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MAT 535 Cochain Complexes

1 Introduction

These are notes on cochain complexes and δ-functors supplementing the material from our textbook.
Some of the notes are cut-and-pasted from previous courses I taught. Much of the notes are exercises
working through the basic results about these notions.

2 The Abelian category of complexes

Definition 2.1. For every Abelian category (C, addC), a C-cochain complex is an ordered pair
A = ((An)n∈Z, (dnA)n∈Z) of a sequence of C-objects An and of a sequence of C-morphisms dnA from An

to An+1 such that dn+1A ○d
n
A equals 0 for every n in Z. For all C-cochain complexes ((An)n∈Z, (dnA)n∈Z)

and ((Ãn)n∈Z, (dnÃ)n∈Z), a C-cochain morphism from ((An)n∈Z, (dnA)n∈Z) to ((Ã
n)n∈Z, (dnÃ)n∈Z) is a

sequence (un)n∈Z of C-morphisms un from An to Ãn such that un+1 ○ dnA equals dn
Ã
○ un for every n

in Z. This defines a category, denoted Ch(C). Moreover, the addition operation addC induces an
addition operation addCh(C).

Exercise 2.2. For every C-cochain morphism u from a C-cochain complex A to a C-cochain
complex Ã, for every integer n let Ker(u)n with its monomorphism qnu to An be the kernel of
un, Prove that there is a unique sequence (dn

Ker(u))n∈Z of C-morphisms dn
Ker(u) from Ker(u)n to

Ker(u)n+1 such that qn+1u ○ dn
Ker(u) equals dnA ○ q

n
u for every integer n. Deduce that dn+1

Ker(u) ○ d
n
Ker(u)

equals the zero morphism for every integer n, hence ((Ker(u)n)n∈Z, (dnKer(u))n∈Z) is a C-cochain

complex Ker(u), and (qnu)n∈Z is a C-cochain morphism qu from Ker(u) to A. Prove that this is a
kernel of u in the additive category Ch(C).

Exercise 2.3. Continuing the previous exercise, let Coker(u)n with the epimorphism pnu from
Ãn to Coker(u)n be the cokernel of un for each integer n. Prove that there is a unique sequence
(dn

Coker(u))n∈Z ofC-morphisms dn
Coker(u) from Ãn to Coker(u)n such that both ((Coker(u)n)n∈Z, (dnCoker(u))n∈Z)
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is a C-cochain complex Coker(u) and (pnu)n∈Z is a C-cochain morphism from Ã to Cokern(u). Prove
that this is a cokernel of u in the additive category Ch(C).

Exercise 2.4. Iterate kernel and cokernel to construct images and coimages. Finally, use the (AB2)
axioms for C to deduce the (AB2) axioms for Ch(C). Altogether, this proves that the additive
category (Ch(C), addCh(C)) is an Abelian category.

Definition 2.5. For every additive functor F from an Abelian category (C, addC) to an Abelian cat-
egory (D, addD), for every C-cochain complex A, the F-associated D-cochain complex Ch(F)(A)
has Ch(F)(A)n equal to F(An) for every integer n and has dn

Ch(F)(A) equal to FAn

An+1(d
n
A) for every

integer n. For every C-cochain morphism u from a C-cochain complex A to a C-cochain com-
plex Ã, the Ch(F)-associated D-cochain morphism Ch(F)A

Ã
(u) from Ch(F)(A) to Ch(F)(Ã) has

Ch(F)(u)n equal to F(un) for every integer n. Altogether this defines a functor Ch(F) from Ch(C)
to Ch(D).

Exercise 2.6. Prove that Ch(F)(A) is a D-cochain complex, prove that Ch(F)(u) is a D-cochain
morphism, and prove that Ch(F) is an additive functor of Abelian categories.

Definition 2.7. For additive functors F and F̃ from an Abelian category (C, addC) to an Abelian
category (D, addD), for every natural transformation θ from F to F̃, for every C-cochain complex
A, the Ch(θ)-associated D-cochain morphism Ch(θ)A from Ch(F)(A) to Ch(F̃)(A) has Ch(θ)nA
equal to θAn for every integer n.

Exercise 2.8. Prove that Ch(θ)A is a D-cochain morphism. Prove that Ch(θ) is a natural trans-
formation from Ch(F) to Ch(F̃).

Exercise 2.9. For the identity functor IdC from C to itself, prove that also Ch(IdC) is the identity
functor from Ch(C) to itself. Prove that for additive functors F from an Abelian category (C, addC)
to an Abelian category (D, addD) and G from (D, addD) to an Abelian category (E, addE), the
composition functor Ch(G)○Ch(F) equals Ch(G○F). Also for the identity natural transformation
IdF from F to itself, prove that Ch(IdF) is the identity natural transformation from Ch(F) to
itself. Finally, prove that Ch is compatible with the various notions of composition for natural
transformations.

Definition 2.10. For every Abelian category (C, addC), the embedding from C to Ch(C), de-
noted −[0], associates to every object a of C the C-cochain complex a[0] such that a[0]0 equals a
and a[0]n equals 0 for every n ≠ 0. For every C-morphism u from an C-object a to an C-object b,
the associated C-cochain morphism u[0] has u[0]0 equal to u.
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Exercise 2.11. Prove that this is a Serre embedding from C to Ch(C), i.e., an exact, fully faithful
functor that is an equivalence to a full subcategory that is stable for extensions (in short ex-
act sequences). Moreover, for every additive functor of Abelian categories, F from (C, addC) to
(C̃, addC̃), prove that Ch(F) composed with −[0] equals the composition of −[0] and F. Finally,
for additive functors F and F̃ from (C, addC) to (D, addD), for every natural transformation θ from
F to F̃, prove that the pullback by −[0] of the natural transformation Ch(θ) equals θ.

Exercise 2.12. If you know about 2-categories, deduce that Ch is a 2-functor from the 2-category
of strictly small Abelian categories to itself, and the embedding is a natural transformation from
the identity functor of this 2-category to Ch.

3 Some autoequivalences of the cochain category

Definition 3.1. For every Abelian category (C, addC), for every integer m, the m-translation
functor from Ch(C) to itself, denoted Tm

C or −[m], associates to every C-cochain complex A the
C-cochain complex Tm

C (A) with Tm
C (A)

n equals Am+n and with dn
Tm(A) equal to (−1)

mdm+nA for
every integer n. For every C-cochain morphism u from a C-cochain complex A to a C-cochain
complex Ã, the C-cochain morphism Tm

C (u) from Tm
C (A) to Tm

C (Ã) has T
m
C (u)

n equal to um+n for
every integer n.

Exercise 3.2. Check that the composition functor Tm
C ○ T

n
C equals Tm+n

C for all integers m and n.
In particular, both Tm

C ○T
−m
C and T −mC ○Tm

C equal the identity functor. Deduce that Tm
C is an exact

autoequivalence of Ch(C) for every integer m.

Exercise 3.3. Prove that for every additive functor F from (C, addC) to an Abelian category
(D, addD), the composition of Tm

D with Ch(F) equals the composition of Ch(F) with Tm
C . Simi-

larly, for additive functors F and F̃ from (C, addC) to (D, addD), prove that the Tm
C -pullback of

Ch(θ) equals the Tm
D -pushforward of Ch(θ). If you know about 2-categories, deduce that Tm is

an autoequivalence of the 2-functor Ch for every integer m. In particular, this defines a morphism
of Abelian groups from Z to the “group” of autoequivalences of the 2-functor (not really a group,
since the class of autoequivalences is not naturally a set).

