one of the categories by its opposite category).

Problem 2. Let R be a unital, associative ring. Let Σ be a finite set. For every function

f : Σ→ R, σ 7→ fσ,

the support of f is the subset f−1(R \ {0}), i.e., those σ with fσ 6= 0. Let FΣ be the subset of
HomSets(Σ, R) consisting of functions with finite support. Define addition componentwise,

f + g : Σ→ R, (f + g)σ = fσ + gσ,
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and define left-right R-actions componentwise,

r · f : Σ→ R, (r · f)σ = r · (fσ),

f · r : Σ→ R, (f · r)σ = (fσ) · r.

(i) Prove that with these operations, FΣ is an R-bimodule.

(ii) Define a set map iΣ : Σ→ Fσ by the Kronecker delta function,

iΣ(σ) : Σ→ R, τ 7→
{

1, τ = σ,
0, τ 6= σ

Prove that this is well-defined, and prove that every element of FΣ can be expressed as an R-linear
combination (right or left) of elements in the image of iΣ. Assuming that 1 6= 0 in R, prove that
iΣ is injective, and prove that every nontrivial (finite) R-linear combination of (distinct) elements
of Σ is nonzero.

(iii) Let N be any left R-module. Let j : Σ→ N be any set map. Prove that there exists a unique
homomorphism of left R-modules,

j̃ : FΣ → N,

such that j̃ ◦ iΣ equals j. Repeat this for right R-modules.

(iv) For every set map u : Σ→ Ξ, the composition

iΞ ◦ u : Σ→ FΞ,

is a set map that gives a unique R-bimodule homomorphism by (iii). Denote ĩξ ◦ u by

Fu : FΣ → Fξ.

Prove that FIdΣ
is the identity on FΣ. Also, for a set map v : Ξ→ Θ, prove that Fv◦u equals Fv ◦Fu.

Conclude that F is a covariant functor,

F : Sets→ R− bimod.

(v) Denote by Φ the “forgetful functor”,

Φ : R−mod→ Sets,

that sends each left R-module M to the underlying set of M . Prove that Φ is faithful. Show that
Σ 7→ iΣ is a natural transformation of functors from Sets to Sets,

i : IdSets ⇒ Φ ◦ F.
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Similarly, for every left R-module M , for the identity map j = IdM ,

j : M →M, m 7→ m,

by (iii) there is a unique left R-module homomorphism j̃, which we will denote by ηM ,

j̃ : FM →M,

such that j̃ ◦ iM equals j, i.e., ηM ◦ iM equals IdM . Prove that M 7→ ηM is a natural transformation
of functors from R−mod to R−mod,

η : F ◦ Φ⇒ IdR−mod.

Finally, prove that for every set Σ and every left R-module M , the natural transformations i and
η make (F,Φ) into an adjoint pair of functors, i.e., they establish a binatural equivalence

HomR−Mod(FΣ,M) = HomSets(Σ,Φ(M)).

Repeat all of this for right R-modules.

Problem 3. Let A, B, and C be categories. Let

L′ : A → B, R′ : B → A,

be (covariant) functors, and let

θ′ : IdA ⇒ R′L′, η′ : L′R′ ⇒ IdB,

be natural transformations that are an adjoint pair of functors. Also let

L′′ : B → C, R′′ : C → B,

be (covariant) functors, and let

θ′′ : IdB ⇒ R′′L′′, η′′ : L′′R′′ ⇒ IdC,

be natural transformations that are an adjoint pair of functors. Define functors

L : A → C, R : C → A

by L = L′′ ◦ L′, R = R′ ◦R′′. Define the natural transformation,

θ : IdA ⇒ R ◦ L,

to be the composition of natural transformations,

IdA
θ′⇒ R′ ◦ L′ R

′◦θ′′◦L′
⇒ R′ ◦R′′ ◦ L′′ ◦ L′.
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Similarly, define the natural transformation,

η : L ◦R⇒ IdC,

to be the composition of natural transformations,

L′′ ◦ L′ ◦R′ ◦R′′ L
′′◦η′◦R′′
⇒ L′′ ◦R′′ η

′′
⇒ IdC.

