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MAT 535 Cochain Complexes

1 Introduction

These are notes on cochain complexes and d-functors supplementing the material from our textbook.
Some of the notes are cut-and-pasted from previous courses I taught. Much of the notes are exercises
working through the basic results about these notions.

2 The Abelian category of complexes

Definition 2.1. For every Abelian category (C,addc), a C-cochain complex is an ordered pair
A = ((A™) ez, (d%)nez) of a sequence of C-objects A" and of a sequence of C-morphisms d’; from A"
to A"+ such that d”**od” equals 0 for every n in Z. For all C-cochain complexes ((A™)nez, (%) nez)
and ((A"),ez, (d%)nez), a C-cochain morphism from ((A")nez, (d4)nez) to ((A™) ez, (d%)nez) 1s a
sequence (u™)nez of C-morphisms u” from A" to A such that un*! o d’, equals d% ou™ for every n
in Z. This defines a category, denoted Ch(C). Moreover, the addition operation addc induces an
addition operation addch(c)-

Exercise 2.2. For every C-cochain morphism u from a C-cochain complex A to a C-cochain
complex A, for every integer n let Ker(u)" with its monomorphism ¢? to A" be the kernel of
u™, Prove that there is a unique sequence (dﬁer(u))nez of C-morphisms dy_ ., from Ker(u)™ to

Ker(u)™*! such that ¢**! o I ey CAuals d o gy for every integer n. Deduce that d’f{;i(u) © it er ()
equals the zero morphism for every integer n, hence ((Ker(u)")nez, (d%er(u))nez) is a C-cochain
complex Ker(u), and (¢7?),ez is a C-cochain morphism ¢, from Ker(u) to A. Prove that this is a

kernel of u in the additive category Ch(C).

Exercise 2.3. Continuing the previous exercise, let Coker(u)™ with the epimorphism p? from
Am™ to Coker(u)™ be the cokernel of u™ for each integer n. Prove that there is a unique sequence
(dréoker(u))"ez of C-morphisms dg,, .,y from A" to Coker(u)™ such that both ((Coker(u)™) ez, (d2

Coker(u)

)neZ)
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is a C-cochain complex Coker(u) and (p"),ez is a C-cochain morphism from A to Cokern(u). Prove
that this is a cokernel of u in the additive category Ch(C).

Exercise 2.4. Tterate kernel and cokernel to construct images and coimages. Finally, use the (AB2)
axioms for C to deduce the (AB2) axioms for Ch(C). Altogether, this proves that the additive
category (Ch(C),addch(c)) is an Abelian category.

Definition 2.5. For every additive functor F from an Abelian category (C, add¢) to an Abelian cat-
egory (D, addp), for every C-cochain complex A, the F-associated D-cochain complex Ch(F)(A)
has Ch(F)(A)" equal to F(A") for every integer n and has depemy(ay cqual to F4... (d%) for every
integer n. For every C-cochain morphism u from a C-cochain complex A to a C-cochain com-
plex A, the Ch(F)-associated D-cochain morphism Ch(F)%(u) from Ch(F)(A) to Ch(F)(A) has
Ch(F)(u)" equal to §(um) for every integer n. Altogether this defines a functor Ch(F) from Ch(C)
to Ch(D).

Exercise 2.6. Prove that Ch(F)(A) is a D-cochain complex, prove that Ch(F)(u) is a D-cochain
morphism, and prove that Ch(F') is an additive functor of Abelian categories.

Definition 2.7. For additive functors F and F from an Abelian category (C,add¢) to an Abelian
category (D, addp), for every natural transformation 6 from F to F, for every C-cochain complex
A, the Ch(f)-associated D-cochain morphism Ch(#)4 from Ch(F)(A) to Ch(F)(A) has Ch(#)",
equal to O~ for every integer n.

Exercise 2.8. Prove that Ch(f)4 is a D-cochain morphism. Prove that Ch() is a natural trans-
formation from Ch(F) to Ch(F).

Exercise 2.9. For the identity functor Id¢ from C to itself, prove that also Ch(Id¢) is the identity
functor from Ch(C) to itself. Prove that for additive functors F from an Abelian category (C,addc)
to an Abelian category (D,addp) and G from (D,addp) to an Abelian category (E,addg), the
composition functor Ch(G) o Ch(F) equals Ch(GoF). Also for the identity natural transformation
Idp from F to itself, prove that Ch(Idg) is the identity natural transformation from Ch(F) to
itself. Finally, prove that Ch is compatible with the various notions of composition for natural
transformations.

Definition 2.10. For every Abelian category (C,addc), the embedding from C to Ch(C), de-
noted —[0], associates to every object a of C the C-cochain complex a[0] such that a[0]° equals a
and a[0]™ equals 0 for every n # 0. For every C-morphism u from an C-object a to an C-object b,
the associated C-cochain morphism «[0] has u[0]° equal to u.
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Exercise 2.11. Prove that this is a Serre embedding from C to Ch(C), i.e., an exact, fully faithful
functor that is an equivalence to a full subcategory that is stable for extensions (in short ex-
act sequences). Moreover, for every additive functor of Abelian categories, F from (C,add¢) to
(C,addg), prove that Ch(F) composed with —[0] equals the composition of -[0] and F. Finally,
for additive functors F and F from (C,addc) to (D, addp), for every natural transformation 6 from
F to F, prove that the pullback by —[0] of the natural transformation Ch(f) equals 6.

Exercise 2.12. If you know about 2-categories, deduce that Ch is a 2-functor from the 2-category
of strictly small Abelian categories to itself, and the embedding is a natural transformation from
the identity functor of this 2-category to Ch.

3 Some autoequivalences of the cochain category

Definition 3.1. For every Abelian category (C,addc), for every integer m, the m-translation
functor from Ch(C) to itself, denoted T& or —[m], associates to every C-cochain complex A the
C-cochain complex TZ(A) with T, m(A)" equals A™*" and with di., ,, equal to (=1)mdy+™ for
every integer n. For every C-cochain morphism u from a C-cochain complex A to a C-cochain
complex A, the C-cochain morphism T (u) from T (A) to T (A) has T (u)" equal to um*n for
every integer n.

Exercise 3.2. Check that the composition functor T o TE equals TE*" for all integers m and n.
In particular, both T o T5™ and T5™ o T& equal the identity functor. Deduce that TF is an exact
autoequivalence of Ch(C) for every integer m.