Definition 3.4. For every Abelian category (C, addC), for every C-cochain complex A, the braid
Z[−1] ⊗Z A ⊗Z Z[1] of A is the C-cochain complex ((An)n∈Z, (−dnA)n∈Z). This extends to an exact
functor from Ch(C) to itself by acting as the identity on C-cochain morphisms. The composition
of this functor with itself is the identity functor. There is a natural equivalence of the identity
functor with this functor by associating to every C-cochain complex A the C-cochain isomorphism
((−1)nIdAn)n∈Z between A and its braid.
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Exercise 3.5. As with translation, show that the braid is compatible with additive functors be-
tween Abelian categories and with natural transformations between additive functors. Deduce that
this gives another autoequivalence of the 2-functor Ch.

4 Two adjoints of the embedding in the cochain category

Definition 4.1. For every Abelian category (C, addC), for every C-cochain complex A, the C-
cocycles in degree 0 of A is the C-object Z0(A) with its C-monomorphism q0Z,A to A0 that is the
kernel of the C-morphism d0A from A0 to A1. For every C-cochain morphism u from A to a C-

cochain complex Ã, since the composition of d0
Ã
with u0○q0Z,A equals u1 composed with d0A○q

0
Z,A, this

composition is zero. Thus, by the universal property of the kernel, there is a unique C-morphism
Z0(u) from Z0(A) to Z0(Ã) such that q0

Z,Ã
○Z0(u) equals u0 ○ q0Z,A. The C-morphism Z0(u) is the

C-cocyles morphism associated to u.

Exercise 4.2. Prove that for the identity C-cochain morphism IdA from A to itself, also Z0(IdA)
is the identity morphism of Z0(A). Also check that Z0 is compatible with composition. Altogether,
this defines a functor Z0 from Ch(C) to C. Check that this functor is additive and half exact (it
is neither left exact nor right exact).

Exercise 4.3. Check that the composition functor Z0 ○ (−[0]) equals the identity functor from
C to itself. Also check that q0Z is a natural transformation from the composition (−[0]) ○ Z0 to
the identity functor on Ch(C). Altogether, this defines an adjoint pair of functors, i.e., it defines
a bifunctorial bijection of HomC(a,Z0(A)) and HomCh(C)(a[0],A) for all C-objects a and all C-
cochain complexes A. Thus Z0 is right adjoint to the exact embedding of C in Ch(C).

Definition 4.4. For every Abelian category (C, addC), for every C-cochain complex A, the C-

coboundary quotient in degree 0 of A is the C-object A
0
with its C-epimorphism p0⋅,A to A

0

that is the cokernel of the C-morphism d−1A from A−1 to A0. For every C-cochain morphism u

from A to a C-cochain complex Ã, since the composition of p0⋅,Ã ○ u
0 with d−1A equals p0⋅,Ã composed

with d−1
Ã
○ u−1, this composition is zero. Thus, by the universal property of the cokernel, there is

a unique C-morphism u0 from A
0
to Ã

0

such that p0⋅,Ã ○ u
0 equals u0 ○ p0⋅,A. The C-morphism u0 is

the C-coboundary quotient morphism associated to u.

Exercise 4.5. Prove that for the identity C-cochain morphism IdA from A to itself, also IdA
0
is

the identity morphism of A
0
. Also check that ⋅0 is compatible with composition. Altogether, this

defines a functor ⋅0 from Ch(C) to C. Check that this functor is additive and right exact.
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Exercise 4.6. Check that the composition functor ⋅0 ○ (−[0]) equals the identity functor from C
to itself. Also check that p0⋅ is a natural transformation from the identity functor on Ch(C) to the
composition functor (−[0]) ○ ⋅0. Altogether, this defines an adjoint pair of functors, i.e., it defines a

bifunctorial bijection of HomC(A
0
, a) and HomCh(C)(A,a[0]) for all C-objects a and all C-cochain

complexes A. Thus ⋅0 is left adjoint to the exact embedding of C in Ch(C).

Of course we can also incorporate shifts.

Definition 4.7. For every Abelian category (C, addC), for every integer m, the functor Zm from
Ch(C) to C is the composition functor Z0 ○ Tm. In particular, this is right adjoint to the exact
embedding −[m] of C in Ch(C).

Now we can incorporate all shifts into a single C-cochain complex.

Definition 4.8. For every Abelian category (C, addC), the objects of the exact, full subcategory
CZ of Ch(C) are those C-cochain complexes such that every differential C-morphism is a zero
morphism, i.e., the C-cochain complex is ((An)n∈Z, (0)n∈Z).

Exercise 4.9. Check that this is an exact, full subcategory, but that it is not (typically) stable
under extensions (so it is not a Serre subcategory). Check that for every additive functor F from
an Abelian category (C, addC) to an Abelian category (C̃, addC̃), the restriction of the additive
functor Ch(F) to the full subcategory CZ factors uniquely as an additive functor FZ from CZ to
the exact, full subcategory DZ of Ch(D). Deduce that (⋅)Z is a 2-functor from the 2-category of
strictly small Abelian categories to itself, and the exact, fully faithful embeddings are a natural
transformation from this 2-functor to Ch.

Definition 4.10. For every Abelian category (C, addC), for every C-cochain complex A, the C-
cocycles complex is the object Z(A) ∶= ((Zn(A))n∈Z, (0)n∈Z) of the exact, full subcategory CZ

of Ch(C), together with the C-cochain morphism qZ,A ∶= (qnZ,A)n∈Z from Z(A) to A. For every

C-cochain morphism u from A to a C-cochain complex Ã, the C-cocycles morphism is the
C-cochain morphism Z(u) from Z(A) to Z(Ã) with Z(u)n equal to Zn(u) for every integer n.

Exercise 4.11. Prove that qZ,A is a C-cochain morphism from Z(A) to A. Prove that Z is an
additive, left-exact functor from Ch(C) toCZ. Prove that the restriction of Z to the full subcategory
CZ of Ch(C) is the identity functor on CZ. Prove that qZ is a natural transformation from the
composition functor of the embedding of CZ in Ch(C) with the functor Z to the identity functor
of Ch(C). Finally, prove that this defines an adjoint pair of functors, i.e., HomCZ(Ã,Z(A)) is
bifunctorially bijective to HomCh(C)(Ã,A) for every object A of Ch(C) and for every object Ã of
the exact, full subcategory CZ.
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Exercise 4.12. Check that Z commutes with the translation functor and the braid. Check that
Z commutes with additive functors between Abelian categories.

Of course we have the “opposite” results for the functor ⋅0.

Definition 4.13. For every Abelian category (C, addC), for every integer m, the functor ⋅m from
Ch(C) to C is the composition functor ⋅0 ○ Tm. In particular, this is left adjoint to the exact
embedding −[m] of C in Ch(C).

Definition 4.14. For every Abelian category (C, addC), for every C-cochain complex A, the C-
coboundaries quotient complex is the object A ∶= ((A

n
)n∈Z, (0)n∈Z) of the exact, full subcat-

egory CZ of Ch(C), together with the C-cochain morphism p⋅,A ∶= (pn⋅,A)n∈Z from A to A. For

every C-cochain morphism u from A to a C-cochain complex Ã, the C-coboundaries quotient

morphism is the C-cochain morphism u ∶= (un)n∈Z from A to Ã.