Prove that L, R, θ and η form an adjoint pair of functors. This is the composition of (L′, R′, θ′, η′)
and (L′′, R′′, θ′′, η′′). If A equals B, if L′ and R′ are the identity functors, and if θ′ and η′ are the
identity natural transformations, prove that (L,R, θ, η) equals (L′′, R′′, θ′′, η′′). Similarly, if B equals
C, if L′′ and R′′ are the identity functors, and if θ′′ and η′′ are the identity natural transformations,
prove that (L,R, θ, η) equals (L′, R′, θ′, η′). Finally, prove that composition of three adjoint pairs
is associative.

Problem 4. A monoid is a triple (G,m, e) of a set, G, a binary relation,

m : G×G→ G,

and an element, e, of G such that m is associative, i.e., the following diagram commutes,

G×G×G m×IdG−−−−→ G×G

IdG×m
y ym

G×G −−−→
m

G

,

and such that e is a two-sided inverse to m, i.e., for every g in G, m(g, e) and m(e, g) both equal
g. For monoids (G,m, e) and (G′,m′, e′) a morphism of monoids is a set map

u : G→ G′,

such that u(e) equals e′ and such that the following diagram commutes,

G×G u×u−−−→ G′ ×G′

m

y ym′

G −−−→
u

G′

.

(i) Prove that the identity set map of every monoid is a morphism of monoids. For monoids
(G,m, e), (G′,m′, e′) and (G′′,m′′, e′′), for morphisms of monoids,

u′ : G→ G′, u′′ : G′ → G′′,

prove that the composition u = u′′ ◦ u′

u : G→ G′′,
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is a morphism of monoids. If (G′,m′, e) equals (G,m, e) and if u′ equals IdG, prove that u equals u′′.
Similarly, if (G′′,m′′, e′′) equals (G′,m′, e) and if u′′ equals IdG′′ , prove that u equals u′. Conclude
that these operations define a category Monoids whose objects are monoids and whose morphisms
are morphisms of monoids.

(ii) Denote by
Φ′ : Monoids→ Sets,

the “forgetful functor” that associates to every monoid (G,m, e) the underlying set G, and that
associates to every morphism of monoids u : (G,m, e)→ (G′,m′, e′) the set map u : G→ G′. Prove
that Φ′ is a faithful functor. Prove that there exists a functor

L′ : Sets→Monoids,

and prove that there exist natural transformations,

θ′ : IdSets ⇒ Φ′ ◦ L′, η′ : L′ ◦ Φ′ ⇒ IdMonoids,

such that (L′,Φ′, θ′, η′) is an adjoint pair of functors. For every set Σ, the pair (L′(Σ), θ′(Σ) : Σ→
L′(Σ)) is called a free monoid associated to Σ. One construction of L′(Σ) is the set of all finite,
ordered tuples of elements in Σ (“words”) with the empty word being the identity, and with m
given by concatenation of words.

(iii) Denote by Groups the category whose objects are groups and whose morphisms are group
homomorphisms. Denote by

Φ : Groups→ Sets

the “forgetful functor” that associates to every group (G,m, e) the underlying set G, and that
associates to every morphism of groups u : (G,m, e)→ (G′,m′, e′) the set map u : G→ G′. Prove
that Φ is a faithful functor.

(iv) For every set Σ, let Σ+ and Σ− be disjoint copies of Σ, e.g., Σ× {+1} and Σ× {−1}. Let

(L′(Σ+ t Σ−), ·, e), i : (Σ+ t Σ−)→ (L′(Σ+ t Σ−), ·, e))

be a free monoid associated to Σ+ t Σ−. Define ∼′ to be the binary relation on L′(Σ+ t Σ−) such
that for every σ ∈ Σ, and for every fL, fR ∈ L′(Σ+ t Σ−),

fL · i(σ+) · i(σ−) · fR ∼′ fL · fR ∼′ fL · i(σ−) · i(sigma+) · fR.