Exercise 3.3. Prove that for every additive functor F from (C,addc) to an Abelian category
(D,addp), the composition of 77 with Ch(F) equals the composition of Ch(F) with TF. Simi-
larly, for additive functors F and F from (C,add¢) to (D,addp), prove that the T&-pullback of
Ch(0) equals the T{-pushforward of Ch(#). If you know about 2-categories, deduce that 7 is
an autoequivalence of the 2-functor Ch for every integer m. In particular, this defines a morphism
of Abelian groups from Z to the “group” of autoequivalences of the 2-functor (not really a group,
since the class of autoequivalences is not naturally a set).

Definition 3.4. For every Abelian category (C,add¢), for every C-cochain complex A, the braid
Z[-1] ®7 A®z Z[1] of A is the C-cochain complex ((A")nez, (—d")nez). This extends to an exact
functor from Ch(C) to itself by acting as the identity on C-cochain morphisms. The composition
of this functor with itself is the identity functor. There is a natural equivalence of the identity
functor with this functor by associating to every C-cochain complex A the C-cochain isomorphism
((=1)"Id an )nez between A and its braid.
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Exercise 3.5. As with translation, show that the braid is compatible with additive functors be-
tween Abelian categories and with natural transformations between additive functors. Deduce that
this gives another autoequivalence of the 2-functor Ch.

4 Two adjoints of the embedding in the cochain category

Definition 4.1. For every Abelian category (C,addc), for every C-cochain complex A, the C-
cocycles in degree 0 of A is the C-object Z°(A) with its C-monomorphism ¢} , to A° that is the
kernel of the C-morphism d% from A° to A'. For every C-cochain morphism u from A to a C-
cochain complex A, since the composition of d% with u®oq) , equals u' composed with dog} 4, this
composition is zero. Thus, by the universal property of the kernel, there is a unique C-morphism
Z%(u) from Z°(A) to Z°(A) such that q%go Z°(u) equals u’ o gy ,. The C-morphism Z°(u) is the
C-cocyles morphism associated to u.

Exercise 4.2. Prove that for the identity C-cochain morphism Id4 from A to itself, also Z°(Id4)
is the identity morphism of Z°(A). Also check that Z° is compatible with composition. Altogether,
this defines a functor Z° from Ch(C) to C. Check that this functor is additive and half exact (it
is neither left exact nor right exact).

Exercise 4.3. Check that the composition functor Z°o (-[0]) equals the identity functor from
C to itself. Also check that ¢} is a natural transformation from the composition (-[0]) o Z° to
the identity functor on Ch(C). Altogether, this defines an adjoint pair of functors, i.e., it defines
a bifunctorial bijection of Home(a, Z°(A)) and Homency(a[0], A) for all C-objects a and all C-
cochain complexes A. Thus Z° is right adjoint to the exact embedding of C in Ch(C).

Definition 4.4. For every Abelian category (C,addc), for every C-cochain complex A, the C-
coboundary quotient in degree 0 of A is the C-object A7 with its C-epimorphism pg 4 to A’
that is the cokernel of the C-morphism d;' from A-! to A% For every C-cochain morphism u
from A to a C-cochain complex A, since the composition of pg sou’ with d ! equals pg 4 composed

with d%l oy, this composition is zero. Thus, by the universal property of the cokernel, there is

-0 —=0
a unique C-morphism u° from A to A such that P’ 1° u0 equals @ o pf? 4 The C-morphism u° is
the C-coboundary quotient morphism associated to .

Exercise 4.5. Prove that for the identity C-cochain morphism Id4 from A to itself, also mo is

the identity morphism of A°. Also check that 2 is compatible with composition. Altogether, this
defines a functor  from Ch(C) to C. Check that this functor is additive and right exact.
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Exercise 4.6. Check that the composition functor ¥ o (-[0]) equals the identity functor from C
to itself. Also check that p? is a natural transformation from the identity functor on Ch(C) to the
composition functor (=[0]) o0. Altogether, this defines an adjoint pair of functors, i.e., it defines a

bifunctorial bijection of Home (ZO, a) and Homen(c) (4, a[0]) for all C-objects a and all C-cochain
complexes A. Thus  is left adjoint to the exact embedding of C in Ch(C).

Of course we can also incorporate shifts.

Definition 4.7. For every Abelian category (C,addc), for every integer m, the functor Z™ from
Ch(C) to C is the composition functor Z° o T™. In particular, this is right adjoint to the exact
embedding —[m] of C in Ch(C).

Now we can incorporate all shifts into a single C-cochain complex.

Definition 4.8. For every Abelian category (C,addc), the objects of the exact, full subcategory
CZ of Ch(C) are those C-cochain complexes such that every differential C-morphism is a zero
morphism, i.e., the C-cochain complex is ((A")nez, (0)nez)-

Exercise 4.9. Check that this is an exact, full subcategory, but that it is not (typically) stable
under extensions (so it is not a Serre subcategory). Check that for every additive functor F from
an Abelian category (C,addc) to an Abelian category (C,addg), the restriction of the additive
functor Ch(F) to the full subcategory CZ factors uniquely as an additive functor FZ from CZ% to
the exact, full subcategory DZ% of Ch(D). Deduce that ()% is a 2-functor from the 2-category of
strictly small Abelian categories to itself, and the exact, fully faithful embeddings are a natural
transformation from this 2-functor to Ch.

Definition 4.10. For every Abelian category (C,addc), for every C-cochain complex A, the C-
cocycles complex is the object Z(A) = ((Z™(A))nez, (0)nez) of the exact, full subcategory C%
of Ch(C), together with the C-cochain morphism ¢z 4 := (qg,A)mZ from Z(A) to A. For every

C-cochain morphism u from A to a C-cochain complex A, the C-cocycles morphism is the
C-cochain morphism Z(u) from Z(A) to Z(A) with Z(u)™ equal to Z™(u) for every integer n.