Exercise 4.15. Prove that p⋅,A is a C-cochain morphism from A to A. Prove that ⋅ is an additive,
right-exact functor from Ch(C) to CZ. Prove that the restriction of ⋅ to the full subcategory CZ of
Ch(C) is the identity functor on CZ. Prove that p⋅ is a natural transformation from the identity
functor of Ch(C) to the composition functor of the embedding of CZ in Ch(C) with the functor
⋅. Finally, prove that this defines an adjoint pair of functors, i.e., HomCZ(A, Ã) is bifunctorially
bijective to HomCh(C)(A, Ã) for every object A of Ch(C) and for every object Ã of the exact, full
subcategory CZ.

Exercise 4.16. Check that Z commutes with the translation functor and the braid. Check that
Z commutes with additive functors between Abelian categories.

Finally, this brings us to our main functor on cochain complexes.

Definition 4.17. For every Abelian category (C, addC), for every C-cochain complex A and for

every integer n, the C-cohomology object in degree n is the cokernel Hn(A) of dn−1A from A
n−1

to
Zn(A) with its natural epimorphism pnH,A from Zn(A) to Hn(A). Because coimages equal images

in the Abelian category, also Hn(A) is the kernel of dnA from A
n
to Zn+1(A) with its natural

monomorphism qnH,A from Hn(A) to A
n
. Because this is defined in terms of kernels and cokernels

of natural transformations, this extends automatically to a functor from Ch(C) to C. The C-
cohomology complex of A is the object ((Hn(A))n∈Z, (0)n∈Z) of CZ. This is a functor H from
Ch(C) to CZ. For every morphism u of C-cochain complexes from a C-cochain complex A to
a C-cochain complex Ã, the morphism u is a quasi-isomorphism if (and only if) the induced
C-morphism Hn(u) from Hn(A) to Hn(Ã) is an isomorphism for every integer n.
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Exercise 4.18. Check that Hn and H are additive, half exact functors. Check that qH and pH are
natural transformations. Check that these

Exercise 4.19. Check that H commutes with the translation functor and the braid. Check that
H commutes with additive functors between Abelian categories.

5 Truncations of complexes

Definition 5.1. For every Abelian category (C, addC), for every C-cochain complex A, for every
integer n, the brutal truncation of A in degrees ≤ n, respectively, in degrees ≥ n, is the C-cochain
complex σ≤n(A), resp. σ≥n(A), with σ≤n(A)m equals A for all m ≤ n, resp. σ≥n(A)m equals A for all
m ≥ n, and σ≤n(A)m equals 0 for all m > n, resp. σ≥n(A)m equals 0 for all m < n. For all differentials
between nonzero terms of the truncation, the differentials are the same as the differentials of A.
For every morphism u of C-cochain complexes from A to a C-cochain complex Ã, the brutal
truncation of u in degrees ≤ n, resp. in degrees ≥ n, is the morphism of C-cochain complexes
σ≤n(u) from σ≤n(A) to σ≤n(Ã), resp. σ≥n(u) from σ≥n(A) to σ≥n(Ã) whose C-morphism between
nonzero objects of the truncations are the same as u if the objects are both nonzero.

Exercise 5.2. Check that both σ≤n(A) and σ≥n(A) are C-cochain complexes, and check that both
σ≤n(u) and σ≥n(u) are morphisms of C-cochain complexes. Check that σ≤n and σ≥n are exact,
additive functors from Ch(C) to itself. Even better, σ≤n is a strictly surjective, exact, additive
functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory Ch≤n(C) of complexes
concentrated in degrees ≤ n. Similarly, σ≥n is a strictly surjective, exact, additive functor (that is
neither full nor faithful) from Ch(C) to the Serre subcategory Ch≥n(C) of complexes concentrated
in degrees ≥ n.

Definition 5.3. For every Abelian category (C, addC), for every C-cochain complex A, for every
integer n, the good truncation of A in degrees ≤ n, respectively, in degrees ≥ n, is the C-cochain
complex τ≤n(A), resp. τ≥n(A), that is the same as σ≤n(A), resp. as σ≥n(A), except in degree
n, where σ≤n(A)n equals the subobject Zn(A) of An, resp., where σ≥n(A)n equals the quotient
object A

n
of An. For every morphism u of C-cochain complexes from A to a C-cochain complex

Ã, the good truncation of u in degrees ≤ n, resp. in degrees ≥ n, is the morphism of C-cochain
complexes τ≤n(u) from τ≤n(A) to τ≤n(Ã), resp. τ≥n(u) from τ≥n(A) to τ≥n(Ã), that is the same
as σ≤n(u), resp. as σ≥n(u), except in degree n, where τ≤n(u)n equals Zn(u), resp. where τ≥n(u)n

equals un. The good monomorphism from τ≤n(A) to A is the morphism of C-cochain complexes
that is the identity in degrees < n, is the zero map in degrees > n, and is the natural transformation
from Zn(A) to An in degree n. The good epimorphism from A to τ≥n(A) is the morphism of
C-cochain complexes that is the identity in degrees > n, is the zero map in degrees < n, and is the
natural transformation from An to the quotient A

n
in degree n.
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Exercise 5.4. Check that both τ≤n(A) and σ≥n(A) are C-cochain complexes, and check that both
τ≤n(u) and τ≥n(u) are morphisms of C-cochain complexes. Check that τ≤n and τ≥n are exact,
additive functors from Ch(C) to itself. Check that the good monomorphism, resp. the good
epimorphism, defines a natural transformation of functors. Check that τ≤n is a strictly surjective,
left exact, additive functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory
Ch≤n(C) of complexes concentrated in degrees ≤ n. Similarly, check that τ≥n is a strictly surjective,
right exact, additive functor (that is neither full nor faithful) from Ch(C) to the Serre subcategory
Ch≥n(C) of complexes concentrated in degrees ≥ n.

6 Cochain homotopy

Definition 6.1. For every Abelian category (C, addC), for every C-cochain morphism u from a C-
cochain complex A to a C-cochain complex Ã, a C-homotopy from u to 0, or a C-null homotopy
of u, is a sequence (sn)n∈Z of C-morphisms sn from An to Ãn−1 such that, for every integer n,

dn−1
Ã
○ sn + sn+1 ○ dnA = u

n.

If such exists then u is C-null homotopic or C-homotopic to 0. More generally, for C-cochain
morphisms u and v from A to Ã, a C-homotopy from u to v is a C-homotopy from u − v to 0. If
such exists then u is C-homotopic to v.

Exercise 6.2. For C-morphisms u and v from A to Ã, check that for every C-null homotopy s of
u and for every C-null homotopy t of v, the sum s+ t is a C-null homotopy of u+ v. Thus, the null
homotopicC-cochain morphisms form an Abelian subgroup NullHomCh(C)(A, Ã) of HomCh(C)(A, Ã),
and C-homotopy is an equivalence relation on HomCh(C)(A, Ã). Check that also precomposing and
postcomposing by C-cochain morphisms sends C-null homotopies to C-null homotopies. Thus, the
null homotopic C-cochain morphisms are an “ideal” for both precomposition and postcomposition.
Use this to prove that there exists a (strictly) surjective, full (but not faithful) additive functor

quot
Ch(C)
K(C) from Ch(C) to an additive category K(C) whose objects class is the same as the objects

class of Ch(C), and such that HomK(C)(A, Ã) equals the quotient Abelian group of HomCh(C)(A, Ã)
by the subgroup NullHomCh(C)(A, Ã) for all objects A and Ã.