For every triple f, g, h ∈ L′(Σ+ t Σ−), prove that f · h ∼′ g · h if and only if f ∼′ g if and only if
h · f ∼′ h · g. Let ∼ be the weakest equivalence relation on L′(Σ+tΣ−) generated by ∼′. Conclude
that f · h ∼ g · h if and only if f ∼ g if and only if h · f ∼ h · f . Denote by q : L′(Σ+ tΣ−)→ L(Σ)
the quotient of F by the equivalence relation ∼. Prove that there exists a unique binary operation,

· : L(Σ)× L(Σ)→ L(Σ),
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such that q : (F, ·, e) → (L(Σ), ·, q(e)) is a morphism of monoids. Denote by jΣ : Σ → L(Σ) the
set map σ 7→ q(i(σ+)). Prove that q(i(σ−)) is a left-right inverse of jΣ(σ) in L(Σ). Conclude that
every element of L(Σ) admits a left-right inverse, i.e., L(Σ) is a group.

(v) Continuing the notation above, for every group (G,m, e) and for every set map k : Σ → G,
define h+ : Σ+ → G to be h, and define h− : Σ− → G to be h−(σ−) = (h+(σ+))−1. Associated to
the set map

h+ t h− : Σ+ t Σ− → G,

there exists a unique morphism of monoids, h̃ = HL′

Φ′ (h+ t h−),

h̃ : L′(Σ+ t Σ−)→ G,

such that h̃ ◦ i equals h+ t h−. Prove that for every pair of elements f, g ∈ L′(Σ+ t Σ−) if f ∼′ g,

then h̃(f) equals h̃(g). Conclude that if f ∼ g, then h̃(f) equals h̃(g). Therefore there exists a
unique set map,

HL
Φ(h) : L(Σ)→ G,

such that HL
Φ(h) ◦ q equals h̃ = HL′

Φ′ (h+ t h−). Prove that HL
Φ(h) is a group homomorphism. Prove

that HL
Φ(h) is the unique group homomorphism such that HL

Φ(h) ◦ jΣ equals h. Prove that the set
map,

HL
Φ(Σ, G) : HomSets(Σ,Φ(G))→ HomGroups(L(Σ), G),

is a bijection. In particular, for every set map u : Σ→ Σ′, associated to the set map

jΣ′ ◦ u : Σ→ L(Σ′),

there exists a unique group homomorphism L(u) = HL
Φ(jΣ′ ◦ u),

L(u) : L(Σ)→ L(Σ′),

such that L(u) ◦ jΣ equals jΣ′ ◦ u. Prove that the rule Σ 7→ L(Σ) and u 7→ L(u) define a functor,

L : Sets→ Groups.

(vi) Prove that Σ 7→ jΣ is a natural transformation,

jΣ : IdSets ⇒ Φ ◦ L.

For every group G, associated to the set map IdG, there exists a unique group homomorphism
ηG = HL

Φ(IdG),
ηG : L(Φ(G))→ G.

Prove that G 7→ ηG is a natural transformation,

η : L ◦ Φ⇒ IdGroups.
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Prove that (L,Φ, j, η) is an adjoint pair of functors and that the bijections HL
Φ defined above are

the bijections naturally associated to this adjoint pair.

(vii) Denote by
Φ′′ : Groups→Monoids

the “forgetful functor” that associates to every group (G,m, e) that same datum (G,m, e) consid-
ered as a monoid. Prove that Φ′′ is a fully faithful functor. Prove that there exists a functor

L′′ : Monoids→ Groups,

and prove that there exist natural transformations,

θ′′ : IdMonoids ⇒ Φ′′ ◦ L′′, η′′ : L′′ ◦ Φ′′ ⇒ IdGroups,

such that (L′′,Φ′′, θ′′, η′′) is an adjoint pair of functors. For every monoid (G,m, e), the pair

(L′′(G,m, e), θ′′(G,m, e) : (G,m, e)→ L′′(G,m, e))

is called a group completion associated to the monoid (G,m, e). Moreover, prove that the composi-
tion of the adjoint pairs (L′,Φ′, i, η′) and (L′′,Φ′′, θ′′, η′′) is naturally isomorphic to the adjoint pair
(L,Φ, θ, η).