Exercise 4.11. Prove that gz 4 is a C-cochain morphism from Z(A) to A. Prove that Z is an
additive, left-exact functor from Ch(C) to C%. Prove that the restriction of Z to the full subcategory
CZ of Ch(CQ) is the identity functor on C%. Prove that ¢z is a natural transformation from the
composition functor of the embedding of CZ in Ch(C) with the functor Z to the identity functor
of Ch(C). Finally, prove that this defines an adjoint pair of functors, i.e., Homgz (A, Z(A)) is
bifunctorially bijective to HomCh(c)(Z,A) for every object A of Ch(C) and for every object A of
the exact, full subcategory CZ.
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Exercise 4.12. Check that Z commutes with the translation functor and the braid. Check that
Z commutes with additive functors between Abelian categories.

Of course we have the “opposite” results for the functor .

Definition 4.13. For every Abelian category (C,addc), for every integer m, the functor ™ from
Ch(C) to C is the composition functor ® o T™. In particular, this is left adjoint to the exact
embedding —[m] of C in Ch(C).

Definition 4.14. For every Abelian category (C,addc), _fgr every C-cochain complex A, the C-
coboundaries quotient complex is the object A := ((A )nez, (0)nez) of the exact, full subcat-
egory CZ of Ch(C), together with the C-cochain morphism p: 4 := (pffA)mZ from A to A. For
every C-cochain morphism v from A to a C-cochain complex g, the C-coboundaries quotient
morphism is the C-cochain morphism % := (™) ez from A to A.

Exercise 4.15. Prove that p. 4 is a C-cochain morphism from A to A. Prove that = is an additive,
right-exact functor from Ch(C) to C%. Prove that the restriction of = to the full subcategory C# of
Ch(CQ) is the identity functor on CZ. Prove that p- is a natural transformation from the identity
functor of Ch(C) to the composition functor of the embedding of C* in Ch(C) with the functor
=. Finally, prove that this defines an adjoint pair of functors, i.e., Homgz (A, A) is bifunctorially
bijective to Homeh(cy (A4, A) for every object A of Ch(C) and for every object A of the exact, full

subcategory CZ.

Exercise 4.16. Check that Z commutes with the translation functor and the braid. Check that
Z commutes with additive functors between Abelian categories.

Finally, this brings us to our main functor on cochain complexes.

Definition 4.17. For every Abelian category (C,addc), for every C-cochain complex A and for

every integer n, the C-cohomology object in degree n is the cokernel H"(A) of d’! from A" o
Z"™(A) with its natural epimorphism pf; , from Z"(A) to H"(A). Because coimages equal images
in the Abelian category, also H"(A) is the kernel of d’ from A" to Zn+1(A) with its natural
monomorphism ¢% , from H"(A) to A" Because this is defined in terms of kernels and cokernels
of natural transformations, this extends automatically to a functor from Ch(C) to C. The C-
cohomology complex of A is the object ((H"(A))nez, (0)nez) of CZ. This is a functor H from
Ch(C) to CZ%Z. For every morphism u of C-cochain complexes from a C-cochain complex A to
a C-cochain complex A, the morphism u is a quasi-isomorphism if (and only if) the induced
C-morphism H"(u) from H"(A) to H"(A) is an isomorphism for every integer n.
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Exercise 4.18. Check that H™ and H are additive, half exact functors. Check that gy and py are
natural transformations. Check that these

Exercise 4.19. Check that H commutes with the translation functor and the braid. Check that
H commutes with additive functors between Abelian categories.

5 Truncations of complexes

Definition 5.1. For every Abelian category (C,addc), for every C-cochain complex A, for every
integer n, the brutal truncation of A in degrees < n, respectively, in degrees > n, is the C-cochain
complex 0<*(A), resp. 0>"(A), with o=7(A)™ equals A for all m < n, resp. o>"(A)™ equals A for all
m >n, and o<"(A)™ equals 0 for all m > n, resp. o="(A)™ equals 0 for all m < n. For all differentials
between nonzero terms of the truncation, the differentials are the same as the differentials of A.
For every morphism u of C-cochain complexes from A to a C-cochain complex A, the brutal
truncation of u in degrees < n, resp. in degrees > n, is the morphism of C-cochain complexes
o< (u) from o=n(A) to o=(A), resp. o>"(u) from o>"(A) to ¢>"(A) whose C-morphism between
nonzero objects of the truncations are the same as u if the objects are both nonzero.

Exercise 5.2. Check that both 0=7(A) and ¢>"(A) are C-cochain complexes, and check that both
o<"(u) and o>"(u) are morphisms of C-cochain complexes. Check that o=" and o*" are exact,
additive functors from Ch(C) to itself. Even better, o< is a strictly surjective, exact, additive
functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory Ch*"(C) of complexes
concentrated in degrees < n. Similarly, 0>" is a strictly surjective, exact, additive functor (that is
neither full nor faithful) from Ch(C) to the Serre subcategory Ch*"(C) of complexes concentrated
in degrees > n.

Definition 5.3. For every Abelian category (C,addc), for every C-cochain complex A, for every
integer n, the good truncation of A in degrees < n, respectively, in degrees > n, is the C-cochain
complex 75"(A), resp. 7>"(A), that is the same as 0<"(A), resp. as 0>"(A), except in degree
n, where o0=?(A)" equals the subobject Z"(A) of A", resp., where 02"(A)" equals the quotient
object A" of Ar. For every morphism u of C-cochain complexes from A to a C-cochain complex
A, the good truncation of u in degrees < n, resp. in degrees > n, is the morphism of C-cochain
complexes 7<"(u) from 7<7(A) to 7<n(A), resp. 7>"(u) from 7>"(A) to 7>"(A), that is the same
as 0<"(u), resp. as 0="(u), except in degree n, where 7<"(u)" equals Z"(u), resp. where 7"(u)"
equals u". The good monomorphism from 75"(A) to A is the morphism of C-cochain complexes
that is the identity in degrees < n, is the zero map in degrees > n, and is the natural transformation
from Z"(A) to A" in degree n. The good epimorphism from A to 72"(A) is the morphism of
C-cochain complexes that is the identity in degrees > n, is the zero map in degrees < n, and is the
natural transformation from A” to the quotient A" in degree n.

7
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Exercise 5.4. Check that both 7<"(A) and 0>"(A) are C-cochain complexes, and check that both
7="(u) and 72"(u) are morphisms of C-cochain complexes. Check that 7= and 72" are exact,
additive functors from Ch(C) to itself. Check that the good monomorphism, resp. the good
epimorphism, defines a natural transformation of functors. Check that 7<" is a strictly surjective,
left exact, additive functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory
Ch="(C) of complexes concentrated in degrees < n. Similarly, check that 72" is a strictly surjective,
right exact, additive functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory
Ch*"(C) of complexes concentrated in degrees > n.