Definition 6.3. For every Abelian category (C, addC), for all C-cochain complexes A and Ã, a C-
homotopy equivalence of A and Ã is an ordered pair (u, v) of morphisms of C-cochain complexes
u from A to Ã and v from Ã to A such that v ○ u is homotopic to IdA and u ○ v is homotopic to
IdÃ, i.e., u and v give an inverse pair of isomorphisms in the homotopy category K(C).
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Exercise 6.4. Prove that for every additive functor F from an Abelian category (C, addC) to an
Abelian category (D, addD), the additive functor Ch(F)maps every Abelian subgroup NullHomCh(C(A, Ã)
of HomCh(C)(A, Ã) to the Abelian subgroup NullHomCh(D)(Ch(F)(A),Ch(F)(Ã)) of HomCh(D)(Ch(F)(A),Ch(F)(Ã)).

Exercise 6.5. For additive functors F and F̃ from (C, addC) to (D, addD), for every C-null homo-
topy s of a C-cochain morphism u from A to Ã, prove that Ch(θ) ○Ch(F )(s) equals Ch(G)(s) ○
Ch(θ) as a D-null homotopy of the D-cochain morphism Ch(θ)Ã ○Ch(F)(u) = Ch(G)(u)○Ch(θ)A
from Ch(F)(A) to Ch(G(Ã).

Exercise 6.6. For every C-null homotopy s of a C-cochain morphism u from a C-cochain complex
A to a C-cochain complex Ã, for every integer n, prove that sn restricts to a C-morphism from
Z(A)n to Ãn−1 such that Z(u)n equals dn−1

Ã
○ sn. Similarly, prove that the composition of sn+1 with

the projection to Ã
n

is a C-morphism from An+1 to Ã
n

whose precomposition with dnA equals un.

Finally, prove that the induced morphism H(u)n from Hn(A) to Hn(Ã) is a zero map. Deduce
that the cohomology functor H from Ch(C) to CZ factors uniquely through an additive functor
from K(C) to CZ.

7 The snake lemma

For each Abelian category (C, addC) and each morphism of C-short exact sequences,

Σ ∶ 0 ÐÐÐ→ a′
qΣ
ÐÐÐ→ a

pσ
ÐÐÐ→ a′′ ÐÐÐ→ 0

ϕ
×
×
×
Ö

f ′
×
×
×
Ö

×
×
×
Ö
f

×
×
×
Ö
f ′′

Σ̃ ∶ 0 ÐÐÐ→ ã′
q̃Σ
ÐÐÐ→ ã

p̃σ
ÐÐÐ→ ã′′ ÐÐÐ→ 0

,

denote the kernels of f ′, respectively f , f ′′, by

i′ ∶K ′ϕ → a′, resp. i ∶Kϕ → a, i′′ ∶K ′′ϕ → a′′,

and denote the cokernels of f ′, resp. f , f ′′, by

s′ ∶ ã′ → C ′ϕ, resp. s ∶ ã→ Cϕ, s
′′ ∶ ã′′ → C ′′ϕ .

Because q̃ ○ f ′ equals f ○ q, also f ○ (q ○ i′) equals q̃ ○ (f ′ ○ i′), which equals q̃ ○ 0, i.e., it equals 0.
Thus, by the universal property of the kernel, there is a unique morphism

qK ∶K
′
ϕ →Kϕ

9
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such that i ○ qK equals q ○ i′. For a similar reason, there is a unique morphism

pK ∶Kϕ →K ′′ϕ

such that i′′ ○ pK equals p ○ i. And by analogous arguments there are unique morphisms

qC ∶ C
′
ϕ → Cϕ, pC ∶ Cϕ → C ′′ϕ

such that qC ○ s′ equals s ○ q̃, and pC ○ s equals s′′ ○ p̃. To summarize, we have that the following
diagram is commutative.

K ′ϕ
qK
ÐÐÐ→ Kϕ

pK
ÐÐÐ→ K ′′ϕ

i′
×
×
×
Ö

×
×
×
Ö
i

×
×
×
Ö
i′′

Σ ∶ 0 ÐÐÐ→ a′
q

ÐÐÐ→ a
p

ÐÐÐ→ a′′ ÐÐÐ→ 0

ϕ
×
×
×
Ö

f ′
×
×
×
Ö

×
×
×
Ö
f

×
×
×
Ö
f ′′

Σ̃ ∶ 0 ÐÐÐ→ ã′ ÐÐÐ→
q̃

ã ÐÐÐ→
p̃

b̃′′ ÐÐÐ→ 0

s′
×
×
×
Ö

×
×
×
Ö
s

×
×
×
Ö
s′′

C ′ϕ ÐÐÐ→qC
Cϕ ÐÐÐ→

pC
C ′′ϕ

By hypothesis, both f ′′ ○ p and p̃ ○ f are equal. Denote by t this common morphism

t ∶ a→ ã′′.

Denote the kernel of t by
j ∶Kt → a.

Now f ′′ ○ (p ○ j) equals t ○ j, which is 0. By the universal property of the kernel of f ′′, there is a
unique morphism

p ∶Kt →K ′′Σf

such that i′′ ○ p equals p ○ j. Similarly, p̃ ○ (f ○ j) equals t ○ j, which is 0. By the universal property
of the kernel of p̃, there is a unique morphism

f ∶Kt → ã′

such that q̃ ○ f equals f ○ j.

10
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Lemma 7.1 (The Snake Lemma). For every Abelian category (C, addC), for every morphism ϕ of
C-short exact sequences as above, all of the following hold.

(i) The morphism qK is a monomorphism, and the morphism pC is an epimorphism.

(ii) The image of qK equals the kernel of pK, and the kernel of pC equals the image of qC.

(iii) There is a unique morphism δϕ ∶K ′′Σf
→ C ′Σf

such that δϕ ○ p equals s′ ○ f as morphisms from

Kt to C ′ϕ.

(iv) The image of pK equals the kernel of δϕ, and the kernel of qC equals the image of δϕ.

In summary, the following long sequence is exact,

0 ÐÐÐ→ K ′ϕ
qK
ÐÐÐ→ Kϕ

pK
ÐÐÐ→ K ′′ϕ

δϕ
ÐÐÐ→ . . .

. . . ÐÐÐ→
δϕ

C ′ϕ ÐÐÐ→qC
Cϕ ÐÐÐ→

pC
C ′′ϕ ÐÐÐ→ 0.

This entire situation is often summarized with the following large diagram.

0 0 0
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

0 ÐÐÐ→ K ′ϕ
qK
ÐÐÐ→ Kϕ

pK
ÐÐÐ→ K ′′ϕ

δϕ
ÐÐÐ→ . . .

i′
×
×
×
Ö

×
×
×
Ö
i

×
×
×
Ö
i′′

Σ ∶ 0 ÐÐÐ→ a′
q

ÐÐÐ→ a
p

ÐÐÐ→ a′′ ÐÐÐ→ 0

ϕ
×
×
×
Ö

f ′
×
×
×
Ö

×
×
×
Ö
f

×
×
×
Ö
f ′′

Σ̃ ∶ 0 ÐÐÐ→ ã′ ÐÐÐ→
q̃

ã ÐÐÐ→
p̃

ã′′ ÐÐÐ→ 0

s′
×
×
×
Ö

×
×
×
Ö
s

×
×
×
Ö
s′′

. . . ÐÐÐ→
δϕ

C ′ϕ ÐÐÐ→qC
Cϕ ÐÐÐ→

pC
C ′′ϕ ÐÐÐ→ 0

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

0 0 0

11
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There are many variants of the snake lemma. Here is one. Consider a commutative diagram with
exact rows, but where the top row is not left exact, and where the bottom row is not right exact.