Hint. The condition on compositions uniquely determines L′′. In particular, for every monoid
(G,m, e), associated to the set map,

iG : Φ′(G)→ L(Φ′(G)),

there is a group homomorphism,

θ̃′′G : L(Φ′(G))→ L′′(G),

such that the composition θ̃′′G ◦ iG, denoted θ′′G, is a morphism of monoids and such that θ′′G is initial
among all group homomorphisms,

t : L(Φ′(G))→ T,

such that the composition t ◦ iG is a morphisms of monoids, i.e., the set map,

HL′′

R′′(G, T ) : HomGroups(L
′′(G), T )→ HomMonoids(G,Φ

′′(T )), u 7→ u ◦ θ′′G,

is a bijection. Indeed, let L′′(G) be the group quotient of the group L(Φ′(G)) by the normal
subgroup generated by all elements of the form iG(g)−1iG(g · g′)iG(g′)−1 for g, g′ ∈ G. Now use the

universal property of θ̃′′ to extend L′′ to a functor, observe that G 7→ θ′′G is a natural transformation,

θ′′ : IdMonoids ⇒ L′′ ◦ Φ′′,

and for every group (T,m, e), define

η′′T : L′′(Φ′′(T ))→ T,
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to be the unique group homomorphism such that HL′′

R′′(η′′T ) equals IdΦ′′(T ). Then T 7→ η′′T is a natural
transformation,

η′′ : L′′ ◦ Φ′′ ⇒ IdGroups,

that makes (L′′,Φ′′, θ′′, η′′) an adjoint pair.

(viii) For categories B, C, for functors

L′′ : B → C, R′′ : C → B,

and for natural transformations

θ′′ : IdB ⇒ R′′ ◦ L′′, η′′ : L′′ ◦R′′ ⇒ IdC,

such that (L′′, R′′, θ′′, η′′) is an adjoint pair, the adjoint pair is reflective if R′′ is fully faithful. In
this case, prove that there exists a unique binatural transformation

H̃L′′

R′′(b, b′) : HomC(L
′′(R′′(b)), b′)→ HomC(b, b

′),

such that the composition with R′′,

HomC(L
′′(R′′(b)), b′)

H̃L′′
R′′ (b,b

′)
−−−−−→ HomC(b, b

′)
R′′
−→ HomB(R′′(b), R′′(b′)),

equals HL′′

R′′(R(b), b′). In particular, taking b′ = L′′(R′′(b)), denote the image of Idb′ by

η̃′′b : b→ L′′(R′′(b)).

Prove that η̃′′b is an inverse to η′′b : L′′(R′′(b))→ b. Thus, for a reflective adjoint pair, η′′ is a natural
isomorphism. Conversely, if η′′ is a natural isomorphism, prove that the adjoint pair is reflective,
i.e., R′′ is fully faithful. In particular, for the group completion, conclude that the group completion
of the monoid underlying a group is naturally isomorphic to that group.

Problem 5 Denote by
Φ : Z−mod→ Groups

the full subcategory of Groups whose objects are Abelian groups. For every group (G, ·, e), denote
by [G,G] the normal subgroup of G generated by all commutators

[g, h] = g · h · g−1 · h−1

for pairs g, h ∈ G. Denote by
θG : G→ L(G),

the group quotient associated to the normal subgroup [G,G] of G. Prove that L(G) is an Abelian
group. Moreover, for every Abelian group (A, ·, e), prove that the set map

HL
Φ : HomZ−mod(L(G), A)→ HomGroups(G,Φ(A)), v 7→ v ◦ θG,
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is a bijection. In particular, for every group homomorphism,

u : G→ G′,

the composition θG′ ◦ u : G → L(G′) is a group homomorphism, and thus there exists a unique
group homomorphism,

L(u) : L(G)→ L(G′),

such that HL
Φ(L(u))◦ θG equals θG′ ◦u. Prove that the rule G 7→ L(G), u 7→ L(u) defines a functor,

L : Groups→ Z−mod.

This functor is called Abelianization. Prove that G 7→ θG is a natural transformation,

θ : IdGroups ⇒ Φ ◦ L.

For every Abelian group A, prove that [A,A] is the identity subgroup, and thus the quotient
homomorphism,

θΦ(A) : Φ(A)→ Φ(L(Φ(A))),

is an isomorphism. Thus there exists a unique group homomorphism, just the inverse isomorphism
of θΦ(A),

ηA : L(Φ(A))→ A,

such that θΦ(A) ◦ Φ(ηA) equals the IdΦ(A). Prove that A 7→ ηA is a natural isomorphism,

η : L ◦ Φ→ IdZ−mod.