6 Cochain homotopy

Definition 6.1. For every Abelian categoryN(C, addc), for every C-cochain morphism u from a C-
cochain complex A to a C-cochain complex A, a C-homotopy from u to 0, or a C-null homotopy
of u, is a sequence (8")nez of C-morphisms s™ from A" to A"! such that, for every integer n,

n—1 n n+1 mn _
dZ os"+s" " od =

If such exists then u is C-null homotopic or C-homotopic to 0. More generally, for C-cochain
morphisms v and v from A to A, a C-homotopy from u to v is a C-homotopy from u —wv to 0. If
such exists then u is C-homotopic to v.

Exercise 6.2. For C-morphisms u and v from A to A, check that for every C-null homotopy s of
u and for every C-null homotopy ¢ of v, the sum s+1¢ is a C-null homotopy of v+ wv. Thus, the null
homotopic C-cochain morphisms form an Abelian subgroup NullHomch(c)(A, Z) of Homeh(c) (A4, Z),
and C-homotopy is an equivalence relation on Homen(c) (A4, Z) Check that also precomposing and
postcomposing by C-cochain morphisms sends C-null homotopies to C-null homotopies. Thus, the
null homotopic C-cochain morphisms are an “ideal” for both precomposition and postcomposition.

Use this to prove that there exists a (strictly) surjective, full (but not faithful) additive functor
Ch(C)
K(C)

class of Ch(C), and such that Homyc)(A, A) equals the quotient Abelian group of Homen(c) (4, A)
by the subgroup NullHomch(c)(A, A) for all objects A and A.

quot from Ch(C) to an additive category K(C) whose objects class is the same as the objects

Definition 6.3. For every Abelian category (C,addc), for all C-cochain complexes A and A, a C-
homotopy equivalence of A and A is an ordered pair (u,v) of morphisms of C-cochain complexes
u from A to A and v from A to A such that v o u is homotopic to Id4 and u o v is homotopic to
Id, i.e., u and v give an inverse pair of isomorphisms in the homotopy category K(C).
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Exercise 6.4. Prove that for every additive functor F from an Abelian category (C,addc) to an _
Abelian category (D, addp ), the additive functor Ch(F) maps every Abelian subgroup NullHomch(c(A, A)

of Homen(cy (A4, A) to the Abelian subgroup NullHomcpp) (Ch(F)(A), Ch(F)(A)) of Homcnm)(Ch(F)(A), Ch(F

Exercise 6.5. For additive functors F and F from (C,add¢) to (D, addp), for every C-null homo-
topy s of a C-cochain morphism u from A to A, prove that Ch(6) o Ch(F)(s) equals Ch(G)(s) o
Ch(0) as a D-null homotopy of the D-cochain morphism Ch(#) ;o Ch(F)(u) = Ch(G)(u) o Ch(0)a
from Ch(F)(A) to Ch(G(A).

Exercise 6.6. For every C-null homotopy s of a C-cochain morphism u from a C-cochain complex
A to a C-cochain complex A, for every integer n, prove that s™ restricts to a C-morphism from
Z(A)" to A*~! such that Z(u)" equals d’% ' o s™. Similarly, prove that the composition of s"*! with

—n —n
the projection to A is a C-morphism from A" to A whose precomposition with d’ equals @".
Finally, prove that the induced morphism H(u)" from H"(A) to H"(A) is a zero map. Deduce

that the cohomology functor H from Ch(C) to C# factors uniquely through an additive functor
from K(C) to CZ.

7 The snake lemma

For each Abelian category (C,addc) and each morphism of C-short exact sequences,

qas Po

X: 0 a’ a a” 0
b e
S0 a =g P g 0

denote the kernels of f’, respectively f, f”, by

it Ky —a, resp. i:Ky—a, " K —a",
and denote the cokernels of f' resp. f, f”, by

s':a@ > O, resp. s:a—>Cy, s":a7" > CF.

Because §o f’ equals foq, also fo(go1i) equals o (f’ 0i’), which equals §o 0, i.e., it equals 0.
Thus, by the universal property of the kernel, there is a unique morphism

C]K:K;s*Kd)

9
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such that 7 o qx equals q o ¢’. For a similar reason, there is a unique morphism
pr Ky~ K
such that " o py equals poi. And by analogous arguments there are unique morphisms
qc:Cy —~ Cy, po:Cy— CY

such that go o s’ equals s o @, and pc o s equals s” op. To summarize, we have that the following
diagram is commutative.

PK

/ 49K 1"
K¢ K, K<¢>
Z/ 7/ =17
: 0 —— d 9 a b a’" — 0
¢l f f £
500 — @ — 4@ —— V' —— 0
q P
s/ S s//
Cl C Cll
¢ g ¢ e ¢

By hypothesis, both f”op and po f are equal. Denote by ¢ this common morphism
t:a—-7a".
Denote the kernel of ¢ by
j : Kt —> Q.

Now f” o (poj) equals t o j, which is 0. By the universal property of the kernel of f”, there is a

unique morphism
]_? : Kt - Kgf

such that " op equals po j. Similarly, po (fo7) equals t o j, which is 0. By the universal property
of the kernel of p, there is a unique morphism

f:K; -

such that o f equals f o j.

10
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Lemma 7.1 (The Snake Lemma). For every Abelian category (C, addc), for every morphism ¢ of
C-short exact sequences as above, all of the following hold.

(i) The morphism qr is a monomorphism, and the morphism pc is an epimorphism.
(i1) The image of qx equals the kernel of px, and the kernel of pc equals the image of qc.

(111) There is a unique morphism d, K’E’f - C’Ef such that 04 op equals s’ o f as morphisms from
Kt to Cé)

(iv) The image of px equals the kernel of 4, and the kernel of go equals the image of 0.

In summary, the following long sequence is exact,

/ aK PK 17 9
0 K, K, K
C C o 0.
5¢ ¢ qc ¢ pc ¢

This entire situation is often summarized with the following large diagram.