Π ∶ b′
Q
ÐÐÐ→ a

p
ÐÐÐ→ a′′ ÐÐÐ→ 0

ψ
×
×
×
Ö

F ′
×
×
×
Ö

×
×
×
Ö
f

×
×
×
Ö
F ′′

Π̃ ∶ 0 ÐÐÐ→ ã′ ÐÐÐ→
q̃

ã ÐÐÐ→
P̃

b̃′′

Define a′ to be the image of the morphism Q from b′ to a, so that the induced morphism q from a′

to a is a monomorphism. Define f ′ from a′ to ã′ to be the morphism induced by F ′. Define ã′′ to
be the image of the morphism P̃ from ã to b̃′′, so that the induced morphism p̃ from ã to ã′′ is an
epimorphism. Define f ′′ to be the morphism from a′′ to ã′′ induced by F ′′.

With these substitutions, we are again in the setting of the snake lemma. Also, the induced
morphism from Ker(F ′) to Ker(f ′) is an epimorphism, since the morphism from b′ to a′ is an
epimorphism. Similarly, the morphism from Coker(f ′′) to Coker(F ′′) is a monomorphism, since
the morphism from ã′′ to b̃′′ is a monomorphism. Altogether this gives the following.

Corollary 7.2. For every Abelian category (C, addC), for every commutative diagram of C-objects

with exact rows, Π
ψ
Ð→ Π̃, as above, there is a long exact sequence,

Ker(F ′) → Ker(f) → Ker(F ′′)
δ
Ð→ Coker(F ′) → Coker(f) → Coker(F ′′).

Now let Σ = (A′
q
Ð→ A,A

p
Ð→ A′′) be a short exact sequence in the Abelian category Ch(C). Then

for every integer n we have a C-commutative diagram with exact rows as follows.

Σ
n
∶ (A′)n

qn

ÐÐÐ→ A
n pn

ÐÐÐ→ (A′′)n ÐÐÐ→ 0

dnΣ

×
×
×
Ö

dn
A′

×
×
×
Ö

×
×
×
Ö
dnA

×
×
×
Ö
dn
A′′

Zn(Σ) ∶ 0 ÐÐÐ→ Zn(A′) ÐÐÐ→
Zn(q)

Zn(A) ÐÐÐ→
Zn(p)

Zn(A′′)

Applying the previous corollary gives the following.

Corollary 7.3. For every Abelian category (C, addC), for every short sequence (A′
q
Ð→ A,A

p
Ð→ A′′)

in Ch(C), for every integer n, there is an exact sequence, functorial in Σ,

Hn(A′)
Hn(q)
ÐÐÐ→ Hn(A)

Hn(p)
ÐÐÐ→ Hn(A′′)

δnΣ
ÐÐÐ→ Hn+1(A′)

Hn+1(q)
ÐÐÐÐ→ Hn+1(A)

Hn+1(p)
ÐÐÐÐ→ Hn+1(A′′).

12
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8 Delta functors

Definition 8.1. For Abelian categories (C, addC) and (D, addD), a δ-functor from (C, addC) to
(D, addD) is an ordered pair R = ((Rn)n∈Z, (δnR)n∈Z) of a sequence of additive, half exact functors
Rn from (C, addC) to (D, addD) and a sequence of natural transformations δn from the composite
functor Rn ○π′′ to the composite functor Rn+1 ○π′ from Cses to D such that for every C-short exact

sequence Σ = (a′
q
Ð→ a, a

p
Ð→ a′′) and every integer n, the following complex is exact:

Rn(a′)
Rn(q)
ÐÐÐ→ Rn(a)

Rn(p)
ÐÐÐ→ Rn(a′′)

δnΣ
Ð→ Rn+1(a′)

Rn+1(q)
ÐÐÐÐ→ Rn+1(a′).

For δ-functors R and S, a morphism of δ-functors from R to S is a sequence (θn)n∈Z of natural
transformations θn from Rn to Sn such that δnS ○ θ

n equals θn+1 ○ δnR for every integer n. For every
integer m, for every δ-functor R, if Rn is a zero functor for all integers n <m, then the δ-functor is
concentrated in degrees ≥m. Similarly, for every integer m, if Rn is a zero functor for all integers
n >m, then the δ-functor is concentrated in degrees ≤m.

Example 8.2. By the previous corollary, for every Abelian category (C, addC), the ordered pair
((Hn)n∈Z, (δn)n∈Z) is a δ-functor from Ch(C) to C. More generally, for every integer m, let Rn be
the zero functor for n <m, let Rm be the functor Zm, and let Rn be Hn for n ≥m. This also gives
a δ-functor, usually denoted Rn =Hn ○ τ≥m, concentrated in degrees ≥m. Similarly, if we define Rn

to be the zero functor for n > m, define Rm to be ⋅m, and define Rn to be Hn for n < m, then this
gives a δ-functor, usually denoted Rn =Hn ○ τ≤m, concentrated in degrees ≤m.

Historically, there were many important known examples of δ-functors before any thorough study
of all δ-functors, cf. Homological algebra by Cartan and Eilenberg and Homology by MacLane. The
key unifying notion, introduced by Grothendieck in his Tohoku article, is as follows.

Definition 8.3. A δ-functor R concentrated in degrees ≥ 0 is universal if (and only if) for every
δ-functor S concentrated in degrees ≥ 0 and for every natural transformation θ0 from R0 to S0, there
exists a unique morphism θ of δ-functors from R to S extending θ0. A δ-functor R concentrated
in degrees ≥ 0 is effaceable if (and only if), for every object a of C and for every strictly positive

integer n > 0, there exists a monomorphism a
ι
Ð→ b such that Rn(ι) is a zero morphism.

Similarly, a δ-functor R concentrated in degrees ≤ 0 is universal if (and only if) for every δ-functor
S concentrated in degrees ≤ 0 and for every natural transformation θ0 from S0 to R0, there exists a
unique morphism θ of δ-functors from S to R extending θ0. A δ-functor R concentrated in degrees
≤ 0 is coeffaceable if (and only if), for every object a of C and for every strictly negative integer

n < 0, there exists an epimorphism b
π
Ð→ a such that Rn(π) is a zero morphism.
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Lemma 8.4 (Grothendieck’s criterion). Every δ-functor concentrated in degrees ≥ 0 that is efface-
able is universal. Every δ-functor concentrated in degrees ≤ 0 that is coeffaceable is universal.