Prove that (L,Φ, θ, η) is an adjoint pair.

Problem 6 Let A, B, and C be categories. Let

R′ : B → A, R′′ : C → B,

be fully faithful functors. Denote the composition R′ ◦R′′ by

R : C → A.

(i) If there exist extensions to reflective adjoint pairs (L′, R′, θ′, η′), (L′′, R′′, θ′′, η′′), prove that there
is also an extension to a reflective adjoint pair (L,R, θ, η).

(ii) If there exists an extension of R to a reflective adjoint pair (L,R, θ, η), prove that there exists
an extension (L′′, R′′, θ′′, η′′). Give an example demonstrating that R′ need not extend to a reflective
adjoint pair (for instance, consider the full subcategory of Abelian groups in the full subcategory
of solvable groups in the category of all groups).

(iii) A monoid (G, ·, e) is called left cancellative, resp. right cancellative, if for every f, g, h in
G, if f · g equals f · h, resp. if g · f equals h · f , then g equals h. A monoid is cancellative if it is
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both left cancellative and right cancellative. A monoid is commutative if for every f, g ∈ G, f · g
equals g · f . A commutative monoid is left cancellative if and only if it is right cancellative if and
only if it is cancellative. Denote by

LCanMonoids, RCanMonoids, CanMonoids, CommMonoids, CommCanMonoids ⊆Monoids

the full subcategories of the category of all monoids whose objects are left cancellative monoids,
resp. right cancellative monoids, cancellative monoids, commutative monoids, commutative can-
cellative monoids. In each of these cases, prove that the fully faithful inclusion functor R extends
to a reflective adjoint pair. Use (ii) to conclude that for every inclusion functor among the full
subcategories listed above, there is an extension of the inclusion functor to a reflective adjoint pair.

(iv) In particular, prove that the group completion adjoint pair

(L : Monoids→ Groups, R : Groups→Monoids, θ, η)

factors as the composition of the reflective adjoint pair

(L′ : Monoids→ CanMonoids, R′ : CanMonoids→Monoids, θ′, η′),

and the restriction to CanMonoids of the group completion adjoint pair

(L′′ = L ◦R′, R′′, θ′′, η′′).

Similarly, prove that the composition of the Abelianization functor and the group completion
functor

(L : Monoids→ Z−mod, R : Z−mod→Monoids, θ, η),

factors through the reflection to the full subcategory of commutative, cancellative monoids,

(L′ : Monoids→ CommCanMonoids, R′ : CommCanMonoids→Monoids, θ′, η′).

Problem 7 Let A and B be unital, associative rings, and let φ : A→ B be a morphism of unital,
associative rings.

(i) For every left B-module,
(N,mB,N : B ×N → N),

prove that the composition

A×N φ×IdN−−−−→ B ×N
mB,N−−−→ N,

makes the datum
(N,mB,N ◦ (φ× IdN) : A×N → N),

an R-module. For every morphism of left B-modules,

u : (N,mB,N)→ (N ′,mB,N ′),
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prove that also
u : (N,mB,N ◦ (φ× IdN))→ (N ′,mB,N ′ ◦ (φ× IdN ′))

is a morphism of left A-modules. Altogether, prove that the association (N,mB,N) 7→ (N,mB,N ◦
(φ× IdN)) and u 7→ u is a faithful functor

Rφ : B −mod→ A−mod.

In particular, in the usual manner, for every unital, associative ring C and for every B−C-bimodule
N , prove that Rφ(N) is naturally an A− C-bimodule.

(ii) Formulate and prove the analogous results for right modules, giving a faithful functor

Rφ : mod−B → mod− A.

For every C − B-bimodule N , prove that Rφ(N) is naturally a C − A-bimodule. In particular for
the B −B-bimodule N = B, Rφ(B) is naturally a B − A-bimodule.

For every left A-module M , denote Lφ(M) = Rφ(B)⊗AM . For every morphism of left A-modules,

u : M →M ′,

denote by Lφ(u) = IdRφ(B) ⊗ u,
Lφ(u) : Lφ(M)→ Lφ(M ′),

the associated morphism of left B-modules. Prove that the associations M 7→ Lφ(M) and u 7→
Lφ(u) define a functor

Lφ : A−mod→ B −mod.