0 0 0
/ 9K PK ” 0
0 —— K¢ K, K¢ — s ..
: 0 — d g a L a’" —— 0
¢l il f i
$: 0 — @ —> @ —— @' —— 0
q P
! 144
(5¢ Cd) qc C¢ bc C¢ O
0 0 0

11
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There are many variants of the snake lemma. Here is one. Consider a commutative diagram with
exact rows, but where the top row is not left exact, and where the bottom row is not right exact.

II: b © a —2 5 g 0
wl F’l Jf lF”
Im: 0 T —— a — b

G P

Define a’ to be the image of the morphism () from 0’ to a, so that the induced morphism ¢ from a’
to a is a monomorphism. Define f’ from a’ to @ to be the morphism induced by F’. Define @ to
be the image of the morphism P from @ to b”, so that the induced morphism p from @ to @ is an
epimorphism. Define f” to be the morphism from a” to @’ induced by F".

With these substitutions, we are again in the setting of the snake lemma. Also, the induced
morphism from Ker(F') to Ker(f’) is an epimorphism, since the morphism from ¥’ to a’ is an
epimorphism. Similarly, the morphism from Coker(f”) to Coker(F”) is a monomorphism, since
the morphism from @ to b” is a monomorphism. Altogether this gives the following.

Corollary 7.2. For every Abelian category (C, addc), for every commutative diagram of C-objects

. P =~ .
with exact rows, I — 11, as above, there is a long exact sequence,

Ker(F') —» Ker(f) - Ker(F") LN Coker(F") - Coker(f) - Coker(F").

Now let ¥ = (A’ 5 A, A 5 A") be a short exact sequence in the Abelian category Ch(C). Then
for every integer n we have a C-commutative diagram with exact rows as follows.

D @y L5 A I (@) —— 0

dz l dr, l l an l a,

Applying the previous corollary gives the following.

Corollary 7.3. For every Abelian category (C, addc), for every short sequence (A’ > A, AL A"
in Ch(C), for every integer n, there is an exact sequence, functorial in 3,

n 5” n+1 n+1
H (A H(Q); H(A) —2 H(p) H"(A") —= H™1(A) " (ql H™1(A) " (p); H1(A"):

12
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8 Delta functors

Definition 8.1. For Abelian categories (C,addc) and (D, addp), a d-functor from (C,add¢) to
(D,addp) is an ordered pair R = ((R")nez, (0%)nez) of a sequence of additive, half exact functors
R" from (C,addc) to (D,addp) and a sequence of natural transformations §" from the composite
functor R™ o7 to the composite functor R**! o7’ from Cg to D such that for every C-short exact

sequence X = (@ 4 a,a LN a'") and every integer n, the following complex is exact:

R" (q) R" (p)

( /) (CL) ( //) Rn+1( /) Rn+1( /)

For d-functors R and S, a morphism of j-functors from R to S is a sequence (6"),.z of natural
transformations 6" from R" to S™ such that 6% o 0™ equals 0"+ o §% for every integer n. For every
integer m, for every d-functor R, if R™ is a zero functor for all integers n < m, then the J-functor is
concentrated in degrees > m. Similarly, for every integer m, if R" is a zero functor for all integers

n >m, then the J-functor is concentrated in degrees < m.

Example 8.2. By the previous corollary, for every Abelian category (C,addc), the ordered pair
((H™)pez, (0™)nez) is a d-functor from Ch(C) to C. More generally, for every integer m, let R™ be
the zero functor for n < m, let R™ be the functor Z™, and let R™ be H™ for n > m. This also gives
a o-functor, usually denoted R" = H" o 1»,,,, concentrated in degrees > m. Similarly, if we define R™
to be the zero functor for n > m, define R™ to be ", and define R™ to be H™ for n < m, then this
gives a d-functor, usually denoted R™ = H™ o 7,,,, concentrated in degrees < m.

Historically, there were many important known examples of J-functors before any thorough study
of all d-functors, cf. Homological algebra by Cartan and Eilenberg and Homology by MacLane. The
key unifying notion, introduced by Grothendieck in his Tohoku article, is as follows.

Definition 8.3. A J-functor R concentrated in degrees > 0 is universal if (and only if) for every
d-functor S concentrated in degrees > 0 and for every natural transformation #° from R° to S°, there
exists a unique morphism 6 of §-functors from R to S extending 6°. A J-functor R concentrated
in degrees > 0 is effaceable if (and only if), for every object a of C and for every strictly positive
integer n > 0, there exists a monomorphism a — b such that R"(:) is a zero morphism.

Similarly, a 0-functor R concentrated in degrees < 0 is universal if (and only if) for every J-functor
S concentrated in degrees < 0 and for every natural transformation 6° from S° to R°, there exists a
unique morphism @ of §-functors from S to R extending #°. A J-functor R concentrated in degrees
<0 is coeffaceable if (and only if), for every object a of C and for every strictly negative integer
n <0, there exists an epimorphism b - a such that R™(7) is a zero morphism.

13
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Lemma 8.4 (Grothendieck’s criterion). Every d-functor concentrated in degrees >0 that is efface-
able is universal. Fvery d-functor concentrated in degrees <0 that is coeffaceable is universal.

Proof. Let R and S be o-functor from (C,add¢) to (D,addp) concentrated in degrees > 0. Let 6°
be a natural transformation from R° to SY. Assume that R is effaceable. By way of induction, let
n be a nonnegative integer, and assume that there exists a unique sequence (69, ...,0") of natural
transformations 6™ from R™ to S™ for 0 < m < n that are compatible with the connecting maps
00, ...,0m 1. Since R™! is effaceable, for every object a’ there exists a monomorphism, ¢ : a’ < a,
such that R"*1(q) is zero. Denote the cokernel of ¢ by p:a - a”. Then 3 = (¢q,p) is a C-short
exact sequence. Thus, there exists a commutative diagram,

Ri(a") =25 Ri(a) — Rrl(a’) —— R*l(a)

92" J’ 02 J’

Sn(aq’ Sn(a Sn+l(qr Sn+l(q
(@) < 9@ . (@) S o)
Because d7; 5, is a cokernel of R™(p), there is a unique D-morphism 67! from R"*!(a’) to S™*!(a’)

such that 9"*1 o 0%y, equals g o 67, It remains to show that 67" is independent of the choice of
monomorph1sm and the D- morphlsms 67+! form a natural transformatlon from R"*! to S™*+1.