Proof. Let R and S be δ-functor from (C, addC) to (D, addD) concentrated in degrees ≥ 0. Let θ0

be a natural transformation from R0 to S0. Assume that R is effaceable. By way of induction, let
n be a nonnegative integer, and assume that there exists a unique sequence (θ0, . . . , θn) of natural
transformations θm from Rm to Sm for 0 ≤ m ≤ n that are compatible with the connecting maps
δ0, . . . , δn−1. Since Rn+1 is effaceable, for every object a′ there exists a monomorphism, q ∶ a′ ↪ a,
such that Rn+1(q) is zero. Denote the cokernel of q by p ∶ a ↠ a′′. Then Σ = (q, p) is a C-short
exact sequence. Thus, there exists a commutative diagram,

Rn(a′′)
Rn(p)
ÐÐÐ→ Rn(a)

δnR,Σ

ÐÐÐ→ Rn+1(a′)
0

ÐÐÐ→ Rn+1(a)

θn
a′′

×
×
×
Ö

θna

×
×
×
Ö

Sn(a′′) ÐÐÐ→
Sn(p)

Sn(a) ÐÐÐ→
δnS,Σ

Sn+1(a′) ÐÐÐÐ→
Sn+1(q)

Sn+1(a)

Because δnR,Σ is a cokernel of Rn(p), there is a unique D-morphism θn+1a′ from Rn+1(a′) to Sn+1(a′)
such that θn+1a′ ○ δ

n
R,Σ equals δnS,σ ○ θ

n
a′ . It remains to show that θn+1a′ is independent of the choice of

monomorphism, and the D-morphisms θn+1a′ form a natural transformation from Rn+1 to Sn+1.

For C-monomorphisms qi ∶ a′ ↪ ai such that Rn+1(qi) is zero, for i = 1,2, define q to be the
monomorphism (q1, q2) from a′ to a = a1 ⊕ a2. Then for the projection pri from a to ai, we have
pri ○ q equals qi. Denote by p ∶ a ↠ a′′ and pi ∶ ai ↠ a′′i the cokernels of q and qi, and denote by
pr′′i the unique epimorphism from a′′ to a′′i such that pr′′i ○ p equals pi ○pri, for i = 1,2. This defines
C-short exact sequences Σ = (q, p) and Σi = (qi, pi) for i = 1,2, as well as morphisms (Ida′ ,pri,pr

′′
i )

of C-short exact sequences from Σ to Σi for i = 1,2. Clearly it suffices to check that the induced
morphism θn+1a′ from Rn+1(a′) to Sn+1(a′) equals each morphism θn+1a′,i induced by qi.

By construction, both θn+1a′ ○δ
n
R,Σ equals δnS,σ○θ

n
a′′ , and θn+1a′,i ○δ

n
R,Σi

equals δnS,σi○θ
n
a′′i
, for i = 1,2. Via the

naturality of the connecting morphisms in Σ, we have δnR,Σi
○Rn(pr′′i ) equals δ

n
R,Σ and δnS,Σi

○Sn(pr′′i )
equals δnS,Σ, for i = 1,2. Precomposing with Rn(pr′′i ) the identity θn+1a′,i ○ δ

n
R,Σi
= δnS,Σi

○ θna′′i
gives the

identity θn+1a′,i ○ δ
n
R,Σi
= δnS,Σi

○ θna′′i
○Rn(pr′′i ). Since θn is a natural transformation from Rn to Sn, we

also have θna′′i
○Rn(pr′′i ) equals Sn(pr

′′
i ) ○ θ

n
a′′ , so that δnS,Σi

○ θna′′i
○Rn(pr′′i ) equals δ

n
S,Σi
○Sn(pr′′i ) ○ θ

n
a′′ .

Since also δS,Σi
○ Sn(pr′′i equals δS,Σ, this finally gives that θn+1a′,i ○ δ

n
R,Σ equals δS,Σ ○ θna′′ . Therefore

θn+1a′ ○ δ
n
R,Σ equals θn+1a′,i ○ δ

n
R,Σ for i = 1,2. Since δnR,Σ is an epimorphism, it follows that θn+1a′,1 equals

θn+1a′ equals θn+1a′,2 , i.e., the D-morphism θn+1a′ is independent of the choice of monomorphism q from
a′ to a such that Rn+1(q) equals a zero morphism.

A similar “diagram chasing” argument proves that θn+1 is a natural transformation.
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Corollary 8.5. The δ-functor (Z0,H1,H2, . . . ) concentrated in degrees ≥ 0 from Ch(C) to C is
universal. Similarly, the δ-functor (. . . ,H−2,H−1, ⋅0) concentrated in degrees ≤ 0 is universal.

Proof. For every C-complex A′, for every nonnegative integer n, define A to be the same complex
as A′ except in degree n, where An equals the direct sum (A′)n ⊕ Zn(A′). The differentials of A
equal the differentials of A′ except for dn−1A , which equals the morphism (dn−1A′ ,0) from (A

′)n−1 to
(A′)n⊕Zn(A′), and for dnA, which equals dnA′ on the summand (A′)n and which equals the inclusion
on the summand Zn(A′). Thus, A′ is naturally a subcomplex of A, with cokernel complex equal to
Zn(A′)[n]. By construction, Hn+1(A) is zero. Thus, the δ-functor (Z0,H1,H2, . . . ) is effaceable.

A similar argument applies for (. . . ,H−2,H−1, ⋅0), or one can formally deduce this case from the
previous case by passing to opposite Abelian categories.

9 Mapping cone complexes

Definition 9.1. For every Abelian category (C, addC), for every morphism u of C-cochain com-
plexes from A to Ã, the mapping cone complex Cone(u) of u is the C-cochain complex with
Cone(u)n = Ãn ⊕ A⊕(n+1) for every integer n, and with differential dn

Cone(u) from Ãn ⊕ A⊕(n+1) to

Ãn+1 ⊕A⊕(n+2) equal to the following 2 × 2-matrix of C-morphisms,

[
dn
Ã

un+1

0 −dn+1A

] .

Exercise 9.2. Prove that the composition dn+1
Cone(u)○d

n
Cone(u) is a zero morphism for every integer n, so

that Cone(u) is aC-cochain complex. Prove that the sequence of epimorphism / projections pn
Cone(u)

from Ãn ⊕ A⊕(n+1) to A⊕(n+1) defines a morphism pCone(u) from Cone(u) to the translate T (A) =

A[+1]. Similarly, prove that the sequence of monomorphisms qn
Cone(u) from Ãn to Ãn ⊕ A⊕(n+1)

defines a morphism qCone(u) from Ã to Cone(u). Altogether, this defines a short exact sequence
Σu = (qCone(u), pCone(u)) of C-cochain complexes that is term-by-term split, but typically not split
as a short exact sequence in the category Ch(C). Finally, for the associated long exact sequence
of cohomology, check that the connecting C-morphism δnΣ from Hn(T (A)) = Hn+1(A) to Hn+1(Ã)
equals Hn+1(u) for every integer n.

Exercise 9.3. Prove that the mapping cone complex is functorial in u: for every morphism v of
C-cochain complexes from B to B̃, for all morphisms of C-cochain complexes f from A to B and f̃
from Ã to B̃ such that f̃ ○u equals v ○ f , then there is a unique morphism Cone(f, f̃) of C-cochain
complexes from Cone(u) to Cone(v) such that (f̃ ,Cone(f, f̃), T (f)) is a morphism of short exact
sequences in Ch(C) from Σu to Σv.
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Definition 9.4. For every Abelian category (C, addC), for every morphism u of C-cochain com-
plexes from A to Ã, the mapping cone null homotopy of T (u)○pCone(u) is (sn)n∈Z from Cone(u)

to T (Ã) with sn from Ãn ⊕A⊕(n+1) to Ãn equal to the first projection.