(iv) Denote by 1B the multiplicative unit in B. For every left A-module M , prove that the
composition

M
1B×IdM−−−−−→ B ×M

βB,M−−−→ B ⊗AM,

is a morphism of left A-modules,
θM : M → Rφ(Lφ(M)),

i.e., for every a ∈ A and for every m ∈M ,

βB,M(1B, a ·m) = βB,M(1B · φ(a),m) = βB,M(φ(a) · 1B,m).

Prove that the association M 7→ θM defines a natural transformation

θ : IdA−mod ⇒ Rφ ◦ Lφ.

(v) For every left B-module (N,mB,N), for the induced right A-module structure on Rφ(B) and
left A-module structure on N , prove that

mB,N : B ×N → N

12
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is A-bilinear, i.e., for every a ∈ A, for every b ∈ B, and for every n ∈ N ,

mB,N(b, φ(a) · n) = mB,N(b · φ(a), n).

Thus, by the universal property of tensor product, there exists a unique homomorphism of Abelian
groups,

mN : B ⊗A N → N,

such that mN ◦ βB,N equals mB,N . Prove that mN is a morphism of left B-modules, i.e., for every
b, b′ ∈ B and for every n ∈ N ,

mN(b · βB,N(b′, n)) = mN(βB,N(b · b′, n)) = mB,N(b · b′, n) = mB,N(b,mB,N(b′, n)).

Prove that the association N 7→ mN defines a natural transformation

m : Rφ ◦ Lφ ⇒ IdB−mod.

(vi) Prove that (Lφ, Rφ, θ,m) is an adjoint pair of functors. In particular, even though Rφ is
faithful, the natural transformation m is typically not a natural isomorphism. Conclude that one
cannot weaken the definition of reflective adjoint pair from “fully faithful” to “faithful”.

(vii) Prove the analogues of the above for right modules. Also, taking A to be Z, and taking
φ : Z→ B to be the unique ring homomorphism, obtain an adjoint pair

(L′′ : Z−mod→ B −mod, R′′ : B −mod→ Z−mod, θ′′, η′′)

whose composition with the adjoint pair

(L′ : CommCanMonoids→ Z−mod, R′ : Z−mod→ CommCanMonoids, θ′, η′)

is an adjoint pair (L,R, θ, η) extending the forgetful functor

R : B −mod→ CommCanMonoids.

Composing this adjoint pair further with the other adjoint pairs above gives, in particular, an
adjoint pair (F,Φ, i, η) extending the forgetful functor

Φ : B −mod→ Sets.

The functor F : Set → B −mod and the natural transformation i is called the “free B-module”.
Use the usual functorial properties to conclude that F naturally maps to the category of B − B-
bimodules.

Problem 8 Let A be an associative, unital ring that is commutative. A (central) A-algebra is a
pair (B, φ) of an associative, unital ring B and a morphism of associative, unital rings, φ : A→ B,
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such that for every a ∈ A and every b ∈ B, φ(a) · b equals b · φ(a), i.e., φ(A) is contained in the
center of B. In particular, the identity map

IdB : Rφ(B)→ Rφ(B),

is an isomorphism of A− A-bimodules making B into a left-right A-module.

For A-algebras (B, φ) and (B′, φ′), a morphism of A-algebras is a morphism of associative, unital
rings, ψ : B → B′, such that ψ ◦φ equals φ′. In particular, ψ is a morphism of left-right A-modules.

(i) Prove that the usual composition and the usual identity maps define a faithful (but not full!)
subcategory

R : A− algebra→ A−mod

whose objects are A-algebras and whose morphisms are morphisms of A-algebras. The rest of
this problem extends this to an adjoint pair that is a composition of two other (more elementary)
adjoint pairs.