For C-monomorphisms ¢; : a’ = a; such that R"*(¢;) is zero, for i = 1,2, define ¢ to be the
monomorphism (¢1,¢s) from @’ to a = a; ® ay. Then for the projection pr; from a to a;, we have
pr; o ¢ equals ¢;. Denote by p:a - a” and p; : a; - a! the cokernels of ¢ and ¢;, and denote by
pr!’ the unique epimorphism from a” to a;' such that pr! op equals p; o pr;, for 7 = 1,2. This defines
C-short exact sequences ¥ = (¢,p) and %, = (¢;,p;) for i = 1,2, as well as morphisms (Id,, pr;, pr})
of C-short exact sequences from ¥ to ¥; for ¢ = 1,2. Clearly it suffices to check that the induced
morphism 67! from R™*!(a’) to S™*!(a’) equals each morphism 7! induced by g;.

By construction, both 07! 0%, i, equals 0% 007, and 071 0d7 1 equals 0% . 092;,, fori=1,2. Viathe
naturality of the connecting morphisms in X, we have 0% 5, o R*(pr;’) equals 6 y, and dg 5, o S™(pry’)
equals 05, for i = 1,2. Precomposing with R”(pr") the 1dent1ty 0"*1 00y, =05y, 00, gives the
identity 07 o 0%, =04y 00 o R™(pry). Since 6" is a natural transformatlon from R" to Sn, we
also have 6", o R*(pr}) equals ZS”(prg’ ) o0, so that 05y 007, 0 R*(pr}’) equals 05y, o S™(pr}’) o0}
Since also 5252 o S"(pr! equals dgy, this finally gives that é”*l o0 dp s equals dgy o 07, Therefore
g7+ o 6}’}{2 equals 9"*1 o 5%2 for i = 1,2. Since % Ry is an eplmorphlsm it follows that 9”* equals

9"*1 equals 9”,*21, i.e., the D- morphlsm o+t is 1ndependent of the choice of monomorphlsm q from
¢/ to a such that R"+ 1(q) equals a zero morphlsm.

A similar “diagram chasing” argument proves that 67! is a natural transformation. O

14
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Corollary 8.5. The d-functor (Z° H', H?,...) concentrated in degrees > 0 from Ch(C) to C is
universal. Similarly, the §-functor (..., H2, H=1,0) concentrated in degrees <0 is universal.

Proof. For every C-complex A’, for every nonnegative integer n, define A to be the same complex
as A’ except in degree n, where A" equals the direct sum (A’)" @ Z7(A’). The differentials of A
equal the differentials of A’ except for d”!, which equals the morphism (d7%;',0) from (A")"! to
(A"ne Zn(A"), and for d7, which equals d”, on the summand (A’)" and which equals the inclusion
on the summand Z"(A’). Thus, A’ is naturally a subcomplex of A, with cokernel complex equal to
Z"(A")[n]. By construction, H™'(A) is zero. Thus, the d-functor (Z° H', H?,...) is effaceable.

A similar argument applies for (..., H 2, H=1,?%), or one can formally deduce this case from the
previous case by passing to opposite Abelian categories. O

9 Mapping cone complexes

Definition 9.1. For every Abelian category (C,addc), for every morphism u of C-cochain com-
plexes from A to A, the mapping cone complex Cone(u) of u is the C-cochain complex with
Cone(u)" = A" @ A®("*1) for every integer n, and with differential dg, ., from A" & A®("*D to

Ar+l @ A®(+2) equal to the following 2 x 2-matrix of C-morphisms,
n n+1
0" —dy

od
Co e(u) Cone(u)
that Cone(u) is a C-cochain complex. Prove that the sequence of epimorphism / projections Plone(u)

from A" @ A®(+1) to A®(+1) defines a morphism Pcone(u) from Cone(u) to the translate T'(A) =
A[+1]. Similarly, prove that the sequence of monomorphisms UCone(u) from A" to An @ A®(n+1)

Exercise 9.2. Prove that the composition d** is a zero morphism for every integer n, so

defines a morphism gcone(n) from A to Cone(u). Altogether, this defines a short exact sequence
2w = (Gcone(u)> Pcone(w)) of C-cochain complexes that is term-by-term split, but typically not split
as a short exact sequence in the category Ch(C). Finally, for the associated long exact sequence
of cohomology, check that the connecting C-morphism 62 from H"(T(A)) = H"*1(A) to H™+(A)

equals H"*1(u) for every integer n.

Exercise 9.3. Prove that the mapping cone complex is functorial in u: for every morphism v of
C-cochain complexes from B to B, for all morphisms of C-cochain complexes f from A to B and f
from A to B such that fou equals vo f, then there is a unique morphism Cone(f, f ) of C-cochain
complexes from Cone(u) to Cone(v) such that (f,Cone(f, f),T(f)) is a morphism of short exact
sequences in Ch(C) from ¥, to X,.
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Definition 9.4. For every Abelian category (C,addg), for every morphism u of C-cochain com-
plexes from A to A, the mapping cone null homotopy of T'(u) © pcone(u) is (5" )nez from Cone(u)
to T'(A) with s from A" @ A®("+1) to A" equal to the first projection.

Exercise 9.5. Check that this is a null homotopy of T'() 0 Pcone(n). Check that this null homotopy
is functorial in u. Better, check that for every C-cochain complex B, for every morphism of C-
cochain complexes f from B to T'(A), and for every null homotopy ¢ of T'(u) o f, there exists a
unique morphism (¢, f) of C-cochain complexes from B to Cone(u) such that both pcone(u) © (¢, f)
equals f and so (¢, f) equals t.

10 Resolutions

Definition 10.1. For every Abelian category (C,addc), for every C-object a, an injective com-
plex for a is a C-cochain complex I concentrated in degrees > 0 and a morphism e of C-cochain
complexes from a[0] to I. A resolution of a is a C-cochain complex A and a quasi-isomorphism e
from a[0] to A. A injective resolution for a is a resolution for a that is also an injective complex.