Exercise 9.5. Check that this is a null homotopy of T (u)○pCone(u). Check that this null homotopy
is functorial in u. Better, check that for every C-cochain complex B, for every morphism of C-
cochain complexes f from B to T (A), and for every null homotopy t of T (u) ○ f , there exists a
unique morphism (t, f) of C-cochain complexes from B to Cone(u) such that both pCone(u) ○ (t, f)
equals f and s ○ (t, f) equals t.

10 Resolutions

Definition 10.1. For every Abelian category (C, addC), for every C-object a, an injective com-
plex for a is a C-cochain complex I concentrated in degrees ≥ 0 and a morphism e of C-cochain
complexes from a[0] to I. A resolution of a is a C-cochain complex A and a quasi-isomorphism e
from a[0] to A. A injective resolution for a is a resolution for a that is also an injective complex.

Lemma 10.2. For every Abelian category (C, addC), for every resolution of a C-object, a[0]
e
Ð→ A,

respectively, for every injective complex for a C-object, a[0]
e
Ð→ I, also the shifted brutal trunca-

tion gives a resolution, A0/q(a)
d0A
Ð→ T (σ≥A), resp. the shifted brutal truncation gives an injective

complex, I0/q(a)
d0I
Ð→ T (σ≥I).

Proof. This follows from the definitions.

Lemma 10.3. For every Abelian category (C, addC), for every C-morphism u from an C-object

a to a C-object ã, for every resolution of a, say a[0]
e
Ð→ A, for every injective complex for ã, say

ã[0]
ẽ
Ð→ I, there exists a morphism v of C-cochain complexes from A to I such that v ○e equals ẽ○u.

If ẽ is an injective resolution of ã, then v is unique up to null homotopy.

Proof. Since e from a to A0 is a monomorphism, and since I0 is an injective object of C, for the
C-morphism ẽ ○ u from a to I0 there exists a C-morphism v0 from A0 to I0 such that v0 ○ q equals
q̃ ○ u.

By way of induction, let n be a nonnegative integer such that there exist a sequence (v0, . . . , vn)
of C-morphisms vm from Am to Im that commute with the differentials and extending the given
morphism u. The precomposition of the morphism dnI ○ v

n from An to In+1 by the morphism dn−1A

from An−1 to An equals dnI ○ d
n−1
I ○ vn−1 by the hypothesis on the sequence, i.e., the precomposition

is zero. Thus, dnI ○ v
n factors uniquely through a C-morphism from An/dn−1A (A

n−1) to In+1. Since
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e is a resolution, the natural map from An/dn−1A (A
n−1) to the subobject Z(A)n+1 of An+1 is an

isomorphism, i.e., the morphism dnA from An/dn−1A (A
n−1) to An+1 is a monomorphism. Thus, since

In+1 is an injective object, there exists a C-morphism vn+1 from An+1 to In+1 such that vn+1 ○ dnA
equals dnI ○ v

n. Thus, by induction on n (and by the countable variant of the Axiom of Choice),
there exists a C-cochain morphism v from A to I such that v ○ e equals ẽ ○ u.

Let v1 and v2 be C-cochain morphisms from A to I such that both v01 ○ e and v02 ○ e equal ẽ ○ u.
Assume further that ẽ is an injective resolution of ã. Then v02−v

0
1 is zero on the subobject e(a) of A0,

hence v2−v1 factors through the quotient A0/e(a). Since q is a resolution of a, the C-morphism d0A
from A0/e(a) to A1 is a monomorphism. Since I0 is an injective object, there exists a C-morphism
s1 from A1 to I0 such that v02 − v

0
1 equals s1 ○ d0A.

By way of induction, let n be a nonnegative integer such that s1 extends to a sequence (s1, . . . , sn+1)
of C-morphisms sm+1 from Am+1 to Im with vm2 − v

m
1 = d

m−1
I ○ sm + sm+1 ○ dmA for m = 0, . . . , n. The

composition (vn+12 − vn+11 ) ○ d
n
A equals dnI ○ (v

n
2 − v

n
1 ) since v1 and v2 are morphisms of C-cochain

complexes. By the hypothesis on the sequence, vn2 − v
n
1 equals dn−1I ○ sn + sn+1 ○ dnA. Thus, the

composite dnI ○(v
n
2 −v

n
1 ) equals d

n
I ○s

n+1 ○dnA. Therefore the difference, (v
n
2 −v

n
1 )−d

n
I ○s

n+1 is zero on
the subobject dnA(A

n) of An+1. So it factors through a C-morphism from the quotient An+1/dnA(A
n)

to In+1. By the hypothesis that q is a resolution of a, the differential dn+1A from An+1/dnA(A
n) to

An+2 is a monomorphism. Since In+1 is an injective object, there exists a C-morphism sn+2 from
An+2 to In+1 such that vn2 − v

n
1 equals dnI ○ s

n+1 + sn+2 ○ dn+1A . Thus, by way of induction, there exists
a C-null homotopy from v1 to v2.

Corollary 10.4. For every Abelian category (C, addC), for every C-object a, for all injective reso-

lutions a[0]
e
Ð→ I and a[0]

ẽ
Ð→ Ĩ of a, there exists a C-homotopy equivalence from I to Ĩ commuting

with e and ẽ. In particular, this is a quasi-isomorphism.

Lemma 10.5 (Horseshoe Lemma). For every Abelian category (C, addC), for every C-short exact

sequence (a′
q
Ð→ a, a

p
Ð→ a′′), for every injective resolution a′[0]

e′

Ð→ I ′, and for every injective res-

olution a′′[0]
e′′

Ð→ I ′′, there exists a morphism v of C-cochain complexes from I ′′ to the translated
injective resolution I ′[+1] and a null homotopy t of v ○ e′′ ○ p from a′′[0] to I ′ such that for the in-
duced morphism of C-cochain complexes e = (t, e′′○p) from a[0] to Cone(v)[−1], the triple (e′, e, e′′)
is a morphism of short exact sequences in Ch(C) from (q[0], p[0]) to the mapping cone short exact

sequence (I ′
qCone(v)[−1]
ÐÐÐÐÐÐ→ Cone(v)[−1],Cone(v)[−1]

pCone(v)[−1]
ÐÐÐÐÐÐ→ I ′′). In particular, a[0]

e
Ð→ Cone(v)[−1]

is an injective resolution.

Proof. Since q is a monomorphism, and since (I ′)0 is an injective object, associated to the C-
morphism e′ from a′ to (I ′)0 there exists a C-morphism t1 from a to (I ′)0 with t1 ○ q equal to
e′. Since e′ is an injective resolution of a′, also the translated brutal truncation gives an injective
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resolution, (I ′)0/e′(a′)[0]
d1
I′

Ð→ σ≥1(I ′)[+1]). Now t1 induces a morphism from a/q(a′) to (I ′)0/e′(a′),
i.e., a C-morphism u from a′′ to (I ′)0/e′(a′). Thus, by the previous lemma, there exists a morphism
of Ch(C)-cochain complexes, well-defined up to null homotopy, from the injective resolution I ′′ to
the translated brutal truncation σ≥1(I ′)[+1]. Since the brutal truncation is a subcomplex, this
also defines a morphism u from I ′′ to I ′[+1]. By construction, t is a null homotopy of u ○ e′′ ○ p
from a[0] to I ′[+1]. Thus, there is an induced morphism of C-cochain complexes, e = (t, e′′ ○ p),
from a[0] to Cone(u)[−1]. Altogether, this defines a morphism of short exact sequences (e′, e, e′′)
from (q[0], p[0]) to the mapping cone short exact sequence. In particular, since both e′ and e′′ are
resolutions, by the long exact sequence of cohomology associated to the δ-functor H, also e is a
resolution of a. Finally, since the terms of the mapping cone are, term-by-term, direct sums of the
terms of I ′ and I ′′, and since a direct sum of two injective objects is an injective object, also e is
an injective resolution of a.