(ii) Let n ≥ 2 be an integer. Let M1, . . . ,Mn be (left-right) A-modules. For every A-module U , a
map

γ : M1 × · · · ×Mn → U,

is an n-A-multilinear map if for every i = 1, . . . , n, for every choice of

mi = (m1, . . . ,mi−1,mi+1, . . . ,mn) ∈M1 × · · · ×Mi−1 ×Mi+1 × · · · ×Mn,

the induced map

γmi : Mi → U, mi 7→ γ(m1, . . . ,mi−1,mi,mi+1, . . . ,mn),

is a morphism of A-modules. Prove that there exists a pair (T (M1, . . . ,Mn), βM1,...,Mn) of an A-
module T (M1, . . . ,Mn) and an n-A-multilinear map

βM1,...,MN
: M1 × · · · ×Mn → T (M1, . . . ,Mn),

such that for every n-A-multilinear map γ as above, there exists a unique A-module homomorphism,

u : T (M1, . . . ,Mn)→ U,

such that u ◦ βM1,...,Mn equals γ. For n = 3, prove that βM1,M2,M3 factors through

βM1,M2 × IdM3 : M1 ×M2 ×M3 → (M1 ⊗AM2)×M3.

Prove that the induced map

βM1⊗M2,M3 : (M1 ⊗AM2)×M3 → T (M1,M2,M3),

14
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is A-bilinear. Conclude that there exists a unique A-module homomorphism,

u : (M1 ⊗AM2)⊗AM3 → T (M1,M2,M3).

Prove that this is an isomorphism ofA-modules. Similarly, prove that there is a natural isomorphism
of A-modules,

M1 ⊗A (M2 ⊗AM3)→ T (M1,M2,M3).

Conclude that there is a natural isomorphism of A-modules,

(M1 ⊗AM2)⊗AM3
∼= M1 ⊗A (M2 ⊗AM3),

i.e., tensor product is associative for A-modules. Iterate this to conclude that there are natural
isomorphisms between all the different interpretations of M1 ⊗A · · · ⊗A Mn, and each of these
is naturally isomorphic to T (M1, . . . ,Mn). (All of this is also true in the case of Mi that are
Ai−1 − Ai-bimodules with n-(Ai)i-multilinearity defined appropriately.)

(iii) Let B be an A-algebra. A Z+-grading of B is a direct sum decomposition as an A-module,

B = ⊕n≥0Bn,

such that for every pair of integers n, p ≥ 0, the restriction to the summands Bn and Bp of the
multiplication map,

mB : Bn ×Bp → B

factors through Bn+p. The induced A-bilinear map is denoted

mB,n,p : Bn ×Bp → Bn+p.

In particular, notice that this means that B0 is an A-subalgebra of B, and every direct summand
Bn is a B0 − B0-bimodule. Finally, for every triple of integers n, p, r ≥ 0, the following diagram
commutes,

Bn ×Bp ×Br

mB,n,p×IdBr−−−−−−−→ Bn+p ×Br

IdBn×mB,p,r

y ymB,n+p,r

Bn ×Bp+r −−−−−→
mB,n,p+r

Bn+p+r

.

Prove that a Z+-graded A-algebra is equivalent to the data ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) satisfying
the conditions above.

(iv) For Z+-graded A-algebras ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) and ((B′n)n∈Z+ , (mB′,n,p)(n,p)∈Z+×Z+),
a morphism of Z+-graded A-algebras is a morphism of A-algebras,

ψ : B → B′,

such that for every integer n ≥ 0, ψ(Bn) is contained in B′n. The induced A-linear map is denoted

ψn : Bn → B′n.

15
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In particular, ψ0 is a morphism of A-algebras. Relative to ψ0, every map ψn is a morphism of
B0 −B0-bimodules. Finally, for every pair of integers n, p ≥ 0, the following diagram commutes,

Bn ×Bp
ψn×ψp−−−−→ B′n ×B′p

mB,n,p

y ymB′,n,p

Bn+p −−−→
ψn+p

B′n+p

.