Lemma 10.2. For every Abelian category (C,addc), for every resolution of a C-object, a[0] = A,

respectively, for every injective complex for a C-object, a[0] 5 1, also the shifted brutal trunca-
dO

tion gives a resolution, A°/q(a) = T(0>A), resp. the shifted brutal truncation gives an injective

dO
complex, 19/q(a) = T(o2").
Proof. This follows from the definitions. m

Lemma 10.3. For every Abelian category (C,addc), for every C-morphism u from an C-object
a to a C-object @, for every resolution of a, say a[0] 5 A, for every injective complex for @, say
alo0] 5 1, there exists a morphism v of C-cochain complexes from A to I such that voe equals €ou.
If € is an injective resolution of @, then v is unique up to null homotopy.

Proof. Since e from a to A° is a monomorphism, and since I° is an injective object of C, for the
C-morphism €ou from a to I° there exists a C-morphism v° from AY to I° such that v° o ¢ equals
qou.

By way of induction, let n be a nonnegative integer such that there exist a sequence (v9,... v")
of C-morphisms v™ from A™ to I™ that commute with the differentials and extending the given
morphism u. The precomposition of the morphism d7 o v™ from A" to I™*! by the morphism d7!
from A" to A" equals d} o d7~! o v™! by the hypothesis on the sequence, i.e., the precomposition
is zero. Thus, d} o v™ factors uniquely through a C-morphism from A"/d"1(A"1) to I"*!. Since

16
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e is a resolution, the natural map from A"/d%'(A"!) to the subobject Z(A)"*! of A"*! is an
isomorphism, i.e., the morphism d% from A"/d" (A" 1) to A"*! is a monomorphism. Thus, since
I"*1 is an injective object, there exists a C-morphism v™*! from A™*! to I"* such that v"*1 o d’}
equals d? o v™. Thus, by induction on n (and by the countable variant of the Axiom of Choice),
there exists a C-cochain morphism v from A to I such that v o e equals €o u.

Let v; and vy be C-cochain morphisms from A to I such that both v(f oe and 'Ug oe equal €ou.
Assume further that € is an injective resolution of @. Then v9-2? is zero on the subobject e(a) of A°,
hence vy —v; factors through the quotient A°/e(a). Since ¢ is a resolution of a, the C-morphism d%
from A%e(a) to A' is a monomorphism. Since I° is an injective object, there exists a C-morphism
st from A! to I° such that v — o) equals s! o dY.

By way of induction, let n be a nonnegative integer such that s! extends to a sequence (s!,. .., s"+!)
of C-morphisms s™*! from A™*! to I"™ with vJ* —v]* = d7"! o s™ + sm* Lo d} for m =0,...,n. The
composition (v§*! —vP*t) o d% equals dff o (v§ — v]') since v and vy are morphisms of C-cochain
complexes. By the hypothesis on the sequence, vy — v7 equals d}™ o s® + s"*1 o d%. Thus, the
composite d o (v§ —v7]) equals d7 o s"*1od’. Therefore the difference, (v§ —v7) —d? o s"*! is zero on
the subobject d (A™) of A1, So it factors through a C-morphism from the quotient A™*!/d" (A")
to I"*1. By the hypothesis that ¢ is a resolution of a, the differential d*! from A™!/d"(A") to
A2 is a monomorphism. Since I™*! is an injective object, there exists a C-morphism s™*2? from
An*2 to [™+1 such that vf — o] equals d} o s"*! + s"*2 0 d%*1. Thus, by way of induction, there exists
a C-null homotopy from vy to vs. O

Corollary 10.4. For every Abelian category (C, addc), for every C-object a, for all injective reso-

lutions a[0] = I and a[0] > T of a, there exists a C-homotopy equivalence from I to T commuting
with e and €. In particular, this is a quasi-isomorphism.

Lemma 10.5 (Horseshoe Lemma). For every Abelian category (C, addc), for every C-short exact
sequence (a/ > a,a 2 a"), for every injective resolution a’[0] < I', and for every injective res-

olution a"[0] <, 1", there exists a morphism v of C-cochain complexes from I" to the translated
injective resolution I'[+1] and a null homotopy t of voe” op from a"[0] to I' such that for the in-
duced morphism of C-cochain complexes e = (t,e"op) from a[0] to Cone(v)[-1], the triple (¢',e,e")
is a morphism of short exact sequences in Ch(C) from (q[0],p[0]) to the mapping cone short exact

(ICone(v)[fl] pCone(v)[fl] . e
sequence (I' ————— Cone(v)[-1], Cone(v)[-1] ————— I""). In particular, a[0] — Cone(v)[-1]

s an injective resolution.

Proof. Since ¢ is a monomorphism, and since (I')Y is an injective object, associated to the C-
morphism e’ from a’ to (I')Y there exists a C-morphism ¢! from a to (I')? with ¢! o ¢ equal to
e’. Since €’ is an injective resolution of a’, also the translated brutal truncation gives an injective

17


http://www.math.stonybrook.edu/~jstarr/M535s26/index.html
mailto:jstarr@math.stonybrook.edu

MAT 535 Algebra 11 Jason Starr
Stony Brook University Spring 2026

1
resolution, (17)°/e’(a’)[0] o, o2t (I")[+1]). Now ¢! induces a morphism from a/q(a’) to (1")°/e’(a’),
i.e., a C-morphism u from a” to (I")°/e’(a’). Thus, by the previous lemma, there exists a morphism
of Ch(C)-cochain complexes, well-defined up to null homotopy, from the injective resolution 1" to
the translated brutal truncation o='(I')[+1]. Since the brutal truncation is a subcomplex, this
also defines a morphism wu from I” to I’[+1]. By construction, ¢ is a null homotopy of uwoe” op
from a[0] to I'[+1]. Thus, there is an induced morphism of C-cochain complexes, e = (t,¢e" o p),
from a[0] to Cone(u)[-1]. Altogether, this defines a morphism of short exact sequences (€', e,e’)
from (¢[0],p[0]) to the mapping cone short exact sequence. In particular, since both e’ and e” are
resolutions, by the long exact sequence of cohomology associated to the J-functor H, also e is a
resolution of a. Finally, since the terms of the mapping cone are, term-by-term, direct sums of the
terms of I’ and [”, and since a direct sum of two injective objects is an injective object, also e is
an injective resolution of a. O

By passing to opposite categories, we get all of the analogous results for projective resolutions as
well.