By passing to opposite categories, we get all of the analogous results for projective resolutions as
well.

11 Derived functors

The slogan is that, if C has enough injective objects (so that we can form injective resolutions),
then every object has an injective resolution that is unique up to homotopy equivalence, and for
every short exact sequence of objects, there is an associated mapping cone short exact sequence of
injective resolutions. Thus, if we modify our Abelian category C by first passing to the Abelian
category Ch(C), then passing to the additive category K+(C) (the full subcategory of K(C) whose
objects are those complexes that are bounded below), and then passing to the additive category
D+(C) where we “localize” at all quasi-isomorphisms, then injective resolutions form a “functor”
from C to D+(C) that sends short exact sequences to mapping cone sequences.

There are set-theoretic issues when we localize a category at a non-small multiplicatively closed
class of morphisms (the quasi-isomorphisms in this case), but these can be resolved. More seriously,
the category D+(C) is not typically an Abelian category. However, the mapping cone sequences
gives it a structure called a triangulated category, and the cohomology object functors are still well-
defined on this category (since quasi-isomorphisms preserve cohomology objects by definition). The
injective resolutions “functor” sends short exact sequences to distinguished triangles, i.e., triangles
that are quasi-isomorphic to mapping cone triangles. For every left exact additive functor F from
(C, addC) to another Abelian category (D, addC), there exists an associated triangulated functor
/ exact functor RF from D+(C) to D+(D) that satisfies an appropriate adjointness condition. All
of this was worked out by Jean-Louis Verdier in his thesis (supervised by Grothendieck). This was
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generalized by a to more general context by Daniel Quillen (and many others, particularly Michel
André).

Note that the cohomology objects of RF give a well-defined sequence of functors. Since the coho-
mology objects of complexes form a δ-functor, the cohomology objects of RF extend to a δ-functor.
These equal the δ-functors that were originally studied by Saunders MacLane and Samuel Eilenberg
(using a very different approach), and then investigated more fully by Cartan and Eilenberg. This
approach was finally put in the form above by Grothendieck in his Tohoku paper. This δ-functor
is enough of RF for many purposes, especially when combined with other techniques such as the
Grothendieck spectral sequence.

Theorem 11.1 (Right Derived Functors). For every Abelian category (C, addC) that has enough
injective objects, for every left exact, additive functor F from (C, addC) to an Abelian category
(D, addD), there exists a universal δ-functor R●F from (C, addC) to (D, addD) extending R0F = F.

Moreover, for every object a of C and for every injective resolution a[0]
e
Ð→ I, the D-object

RnF(a) equals the cohomology object Hn(Ch(F)(I)), and for every morphism (u, v) from an in-

jective resolution a[0]
e
Ð→ I to an injective resolution ã[0]

ẽ
Ð→ Ĩ, the D-morphism RnF(u) from

RnF(a) =Hn(Ch(F)(I)) to RnF(ã) =Hn(Ch(F)(Ĩ)) equals Hn(Ch(F)(v)).

Proof. The statement of the theorem dictates the definition of RnF. It remains to prove that this
is well-defined for each object a independent of the choice of injective resolution a[0]

e
Ð→ I, that this

gives a δ-functor, and that this δ-functor is universal.

Since injective resolutions are unique up to homotopy equivalence, and since homotopy equivalence
is preserved by Ch(F), also the D-cochain complex Ch(F)(I) is well-defined up to homotopy equiv-
alence. Since homotopy equivalences are quasi-isomorphisms, the cohomology objects of Ch(F)(I)
are well-defined for each object a independent of the choice of injective resolution. Similarly, for
every morphism u from a to ã, by the lemma there exists an induced morphism v from the injective
resolution I to the injective resolution Ĩ such that v ○ e equals e′ ○u. Moreover, v is well-defined up
to null homotopy. Since Ch(F) preserves null homotopies, also Ch(F)(u) is well-defined up to null
homotopy. Since null homotopies induce zero morphisms of cohomology objects, the induced mor-
phisms Hn(Ch(F)(u)) are well-defined in terms of v, independent of the choice of u. Altogether,
the functors RnF are well-defined.

For every C-short exact sequence, by the Horseshoe Lemma, there is an associated mapping cone
short exact sequence of injective resolutions. Since Ch(F) preserves mapping cones, this gives a
mapping cone short exact sequence in Ch(D), in fact even in the Serre subcategory Ch≥0(D). Since
H is a δ-functor concentrated in degrees ≥ 0 on Ch≥0(D) (even a universal δ-functor concentrated
in degrees ≥ 0), we get well-defined connecting maps δnRF that extend the sequence (RnF)n∈Z≥0 to a
δ-functor concentrated in degrees ≥ 0.
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Finally, by construction, for every injective object I0 of C, we can choose the injective resolution

to be I0[0]
Id
Ð→ I0[0], so that RnF(I0) is zero for every strictly positive integer n. Since there

are enough injective objects in C, for every object a, there exists a monomorphism a
q
Ð→ I0. For

every strictly positive integer n, the induced morphism RnF(q) from RnF(a) to RnF(I0) is a zero
morphism since RnF(I0) is a zero object. Thus, by Grothendieck’s criterion, the δ-functor R●F
concentrated in degrees ≥ 0 is universal.

Of course we can develop all of this instead using projective resolutions and right exact functors.
In fact this follows formally for the development above by passing to opposite categories.

Theorem 11.2 (Left Derived Functors). For every Abelian category (C, addC) that has enough
projective objects, for every right exact, additive functor F from (C, addC) to an Abelian category
(D, addD), there exists a universal δ-functor L●F concentrated in cohomological degrees ≤ 0, hence in
homological degrees ≥ 0, from (C, addC) to (D, addD) extending L0F = F. Moreover, for every object

a of C and for every projective resolution P
π
Ð→ a[0], the D-object LnF(a) equals the cohomology

object H−n(Ch(F)(P )), and for every morphism (u, v) from a projective resolution P
π
Ð→ a[0] to

an projective resolution P̃
π̃
Ð→ ã[0], the D-morphism LnF(u) from LnF(a) = H−n(Ch(F)(P )) to

LnF(ã) =H−n(Ch(F)(P̃ )) equals H−n(Ch(F)(v)).

It is crucial to recognize that, both in the early investigations by Eilenberg-MacLane, the subsequent
study by Cartan-Eilenberg, and especially in the applications by Grothendieck, constantly it is
necessary to prove existence and universality of δ-functors for Abelian categories that do not have
enough injective objects or do not have enough projective objects (or where the categories do have
enough such objects, but these are unsuitable for proving certain properties of the δ-functors).
In most such settings, we can still use Grothendieck’s criterion. For some applications, the best
solution is to instead pass to triangulated categories and the total derived functors, since these exist
under weaker hypotheses. Moreover, many theorems in the past fifty years have shown that the
derived category itself, with its many structures (that we have barely touched on), is an important
object in all areas of mathematics.
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