Prove that a morphism of Z+-graded A-algebras is equivalent to the data (ψn)n∈Z+ satisfying the
conditions above. Prove that composition of morphisms of Z+-graded A-algebras is a morphism of
Z+-graded A-algebras. Prove that identity maps are morphisms of Z+-graded A-algebras. Conclude
that there is a faithful (but not full!) subcategory,

L′′ : Z+ − A− algebra→ A− algebra,

whose objects are Z+=graded A-algebras and whose morphisms are morphisms of Z+-graded A-
algebras. Prove that this extends to an adjoint pair (L′′, R′′, θ′′, η′′) where

R′′ : A− algebra→ Z+ − A− algebra,

associates to an associative, unital A-algebra (C,mC) the Z+-graded A-algebra,

((Cn)n∈Z+ , (mn,p)(n,p)∈Z+×Z+) = ((C)n∈Z+ , (m)(n,p)).

Thus C0 equals C as an A-algebra, and the C0-algebra ⊕nCn is equivalent as a Z+-graded C-algebra
to C[t] = C ⊗Z Z[t], where Z[t] is graded in the usual way.

(v) Let M be an A-module. For every integer n ≥ 1, denote

T nA(M) = T (M1, . . . ,Mn) = M⊗n = M ⊗A · · · ⊗AM,

with the universal n-A-multilinear map,

βnM : Mn → T nA(M).

Similarly, denote T 0
A(M) = A. For every pair of integers n, p ≥ 0, the composition,

Mn ×Mp =−→Mn+p βn+p

−−−→ T n+p
A (M),

is n-A-multilinear, resp. p-A-multilinear in the two arguments separately. Thus the composition
factors as

Mn ×Mp βnM×β
p
M−−−−−→ T nA(M)× T pA(M)

µn,pM−−→ T n+p
A (M),
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where µn,pM is A-bilinear. Finally, for every triple of integers n, p, r ≥ 0, associativity of tensor
products implies that the following diagram commutes,

T nA(M)× T pA(M)× T rA(M)
µn,pM ×IdTr

A
(M)

−−−−−−−−→ T n+p
A (M)× T rA(M)

IdTn
A

(M)×µ
p,r
M

y yµn+p,r
M

T nA(M)× T p+rA (M) −−−−→
µn,p+rM

T n+p+r
A (M)

.

Thus, the data ((T nA(M))m∈Z+ , (µ
n,p
M )(n,p)∈Z+×Z+) defines a Z+-graded A-algebra, denoted TA(M)

and called the tensor algebra associated to M . For every Z+-graded A-algebra

B = ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+),

for every integer n, inductively define the A-module morphism

η′B,n : T nA(B1)→ Bn,

by η′B,0 : A→ B0 is the usual A-algebra structure map φ, η′B,1 : T 1
A(B1)→ B1 is the usual identity

morphism on B1, and for every n ≥ 0, assuming that η′B,n is defined,

η′B,n+1 : T n+1
A (B1) = B1 ⊗A T nA(B)→ Bn+1,

is the unique A-module homomorphism whose composition with the universal A-bilinear map,

βM : B1 × T nA(B)→ BA ⊗A T nA(B),

equals the A-bilinear composition

B1 × T nA(B1)
IdB1

×ηB,n−−−−−−→ B1 ×Bn

mB,1,n−−−−→ Bn+1.

Use associativity of tensor product (and induction) to prove that for every pair of integers n, p ≥ 0,
the following diagram commutes,

T nA(B1)× T pA(B1)
η′B,n×η

′
B,p−−−−−−→ Bn ×Bp

µn,pB1

y ymB,n,p
T n+p
A (B1) −−−−→

η′B,n+p

Bn+p

.

Conclude that (η′B,n)n∈Z+ is a morphism of Z+-graded A-algebras,

η′B : TA(B1)→ B.
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(vi) Denote by
R′ : Z+ − A− algebra→ A−mod

the functor that associates to a Z+-graded A-algebra ((Bn)n∈Z+ , (mB,n,p)(n,p)∈Z+×Z+) the A-module
B1 and that associates to a morphism (ψn)n∈Z+ of Z+-graded A-algebras the A-module ψ1. For
every A-module M , denote by

θ′M : M → R′(TA(M))

the identity morphism M → T 1
A(M). Prove that this defines an adjoint pair (TA, R

′, θ′, η′). Com-
posing with the adjoint pair (L′′, R′′, θ′′, η′′) gives an adjoint pair (L′′ ◦ TA, R, θ, η) extending the
faithful (but not full!) forgetful functor

R : A− Alg→ A−mod, B 7→ B.
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