11 Derived functors

The slogan is that, if C has enough injective objects (so that we can form injective resolutions),
then every object has an injective resolution that is unique up to homotopy equivalence, and for
every short exact sequence of objects, there is an associated mapping cone short exact sequence of
injective resolutions. Thus, if we modify our Abelian category C by first passing to the Abelian
category Ch(C), then passing to the additive category K*(C) (the full subcategory of K(C) whose
objects are those complexes that are bounded below), and then passing to the additive category
D*(C) where we “localize” at all quasi-isomorphisms, then injective resolutions form a “functor”
from C to D"(C) that sends short exact sequences to mapping cone sequences.

There are set-theoretic issues when we localize a category at a non-small multiplicatively closed
class of morphisms (the quasi-isomorphisms in this case), but these can be resolved. More seriously,
the category D*(C) is not typically an Abelian category. However, the mapping cone sequences
gives it a structure called a triangulated category, and the cohomology object functors are still well-
defined on this category (since quasi-isomorphisms preserve cohomology objects by definition). The
injective resolutions “functor” sends short exact sequences to distinguished triangles, i.e., triangles
that are quasi-isomorphic to mapping cone triangles. For every left exact additive functor F from
(C,addc) to another Abelian category (D, addc), there exists an associated triangulated functor
/ ezact functor RF from D*(C) to D*(D) that satisfies an appropriate adjointness condition. All
of this was worked out by Jean-Louis Verdier in his thesis (supervised by Grothendieck). This was
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generalized by a to more general context by Daniel Quillen (and many others, particularly Michel

André).

Note that the cohomology objects of RF give a well-defined sequence of functors. Since the coho-
mology objects of complexes form a d-functor, the cohomology objects of RF extend to a d-functor.
These equal the J-functors that were originally studied by Saunders MacLane and Samuel Eilenberg
(using a very different approach), and then investigated more fully by Cartan and Eilenberg. This
approach was finally put in the form above by Grothendieck in his Tohoku paper. This d-functor
is enough of RF for many purposes, especially when combined with other techniques such as the
Grothendieck spectral sequence.

Theorem 11.1 (Right Derived Functors). For every Abelian category (C,addc) that has enough
injective objects, for every left exact, additive functor ¥ from (C,addc) to an Abelian category
(D, addp), there exists a universal §-functor R*F from (C, addc) to (D, addp) extending RF = F.
Moreover, for every object a of C and for every injective resolution a[0] 5 I, the D-object
R"F(a) equals the cohomology object H*(Ch(F)(I)), and for every morphism (u,v) from an in-
jective resolution a[0] = I to an injective resolution a[0] — I, the D-morphism R"F(u) from
R"F(a) = H*(Ch(F)(I)) to R"F(@) = H*(Ch(F)(I)) equals H*(Ch(F)(v)).

Proof. The statement of the theorem dictates the definition of R*F. It remains to prove that this
is well-defined for each object a independent of the choice of injective resolution a[0] 5 I, that this
gives a d-functor, and that this d-functor is universal.

Since injective resolutions are unique up to homotopy equivalence, and since homotopy equivalence
is preserved by Ch(F), also the D-cochain complex Ch(F)([I) is well-defined up to homotopy equiv-
alence. Since homotopy equivalences are quasi-isomorphisms, the cohomology objects of Ch(F)([I)
are well-defined for each object a independent of the choice of injective resolution. Similarly, for
every morphism u from a to @, by the lemma there exists an induced morphism v from the injective
resolution [ to the injective resolution T such that voe equals e’ ou. Moreover, v is well-defined up
to null homotopy. Since Ch(F') preserves null homotopies, also Ch(F)(u) is well-defined up to null
homotopy. Since null homotopies induce zero morphisms of cohomology objects, the induced mor-
phisms H"(Ch(F)(u)) are well-defined in terms of v, independent of the choice of u. Altogether,
the functors R"F are well-defined.

For every C-short exact sequence, by the Horseshoe Lemma, there is an associated mapping cone
short exact sequence of injective resolutions. Since Ch(F') preserves mapping cones, this gives a
mapping cone short exact sequence in Ch(D), in fact even in the Serre subcategory Ch*’(D). Since
H is a é-functor concentrated in degrees > 0 on Ch**(D) (even a universal -functor concentrated
in degrees > 0), we get well-defined connecting maps 6% that extend the sequence (R"F),z,, to a
o-functor concentrated in degrees > 0.
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Finally, by construction, for every injective object 19 of C, we can choose the injective resolution
to be 1°[0] LN I°[0], so that R"F(I°) is zero for every strictly positive integer n. Since there
are enough injective objects in C, for every object a, there exists a monomorphism a 4 1. For
every strictly positive integer n, the induced morphism R"F(q) from R"F(a) to R*"F(I°) is a zero
morphism since R"F(I?) is a zero object. Thus, by Grothendieck’s criterion, the J-functor R*F
concentrated in degrees > 0 is universal. O]

Of course we can develop all of this instead using projective resolutions and right exact functors.
In fact this follows formally for the development above by passing to opposite categories.

Theorem 11.2 (Left Derived Functors). For every Abelian category (C,addc) that has enough
projective objects, for every right exact, additive functor F from (C,addc) to an Abelian category
(D, addp), there exists a universal §-functor L F concentrated in cohomological degrees < 0, hence in
homological degrees > 0, from (C, addc) to (D, addp) extending LoF =F. Moreover, for every object
a of C and for every projective resolution P = a[0], the D-object L,F(a) equals the cohomology
object H-"(Ch(F)(P)), and for every morphism (u,v) from a projective resolution P = a[0] to
an projective resolution P - @[0], the D-morphism L,F(u) from L,F(a) = H(Ch(F)(P)) to
L,F(a) = H(Ch(F)(P)) equals H"(Ch(F)(v)).

It is crucial to recognize that, both in the early investigations by Eilenberg-MacLane, the subsequent
study by Cartan-Eilenberg, and especially in the applications by Grothendieck, constantly it is
necessary to prove existence and universality of -functors for Abelian categories that do not have
enough injective objects or do not have enough projective objects (or where the categories do have
enough such objects, but these are unsuitable for proving certain properties of the J-functors).
In most such settings, we can still use Grothendieck’s criterion. For some applications, the best
solution is to instead pass to triangulated categories and the total derived functors, since these exist
under weaker hypotheses. Moreover, many theorems in the past fifty years have shown that the
derived category itself, with its many structures (that we have barely touched on), is an important
object in all areas of mathematics.
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